WO2023123958A1 - 一种风扇的异常预警方法、装置、设备及介质 - Google Patents

一种风扇的异常预警方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023123958A1
WO2023123958A1 PCT/CN2022/102732 CN2022102732W WO2023123958A1 WO 2023123958 A1 WO2023123958 A1 WO 2023123958A1 CN 2022102732 W CN2022102732 W CN 2022102732W WO 2023123958 A1 WO2023123958 A1 WO 2023123958A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
fan
rotational speed
operating current
speed
Prior art date
Application number
PCT/CN2022/102732
Other languages
English (en)
French (fr)
Inventor
潘信佑
Original Assignee
浪潮(北京)电子信息产业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浪潮(北京)电子信息产业有限公司 filed Critical 浪潮(北京)电子信息产业有限公司
Publication of WO2023123958A1 publication Critical patent/WO2023123958A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories

Definitions

  • the present application relates to the technical field of servers, and in particular to a method, device, equipment and medium for fan abnormality early warning.
  • An abnormal early warning method for a fan comprising:
  • the first preset threshold and the second preset threshold are values set according to the IPC9591 standard .
  • the process of obtaining the target rotational speed, target operating current and target ambient temperature of the target fan at the current moment includes:
  • the acquisition process of the speed change curve and the current change curve includes:
  • the historical rotational speed and historical operating current of the target fan at different ambient temperatures are obtained, and the rotational speed change rate and operating current of the target fan at different ambient temperatures over time are obtained according to the historical rotational speed and historical operating current
  • the rate of change process including:
  • the process of determining the variation of the rotation speed and the variation of the operation current of the target fan over time under different ambient temperatures according to the rotation speed and the operation current of the target fan includes:
  • the speed and operating current of the target fan are sent to the target logic operation chip, and the target logic operation chip is used to determine the change in speed and the change in operating current of the target fan over time under different ambient temperatures.
  • the target logical operation chip is specifically an MCU or a DSP.
  • it also includes:
  • the service life of the target fan is predicted by using the speed change curve, the current change curve, the target speed, the target operating current and the target ambient temperature, and the predicted use time is obtained.
  • the service life of the target fan is predicted by using the speed change curve, the current change curve, the target speed, the target operating current and the target ambient temperature, and the process of predicting the use time is obtained, including:
  • the operating time of the target fan when the initial rotational speed reaches the first preset threshold is acquired to obtain the first usage time
  • the smaller value of the first usage duration and the second usage duration is determined as the predicted usage duration.
  • it also includes:
  • the reference usage time is corrected by the predicted usage time.
  • the application also discloses an abnormal warning device for a fan, including:
  • the data acquisition module is used to obtain the target speed, target operating current and target ambient temperature of the target fan at the current moment when the target fan can dissipate heat normally;
  • the first warning module is used to prompt the first warning information when the target speed is lower than the minimum speed of the target fan;
  • the data prediction module is used to calculate the speed and working current of the target fan at the next moment according to the speed change curve, current change curve, target speed, target operating current and target ambient temperature when the target speed is greater than or equal to the minimum speed of the target fan. Prediction, to obtain the predicted rotational speed and the predicted operating current;
  • the second early warning module is used to prompt the second early warning information when the predicted rotational speed is less than the first preset threshold, or the predicted operating current is greater than the second preset threshold; wherein, the first preset threshold and the second preset threshold are based on The value set by the IPC9591 standard.
  • the present application also discloses an abnormal warning device for a fan, which includes a memory and one or more processors, where computer-readable instructions are stored in the memory, and when the computer-readable instructions are executed by the one or more processors, the above-mentioned One or more processors execute any one of the above-mentioned steps in the fan abnormality warning method.
  • the present application also discloses one or more non-volatile computer-readable storage media storing computer-readable instructions.
  • the above-mentioned computer-readable instructions are executed by one or more processors, the above-mentioned one or more processors execute The steps of any one of the fan abnormal warning methods above.
  • Fig. 1 is a flow chart of a fan abnormal warning method provided by the present application according to one or more embodiments
  • Figure 2 is a schematic diagram of monitoring the target fan by using the BMC
  • Fig. 3 is a schematic diagram of processing monitoring data of a target fan according to one or more embodiments of the present application
  • FIG. 4 is a flow chart for obtaining the rate of change of rotational speed and the rate of change of operating current of a target fan over time under different ambient temperatures according to one or more embodiments of the present application;
  • Fig. 5 is a schematic diagram of predicting the service life of the target fan using the speed change curve
  • FIG. 6 is a schematic diagram of predicting the service life of the target fan by using the current change curve
  • Fig. 7 is a structural diagram of a fan abnormal warning device according to one or more embodiments of the present application.
  • Fig. 8 is a structural diagram of an abnormal warning device for a fan according to one or more embodiments of the present application.
  • FIG. 1 is a flow chart of a fan abnormal warning method provided by the embodiment of the present application.
  • the method is applied to the fan abnormal warning device as an example for illustration.
  • the method includes:
  • Step S11 when the target fan can dissipate heat normally, obtain the target speed, target operating current and target ambient temperature of the target fan at the current moment;
  • Step S12 If the target speed is lower than the minimum speed of the target fan, prompt the first warning message
  • Step S13 If the target speed is greater than or equal to the minimum speed of the target fan, predict the speed and working current of the target fan at the next moment according to the speed change curve, current change curve, target speed, target operating current and target ambient temperature, and obtain Predicted speed and predicted operating current;
  • Step S14 If the predicted rotation speed is less than the first preset threshold, or the predicted operating current is greater than the second preset threshold, prompt the second warning message; wherein, the first preset threshold and the second preset threshold are set according to the IPC9591 standard set value.
  • an abnormal warning method of a fan by which the abnormal behavior of the fan during operation can be judged in a more timely manner, and the safety of the fan during operation can be improved.
  • the target speed, target operating current and target ambient temperature of the target fan at the current moment are obtained, because the normal operating state of the target fan is closely related to the speed of the fan, so if the target If the target speed of the fan at the current moment is lower than the minimum speed of the target fan, it indicates that the target fan is abnormal. In this case, it is necessary to prompt the staff with the first warning information, so that the staff can repair and replace the target fan.
  • the target speed of the target fan at the current moment is greater than or equal to the minimum speed of the target fan, it means that the problem of the target fan cannot be found from the speed of the target fan.
  • the speed change curve refers to the curve of the target fan's operating speed changing from the initial operating state over time under different ambient temperatures
  • the current change curve refers to the target fan in different environments.
  • the target fan is a loss-type device, its physical performance will be irreversibly attenuated as the target fan’s service time increases. Therefore, according to the speed change curve of the target fan and the target environment of the target fan at the current moment The predicted rotational speed of the target fan at the next moment can be inferred from the temperature and the target rotational speed. Similarly, according to the current change curve of the target fan, the target ambient temperature and the target operating current of the target fan at the current moment, the predicted operating current of the target fan at the next moment can be inferred.
  • the IPC9591 standard is the judgment standard provided by the Institute of Printed Circuits (IPC) for the reliable operation of fans and life prediction, so, according to the IPC9591 standard, the limit speed of the target fan due to life decay can be obtained and limit operating current.
  • IPC Institute of Printed Circuits
  • the limit rotational speed of the target fan due to life decay is set as the first preset threshold
  • the limit operating current of the target fan due to life decay is set as the second preset threshold.
  • the first preset threshold can be set to be 15% lower than the corresponding speed of the target fan in the initial state
  • the second preset threshold can be set to be higher than the target fan in the initial state 15% of the corresponding operating current.
  • the predicted rotational speed of the target fan at the next moment is less than the first preset threshold, it means that the target rotational speed of the target fan at the current moment is already close to the limit state of the life of the target fan.
  • Two early warning information to remind the attention of the staff Or, if it is determined that the predicted operating current of the target fan at the next moment is greater than the second preset threshold, it indicates that the target operating current of the target fan at the current moment is already close to the limit state of the target fan life. In this case, it is necessary to Prompt the second warning message to remind the attention of the staff.
  • this method in addition to using the minimum speed of the target fan to judge the abnormal behavior of the target fan, this method also uses the target fan's target speed at the current moment, the target operating current and the target ambient temperature to determine the operating state of the target fan at the next moment. Prediction, and use the prediction results to evaluate the attenuation degree of the target fan life. Therefore, through such a setting method, more abnormal behaviors that occur during the operation of the target fan can be found, thereby further improving the safety of the target fan during operation. Moreover, this method is applicable to all systems that use fans as cooling devices.
  • the target fan speed, target operating current, and target ambient temperature at the current moment are acquired first; if the target fan speed at the current moment is less than the minimum If the target fan's target speed at the current moment is greater than or equal to the minimum speed of the target fan, the target fan will be adjusted according to the speed change curve, current change curve, target speed, target operating current and target ambient temperature. Predict the rotational speed and operating current at the next moment to obtain the predicted rotational speed and predicted operating current; if the predicted rotational speed of the target fan at the next moment is less than the first preset threshold, or the predicted operating current of the target fan at the next moment is greater than the second predicted threshold , the second warning message will be prompted.
  • this method in addition to using the minimum speed of the target fan to judge the abnormal behavior of the target fan, this method also uses the target fan's target speed at the current moment, the target operating current and the target ambient temperature to evaluate the target fan Predict the operating state at the next moment, and evaluate the attenuation degree of the target fan life through the predicted results. Therefore, through such a setting method, more abnormal behaviors that occur during the operation of the target fan can be found, thereby further improving the safety of the target fan during operation.
  • the process of obtaining the target speed, target operating current and target ambient temperature of the target fan at the current moment includes :
  • the fan is usually used to dissipate heat from a large server and ensure the normal operation of the large server.
  • the BMC Baseboard Management Controller
  • the BMC is basically set as the core controller of the entire system. Therefore, in this embodiment, in order to reduce the monitoring cost of the target fan, the BMC is used to obtain The target fan's target speed, target operating current, and target ambient temperature at the current moment.
  • FIG. 2 is a schematic diagram of using the BMC to monitor the target fan.
  • the BMC monitors the target fan, on the one hand, it reads the rotational speed and operating current of the target fan during operation, and on the other hand, it reads the ambient temperature of the target fan through the temperature detection device.
  • the acquisition process of the speed change curve and the current change curve include:
  • the target fan at different ambient temperatures can characterize the working performance of the target fan in the historical operating state
  • the target fan at different ambient temperatures can be obtained according to the historical rotational speed and historical operating current of the target fan.
  • the speed change curve and the current change curve change with time.
  • Fig. 3 is a schematic diagram of processing the monitoring data of the target fan provided by the embodiment of the present application
  • Fig. 4 is a method of obtaining the target fan at different ambient temperatures provided by the embodiment of the present application
  • the above steps obtain the historical rotational speed and historical operating current of the target fan at different ambient temperatures, and obtain the rotational speed changes of the target fan over time at different ambient temperatures according to the historical rotational speed and historical operating current
  • the process of the rate and the rate of change of the operating current including:
  • Step S01 Monitor the rotational speed and operating current of the target fan at different ambient temperatures
  • Step S02 Store the rotational speed and operating current of the target fan in the first storage area, and determine the rotational speed variation and operating current variation of the target fan under different ambient temperatures with time according to the rotational speed and operating current of the target fan, and obtain the first a data set;
  • Step S03 storing the first data set in a third storage area
  • Step S04 When the time for storing data in the first storage area reaches the preset time threshold, store the speed and operating current of the target fan in the second storage area, and determine the target fan in different A second data set is obtained from the variation of the rotational speed and the variation of the current over time at the ambient temperature;
  • Step S05 storing the second data set in a third storage area
  • Step S06 When writing all the data in the first data set to the third storage area, clear the data in the first storage area, and write all the data in the second data set to the third storage area area, clear the data in the second storage area;
  • Step S07 When the time for storing data in the second storage area reaches the preset time threshold, repeat step S02;
  • Step S08 When the data stored in the third storage area reaches the preset storage capacity, use all the data in the third storage area to obtain the rate of change of the rotational speed and the rate of change of the operating current of the target fan under different ambient temperatures over time.
  • three storage areas are used to store the historical rotational speed and historical operating current of the target fan under different ambient temperatures.
  • the rotational speed and operating current of the target fan at different ambient temperatures are first stored in the first storage area, and then, according to the rotational speed and operating current of the target fan To determine the variation of the rotational speed and the variation of the operating current of the target fan over time under different ambient temperatures, and obtain the first data set.
  • the first data set needs to be stored in the third storage area.
  • the detected rotational speed and operating current of the target fan at different ambient temperatures are stored in the second storage area, and according to the rotational speed and operating current of the target fan
  • the working current determines the variation of the rotational speed and the variation of the current of the target fan over time under different ambient temperatures, and obtains the second data set.
  • the second data set needs to be stored in the third storage area.
  • step S02 is repeated, that is, the monitored target fan speed and operating current are stored in the first storage area again.
  • the data in the second storage area is cleared.
  • the above step: the process of determining the variation of the rotation speed and the variation of the operation current of the target fan over time under different ambient temperatures according to the rotation speed and the operation current of the target fan includes:
  • the speed and operating current of the target fan are sent to the target logic operation chip, and the target logic operation chip is used to determine the change in speed and the change in operating current of the target fan over time under different ambient temperatures.
  • the target fan's speed and operating current are directly calculated.
  • the working current is sent to the target logic operation chip, and the target logic operation chip is used to calculate the variation of the rotational speed and the variation of the working current of the target fan over time under different ambient temperatures.
  • Table 1 shows the rotational speed and operating current of the target fan at time 1 and time 2.
  • the rotational speed variation and operating current variation of the target fan within the time period can be obtained.
  • the difference between the upper limit of the speed of the target fan at time 2 and time 1 can be obtained to obtain the speed of the target fan at this time.
  • the amount of change in the rotational speed may also be the difference between the lower limit value of the rotational speed of the target fan at time 2 and time 1 to obtain the amount of change in the rotational speed of the target fan at this time.
  • the working current of the target fan at this time by making a difference between the upper limit of the operating current of the target fan at time 2 and time 1.
  • the amount of change in current may also be the difference between the lower limit value of the operating current of the target fan at time 2 and time 1 to obtain the amount of change in the operating current of the target fan at this time.
  • the amount of change in rotational speed and the amount of change in operating current shown in Table 2 will be obtained.
  • the target logic operation chip can be set as an MCU (Microcontroller Unit, micro control unit) or a DSP (Digital Signal Process, digital signal processing chip). Because there are a large number of logic calculation units in the MCU and DSP, when the MCU or DSP is used to calculate the change in speed and the change in operating current of the target fan over time under different ambient temperatures, the change in speed can be relatively increased. And the calculation speed of the working current variation.
  • MCU Microcontroller Unit, micro control unit
  • DSP Digital Signal Process, digital signal processing chip
  • it also includes:
  • the service life of the target fan is predicted by using the speed change curve, the current change curve, the target speed, the target operating current and the target ambient temperature, and the predicted use time is obtained.
  • the speed change curve and current change curve of the target fan represent the actual attenuation of the speed and operating current of the target fan from the initial state, so, according to the speed change curve, current change curve and the target fan at the current moment
  • the target fan speed, target operating current, and target ambient temperature can be used to predict the predicted usage time of the target fan.
  • the speed of the target fan at different ambient temperatures can be measured with a preset time period when the target fan starts to run from the initial state, and then, With the operation of the target fan, these measured rotational speeds and the ambient temperature corresponding to these rotational speeds are plotted into a relational graph of corresponding changes of the target fan with the running time, so that the rotational speed change curve of the target fan can be obtained.
  • the current change curve of the target fan it is possible to measure the operating current of the target fan at different ambient temperatures with a preset time period when the target fan starts to run from the initial state, and then, as the target fan The running of these measured operating currents and the ambient temperature corresponding to these operating currents are plotted into a relationship curve about the corresponding changes of the target fan with the operating time, and the current change curve of the target fan can be obtained.
  • the above steps predict the service life of the target fan by using the speed change curve, the current change curve, the target speed, the target operating current and the target ambient temperature, and obtain the process of predicting the use time, including:
  • the running time of the target fan when it runs from the initial rotational speed to the first preset threshold is acquired to obtain the first usage time
  • the operating time of the target fan when it runs from the initial operating current to the second preset threshold is acquired to obtain the second operating time
  • the smaller value of the first usage duration and the second usage duration is determined as the predicted usage duration.
  • the initial speed of the target fan in the initial operating state is determined according to the speed change curve of the target fan, and the target ambient temperature and target temperature of the target fan at the current moment are determined according to the speed change curve and the target fan
  • the rotation speed is used to determine the predicted rotation speed of the target fan at the next moment. If the predicted speed of the target fan reaches the first preset threshold, it means that the life of the target fan is close to the limit state. In this case, by calculating the running time of the target fan from the initial speed to the first preset threshold, the The predicted usage duration of the target fan, that is, the first usage duration can be obtained.
  • the initial operating current of the target fan in the initial state After obtaining the first usage time, determine the initial operating current of the target fan in the initial state according to the current change curve, and determine the target fan according to the current change curve, the target ambient temperature and the target operating current of the target fan at the current moment The working current at the next moment is obtained to obtain the predicted working current. If the predicted operating current of the target fan reaches the second preset threshold, it indicates that the life of the target fan is close to the limit state. In this case, by calculating the operating time of the target fan from the initial operating current to the second preset threshold, the The predicted usage duration of the target fan, that is, the second usage duration can be obtained.
  • FIG. 5 is a schematic diagram of predicting the service life of a target fan by using a speed variation curve
  • FIG. 6 is a schematic diagram of predicting a service life of a target fan by using a current variation curve.
  • the life of the target fan is related to the speed, current and noise. Therefore, when one of these three parameters in the target fan has a problem, it will directly affect the service life of the target fan. Therefore, in this embodiment, the smaller value of the first usage duration and the second usage duration is determined as the predicted usage duration obtained by the final prediction of the target fan.
  • the remaining usage time of the target fan may also be calculated according to the speed change curve, the target speed of the target fan at the current moment, the target ambient temperature, and the first preset threshold.
  • the remaining usage time of the target fan may also be calculated according to the current change curve, the target operating current of the target fan at the current moment, the target ambient temperature, and the second preset threshold.
  • the above-mentioned abnormality early warning method also includes:
  • the reference usage time is corrected by the predicted usage time.
  • each fan manufacturer will provide some fan attribute parameters.
  • these attribute parameters are substituted into the Weibull Shape Parameter, the L10 (Life 10, take 1 batch of fans for life test, when the cumulative failure rate reaches 10%) expectations of the fan at different temperatures can be calculated life.
  • the mathematical expression of the Weibull distribution is as follows:
  • t is the operation time of the target fan under the actual measurement
  • T s is the actual test temperature
  • T u is the initial L10 estimated temperature
  • AF is the acceleration factor
  • is the Weber shape parameter
  • n is the number of test samples.
  • Table 3 and Table 4 are the fan parameters provided by each fan manufacturer. It can be seen from Table 3 and Table 4 that due to the huge differences between different manufacturers in providing parameters such as AF, ⁇ and MTTF (Mean Time to Failure, the average use time before product failure), these data are not accurate and accurate. Reliably characterizes how long a fan will actually be used.
  • the reference usage time marked by the target fan when it leaves the factory is also obtained, and then use the target
  • the predicted usage time of the fan is used to correct the reference usage time of the target fan. It is conceivable that this method not only enables the user to accurately know the actual usage time of the target fan, but also helps the fan manufacturer improve product quality when the information is fed back to the fan manufacturer.
  • Fig. 7 is a structural diagram of a fan abnormal warning device provided by the embodiment of the present application, the device includes:
  • the data acquisition module 21 is used to acquire the target rotational speed, target operating current and target ambient temperature of the target fan at the current moment when the target fan can dissipate heat normally;
  • the first warning module 22 is configured to prompt the first warning information if the target speed is lower than the minimum speed of the target fan;
  • the data prediction module 23 is used for if the target speed is greater than or equal to the minimum speed of the target fan, then according to the speed change curve, current change curve, target speed, target operating current and target ambient temperature, the speed and operating current of the target fan at the next moment Prediction is performed to obtain predicted rotational speed and predicted working current;
  • the second early warning module 24 is used to prompt the second early warning information if the predicted rotational speed is less than the first preset threshold, or the predicted operating current is greater than the second preset threshold; wherein, the first preset threshold and the second preset threshold are According to the value set by the IPC9591 standard.
  • the fan abnormality early warning device provided by the embodiment of the present application has the beneficial effect of the fan abnormality early warning method disclosed above.
  • FIG. 8 is a structural diagram of an abnormal warning device for a fan provided in an embodiment of the present application.
  • the device includes:
  • memory 31 for storing computer readable instructions
  • One or more processors 32 are configured to implement the steps of the fan abnormality warning method disclosed above when executing computer-readable instructions.
  • the fan abnormality early warning device provided by the embodiment of the present application has the beneficial effect of the fan abnormality early warning method disclosed above.
  • the embodiment of the present application also provides a non-volatile computer-readable storage medium, where computer-readable instructions are stored in the non-volatile computer-readable storage medium, and the computer-readable instructions are controlled by one or more When executed by the processor, the steps of the fan abnormality warning method in any one of the above embodiments can be realized.
  • the computer-readable storage medium provided by the embodiment of the present application has the beneficial effect of the fan abnormality warning method disclosed above.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for relevant details, please refer to the description of the method part.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM random access memory
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种风扇的异常预警方法,包括:在目标风扇能够正常散热时,获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;在目标转速小于目标风扇的最低转速时,提示第一预警信息;在目标转速大于或等于目标风扇的最低转速时,根据转速变化曲线、电流变化曲线、目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;在预测转速小于第一预设阈值,或者预测工作电流大于第二预设阈值时,提示第二预警信息。通过这样的设置方式就能够查找出目标风扇在运行过程中所出现的更多异常行为,可以进一步提高目标风扇在运行过程中的安全性。还涉及一种风扇的异常预警装置、设备及介质。

Description

一种风扇的异常预警方法、装置、设备及介质
相关申请的交叉引用
本申请要求于2021年12月31日提交中国专利局,申请号为202111678579.3,申请名称为“一种风扇的异常预警方法、装置、设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器技术领域,特别涉及一种风扇的异常预警方法、装置、设备及介质。
背景技术
发明人意识到,在现有技术中,人们经常是通过判断风扇的转速是否低于预设转速来判断风扇是否出现异常,而不会考虑风扇因寿命衰减所产生的异常,这样就会给风扇的运行带来极大的安全隐患。目前,针对上述技术问题,还没有较为有效的解决办法。
发明内容
一种风扇的异常预警方法,包括:
在目标风扇能够正常散热时,获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;
在目标转速小于目标风扇的最低转速时,提示第一预警信息;
在目标转速大于或等于目标风扇的最低转速时,根据转速变化曲线、电流变化曲线、目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;和
在预测转速小于第一预设阈值,或者预测工作电流大于第二预设阈值时,提示第二预警信息;其中,第一预设阈值和第二预设阈值为根据IPC9591标准所设定的数值。
在其中一个实施例中,获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度的过程,包括:
利用BMC获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度。
在其中一个实施例中,转速变化曲线和电流变化曲线的获取过程,包括:
获取目标风扇在不同环境温度下的历史转速和历史工作电流,并根据历史转速和历史工作电流分别获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率,得到转速变化曲线和电流变化曲线。
在其中一个实施例中,获取目标风扇在不同环境温度下的历史转速和历史工作电流,并根据历史转速和历史工作电流分别获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率的过程,包括:
在不同的环境温度下对目标风扇的转速和工作电流进行监测;
将目标风扇的转速和工作电流存储至第一存储区域,并根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量,得到第一数据集合;
将第一数据集合存储至第三存储区域;
在向第一存储区域存储数据的时间达到预设时间阈值时,将目标风扇的转速和工作电流存储至第二存储区域,并根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和电流变化量,得到第二数据集合;
将第二数据集合存储至第三存储区域;
在将第一数据集合中的数据全部写入至第三存储区域时,对第一存储区域中的数据进行清空,并当第二数据集合中的数据全部写入至第三存储区域时,则对第二存储区域中的数据进行清空;
在向第二存储区域存储数据的时间达到预设时间阈值时,重复执行将目标风扇的转速和工作电流存储至第一存储区域,并根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量,得到第一数据集合的步骤;和
在第三存储区域中存储的数据达到预设存储量时,利用第三存储区域中的全部数据获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率。
在其中一个实施例中,根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量的过程,包括:
将目标风扇的转速和工作电流发送至目标逻辑运算芯片,并利用目标逻辑运算芯片确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量。
在其中一个实施例中,目标逻辑运算芯片具体为MCU或DSP。
在其中一个实施例中,还包括:
利用转速变化曲线、电流变化曲线、目标转速、目标工作电流以及目标环境温度对目标风扇的使用寿命进行预测,得到预测使用时长。
在其中一个实施例中,利用转速变化曲线、电流变化曲线、目标转速、目标工作电流以及目标环境温度对目标风扇的使用寿命进行预测,得到预测使用时长的过程,包括:
根据转速变化曲线确定目标风扇在初始运行状态下的初始转速,并根据转速变化曲线、目标环境温度和目标转速确定目标风扇在下一时刻的转速,得到预测转速;
在预测转速达到第一预设阈值时,获取目标风扇在从初始转速运行到第一预设阈值时的运转时长,得到第一使用时长;
根据电流变化曲线确定目标风扇在初始状态下的初始工作电流,并根据电流变化曲线、目标环境温度和目标工作电流确定目标风扇在下一时刻的工作电流,得到预测工作电流;
在预测工作电流达到第二预设阈值时,获取目标风扇在从初始工作电流运行到第二预设阈值时的运转时长,得到第二使用时长;和
将第一使用时长和第二使用时长中的较小值判定为预测使用时长。
在其中一个实施例中,还包括:
获取目标风扇在出厂时所标注的使用时长,得到参考使用时长;和
利用预测使用时长对参考使用时长进行校正。
本申请还公开了一种风扇的异常预警装置,包括:
数据获取模块,用于在目标风扇能够正常散热时,获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;
第一预警模块,用于在目标转速小于目标风扇的最低转速时,提示第一预警信息;
数据预测模块,用于在目标转速大于或等于目标风扇的最低转速时,根据转速变化曲线、电流变化曲线、目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;和
第二预警模块,用于在预测转速小于第一预设阈值,或者预测工作电流大于第二预设阈值时,提示第二预警信息;其中,第一预设阈值和第二预设阈值为根据IPC9591标准所设定的数值。
本申请还公开了一种风扇的异常预警设备,包括存储器及一个或多个处理器,存储器中储存有计算机可读指令,上述计算机可读指令被上述一个或多个处理器执行时,使 得上述一个或多个处理器执行上述任意一项一种风扇的异常预警方法的步骤。
本申请还公开了一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,上述计算机可读指令被一个或多个处理器执行时,使得上述一个或多个处理器执行上述任意一项一种风扇的异常预警方法的步骤。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请根据一个或多个实施例所提供的一种风扇的异常预警方法的流程图;
图2为利用BMC对目标风扇进行监控时的示意图;
图3为本申请根据一个或多个实施例所提供的一种对目标风扇的监测数据进行处理的示意图;
图4为本申请根据一个或多个实施例所提供的一种获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率的流程图;
图5为利用转速变化曲线预测目标风扇使用寿命的示意图;
图6为利用电流变化曲线预测目标风扇使用寿命的示意图;
图7为本申请根据一个或多个实施例所提供的一种风扇的异常预警装置的结构图;
图8为本申请根据一个或多个实施例所提供的一种风扇的异常预警设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1,图1为本申请实施例所提供的一种风扇的异常预警方法的流程图,以该方法应用于风扇的异常预警设备为例进行说明,该方法包括:
步骤S11:当目标风扇能够正常散热时,则获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;
步骤S12:若目标转速小于目标风扇的最低转速,则提示第一预警信息;
步骤S13:若目标转速大于或等于目标风扇的最低转速,则根据转速变化曲线、电流变化曲线、目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;
步骤S14:若预测转速小于第一预设阈值,或者预测工作电流大于第二预设阈值,则提示第二预警信息;其中,第一预设阈值和第二预设阈值为根据IPC9591标准所设定的数值。
在本实施例中,是提供了一种风扇的异常预警方法,利用该方法能够更为及时地判断出风扇在运行过程中所产生的异常行为,并提高风扇在运行过程中的安全性。
在该方法中,首先是在风扇能够正常散热时,获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度,因为目标风扇的正常运行状态与风扇的转速紧密相关,所以,如果目标风扇在当前时刻下的目标转速小于目标风扇的最低转速,则说明目标风扇出现了异常情况。在此情况下,就需要向工作人员提示第一预警信息,以使得工作人员可以对目标风扇进行维修与替换。
如果目标风扇在当前时刻下的目标转速大于或等于目标风扇的最低转速,则说明暂且不能从目标风扇的转速上发现目标风扇所存在的问题。在此情况下,为了进一步查找出目标风扇所存在的安全隐患,则需要根据转速变化曲线、电流变化曲线、目标风扇在当前时刻下的目标转速、目标工作电流以及目标环境温度来预测目标风扇在下一时刻的转速和工作电流,并由此得到目标风扇在下一时刻的预测转速和预测工作电流。
需要说明的是,在本实施例中,转速变化曲线是指目标风扇在不同环境温度下从初始运行状态随着时间推移,其运转速度发生变化的曲线;电流变化曲线是指目标风扇在不同环境温度下从初始运行状态随着时间推移,其工作电流发生变化的曲线。因为目标风扇在不同环境温度下的转速和工作电流会发生较大的变化,所以,在获取转速变化曲线和电流变化曲线时,需要在不同的环境温度下来获取目标风扇从初始运行状态,其转速和工作电流随着时间推移的变化曲线。
可以理解的是,因为目标风扇为损耗型器件,随着目标风扇使用时间的增长,其物理性能会发生不可逆的衰减,所以,根据目标风扇的转速变化曲线以及目标风扇在当前时刻下的目标环境温度和目标转速就可以推测出目标风扇在下一时刻的预测转速。同理,根据目标风扇的电流变化曲线以及目标风扇在当前时刻下的目标环境温度和目标工作电流就可以推测出目标风扇在下一时刻的预测工作电流。
因为IPC9591标准为国际电子工业联接协会(Institute of Printed Circuits,IPC)针对风扇可靠运行以及寿命预估所提供的判断标准,所以,根据IPC9591标准就能够获取得到目标风扇因为寿命衰减所出现的极限转速以及极限工作电流。
具体的,在本实施例中,是将目标风扇因为寿命衰减所出现的极限转速设置为第一预设阈值,并将目标风扇因为寿命衰减所出现的极限工作电流设置为第二预设阈值。在实际操作过程中,根据IPC9591标准可以将第一预设阈值设置为低于目标风扇在初始状态下所对应转速的15%,并将第二预设阈值设置为高于目标风扇在初始状态下所对应工作电流的15%。也即,当判断出目标风扇的转速小于第一预设阈值,或者当判断出目标风扇的工作电流大于第二预设阈值,则说明目标风扇的寿命已经达到了极限状态,此时就需要对目标风扇进行替换或维修。
换言之,如果确定出目标风扇在下一时刻的预测转速小于第一预设阈值,则说明目标风扇在当前时刻下的目标转速已经接近于目标风扇寿命的极限状态,在此情况下,就需要提示第二预警信息来提醒工作人员的注意。或者,如果确定出目标风扇在下一时刻的预测工作电流大于第二预设阈值,则说明目标风扇在当前时刻下的目标工作电流已经接近于目标风扇寿命的极限状态,在此情况下,就需要提示第二预警信息来提醒工作人员的注意。
显然,由于该方法除了利用目标风扇的最低转速来判断目标风扇的异常行为之外,还通过目标风扇在当前时刻的目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的运行状态进行预测,并通过预测结果来评估目标风扇寿命的衰减程度。因此,通过这样的设置方式就能够查找出目标风扇在运行过程中所出现的更多异常行为,由此就可以进一步提高目标风扇在运行过程中的安全性。并且,该方法适用于所有使用风扇作为散热装置的系统中。
可见,在本实施例中,当目标风扇能够正常散热时,首先是获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;如果目标风扇在当前时刻的目标转速小于目标风扇的最低转速,则提示第一预警信息;如果目标风扇在当前时刻的目标转速大于或等于目标风扇的最低转速,则根据转速变化曲线、电流变化曲线、目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;如果目标风扇在下一时刻的预测转速小于第一预设阈值,或者目标风扇在下一时刻的预测工作电流大于第二预测阈值,则提示第二预警信息。相较于现有技术而言,由于该方法除了利用目标风扇的最低转速来判断目标风扇的异常行为之外,还通过目标风扇在当前时刻的目标转速、目标工作电流和目标环境温度对目标风扇 在下一时刻的运行状态进行预测,并通过预测结果来评估目标风扇寿命的衰减程度。因此,通过这样的设置方式就能够查找出目标风扇在运行过程中所出现的更多异常行为,由此就可以进一步提高目标风扇在运行过程中的安全性。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度的过程,包括:
利用BMC获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度。
由于风扇通常是用来对大型服务器进行散热,并保证大型服务器的正常运行。在大型服务器中基本上都会将BMC(Baseboard Management Controller,基板管理控制器)设置为整个系统的核心控制器,所以,在本实施例中,为了减少对目标风扇的监控成本,是利用BMC来获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度。
请参见图2,图2为利用BMC对目标风扇进行监控时的示意图。BMC在对目标风扇进行监控时,一方面是读取了目标风扇在运转过程中的转速和工作电流,另一方面是通过温度检测装置读取了目标风扇所处的环境温度。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:转速变化曲线和电流变化曲线的获取过程,包括:
获取目标风扇在不同环境温度下的历史转速和历史工作电流,并根据历史转速和历史工作电流分别获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率,得到转速变化曲线和电流变化曲线。
由于目标风扇在不同环境温度下的历史转速和历史工作电流能够表征目标风扇在历史运行状态下的工作性能,所以,根据目标风扇的历史转速和历史工作电流就可以获取得到目标风扇在不同环境温度下随时间变化的转速变化曲线和电流变化曲线。
请参见图3和图4,图3为本申请实施例所提供的一种对目标风扇的监测数据进行处理的示意图,图4为本申请实施例所提供的一种获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率的流程图。作为一种优选的实施方式,上述步骤:获取目标风扇在不同环境温度下的历史转速和历史工作电流,并根据历史转速和历史工作电流分别获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率的过程,包括:
步骤S01:在不同的环境温度下对目标风扇的转速和工作电流进行监测;
步骤S02:将目标风扇的转速和工作电流存储至第一存储区域,并根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量,得到第一数据集合;
步骤S03:将第一数据集合存储至第三存储区域;
步骤S04:当向第一存储区域存储数据的时间达到预设时间阈值时,则将目标风扇的转速和工作电流存储至第二存储区域,并根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和电流变化量,得到第二数据集合;
步骤S05:将第二数据集合存储至第三存储区域;
步骤S06:当将第一数据集合中的数据全部写入至第三存储区域时,则对第一存储区域中的数据进行清空,并当第二数据集合中的数据全部写入至第三存储区域时,则对第二存储区域中的数据进行清空;
步骤S07:当向第二存储区域存储数据的时间达到预设时间阈值时,则重复执行步骤S02;
步骤S08:当第三存储区域中存储的数据达到预设存储量时,则利用第三存储区域中的全部数据获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率。
在本实施例中,为了保证获取得到转速变化曲线和电流变化曲线的准确性与可靠性,是利用三个存储区域来存储目标风扇在不同环境温度下的历史转速和历史工作电流。
具体的,当对目标风扇的转速和工作电流进行监测时,首先是将目标风扇在不同环境温度下的转速和工作电流存储在第一存储区域中,然后,再根据目标风扇的转速和工作电流来确定目标风扇在不同环境温度下随时间变化的转速变化量以及工作电流变化量,得到第一数据集合。在计算得到第一数据集合时,需要将第一数据集合存储至第三存储区域中。
当向第一存储区域存储数据的时间达到预设时间阈值时,此时再将监测到目标风扇在不同环境温度下的转速和工作电流存储到第二存储区域中,并根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和电流变化量,得到第二数据集合。在获取得到第二数据集合时,需要将第二数据集合存储至第三存储区域。
与此同时,当将第一数据集合中的数据全部写入至第三存储区域时,则对第一存储区域中的数据进行清空。当向第二存储区域存储数据的时间达到预设时间阈值时,则重 复执行步骤S02,也即,重新将监测得到的目标风扇的转速和工作电流存储到第一存储区域中。并且,当将第二数据集合中的数据全部写入至第三存储区域时,则对第二存储区域中的数据进行清空。通过此种设置方式就相当于是利用第一存储区域和第二存储区域重复交替地对目标风扇的监控数据进行了存储与处理,这样不仅可以保证目标风扇监控数据的连续存储,而且,也节省了对存储资源的占用量。
当第三存储区域中存储的数据达到预设存储量时,则利用第三存储区域中的全部数据获取目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率。
作为一种优选的实施方式,上述步骤:根据目标风扇的转速和工作电流确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量的过程,包括:
将目标风扇的转速和工作电流发送至目标逻辑运算芯片,并利用目标逻辑运算芯片确定目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量。
在本实施例中,为了提高目标风扇在不同环境温度下随时间变化转速变化量以及工作电流变化量的计算速度,在获取得到目标风扇的转速和工作电流之后,是直接将目标风扇的转速和工作电流发送至目标逻辑运算芯片,并利用目标逻辑运算芯片来计算目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量。请参见表1,表1为目标风扇在时刻1和时刻2的转速和工作电流。
表1
Figure PCTCN2022102732-appb-000001
能够想到的是,通过记录目标风扇在不同环境温度、不同时间段内的转速与工作电流,就可以得到目标风扇在该时间段内的转速变化量和工作电流变化量。在实际操作过程中,为了获取得到目标风扇在从时刻1到时刻2的转速变化量,既可以是将目标风扇在时刻2和时刻1的转速上限值作差来得到目标风扇在该时刻的转速变化量,也可以是将目标风扇在时刻2和时刻1的转速下限值作差来得到目标风扇在该时刻的转速变化量。同理,为了获取得到目标风扇在从时刻1到时刻2的工作电流变化量,既可以是将 目标风扇在时刻2和时刻1的工作电流上限值作差来得到目标风扇在该时刻的工作电流变化量,也可以是将目标风扇在时刻2和时刻1的工作电流下限值作差来得到目标风扇在该时刻的工作电流变化量。此时,就会得到如表2所示的转速变化量以及工作电流变化量。
表2
Figure PCTCN2022102732-appb-000002
具体的,可以将目标逻辑运算芯片设置为MCU(Microcontroller Unit,微控制单元)或者是DSP(Digital Signal Process,数字信号处理芯片)。因为MCU和DSP中设置有大量的逻辑计算单元,所以,当利用MCU或DSP来计算目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量时,就可以相对提高转速变化量和工作电流变化量的计算速度。
作为一种优选的实施方式,还包括:
利用转速变化曲线、电流变化曲线、目标转速、目标工作电流以及目标环境温度对目标风扇的使用寿命进行预测,得到预测使用时长。
可以理解的是,因为目标风扇的转速变化曲线和电流变化曲线表征着目标风扇从初始状态下其转速和工作电流的实际衰减情况,所以,根据转速变化曲线、电流变化曲线以及目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度就可以预测出目标风扇的预测使用时长。
具体的,在实际操作过程中,为了获取得到目标风扇的转速变化曲线,可以在目标风扇从初始状态开始运行时,以预设的时间周期去测量目标风扇在不同环境温度下的转速,然后,随着目标风扇的运行,将这些测量得到的转速以及与这些转速相对应的环境温度绘制成为一个有关目标风扇随着运行时间作相应变化的关系曲线图,就可以得到目标风扇的转速变化曲线。同理,为了获取得到目标风扇的电流变化曲线,就可以在目标风扇从初始状态开始运行时,以预设的时间周期去测量目标风扇在不同环境温度下的工作电流,然后,随着目标风扇的运行,将这些测量得到的工作电流以及与这些工作电流 相对应的环境温度绘制成为一个有关目标风扇随着运行时间作相应变化的关系曲线图,就可以得到目标风扇的电流变化曲线。
作为一种优选的实施方式,上述步骤:利用转速变化曲线、电流变化曲线、目标转速、目标工作电流以及目标环境温度对目标风扇的使用寿命进行预测,得到预测使用时长的过程,包括:
根据转速变化曲线确定目标风扇在初始运行状态下的初始转速,并根据转速变化曲线、目标环境温度和目标转速确定目标风扇在下一时刻的转速,得到预测转速;
当预测转速达到第一预设阈值时,则获取目标风扇在从初始转速运行到第一预设阈值时的运转时长,得到第一使用时长;
根据电流变化曲线确定目标风扇在初始状态下的初始工作电流,并根据电流变化曲线、目标环境温度和目标工作电流确定目标风扇在下一时刻的工作电流,得到预测工作电流;
当预测工作电流达到第二预设阈值时,则获取目标风扇在从初始工作电流运行到第二预设阈值时的运转时长,得到第二使用时长;
将第一使用时长和第二使用时长中的较小值判定为预测使用时长。
在预测目标风扇预测使用时长的过程中,首先是根据目标风扇的转速变化曲线来确定目标风扇在初始运行状态下的初始转速,并根据转速变化曲线以及目标风扇在当前时刻的目标环境温度和目标转速来确定目标风扇在下一时刻的预测转速。如果目标风扇的预测转速达到第一预设阈值,则说明目标风扇的寿命已经接近极限状态,在此情况下,通过计算目标风扇在从初始转速运行到第一预设阈值时的运行时长,就可以得到目标风扇的预测使用时长,也即,第一使用时长。
当获取得到第一使用时长之后,再根据电流变化曲线来确定目标风扇在初始状态下的初始工作电流,并根据电流变化曲线、目标风扇在当前时刻的目标环境温度和目标工作电流来确定目标风扇在下一时刻的工作电流,得到预测工作电流。如果目标风扇的预测工作电流达到第二预设阈值,则说明目标风扇的寿命已经接近极限状态,在此情况下,通过计算目标风扇在从初始工作电流到第二预设阈值的运行时长,就可以得到目标风扇的预测使用时长,也即,第二使用时长。
请参见图5和图6,图5为利用转速变化曲线预测目标风扇使用寿命的示意图,图6为利用电流变化曲线预测目标风扇使用寿命的示意图。并且,根据IPC9591标准可知,目标风扇的寿命与转速、电流以及噪声有关,所以,当目标风扇中这三个参数中的一个 参数出现问题都会直接影响目标风扇的使用寿命。因此,在本实施例中,是将第一使用时长和第二使用时长中的较小值判定为目标风扇最终预测得到的预测使用时长。
或者,在实际应用中,也可以根据转速变化曲线、目标风扇在当前时刻下的目标转速、目标环境温度以及第一预设阈值来计算目标风扇的剩余使用时长。同理,也可以根据电流变化曲线、目标风扇在当前时刻下的目标工作电流、目标环境温度以及第二预设阈值来计算目标风扇的剩余使用时长。
作为一种优选的实施方式,上述异常预警方法还包括:
获取目标风扇在出厂时所标注的使用时长,得到参考使用时长;
利用预测使用时长对参考使用时长进行校正。
在现有技术中,各个风扇厂商都会给出一些风扇的属性参数。当将这些属性参数代入到韦伯分布(Weibull Shape Parameter)中,就可以计算出风扇在不同温度下的L10(Life 10,取1批风扇作寿命测试,当累积故障率达到10%的时间)预期寿命。其中,韦伯分布的数学表达式如下:
Figure PCTCN2022102732-appb-000003
式中,t为目标风扇在实测下为发生不良问题的运作时间、T s为实际测试温度、T u为初始L10预估温度、AF为加速因子、β为韦伯形状参数、n测试样本数。
表3
Figure PCTCN2022102732-appb-000004
表4
Figure PCTCN2022102732-appb-000005
请参见表3和表4,表3和表4为各个风扇厂商所提供的风扇参数。从表3和表4可以看出,由于不同厂商在提供AF、β与MTTF(Mean Time to Failure,产品故障前的平均使用时长)等参数时存在巨大的差异,所以,这些数据均不能准确、可靠地表征风扇的实际使用时长。
在本实施例中,为了避免用户依赖厂商提供数据所出现的误判,在获取得到目标风扇的预测使用时长之后,还获取了目标风扇在出厂时所标注的参考使用时长,然后,再利用目标风扇的预测使用时长来对目标风扇的参考使用时长进行校正。能够想到的是,通过该方法不仅能够使得用户准确地知悉到目标风扇的实际使用时长,而且,当将该信息反馈至风扇厂商时,也有助于风扇厂商提升产品质量。
请参见图7,图7为本申请实施例所提供的一种风扇的异常预警装置的结构图,该装置包括:
数据获取模块21,用于当目标风扇能够正常散热时,则获取目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;
第一预警模块22,用于若目标转速小于目标风扇的最低转速,则提示第一预警信息;
数据预测模块23,用于若目标转速大于或等于目标风扇的最低转速,则根据转速变化曲线、电流变化曲线、目标转速、目标工作电流和目标环境温度对目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;
第二预警模块24,用于若预测转速小于第一预设阈值,或者预测工作电流大于第二预设阈值,则提示第二预警信息;其中,第一预设阈值和第二预设阈值为根据IPC9591标准所设定的数值。
本申请实施例所提供的一种风扇的异常预警装置,具有前述所公开的一种风扇的异常预警方法所具有的有益效果。
请参见图8,图8为本申请实施例所提供的一种风扇的异常预警设备的结构图,该设备包括:
存储器31,用于存储计算机可读指令;
一个或多个处理器32,用于执行计算机可读指令时实现如前述所公开的一种风扇的异常预警方法的步骤。
本申请实施例所提供的一种风扇的异常预警设备,具有前述所公开的一种风扇的异常预警方法所具有的有益效果。
相应的,本申请实施例还提供了一种非易失性计算机可读存储介质,该非易失性计算机可读存储介质中存储有计算机可读指令,该计算机可读指令被一个或多个处理器执行时可实现上述任意一个实施例的的一种风扇的异常预警方法的步骤。
本申请实施例所提供的一种计算机可读存储介质,具有前述所公开的一种风扇的异常预警方法所具有的有益效果。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,上述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施 例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上上述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种风扇的异常预警方法,其特征在于,包括:
    在目标风扇能够正常散热时,获取f目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;
    在所述目标转速小于所述目标风扇的最低转速时,提示第一预警信息;
    在所述目标转速大于或等于所述目标风扇的最低转速时,根据转速变化曲线、电流变化曲线、所述目标转速、所述目标工作电流和所述目标环境温度对所述目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;和
    在所述预测转速小于第一预设阈值,或者所述预测工作电流大于第二预设阈值时,提示第二预警信息;其中,所述第一预设阈值和所述第二预设阈值为根据IPC9591标准所设定的数值。
  2. 根据权利要求1所述风扇的异常预警方法,其特征在于,所述获取所述目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度的过程,包括:
    利用BMC获取所述目标风扇在当前时刻的所述目标转速、所述目标工作电流以及所述目标环境温度。
  3. 根据权利要求1或2所述风扇的异常预警方法,其特征在于,所述转速变化曲线和所述电流变化曲线的获取过程,包括:
    获取所述目标风扇在不同环境温度下的历史转速和历史工作电流,并根据所述历史转速和所述历史工作电流分别获取所述目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率,得到所述转速变化曲线和所述电流变化曲线。
  4. 根据权利要求3所述风扇的异常预警方法,其特征在于,所述获取所述目标风扇在不同环境温度下的历史转速和历史工作电流,并根据所述历史转速和所述历史工作电流分别获取所述目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率的过程,包括:
    在不同的环境温度下对所述目标风扇的转速和工作电流进行监测;
    将所述目标风扇的转速和工作电流存储至第一存储区域,并根据所述目标风扇的转速和工作电流确定所述目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量,得到第一数据集合;
    将所述第一数据集合存储至第三存储区域;
    在向所述第一存储区域存储数据的时间达到预设时间阈值时,将所述目标风扇的转速和工作电流存储至第二存储区域,并根据所述目标风扇的转速和工作电流确定所述目标风扇在不同环境温度下随时间变化的转速变化量和电流变化量,得到第二数据集合;
    将所述第二数据集合存储至第三存储区域;
    在将所述第一数据集合中的数据全部写入至所述第三存储区域时,对所述第一存储区域中的数据进行清空,并在所述第二数据集合中的数据全部写入至所述第三存储区域时,对所述第二存储区域中的数据进行清空;
    在向所述第二存储区域存储数据的时间达到所述预设时间阈值时,重复执行所述将所述目标风扇的转速和工作电流存储至第一存储区域,并根据所述目标风扇的转速和工作电流确定所述目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量,得到第一数据集合的步骤;和
    在所述第三存储区域中存储的数据达到预设存储量时,利用所述第三存储区域中的全部数据获取所述目标风扇在不同环境温度下随时间变化的转速变化率以及工作电流变化率。
  5. 根据权利要求4所述风扇的异常预警方法,其特征在于,所述根据所述目标风扇的转速和工作电流确定所述目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量的过程,包括:
    将所述目标风扇的转速和工作电流发送至目标逻辑运算芯片,并利用所述目标逻辑运算芯片确定所述目标风扇在不同环境温度下随时间变化的转速变化量和工作电流变化量。
  6. 根据权利要求5所述风扇的异常预警方法,其特征在于,所述目标逻辑运算芯片具体为MCU或DSP。
  7. 根据权利要求1至6任一项所述风扇的异常预警方法,其特征在于,还包括:
    利用所述转速变化曲线、所述电流变化曲线、所述目标转速、所述目标工作电流以及所述目标环境温度对所述目标风扇的使用寿命进行预测,得到预测使用时长。
  8. 根据权利要求7所述的一种风扇的异常预警方法,其特征在于,所述利用所述转速变化曲线、所述电流变化曲线、所述目标转速、所述目标工作电流以及所述目标环境温度对所述目标风扇的使用寿命进行预测,得到预测使用时长的过程,包括:
    根据所述转速变化曲线确定所述目标风扇在初始运行状态下的初始转速,并根据所述转速变化曲线、所述目标环境温度和所述目标转速确定所述目标风扇在下一时刻的转速,得到所述预测转速;
    在所述预测转速达到所述第一预设阈值时,获取所述目标风扇在从所述初始转速运行到所述第一预设阈值时的运转时长,得到第一使用时长;
    根据所述电流变化曲线确定所述目标风扇在初始状态下的初始工作电流,并根据所述电流变化曲线、所述目标环境温度和所述目标工作电流确定所述目标风扇在下一时刻的工作电流,得到所述预测工作电流;
    在所述预测工作电流达到所述第二预设阈值时,获取所述目标风扇在从所述初始工作电流运行到所述第二预设阈值时的运转时长,得到第二使用时长;和
    将所述第一使用时长和所述第二使用时长中的较小值判定为所述预测使用时长。
  9. 根据权利要求7所述风扇的异常预警方法,其特征在于,还包括:
    获取所述目标风扇在出厂时所标注的使用时长,得到参考使用时长;和
    利用所述预测使用时长对所述参考使用时长进行校正。
  10. 一种风扇的异常预警装置,其特征在于,包括:
    数据获取模块,用于在目标风扇能够正常散热时,获取所述目标风扇在当前时刻的目标转速、目标工作电流以及目标环境温度;
    第一预警模块,用于在所述目标转速小于所述目标风扇的最低转速时,提示第一预警信息;
    数据预测模块,用于在所述目标转速大于或等于所述目标风扇的最低转速时,根据转速变化曲线、电流变化曲线、所述目标转速、所述目标工作电流和所述目标环境温度对所述目标风扇在下一时刻的转速和工作电流进行预测,得到预测转速和预测工作电流;和
    第二预警模块,用于在所述预测转速小于第一预设阈值,或者所述预测工作电流大于第二预设阈值时,提示第二预警信息;其中,所述第一预设阈值和所述第二预设阈值为根据IPC9591标准所设定的数值。
  11. 一种风扇的异常预警设备,其特征在于,包括存储器及一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如权利要求1-9任意一项所述的方法的步骤。12、一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,其特征在于,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如权利要求1-9任意一项所述的方法的步骤。
PCT/CN2022/102732 2021-12-31 2022-06-30 一种风扇的异常预警方法、装置、设备及介质 WO2023123958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111678579.3A CN114320970B (zh) 2021-12-31 2021-12-31 一种风扇的异常预警方法、装置、设备及介质
CN202111678579.3 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023123958A1 true WO2023123958A1 (zh) 2023-07-06

Family

ID=81023564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102732 WO2023123958A1 (zh) 2021-12-31 2022-06-30 一种风扇的异常预警方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN114320970B (zh)
WO (1) WO2023123958A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117329156A (zh) * 2023-11-30 2024-01-02 中国标准化研究院 一种温室风扇用自动控制方法及系统
CN117662510A (zh) * 2024-01-02 2024-03-08 徐州中矿科光机电新技术有限公司 一种风机故障诊断系统及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320970B (zh) * 2021-12-31 2023-09-22 浪潮(北京)电子信息产业有限公司 一种风扇的异常预警方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211304A (zh) * 2006-12-30 2008-07-02 联想(北京)有限公司 一种风扇工作状况的检测方法和检测装置
CN101328901A (zh) * 2008-07-25 2008-12-24 华为技术有限公司 一种风扇故障检测装置及方法
CN103133371A (zh) * 2011-12-05 2013-06-05 技嘉科技股份有限公司 风扇模块
US20140205464A1 (en) * 2011-08-30 2014-07-24 Moteurs Leroy-Somer Electric machine with improved cooling
CN106438428A (zh) * 2016-09-12 2017-02-22 郑州云海信息技术有限公司 一种服务器风扇功能的测试方法及装置
CN110006014A (zh) * 2018-01-05 2019-07-12 通用电气照明解决方案有限公司 一种灯和灯的风扇寿命预测系统及其方法
CN114320970A (zh) * 2021-12-31 2022-04-12 浪潮(北京)电子信息产业有限公司 一种风扇的异常预警方法、装置、设备及介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758787B (zh) * 2011-04-29 2015-01-07 台达电子工业股份有限公司 风扇失效预警装置及其方法
CN104019049B (zh) * 2013-03-01 2016-08-10 鸿富锦精密电子(天津)有限公司 风扇转速测试装置
CN105715569B (zh) * 2016-03-31 2018-03-27 海信集团有限公司 风扇转速控制方法、装置及投影系统的散热方法
CN109763992B (zh) * 2019-03-29 2020-12-29 新华三技术有限公司 设备风扇的使用寿命预警方法及装置
CN110154821B (zh) * 2019-06-21 2021-03-02 南方电网电动汽车服务有限公司 延长充电模块寿命的方法
CN110345099B (zh) * 2019-07-18 2020-12-01 西安易朴通讯技术有限公司 服务器风扇调速的方法、装置及系统
CN110778517B (zh) * 2019-09-27 2022-02-22 苏州浪潮智能科技有限公司 一种风扇的控制方法、设备以及存储介质
CN111382519B (zh) * 2020-03-17 2024-06-04 深圳市信锐网科技术有限公司 剩余使用时长预测方法、装置、设备及存储介质
CN111749781B (zh) * 2020-07-06 2021-10-29 潍柴动力股份有限公司 一种电控硅油闭环离合器风扇的监控方法及装置
CN113534936B (zh) * 2021-09-14 2021-12-17 苏州浪潮智能科技有限公司 一种服务器风扇转速控制方法、装置、设备及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211304A (zh) * 2006-12-30 2008-07-02 联想(北京)有限公司 一种风扇工作状况的检测方法和检测装置
CN101328901A (zh) * 2008-07-25 2008-12-24 华为技术有限公司 一种风扇故障检测装置及方法
US20140205464A1 (en) * 2011-08-30 2014-07-24 Moteurs Leroy-Somer Electric machine with improved cooling
CN103133371A (zh) * 2011-12-05 2013-06-05 技嘉科技股份有限公司 风扇模块
CN106438428A (zh) * 2016-09-12 2017-02-22 郑州云海信息技术有限公司 一种服务器风扇功能的测试方法及装置
CN110006014A (zh) * 2018-01-05 2019-07-12 通用电气照明解决方案有限公司 一种灯和灯的风扇寿命预测系统及其方法
CN114320970A (zh) * 2021-12-31 2022-04-12 浪潮(北京)电子信息产业有限公司 一种风扇的异常预警方法、装置、设备及介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117329156A (zh) * 2023-11-30 2024-01-02 中国标准化研究院 一种温室风扇用自动控制方法及系统
CN117329156B (zh) * 2023-11-30 2024-04-09 中国标准化研究院 一种温室风扇用自动控制方法及系统
CN117662510A (zh) * 2024-01-02 2024-03-08 徐州中矿科光机电新技术有限公司 一种风机故障诊断系统及其方法
CN117662510B (zh) * 2024-01-02 2024-06-07 徐州中矿科光机电新技术有限公司 一种风机故障诊断系统及其方法

Also Published As

Publication number Publication date
CN114320970B (zh) 2023-09-22
CN114320970A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023123958A1 (zh) 一种风扇的异常预警方法、装置、设备及介质
US20070271219A1 (en) Performance degradation root cause prediction in a distributed computing system
US20170285970A1 (en) Information Handling System Persistent Storage Device Life Management
CN109343853B (zh) 一种应用程序的异常识别方法及设备
WO2015023201A2 (en) Method and system for determining hardware life expectancy and failure prevention
US9558091B2 (en) Information processing device, fault avoidance method, and program storage medium
US20170205099A1 (en) System that automatically infers equipment details from controller configuration details
US20200033928A1 (en) Method of periodically recording for events
CN110457907B (zh) 一种固件程序检测方法和装置
CN113472607A (zh) 应用程序网络环境检测方法、装置、设备及存储介质
CN113342588B (zh) 基于动态调整负荷对服务器进行压力测试的方法和装置
JP5918661B2 (ja) 設備診断装置および設定変更督促方法
US10558182B2 (en) Heating, ventilation and air conditioning capacity alert system
EP3929782A1 (en) Systems and methods for detecting behavioral anomalies in applications
US20140324409A1 (en) Stochastic based determination
US10157116B2 (en) Window deviation analyzer
CN117112535A (zh) 一种内存配置优化方法、装置、设备及介质
JP2015184818A (ja) サーバ、モデル適用可否判定方法およびコンピュータプログラム
CN111274098B (zh) 一种基于IoT的存储设备报警方法及装置
CN111858244A (zh) 一种硬盘的监控方法、系统、设备以及介质
US20220034541A1 (en) System for auto-adjustment of gateway poll rates
US10437207B2 (en) Space comfort control detector
WO2022069267A1 (en) Splitting and ordering based log file transfer for medical systems
US11720435B2 (en) Electronic device and fault diagnosis method of electronic device
US20170205097A1 (en) Heating, ventilation and air conditioning capacity monitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913247

Country of ref document: EP

Kind code of ref document: A1