WO2023124374A1 - 波长选择器件、波长选择的方法和roadm - Google Patents

波长选择器件、波长选择的方法和roadm Download PDF

Info

Publication number
WO2023124374A1
WO2023124374A1 PCT/CN2022/124656 CN2022124656W WO2023124374A1 WO 2023124374 A1 WO2023124374 A1 WO 2023124374A1 CN 2022124656 W CN2022124656 W CN 2022124656W WO 2023124374 A1 WO2023124374 A1 WO 2023124374A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
sub
bandwidth
channel
diffraction
Prior art date
Application number
PCT/CN2022/124656
Other languages
English (en)
French (fr)
Inventor
周挺
杨维利
陈杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124374A1 publication Critical patent/WO2023124374A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control

Definitions

  • the present application relates to the technical field of optical communication, in particular to a wavelength selection device, a wavelength selection method and ROADM.
  • a wavelength selective device is an optical device commonly used in optical communication, such as a wavelength selective switch (wavelength selective switch, WSS).
  • the wavelength selective device includes a diffractive component, which may be a diffractive grating with the same pitch of the lines.
  • the diffraction component is used to disperse the incident light beam into multiple light beams with different wavelengths. Due to the non-uniform dispersion of the diffraction component and the chromatic aberration of the spatial optical lens system of the wavelength selection device, the channel bandwidth of the wavelength selection device cannot meet the requirements, such as the channel bandwidth is not uniform.
  • a lens or combined lens is usually added to the optical path of the wavelength selection device to adjust the bandwidth of the channel of the wavelength selection device.
  • the optical path of the wavelength selective device Due to the addition of optical elements in the optical path of the wavelength selective device, the optical path of the wavelength selective device is complicated.
  • the present application provides a wavelength selection device, a wavelength selection method and ROADM, which can adjust the channel bandwidth of the wavelength selection device without complicating the optical path of the wavelength selection device.
  • the present application provides a wavelength selection device, which includes an input port, a diffraction component, a switching engine, and an output port; the input port is used to input an incident beam;
  • the line spacing is not exactly the same, and the reticle spacing at the incident position of the beam is related to the bandwidth of the channel of the wavelength selection device;
  • the diffraction component is used to disperse the incident beam into multiple sub-beams, and the wavelength of each sub-beam is different;
  • the The switching engine is used to output at least one sub-beam of the plurality of sub-beams to the output port.
  • the distance between the marking lines at the incident position of the beam of the diffraction component in the wavelength selection device is not exactly the same, so that the spot size of the spot formed by different beams on the switching engine can be adjusted. Since the spot size is related to the bandwidth of the channel, Therefore, the bandwidth of the channel of the wavelength selection device can be adjusted by setting the distance between the reticle lines to be not completely the same.
  • the wavelength selection device further includes a polarization component; the polarization component is used to split the incident light beam into a first light beam in a first polarization state and a second light beam in a second polarization state, and the first light beam in a second polarization state A light beam and a second light beam are converted into the same polarization state, and the first polarization state is orthogonal to the second polarization state; the diffraction component has a first diffraction area and a second diffraction area, and the first diffraction area in the first diffraction area
  • the reticle spacing at the first incident position of the light beam is not completely the same, the reticle spacing at the second incident position of the second light beam in the second diffraction area is not completely the same, and the reticle spacing at the first incident position is not exactly the same as
  • the bandwidth of the channel of the wavelength selection device in the first polarization state is related, and the distance between the reticles at the second incident position is is
  • the switching engine when the switching engine is a phase space modulator, it is selective to the polarization state of the beam, and requires that the beam incident on the phase space modulator is a beam of a certain polarization state.
  • the wavelength selective device divides the incident light beam into two light beams with the same polarization state, and these two light beams are respectively incident on the first incident position and the second incident position of the diffraction component, the first incident
  • the distances between the reticle lines at the positions are not completely the same, and the distances between the reticle lines at the second incident position are not completely the same, and the bandwidths of the channels of the wavelength selective device under different polarization states can be adjusted respectively, so that the bandwidths of the channels can be adjusted more flexibly.
  • the diffraction component includes a first diffraction grating and a second diffraction grating; the first diffraction area belongs to the first diffraction grating, and the second diffraction area belongs to the second diffraction grating. In this way, using two diffraction gratings is more flexible.
  • the first diffractive region and the second diffractive region are located at adjacent positions in the same plane.
  • the first diffraction area and the second diffraction area are parallel and do not overlap.
  • the reticle included in the first diffractive region is parallel to the reticle included in the second diffractive region.
  • the switching engine is a liquid crystal on silicon (LCOS) phase space modulator.
  • LCOS liquid crystal on silicon
  • the distance between the reticle lines at the first incident position equalizes the difference in bandwidth of the channel of the wavelength selective device in the first polarization state
  • the distance between the reticle lines at the second incident position is such that The channels of the wavelength selective device are equalized in bandwidth difference in the second polarization state.
  • the distance between the reticle lines at the first incident position and the distance between the reticle lines at the second incident position make the channel of the wavelength selective device satisfy that the first bandwidth difference and the second bandwidth difference are equal Or constraints that are mutually opposite numbers;
  • the first bandwidth difference is the bandwidth difference between the channel with the smallest central wavelength of the wavelength selective device and the channel with the largest central wavelength of the wavelength selective device in the first polarization state;
  • the The second bandwidth difference is a bandwidth difference between the channel with the smallest central wavelength and the channel with the largest central wavelength in the second polarization state.
  • the reticle spacing at the first incident position and the reticle spacing at the second incident position make each channel of the wavelength selective device satisfy the constraint condition that the bandwidth difference is equal to the target threshold,
  • the bandwidth difference of each channel is the difference between the bandwidths of the first polarization state and the second polarization state.
  • the present application provides a wavelength selection method, which is applied to a wavelength selection device, and the method includes: the input port outputs the incident beam to a diffraction component, and the distance between the reticle lines at the incident position of the beam on the diffraction component is not Exactly the same, the distance between the reticle lines at the incident position of the beam is related to the bandwidth of the channel of the wavelength selection device; the diffraction component disperses the incident beam into multiple sub-beams, each sub-beam has a different wavelength, and outputs the multiple sub-beams to the switching engine; the switching engine outputs at least one sub-beam of the plurality of sub-beams to an output port; the output port outputs the received beam.
  • the input port inputting the incident light beam to the diffraction component includes: the input port outputting the incident light beam to a polarization component; the polarization component splitting the incident light beam into a first light beam of a first polarization state and the second light beam of the second polarization state, the first light beam and the second light beam are converted into the same polarization state, and output to the diffraction component, the first polarization state is orthogonal to the second polarization state; the diffraction component has In the first diffractive area and the second diffractive area, the distance between the marking lines at the first incident position of the first light beam in the first diffractive area is not completely the same, and in the second diffractive area at the second incident position of the second light beam The reticle spacing at the first incident position is not exactly the same, the reticle spacing at the first incident position is related to the bandwidth of the channel of the wavelength selective device in the first polarization state, and the reticle spacing at the second incident position is related
  • the diffraction component includes a first diffraction grating and a second diffraction grating; the first diffraction area belongs to the first diffraction grating, and the second diffraction area belongs to the second diffraction grating.
  • the first diffractive region and the second diffractive region are located at adjacent positions in the same plane.
  • the reticle included in the first diffractive area is parallel to the reticle included in the second diffractive area.
  • the distance between the reticle lines at the first incident position equalizes the difference in bandwidth of the channel of the wavelength selective device in the first polarization state
  • the distance between the reticle lines at the second incident position is such that The channels of the wavelength selective device are equalized in bandwidth difference in the second polarization state.
  • the present application provides a reconfigurable optical add-drop multiplexer (reconfigurable optical add-drop multiplexer, ROADM), the ROADM includes at least one wavelength selection device, one or The plurality of wavelength selective devices are wavelength selective devices in the first aspect or in a possible manner of the first aspect.
  • ROADM reconfigurable optical add-drop multiplexer
  • the present application provides a method for determining grating parameters, the method comprising: obtaining the grating parameters of the diffraction component in the wavelength selection device, the grating parameters including the grating spacing at the incident position of the light beam of the diffraction component, the wavelength Select the wavelength selection device in the first aspect of the device or the optional mode of the first aspect; based on the grating parameters, determine the spot size and spot distance corresponding to each channel of the wavelength selection device, and for the target channel, the target channel corresponds to The spot size is the size of the light spot on the switching engine of the center wavelength beam of the target channel in the wavelength selection device, and the spot distance corresponding to the target channel is the distance between the light spots on the switching engine of the light beam of the boundary wavelength of the target channel ; Adjusting the grating parameters based on the spot size and spot distance corresponding to each channel to obtain target grating parameters satisfying bandwidth constraints.
  • the spot size and spot distance corresponding to the channel will affect the bandwidth of the channel, so based on the spot size and spot distance corresponding to each channel, the grating parameters that meet the bandwidth constraints can be obtained by feedback.
  • the present application provides a device for determining grating parameters, and the device has the function of realizing the fourth aspect above.
  • the device includes at least one module, and the at least one module is used to implement the method for determining grating parameters provided in the fourth aspect above.
  • the present application provides a computer device for determining grating parameters, the computer device includes a processor and a memory; the memory is used to store computer instructions; the processor is used to execute the computer instructions, so that the computer device The method for determining grating parameters provided by the fourth aspect above is implemented.
  • the present application provides a computer-readable storage medium, at least one computer instruction is stored in the storage medium, and the computer instruction is read by a processor to enable the computer device to perform the determination of the grating parameters provided in the fourth aspect.
  • the present application provides a computer program product, where the computer program product includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the method for determining grating parameters provided in the fourth aspect above.
  • FIG. 1 is a schematic structural diagram of a wavelength selective device provided by an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of the transmission of light beams provided by an exemplary embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a diffraction component provided by an exemplary embodiment of the present application.
  • Fig. 4 is a side view of a diffraction component provided by an exemplary embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a diffraction component provided by an exemplary embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a diffraction component provided by an exemplary embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a wavelength selective device provided by an exemplary embodiment of the present application.
  • Fig. 8 is a top view of a wavelength selective device provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of imaging of a light beam on a switching engine provided by an exemplary embodiment of the present application.
  • Fig. 10 is a schematic diagram of the dispersion of a light beam on a diffraction component provided by an exemplary embodiment of the present application;
  • Fig. 11 is a schematic diagram of a light beam imaging on a switching engine provided by an exemplary embodiment of the present application.
  • Fig. 12 is a schematic diagram of filtering provided by an exemplary embodiment of the present application.
  • Fig. 13 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a computer device provided by an exemplary embodiment of the present application.
  • Fig. 15 is a schematic flowchart of a method for determining grating parameters provided by an exemplary embodiment of the present application.
  • Fig. 16 is a schematic flowchart of a method for determining grating parameters provided by an exemplary embodiment of the present application
  • Fig. 17 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 18 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 19 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 20 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 21 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 22 is a schematic diagram of the relationship between bandwidth and wavelength provided by an exemplary embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of a device for determining grating parameters provided by an exemplary embodiment of the present application.
  • the second diffraction grating; 23. The prism.
  • a channel is a channel formed by a light beam with a certain wavelength range transmitted in an optical device.
  • a channel may also be called a wavelength channel, and each channel corresponds to a central wavelength and two boundary wavelengths, and the central wavelength is equal to half of the sum of the two boundary wavelengths.
  • the beam waist is the position where the Gaussian beam travels absolutely parallel.
  • WSS uses diffraction gratings to separate and combine waves in free space, and changes the beam based on a micro-electro-mechanical system (MEMS) or a liquid crystal on silicon (LCOS) phase space modulator.
  • MEMS micro-electro-mechanical system
  • LCOS liquid crystal on silicon phase space modulator.
  • the spatial transmission direction enables the light beams to reach different output ports of the WSS to achieve the purpose of optical switching.
  • wavelength selective devices are commonly used wavelength selective devices, such as WSS, wavelength blocker (wavelength blocker, WB) and so on.
  • the wavelength selective device includes a diffractive component, which may be a diffractive grating with the same pitch of the lines.
  • the diffraction component is used to disperse the incident light beam into multiple light beams with different wavelengths. Due to the non-uniform dispersion of the diffraction component and the chromatic aberration of the spatial optical lens system of the wavelength selection device, the channel bandwidth of the wavelength selection device cannot meet the requirements, such as unbalanced channel bandwidth.
  • a lens or combined lens is usually added to the optical path of the wavelength selection device to adjust the bandwidth of the channel of the wavelength selection device. The addition of optical elements in the optical path of the wavelength selection device will lead to the complexity of the optical path of the wavelength selection device.
  • the wavelength selection device includes a diffractive component 2, the reticle spacing at the beam incident position on the diffractive component 2 is not exactly the same, and the reticle spacing at the beam incident position is related to the channel bandwidth of the wavelength selection device, All of them can be set with appropriate groove spacing to adjust the bandwidth of the wavelength selective device to meet the requirements. It can be seen that only the diffraction component needs to be replaced, and no optical elements need to be added in the optical path of the wavelength selection device, so the optical path of the wavelength selection device will not be complicated.
  • the wavelength selection device includes an input port 1 , a diffraction component 2 , a switching engine 3 and an output port 4 .
  • the input port 1 is connected with an external optical fiber, and the distance between the reticles at the incident position of the light beam on the diffraction component 2 is not exactly the same. The distance between the reticle lines will affect the channel bandwidth of the wavelength selection device.
  • the switching engine 3 is used to switch the light beam to the output port 4, and the output port 4 is also connected with an external optical fiber for outputting the light beam.
  • the beam incident position includes multiple reticle lines, and at least two of the multiple reticle lines have different distances between the reticle lines.
  • the multiple reticle lines include adjacent first reticle lines and second reticle lines, adjacent third reticle lines and fourth reticle lines, and the distance between the first reticle lines and the second reticle lines is the first reticle line pitch , the interval between the third reticle and the fourth reticle is the second reticle interval, and among the reticle intervals of the plurality of reticle lines, at least the first reticle interval and the second reticle interval are different.
  • the beam transmission process is as follows: the incident beam enters the wavelength selection device from input port 1 .
  • the incident light beam is transmitted to the diffraction component 2, and the diffraction component 2 disperses the incident light beam into multiple sub-beams in the dispersion plane y-z, and each sub-beam has a different wavelength.
  • the multiple sub-beams are transmitted to the switching engine 3 , the switching engine 3 changes the position of the sub-beams in the switching plane x-z, and outputs at least one of the multiple sub-beams to the output port 4 .
  • the dispersion plane y-z refers to the plane where the beams of each wavelength are located after the beam is dispersed by the diffraction component 2, also called the wavelength plane, and the switching plane x-z is the plane where the input port 1 and the output port 4 are located, also called It is a port plane or a switching plane.
  • the dispersion plane y-z and the switching plane x-z are perpendicular to each other.
  • Fig. 2 shows a schematic diagram of light beam transmission, the wavelength of the incident light beam is ⁇ 1 to ⁇ 3 .
  • the sub-beam with a wavelength of ⁇ 1 is reflected by the switching engine 3, changes its position in the switching plane xz, and is output from the first output port through the diffraction component 2.
  • the sub-beams with wavelengths of ⁇ 2 and ⁇ 3 are reflected by the switching engine 3, and their positions change in the switching plane xz, and the sub-beams with wavelengths of ⁇ 2 and ⁇ 3 are incident on the same position of the diffraction component 2, where they are diffracted Component 2 combines the sub-beams of wavelengths ⁇ 2 and ⁇ 3 into one beam, which is output from the second output port.
  • the wavelength selection device is a WB
  • some of the sub-beams are output to the output port 4 and other part of the sub-beams are not output from the output port 4 .
  • the wavelength of the incident light beam is ⁇ 1 to ⁇ 3 .
  • the sub-beam with a wavelength of ⁇ 1 is reflected by the switching engine 3, changes its position in the switching plane xz, and is output from the first output port through the diffraction component 2.
  • the sub-beams with wavelengths of ⁇ 2 and ⁇ 3 are reflected by the switching engine 3, and their positions change in the switching plane xz, and the sub-beams with wavelengths of ⁇ 2 and ⁇ 3 are incident on the same position of the diffraction component 2, where they are diffracted Component 2 combines the sub-beams with wavelengths ⁇ 2 and ⁇ 3 into one beam, which is output to a position other than output port 4, so that WB outputs the sub-beam with wavelength ⁇ 1 and outputs the sub-beam with wavelength ⁇ 2 and lambda 3 sub-beam blocking.
  • the input port 1 and the output port 4 can form an optical fiber port array
  • the optical fiber port array includes at least two ports, which are respectively used for connecting optical fibers, and each port is used for an input beam or an output beam, and when the port is used for an input beam , the port is called the input port, and when the port is used to output the beam, the port is called the output port.
  • the switching engine 3 may be a MEMS array, and each sub-beam is incident on one MEMS in the MEMS array, so that one MEMS independently controls one sub-beam, and the like.
  • the diffractive component 2 includes a diffractive grating and a prism, and the pitches of the reticles at the incident positions of the light beams of the diffractive grating are not completely the same.
  • the prism is bonded with the diffraction grating to form a grating.
  • the prism can enhance the dispersion ability of the diffraction grating, reduce the dispersion nonlinearity of the diffraction grating, and reduce the influence brought by the conical diffraction effect of the diffraction grating.
  • the wavelength selection device further includes a focusing lens, which is located on the optical path between the diffraction component 2 and the switching engine 3, and is used for focusing processing on the sub-beams.
  • the switching engine 3 can be located on the focal plane of the focusing lens.
  • the wavelength selection device may further include a reflection mirror, for example, a reflection mirror is arranged on the optical path between the diffraction component 2 and the switching engine 3 .
  • WSS is usually applied in ROADM.
  • the channel bandwidth of WSS can be balanced, so that the filtering performance of WSS for light beams of different wavelengths can be balanced.
  • the reticle spacing at the incident position of the light beam can be set so that the bandwidth difference of the channel of the WSS satisfies the constraint condition of balance.
  • the reason why the bandwidth of the channel can be adjusted by the reticle spacing at the beam incident position of the diffractive component 2 is that the reticle spacing at the beam incident position of the diffractive component 2 will affect the wavelength of the beam.
  • the front phase causes the imaging characteristics to change, which in turn will affect the spot size and position of the beam waist of the beam, which will affect the distance from the beam waist to the switching engine 3, and the distance and spot size will affect the beam on the switching engine 3.
  • the spot size that forms the spot, and the spot size and p of the beam of the channel will affect the bandwidth of the channel, so the bandwidth of the channel can be adjusted by setting the groove spacing, p is the size of the beam of the channel covering the switching engine 3 in the dispersion direction, the size The distance between the centers of the light spots formed on the switching engine 3 by light beams equal to the boundary wavelength of the channel.
  • the distance between the reticle lines at the incident position of the light beam can be set through simulation. For the specific setting method, refer to the description below.
  • the phase space modulator is selective to the polarization state of the light beam, and the light beam incident on the phase space modulator is required to be a light beam of a certain polarization state.
  • the polarization state of the incident beam of the wavelength selective device is not single, and will be converted to the same polarization state by the polarization component 5 before entering the phase modulator.
  • the wavelength selective device further includes a polarization component 5, which is used to split the incident beam into a first beam of the first polarization state and a second beam of the second polarization state, the first polarization state and the second polarization state state vertical.
  • the first polarization state and the second polarization state may be S polarization state and P polarization state respectively, and the first polarization state and the second polarization state may also be other orthogonal polarization states.
  • the beam transmission process is as follows:
  • the incident beam enters the wavelength selective device from input port 1.
  • the incident light beam is transmitted to the polarization component 5, and the polarization component 5 separates the incident light beam into a first light beam of a first polarization state and a second light beam of a second polarization state, and the wavelengths of the first light beam and the second light beam are the same, for example, the incident light beam
  • the wavelength of the first light beam is ⁇ 1 to ⁇ n
  • the wavelength of the first light beam is ⁇ 1 to ⁇ n
  • the wavelength of the second light beam is ⁇ 1 to ⁇ n
  • n is an integer greater than 1.
  • the polarization component 5 converts the first light beam and the second light beam into the same polarization state.
  • the same polarization state to which the first light beam and the second light beam are converted may be the S polarization state, etc., or other polarization states.
  • the first light beam is transmitted to the first incident position of the diffraction component 2
  • the second light beam is transmitted to the second incident position of the diffraction component 2
  • the first light beam is dispersed into a plurality of first sub-beams by the diffraction component 2, each first
  • the wavelengths of the sub-beams are different
  • the second beam is dispersed by the diffraction component 2 into a plurality of second sub-beams, and the wavelengths of each second sub-beam are different.
  • a plurality of first sub-beams and a plurality of second sub-beams are transmitted to the switching engine 3, and the switching engine 3 outputs at least one first sub-beam in the plurality of first sub-beams to the output port 4, and a plurality of second sub-beams At least one second sub-beam is output to the output port 4, at least one first sub-beam and at least one second sub-beam have the same wavelength, and the first and second sub-beams of the same wavelength are output from the same port.
  • the wavelength selective device is a WSS
  • the first sub-beam and the second sub-beam obtained by dispersion are output from the output port 4
  • the first sub-beam and the second sub-beam with the same wavelength are output to the output port 4 before
  • a light beam will be synthesized and output from the same output port 4
  • light beams with different wavelengths may be output from the same output port 4 or may be output from different output ports 4 .
  • the diffractive component 2 has a first diffractive region and a second diffractive region.
  • FIG. 3 shows a schematic structural diagram of the diffractive component 2, and the diffractive component 2 has a first diffractive region and a second diffractive region.
  • the first diffraction area is used to disperse the incident first light beam into a plurality of first sub-beams, each of which has a different wavelength
  • the second diffraction area is used to disperse the incident second light beam into a plurality of second sub-beams. sub-beams, each of the second sub-beams has a different wavelength.
  • the graticule spacing at the incident position of the first light beam (referred to as the first incident position) is not exactly the same, and the incident position of the second light beam in the second diffraction area (referred to as the second incident position) ) are not exactly the same pitch.
  • the pitch of the reticle at the first incident position is related to the bandwidth of the channel of the wavelength selection device in the first polarization state
  • the pitch of the reticle at the second incident position is related to the bandwidth of the channel of the wavelength selection device in the second polarization state.
  • the reticle spacing at the first incident position can be set so that the bandwidth of the channel of the wavelength selective device meets the requirements in the first polarization state
  • the reticle spacing at the second incident position can be set so that the channel of the wavelength selective device meets the requirements at the first polarization state.
  • the bandwidth under two polarization states meets the requirements.
  • the first incident position includes multiple reticle lines, and at least two of the multiple reticle lines have different spacing between the reticle lines.
  • the multiple reticle lines include adjacent first reticle lines and second reticle lines, adjacent third reticle lines and fourth reticle lines, and the distance between the first reticle lines and the second reticle lines is the first reticle line pitch , the interval between the third reticle and the fourth reticle is the second reticle interval, and among the reticle intervals of the plurality of reticle lines, at least the first reticle interval and the second reticle interval are different.
  • the second incident position includes multiple reticle lines, and at least two of the reticle line distances formed by the multiple reticle lines are different.
  • the distance between the reticle lines at the first incident position and the distance between the reticle lines at the second incident position can be obtained through simulation.
  • the reticle spacing is obtained through simulation.
  • FIG. 4 shows side views of the first diffractive area and the second diffractive area.
  • the diffraction component 2 includes two diffraction gratings, both of which are reflective diffraction gratings.
  • the two diffraction gratings are a first diffraction grating 21 and a second diffraction grating 22 , the first diffraction area belongs to the first diffraction grating 21 , and the second diffraction area belongs to the second diffraction grating 22 .
  • the first diffraction grating 21 is used for dispersion processing of the first light beam
  • the second diffraction grating 22 is used for dispersion processing of the second light beam.
  • the two diffraction gratings can not only set the distance between the lines, but also set the type of substrate material and The distance between the two diffraction gratings increases the degree of freedom in design, making it easier to design the diffraction component 2 to meet the requirements of the channel bandwidth of the wavelength selection device.
  • the base materials of the first diffraction grating 21 and the second diffraction grating 22 may be the same or different, which is not limited in this embodiment of the present application.
  • the reticle included in the first diffractive area and the reticle included in the second diffractive area may be parallel. In this way, the processing of the diffractive component 2 is more convenient.
  • the positional relationship between the first diffraction area and the second diffraction area may be parallel, but not overlapping, so that the first light beam and the second light beam are respectively incident, and in some cases, they can also overlap, but do not block beam incident.
  • the first diffraction area belongs to the first diffraction grating 21 and the second diffraction area belongs to the second diffraction grating 22
  • the first diffraction grating 21 and the second diffraction grating 22 may be parallel.
  • the first diffraction grating 21 and the second diffraction grating 22 are parallel.
  • the first diffractive area and the second diffractive area are located at adjacent positions or non-adjacent positions in the same plane, which is not limited in this embodiment of the present application.
  • the first diffraction grating 21 and the second diffraction region belongs to the second diffraction grating 22
  • the first diffraction grating 21 and the second diffraction grating 22 can be arranged in adjacent positions, or not adjacent to each other. Location.
  • the first diffraction grating 21 and the second diffraction grating 22 are arranged at adjacent positions
  • FIG. 6 the first diffraction grating 21 and the second diffraction grating 22 are arranged at non-adjacent positions.
  • the diffraction component 2 further includes a prism 23, and the prism 23 is attached to the first diffraction grating 21 and the second diffraction grating 22 to form a prism.
  • the prism 23 can enhance the dispersion capability of the first diffraction grating 21 and the second diffraction grating 22, reduce the dispersion nonlinearity of the first diffraction grating 21 and the second diffraction grating 22, and reduce the dispersion caused by the first diffraction grating 21 and the second diffraction grating 22.
  • the impact of the cone diffraction effect is provided.
  • the wavelength selective device further includes a curved mirror 6, a cylindrical mirror 7, and the like.
  • the curved mirror 6 is used for collimating and converging the light beam on the dispersion plane y-z.
  • the cylindrical mirror 7 is used to collimate and converge the light beam on the switching plane x-z.
  • the polarizing component 5 is located on the optical path between the input port 1 and the curved mirror 6,
  • the curved reflector 6 is located on the optical path between the polarizing component 5 and the cylindrical mirror 7, and the diffractive component 2 is located between the cylindrical mirror 7 and the curved mirror 6
  • the cylindrical mirror 7 is located on the optical path between the switching engine 3 and the curved mirror 6 .
  • the switching engine 3 is an LCOS phase space modulator.
  • the LCOS phase space modulator includes multiple pixels, which are used to apply voltage to the pixels in the beam coverage area, and change the phase of the beam by changing the refractive index of the liquid crystal material, so that the position of the beam in the switching plane x-z changes.
  • the wavelength selection device further includes a reflective prism 8, the curved reflector 6 reflects the first sub-beam and the second sub-beam to the reflective prism 8, and the reflective prism 8 reflects the received sub-beams of different wavelengths to the LCOS phase space Different pixel regions of the modulator.
  • the polarization component 5 includes a shaping component and a polarization component, and the shaping component is used for collimating and shaping the light beam.
  • the polarizing component is used to split the input beam into two beams of orthogonal polarization states, and convert the two beams of orthogonal polarization states into two beams of the same polarization state.
  • the transmission process of the light beam in the wavelength selective device is as follows:
  • the shaping component performs collimation and shaping processing on the incident beam.
  • the polarizing component splits the collimated and shaped beam into two beams with orthogonal polarization states, and converts them into two output beams with the same polarization state. These two beams are called the first beam L1 and the second beam L2.
  • the first light beam and the second light beam are incident on the curved reflector 6, and the curved reflector 6 has a focal power on the dispersion plane y-z, and the focal power is equal to the difference between the image-side beam convergence degree and the object-side beam convergence degree, which represents the polarization of the optical system
  • the capability of refracting lines collimates and converges the first light beam L1 and the second light beam L2 in the dispersion plane y-z, and reflects the first light beam L1 and the second light beam L2 to the cylindrical mirror 7 .
  • the cylindrical lens 7 has a focal power on the switching plane x-z, collimates and converges the first light beam L1 and the second light beam L2 in the switching plane x-z, and transmits the first light beam L1 and the second light beam L2 to the The first diffractive region and the second diffractive region of the diffractive component 2 .
  • the first diffraction area of the diffraction component 2 disperses the first light beam L1 to obtain a plurality of first sub-beams.
  • the second diffraction area of the diffraction component 2 disperses the second light beam L2 to obtain a plurality of second sub-beams.
  • a plurality of first sub-beams and second sub-beams pass through a cylindrical mirror 7 and a curved reflector 6 in turn, and the curved reflector 6 converts a plurality of first sub-beams into parallel light, enters the LCOS phase space modulator, and the curved surface reflects The mirror 6 converts multiple second sub-beams into parallel light, which is incident to the LCOS phase space modulator.
  • the sub-beams of the same wavelength in the first sub-beam and the second sub-beam are incident on the same position of the LCOS phase space modulator.
  • the LCOS phase space modulator applies voltages to the coverage area of the first sub-beam and the pixel points in the coverage area of the second sub-beam, and changes the phases of the first sub-beam and the second sub-beam by changing the refractive index of the liquid crystal material, so that The position of the first sub-beam and the second sub-beam in the switching plane xz changes, and the first sub-beam and the second sub-beam after the phase change of the LCOS phase space modulator travel along the curved mirror 6, the cylindrical mirror 7, The diffraction component 2 and the polarization component 5 return to the output port 4 for output.
  • the incident light beam is input from the first input port
  • the wavelength of the incident light beam includes ⁇ 1 to ⁇ 5
  • the light beams of ⁇ 1 to ⁇ 3 are output from the first output port
  • the light beams of ⁇ 4 and ⁇ 5 are output from the second output port.
  • the voltage is applied to the pixel points of the LCOS phase space modulator, which can be applied to each pixel point of the LCOS phase space modulator, but the voltage applied to each pixel point may be different, or it can be only the incident position of the beam
  • a voltage is applied to the pixel at .
  • the path for the first sub-beam of the first wavelength to return to the output port 4 is the first path
  • the path for the second sub-beam of the first wavelength to enter the LCOS phase space modulator is the second path
  • the projection of the paths in the dispersion plane y-z is the same.
  • the path for the second sub-beam of the first wavelength to return to the output port 4 is the third path
  • the path for the first sub-beam of the first wavelength to enter the LCOS phase space modulator is the fourth path
  • the third path and the fourth path are separated by The projection in the plane y-z is the same.
  • FIG. 7 only shows a schematic diagram of the transmission of one light beam.
  • FIG. 8 shows a top view of the wavelength selective device.
  • Fig. 8 in the dispersion plane y-z plane, multiple first sub-beams obtained by dispersion of the first light beam L1 coincide, and multiple second sub-beams obtained by dispersion of the second light beam L2 coincide.
  • the input port 1 and the output port 4 overlap in a top view, which can be regarded as an optical fiber port array.
  • wavelength selective devices are usually applied in ROADMs.
  • the channel bandwidth of the wavelength selective device can be balanced, so that the wavelength selective device can be used for different wavelength light beams.
  • the filtering performance is balanced.
  • the groove spacing of the first diffraction region can be set so that the bandwidth difference of the channel of the wavelength selective device in the first polarization state satisfies the constraint condition of balance, and the second diffraction region can be set The distance between the reticle lines is such that the bandwidth difference of the channels of the wavelength selective device in the second polarization state satisfies the constraints of equilibrium.
  • the wavelength selective device in the system has different responses to light beams of different wavelengths, and the channel bandwidth of the wavelength selective device can be designed according to the requirements of the system.
  • the trend of the bandwidth changing with the channel can be adjusted.
  • the channel is defined based on the wavelength of the beam, so it can be understood as adjusting the trend of the bandwidth changing with the wavelength. For example, the larger the central wavelength of the channel, the greater the bandwidth of the channel , or, the smaller the center wavelength of the channel, the larger the bandwidth of the channel.
  • the channel of the wavelength selection device can satisfy the constraint condition that the first bandwidth difference and the second bandwidth difference are equal.
  • some optical devices such as transmission fibers, etc.
  • the polarization state change during the beam transmission process will affect the transmission performance of the optical transmission system.
  • the bandwidth of the same channel under different polarization states The distribution adjustment is beneficial to balance the influence of different polarization states on the transmission performance of the optical transmission system.
  • the channel of the wavelength selective device can satisfy the constraint condition that the first bandwidth difference and the second bandwidth difference are opposite numbers.
  • the first bandwidth difference is the bandwidth difference between the channel with the minimum central wavelength of the wavelength selective device and the channel with the maximum central wavelength of the wavelength selective device in the first polarization state
  • the second bandwidth difference is the channel with the minimum central wavelength and the maximum central wavelength The bandwidth difference of the channels of the wavelength in the second polarization state.
  • the bandwidth of the channel varies with the wavelength in the first polarization state and the second polarization state, and the channel bandwidth and Polarization-independent modulation of wavelength distribution.
  • the bandwidth of the channel changes with wavelength in the opposite direction in the first polarization state and the second polarization state, and the bandwidth of the channel can be realized in different polarizations. Adjustment with wavelength distribution in the state.
  • the minimum central wavelength is equal to the average value of the minimum wavelength and the sub-minimum wavelength of the beam incident on the wavelength selection device
  • the maximum central wavelength is equal to the average value of the maximum wavelength and the sub-maximum wavelength of the beam incident on the wavelength selection device.
  • the difference in bandwidth between different polarization states is required to be constant.
  • the reticle spacing between the first diffraction region and the second diffraction region can be set, so that each channel of the wavelength selection device satisfies the requirements in the first polarization state and The bandwidth difference in the second polarization state is equal to the constraint of the target threshold.
  • the target threshold can be preset, such as 0.5GHz and so on.
  • the incident beam passes through the polarization component 5, it is first separated into a first beam of the first polarization state and a second beam of the second polarization state, and then the first beam and the second beam are transformed into the same polarization state,
  • the first light beam and the second light beam are incident on the switching engine 3, which can be considered as light beams from two orthogonal polarization states entering the switching engine 3, and the channels of the wavelength selection device have bandwidths under two orthogonal polarization states.
  • the center position of the light spot of the first sub-beam on the switching engine 3 does not change.
  • the center position of the spot of the second sub-beam on the switching engine 3 does not change.
  • the target beam is taken as an example for illustration.
  • the target beam can be the first sub-beam or the second sub-beam beam.
  • FIG. 9 shows the imaging of the target beam at the switching engine 3 .
  • the target beam is spatially separated into multiple wavelength sub-beams after being dispersed by the diffraction component 2.
  • three sub-beams with different wavelengths are used for description, that is, the first wavelength sub-beam a1, the second wavelength sub-beam Two-wavelength sub-beam a2 and third-wavelength sub-beam a3.
  • a1 , a2 and a3 are focused on the switching engine 3 through the curved mirror 6 .
  • the aberration is the deviation from the ideal state of Gaussian optics in the actual optical system, which is caused by the inconsistency between the results obtained by non-paraxial ray tracing and the results obtained by paraxial ray tracing
  • Figure 9 The focus points c1, c2 and c3 of a1, a2 and a3 are distributed on the focus plane, and the projection of the focus plane on the dispersion plane yz is a curve.
  • the incident beam is a Gaussian beam, and the locations of the focal points c1, c2, and c3 are where the beam waists of a1, a2, and a3 are located, respectively.
  • the beam waist positions c1 , c2 and c3 of a1 , a2 and a3 have different distances d1 , d2 , d3 relative to the surface of the switching engine 3 .
  • the divergence formula of a Gaussian beam It can be seen that for a light beam with a wavelength of ⁇ , the greater the distance d between the beam waist and the surface of the exchange engine 3, the greater the divergence of the beam spot size w(d) of the light spot on the exchange engine 3 compared to the beam waist spot size w 0 Higher, that is, the larger w(d) is.
  • the light spots of a1, a2 and a3 on the surface of the switching engine 3 are b1, b2 and b3, respectively.
  • b1, b2 and b3 have different spot radii (the spot radius can also be referred to as spot size), which are w1, w2 and w3 respectively.
  • the first wavelength sub-beam a1 is represented by two lines to illustrate that the beam has a certain width.
  • Fig. 10 shows a schematic diagram of the dispersion of the target beam.
  • the target light beam diverges in the dispersion plane yz through the diffraction component 2 .
  • FIG. 11 shows a schematic diagram of light spots on the switching engine 3 .
  • the first wavelength sub-beam a1, the second wavelength sub-beam a2 and the third wavelength sub-beam a3 are parallel reflected to the switching engine 3 by the curved mirror 6, and light spots are respectively formed on the surface of the switching engine 3, respectively.
  • the distance between two spots wherein, f is the focal length of curved mirror 6, is the angle between the light beams forming the two spots before entering the curved mirror 6 . because and are not equal, so p1 and p2 are not the same.
  • the bandwidth of the channel of the wavelength selective device is used to describe the steepness of the filtering surface of the wavelength selective device.
  • the bandwidth is defined by the frequency bandwidth at the -3dB position of the insertion loss spectrum of the channel, which is called the -3dB bandwidth.
  • the -3 dB bandwidth is taken as an example for description.
  • the research shows that when the channel interval B is fixed, for a channel, the spot size w corresponding to the channel and the p corresponding to the channel determine the -3dB bandwidth of the channel, and w is the center wavelength of the channel.
  • the light beam in the switching engine The size of the spot on the surface of 3, p is the size of the beam of the channel covering the switching engine 3 in the dispersion direction, that is, the distance between the beams of the boundary wavelength of the channel on the spot of the switching engine 3, referred to as the spot distance, such as A larger p/w corresponds to a larger -3dB bandwidth.
  • the p/w of different beams of the wavelength selective device is different, indicating that the bandwidth of different channels is different. Therefore, for a channel of a wavelength selective device, the bandwidth of the channel can be adjusted by the spot size w and p of the beam passing through the channel, and since the formula (1) shows that the spot size is related to the beam waist, it can be set by setting the beam incident position.
  • the distance between the scribed lines is adjusted to adjust the distance from the beam waist to the surface of the switching engine 3 to realize the adjustment of the spot size and further the adjustment of the bandwidth of the channel.
  • the corresponding p/w on the switching engine 3 of the two beams divided by the beam of the same wavelength in the polarization component 5 is also different.
  • Fig. 13 the distribution of the bandwidth of a conventional wavelength selective device with wavelength and polarization state is given. It can be seen from FIG. 13 that under the same polarization state, the bandwidths of different channels of the wavelength selective device are different, and the bandwidths of the same channel under different polarization states are generally different.
  • the minimum bandwidth of the wavelength selective device is 92.2GHz
  • the maximum bandwidth difference is 0.6GHz.
  • the bandwidth of the short-wavelength channel is higher than the bandwidth of the long-wavelength channel, and the maximum bandwidth difference is 0.2GHz.
  • the maximum bandwidth difference is 0.6 GHz.
  • the short wavelength and the long wavelength are relative concepts, and the short wavelength is smaller than the long wavelength.
  • the reason why the bandwidth of the channel in the first polarization state can be adjusted by the ruled line pitch at the first incident position of the first diffraction grating 21 is that the ruled line pitch of the first diffraction grating 21 will affect the first
  • the wavefront phase of the sub-beam changes the imaging characteristics of the switching engine 3, which in turn affects the spot size and position of the beam waist, which affects the distance from the beam waist to the switching engine 3, and the distance and spot size affect
  • the beam forms the spot size of the spot on the switching engine 3, and the spot size and p of the beam of the channel will affect the bandwidth of the channel, so the bandwidth of the channel can be adjusted by setting the groove spacing, and p is the beam of the channel covering the switch in the dispersion direction
  • the bandwidth of the channel in the second polarization state through the groove spacing of the second diffraction grating 22 is also the above reason. Therefore, for a channel of a wavelength selective device, the bandwidth of the channel can be adjusted by the spot size w and p of the beam passing through the channel, and since the formula (1) shows that the spot size is related to the beam waist, it can be obtained by setting the first diffraction area and the distribution of the reticles in the second diffraction area, adjust the distance from the beam waist to the surface of the LCOS phase space modulator, realize the adjustment of the spot size, and then realize the adjustment of the bandwidth of the channel.
  • the distance between the marking lines of the first diffraction area and the second diffraction area may be set through simulation. For the specific setting method, refer to the description below.
  • the following describes the process of obtaining the grating parameters of the diffractive component 2 through simulation.
  • the grating parameters include the distribution information of the grating lines of the diffractive component 2, which is used to reflect the pitch of the grating lines.
  • the execution subject of the method for determining the grating parameter may be a determining device.
  • the determining device is a hardware device, for example, the hardware device is a computer device such as a terminal or a server.
  • the determining device is a software device, such as a set of software programs running on a hardware device.
  • FIG. 14 shows a schematic structural diagram of the hardware device.
  • computer device 1400 is optionally implemented by a generic bus architecture.
  • the computer device 1400 includes at least one processor 1401 , a communication bus 1402 , a memory 1403 and at least one network interface 1404 .
  • the processor 1401 is, for example, a general-purpose central processing unit (central processing unit, CPU), a network processor (network processor, NP), a graphics processing unit (Graphics Processing Unit, GPU), a neural network processor (neural-network processing units, NPU) ), a data processing unit (Data Processing Unit, DPU), a microprocessor, or one or more integrated circuits used to implement the solution of this application.
  • the processor 1401 includes an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the PLD is, for example, a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • complex programmable logic device complex programmable logic device, CPLD
  • field-programmable gate array field-programmable gate array
  • GAL general array logic
  • Communication bus 1402 is used to transfer information between the above-described components.
  • the communication bus 1402 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in Fig. 14, but it does not mean that there is only one bus or one type of bus.
  • the memory 1403 is, for example, a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, or a random access memory (random access memory, RAM) or a memory that can store information and instructions.
  • Other types of dynamic storage devices such as electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, Optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or devices that can be used to carry or store desired program code in the form of instructions or data structures and Any other medium capable of being accessed by a computer, but not limited to.
  • the memory 1403 exists independently, for example, and is connected to the processor 1401 through the communication bus 1402 .
  • the memory 1403 can also be integrated with the processor 1401.
  • the memory 1403 is used to save data required in the process of determining the grating parameters, such as storing the distribution information of the grating lines of the diffractive component 2 .
  • Network interface 1404 uses any transceiver-like device for communicating with other devices or a communication network.
  • the network interface 1404 includes a wired network interface, and may also include a wireless network interface.
  • the wired network interface may be an Ethernet interface, for example.
  • the Ethernet interface can be an optical interface, an electrical interface or a combination thereof.
  • the wireless network interface may be a wireless local area network (wireless local area networks, WLAN) interface, a network interface of a cellular network, or a combination thereof.
  • the processor 1401 may include one or more CPUs.
  • computer device 1400 may include multiple processors. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data such as computer program instructions.
  • the computer device 1400 may further include an output device and an input device.
  • Output devices are in communication with processor 1401 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector).
  • the input device communicates with the processor 1401 to receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the memory 1403 is used to store the program code 14031 for executing the determination of the grating parameters in the present application, and the processor 1401 executes the program code 14031 stored in the memory 1403 . That is, the computer device 1400 can use the processor 1401 and the program code 14031 in the memory 1403 to realize the method embodiment provides the method for determining the grating parameter.
  • a process for determining grating parameters is provided.
  • the determination device is taken as a terminal as an example for illustration.
  • Step 1501 acquire the grating parameters of the diffractive component 2 in the wavelength selection device, where the grating parameters include the distribution information of the grooves of the diffractive component 2.
  • an application program for determining grating parameters is installed on the terminal, and when starting to determine the grating parameters, a technician (hereinafter referred to as a user) triggers and starts the application program.
  • An input box for grating parameters is provided in the application program, and the user inputs the grating parameters of the diffractive component 2 into the application program.
  • the grating parameter is an initial grating parameter
  • the initial grating parameter is a pre-set grating parameter.
  • the initial grating parameter may be an equal-spaced groove pitch.
  • Step 1502 based on the grating parameters, determine the spot size and spot distance corresponding to each channel of the wavelength selection device, for the target channel, the beam spot size corresponding to the target channel is the center wavelength of the target channel on the switching engine 3 in the wavelength selection device.
  • the size of the light spot, the distance of the light spot corresponding to the target channel is the distance between the light spots on the switching engine 3 of the light beam of the boundary wavelength of the target channel.
  • the terminal may use the grating parameters to simulate the spot size and spot distance corresponding to each channel of the wavelength selection device when using the grating parameters.
  • the target channel of the wavelength selective device the target channel has a central wavelength and a boundary wavelength, the central wavelength is equal to the average value of the boundary wavelength, the boundary wavelength is the maximum wavelength and minimum wavelength of the target channel, and the spot size corresponding to the target channel is the beam of the central wavelength
  • the radius of the light spot on the switching engine 3 in the wavelength selection device, the distance of the light spot corresponding to the target channel is the distance between the light spots of the boundary wavelength light beam on the switching engine 3, and the target channel is any channel of the wavelength selection device.
  • the boundary wavelengths of the target channel are the wavelength of a1 and the wavelength of a2, and the spot distance corresponding to the target channel is p1.
  • the grating parameters of the diffraction component 2 include the distribution information of the rule lines of the first diffraction region and the distribution information of the rule lines of the second diffraction region.
  • the diffraction component 2 includes a first diffraction grating 21 and a second diffraction grating 22
  • the first diffraction area belongs to the first diffraction grating 21
  • the second diffraction area belongs to the second diffraction grating 22
  • the grating parameters also include the base material type of the first diffraction grating 21 and the base material type of the second diffraction grating 22 . In this way, when determining the grating parameters, the substrate material type is also considered, which is equivalent to considering one more degree of freedom, which can make the finally obtained target grating parameters more accurate.
  • the grating parameters may also include the distance between the first diffraction area and the second diffraction area.
  • the distance between the first diffraction area and the second diffraction area is equivalent to taking one more degree of freedom into account, which can make the finally obtained target grating parameters more accurate.
  • the grating parameters may also include the distance between the first diffraction region and the second diffraction region, the type of base material of the first diffraction grating 21 and the type of base material of the second diffraction grating 22 .
  • Step 1503 adjusting grating parameters based on the spot size and spot distance corresponding to each channel, to obtain target grating parameters satisfying bandwidth constraints.
  • the bandwidth constraint condition is used to indicate the condition that the bandwidth of the wavelength selection device should satisfy. For example, bandwidth equalization of wavelength selective devices, etc.
  • the terminal obtains a pre-stored bandwidth constraint condition, and the bandwidth constraint condition is used to constrain the grating parameters of the diffraction component 2 . Then the terminal uses the spot size and spot distance corresponding to each channel to adjust the grating parameters, so that the bandwidth of the wavelength selection device meets the bandwidth constraints under the grating parameters, and the grating parameters at this time are the final target grating parameters. For example, the terminal uses the spot size and spot distance corresponding to each channel to determine the bandwidth of the wavelength selection device, and judge whether the bandwidth of the wavelength selection device satisfies the bandwidth constraint.
  • the bandwidth meets the bandwidth constraints, determine the grating parameters that meet the bandwidth constraints as the target grating parameters; if the bandwidth does not meet the bandwidth constraints, return to adjust the grating parameters, and use the adjusted grating parameters to determine the corresponding facula of each channel Size and spot distance, then use the spot size and spot distance corresponding to each channel to determine the bandwidth of the wavelength selection device, and then perform the process of judging whether the bandwidth of the wavelength selection device meets the bandwidth constraint conditions, until the target grating that meets the bandwidth constraint conditions is obtained parameter.
  • the terminal can display the target raster parameters.
  • the target grating parameters can be used to fabricate the diffractive component 2, and when the fabricated diffractive component 2 is applied to a wavelength selective device, the bandwidth of the wavelength selective device satisfies the bandwidth constraint.
  • different bandwidth constraint conditions may be set in different scenarios.
  • the following description is made by taking the first polarization state as the p polarization state and the second polarization state as the s polarization state as an example.
  • Scenario 1 When the wavelength selection device is applied to ROADM, in order to make the difference in transmission performance of the optical transmission system of the ROADM for light beams of different wavelengths relatively small, the bandwidth of the channel of the wavelength selection device can be balanced so that the wavelength selection device can be used for different wavelength beams. Filter performance is balanced. For the process of equalizing the bandwidth of the channel of the wavelength selection device, refer to the process shown in FIG. 16 .
  • Step 1601 acquire the grating parameters of the diffraction component 2 in the wavelength selection device, the grating parameters include the distribution information of the scribe lines of the first diffraction region of the diffraction component 2 and the distribution information of the scribe lines of the second diffraction region of the diffraction component 2.
  • Step 1602 based on the grating parameters, determine the spot size and spot distance corresponding to each channel of the wavelength selection device, for the target channel, the beam spot size corresponding to the target channel is the center wavelength of the target channel on the switching engine 3 in the wavelength selection device
  • the size of the light spot, the distance of the light spot corresponding to the target channel is the distance between the light spots on the switching engine 3 of the light beam of the boundary wavelength of the target channel.
  • step 1601 to step 1602 For the process from step 1601 to step 1602, refer to the process shown in FIG. 15 , and details will not be repeated here.
  • Step 1603 Determine the bandwidth of each channel based on the spot size and spot distance corresponding to each channel.
  • the terminal divides the distance of the light spot corresponding to the target channel by the size of the light spot corresponding to the target channel to obtain a parameter for determining the bandwidth of the target channel.
  • the input beam of the wavelength selection device enters the wavelength selection device, it is divided into two beams of polarization states by the polarization component, so for the target channel, there are two spot sizes corresponding to the target channel, which are respectively in The corresponding spot size in the first polarization state, and the corresponding spot size in the second polarization state, and there are also two spot distances corresponding to the target channel, which are the corresponding spot distance in the first polarization state, and the corresponding spot distance in the second polarization state The corresponding spot distance in the state.
  • Step 1604 judging whether the bandwidth differences of the channels of the wavelength selection device are balanced.
  • Step 1605 if the bandwidth difference of the channels of the wavelength selection device is balanced, then the process of determining the grating parameters ends; if the bandwidth difference of the channels of the wavelength selection device is not balanced, then return to step 1601 until the bandwidth of the channel of the wavelength selection device is obtained Raster parameters for differential equalization.
  • whether the bandwidth difference of the channels of the wavelength selection device is balanced refers to whether the bandwidth difference between the two polarization states is balanced.
  • an evaluation factor (figure of merit, FOM) 1 can be used to evaluate, and FOM1 can be the corresponding p/w of adjacent wavelength channels in each polarization state have the smallest difference.
  • the curves of the WSS channel in the p-polarization state and s-polarization state at the position of -3dB are fitted, as shown in FIG. 17 .
  • the worst value of the bandwidth of the channel of the wavelength selection device is 92.72 GHz, compared with the bandwidth difference of the traditional wavelength selection device in FIG. 13 , the bandwidth is increased by 0.5GHz.
  • the bandwidths of the short-wavelength and long-wavelength channels are balanced, and the bandwidth difference is less than 0.08 GHz, which is 7 times smaller than the bandwidth difference shown in FIG. 13 .
  • the wavelength selective device in the system has different responses to light beams of different wavelengths, and the bandwidth of the channel of the wavelength selective device can be designed according to the requirements of the system.
  • the bandwidth of the short-wavelength channel in the system in the first polarization state is greater than the bandwidth of the long-wavelength channel in the first polarization state, so the trend of the bandwidth changing with the wavelength can be adjusted, so that the short-wavelength channel in the wavelength selective device is in the
  • the bandwidth in the first polarization state is smaller than the bandwidth of the long-wavelength channel in the first polarization state, so as to balance the bandwidth of the short-wavelength channel and the bandwidth of the long-wavelength channel in the system.
  • the bandwidth of the short-wavelength channel in the second polarization state is smaller than the bandwidth of the long-wavelength channel in the second polarization state, so the trend of the bandwidth changing with the wavelength can be adjusted, so that the short-wavelength channel in the wavelength selection device
  • the bandwidth of the channel in the second polarization state is greater than the bandwidth of the long-wavelength channel in the second polarization state, so as to balance the bandwidth of the short-wavelength channel and the bandwidth of the long-wavelength channel in the system.
  • Step 1701 acquire the grating parameters of the diffraction component 2 in the wavelength selection device, the grating parameters include the distribution information of the scribe lines of the first diffraction region of the diffraction component 2 and the distribution information of the scribe lines of the second diffraction region of the diffraction component 2.
  • Step 1702 based on the grating parameters, determine the spot size and spot distance corresponding to each channel of the wavelength selection device, for the target channel, the beam spot size corresponding to the target channel is the center wavelength of the target channel on the switching engine 3 in the wavelength selection device
  • the size of the light spot, the distance of the light spot corresponding to the target channel is the distance between the light spots on the switching engine 3 of the light beam of the boundary wavelength of the target channel.
  • step 1701 to step 1702 please refer to the process shown in FIG. 15 , which will not be repeated here.
  • Step 1703 Determine the bandwidth of each channel based on the spot size and spot distance corresponding to each channel.
  • step 1703 For the process of step 1703, refer to the process of step 1603 in FIG. 16 , which will not be repeated here.
  • Step 1704 judging whether the first bandwidth difference and the second bandwidth difference of the wavelength selection device are equal.
  • the bandwidth value of the channel with the smallest central wavelength of the WSS in the first polarization state is determined, and the bandwidth value of the channel with the largest central wavelength of the WSS in the first polarization state is determined, and these two bandwidth values are used as difference, to obtain the first bandwidth difference.
  • Determine the bandwidth value of the channel with the minimum central wavelength of the WSS in the second polarization state and determine the bandwidth value of the channel with the maximum central wavelength of the WSS in the second polarization state, and make a difference between the two bandwidth values to obtain the second bandwidth value. It is judged whether the first bandwidth value is equal to the second bandwidth value.
  • Step 1705 if the first bandwidth difference is equal to the second bandwidth difference, the process of determining the grating parameters ends; if the first bandwidth difference is not equal to the second bandwidth difference, return to step 1701 until the first bandwidth When the difference is equal to the second bandwidth difference, the target grating parameter is obtained.
  • the p/w of the channel with the smallest central wavelength and the p/w of the channel with the longest central wavelength w has a fixed difference value ⁇ 1.
  • the diffraction component 2 set by steps 1701 to 1705 makes the bandwidth of the channel with the smallest wavelength of the wavelength selective device smaller than the bandwidth of the channel with the longest wavelength, referring to the wavelength selective device shown in Figure 18
  • the relationship between channel bandwidth and wavelength, the bandwidth distribution shows a trend that the bandwidth of the short-wavelength channel is lower than the bandwidth of the long-wavelength channel, and this trend is not related to the polarization state of the beam. In this way, it is possible to equalize a system in which short-wavelength transmission performance is superior to long-wavelength transmission performance.
  • the diffraction component 2 set from step 1701 to step 1705 makes the bandwidth of the channel of the maximum wavelength of the wavelength selective device smaller than the bandwidth of the channel of the minimum wavelength, referring to the bandwidth of the channel of the wavelength selective device shown in Figure 19
  • the relationship between the wavelength and the bandwidth distribution shows a trend that the bandwidth of the short-wavelength channel is higher than that of the long-wavelength channel, and this trend is not related to the polarization state of the beam. In this way, it is possible to equalize a system in which short-wavelength transmission performance is lower than long-wavelength transmission performance.
  • the third scenario Some optical devices (such as transmission fibers) in the optical transmission system of ROADM have polarization dependence, and the polarization state change during the beam transmission process will affect the transmission performance of the optical transmission system.
  • the adjustment of the bandwidth distribution is conducive to balancing the influence of different polarization states on the transmission performance of the optical transmission system. For example, the bandwidth of the short-wavelength channel in the system in the first polarization state is greater than the bandwidth of the long-wavelength channel in the first polarization state, and the bandwidth of the short-wavelength channel in the system in the second polarization state is smaller than that of the long-wavelength channel in the second polarization state.
  • the bandwidth under the second polarization state so the trend of bandwidth variation with wavelength can be adjusted, so that the bandwidth of the short-wavelength channel of WSS in the first polarization state is smaller than the bandwidth of the long-wavelength channel in the first polarization state, and makes WSS
  • the bandwidth of the medium-short wavelength channel in the second polarization state is greater than the bandwidth of the long-wavelength channel in the second polarization state, so as to balance the bandwidth of the short-wavelength channel and the bandwidth of the long-wavelength channel in the system.
  • Step 1901 acquire the grating parameters of the diffraction component 2 in the wavelength selection device, the grating parameters include the distribution information of the scribe lines of the first diffraction region of the diffraction component 2 and the distribution information of the scribe lines of the second diffraction region of the diffraction component 2.
  • Step 1902 based on the grating parameters, determine the spot size and spot distance corresponding to each channel of the wavelength selection device, for the target channel, the beam spot size corresponding to the target channel is the center wavelength of the target channel on the switching engine 3 in the wavelength selection device
  • the size of the light spot, the distance of the light spot corresponding to the target channel is the distance between the light spots on the switching engine 3 of the light beam of the boundary wavelength of the target channel.
  • step 1901 to step 1902 For the process from step 1901 to step 1902, refer to the process shown in FIG. 15 , and details will not be repeated here.
  • Step 1903 Determine the bandwidth of each channel based on the spot size and spot distance corresponding to each channel.
  • step 1903 For the process of step 1903, refer to the process of step 1603 in FIG. 16 , which will not be repeated here.
  • Step 1904 judging whether the first bandwidth difference and the second bandwidth difference of the wavelength selection device are inverse numbers.
  • step 1604 for a manner of determining the first bandwidth difference and the second bandwidth difference. It is judged whether the first bandwidth value and the second bandwidth value are opposite numbers to each other.
  • Step 1905 if the first bandwidth difference and the second bandwidth difference are inverse numbers, the process of determining the grating parameters ends; if the first bandwidth difference and the second bandwidth difference are not inverse numbers, return to the execution step 1901. Obtain target grating parameters until the first bandwidth difference and the second bandwidth difference are opposite numbers.
  • the p/w of the channel with the smallest central wavelength and the p/w of the longest central wavelength has a fixed and opposite difference value ⁇ 2.
  • the bandwidth of the channel with the smallest wavelength is greater than the bandwidth of the channel with the longest wavelength, see the relationship diagram between the channel bandwidth and wavelength of the wavelength selection device shown in FIG. 20 . In this way, the wavelength distribution under different polarization states can be balanced.
  • the bandwidth of the wavelength channel is smaller than the bandwidth of the longest wavelength channel, refer to the relationship diagram of channel bandwidth and wavelength of the wavelength selection device shown in FIG. 21 . In this way, the wavelength distribution under different polarization states can be balanced.
  • the bandwidth difference between different polarization states is required to be constant.
  • the difference in bandwidth between the first polarization state and the second polarization state is the target threshold, so the trend of bandwidth variation with wavelength can be adjusted, so that for a channel of any wavelength in a wavelength selective device , the bandwidth difference between the first polarization state and the second polarization state is close to the target threshold.
  • the process of determining the grating parameters is as follows.
  • Step 2201 acquire the grating parameters of the diffraction component 2 in the wavelength selection device, the grating parameters include the distribution information of the scribe lines of the first diffraction region of the diffraction component 2 and the distribution information of the scribe lines of the second diffraction region of the diffraction component 2.
  • Step 2202 based on the grating parameters, determine the spot size and spot distance corresponding to each channel of the wavelength selection device.
  • the beam corresponding to the spot size of the target channel is the center wavelength of the target channel on the switching engine 3 in the wavelength selection device.
  • the size of the light spot, the distance of the light spot corresponding to the target channel is the distance between the light spots on the switching engine 3 of the light beam of the boundary wavelength of the target channel.
  • step 2201 to step 2202 please refer to the process shown in FIG. 15 , which will not be repeated here.
  • Step 2203 Determine the bandwidth of each channel based on the spot size and spot distance corresponding to each channel.
  • step 2203 For the process of step 2203, refer to the process of step 1603 in FIG. 16 , which will not be repeated here.
  • Step 2204 judging whether the bandwidth difference between the first polarization state and the second polarization state of each channel of the wavelength selection device is the target threshold.
  • the bandwidth of the target channel in the first polarization state is determined, and the bandwidth of the target channel in the second polarization state is determined. Determine the difference between the two bandwidths, obtain the bandwidth difference of the target channel under the first polarization state and the second polarization state, and determine the relationship between the bandwidth difference and the target threshold.
  • Step 2205 if the bandwidth difference between each channel in the first polarization state and the second polarization state is the target threshold, then the process of determining the grating parameters ends, if the bandwidth difference of each channel in the first polarization state and the second polarization state If the bandwidth difference is not the target threshold, return to step 2201 until the bandwidth difference between each channel in the first polarization state and the second polarization state is the target threshold, and obtain the target grating parameters.
  • an evaluation factor when judging that the bandwidth difference between each channel in the first polarization state and the second polarization state is the target threshold, an evaluation factor can be set so that the bandwidth difference of each channel in the first polarization state and the second polarization state
  • the bandwidth difference is the target threshold, for example, the expression of the evaluation factor FOM is as follows:
  • N is the number of channels of the wavelength selective device minus one
  • i indicates the i-th channel
  • the i-th channel and the i+1-th channel are adjacent channels
  • p ia is the i-th channel in The spot distance corresponding to the first polarization state
  • w ia is the spot size corresponding to the i-th channel in the first polarization state
  • p ib is the spot distance corresponding to the i-th channel in the second polarization state
  • w ib is the spot size corresponding to the i-th channel in the second polarization state
  • ⁇ 3 is the target threshold.
  • Fig. 22 shows the relationship between the wavelength and the bandwidth of the channel of the wavelength selection device, and the channel of any wavelength has a fixed bandwidth difference of 0.5 GHz under two orthogonal polarization states.
  • bandwidth constraints are different in each scenario, and different evaluation factors can be set for different scenarios to determine the grating parameters, so that the diffractive component 2 can be suitable for the wavelength selection device.
  • the foregoing description is made by taking the determination of the raster parameters by the terminal as an example.
  • the server may determine the raster parameters.
  • the bandwidth of the channels of the wavelength selection device is balanced to solve the problem of uneven bandwidth distribution of the channels of the wavelength selection device. Moreover, compared with the traditional wavelength selection device, only the diffraction part is changed, and the optical path of the wavelength selection device is changed relatively little.
  • the channel bandwidth of the wavelength selection device can meet the requirements of different scenarios.
  • the embodiment of the present application also provides a wavelength selection method.
  • For the flow of the method refer to the beam transmission process in the wavelength device shown in FIG. 2 and FIG. 7 .
  • the embodiment of the present application also provides a ROADM, the ROADM includes at least one wavelength selection device, and the one or more wavelength selection devices included in the at least one wavelength selection device are the wavelength selection devices shown in Figure 1 or Figure 7, that is to say At least one wavelength selection in the ROADM uses the wavelength selection device shown in this application, and the wavelength selection device shown in this application can be arranged in the ROADM according to actual needs.
  • the embodiment of the present application is described by taking input of one incident light beam as an example.
  • the beam transmission process is the same as the transmission process of one incident light beam.
  • Fig. 23 is a structural diagram of a device for determining grating parameters provided by an embodiment of the present application.
  • the device can be implemented as a part or all of the device through software, hardware or a combination of the two.
  • the device provided in the embodiment of the present application can implement the process described in Figure 15 of the embodiment of the present application, and the device includes: an acquisition module 2310 and a determination module 2320, wherein:
  • the acquiring module 2310 is configured to acquire the grating parameters of the diffraction component in the wavelength selection device, the grating parameters include the grating spacing at the incident position of the light beam of the diffraction component, which can be specifically used to realize the acquisition function of step 1501 and execute the steps included in step 1501 implicit steps;
  • the determination module 2320 is configured to determine the spot size and spot distance corresponding to each channel of the wavelength selective device based on the grating parameters.
  • the spot size corresponding to the target channel is the center wavelength of the target channel.
  • the size of the light spot on the switching engine in the wavelength selective device, the distance between the light spots corresponding to the target channel is the distance between the light spots on the switching engine for the light beam of the boundary wavelength of the target channel;
  • step 1502 and step 1503 Adjust the grating parameters based on the spot size and spot distance corresponding to each channel to obtain the target grating parameters that meet the bandwidth constraints, which can be used to realize the determination function of step 1502 and step 1503 and execute the hidden functions contained in step 1502 and step 1503. with steps.
  • a computer program product comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the process shown in FIG. 15 .
  • the disclosed system architecture, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or modules, and may also be electrical, mechanical or other forms of connection.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software modules.
  • the integrated module is realized in the form of a software function module and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium
  • several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.
  • first and second are used to distinguish the same or similar items with basically the same function and function. It should be understood that there is no logic or sequence between “first” and “second” Dependencies on the above, and there are no restrictions on the number and execution order. It should also be understood that although the following description uses the terms first, second, etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first light beam could be termed a second light beam, and, similarly, a second light beam could be termed a first light beam, without departing from the scope of the various examples. Both the first light beam and the second light beam may be light beams, and in some cases may be separate and distinct light beams.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种波长选择器件、波长选择的方法和ROADM,属于光通信技术领域。波长选择器件包括输入端口(1)、衍射部件(2)、交换引擎(3)和输出端口(4),输入端口(1)用于输入入射光束,衍射部件(2)上光束入射位置处的刻线间距不完全相同,光束入射位置处的刻线间距与波长选择器件的通道的带宽相关,衍射部件(2)用于将入射光束色散为多个子光束,每个子光束的波长不相同,交换引擎(3)用于将多个子光束中至少一个子光束输出至输出端口(4)。波长选择器件中衍射部件(2)的光束入射位置处的刻线间距不完全相同,使得在不改变波长选择器件的光路复杂度的前提下,能够调整波长选择器件的通道的带宽。

Description

波长选择器件、波长选择的方法和ROADM
本申请要求于2021年12月30日提交中国国家知识产权局、申请号202111658828.2、申请名称为“波长选择器件、波长选择的方法和ROADM”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,特别涉及一种波长选择器件、波长选择的方法和ROADM。
背景技术
波长选择器件是光通信中常用的光器件,如波长选择器件为波长选择开关(wavelength selective switch,WSS)等。波长选择器件包括衍射部件,衍射部件可以是刻线间距相同的衍射光栅。衍射部件用于将入射的入射光束色散为多个波长不同的光束。由于衍射部件的色散非均匀,以及波长选择器件的空间光透镜系统具有色差,导致波长选择器件的通道的带宽不能满足要求,如通道的带宽不均匀等。
相关技术中,通常是在波长选择器件的光路中添加透镜或者组合透镜,以调整波长选择器件的通道的带宽。
由于波长选择器件的光路中增加了光学元件,所以导致波长选择器件的光路复杂。
发明内容
本申请提供了一种波长选择器件、波长选择的方法和ROADM,能够调整波长选择器件的通道的带宽,且不会使得波长选择器件的光路变复杂。
第一方面,本申请提供了一种波长选择器件,该波长选择器件包括输入端口、衍射部件、交换引擎和输出端口;该输入端口用于输入入射光束;该衍射部件上光束入射位置处的刻线间距不完全相同,该光束入射位置处的刻线间距与该波长选择器件的通道的带宽相关;该衍射部件用于将该入射光束色散为多个子光束,每个子光束的波长不相同;该交换引擎用于将该多个子光束中至少一个子光束输出至该输出端口。
本申请所示的方案,波长选择器件中衍射部件的光束入射位置处的刻线间距不完全相同,使得能够调整不同光束在交换引擎上形成光斑的光斑尺寸,由于光斑尺寸与通道的带宽相关,所以通过设置刻线间距不完全相同,能够调整波长选择器件的通道的带宽。
在一种可能的实现方式中,该波长选择器件还包括偏振组件;该偏振组件用于将该入射光束分离为第一偏振态的第一光束和第二偏振态的第二光束,将该第一光束和第二光束转换为相同的偏振态,该第一偏振态与该第二偏振态正交;该衍射部件具有第一衍射区域和第二衍射区域,该第一衍射区域中该第一光束的第一入射位置处的刻线间距不完全相同,该第二衍射区域中该第二光束的第二入射位置处的刻线间距不完全相同,该第一入射位置处的刻线 间距与该波长选择器件的通道在该第一偏振态下的带宽相关,该第二入射位置处的刻线间距与该波长选择器件的通道在该第二偏振态下的带宽相关;该衍射部件用于将该第一光束色散为多个第一子光束,并且用于将该第二光束色散为多个第二子光束;该交换引擎用于将该多个第一子光束中至少一个第一子光束输出至该输出端口,并用于将该多个第二子光束中至少一个第二子光束输出至该输出端口,该至少一个第一子光束和该至少一个第二子光束的波长相同,且相同波长的第一子光束和第二子光束从相同的输出端口输出。
本申请所示的方案,交换引擎为相位空间调制器时,对光束偏振态有选择性,要求入射在相位空间调制器上的光束是某个偏振态的光束。入射光束入射至波长选择器件后,波长选择器件将入射光束分为偏振态相同的两个光束,这两个光束分别入射至衍射部件的第一入射位置处和第二入射位置处,第一入射位置处的刻线间距不完全相同,第二入射位置处的刻线间距不完全相同,可以分别调整波长选择器件的通道在不同偏振态下的带宽,使得可以更灵活调整通道的带宽。
在一种可能的实现方式中,该衍射部件包括第一衍射光栅和第二衍射光栅;该第一衍射区域属于该第一衍射光栅,该第二衍射区域属于该第二衍射光栅。这样,使用两个衍射光栅,更灵活。
在一种可能的实现方式中,第一衍射区域和第二衍射区域位于同一平面内的相邻位置。
在一种可能的实现方式中,第一衍射区域和第二衍射区域平行且不重叠。
在一种可能的实现方式中,第一衍射区域包括的刻线与第二衍射区域包括的刻线平行。
在一种可能的实现方式中,交换引擎为硅基液晶(liquid crystal on silicon,LCOS)相位空间调制器。
在一种可能的实现方式中,该第一入射位置处的刻线间距使得该波长选择器件的通道在该第一偏振态下的带宽差异均衡,且该第二入射位置处的刻线间距使得该波长选择器件的通道在该第二偏振态下的带宽差异均衡。这样,通过设置第一入射位置处的刻线间距和第二入射位置处的刻线间距,能够使得通道的带宽均衡。
在一种可能的实现方式中,该第一入射位置处的刻线间距和该第二入射位置处的刻线间距使得该波长选择器件的通道满足第一带宽差值和第二带宽差值相等或者互为相反数的约束条件;该第一带宽差值为该波长选择器件的最小中心波长的通道与该波长选择器件的最大中心波长的通道在该第一偏振态下的带宽差值;该第二带宽差值为该最小中心波长的通道与该最大中心波长的通道在该第二偏振态下的带宽差值。这样,通过设置第一入射位置处的刻线间距和第二入射位置处的刻线间距,能够调整通道在不同的偏振态下带宽的关系。
在一种可能的实现方式中,该第一入射位置处的刻线间距和该第二入射位置处的刻线间距使得该波长选择器件的每个通道满足带宽差值等于目标阈值的约束条件,每个通道的带宽差值为在该第一偏振态和该第二偏振态下的带宽的差值。这样,通过设置第一入射位置处的刻线间距和第二入射位置处的刻线间距,能够使得通道在不同偏振态下的带宽差值恒定。
第二方面,本申请提供了一种波长选择的方法,该方法应用于波长选择器件,该方法包括:输入端口将入射光束输出至衍射部件,该衍射部件上光束入射位置处的刻线间距不完全相同,该光束入射位置处的刻线间距与该波长选择器件的通道的带宽相关;该衍射部件将该入射光束色散为多个子光束,每个子光束的波长不相同,将该多个子光束输出至交换引擎;该交换引擎将该多个子光束中至少一个子光束输出至输出端口;该输出端口对接收到的光束 进行输出。
在一种可能的实现方式中,该输入端口将入射光束输入至衍射部件,包括:该输入端口将入射光束输出至偏振组件;该偏振组件将该入射光束分离为第一偏振态的第一光束和第二偏振态的第二光束,将该第一光束和第二光束转换为相同的偏振态,输出至该衍射部件,该第一偏振态与该第二偏振态正交;该衍射部件具有第一衍射区域和第二衍射区域,该第一衍射区域中该第一光束的第一入射位置处的刻线间距不完全相同,该第二衍射区域中该第二光束的第二入射位置处的刻线间距不完全相同,该第一入射位置处的刻线间距与该波长选择器件的通道在该第一偏振态下的带宽相关,该第二入射位置处的刻线间距与该波长选择器件的通道在该第二偏振态下的带宽相关;该衍射部件将该入射光束色散为多个子光束,包括:该衍射部件将该第一光束色散为多个第一子光束,输出至该交换引擎,并且将该第二光束色散为多个第二子光束,输出至该交换引擎;该交换引擎将该多个子光束中至少一个子光束输出至输出端口,包括:该交换引擎将该多个第一子光束中至少一个第一子光束输出至该输出端口,并将该多个第二子光束中至少一个第二子光束输出至该输出端口,该至少一个第一子光束和该至少一个第二子光束的波长相同,且相同波长的第一子光束和第二子光束从相同的输出端口输出。
在一种可能的实现方式中,该衍射部件包括第一衍射光栅和第二衍射光栅;该第一衍射区域属于该第一衍射光栅,该第二衍射区域属于该第二衍射光栅。
在一种可能的实现方式中,该第一衍射区域和该第二衍射区域位于同一平面内的相邻位置。
在一种可能的实现方式中,该第一衍射区域包括的刻线与该第二衍射区域包括的刻线平行。
在一种可能的实现方式中,该第一入射位置处的刻线间距使得该波长选择器件的通道在该第一偏振态下的带宽差异均衡,且该第二入射位置处的刻线间距使得该波长选择器件的通道在该第二偏振态下的带宽差异均衡。
第三方面,本申请提供了一种可重构光分插复用器(reconfigurable optical add-drop multiplexer,ROADM),该ROADM包括至少一个波长选择器件,所述至少一个波长选择器件中的一个或多个波长选择器件为第一方面或第一方面可能的方式中的波长选择器件。
第四方面,本申请提供了一种确定光栅参数的方法,该方法包括:获取波长选择器件中衍射部件的光栅参数,该光栅参数包括该衍射部件的光束入射位置处的刻线间距,该波长选择器件第一方面或第一方面可选的方式中的波长选择器件;基于该光栅参数,确定该波长选择器件的每个通道对应的光斑尺寸和光斑距离,对于目标通道,该目标通道对应的光斑尺寸为该目标通道的中心波长的光束在该波长选择器件中交换引擎上光斑的尺寸,该目标通道对应的光斑距离为该目标通道的边界波长的光束在该交换引擎上光斑之间的距离;基于该每个通道对应的光斑尺寸和光斑距离调整该光栅参数,获得满足带宽约束条件的目标光栅参数。
本申请所示的方案,通道对应的光斑尺寸和光斑的距离会影响通道的带宽,所以可以基于每个通道对应的光斑尺寸和光斑距离,反馈获得满足带宽约束条件的光栅参数。
第五方面,本申请提供了一种确定光栅参数的装置,该装置具有实现上述第四方面的功能。该装置包括至少一个模块,至少一个模块用于实现上述第四方面所提供的确定光栅参数的方法。
第六方面,本申请提供了一种确定光栅参数的计算机设备,该计算机设备包括处理器和存储器;所述存储器用于存储计算机指令;所述处理器用于执行所述计算机指令,以使计算机设备实现上述第四方面所提供的确定光栅参数的方法。
第七方面,本申请提供了一种计算机可读存储介质,该存储介质中存储有至少一条计算机指令,该计算机指令由处理器读取以使计算机设备执行上述第四方面所提供的确定光栅参数的方法。
第八方面,本申请提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述第四方面所提供的确定光栅参数的方法。
附图说明
图1是本申请一个示例性实施例提供的波长选择器件的结构示意图;
图2是本申请一个示例性实施例提供的光束的传输示意图;
图3是本申请一个示例性实施例提供的衍射部件的结构示意图;
图4是本申请一个示例性实施例提供的衍射部件的侧视图;
图5是本申请一个示例性实施例提供的衍射部件的结构示意图;
图6是本申请一个示例性实施例提供的衍射部件的结构示意图;
图7是本申请一个示例性实施例提供的波长选择器件的结构示意图;
图8是本申请一个示例性实施例提供的波长选择器件的俯视图;
图9是本申请一个示例性实施例提供的光束在交换引擎上成像的示意图;
图10是本申请一个示例性实施例提供的光束在衍射部件上色散的示意图;
图11是本申请一个示例性实施例提供的光束在交换引擎上成像的示意图;
图12是本申请一个示例性实施例提供的滤波示意图;
图13是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图14是本申请一个示例性实施例提供的计算机设备的结构示意图;
图15是本申请一个示例性实施例提供的确定光栅参数的方法的流程示意图;
图16是本申请一个示例性实施例提供的确定光栅参数的方法的流程示意图;
图17是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图18是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图19是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图20是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图21是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图22是本申请一个示例性实施例提供的带宽与波长的关系示意图;
图23是本申请一个示例性实施例提供的确定光栅参数的装置的结构示意图。
图示说明
1、输入端口;2、衍射部件;3、交换引擎;4、输出端口;5、衍射部件;6、曲面反射镜;7、柱面镜;8、反射棱镜;
21、第一衍射光栅;22、第二衍射光栅;23、棱镜。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
下面对本申请实施例涉及的一些术语概念做解释说明。
通道,是光器件中传输的具有一定波长范围的光束形成的通道。通道也可以称为是波长通道,每个通道对应有中心波长和两个边界波长,中心波长等于两个边界波长之和的一半。
光束束腰,是高斯光束绝对平行传输的位置。
WSS,是采用衍射光栅进行自由空间的分波与合波,并且基于微机电系统(micro-electro-mechanical system,MEMS)或硅基液晶(liquid crystal on silicon,LCOS)相位空间调制器改变光束的空间传输方向,使光束到达WSS的不同输出端口,实现光交换的目的。
下面描述本申请中涉及到的相关背景。
在光通信中,波长选择器件是常用的波长选择器件,如WSS、波长阻断器(wavelength blocker,WB)等。波长选择器件包括衍射部件,衍射部件可以是刻线间距相同的衍射光栅。衍射部件用于将入射的入射光束色散为多个波长不同的光束。由于衍射部件的色散非均匀,且波长选择器件的空间光透镜系统具有色差,会导致波长选择器件的通道的带宽不能满足要求,如通道的带宽不均衡等。相关技术中,通常会在波长选择器件的光路中添加透镜或者组合透镜,以调整波长选择器件的通道的带宽。在波长选择器件的光路中增加了光学元件,会导致波长选择器件的光路复杂。
本申请实施例中,波长选择器件包括衍射部件2,衍射部件2上光束入射位置处的刻线间距不完全相同,并且光束入射位置处的刻线间距与波长选择器件的通道的带宽有关系,所有可以设置合适的刻线间距以调整波长选择器件的带宽满足要求。可见只需要更换衍射部件,而不需要在波长选择器件的光路中增加光学元件,所以也不会使得波长选择器件的光路变的复杂。
下面描述本申请涉及波长选择器件的结构。
参见图1所示的波长选择器件的结构示意图,波长选择器件包括输入端口1、衍射部件2、交换引擎3和输出端口4。输入端口1连接有外部光纤,衍射部件2上光束入射位置处的刻线间距不完全相同,光束入射位置处的刻线间距与波长选择器件的通道的带宽相关,也就是说光束入射位置处的刻线间距会影响波长选择器件的通道的带宽,交换引擎3用于将光束交换至输出端口4,输出端口4也连接有外部光纤,用于输出光束。此处光束入射位置处的刻线间距不完全相同可以理解为:光束入射位置处包括多条刻线,多条刻线中至少存在两个刻线间距不相同。例如,多条刻线包括相邻的第一刻线和第二刻线,相邻的第三刻线和第四刻线,第一刻线和第二刻线的间距为第一刻线间距,第三刻线和第四刻线的间距为第二刻线间距,多条刻线的刻线间距中至少存在第一刻线间距和第二刻线间距不相同。
在图1所示的波长选择器件中,光束传输过程为:入射光束从输入端口1输入波长选择器件。入射光束传输至衍射部件2,衍射部件2将入射光束在色散平面y-z内色散为多个子 光束,每个子光束的波长不相同。多个子光束传输至交换引擎3,交换引擎3使得子光束在切换平面x-z内的位置发生变化,将多个子光束中至少一个子光束输出至输出端口4。在本申请实施例中,色散平面y-z指光束经过衍射部件2色散后各个波长的光束所在的平面,也称为是波长平面,切换平面x-z为输入端口1和输出端口4所在的平面,也称为是端口平面或者交换平面。色散平面y-z和切换平面x-z互相垂直。
在波长选择器件为WSS的情况下,多个子光束均输出至输出端口4,进行输出,多个子光束可以输出至不同的输出端口4,也可以至少两个子光束输出至相同的输出端口4,例如,图2示出了光束的传输示意图,入射光束的波长为λ 1至λ 3。波长为λ 1的子光束经过交换引擎3的反射,在切换平面x-z内发生位置的变化,经过衍射部件2从第一输出端口输出。波长为λ 2和λ 3的子光束经过交换引擎3的反射,在切换平面x-z内发生位置的变化,波长为λ 2和λ 3的子光束入射至衍射部件2的相同位置,在该位置衍射部件2将波长为λ 2和λ 3的子光束合并为一个光束,该一个光束从第二输出端口输出。
在波长选择器件为WB的情况下,多个子光束中部分子光束输出至输出端口4进行输出,另外的部分子光束未从输出端口4进行输出。例如,入射光束的波长为λ 1至λ 3。波长为λ 1的子光束经过交换引擎3的反射,在切换平面x-z内发生位置的变化,经过衍射部件2从第一输出端口输出。波长为λ 2和λ 3的子光束经过交换引擎3的反射,在切换平面x-z内发生位置的变化,波长为λ 2和λ 3的子光束入射至衍射部件2的相同位置,在该位置衍射部件2将波长为λ 2和λ 3的子光束合并为一个光束,该一个光束输出至输出端口4以外的位置处,这样,WB将波长为λ 1的子光束输出,而将波长为λ 2和λ 3的子光束阻断。
示例性的,输入端口1和输出端口4可以组成光纤端口阵列,光纤端口阵列包括至少两个端口,分别用于连接光纤,每个端口用于输入光束或者输出光束,在端口用于输入光束时,该端口称为是输入端口,在端口用于输出光束时,该端口称为是输出端口。
示例性的,交换引擎3可以是MEMS阵列,每个子光束入射至MEMS阵列中的一个MEMS,使得一个MEMS对一个子光束进行独立控制等。
示例性的,衍射部件2包括衍射光栅和棱镜,衍射光栅的光束入射位置处的刻线间距不完全相同。棱镜与衍射光栅贴合,组成棱栅使用。棱镜能够增强衍射光栅的色散能力,减少衍射光栅的色散非线性,并且减少由衍射光栅的圆锥衍射效应带来的影响。
示例性的,波长选择器件还包括聚焦透镜,聚焦透镜位于衍射部件2和交换引擎3之间的光路上,用于对子光束进行聚焦处理。此种情况下,交换引擎3可以位于聚焦透镜的焦平面上。
示例性的,波长选择器件还可以包括反射镜,例如,衍射部件2与交换引擎3之间的光路上设置有反射镜。
示例性的,WSS通常会应用于ROADM中,为了使得ROADM的光传输系统对不同波长的光束的传输性能差异比较小,可以均衡WSS的通道带宽,使得WSS对不同波长光束的滤波性能均衡。为了使得WSS的通道带宽均衡,可以设置光束入射位置处的刻线间距,使得WSS的通道的带宽差异满足均衡的约束条件。
需要说明的是,本申请实施例中,能够通过衍射部件2的光束入射位置处的刻线间距调整通道的带宽的原因为:衍射部件2的光束入射位置处的刻线间距会影响光束的波前相位,使得成像特性发生变化,进而会影响光束的束腰的光斑尺寸和位置,该位置会影响该束腰到 交换引擎3的距离,该距离和光斑尺寸会影响该光束在交换引擎3上形成光斑的光斑尺寸,而通道的光束的光斑尺寸和p会影响通道的带宽,所以可以通过设置刻线间距调整通道的带宽,p为通道的光束在色散方向覆盖交换引擎3的尺寸,该尺寸等于该通道的边界波长的光束在交换引擎3上形成光斑的光斑中心之间的距离。本申请实施例中,可以通过仿真设置光束入射位置处的刻线间距。具体的设置方式参见后文中的描述。
在一种可能的实现中,衍射部件2为相位空间调制器时,相位空间调制器对光束偏振态有选择性,要求入射在相位空间调制器上的光束是某个偏振态的光束。波长选择器件的入射光束偏振态不单一,在入射至相位调制器之前会经过偏振组件5转换为同一偏振态。此种情况下,波长选择器件还包括偏振组件5,偏振组件5用于将入射光束分离为第一偏振态的第一光束和第二偏振态的第二光束,第一偏振态和第二偏振态垂直。例如,第一偏振态和第二偏振态可以分别是S偏振态和P偏振态,第一偏振态和第二偏振态也可以是正交的其它偏振态。
波长选择器件包括偏振组件5时,光束传输过程如下:
入射光束从输入端口1输入波长选择器件。入射光束传输至偏振组件5,偏振组件5将该入射光束分离为第一偏振态的第一光束和第二偏振态的第二光束,第一光束和第二光束的波长相同,例如,入射光束的波长为λ 1至λ n,第一光束的波长为λ 1至λ n,第二光束的波长为λ 1至λ n,n为大于1的整数。偏振组件5将第一光束和第二光束转换为相同的偏振态。第一光束和第二光束转换为的相同的偏振态可以是S偏振态等,也可以是其它偏振态。
第一光束传输至衍射部件2的第一入射位置处,第二光束传输至衍射部件2的第二入射位置处,第一光束被衍射部件2色散为多个第一子光束,每个第一子光束的波长不相同,第二光束被衍射部件2色散为多个第二子光束,每个第二子光束的波长不相同。
多个第一子光束和多个第二子光束传输至交换引擎3,交换引擎3将多个第一子光束中至少一个第一子光束输出至输出端口4,并且将多个第二子光束中至少一个第二子光束输出至输出端口4,至少一个第一子光束和至少一个第二子光束的波长相同,且相同波长的第一子光束和第二子光束从相同的端口输出。例如,在波长选择器件为WSS的情况下,色散获得的第一子光束和第二子光束均从输出端口4输出,波长相同的第一子光束和第二子光束在输出至输出端口4之前会合成一个光束,从相同的输出端口4输出,不同波长的光束有可能从相同的输出端口4输出,也有可能从不同的输出端口4输出。
示例性的,衍射部件2具有第一衍射区域和第二衍射区域,图3示出了衍射部件2的结构示意图,衍射部件2具有第一衍射区域和第二衍射区域。第一衍射区域用于将入射的第一光束色散为多个第一子光束,每个第一子光束的波长不相同,第二衍射区域用于将入射的第二光束色散为多个第二子光束,每个第二子光束的波长不相同。第一衍射区域中第一光束的入射位置处(称为是第一入射位置处)的刻线间距不完全相同,第二衍射区域中第二光束的入射位置处(称为是第二入射位置处)的刻线间距不完全相同。第一入射位置处的刻线间距与波长选择器件的通道在第一偏振态下的带宽相关,第二入射位置处的刻线间距与波长选择器件的通道在第二偏振态下的带宽相关。这样,能够设置第一入射位置处的刻线间距使得波长选择器件的通道在第一偏振态下的带宽满足要求,并且能够设置第二入射位置处的刻线间距使得波长选择器件的通道在第二偏振态下的带宽满足要求。
第一入射位置处的刻线间距不完全相同可以理解为:第一入射位置处包括多条刻线,多 条刻线中至少存在两个刻线间距不相同。例如,多条刻线包括相邻的第一刻线和第二刻线,相邻的第三刻线和第四刻线,第一刻线和第二刻线的间距为第一刻线间距,第三刻线和第四刻线的间距为第二刻线间距,多条刻线的刻线间距中至少存在第一刻线间距和第二刻线间距不相同。同理,第二入射位置处的刻线间距不完全相同可以理解为:第二入射位置处包括多条刻线,多条刻线形成的刻线间距中至少存在两个刻线间距不相同。
需要说明的是,第一入射位置处的刻线间距以及第二入射位置处的刻线间距可以通过仿真获得。示例性的,基于衍射部件2所应用于的波长选择器件对通道带宽的要求,仿真获得刻线间距。
另外为了方便理解,在图4中示出了第一衍射区域和第二衍射区域的侧视图。
示例性的,衍射部件2包括两个衍射光栅,两个衍射光栅均为反射式衍射光栅。两个衍射光栅为第一衍射光栅21和第二衍射光栅22,第一衍射区域属于第一衍射光栅21,第二衍射区域属于第二衍射光栅22。这样,第一衍射光栅21用于对第一光束进行色散处理,第二衍射光栅22用于对第二光束进行色散处理,两个衍射光栅除了可以设置刻线间距,还可以设置基底材料类型以及两个衍射光栅之间的距离,使得增加了设计自由度,更容易设计衍射部件2使得波长选择器件对通道带宽的要求。
示例性的,第一衍射光栅21和第二衍射光栅22的基底材料可以相同,也可以不相同,本申请实施例不对此进行限定。
示例性的,第一衍射区域包括的刻线和第二衍射区域包括的刻线可以平行。这样,更方便加工衍射部件2。
示例性的,第一衍射区域和第二衍射区域的位置关系可以是平行,但是不重叠,以便于第一光束和第二光束分别入射,在某些情况下,也可以重叠,只不过不要遮挡光束入射。在第一衍射区域属于第一衍射光栅21,第二衍射区域属于第二衍射光栅22的情况下,第一衍射光栅21和第二衍射光栅22可以平行。在图5所示的衍射部件2中,第一衍射光栅21和第二衍射光栅22平行。
示例性的,第一衍射区域和第二衍射区域位于同一平面内的相邻位置或不相邻位置,本申请实施例对此不进行限定。在第一衍射区域属于第一衍射光栅21,第二衍射区域属于第二衍射光栅22的情况下,第一衍射光栅21和第二衍射光栅22可以设置在相邻的位置,或者不相邻的位置。在图3中,第一衍射光栅21和第二衍射光栅22设置在相邻的位置,在图6中,第一衍射光栅21和第二衍射光栅22设置在不相邻的位置。
示例性的,衍射部件2还包括棱镜23,棱镜23均与第一衍射光栅21和第二衍射光栅22贴合,组成棱栅使用。棱镜23能够增强第一衍射光栅21和第二衍射光栅22的色散能力,减少第一衍射光栅21和第二衍射光栅22的色散非线性,并且减少由第一衍射光栅21和第二衍射光栅22的圆锥衍射效应带来的影响。
示例性的,波长选择器件还包括曲面反射镜6和柱面镜7等。曲面反射镜6在色散平面y-z用于对光束进行准直和汇聚。柱面镜7用于在切换平面x-z对光束进行准直和汇聚。偏振组件5位于输入端口1与曲面反射镜6之间的光路上,曲面反射镜6位于偏振组件5与柱面镜7之间的光路上,衍射部件2位于柱面镜7与曲面反射镜6之间的光路上,柱面镜7位于交换引擎3与曲面反射镜6之间的光路上。
示例性的,交换引擎3为LCOS相位空间调制器。LCOS相位空间调制器包括多个像素点, 用于对光束覆盖区域的像素点施加电压,通过改变液晶材料的折射率来改变光束的相位,使得光束在切换平面x-z内的位置发生变化。可选的,波长选择器件还包括反射棱镜8,曲面反射镜6将第一子光束和第二子光束反射至反射棱镜8,反射棱镜8将接收到的不同波长的子光束反射至LCOS相位空间调制器的不同像素区域。
示例性的,偏振组件5包括整形部件和偏振部件,整形部件用于对光束进行准直和整形。偏振部件用于将输入光束分离为两个正交的偏振态的光束,将该两个正交的偏振态的光束转换为相同偏振态的两个光束。
示例性的,在波长选择器件还包括曲面反射镜6和柱面镜7的情况下,光束在波长选择器件中传输过程如下:
如图7所示,在入射光束从输入端口1入射后,整形部件对入射光束进行准直和整形处理。偏振部件对准直和整形后的光束分离为两个正交偏振态的光束,并且转化为两个同一偏振态的输出光束,这两个光束称为是第一光束L1和第二光束L2。第一光束和第二光束入射至曲面反射镜6,曲面反射镜6在色散平面y-z存在光焦度,光焦度等于像方光束会聚度与物方光束会聚度之差,它表征光学系统偏折光线的能力,在色散平面y-z内对第一光束L1和第二光束L2起准直和汇聚的作用,并将第一光束L1和第二光束L2反射到柱面镜7上。
柱面镜7在切换平面x-z存在光焦度,在切换平面x-z内对第一光束L1和第二光束L2起准直和汇聚的作用,并将第一光束L1和第二光束L2分别传输至衍射部件2的第一衍射区域和第二衍射区域。衍射部件2的第一衍射区域对第一光束L1进行色散,获得多个第一子光束。衍射部件2的第二衍射区域对第二光束L2进行色散,获得多个第二子光束。多个第一子光束和第二子光束依次通过柱面镜7和曲面反射镜6,曲面反射镜6将多个第一子光束转换为平行光,入射至LCOS相位空间调制器,并且曲面反射镜6将多个第二子光束转换为平行光,入射至LCOS相位空间调制器。第一子光束和第二子光束中相同波长的子光束入射至LCOS相位空间调制器的相同位置处。
LCOS相位空间调制器对第一子光束的覆盖区域,以及第二子光束的覆盖区域的像素点施加电压,通过改变液晶材料的折射率来改变第一子光束和第二子光束的相位,使得第一子光束和第二子光束在切换平面x-z内的位置发生变化,经过LCOS相位空间调制器相位改变后的第一子光束和第二子光束沿着曲面反射镜6、柱面镜7、衍射部件2和偏振组件5返回输出端口4进行输出。例如,入射光束从第一输入端口输入,入射光束的波长包括λ 1至λ 5,λ 1至λ 3的光束从第一输出端口输出,λ 4和λ 5的光束从第二输出端口输出。此处为LCOS相位空间调制器的像素点施加电压,可以是为LCOS相位空间调制器的各像素点施加电压,只不过各像素点施加的电压有可能不相同,也可以是仅为光束入射位置处的像素点施加电压。
此处,第一波长的第一子光束返回输出端口4的路径为第一路径,第一波长的第二子光束入射至LCOS相位空间调制器的路径为第二路径,第一路径与第二路径在色散平面y-z内的投影相同。第一波长的第二子光束返回输出端口4的路径为第三路径,第一波长的第一子光束入射至LCOS相位空间调制器的路径为第四路径,第三路径与第四路径在色散平面y-z内的投影相同。
需要说明的是,在图7中仅示出一个光束的传输示意图。为了更好的理解波长选择器件的结构,图8示出了波长选择器件的俯视图。在图8中,在色散平面y-z平面内,第一光束 L1色散获得的多个第一子光束重合,第二光束L2色散获得的多个第二子光束重合。在图8中输入端口1和输出端口4在俯视图中重合,可以认为是一个光纤端口阵列。
示例性的,波长选择器件通常会应用于ROADM中,为了使得ROADM的光传输系统对不同波长的光束的传输性能差异比较小,可以均衡波长选择器件的通道带宽,使得波长选择器件对不同波长光束的滤波性能均衡。为了使得波长选择器件的通道带宽均衡,可以设置第一衍射区域的刻线间距,使得波长选择器件的通道在第一偏振态下的带宽差异满足均衡的约束条件,并且可以设置第二衍射区域的刻线间距,使得波长选择器件的通道在第二偏振态下的带宽差异满足均衡的约束条件。
示例性的,在密集波分复用的系统中,系统中的波长选择器件对不同波长的光束具有不同的响应,可以根据系统的需求对波长选择器件通道的带宽进行设计。例如,在某些情况下,可以调节带宽随通道变化的趋势,通道是基于光束的波长定义,所以可以理解为调节带宽随波长变化的趋势,如通道的中心波长越大,通道的带宽越大,或者,通道的中心波长越小,通道的带宽越大。在本申请实施例中,通过设置第一衍射区域和第二衍射区域的刻线间距,能够使得波长选择器件的通道满足第一带宽差值和第二带宽差值相等的约束条件。再例如,ROADM的光传输系统中的一些光器件(如传输光纤等)具有偏振相关性,光束传输过程中的偏振态变化会影响光传输系统的传输性能,对同一通道不同偏振态下的带宽分布调整,有利于均衡不同偏振态对光传输系统的传输性能的影响。在本申请实施例中,通过设置第一衍射区域和第二衍射区域的刻线间距,能够使得波长选择器件的通道满足第一带宽差值和第二带宽差值互为相反数的约束条件。第一带宽差值为波长选择器件的最小中心波长的通道与波长选择器件的最大中心波长的通道在第一偏振态下的带宽差值,第二带宽差值为最小中心波长的通道与最大中心波长的通道在第二偏振态下的带宽差值。
需要说明的是,在第一带宽差值和第二带宽差值相等的约束条件下,通道的带宽在第一偏振态和第二偏振态下随波长的变化趋势一致,能够实现通道的带宽与偏振态无关的波长分布调节。在第一带宽差值和第二带宽差值互为相反数的约束条件下,通道的带宽在第一偏振态和第二偏振态下随波长的变化趋势相反,能够实现通道的带宽在不同偏振态下随波长分布的调节。最小中心波长等于入射波长选择器件的光束的最小波长与次最小波长的平均值,最大中心波长等于入射波长选择器件的光束的最大波长与次最大波长的平均值。
示例性的,在某些情况下,对于任意波长的通道,不同偏振态之间的带宽差异要求恒定。为了实现对于任意波长的通道,不同偏振态之间的带宽差异要求恒定,可以设置第一衍射区域和第二衍射区域的刻线间距,使得波长选择器件的每个通道满足在第一偏振态和第二偏振态下的带宽差值等于目标阈值的约束条件。目标阈值可以预设,如0.5GHz等。
需要说明的是,入射光束经过偏振组件5时,先被分离为第一偏振态的第一光束和第二偏振态的第二光束,然后第一光束和第二光束被变换为相同偏振态,第一光束和第二光束入射至交换引擎3,可以认为是来自于两个正交偏振态的光束入射至交换引擎3,波长选择器件的通道会存在两个正交偏振态下的带宽。
还需要说明的是,相比较使用刻线间距相等的衍射部件,第一子光束在交换引擎3上光斑的中心位置未发生变化。第二子光束在交换引擎3上光斑的中心位置未发生变化。
示例性的,为了更好地理解本申请实施例,下面描述影响波长选择器件的通道的带宽的参数,此处是以目标光束为例进行说明,目标光束可以是第一子光束或第二子光束。
图9示出了目标光束在交换引擎3处的成像情况。为了方便理解,目标光束通过衍射部件2色散后在空间上分开成多个波长的子光束,为了简化描述,取其中三个不同波长的子光束进行描述,即取第一波长子光束a1、第二波长子光束a2和第三波长子光束a3。a1、a2和a3通过曲面反射镜6聚焦于交换引擎3。光学系统存在像差(像差是实际光学系统中与高斯光学的理想状况的偏差,这是由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致引起的),图9中a1、a2和a3的聚焦点c1、c2和c3分布于聚焦平面,聚焦平面在色散平面y-z内的投影是曲线。入射光束是高斯光束,聚焦点c1、c2和c3的位置分别是a1、a2和a3的束腰所在的位置。a1、a2和a3的束腰位置c1、c2和c3相对于交换引擎3的表面具有不同的距离d1、d2、d3。根据高斯光束的发散公式
Figure PCTCN2022124656-appb-000001
可知,对于波长为λ的光束,束腰距离交换引擎3的表面的距离d越大,光束在交换引擎3上光斑的光斑尺寸w(d)相比于束腰光斑尺寸w 0的发散程度越高,即w(d)越大。
在图9中,a1、a2和a3在交换引擎3的表面上的光斑分别为b1、b2和b3。b1、b2和b3具有不同的光斑半径(光斑半径也可以称为是光斑尺寸),分别为w1、w2和w3。
需要说明的是,在图9中,第一波长子光束a1使用两条线表示,是为了说明光束有一定的宽度。
图10示出了目标光束的色散示意图。如图10所示,目标光束经过衍射部件2在色散平面y-z内发散。为了简化描述,a1、a2和a3的频率分别为f1、f2和f3,且a1、a2和a3之间具有相等的频率间隔B,即B=f2-f1=f3-f2。基于衍射部件2的非线性色散特性可以理解,
Figure PCTCN2022124656-appb-000002
Figure PCTCN2022124656-appb-000003
不相等,a2与a1的夹角为
Figure PCTCN2022124656-appb-000004
a2与a3的夹角为
Figure PCTCN2022124656-appb-000005
图11示出了交换引擎3上光斑的示意图。如图11所示,第一波长子光束a1、第二波长子光束a2和第三波长子光束a3被曲面反射镜6平行反射至交换引擎3,在交换引擎3的表面上各自形成光斑,分别为第一光斑q1、第二光斑q2和第三光斑q3,第一光斑q1与第二光斑q2中心之间的距离为p1,第二光斑q2和第三光斑q3中心之间的距离为p2,一般情况下,两个光斑之间的距离
Figure PCTCN2022124656-appb-000006
其中,f为曲面反射镜6的焦距,
Figure PCTCN2022124656-appb-000007
为入射曲面反射镜6之前形成两个光斑的光束之间的夹角。由于
Figure PCTCN2022124656-appb-000008
Figure PCTCN2022124656-appb-000009
不相等,所以p1和p2不相同。
波长选择器件的通道的带宽用于描述波长选择器件的滤波曲面的陡峭程度,参见图12,以通道的插入损耗谱的-3dB位置的频带宽度定义带宽,称为-3dB带宽。-3dB带宽越高说明滤波曲线越陡峭,对信号的滤波损耗损伤越小。本申请实施例中以-3dB带宽为例进行说明。通过研究表明,在通道间隔B固定的情况下,对于一个通道来说,通道对应的光斑尺寸w与通道对应的p决定了该通道的-3dB带宽,w为通道的中心波长的光束在交换引擎3的表面上的光斑尺寸,p为该通道的光束在色散方向覆盖交换引擎3的尺寸,也就是通道的边界波长的光束在交换引擎3上的光斑之间的距离,简称为光斑距离,如越大的p/w对应越大的-3dB带宽。波长选择器件的不同光束的p/w不相同,说明不同通道的带宽不相同。因此对于波长选择器件的一个通道来说,可以通过通道的光束的光斑尺寸w和p调节通道的带宽,又由于公式(1)可知光斑尺寸与束腰相关,所以可以通过设置光束入射位置处的刻线间距,调节束腰到交换引擎3的表面的距离,实现对光斑尺寸的调节,进而实现对通道的带宽的调节。
而且由于第一衍射光栅21和第二衍射光栅22的色散非均匀性,所以相同波长的光束在 偏振组件5分成的两个光束,在交换引擎3上对应的p/w也不相同。在图13中给出了传统波长选择器件的带宽随波长和偏振态的分布。从图13可知,同一偏振态下,波长选择器件的不同通道的带宽各不相同,相同通道在不同偏振态下的带宽一般也不相同。例如,在基于相同刻线间距的衍射光栅的波长选择器件,B=100GHz,波长选择器件的带宽最小值为92.2GHz,对于p偏振态,短波长的通道的带宽低于长波长的通道的带宽,最大带宽差值为0.6GHz,对于s偏振态,短波长的通道的带宽高于长波长的通道的带宽,最大带宽差值为0.2GHz,同时考虑偏振态和波长,带宽最大差值为0.6GHz。在本申请实施例中,短波长与长波长是一个相对的概念,短波长小于长波长。
本申请实施例中,能够通过第一衍射光栅21的第一入射位置处的刻线间距调整通道在第一偏振态下的带宽的原因为:第一衍射光栅21的刻线间距会影响第一子光束的波前相位,使得在交换引擎3的成像特性发生变化,进而会影响束腰的光斑尺寸和位置,该位置会影响该束腰到交换引擎3的距离,该距离和光斑尺寸会影响该光束在交换引擎3上形成光斑的光斑尺寸,而通道的光束的光斑尺寸和p会影响通道的带宽,所以可以通过设置刻线间距调整通道的带宽,p为通道的光束在色散方向覆盖交换引擎3的尺寸,该尺寸等于该通道的边界波长的光束在交换引擎3上形成光斑的光斑中心之间的距离。同理通过第二衍射光栅22的刻线间距调整通道在第二偏振态下的带宽也是上述原因。因此,对于波长选择器件的一个通道来说,可以通过通道的光束的光斑尺寸w和p调节通道的带宽,又由于公式(1)可知光斑尺寸与束腰相关,所以可以通过设置第一衍射区域和第二衍射区域的刻线分布,调节束腰到LCOS相位空间调制器的表面的距离,实现对光斑尺寸的调节,进而实现对通道的带宽的调节。本申请实施例中,可以通过仿真设置第一衍射区域和第二衍射区域的刻线间距。具体的设置方式参见后文中的描述。
下面描述通过仿真方式获得衍射部件2的光栅参数的处理,光栅参数包括衍射部件2的刻线分布信息,刻线分布信息用于反映刻线间距。
确定光栅参数的方法的执行主体可以是确定装置,可选地,该确定装置是一个硬件装置,如该硬件装置为终端、服务器等计算机设备。可选地,该确定装置是一个软件装置,如运行在硬件装置上的一套软件程序。
在确定装置是计算机设备时,图14给出了硬件装置的结构示意图。如图14所示,计算机设备1400可选地由一般性的总线体系结构来实现。计算机设备1400包括至少一个处理器1401、通信总线1402、存储器1403以及至少一个网络接口1404。
处理器1401例如是通用中央处理器(central processing unit,CPU)、网络处理器(network processer,NP)、图形处理器(Graphics Processing Unit,GPU)、神经网络处理器(neural-network processing units,NPU)、数据处理单元(Data Processing Unit,DPU)、微处理器或者一个或多个用于实现本申请方案的集成电路。例如,处理器1401包括专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。PLD例如是复杂可编程逻辑器件(complex programmable logic device,CPLD)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信总线1402用于在上述组件之间传送信息。通信总线1402可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一 种类型的总线。
存储器1403例如是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,又如是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,又如是电可擦可编程只读存储器(electrical ly erasable programmable read-only Memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器1403例如是独立存在,并通过通信总线1402与处理器1401相连接。存储器1403也可以和处理器1401集成在一起。
可选地,存储器1403用于保存确定光栅参数的过程中需要的数据,如存储衍射部件2的刻线分布信息。
网络接口1404使用任何收发器一类的装置,用于与其它设备或通信网络通信。网络接口1404包括有线网络接口,还可以包括无线网络接口。其中,有线网络接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线网络接口可以为无线局域网(wireless local area networks,WLAN)接口,蜂窝网络的网络接口或其组合等。
在具体实现中,作为一种示例,处理器1401可以包括一个或多个CPU。
在具体实现中,作为一种示例,计算机设备1400可以包括多个处理器。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在具体实现中,作为一种示例,计算机设备1400还可以包括输出设备和输入设备。输出设备和处理器1401通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备或投影仪(projector)等。输入设备和处理器1401通信,以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,存储器1403用于存储执行本申请中确定光栅参数的程序代码14031,处理器1401执行存储器1403中存储的程序代码14031。也即是,计算机设备1400可以通过处理器1401以及存储器1403中的程序代码14031,来实现方法实施例提供确定光栅参数的方法。
如图15所示,提供了确定光栅参数的流程,在图15所示的流程中,以确定装置为终端为例进行说明。
步骤1501,获取波长选择器件中衍射部件2的光栅参数,光栅参数包括衍射部件2的刻线分布信息。
在本实施例中,终端上安装有确定光栅参数的应用程序,在开始确定光栅参数时,技术人员(后续称为是用户)触发启动该应用程序。应用程序中提供有光栅参数的输入框,用户将衍射部件2的光栅参数输入该应用程序中。该光栅参数为初始光栅参数,初始光栅参数是预先设置的光栅参数,如初始光栅参数可以为等间距的刻线间距。
步骤1502,基于光栅参数,确定波长选择器件的每个通道对应的光斑尺寸和光斑距离, 对于目标通道,目标通道对应的光斑尺寸为目标通道的中心波长的光束在波长选择器件中交换引擎3上光斑的尺寸,目标通道对应的光斑距离为目标通道的边界波长的光束在交换引擎3上光斑之间的距离。
在本实施例中,终端获取到用户输入的光栅参数后,可以使用该光栅参数,模拟出使用该光栅参数时,波长选择器件的每个通道对应的光斑尺寸和光斑距离。对于波长选择器件的目标通道,目标通道存在中心波长和边界波长,中心波长等于边界波长的平均值,边界波长为目标通道的最大波长和最小波长,目标通道对应的光斑尺寸为该中心波长的光束在波长选择器件中交换引擎3上光斑的半径,目标通道对应的光斑距离为该边界波长的光束在该交换引擎3上光斑之间的距离,目标通道为波长选择器件的任一通道。例如,如图11所示,目标通道的边界波长为a1的波长和a2的波长,目标通道对应的光斑距离为p1。
示例性的,在对应于图7所示的波长选择器件时,衍射部件2的光栅参数包括第一衍射区域的刻线分布信息和第二衍射区域的刻线分布信息。
示例性的,在衍射部件2包括第一衍射光栅21和第二衍射光栅22时,第一衍射区域属于第一衍射光栅21,第二衍射区域属于第二衍射光栅22。光栅参数还包括第一衍射光栅21的基底材料类型和第二衍射光栅22的基底材料类型。这样,在确定光栅参数时,还考虑了基底材料类型,相当于多考虑了一个自由度,能够使得最终获得的目标光栅参数更准确。
示例性的,在第一衍射区域和第二衍射区域平行且不重叠的情况下,光栅参数还可以包括第一衍射区域与第二衍射区域的距离,这样,在确定光栅参数时,还考虑了第一衍射区域与第二衍射区域的距离,相当于多考虑了一个自由度,能够使得最终获得的目标光栅参数更准确。
示例性的,光栅参数还可以包括第一衍射区域与第二衍射区域的距离、第一衍射光栅21的基底材料类型和第二衍射光栅22的基底材料类型。
步骤1503,基于每个通道对应的光斑尺寸和光斑距离调整光栅参数,获得满足带宽约束条件的目标光栅参数。
其中,带宽约束条件用于指示波长选择器件的带宽所应满足的条件。例如,波长选择器件的带宽均衡等。
在本实施例中,终端获取预先存储的带宽约束条件,带宽约束条件用于约束衍射部件2的光栅参数。然后终端使用每个通道对应的光斑尺寸和光斑距离调整光栅参数,使得在光栅参数下波长选择器件的带宽满足带宽约束条件,此时的光栅参数即为最终获得的目标光栅参数。例如,终端使用每个通道对应的光斑尺寸和光斑距离,确定波长选择器件的带宽,判断波长选择器件的带宽是否满足带宽约束条件。若带宽满足带宽约束条件,则确定满足带宽约束条件的光栅参数为目标光栅参数,若带宽不满足带宽约束条件,则返回调整光栅参数,使用调整后的光栅参数,确定出每个通道对应的光斑尺寸和光斑距离,然后使用每个通道对应的光斑尺寸和光斑距离,确定波长选择器件的带宽,再执行判断波长选择器件的带宽是否满足带宽约束条件的处理,直到获得满足带宽约束条件的目标光栅参数。终端在获得目标光栅参数后,可以显示目标光栅参数。后续可以使用目标光栅参数制作衍射部件2,制作出的衍射部件2应用于波长选择器件中时,波长选择器件的带宽满足带宽约束条件。
为了满足不同场景下对波长选择器件通道的带宽的要求,可以在不同场景下设置不同的带宽约束条件。如下以第一偏振态为p偏振态,第二偏振态为s偏振态为例进行说明。
第一种场景:波长选择器件应用于ROADM中时,为了使得ROADM的光传输系统对不同波长的光束的传输性能差异比较小,可以均衡波长选择器件通道的带宽使得波长选择器件对不同波长光束的滤波性能均衡。均衡波长选择器件通道的带宽的流程参见图16所示的流程。
步骤1601,获取波长选择器件中衍射部件2的光栅参数,光栅参数包括衍射部件2的第一衍射区域的刻线分布信息和衍射部件2的第二衍射区域的刻线分布信息。
步骤1602,基于光栅参数,确定波长选择器件的每个通道对应的光斑尺寸和光斑距离,对于目标通道,目标通道对应的光斑尺寸为目标通道的中心波长的光束在波长选择器件中交换引擎3上光斑的尺寸,目标通道对应的光斑距离为目标通道的边界波长的光束在交换引擎3上光斑之间的距离。
步骤1601至步骤1602的过程参见图15所示的流程,此处不再赘述。
步骤1603,基于每个通道对应的光斑尺寸和光斑距离,确定每个通道的带宽。
在本实施例中,对于目标通道,终端将目标通道对应的光斑距离除以目标通道对应的光斑尺寸,获得决定目标通道的带宽的参数。
需要说明的是,波长选择器件的输入光束进入波长选择器件后,由于被偏振部件分为两个偏振态的光束,所以对于目标通道来说,目标通道对应的光斑尺寸有两个,分别是在第一偏振态下对应的光斑尺寸,以及第二偏振态下对应的光斑尺寸,并且目标通道对应的光斑距离也有两个,分别是在第一偏振态下对应的光斑距离,以及在第二偏振态下对应的光斑距离。
步骤1604,判断波长选择器件的通道的带宽差异是否均衡。
在本实施例中,在确定出每个通道在两个偏振态下的带宽后,判断波长选择器件的通道在第一偏振态下的带宽差异是否均衡,并判断在第二偏振态下的带宽差异是否均衡。
步骤1605,若波长选择器件的通道的带宽差异均衡,则确定光栅参数的过程结束,若波长选择器件的通道的带宽差异未均衡,则返回执行步骤1601,直至获得使得波长选择器件的通道的带宽差异均衡的光栅参数。
在本实施例中,波长选择器件的通道的带宽差异是否均衡是指在两个偏振态下的带宽差异是否均衡。
示例性的,在衡量波长选择器件的通道的带宽差异是否均衡时,可以使用评价因子(figure of merit,FOM)1评估,FOM1可以是相邻波长通道在每个偏振态下对应的p/w具有最小的差值。
在使用图16所示的流程确定出衍射部件2的光栅参数后,拟合出在-3dB位置处,WSS的通道在p偏振态和s偏振态的曲线,参见图17。从图17可知,基于本申请实施例中的衍射部件2,通道间隔B=100GHz内,波长选择器件的通道的带宽最差值为92.72GHz,相比图13中传统的波长选择器件的带宽差异,带宽提升了0.5GHz。并且对于p偏振态和s偏振态,短波长和长波长的通道的带宽得到均衡,带宽差异小于0.08GHz,相比图13所示的带宽差异缩小7倍。
第二种场景:在密集波分复用的系统中,该系统中的波长选择器件对不同波长的光束具有不同的响应,可以根据系统的需求对波长选择器件的通道的带宽进行设计。例如,系统中短波长的通道在第一偏振态下的带宽大于长波长在第一偏振态下的通道的带宽,所以可以调节带宽随波长变化的趋势,使得波长选择器件中短波长的通道在第一偏振态下的带宽小于长波长的通道在第一偏振态下的带宽,以平衡系统中短波长的通道的带宽和长波长的通道的带 宽。再例如,系统中,短波长的通道在第二偏振态下的带宽小于长波长的通道在第二偏振态下的带宽,所以可以调节带宽随波长变化的趋势,使得波长选择器件中短波长的通道在第二偏振态下的带宽大于长波长的通道在第二偏振态下的带宽,以平衡系统中短波长的通道的带宽和长波长的通道的带宽。在第二种场景中,确定光栅参数的流程如下。
步骤1701,获取波长选择器件中衍射部件2的光栅参数,光栅参数包括衍射部件2的第一衍射区域的刻线分布信息和衍射部件2的第二衍射区域的刻线分布信息。
步骤1702,基于光栅参数,确定波长选择器件的每个通道对应的光斑尺寸和光斑距离,对于目标通道,目标通道对应的光斑尺寸为目标通道的中心波长的光束在波长选择器件中交换引擎3上光斑的尺寸,目标通道对应的光斑距离为目标通道的边界波长的光束在交换引擎3上光斑之间的距离。
步骤1701至步骤1702的过程参见图15所示的流程,此处不再赘述。
步骤1703,基于每个通道对应的光斑尺寸和光斑距离,确定每个通道的带宽。
步骤1703的过程参见图16中步骤1603的过程,此处不再赘述。
步骤1704,判断波长选择器件的第一带宽差值与第二带宽差值是否相等。
在本实施例中,确定WSS的最小中心波长的通道在第一偏振态下的带宽值,并且确定WSS的最大中心波长的通道在第一偏振态下的带宽值,将这两个带宽值作差,获得第一带宽差值。确定WSS的最小中心波长的通道在第二偏振态下的带宽值,并且确定WSS的最大中心波长的通道在第二偏振态下的带宽值,将这两个带宽值作差,获得第二带宽值。判断第一带宽值与第二带宽值是否相等。
步骤1705,若第一带宽差值与第二带宽差值相等,则确定光栅参数的过程结束,若第一带宽差值与第二带宽差值不相等,则返回执行步骤1701,直至第一带宽差值与第二带宽差值相等时,获得目标光栅参数。
示例性的,在判断第一带宽差值与第二带宽差值相同时,可以认为在两个正交偏振态下,最小中心波长的通道的p/w与最长中心波长的通道的p/w就有固定的差异值Δ1。
例如,在Δ1小于0时,通过步骤1701至步骤1705设置的衍射部件2,使得波长选择器件的最小波长的通道的带宽小于最长波长的通道的带宽,参见图18所示的波长选择器件的通道的带宽与波长的关系图,带宽分布呈现短波长通道的带宽低于长波长通道的带宽的趋势,且该趋势与光束的偏振态不相关。这样,能够均衡短波长传输性能优于长波长传输性能的系统。
在Δ1大于0时,通过步骤1701至步骤1705设置的衍射部件2,使得波长选择器件的最大波长的通道的带宽小于最小波长的通道的带宽,参见图19所示的波长选择器件的通道的带宽与波长的关系图,带宽分布呈现短波长通道的带宽高于长波长通道的带宽的趋势,且该趋势与光束的偏振态不相关。这样,能够均衡短波长传输性能低于长波长传输性能的系统。
第三种场景:ROADM的光传输系统中的一些光器件(如传输光纤等)具有偏振相关性,光束传输过程中的偏振态变化会影响光传输系统的传输性能,对于同一通道不同偏振态下的带宽分布调整,有利于均衡不同偏振态对光传输系统的传输性能的影响。例如,系统中短波长的通道在第一偏振态下的带宽大于长波长的通道在第一偏振态下的带宽,系统中短波长的通道在第二偏振态下的带宽小于长波长的通道在第二偏振态下的带宽,所以可以调节带宽随波长变化的趋势,使得WSS短波长的通道在第一偏振态下的带宽小于长波长的通道在第一偏 振态下的带宽,并且使得,WSS中短波长的通道在第二偏振态下的带宽大于长波长的通道在第二偏振态下的带宽,以平衡系统中短波长的通道的带宽和长波长的通道的带宽。在第三种场景中,确定光栅参数的流程如下。
步骤1901,获取波长选择器件中衍射部件2的光栅参数,光栅参数包括衍射部件2的第一衍射区域的刻线分布信息和衍射部件2的第二衍射区域的刻线分布信息。
步骤1902,基于光栅参数,确定波长选择器件的每个通道对应的光斑尺寸和光斑距离,对于目标通道,目标通道对应的光斑尺寸为目标通道的中心波长的光束在波长选择器件中交换引擎3上光斑的尺寸,目标通道对应的光斑距离为目标通道的边界波长的光束在交换引擎3上光斑之间的距离。
步骤1901至步骤1902的过程参见图15所示的流程,此处不再赘述。
步骤1903,基于每个通道对应的光斑尺寸和光斑距离,确定每个通道的带宽。
步骤1903的过程参见图16中步骤1603的过程,此处不再赘述。
步骤1904,判断波长选择器件的第一带宽差值与第二带宽差值是否互为相反数。
在本实施例中,确定第一带宽差值和第二带宽差值的方式参见步骤1604。判断第一带宽值与第二带宽值是否互为相反数。
步骤1905,若第一带宽差值与第二带宽差值互为相反数,则确定光栅参数的过程结束,若第一带宽差值与第二带宽差值不是互为相反数,则返回执行步骤1901,直至第一带宽差值与第二带宽差值互为相反数时,获得目标光栅参数。
示例性的,在判断第一带宽差值与第二带宽差值是否互为相反数时,可以认为在两个正交偏振态下,最小中心波长的通道的p/w与最长中心波长的通道的p/w有固定且相反的差异值Δ2。
例如,在Δ2小于0时,使用步骤1901至步骤1905设置的衍射部件2,会使得波长选择器件在第一偏振态下最小波长的通道的带宽小于最长波长的通道的带宽,在第二偏振态下最小波长的通道的带宽大于最长波长的通道的带宽,参见图20所示的波长选择器件的通道的带宽与波长的关系图。这样,能够均衡不同偏振态下波长分布。
在Δ2大于0时,使用步骤1901至步骤1905设置的衍射部件2,会使得波长选择器件在第一偏振态下最大波长的通道的带宽大于最小波长的通道的带宽,在第二偏振态下最小波长的通道的带宽小于最长波长的通道的带宽,参见图21所示的波长选择器件的通道的带宽与波长的关系图。这样,能够均衡不同偏振态下波长分布。
第四种场景:在某些情况下,对于任意波长的通道,不同偏振态之间的带宽差异要求恒定。例如,光传输系统中,对于任意波长的通道,在第一偏振态和第二偏振态下的带宽差为目标阈值,所以可以调节带宽随波长变化的趋势,使得对于波长选择器件任意波长的通道,在第一偏振态和第二偏振态下的带宽差接近目标阈值。在第四种场景中,确定光栅参数的流程如下。
步骤2201,获取波长选择器件中衍射部件2的光栅参数,光栅参数包括衍射部件2的第一衍射区域的刻线分布信息和衍射部件2的第二衍射区域的刻线分布信息。
步骤2202,基于光栅参数,确定波长选择器件的每个通道对应的光斑尺寸和光斑距离,对于目标通道,目标通道对应的光斑尺寸为目标通道的中心波长的光束在波长选择器件中交换引擎3上光斑的尺寸,目标通道对应的光斑距离为目标通道的边界波长的光束在交换引擎 3上光斑之间的距离。
步骤2201至步骤2202的过程参见图15所示的流程,此处不再赘述。
步骤2203,基于每个通道对应的光斑尺寸和光斑距离,确定每个通道的带宽。
步骤2203的过程参见图16中步骤1603的过程,此处不再赘述。
步骤2204,判断波长选择器件的每个通道在第一偏振态和第二偏振态下的带宽差值是否为目标阈值。
在本实施例中,对于波长选择器件的目标通道,确定目标通道在第一偏振态下的带宽,并且确定目标通道在第二偏振态下的带宽。确定这两个带宽的差值,获得目标通道在第一偏振态和第二偏振态下的带宽差值,判断该带宽差值与目标阈值的大小关系。
步骤2205,若每个通道在第一偏振态和第二偏振态下的带宽差值是目标阈值,则确定光栅参数的过程结束,若每个通道在第一偏振态和第二偏振态下的带宽差值不是目标阈值,则返回执行步骤2201,直至每个通道在第一偏振态和第二偏振态下的带宽差值是目标阈值时,获得目标光栅参数。
示例性的,在判断每个通道在第一偏振态和第二偏振态下的带宽差值是目标阈值时,可以设置评价因子,使得每个通道在第一偏振态和第二偏振态下的带宽差值是目标阈值,例如,评价因子FOM的表达式如下:
Figure PCTCN2022124656-appb-000010
在该式子中,N为波长选择器件的通道的数目减去一,i指示第i个通道,第i个通道和第i+1个通道是相邻通道,p ia为第i个通道在第一偏振态下对应的光斑距离,w ia为第i个通道在第一偏振态下对应的光斑尺寸,p ib为第i个通道在第二偏振态下对应的光斑距离,w ib为第i个通道在第二偏振态下对应的光斑尺寸,Δ3为目标阈值。
图22示出了波长选择器件的通道的波长与带宽的关系图,任意波长的通道在两个正交偏振态下具有固定的0.5GHz的带宽差值。
基于上述描述,每种场景中带宽约束条件不相同,可以针对不同的场景设置不同的评价因子确定光栅参数,以使衍射部件2能够适合波长选择器件。
需要说明的是,上述是以终端确定光栅参数为例进行说明,在另一种实现方式中,可以由服务器来确定光栅参数。
本申请实施例中,针对波长选择器件的通道的带宽分布不均匀的问题,使得波长选择器件的通道的带宽均衡。而且相对于传统的波长选择器件,仅更改了衍射部件,对波长选择器件的光路改动比较小。
而且针对不同的场景下对波长选择器件的通道的带宽的分布的不同需求,通过确定光栅参数,能够使得波长选择器件的通道的带宽满足不同的场景的需求。
本申请实施例还提供了一种波长选择的方法,该方法的流程,参见图2和图7所示的波长器件中光束传输过程。
本申请实施例还提供了一种ROADM,该ROADM包括至少一个波长选择器件,至少一个波长选择器件包括的一个或多个波长选择器件为图1或图7所示的波长选择器件,也就是说ROADM中至少一个波长选择采用了本申请中所示的波长选择器件,本申请中所示的波长选择 器件可以根据实际需要设置在ROADM中。
本申请实施例是以输入一个入射光束为例进行说明,在输入多个入射光束时光束传输过程和一个入射光束的传输过程相同。
下面介绍本申请实施例提供的装置。
图23是本申请实施例提供的确定光栅参数的装置的结构图。该装置可以通过软件、硬件或者两者的结合实现成为装置中的部分或者全部。本申请实施例提供的装置可以实现本申请实施例图15所述的流程,该装置包括:获取模块2310和确定模块2320,其中:
获取模块2310,用于获取波长选择器件中衍射部件的光栅参数,该光栅参数包括该衍射部件的光束入射位置处的刻线间距,具体可以用于实现步骤1501的获取功能以及执行步骤1501包含的隐含步骤;
确定模块2320,用于基于该光栅参数,确定该波长选择器件的每个通道对应的光斑尺寸和光斑距离,对于目标通道,该目标通道对应的光斑尺寸为该目标通道的中心波长的光束在该波长选择器件中交换引擎上光斑的尺寸,该目标通道对应的光斑距离为该目标通道的边界波长的光束在该交换引擎上光斑之间的距离;
基于该每个通道对应的光斑尺寸和光斑距离调整该光栅参数,获得满足带宽约束条件的目标光栅参数,具体可以用于实现步骤1502和步骤1503的确定功能以及执行步骤1502和步骤1503包含的隐含步骤。
图23所示的确定光栅参数的装置确定光栅参数的详细过程请参照前面各个实施例中的描述,在这里不进行重复说明。
在一些实施例中,提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行图15所示的流程。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统架构、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或模块的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
该作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各模块可以集成在一个处理模块中,也可以是各个模块 单独物理存在,也可以是两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件模块的形式实现。
该集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例中方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中术语“第一”“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,应理解,“第一”、“第二”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。还应理解,尽管以下描述使用术语第一、第二等来描述各种元素,但这些元素不应受术语的限制。这些术语只是用于将一元素与另一元素区别分开。例如,在不脱离各种示例的范围的情况下,第一光束可以被称为第二光束,并且类似地,第二光束可以被称为第一光束。第一光束和第二光束都可以是光束,并且在某些情况下,可以是单独且不同的光束。
本申请中术语“至少一个”的含义是指一个或多个,本申请中术语“多个”的含义是指两个或两个以上。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种波长选择器件,其特征在于,所述波长选择器件包括输入端口(1)、衍射部件(2)、交换引擎(3)和输出端口(4);
    所述输入端口(1)用于输入入射光束;
    所述衍射部件(2)上光束入射位置处的刻线间距不完全相同,所述光束入射位置处的刻线间距与所述波长选择器件的通道的带宽相关;
    所述衍射部件(2)用于将所述入射光束色散为多个子光束,每个子光束的波长不相同;
    所述交换引擎(3)用于将所述多个子光束中至少一个子光束输出至所述输出端口(4)。
  2. 根据权利要求1所述的波长选择器件,其特征在于,所述波长选择器件还包括偏振组件(5);
    所述偏振组件(5)用于将所述入射光束分离为第一偏振态的第一光束和第二偏振态的第二光束,将所述第一光束和第二光束转换为相同的偏振态,所述第一偏振态与所述第二偏振态正交;
    所述衍射部件(2)具有第一衍射区域和第二衍射区域,所述第一衍射区域中所述第一光束的第一入射位置处的刻线间距不完全相同,所述第二衍射区域中所述第二光束的第二入射位置处的刻线间距不完全相同,所述第一入射位置处的刻线间距与所述波长选择器件的通道在所述第一偏振态下的带宽相关,所述第二入射位置处的刻线间距与所述波长选择器件的通道在所述第二偏振态下的带宽相关;
    所述衍射部件(2)用于将所述第一光束色散为多个第一子光束,并且用于将所述第二光束色散为多个第二子光束;
    所述交换引擎(3)用于将所述多个第一子光束中至少一个第一子光束输出至所述输出端口(4),并用于将所述多个第二子光束中至少一个第二子光束输出至所述输出端口(4),所述至少一个第一子光束和所述至少一个第二子光束的波长相同,且相同波长的第一子光束和第二子光束从相同的输出端口(4)输出。
  3. 根据权利要求2所述的波长选择器件,其特征在于,所述衍射部件(2)包括第一衍射光栅(21)和第二衍射光栅(22);
    所述第一衍射区域属于所述第一衍射光栅(21),所述第二衍射区域属于所述第二衍射光栅(22)。
  4. 根据权利要求2或3所述的波长选择器件,其特征在于,所述第一衍射区域和所述第二衍射区域位于同一平面内的相邻位置。
  5. 根据权利要求2或3所述的波长选择器件,其特征在于,所述第一衍射区域和所述第二衍射区域平行且不重叠。
  6. 根据权利要求2至5任一项所述的波长选择器件,其特征在于,所述第一衍射区域包括的刻线与所述第二衍射区域包括的刻线平行。
  7. 根据权利要求2至6任一项所述的波长选择器件,其特征在于,所述交换引擎(3)为硅基液晶LCOS相位空间调制器。
  8. 根据权利要求2至7任一项所述的波长选择器件,其特征在于,所述第一入射位置处的刻线间距使得所述波长选择器件的通道在所述第一偏振态下的带宽差异均衡,且所述 第二入射位置处的刻线间距使得所述波长选择器件的通道在所述第二偏振态下的带宽差异均衡。
  9. 根据权利要求2至7任一项所述的波长选择器件,其特征在于,所述第一入射位置处的刻线间距和所述第二入射位置处的刻线间距使得所述波长选择器件的通道满足第一带宽差值和第二带宽差值相等或者互为相反数的约束条件;
    所述第一带宽差值为所述波长选择器件的最小中心波长的通道与所述波长选择器件的最大中心波长的通道在所述第一偏振态下的带宽差值;
    所述第二带宽差值为所述最小中心波长的通道与所述最大中心波长的通道在所述第二偏振态下的带宽差值。
  10. 根据权利要求2至7任一项所述的波长选择器件,其特征在于,所述第一入射位置处的刻线间距和所述第二入射位置处的刻线间距使得所述波长选择器件的每个通道满足带宽差值等于目标阈值的约束条件,每个通道的带宽差值为在所述第一偏振态和所述第二偏振态下的带宽的差值。
  11. 一种波长选择的方法,其特征在于,所述方法应用于波长选择器件,所述方法包括:
    输入端口(1)将入射光束输出至衍射部件(2),所述衍射部件(2)上光束入射位置处的刻线间距不完全相同,所述光束入射位置处的刻线间距与所述波长选择器件的通道的带宽相关;
    所述衍射部件(2)将所述入射光束色散为多个子光束,每个子光束的波长不相同,将所述多个子光束输出至交换引擎(3);
    所述交换引擎(3)将所述多个子光束中至少一个子光束输出至输出端口(4);
    所述输出端口(4)对接收到的光束进行输出。
  12. 根据权利要求11所述的方法,其特征在于,所述输入端口(1)将入射光束输入至衍射部件(2),包括:
    所述输入端口(1)将入射光束输出至偏振组件(5);
    所述偏振组件(5)将所述入射光束分离为第一偏振态的第一光束和第二偏振态的第二光束,将所述第一光束和第二光束转换为相同的偏振态,输出至所述衍射部件(2),所述第一偏振态与所述第二偏振态正交;所述衍射部件(2)具有第一衍射区域和第二衍射区域,所述第一衍射区域中所述第一光束的第一入射位置处的刻线间距不完全相同,所述第二衍射区域中所述第二光束的第二入射位置处的刻线间距不完全相同,所述第一入射位置处的刻线间距与所述波长选择器件的通道在所述第一偏振态下的带宽相关,所述第二入射位置处的刻线间距与所述波长选择器件的通道在所述第二偏振态下的带宽相关;
    所述衍射部件(2)将所述入射光束色散为多个子光束,包括:
    所述衍射部件(2)将所述第一光束色散为多个第一子光束,输出至所述交换引擎(3),并且将所述第二光束色散为多个第二子光束,输出至所述交换引擎(3);
    所述交换引擎(3)将所述多个子光束中至少一个子光束输出至输出端口(4),包括:
    所述交换引擎(3)将所述多个第一子光束中至少一个第一子光束输出至所述输出端口(4),并将所述多个第二子光束中至少一个第二子光束输出至所述输出端口(4),所述至少一个第一子光束和所述至少一个第二子光束的波长相同,且相同波长的第一子光束和第二子光束从相同的输出端口(4)输出。
  13. 根据权利要求12所述的方法,其特征在于,所述衍射部件(2)包括第一衍射光栅(21)和第二衍射光栅(22);
    所述第一衍射区域属于所述第一衍射光栅(21),所述第二衍射区域属于所述第二衍射光栅(22)。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一衍射区域和所述第二衍射区域位于同一平面内的相邻位置。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,所述第一衍射区域包括的刻线与所述第二衍射区域包括的刻线平行。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述第一入射位置处的刻线间距使得所述波长选择器件的通道在所述第一偏振态下的带宽差异均衡,且所述第二入射位置处的刻线间距使得所述波长选择器件的通道在所述第二偏振态下的带宽差异均衡。
  17. 一种可重构光分插复用器ROADM,其特征在于,所述ROADM包括至少一个波长选择器件,所述至少一个波长选择器件包括的一个或多个波长选择器件为权利要求1至10任一项所述的波长选择器件。
PCT/CN2022/124656 2021-12-30 2022-10-11 波长选择器件、波长选择的方法和roadm WO2023124374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111658828.2A CN116413862A (zh) 2021-12-30 2021-12-30 波长选择器件、波长选择的方法和roadm
CN202111658828.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124374A1 true WO2023124374A1 (zh) 2023-07-06

Family

ID=86997465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124656 WO2023124374A1 (zh) 2021-12-30 2022-10-11 波长选择器件、波长选择的方法和roadm

Country Status (2)

Country Link
CN (1) CN116413862A (zh)
WO (1) WO2023124374A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072872A1 (en) * 2004-10-05 2006-04-06 Fujitsu Limited Switches for changing optical path and selecting wavelength
JP2013142875A (ja) * 2012-01-12 2013-07-22 Olympus Corp 波長選択スイッチ
JP2015010899A (ja) * 2013-06-27 2015-01-19 キヤノン株式会社 波長選択フィルタ、前記波長選択フィルタを用いた波長可変光源、前記波長可変光源を用いた光干渉断層計、および前記波長選択フィルタを用いた光検出器
CN105359010A (zh) * 2013-05-22 2016-02-24 菲尼萨公司 光学系统中像差校正的系统的方法
CN111512189A (zh) * 2017-10-02 2020-08-07 瑞士Csem电子显微技术研发中心 谐振波导光栅及其应用
WO2021134660A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 波长选择开关

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072872A1 (en) * 2004-10-05 2006-04-06 Fujitsu Limited Switches for changing optical path and selecting wavelength
JP2013142875A (ja) * 2012-01-12 2013-07-22 Olympus Corp 波長選択スイッチ
CN105359010A (zh) * 2013-05-22 2016-02-24 菲尼萨公司 光学系统中像差校正的系统的方法
JP2015010899A (ja) * 2013-06-27 2015-01-19 キヤノン株式会社 波長選択フィルタ、前記波長選択フィルタを用いた波長可変光源、前記波長可変光源を用いた光干渉断層計、および前記波長選択フィルタを用いた光検出器
CN111512189A (zh) * 2017-10-02 2020-08-07 瑞士Csem电子显微技术研发中心 谐振波导光栅及其应用
WO2021134660A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 波长选择开关

Also Published As

Publication number Publication date
CN116413862A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11906731B2 (en) Waveguide element and waveguide stack for display applications
US11454809B2 (en) Display waveguide assembly with color cross-coupling
US10433626B2 (en) Projector optimized for modulator diffraction effects
JP7381090B2 (ja) 導光光学素子(loe)のプレート間の屈折率の不均一性の測定技法
US10061083B2 (en) Wavelength dispersing device
Lycett et al. Perfect chirped echelle grating wavelength multiplexor: design and optimization
CN114594550B (zh) 光学系统中像差校正的系统的方法
JP5855323B1 (ja) 光コリメータアレイおよび光スイッチ装置
JP5567887B2 (ja) 分光装置
US20200116996A1 (en) Display waveguide assembly with color cross-coupling
US20220390681A1 (en) Optical switching apparatus, redirection method, and reconfigurable optical add-drop multiplexer
EP3867674A1 (en) Display waveguide assembly with color cross-coupling
WO2023124374A1 (zh) 波长选择器件、波长选择的方法和roadm
WO2021051960A1 (zh) 一种光谱处理装置以及可重构光分插复用器
WO2016056534A1 (ja) 波長選択光スイッチ装置
JP4939341B2 (ja) 光信号処理装置
US6766077B2 (en) Planar waveguide echelle grating device with astigmatic grating facets
US11874467B2 (en) FTIR-based diffractive optical structure, and waveguide device and augmented reality display each including same
US7403336B2 (en) Broadband imaging system and method
JP6117158B2 (ja) 光操作装置およびその制御方法
JP2004271743A (ja) 光学装置
JP2014115295A (ja) 分光装置
JP2007155487A (ja) 空間光学系分光器
JP2017142465A (ja) 光操作装置および光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913638

Country of ref document: EP

Kind code of ref document: A1