WO2023124501A1 - 一种球形多极标测头端及标测导管 - Google Patents

一种球形多极标测头端及标测导管 Download PDF

Info

Publication number
WO2023124501A1
WO2023124501A1 PCT/CN2022/128640 CN2022128640W WO2023124501A1 WO 2023124501 A1 WO2023124501 A1 WO 2023124501A1 CN 2022128640 W CN2022128640 W CN 2022128640W WO 2023124501 A1 WO2023124501 A1 WO 2023124501A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
spherical
mapping
arms
head end
Prior art date
Application number
PCT/CN2022/128640
Other languages
English (en)
French (fr)
Inventor
朱晓林
史天才
邹波
李楚武
Original Assignee
四川锦江电子医疗器械科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川锦江电子医疗器械科技股份有限公司 filed Critical 四川锦江电子医疗器械科技股份有限公司
Publication of WO2023124501A1 publication Critical patent/WO2023124501A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/321Accessories or supplementary instruments therefor, e.g. cord hangers

Definitions

  • the invention relates to a medical device, in particular to a spherical multi-pole mapping head end and a mapping catheter.
  • Mapping electrodes are used to stimulate and map electrophysiological activities in the heart. Due to the complex physiological structure of the human heart, it is necessary to accurately map electrophysiological signals in local areas, and different shapes of mapping catheters are required to enable the catheter to accurately reach different lesions and adapt to lesion sites with different structures.
  • Catheters currently used for high-density mapping include ring-shaped catheters, basket catheters, and star-shaped catheters. Ring-shaped catheters can only be used in the atrium, not in the ventricle. Live, causing heart damage. The basket catheter can also only be used in the atrium, not the ventricle. At the same time, its head is closed, and the head is positively attached to the tissue, which is not convenient for electrophysiological signal mapping.
  • the star-shaped catheter can enter the ventricle, it is easy to form
  • the star shape is not conducive to high-density mapping and manipulation of electrodes.
  • the current mapping of electrophysiological signals is only in one vector direction. Due to the directional nature of electrical activity conduction, it may not be possible to accurately measure the real electrophysiological signals in this area. Therefore, there is an urgent need for a catheter that can be used in the whole heart chamber and can realize multi-dimensional high-density mapping.
  • the purpose of the present invention is to: aim at the problems existing in the prior art, to provide a spherical multi-pole mapping head end and a mapping catheter, which can be used in the atrium, ventricle and cavity structure, covering the whole heart, and capable of real-time multiple Acquisition of electrophysiological signals.
  • a spherical multi-pole mapping head end including a plurality of electrode arms, all the electrode arms are surrounded by a spherical structure, the proximal end of the electrode arm is fixed to the end tube body, and the distal end of the electrode arm is an open structure , each of the electrode arms is provided with N electrodes at intervals along its axial direction, numbered as 1, 2, ..., N electrodes from the proximal end to the distal end, and the electrodes with the same number as the different electrode arms
  • the electrodes are arranged on the same cross section, and the electrode arm is further provided with a plurality of magnetic positioning sensors at intervals along its axial direction, and the magnetic positioning sensors can collect the distance information of the electrodes in the same cross section.
  • All the cross-sections are perpendicular to the centerline of the end pipe body, and all the cross-sections are arranged in parallel.
  • the mapping head is designed as an open spherical structure, which can be used in atrium, ventricle and cavity structure, and covers the whole heart. Further, by arranging electrodes with the same number on different electrode arms on the same cross-section, not only the electrophysiological signals of the electrodes on the electrode arms can be collected, but also the electrophysiological signals between electrodes of the same cross-section on different electrode arms can be collected to realize The multi-dimensional electrophysiological signal collection, and then collecting the distance information of the electrodes through the magnetic positioning sensor, can correct the electrophysiological signal collected between the electrode arms, so that the collection of the electrophysiological signal is more accurate. At the same time, by arranging a plurality of the magnetic positioning sensors on the electrode arm, the detailed shape of the mapping head end can also be displayed more accurately.
  • all the electrode arms are symmetrically distributed along the central axis of the end tube body, and a single electrode arm is C-shaped in a natural state, and the diameter of the spherical multipole mapping head end in a natural state is 15-30mm .
  • the magnetic positioning sensor includes a sheath tube and a magnetic coil, the sheath tube is sheathed outside the magnetic coil, the sheath tube is a polyurethane structure, and the magnetic coil is helical structure.
  • the outer surface of the magnetic positioning sensor of the present invention is covered with a soft polyurethane material, so that the magnetic positioning sensor can be deformed together with the electrode arm without affecting its performance.
  • the length of the magnetic positioning sensor is equal to the length of the electrode, and the length of the electrode is 0.5-2 mm. In this way, the magnetic positioning sensor can be directly sheathed in the electrode, reducing the influence on the electrode arm and making the electrode arm more flexible.
  • each of the electrode arms is provided with two magnetic positioning sensors, wherein one magnetic positioning sensor is located at the No. N electrode, and the other magnetic positioning sensor is located at the No. 1 electrode. at the electrode.
  • one magnetic positioning sensor is located at the No. N electrode
  • the other magnetic positioning sensor is located at the No. 1 electrode. at the electrode.
  • the electrode arms can perform arbitrary bending arc changes under the action of external force, and each of the electrode arms moves within the plane formed by itself and the centerline of the end tube body, preventing the electrode arms from Twisting under stress.
  • a support member is provided inside the electrode arm, and the support member is a nickel-titanium alloy structure, and both the electrode and the magnetic positioning sensor are sheathed on the support member. Due to the nickel-titanium alloy structure, the supporting member will immediately return to its original shape after the external force is removed.
  • the cross-section of the support member is rectangular, and the ratio of the length m of the rectangle to the width n is a coefficient K1, 3 ⁇ K1 ⁇ 4. It is designed so that each electrode arm can only move in the plane formed by the arc-shaped support member where it is located and the centerline of the end tube body, so as to prevent the electrode arm from being skewed and twisted under force.
  • the cross section of the supporting member is a fan ring
  • the ratio of the outer arc length s of the fan ring to the thickness r is a coefficient K2, 3 ⁇ K2 ⁇ 4
  • the central angle of the fan ring is a, 70 ° ⁇ a ⁇ 180°
  • the inner concave surface of the fan ring faces the centerline of the end pipe body.
  • the number N electrode is arranged at the farthest end of the electrode arm and is connected to the anti-trauma head.
  • the number N electrode is set at the most distal end, which is conducive to the maximum contact between the electrode and the tissue.
  • the anti-damage head end it is used to protect the tissue when the distal end of the electrode arm is in contact with the tissue, so as to avoid scratching the tissue.
  • the anti-injury head end is a flexible round head structure, preferably a plastic structure, and the length of the anti-injury head end is 0.50-2 mm. This allows the electrode to be attached to the tissue to the greatest extent and avoids scratching the tissue.
  • a perfusion channel is provided at the joint at the proximal end of the electrode arm.
  • the perfusion channel is continuously perfused with heparinized saline through the perfusion connector to prevent thrombus formation at the junction of the electrode arms.
  • the end pipe body is a polyetheretherketone structure with sufficient rigidity.
  • the terminal tube body is provided with a positioning electrode and a terminal positioning sensor, and the relative positional relationship between the positioning electrode and the terminal positioning sensor is fixed. Therefore, the two magnetic positioning sensors on each electrode arm and the common end positioning sensor on the end tube form three point coordinates, which can accurately draw the shape curve of a single electrode arm and further draw the shape of the entire mapping head.
  • the invention also discloses a spherical multipole mapping catheter, which includes any one of the spherical multipole mapping head ends.
  • the correction value of the electrophysiological signal collected between the electrode arms is compared with the electrophysiological signal collected by the electrodes on the electrode arm, and a larger value is selected as the electrophysiological signal at the measurement position.
  • the spherical multipole mapping catheter further includes an adjustable elbow body, and the bending of the adjustable elbow body is controlled by twisting and pushing of the moving handle assembly.
  • the mapping head is designed as an open spherical structure, which can be used in the atrium, ventricle and cavity structure, covering the whole heart.
  • the electrophysiological signals collected between the electrode arms can be collected.
  • the electrophysiological signals collected between the electrode arms can be corrected, making the electrophysiological signal collection more accurate.
  • the magnetic positioning sensor is softened so that the magnetic positioning sensor can be deformed together with the electrode arm without affecting its performance, and also makes the electrode arm softer.
  • the present invention specially designs the cross-section of the support member so that each electrode arm can only move in the plane formed by the arc-shaped support member where it is located and the centerline of the end tube body, preventing the electrode arm from being skewed and twisted under force , which is conducive to the precise control of the shape of the electrode arm.
  • the present invention can more accurately display the detailed shape of the mapping head by arranging a plurality of magnetic positioning sensors on the electrode arm.
  • Fig. 1 is a schematic structural diagram of a mapping catheter according to the present invention.
  • Fig. 2 is a schematic structural view of the spherical multipole mapping head end of the present invention.
  • Fig. 3 is a bottom view of the spherical multipole mapping head end of the present invention.
  • Fig. 4 is a schematic diagram of the relationship between the electrodes and the magnetic positioning sensor according to the present invention.
  • Fig. 5 is a schematic diagram of the distribution of positioning sensors according to the present invention.
  • Fig. 6 is a schematic diagram of the distribution of the supporting members of the present invention.
  • Fig. 7 is a schematic structural diagram of the magnetic positioning sensor of the present invention.
  • Fig. 8 is a first cross-sectional view of the supporting member of the present invention.
  • Fig. 9 is a second cross-sectional view of the supporting member of the present invention.
  • Fig. 10 is a schematic diagram of the electrode spacing distribution between the electrode arms according to the present invention.
  • Fig. 11 is a schematic diagram of the stretched shape of the spherical multipole mapping head according to the present invention.
  • Fig. 12 is a schematic diagram of the end of the spherical multipole mapping head abutting against tissue in a forward direction according to the present invention.
  • Fig. 13 is a schematic diagram of the end of the spherical multipole mapping head in the cavity structure according to the present invention.
  • Icons 1-spherical multi-pole mapping head, 2-electrode arm, 3-electrode, 4-positioning electrode, 5-end tube body, 6-traumatic head, 7-perfusion channel, 8-support member, 9 -Adjustable curved tube body, 10-proximal tube body, 11-push-twist, 12-handle assembly, 13-perfusion joint, 14-connector, 15-myocardial tissue, 16-cavity structure, 17-magnetic positioning sensor , 171-sheath tube, 172-magnetic coil, 173-internal channel, 18-end positioning sensor.
  • the spherical multipolar mapping catheter is mainly composed of a spherical multipolar mapping head end 1, an adjustable elbow body 9, a proximal tube body 10, a handle assembly 12, a perfusion joint 13, and a connector 14.
  • the probe end 1 is set at the distal end of the catheter (the end close to the tissue) for entering the heart for electrophysiological mapping.
  • the adjustable elbow body 9 can be controlled to bend, so as to realize The position control of the mapping head 1, the connector 14 is used to connect the electrodes and the magnetic positioning sensor on the mapping head 1 to the device, the perfusion joint 13 is used to connect the perfusion channel 7, and inject physiological saline into the mapping head end 1 root.
  • the spherical multi-pole mapping head 1 is spherical as a whole, and is specifically composed of a plurality of electrode arms 2.
  • the electrode arms 2 are highly elastic and flexible structures, preferably made of polyurethane material, so that the electrode arms 2 are more flexible. Flexible, the number of electrode arms 2 is 3-10, preferably 5, the electrode arms 2 are evenly arranged and distributed around the center line of the end tube body 5, and a single electrode arm 2 is C-shaped in a natural state (unstressed state) , the diameter of the mapping head end 1 is 15-30mm.
  • N electrodes 3 are evenly distributed on each electrode arm 2, numbered sequentially from the proximal end (operating end) to the distal end (closed to the tissue end) as No.
  • Electrodes preferably the number of electrodes 3 is 3-10, more preferably 6, the electrodes 3 with the same number on different electrode arms 2 are all on the same cross section (the cross section perpendicular to the centerline of the end tube body 5).
  • the farthest end of the electrode arm 2 is provided with a No. N electrode, which is connected to the anti-trauma head end 6 .
  • the electrodes 3 are arranged at the farthest end of the mapping head end 1, so that the electrodes 3 can be attached to the tissue to the greatest extent.
  • the anti-damage head end 6 is a flexible plastic material, preferably a material such as PEBAX, which is welded to the far end of each electrode arm 2 by hot melting, and connected to the N-number electrode of each electrode arm 2, and the anti-damage head end 6 is used to protect the tissue when the distal end of the electrode arm 2 is in contact with the tissue, so as to avoid scratching the tissue.
  • the length of the anti-trauma head 6 is 0.50-2 mm, which is as short as possible.
  • the perfusion channel 7 is set at the junction of the proximal end of the electrode arm 2 to prevent thrombus formation.
  • the perfusion channel 7 is continuously perfused with heparinized saline through the perfusion joint 13 at a flow rate of 1-2ml/min, which is used to prevent the electrode from clogging.
  • Thrombosis at arm 2 junction Because the blood flow at the joint of the electrode arm 2 is slow and prone to thrombus formation, flushing with heparinized saline is performed here to avoid thrombus formation.
  • the electrode arm 2 of the mapping head 1 is fixed on the end tube body 5, which is a tube body with sufficient rigidity, and may be made of polyetheretherketone material.
  • the positioning electrode 4 and the terminal positioning sensor 18 are arranged on the terminal tube body 5, and the relative position relationship between the two is fixed.
  • the terminal positioning sensor 18 is a magnetic positioning sensor, and the two cooperate to display the shape of the catheter more accurately. That is, the two magnetic positioning sensors 17 on each electrode arm 2 and the shared end positioning sensor 18 on the end tube body 5 form three point coordinates, which can accurately draw the shape curve of a single electrode arm 2, and further draw the entire mapping head The morphology of terminal 1.
  • a supporting member 8 is provided inside the electrode arm 2, and a magnetic positioning sensor 17 is arranged on the supporting member 8.
  • Two magnetic positioning sensors 17 are distributed on each electrode arm 2, and the distal magnetic positioning sensor 17 It is arranged at the far end of the electrode arm 2 (at the Nth electrode), and the proximal magnetic positioning sensor 92 is arranged at the proximal end of the electrode arm 2 (at the No. 1 electrode).
  • Two magnetic positioning sensors 17 are respectively arranged on each electrode arm 2 , and together with the common end positioning sensor 18 , it is equivalent to setting three magnetic positioning sensors on each electrode arm 2 .
  • the electrode arm 2 is arc-shaped, and magnetic positioning sensors 17 are provided at the distal end and the proximal end respectively to display the shape of the electrode arm 2 more realistically.
  • the length of the magnetic positioning sensor 17 is equal to the length of the electrode 3, preferably, the length is 0.5-2 mm. In this way, the magnetic positioning sensor 17 can just be sleeved inside the electrode 3, making the electrode arm 2 softer, so the magnetic positioning sensor 17 is arranged in the ring electrode 3, and the length of the rigid section on the electrode arm 2 will not be increased, thereby making the electrode arm 2 softer. 2 can be softer.
  • the electrode 3 is a hollow cylinder, which is inserted into the support member 8, and the magnetic positioning sensor 17 is also a hollow cylinder.
  • the magnetic positioning sensor 17 is set as a helical structure magnetic coil 172, and its material is a copper wire.
  • the casing 171 is made of flexible polyurethane material so that the magnetic positioning sensor 17 can be deformed without affecting its performance. Its absolute coordinates can be displayed in real time under the magnetic field generator. When multiple magnetic positioning sensors 17 are used together, they are used to display the electrodes 3 Morphology, further displaying the deformed shape of the mapping head end 1 .
  • the channel 173 of the magnetic positioning sensor 17 is used to pass through the support member 8 and be fixed thereon by adhesive.
  • the electrode arm 2 can perform arbitrary bending arc changes under the action of an external force, but through the special design of the cross-section of the electrode arm 2, each electrode arm 2 is only connected between itself and the end tube body 5 The in-plane movement formed by the center line prevents the electrode arm 2 from being skewed and twisted under force.
  • the material of the support member 8 is a high-elastic nickel-titanium alloy material, and the support member will immediately return to its original shape after the external force is removed.
  • each arc-shaped support member 8 will form a plane with the centerline of the end pipe body 5, and multiple support members 8 will form multiple planes corresponding to the centerline of the end pipe body 5, and the electrode arm on each support member 8 2 can only move in the plane formed by the support member 8 where it is located and the centerline of the end tube body 5, without skewing and twisting, which is beneficial to the precise control of the shape of the electrode arm.
  • the cross section of the support member 8 can be With a certain radian, the cross section of the support member 8 is a fan ring, the ratio of the outer arc length s of the fan ring to the thickness r is a coefficient K2, 3 ⁇ K2 ⁇ 4, and the central angle of the fan ring is a, 70° ⁇ a ⁇ 180° , the concave surface of the fan ring faces the centerline of the end pipe body 5 , and all the supporting members 8 are evenly distributed along the centerline of the end pipe body 5 .
  • the electrode arm 2 in the natural state, is in the shape of a natural curved arc under the action of the supporting member 8, the distal end and the proximal end extend to the center line of the terminal tube body 5, and the distal part is not completely closed, so Designed to facilitate the manipulation of the mapping head end 1, and the mapping head end 1 can be better attached to the tissue, and enables the mapping head end 1 to be manipulated in the ventricle without being caught by the myocardial tissue 15 Waiting for serious equipment damage. At the same time, because the mapping head end 1 is very soft, the mapping head end 1 can first enter the cavity structure 16 for operation.
  • the electrode arm 2 is very soft, and under the action of the support member 8, it only moves in the arc plane formed by the support member 8. When it needs to enter the heart through the sheath, it can be stretched into the sheath to Smoothly into the heart.
  • the electrodes 3 on the electrode arm 2 are distributed at equal intervals in turn, the electrode spacing is L, and its value is preferably 0.5-4mm, so that the electrophysiological signals between two adjacent electrodes 3 can be collected in real time, and the electrode arm 2 Electrophysiological signals can also be collected simultaneously between the electrodes 3 of the same section, and the electrode distance between the electrode arms 2 is D (specifically D1, D2, D3, D4, D5, D6).
  • the correction value of the electrophysiological signal collected between the electrode arms the electrophysiological signal collected between the electrode arms ⁇ L/D.
  • the correction value collected between the electrode arms is compared with the value collected by the electrode on the electrode arm, and a larger value is selected.
  • the electrical conduction inside the heart is directional.
  • the electrophysiological signal measured in one direction may be relatively small, while in the other direction it may be relatively large, and the larger one is its real electrophysiological signal.
  • This design can more accurately record its The electrophysiological signal of the measurement site.
  • the distance between the electrode arms is required to be very accurate.
  • the precise distance monitoring of the corresponding electrodes between the electrode arms can be accurately realized by means of the magnetic positioning sensor 17 of the support member 8 (within the range of accuracy 1mm).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种球形多极标测头端(1)及标测导管,标测头端(1)包括多个电极臂(2),所有电极臂(2)围成球形结构,电极臂(2)的近端固定于末端管体(5),电极臂(2)的远端为开放式结构,每个电极臂(2)沿其轴向均间隔设有N个电极(3),从近端至远端分别编号为1,2,...,N号电极(3),不同电极臂(2)编号相同的电极(3)布置在同一横截面上,电极臂(2)沿其轴向还间隔设有多个磁定位传感器(17),磁定位传感器(17)能够采集同一横截面电极(3)的间距信息。将标测头端(1)设计成开放式的球形结构,能在心房、心室以及腔道结构内使用,覆盖全心脏;通过电极(3)和磁定位传感器(17)相结合的方式,能够多维度采集电生理信号,使得电生理信号的采集更加准确,也能够更加准确地显示标测头端(1)的细节形态。

Description

一种球形多极标测头端及标测导管 技术领域
本发明涉及一种医疗装置,特别是一种球形多极标测头端及标测导管。
背景技术
标测电极被用于刺激和标测心脏中的电生理活动,由于人体心脏生理结构复杂,需要精确的标测局部区域电生理信号,且需要不同形状的标测导管,使导管精确到达不同病灶部位且适应不同构造的病灶部位。目前用于高密度标测的导管有环形状导管、网篮导管、星型导管,环形导管仅能在心房使用,不能在心室里使用,如果进入心室环形圈极易与心室内的腱索挂住,引起心脏损伤。网篮导管同样仅能在心房使用,不能用于心室,同时其头端封闭,头端正向贴靠组织不便于电生理信号标测,星型导管虽然可以进入心室但其受力后极易形成星型状,不利于电极高密度标测与操控。同时目前标测电生理信号仅在一个矢量方向上,由于电活动传导具有方向性,有可能无法精确测量到该区域真实电生理信号。因此亟需一种可全心腔室使用且能实现多维度高密度标测的导管。
发明内容
本发明的目的在于:针对现有技术存在的问题,提供一种球形多极标测头端及标测导管,能够在在心房、心室以及腔道结构内使用,覆盖全心脏,且能够实时多向电生理信号采集。
为了实现上述目的,本发明采用的技术方案为:
一种球形多极标测头端,包括多个电极臂,所有所述电极臂围成球形结构,所述电极臂的近端固定于末端管体,所述电极臂的远端为开放式结构,每个所述电极臂沿其轴向均间隔设有N个电极,从近端至远端分别编号为1,2,...,N号电极,不同所述电极臂编号相同的所述电极布置在同一横截面上,所述电极臂沿其轴向还间隔设有多个磁定位传感器,所述磁定位传感器能够采集同一横截面所述电极的间距信息。
所有所述横截面均垂直于末端管体的中心线,所有所述横截面之间平行设置。
本发明将标测头端设计成开放式的球形结构,能在心房、心室以及腔道结构内使用,覆盖全心脏。进一步,通过将不同电极臂相同编号的电极布置在同一横截面上,不仅能够采集电极臂上电极的电生理信号,也能够采集不同电极臂上同一横截面的电极之间的电生理信号,实现多维度的电生理信号采集,再通过所述磁定位传感器采集电极的间距信息,能够对电极臂之间采集的电生理信号进行修正,使得电生理信号的采集更加准确。同时通过在电极臂设置多个所述磁定位传感器,也能够更加准确的显示标测头端的细节形态。
作为本发明的优选方案,所有所述电极臂沿所述末端管体中心轴线对称分布,自然状态下单个所述电极臂呈C形,自然状态下球形多极标测头端的直径为15-30mm。
作为本发明的优选方案,所述磁定位传感器包括护套管和磁线圈,所述护套管套设于所述磁线圈外,所述护套管为聚氨酯结构,所述磁线圈为螺旋状结构。
本发明所述磁定位传感器的外部套设柔软的聚氨酯材料,使得所述磁定位传感器 能够随电极臂一同变形,且不影响其使用性能。
作为本发明的优选方案,所述磁定位传感器的长度等于所述电极的长度,所述电极的长度为0.5-2mm。如此,磁定位传感器可直接套设在电极内,减少对电极臂的影响,使得电极臂更加柔软。
作为本发明的优选方案,每个所述电极臂布置有两个所述磁定位传感器,其中一个所述磁定位传感器位于所述N号电极处,另一个所述磁定位传感器位于所述1号电极处。如此,将大大减小对电极臂和电极的影响,不会增加电极臂上刚性段长度,进而使得电极臂更加柔软。
作为本发明的优选方案,所述电极臂在外力作用下能够进行任意弯曲弧度变化,且每个所述电极臂在其自身与所述末端管体中心线所形成的平面内运动,防止电极臂在受力下歪斜扭曲。
作为本发明的优选方案,所述电极臂的内部设有支撑构件,所述支撑构件为镍钛合金结构,所述电极、所述磁定位传感器均套设于所述支撑构件。由于采用镍钛合金结构,在去除外界的力后支撑构件将会立即恢复原来形态。
作为本发明的优选方案,所述支撑构件的横截面为矩形,所述矩形长度m与宽度n之比为系数K1,3≤K1≤4。如此设计,使每个电极臂仅在其所在的弧形支撑构件与末端管体中心线所形成的平面内运动,防止电极臂在受力下歪斜扭曲。
作为本发明的优选方案,支撑构件的横截面为扇环,所述扇环外弧长s与厚度r之比为系数K2,3≤K2≤4,所述扇环的圆心角为a,70°≤a<180°,所述扇环的内凹面朝向所述末端管体中心线。如此设计,进一步使每个电极臂仅在其所在的弧形支撑构件与末端管体中心线所形成的平面内运动,防止电极臂在受力下歪斜扭曲。
作为本发明的优选方案,所述N号电极设置在所述电极臂的最远端且连接防损伤头端。将N号电极设置在最远端,有利于电极与组织最大程度贴靠。通过设置防损伤头端,用于在电极臂远端与组织接触时保护组织,避免划伤组织。
作为本发明的优选方案,所述防损伤头端为柔性圆头结构,优选为塑胶结构,且所述防损伤头端的长度为0.50-2mm。使得电极能最大程度与组织贴靠,且避免划伤组织。
作为本发明的优选方案,所述电极臂的近端结合处设置有灌注通道。通过灌注接头往灌注通道持续灌注肝素化的生理盐水,用于防止电极臂结合处血栓形成。
作为本发明的优选方案,所述末端管体为聚醚醚酮结构,具有足够的刚度。
作为本发明的优选方案,所述末端管体设置有定位电极和末端定位传感器,所述定位电极和所述末端定位传感器的相对位置关系固定。因此,每个电极臂上的两个磁定位传感器与末端管体上共用的末端定位传感器形成了三个点坐标,能够精确绘制单个电极臂的形态曲线,进一步绘制整个标测头端的形态。
本发明还公开了一种球形多极标测导管,包括任一所述的一种球形多极标测头端。
作为本发明的优选方案,通过所述磁定位传感器采集的电极间距信息对所述电极臂之间电极采集的电生理信号进行修正,其中,电极臂之间采集的电生理信号修正值=电极臂之间采集的电生理信号×L/D,其中L为同一电极臂的电极间距,D为同一横截面的电极间距。
作为本发明的优选方案,将所述电极臂之间采集的电生理信号修正值与电极臂上电极采集的电生理信号进行对比,选择较大值作为测量位置的电生理信号。
作为本发明的优选方案,球形多极标测导管还包括可调弯管体,通过移动手柄组件的扭推控制所述可调弯管体弯曲。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明将标测头端设计成开放式的球形结构,能在心房、心室以及腔道结构内使用,覆盖全心脏。
2、本发明通过将不同电极臂相同编号的电极布置在同一横截面上,不仅能够采集电极臂上电极的电生理信号,也能够采集不同电极臂上同一横截面的电极之间的电生理信号,实现多维度的电生理信号采集,再通过磁定位传感器电极采集的间距信息,能够对电极臂之间采集的电生理信号进行修正,使得电生理信号的采集更加准确。
3、本发明对磁定位传感器进行柔软化设计,使得磁定位传感器能够随电极臂一同变形,且不影响其使用性能,也使得电极臂更加柔软。
4、本发明对支撑构件的横截面进行特殊设计,使每个电极臂仅在其所在的弧形支撑构件与末端管体中心线所形成的平面内运动,防止电极臂在受力下歪斜扭曲,有利于电极臂形态的精确控制。
5、本发明通过在电极臂设置多个磁定位传感器,也能够更加准确的显示标测头端的细节形态。
附图说明
图1是本发明所述的标测导管的结构示意图。
图2是本发明所述的球形多极标测头端的结构示意图。
图3是本发明所述的球形多极标测头端的仰视图。
图4是本发明所述的电极与磁定位传感器的关系示意图。
图5是本发明所述的定位传感器的分布示意图。
图6是本发明所述的支撑构件的分布示意图。
图7是本发明所述的磁定位传感器的结构示意图。
图8是本发明所述的支撑构件的横截面图一。
图9是本发明所述的支撑构件的横截面图二。
图10是本发明所述的电极臂之间电极间距分布示意图。
图11是本发明所述的球形多极标测头端拉伸后的形态示意图。
图12是本发明所述的球形多极标测头端正向贴靠组织的示意图。
图13是本发明所述的球形多极标测头端在腔道结构内的示意图。
图标:1-球形多极标测头端,2-电极臂,3-电极,4-定位电极,5-末端管体,6-防损伤头端,7-灌注通道,8-支撑构件,9-可调弯管体,10-近端管体,11-推扭,12-手柄组件,13-灌注接头,14-连接器,15-心肌组织,16-腔道结构,17-磁定位传感器,171-护套管,172-磁线圈,173-内部通道,18-末端定位传感器。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,球形多极标测导管主要由球形多极标测头端1、可调弯管体9、近端管体10、手柄组件12、灌注接头13、连接器14组成,标测头端1设置在导管远端(与组织贴靠端)用于进入心脏内进行电生理标测,手柄组件12上的推扭11移动情况下可以控制可调弯管体9弯曲,以实现标测头端1的位置控制,连接器14用于将标测头端1上的电极及磁定位传感器与设备进行连接,灌注接头13用于连接灌注通道7,将生理盐水灌注到标测头端1根部。
如图2-3所示,球形多极标测头端1整体呈球形,具体由多个电极臂2构成,电极臂2为高弹性柔性结构,优选为聚氨酯材质构成,使电极臂2更加柔软有弹性,电极臂2数量为3-10个,优选为5个,电极臂2均匀整列分布在末端管体5中心线的四周,自然状态(未受力状态)下单个电极臂2呈C形,标测头端1直径为15-30mm。每个电极臂2上均匀分布N个电极3,从近端(操作端)至远端(贴靠组织端)依次编号为1号电极、2号电极、3号电极、...、N号电极,优选电极3数量为3-10个,进一步优选为6个,不同电极臂2上编号相同的电极3均是在同一横截面上(垂直于末端管体5中心线的横截面)。
电极臂2上最远端设置N号电极,并与防损伤头端6连接。如此设计,使标测头端1最远端均有电极3设置,以利于电极3与组织最大程贴靠。防损伤头端6为柔性的塑胶材料,优选为PEBAX等材料,通过热熔的方式熔接在每个电极臂2的远端,并与每个电极臂2的N号电极连接,防损伤头端6用于在电极臂2远端与组织接触时保护组织,避免划伤组织。为使电极3能最大程度与组织贴靠,防损伤头端6长度为0.50-2mm,尽量短。灌注通道7设置在电极臂2近端结合处,用于防止血栓形成,应用时,通过灌注接头13往灌注通道7持续灌注肝素化的生理盐水,流速为1-2ml/min,用于防止电极臂2结合处血栓形成。因为电极臂2结合处血流速度缓慢,极易血栓形成,因此在此处进行肝素化生理盐水冲刷以避免血栓形成。标测头端1的电极臂2固定在末端管体5上,末端管体5为具有足够刚性的管体,可以为聚醚醚酮材料。末端管体5上设置定位电极4和末端定位传感器18,二者的相对位置关系固定,末端定位传感器18为磁定位传感器,二者配合用于更加精确显示导管形态。即每个电极臂2上的两个磁定位传感器17与末端管体5上共用的末端定位传感器18形成了三个点坐标,能够精确绘制单个电极臂2的形态曲线,进一步绘制整个标测头端1的形态。
如图4-6所示,电极臂2内部设置有支撑构件8,磁定位传感器17设置于支撑构件8上,每个电极臂2上分布有两个磁定位传感器17,远端磁定位传感器17设置在电极臂2远端位置(N号电极处),近端磁定位传感器92设置在电极臂2近端位置(1号电极处)。每个电极臂2上分别设置两个磁定位传感器17,在加上共用的末端定位传感器18,等效为每个电极臂2上设置3个磁定位传感器。电极臂2呈圆弧状,分别在远端、近端设置磁定位传感器17用于更加真实显示电极臂2形态。磁定位传感器17长度等于电极3长度,优选的,长度为0.5-2mm。如此,磁定位传感器17正好可以套设在电极3内部,使得电极臂2更加柔软,因此磁定位传感器17设置在环电极3内,将不会增加电极臂2上刚性段长度,进而使电极臂2能更加柔软。优选 的,电极3呈空心圆柱体,套入式的设置在支撑构件8上,磁定位传感器17亦为空心圆柱体结构。
如图7所示,由于电极臂2需要运动变形,因此为降低磁定位传感器17对电极臂2变形影响,磁定位传感器17设置为螺旋状结构磁线圈172,其材质为铜导线,外部的护套管171为柔性的聚氨酯材质,以使磁定位传感器17可以变形,且不影响其性能,在磁场发生器下面可以实时显示其绝对坐标,多个磁定位传感器17配合使用时用于显示电极3形态,进一步显示标测头端1的变形形态。磁定位传感器17的通道173用于通过支撑构件8并粘接固定在其上。
进一步优选的,由于采用高弹性柔性结构,电极臂2在外力作用下能够进行任意弯曲弧度变化,但是通过对电极臂2截面的特殊设计,每个电极臂2仅在其自身与末端管体5中心线所形成的平面内运动,防止电极臂2在受力下歪斜扭曲。
具体的,支撑构件8材料为高弹性的镍钛合金材料,在去除外界的力后恢复支撑构件将会立即恢复原来形态。如图8所示,为实现标测头端1的扩张与收缩,以及无严重变形,不影响信号采集,支撑构件8横截面为矩形,支撑构件宽度m与支撑构件厚度n之比为系数K1,K1=3-4。如此设计,使得单个电极臂2仅在弧形支撑构件8与末端管体5中心线所形成的平面内运动,防止电极臂2的歪斜。即每个弧形支撑构件8均会与末端管体5中心线形成一个平面,多个支撑构件8会和末端管体5中心线对应形成多个平面,而每个支撑构件8上的电极臂2仅会在其所在的支撑构件8与末端管体5中心线所形成的平面内运动,而不会发生歪斜扭曲,有利于电极臂形态的精确控制。
如图9所示,为进一步使电极臂2仅在弧形支撑构件8与末端管体5中心线所形成的平面内运动,防止电极臂2在受力下歪斜扭曲,支撑构件8横截面可具有一定弧度,支撑构件8的横截面为扇环,扇环外弧长s与厚度r之比为系数K2,3≤K2≤4,扇环的圆心角为a,70°≤a<180°,扇环的内凹面朝向末端管体5中心线,所有支撑构件8沿末端管体5中心线均匀分布。
如图11、12,在自然状态下,电极臂2在支撑构件8作用下呈自然弯曲圆弧形态,远端与近端延伸至末端管体5的中心线,远端部分未完全封闭,如此设计以利于标测头端1的操控,以及标测头端1能更好的与组织进行贴靠,且能使标测头端1可以在心室中操控,而不会被心肌组织15发生勾住等严重器械损伤问题。同时由于标测头端1非常柔软,标测头端1可以首先进入腔道结构16,进行操作。
如图13所示,电极臂2非常柔软,在支撑构件8作用下仅在支撑构件8形成的圆弧平面运动,当需要通过鞘管进入心脏时,可以将其拉伸放入鞘管中以顺利进进入心脏。
如图10所示,电极臂2上的电极3依次等间距分布,电极间距为L,其值优选为0.5-4mm,可以实时采集两个相邻电极3间电生理信号,同时电极臂2之间同一截面的电极3之间也可以同时采集电生理信号,电极臂2之间的电极间距为D(具体为D1、D2、D3、D4、D5、D6......)。
由公知技术可知,电极间距越大,所采集的电生理信号幅值越大,为能与固定间距L的电极臂上电极间距形成参照极对比,将电极臂之间采集的信号修正。因此,电极臂之间采集的电生理信号修正值=电极臂之间采集的电生理信号×L/D。实时电生理信号采集时,电极臂之间采集的修正值与电极臂上电极采集的值进行对比,选择较大值。在心脏内部电 传导具有方向性,在一个方向上测量电生理信号可能比较小,而在另一个方向上比较大,而大的才是其真实的电生理信号,如此设计能更加准确的记录其测量位置的电生理信号。电极臂之间的距离要求非常准确,此时借助支撑构件8的磁磁定位传感器17(精度1mm范围内)可精确实现电极臂之间对应电极的精确距离监控。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种球形多极标测头端,其特征在于,包括多个电极臂(2),所有所述电极臂(2)围成球形结构,所述电极臂(2)的近端固定于末端管体(5),所述电极臂(2)的远端为开放式结构,每个所述电极臂(2)沿其轴向均间隔设有N个电极(3),从近端至远端分别编号为1,2,...,N号电极,不同所述电极臂(2)编号相同的所述电极(3)布置在同一横截面上,所述电极臂(2)沿其轴向还间隔设有多个磁定位传感器(17),所述磁定位传感器(17)能够采集同一横截面所述电极(3)的间距信息。
  2. 根据权利要求1所述的一种球形多极标测头端,其特征在于,所有所述电极臂(2)沿所述末端管体(5)中心轴线对称分布,自然状态下单个所述电极臂(2)呈C形,自然状态下球形多极标测头端的直径为15-30mm。
  3. 根据权利要求1所述的一种球形多极标测头端,其特征在于,所述磁定位传感器(17)包括护套管(171)和磁线圈(172),所述护套管(171)套设于所述磁线圈(172)外,所述护套管(171)为聚氨酯结构,所述磁线圈(172)为螺旋状结构。
  4. 根据权利要求3所述的一种球形多极标测头端,其特征在于,所述磁定位传感器(17)的长度等于所述电极(3)的长度,所述电极(3)的长度为0.5-2mm。
  5. 根据权利要求4所述的一种球形多极标测头端,其特征在于,每个所述电极臂(2)布置有两个所述磁定位传感器(17),其中一个所述磁定位传感器(17)位于所述N号电极处,另一个所述磁定位传感器(17)位于所述1号电极处。
  6. 据权利要求1所述的一种球形多极标测头端,其特征在于,所述电极臂(2)在外力作用下能够进行任意弯曲弧度变化,且每个所述电极臂(2)在其自身与所述末端管体(5)中心线所形成的平面内运动。
  7. 根据权利要求6所述的一种球形多极标测头端,其特征在于,所述电极臂(2)的内部设有支撑构件(8),所述支撑构件(8)为镍钛合金结构,所述电极(3)、所述磁定位传感器(17)均套设于所述支撑构件(8)。
  8. 根据权利要求7所述的一种球形多极标测头端,其特征在于,所述支撑构件(8)的横截面为矩形,所述矩形长度m与宽度n之比为系数K1,3≤K1≤4。
  9. 根据权利要求7所述的一种球形多极标测头端,其特征在于,所述支撑构件(8)的横截面为扇环,所述扇环外弧长s与厚度r之比为系数K2,3≤K2≤4,所述扇环的圆心角为a,70°≤a<180°,所述扇环的内凹面朝向所述末端管体(5)中心线。
  10. 根据权利要求1所述的一种球形多极标测头端,其特征在于,所述N号电极设置在所述电极臂(2)的最远端且连接防损伤头端(6)。
  11. 根据权利要求10所述的一种球形多极标测头端,其特征在于,所述防损伤头端(6)为柔性圆头结构,且所述防损伤头端(6)的长度为0.50-2mm。
  12. 根据权利要求1-11任一所述的一种球形多极标测头端,其特征在于,所述电极臂(2)的近端结合处设置有灌注通道(7)。
  13. 根据权利要求1-11任一所述的一种球形多极标测头端,其特征在于,所述末端管体(5)设置有定位电极(4)和末端定位传感器(18),所述定位电极(4)和所述末端定位传感器(18)的相对位置关系固定。
  14. 一种球形多极标测导管,其特征在于,包括如权利要求1-13任一所述的一种球形多极标测头端(1)。
  15. 根据权利要求14所述的一种球形多极标测导管,其特征在于,通过所述磁定位传感器(17)采集的电极间距信息对所述电极臂(2)之间电极(3)采集的电生理信号进行修正,其中,电极臂之间采集的电生理信号修正值=电极臂之间采集的电生理信号×L/D,其中L为同一电极臂的电极间距,D为同一横截面的电极间距。
  16. 根据权利要求15所述的一种球形多极标测导管,其特征在于,将所述电极臂之间采集的电生理信号修正值与电极臂上电极采集的电生理信号进行对比,选择较大值作为测量位置的电生理信号。
  17. 根据权利要求14所述的一种球形多极标测导管,其特征在于,还包括可调弯管体(9),通过移动手柄组件(12)的扭推(11)控制所述可调弯管体(9)弯曲。
PCT/CN2022/128640 2021-12-29 2022-10-31 一种球形多极标测头端及标测导管 WO2023124501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111650576.9A CN114209331B (zh) 2021-12-29 2021-12-29 一种球形多极标测头端及标测导管
CN202111650576.9 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023124501A1 true WO2023124501A1 (zh) 2023-07-06

Family

ID=80707352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128640 WO2023124501A1 (zh) 2021-12-29 2022-10-31 一种球形多极标测头端及标测导管

Country Status (2)

Country Link
CN (1) CN114209331B (zh)
WO (1) WO2023124501A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114209331B (zh) * 2021-12-29 2024-02-09 四川锦江电子医疗器械科技股份有限公司 一种球形多极标测头端及标测导管
CN115844521B (zh) * 2023-02-15 2023-05-09 四川锦江电子医疗器械科技股份有限公司 具有可变形态的电极导管
CN115813398B (zh) * 2023-02-17 2023-05-23 四川锦江电子医疗器械科技股份有限公司 一种球囊电极导管
CN116370062B (zh) * 2023-06-07 2023-08-01 四川锦江电子医疗器械科技股份有限公司 一种用于心脏标测和消融的导管头端及导管
CN116746943B (zh) * 2023-08-18 2023-11-07 四川锦江电子医疗器械科技股份有限公司 一种医用电极标测导管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325985A (ja) * 2005-05-26 2006-12-07 Inter Noba Kk 検査用カテーテルおよび医療検査用器具
CN202637103U (zh) * 2011-08-26 2013-01-02 王捷 具有肾神经标测功能的导管
CN106852690A (zh) * 2015-12-09 2017-06-16 韦伯斯特生物官能(以色列)有限公司 双节点多射枝电极导管
CN111436928A (zh) * 2020-04-30 2020-07-24 深圳惠泰医疗器械股份有限公司 耙状头端高精度多极标测电极导管
CN111836579A (zh) * 2018-03-13 2020-10-27 圣犹达医疗用品心脏病学部门有限公司 可变密度标测导管
US20210100612A1 (en) * 2019-10-07 2021-04-08 Biosense Webster (Israel) Ltd. 3d electrical activity representation
CN114209331A (zh) * 2021-12-29 2022-03-22 四川锦江电子科技有限公司 一种球形多极标测头端及标测导管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10537260B2 (en) * 2016-05-06 2020-01-21 Biosense Webster (Israel) Ltd. Varying diameter catheter distal end design for decreased distal hub size
US11172858B2 (en) * 2016-10-28 2021-11-16 St. Jude Medical, Cardiology Division, Inc. Flexible high-density mapping catheter
US10932685B2 (en) * 2017-01-09 2021-03-02 Biosense Webster (Israel) Ltd. Catheter with supporting structure having variable dimensions
US11116450B2 (en) * 2017-03-09 2021-09-14 Biosense Webster (Israel) Ltd. Electrode assembly having spines with controlled flexibility
US11207016B2 (en) * 2018-12-28 2021-12-28 Biosense Webster (Israel) Ltd. Mapping ECG signals using a multipole electrode assembly
US11219398B2 (en) * 2019-03-07 2022-01-11 Biosense Webster (Israel) Ltd. Device, system and use of a catheter system to record and map cardiac rhythm
US11517218B2 (en) * 2019-12-20 2022-12-06 Biosense Webster (Israel) Ltd. Selective graphical presentation of electrophysiological parameters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325985A (ja) * 2005-05-26 2006-12-07 Inter Noba Kk 検査用カテーテルおよび医療検査用器具
CN202637103U (zh) * 2011-08-26 2013-01-02 王捷 具有肾神经标测功能的导管
CN106852690A (zh) * 2015-12-09 2017-06-16 韦伯斯特生物官能(以色列)有限公司 双节点多射枝电极导管
CN111836579A (zh) * 2018-03-13 2020-10-27 圣犹达医疗用品心脏病学部门有限公司 可变密度标测导管
US20210100612A1 (en) * 2019-10-07 2021-04-08 Biosense Webster (Israel) Ltd. 3d electrical activity representation
CN111436928A (zh) * 2020-04-30 2020-07-24 深圳惠泰医疗器械股份有限公司 耙状头端高精度多极标测电极导管
CN114209331A (zh) * 2021-12-29 2022-03-22 四川锦江电子科技有限公司 一种球形多极标测头端及标测导管

Also Published As

Publication number Publication date
CN114209331A (zh) 2022-03-22
CN114209331B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2023124501A1 (zh) 一种球形多极标测头端及标测导管
JP6858828B2 (ja) カテーテル
CN103315806B (zh) 用于标测和消融静脉突出和其它管状位置的花式导管
US7257435B2 (en) Catheter and method for mapping a pulmonary vein
JP4209018B2 (ja) カテーテル
JP6466114B2 (ja) 偏向性背骨を有するバスケットカテーテル
EP1393674B1 (en) Catheter and method for mapping Purkinje fibers
AU2006292457B2 (en) Catheter with flexible pre-shaped tip section
AU2012227335B2 (en) Mapping catheter with spiral electrode assembly
US7818048B2 (en) Catheter and method for mapping a pulmonary vein
JP2004160219A (ja) 操縦可能な複数の先端部を備えたカテーテル
EP4159124B1 (en) Intraluminal reference electrode for cardiovascular treatment apparatus
US20210369132A1 (en) Intraluminal reference electrode for cardiovascular treatment apparatus
CN117159126A (zh) 一种具有精确形态显示的多极导管
US7366557B2 (en) Flower catheter
CN219835674U (zh) 一种笼状脉冲消融导管
CN115969509A (zh) 一种笼状脉冲消融导管
CN116369926A (zh) 集成有柔性电极的标测导管头端及导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913764

Country of ref document: EP

Kind code of ref document: A1