WO2023123346A1 - 一种信号处理的方法、装置、芯片和基站 - Google Patents

一种信号处理的方法、装置、芯片和基站 Download PDF

Info

Publication number
WO2023123346A1
WO2023123346A1 PCT/CN2021/143661 CN2021143661W WO2023123346A1 WO 2023123346 A1 WO2023123346 A1 WO 2023123346A1 CN 2021143661 W CN2021143661 W CN 2021143661W WO 2023123346 A1 WO2023123346 A1 WO 2023123346A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
channel
bandwidth
receiving
signal
Prior art date
Application number
PCT/CN2021/143661
Other languages
English (en)
French (fr)
Inventor
石晓明
张楠
于海生
张宏贤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180105174.2A priority Critical patent/CN118414791A/zh
Priority to PCT/CN2021/143661 priority patent/WO2023123346A1/zh
Publication of WO2023123346A1 publication Critical patent/WO2023123346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal processing method, a signal processing device, a chip and a base station.
  • Massive MIMO Massive MIMO
  • a multi-channel system such as Massive MIMO has many transceiver channels, high hardware resource overhead, and high device power consumption.
  • the present application proposes a signal processing method, a signal processing device, a chip, and a base station, which can reduce resource overhead and power consumption of a multi-channel system.
  • the first aspect of the embodiment of the present application provides a signal processing method, including: receiving a first signal from a baseband unit, mapping the first signal to M transmit channels, where M is less than or equal to the number of available transmit channels and/or transmit The bandwidth used by the channel is less than or equal to the available bandwidth of the transmitting channel, and M is an integer greater than or equal to 1; and/or, the second signal is received from the radio frequency unit and input to the receiving channel, and the signals output by the N receiving channels are aggregated into a baseband signal, N is less than or equal to the number of available receiving channels and/or the bandwidth used by the receiving channels is less than or equal to the available bandwidth of the receiving channels, and N is an integer greater than or equal to 1.
  • the total amount of baseband output or input signals is reduced, the resource overhead of the system is reduced, and the power consumption is reduced.
  • the sum of the bandwidths used by the M transmitting channels is equal to the sum of the bandwidths used by the N receiving channels.
  • mapping the first signal to the M transmission channels includes: mapping the first signal to the M transmission channels according to a first mapping strategy.
  • the first mapping policy includes M and/or the bandwidth used by the transmission channel.
  • the first mapping strategy is received from the baseband unit, or the first mapping strategy is locally configured.
  • aggregating signals output by the N receiving channels into a baseband signal includes: aggregating signals output by the N receiving channels into a baseband signal according to a second mapping strategy.
  • the second mapping strategy includes N and/or the bandwidth used by the receiving channel.
  • the second mapping strategy is received from the baseband unit, or is locally configured with the second mapping strategy.
  • the bandwidth used by the transmission channel when the bandwidth used by the transmission channel is smaller than the available bandwidth of the transmission channel or less than a specific frequency range, the bandwidth used by the transmission channel performs frequency switching at different times.
  • the bandwidth used by the receiving channel when the bandwidth used by the receiving channel is smaller than the available bandwidth of the receiving channel or less than a specific frequency range, the bandwidth used by the receiving channel performs frequency switching at different times.
  • Frequency switching is performed at different times through the bandwidth used by the channel, so that the channel can traverse a larger bandwidth range, so that the limited channel bandwidth can indicate a channel with a larger bandwidth.
  • the signal of at least one transmission channel among the M transmission channels is output to the antenna unit through multiple transmission branches, and a phase shift control unit is arranged on the transmission branches.
  • At least one of the N receiving channels receives signals from the antenna unit through multiple receiving branches, and a phase shift control unit is arranged on the receiving branches.
  • the M transmit channels drive all or part of the antenna array.
  • the M transmitting channels drive the antenna array through a switch or a duplexer.
  • the N receiving channels drive all or part of the antenna array.
  • the N receiving channels drive the antenna array through a switch or a duplexer.
  • the transmitting channel is a transmitting intermediate frequency channel.
  • the receiving channel is a receiving intermediate frequency channel.
  • mapping the first signal to M transmit channels includes: mapping the first signal to P sub-carrier channels, and mapping signals output by P sub-carrier channels to M
  • the bandwidth of the sub-carrier channel is one carrier bandwidth
  • P is an integer greater than or equal to 1.
  • the aggregation of multi-carrier signals by the transmission channels is realized.
  • the total bandwidth of the sub-carrier channel is smaller than the total bandwidth used by the transmission channel, the amount of signals that need to be processed by the sub-carrier channel is less than the amount of signal processed by the transmission channel, and the corresponding baseband unit needs to output less signal, reducing the resource overhead of the system. Reduced power consumption.
  • converging the signals output by the N receiving channels into a baseband signal includes: mapping the signals output by the N receiving channels to Q sub-carrier channels, and outputting the Q sub-carrier channels
  • the signals are aggregated into baseband signals, the bandwidth of the sub-carrier channel is one carrier bandwidth, and Q is an integer greater than or equal to 1.
  • the multi-carrier signals aggregated in the receiving channel can be divided into single-carrier signals in the sub-carrier channels.
  • the total bandwidth of the sub-carrier channel is less than the total bandwidth used by the receiving channel, you can flexibly select part of the signals output by the receiving channel to input to the sub-carrier channel, or you can flexibly select some of the signals output by the receiving channel to input the sub-carrier channel.
  • the second aspect of the embodiment of the present application provides a signal processing device, including:
  • the receiving unit is used to receive the first signal from the baseband unit; the processing unit is used to map the first signal to M transmission channels, and M is less than or equal to the number of available transmission channels and/or the bandwidth used by the transmission channels is less than or equal to The available bandwidth of the transmission channel, M is an integer greater than or equal to 1; and/or,
  • the receiving unit is used to receive the second signal from the radio frequency unit and input the receiving channel;
  • the processing unit is used to aggregate the signals output by N receiving channels into a baseband signal, and N is less than or equal to the number of available receiving channels and/or the number of receiving channels
  • the used bandwidth is less than or equal to the available bandwidth of the receiving channel, and N is an integer greater than or equal to 1.
  • the sum of the bandwidths used by the M transmitting channels is equal to the sum of the bandwidths used by the N receiving channels.
  • the processing unit is further configured to: map the first signal to the M transmission channels according to the first mapping strategy.
  • the first mapping strategy includes M and/or the bandwidth used by the transmission channel.
  • the receiving unit is further configured to: receive the first mapping policy from the baseband unit.
  • the processing unit is further configured to: aggregate signals output by the N receiving channels into a baseband signal according to a second mapping strategy.
  • the second mapping strategy includes N and/or the bandwidth used by the receiving channel.
  • the receiving unit is further configured to: receive the second mapping policy from the baseband unit.
  • the processing unit is further configured to: when the bandwidth used by the transmission channel is smaller than the available bandwidth of the transmission channel or less than a specific frequency range, the bandwidth used by the transmission channel performs frequency switching at different times .
  • the processing unit is further configured to: when the bandwidth used by the receiving channel is smaller than the available bandwidth of the receiving channel or less than a specific frequency range, the bandwidth used by the receiving channel performs frequency switching at different times .
  • the processing unit is further configured to: the signal of at least one of the M transmission channels is output to the antenna unit through a plurality of transmission branches, and a phase shift control is provided on the transmission branches unit.
  • the processing unit is further configured to: at least one of the N receiving channels receives signals from the antenna unit through multiple receiving branches, and a phase shift control is set on the receiving branches unit.
  • the processing unit is further configured to: drive all or part of the antenna arrays by the M transmit channels.
  • the M transmitting channels drive the antenna array through a switch or a duplexer.
  • the processing unit is further configured to: the N receiving channels drive all or part of the antenna array.
  • the N receiving channels drive the antenna array through a switch or a duplexer.
  • the transmitting channel is a transmitting intermediate frequency channel.
  • the receiving channel is a receiving intermediate frequency channel.
  • the processing unit is further configured to: map the first signal to P sub-carrier channels, map the signals output by the P sub-carrier channels to M transmission channels, and the sub-carrier channels
  • the bandwidth is a carrier bandwidth
  • P is an integer greater than or equal to 1
  • the third aspect of the embodiment of the present application provides a signal processing device, including: one or more processors and memory, the memory stores computer-executable instructions that can run on the processor, when the computer-executable instructions are executed by the processor,
  • the communication device executes the method described in the first aspect or any implementation manner of the first aspect.
  • the fourth aspect of the embodiment of the present application provides a chip or chip system, the chip or chip system includes at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or Instructions to execute the method described in the first aspect or any implementation manner of the first aspect.
  • a fifth aspect of the embodiment of the present application provides a base station, including: a baseband unit, an antenna unit, and the signal processing device as described in the second or third aspect above, or the chip or chip system as described in the fourth aspect.
  • the technical effects of the second aspect to the fifth aspect can refer to the beneficial effects of the first aspect.
  • FIG. 1 is a schematic diagram of a signal processing device in an embodiment of the present application
  • FIG. 2 is a schematic diagram of another signal processing device in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of different-frequency rotation training in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the same-frequency rotation training in the embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one (unit) of a, b or c can represent: a, b, c, a and b, a and c, b and c or a, b and c, wherein a, b and c can be It can be single or multiple.
  • the signal processing method provided by the embodiment of the present application can be applied to various mobile communication systems, such as: long term evolution (long term evolution, LTE) system, advanced long term evolution (advanced long term evolution, LTE-A) system general mobile communication system (universal mobile telecommunications system, UMTS), evolved long term evolution (evolved long term evolution, eLTE) system, 5G (such as new radio (new radio, NR) system), and future communication systems.
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • LTE-A general mobile communication system
  • UMTS universal mobile telecommunications system
  • eLTE evolved long term evolution
  • 5G such as new radio (new radio, NR) system
  • future communication systems such as: long term evolution (long term evolution, LTE) system, advanced long term evolution (advanced long term evolution, LTE-A) system general mobile communication system (universal mobile telecommunications system, UMTS), evolved long term evolution (evolved long term evolution,
  • the signal processing method provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • the signal processing method provided in the embodiment of the present application may be applied to a signal processing device, and the signal processing device may be deployed or integrated in a base station or a terminal.
  • a base station is a device deployed in a wireless access network to provide wireless communication functions for terminal equipment.
  • the names of equipment with base station functions may be different.
  • evolved NodeB evolved NodeB
  • Node B Node B
  • it is called Node B (Node B)
  • Node B Node B
  • Terminals include but are not limited to: mobile phones, tablet computers, laptops, handheld computers, mobile internet devices (mobile internet device, MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), In-vehicle equipment (such as automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, industrial control (industrial control) Wireless terminals, smart home devices (such as refrigerators, TVs, air conditioners, electric meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving, wireless terminals in remote medical surgery, Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, or wireless terminals in smart home, flight equipment (for example, intelligent robots, hot air balloons, drones, airplanes), etc.
  • mobile internet devices mobile internet device, MID
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • FIG. 1 is a schematic diagram of a signal processing device provided by an embodiment of the present application.
  • Fig. 1 shows the logic unit contained in the signal processing device, so as to introduce the signal processing method proposed in this application.
  • the signal processing device shown in Fig. 1 includes at least an intermediate frequency unit.
  • the signal processing device may also include a radio frequency unit.
  • the intermediate frequency unit and the radio frequency unit may be connected to the baseband unit and the antenna unit; or, the baseband unit and/or the antenna unit, the intermediate frequency unit and the radio frequency unit are all included in the signal processing device.
  • each Logical units may or may not be physically separated, and each logical unit may be one physical unit or multiple physical units, that is, it may be deployed in one device or distributed among multiple devices.
  • This application There is no limit to this.
  • the baseband unit has a baseband processing function.
  • the baseband unit may also be configured to send a control signal to the mid-radio frequency unit, so that the mid-radio frequency unit performs a corresponding operation, and the control signal may include, for example, the following mapping strategy.
  • the radio frequency unit may include one or more transmit (transmit, Tx) radio frequency channels and one or more receive (receive, Rx) radio frequency channels.
  • the Tx radio frequency channel may include a power amplifier (power amplifier, PA).
  • the Tx radio frequency channel may also include a transmit filter (Tx filter).
  • the Rx radio frequency channel may include a low noise amplifier (LNA).
  • the Rx radio frequency channel may also include a receive filter (Rx filter).
  • the radio frequency unit can also include a digital-to-analog converter (digital to analog converter, DAC) corresponding to the Tx radio frequency channel one by one, and the signal is input into the Tx radio frequency channel after being converted by the DAC; Digital converter (analog to digital converter, ADC), the signal is input to the ADC after passing through the Rx radio frequency channel.
  • DAC digital to analog converter
  • ADC analog to digital converter
  • the intermediate frequency unit is used to process the baseband signal and output it to multiple radio frequency transmission channels, and is also used to convert signals from multiple radio frequency reception channels into baseband signals.
  • the intermediate frequency unit may include a Tx intermediate frequency channel and an Rx intermediate frequency channel corresponding to the Tx radio frequency channel and the Rx radio frequency channel one by one.
  • the Tx intermediate frequency channel and the Rx intermediate frequency channel may include functional modules such as a filter module and a rate conversion module, which are used to perform filtering, rate conversion, and other processing on signals input to the intermediate frequency channel.
  • the baseband signal can be mapped into multiple signals through the mapping network, and input to each Tx intermediate frequency channel. Signals output by multiple Rx intermediate frequency channels can be aggregated into a baseband signal through an aggregation network and input to the baseband unit.
  • the mapping network and the aggregation network may specifically be realized by matrix operation.
  • the above intermediate frequency unit and radio frequency unit can also be collectively referred to as an intermediate radio frequency unit. It can be understood that the intermediate frequency unit is used to amplify or filter the baseband signal to convert the baseband signal into a radio frequency signal, and convert the radio frequency signal into a baseband Signal.
  • the antenna unit can be used to receive or send radio frequency signals, that is, to realize energy conversion between radio frequency signals and electromagnetic waves.
  • the downlink transmitting side and the uplink receiving side of the signal processing device have multiple implementations when performing signal processing, and the possible signal processing processes of the downlink transmitting side and the uplink receiving side of the signal processing device are described in detail below. introduce.
  • a first signal is received from the baseband unit, which is hereinafter referred to as a baseband signal for short; and the first signal is mapped to a Tx intermediate frequency channel.
  • the process of mapping the first signal to the Tx intermediate frequency channel will be described in detail.
  • the number of available Tx intermediate frequency channels is G, and the available bandwidth of the Tx intermediate frequency channel is BW G .
  • Available can be understood as the maximum available or allowed use of hardware support or configuration.
  • the number of Tx intermediate frequency channels actually used may be less than or equal to the number of available Tx intermediate frequency channels, and the channel bandwidth actually used by each Tx intermediate frequency channel may be less than or equal to the available bandwidth of the Tx intermediate frequency channel.
  • the bandwidth actually used by the Tx IF channel (or referred to simply as the bandwidth used by the Tx IF channel) can be understood as the sum of the carrier bandwidths used by the Tx IF channel for digital IF domain processing (such as rate conversion, filtering, etc.).
  • one Tx intermediate frequency channel can use 4 carriers, and the carrier bandwidth of each carrier is BW, so the bandwidth used by one Tx intermediate frequency channel is 4*BW.
  • the number of channels used by the Tx intermediate frequency channel is G.
  • the bandwidth used by the G-way Tx intermediate frequency channel is BW G . That is to say, the mapping network maps the baseband signal to G-channels, and outputs them to the G-channel Tx intermediate frequency channels.
  • the number of channels available for the Tx intermediate frequency channel is still G, but only M channels are used, and M is smaller than G. That is to say, the mapping network only maps the baseband signals into M channels, and outputs them to the M channels of Tx intermediate frequency channels. Since the baseband signal only needs to be mapped to the M channels of the G Tx intermediate frequency channels, the scale of the mapping network is smaller, and the amount of data processed by the mapping network is smaller, which saves computing resources and reduces system resource overhead.
  • the number of channels available for the Tx IF channel is still G, and the available bandwidth of the Tx IF channel is still BW G , but only part of the bandwidth BW G ' is used, where BW G ' is smaller than BW G . That is, after the mapping network maps the baseband signal to G channels, the actual bandwidth used by the Tx IF channel for digital IF domain processing of each channel signal is BW G '.
  • the above-mentioned second possible implementation and the third possible implementation can be combined, that is, the number of available channels of the Tx intermediate frequency channel is still G, and the available bandwidth of the Tx intermediate frequency channel is still BW G , but only M channels are used, and the M Tx intermediate frequency channels only use part of the bandwidth BW G '.
  • M is smaller than G
  • BW G ' is smaller than BW G . That is to say, the mapping network only maps the baseband signal into M channels, and outputs them to M channels of Tx intermediate frequency channels, and the actual bandwidth used by the M channels of Tx intermediate frequency channels for digital intermediate frequency domain processing is BW G '.
  • the second possible implementation may be selected; when the number of multiplexed flows of the downlink service is high, the third possible implementation may be selected.
  • the second possible implementation method above that is, only reduce the number of channels used without reducing the bandwidth used by the channels;
  • the third possible implementation method above can be selected, that is, reducing the bandwidth used by the channel without reducing the number of channels.
  • the Tx intermediate frequency channel corresponds to the DAC and Tx radio frequency channel one by one.
  • a splitter may be set between the Tx radio frequency channel and the antenna unit, and a phase shifter may also be set on each branch between the splitter and the antenna unit.
  • the splitter is used to split the signal output by the Tx radio frequency channel, and perform a phase shift operation on the split signal.
  • the Tx radio frequency channel can drive more antenna arrays to obtain better antenna side face benefits; it can also make the number of signal channels output from the Tx radio frequency channel to the antenna unit more than the number of Tx intermediate frequency channels to avoid intermediate frequency channels. Reducing the number adversely affects antenna side-front gain.
  • the above-mentioned Tx radio frequency channel may drive all or part of the antenna array in the antenna unit.
  • the Tx radio frequency channel may control and drive all or part of the antenna arrays in the antenna unit through a switch or a duplexer.
  • Receive a second signal from the radio frequency unit which is hereinafter referred to as a radio frequency signal; input the second signal to the Rx intermediate frequency channel, gather some or all of the signals output by the Rx intermediate frequency channel and input it to the baseband unit.
  • the signal output by the Rx intermediate frequency channel is aggregated and the signal input to the baseband unit is hereinafter referred to as the baseband signal for short.
  • the process of converging the signals of the Rx intermediate frequency channel into the baseband signal will be described in detail.
  • the number of available Rx intermediate frequency channels is H, and the available bandwidth of the Rx intermediate frequency channel is BW H .
  • Available can be understood as the maximum available or allowed use of hardware support or configuration.
  • the number of Rx intermediate frequency channels actually used may be less than or equal to the number of available Rx intermediate frequency channels, and the channel bandwidth actually used by each Rx intermediate frequency channel may be less than or equal to the available bandwidth of the Rx intermediate frequency channel.
  • the bandwidth actually used by the Rx IF channel (or simply referred to as the bandwidth used by the Rx IF channel) can be understood as the sum of the carrier bandwidths used by the Rx IF channel for digital IF domain processing (such as rate conversion, filtering, etc.).
  • one Rx intermediate frequency channel can use 4 carriers, and the carrier bandwidth of each carrier is BW, so the bandwidth used by one Tx intermediate frequency channel is 4*BW.
  • the number of channels used by the Rx intermediate frequency channel is H.
  • the bandwidth used by the H channels of Rx intermediate frequency channels is BW H .
  • the number of channels available for the Rx intermediate frequency channel is still H, but only N signals among them are converged into baseband signals by the convergence network, and N is less than H.
  • the bandwidth used by the N Rx intermediate frequency channels may be BW H .
  • the aggregation network only selects the N signals to aggregate as baseband signal. Since the convergence network only needs to converge N signals into baseband signals, the scale of the convergence network is smaller, and the amount of data processed by the convergence network is smaller, which saves computing resources and reduces system resource overhead.
  • the number of available channels of the Rx intermediate frequency channel is still H, and the available bandwidth of the Rx intermediate frequency channel is still BW H , but only part of the bandwidth BW H ' is used, where BW H ' is smaller than BW H . That is, the signals output by each ADC are input to each Rx intermediate frequency channel, and the actual bandwidth used by the Rx intermediate frequency channel for digital intermediate frequency domain processing of each signal is BW H '.
  • the above-mentioned second possible implementation and the third possible implementation can be combined, that is, the number of available channels of the Rx intermediate frequency channel is still H, and the available bandwidth of the Rx intermediate frequency channel is still BW H , but only the N channels of signals are aggregated into baseband signals by the aggregation network, and the N channels of Rx intermediate frequency channels only use part of the bandwidth BW H ', N is smaller than H, and BW H 'is smaller than BW H .
  • the H-way Rx intermediate frequency channels all use part of the bandwidth BW H ', and only N signals are input to the aggregation network among the signals output by the H-way Rx intermediate frequency channels, and are aggregated into baseband signals; or, the H-way Rx intermediate frequency channels are all Part of the bandwidth BW H ' is used, and the signals output by the H-way Rx intermediate frequency channels are input to the aggregation network, and the aggregation network only selects the N-way signals to be aggregated into baseband signals; or, only the N-way Rx intermediate frequency channels are used in the H-way Rx intermediate frequency channels Part of the bandwidth BW H ', and the signals output by the N Rx intermediate frequency channels are input to the aggregation network and aggregated into baseband signals.
  • the above-mentioned H channels of Rx intermediate frequency channels all use part of the bandwidth BW H '. "H channels" can be replaced with "more than N channels", and "H channels" in the subsequent processing process can also be replaced with "more
  • the Rx intermediate frequency channel corresponds to the ADC and the Rx radio frequency channel one by one.
  • a combiner may be provided between the Rx radio frequency channel and the antenna unit, and a phase shifter may be provided on each branch between the combiner and the antenna unit.
  • the phase shifter is used to shift the phase of the signals from the antenna unit, and the combiner is used to combine the phase-shifted multiple signals.
  • the Rx radio frequency channel can drive more antenna arrays to obtain better antenna side front benefits; it can also make the number of signal channels of the antenna unit received by the Rx radio frequency channel more than the number of Rx intermediate frequency channels to avoid the number of intermediate frequency channels Reductions adversely affect antenna side-front gain.
  • the reduction in the number of intermediate frequency channels can be understood as that in the above implementation manner, only some of the signals output by the Rx intermediate frequency channels are aggregated into baseband signals by the aggregation network.
  • the Rx radio frequency channel may drive all or part of the antenna array in the antenna unit.
  • the Rx radio frequency channel may control and drive all or part of the antenna array in the antenna unit through a switch or a duplexer.
  • any of the above four possible implementations of the downlink transmitting side may be used in combination with any of the four possible implementations of the uplink receiving side, which is not limited in the present application.
  • the sum of bandwidths actually used by all intermediate frequency channels on the downlink transmitting side is the same as the sum of bandwidths actually used by intermediate frequency channels on the uplink receiving side.
  • the signal processing device determines or changes the implementation manner of the downlink transmission side and/or the implementation manner of the uplink reception side in each time slot.
  • the time interval for determining or changing the above-mentioned uplink/downlink implementation manner may be a time slot, or a frame, or other time lengths, which is not limited in this application.
  • frequency hopping configuration ie, frequency hopping round-robin training
  • the IF channel on the downlink transmitting side or the uplink receiving side can use part of the available bandwidth at different times.
  • Different parts, or intermediate frequency channels may use different parts within a specific bandwidth range at different times, and the specific bandwidth range is smaller than the available bandwidth.
  • the time interval at which the bandwidth of the IF channel changes may be the same as the time interval for determining or changing the above-mentioned uplink/downlink implementation, or may be shorter than the above-mentioned time interval for determining or changing the above-mentioned uplink/downlink implementation.
  • the Rx IF channel or Tx IF channel can traverse the entire frequency band of the available bandwidth or traverse the specific bandwidth range, and can also indicate the full frequency band channel of the available bandwidth through the limited bandwidth of each channel or specific Channels within the bandwidth range are indicated. In this way, the requirements for the mutuality of the uplink and downlink channels can also be met.
  • Frequency hopping configuration includes different-frequency rotation training and same-frequency rotation training.
  • inter-frequency round-robin training means that the bandwidths used by the intermediate frequency channels on the downlink transmitting side or the uplink receiving side are different at the same time, and the bandwidth used by each intermediate frequency channel is switched at the next switching time.
  • different frequency rotation training can be: at time #1, Rx IF channel 1 uses the 0-25MHz frequency band as the used bandwidth, Rx IF channel 2 uses the 25-50MHz frequency band as the used bandwidth, and Rx IF channel 3 uses the 50-75MHz frequency band as the used bandwidth , Rx IF channel 4 uses the 75-100MHz frequency band as the used bandwidth; at time #2, Rx IF channel 1 uses the 25-50MHz frequency band as the used bandwidth, Rx IF channel 2 uses the 50-75MHz frequency band as the used bandwidth, and Rx IF channel 3 uses The 75-100MHz frequency band is used as the used bandwidth, and the Rx IF channel 4 uses the 0-25MHz frequency band as the used bandwidth; at time #3, the Rx IF channel 1 uses the 50-75MHz frequency band as the used bandwidth, and the Rx IF channel 2 uses the 75-100MHz frequency band as the used bandwidth Bandwidth, Rx IF channel 3 uses the 0-25MHz frequency band as the used bandwidth, Rx IF channel 4 uses the 25-50MHz frequency band
  • each IF channel on the downlink transmitting side or uplink receiving side uses the same bandwidth at the same time, and the bandwidth used by each IF channel is switched at the next switching time.
  • the same frequency rotation training can be, for example: at time #1, the 4 Rx IF channels all use the 0-25MHz frequency band as the used bandwidth; at time #2, the 4 Rx IF channels all use the 25-50MHz frequency band as the used bandwidth; at time # 3.
  • the 4 Rx IF channels all use the 50-75MHz frequency band as the used bandwidth; at time #4, the 4 Rx IF channels all use the 75-100MHz frequency band as the used bandwidth.
  • the 4 Rx intermediate frequency channels all traverse the frequency band of 100MHz.
  • the signal processing apparatus may perform the above-mentioned signal processing in the intermediate frequency domain according to a mapping strategy.
  • the mapping strategy is used to indicate or describe the usage strategy of the IF channel on the downlink transmitting side and the uplink receiving side in the signal processing process.
  • the mapping policy can be configured locally, or received from the baseband unit.
  • the baseband unit can determine the mapping strategy according to information such as signal quality and data volume.
  • the mapping strategy is used to indicate the implementation manner of the downlink transmitting side and/or the implementation manner of the uplink receiving side.
  • the mapping policy includes uplink mapping policy indication information and downlink mapping policy indication information.
  • the mapping strategy is used to indicate that the uplink receiving side adopts the above-mentioned first implementation manner, and the downlink transmitting side adopts the above-mentioned fourth implementation manner; according to the mapping strategy and the values of H, BW H , M, and BW G , The above-mentioned signal processing in the intermediate frequency domain is performed. Values of H, BW H , M, and BW G can be configured locally, or default values can be agreed upon.
  • the mapping strategy is used to indicate one or more of the following information: the number of Tx IF channels actually used, the channel bandwidth actually used by the Tx IF channel, the number of Rx IF channels actually used, and the Rx IF channel number.
  • the channel bandwidth actually used by the channel is exemplary, the mapping policy includes one or more items of the above information.
  • the scale of the matrix can be flexibly adjusted, so that the number of output signal channels can be flexibly changed.
  • the matrix size of the mapping network can be determined according to the above mapping strategy.
  • the scale of the matrix can also be flexibly adjusted, so that the scale of the matrix can be flexibly adjusted according to the number of channels of input signals.
  • the signal processing process of the signal processing device shown in FIG. 1 may also be specifically implemented in the manner shown in FIG. 2 .
  • the intermediate frequency unit of the signal processing device may further include multiple sub-carrier processing channels arranged between the mapping network and the Tx intermediate frequency channel.
  • the sub-carrier processing channel is used to perform sub-carrier processing on the signal, such as performing rate conversion and filtering on the signal at a single-carrier granularity.
  • the sub-carrier processing channel can realize finer-grained signal processing.
  • the bandwidth BW C of each channel in the sub-carrier processing channel may be set as a carrier bandwidth, and the carrier bandwidth corresponds to the bandwidth of a carrier in the above-mentioned Tx intermediate frequency channel, that is, the above-mentioned BW.
  • the bandwidth BW C of each channel in the sub-carrier processing channels may also be set to other values, which is not limited in this application.
  • the bandwidth of the sub-carrier processing channel may be set when the signal processing device is deployed, or may be set or changed in other ways at other times, which is not limited in this application. It can be understood that, before the bandwidth of the sub-carrier processing channel is set or changed next time, the bandwidth is fixed.
  • the number of sub-carrier processing channels may satisfy the following condition: channel number of sub-carrier processing channels * BW CT ⁇ number of available channels of Tx intermediate frequency channels * available bandwidth of Tx intermediate frequency channels.
  • the number of sub-carrier processing channels may be set when the signal processing apparatus is deployed, or may be set or changed in other ways at other times, or may be set or changed periodically.
  • the number of sub-carrier processing channels in this implementation is referred to as M' for short below.
  • mapping network #10 maps the baseband signal into M' signals and inputs them to the M' sub-carrier processing channels, and then the mapping network #11 maps the M' signals into multiple signals and inputs them to the Tx intermediate frequency channel.
  • the mapping network #11 needs to map the M' channel signal to more than the M' channel signal, so that the number of mapped signals increases, making the mapped The total bandwidth is increased to match the total bandwidth used by the Tx IF channel.
  • the amount of signals that need to be processed by the sub-carrier channel is less than that of the Tx intermediate frequency channel, and the corresponding baseband unit needs to output less signal, which reduces system resource overhead and power consumption.
  • the number of channels used in the multi-channel sub-carrier processing channels may depend on the mapping strategy of the intermediate frequency channel. When the total bandwidth of the sub-carrier channel is equal to the total bandwidth used by the Tx intermediate frequency channel, the aggregation of multi-carrier signals by the Tx intermediate frequency channel is realized. This is described in detail below.
  • the IF channel mapping strategy is to use G Tx IF channels, and the bandwidth used by the G Tx IF channels is BW G .
  • the mapping network #10 can map the baseband signal to G', and the G' signal respectively passes through the sub-carrier processing channel, and then the mapping network #11 maps the signal output by the G' sub-carrier processing channel to the G channel and inputs it into Tx IF channel.
  • the IF channel mapping strategy is to use only M channels of the G Tx IF channels, and the bandwidth used by the M Tx IF channels is BW G .
  • the mapping network #10 can map the baseband signal into M' channels, and the M' signals respectively pass through the sub-carrier processing channels, and then the mapping network #11 maps the signals output by the M' sub-carrier processing channels into M channels and input them into Tx IF channel.
  • the mapping strategy of the intermediate frequency channel is to use G Tx intermediate frequency channels, and the bandwidth used by the G intermediate frequency channels is BW G '.
  • the mapping network #10 can map the baseband signal to G', and the G' signal respectively passes through the sub-carrier processing channel, and then the mapping network #11 maps the signal output by the G' sub-carrier processing channel to the G channel and inputs it into Tx IF channel.
  • the intermediate frequency unit of the signal processing device may further include multiple sub-carrier processing channels arranged between the mapping network and the Rx intermediate frequency channel.
  • the function of the sub-carrier processing channel is similar to that of the above-mentioned sub-carrier processing channel on the downlink transmitting side, and details are not described here.
  • the number of sub-carrier processing channels may satisfy the following condition: channel number of sub-carrier processing channels*BW CR ⁇ number of available channels of Rx intermediate frequency channels*available bandwidth of Rx intermediate frequency channels.
  • the number of sub-carrier processing channels * BW CR ⁇ the number of channels used by the Rx intermediate frequency channel * the bandwidth used by the Rx intermediate frequency channel, that is, the total bandwidth of the sub-carrier processing channels ⁇ the total bandwidth used by the Rx intermediate frequency channel .
  • the number of sub-carrier processing channels may be set when the signal processing apparatus is deployed, or may be set or changed in other ways at other times, or may be set or changed periodically.
  • the number of sub-carrier processing channels in this implementation is referred to as N' for short below.
  • mapping network #20 needs to compress the signal output by the Rx intermediate frequency channel, so that the total bandwidth of the mapped signal matches the total bandwidth of the sub-carrier channel.
  • Mapping network #20 can select only part of the signals output by the Rx intermediate frequency channel for mapping, or select the signal of some frequency bands in the signal output by the Rx intermediate frequency channel for mapping, or select the signal of some frequency bands in the signal output by the Rx intermediate frequency channel for mapping. map.
  • the amount of signals to be processed by the sub-carrier channel is less than the amount of signals processed by the receiving channel, and the corresponding amount of signals input to the baseband unit is reduced, reducing system resource overhead and power consumption.
  • the mapping network #20 can reduce the total signal bandwidth by reducing the number of signal channels and/or reducing the signal bandwidth of each channel, so as to match the total bandwidth of the sub-carrier channels.
  • the mapping network #20 can be Only select the signals output by 2 Rx IF channels for mapping, or select the signals output by 8 Rx IF channels, and intercept the signals with a bandwidth of BW for mapping, or select the signals output by 4 Rx IF channels, and intercept them Signals with a bandwidth of 2*BW are mapped.
  • the number of sub-carrier processing channels * BW the number of channels used by the TX IF channel * the bandwidth used by the TX IF channel, that is, the total bandwidth of the sub-carrier processing channels is equal to the total bandwidth used by the Rx IF channel.
  • the number of channels used in the multi-channel sub-carrier processing channels may depend on the mapping strategy of the intermediate frequency channel.
  • the multi-carrier signals aggregated in the Rx intermediate frequency channel can be divided into single-carrier signals in the sub-carrier channels. This is described in detail below.
  • the mapping strategy of the intermediate frequency channel is to use H Rx intermediate frequency channels, and the bandwidth used by the H Rx intermediate frequency channels is BW H .
  • the mapping network #20 can map the signal output by the H-channel Rx intermediate frequency channel to the H' channel, and the H'-channel signal passes through the sub-carrier processing channel respectively, and then the aggregation network aggregates the signals output by the H'-channel sub-carrier processing channel into the baseband Signal.
  • the mapping strategy of the intermediate frequency channels is to use only N of the H Rx intermediate frequency channels, and the bandwidth used by the N intermediate frequency channels is BW H .
  • the mapping network #20 can map the signals output by the N Rx intermediate frequency channels into N' channels, and the N' signals respectively pass through the sub-carrier processing channels, and then the aggregation network aggregates the signals output by the N' sub-carrier processing channels into the baseband Signal.
  • the division of the modules or units of the above-mentioned signal processing device is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components can be combined or integrated into another device, or some features Can be ignored, or not implemented.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to realize the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the above-mentioned signal processing device may include a receiving unit and a processing unit, the receiving unit is used to perform the receiving action of the signal processing device shown in Figure 1 or Figure 2 above, and the processing unit is used to perform the receiving action shown in Figure 1 or Figure 2 The mapping and other processing operations of the signal processing device.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本申请提出了一种信号处理方法、信号处理装置、芯片和基站。从基带单元接收第一信号,将第一信号映射到M个发射通道,M小于或等于可用的发射通道数量和/或发射通道所使用的带宽小于或等于发射通道可用的带宽,M为大于或等于1的整数;和/或,从射频单元接收第二信号并输入接收通道,将N个接收通道输出的信号汇聚为基带信号,N小于或等于可用的接收通道数量和/或接收通道所使用的带宽小于或等于接收通道可用的带宽,N为大于或等于1的整数。能够降低多通道系统的资源开销,降低功耗。

Description

一种信号处理的方法、装置、芯片和基站 技术领域
本申请涉及本发明涉及通信技术领域,尤其涉及一种信号处理方法、信号处理装置、芯片和基站。
背景技术
随着移动通信技术的发展,多天线技术逐渐得到广泛应用。为支持多天线技术,无线终端和基站需要提供多个收发通道。在一些应用场景下,例如Massive MIMO系统,有可能使用到更多的天线数目,相应的需要更多的收发通道。然而,例如Massive MIMO的多通道系统存在收发通道多,硬件资源开销大,设备功耗高的问题。
发明内容
本申请提出了一种信号处理方法、信号处理装置、芯片和基站,能够降低多通道系统的资源开销,降低功耗。
本申请实施例第一方面提供了一种信号处理的方法,包括:从基带单元接收第一信号,将第一信号映射到M个发射通道,M小于或等于可用的发射通道数量和/或发射通道所使用的带宽小于或等于发射通道可用的带宽,M为大于或等于1的整数;和/或,从射频单元接收第二信号并输入接收通道,将N个接收通道输出的信号汇聚为基带信号,N小于或等于可用的接收通道数量和/或接收通道所使用的带宽小于或等于接收通道可用的带宽,N为大于或等于1的整数。
通过减少通道数量或者减少通道使用的带宽,减少了基带输出的或者输入的信号总量,减少了系统的资源开销,降低了功耗。
在第一方面的一种可能的实现方式中,M个发射通道所使用的带宽之和与N个接收通道所使用的带宽之和相等。
在第一方面的一种可能的实现方式中,将第一信号映射到M个发射通道包括:根据第一映射策略将第一信号映射到M个发射通道。
在第一方面的一种可能的实现方式中,第一映射策略包括M和/或发射通道所使用的带宽。
在第一方面的一种可能的实现方式中,从基带单元接收第一映射策略,或者本地配置有第一映射策略。
在第一方面的一种可能的实现方式中,将N个接收通道输出的信号汇聚为基带信号包括:根据第二映射策略将N个接收通道输出的信号汇聚为基带信号。
在第一方面的一种可能的实现方式中,第二映射策略包括N和/或接收通道所使用的带宽。
在第一方面的一种可能的实现方式中,从基带单元接收第二映射策略,或者本地配置有第二映射策略。
在第一方面的一种可能的实现方式中,当发射通道所使用的带宽小于发射通道可用的带宽或小于特定频率范围,发射通道所使用的带宽在不同时刻进行频率切换。
在第一方面的一种可能的实现方式中,当接收通道所使用的带宽小于接收通道可用的带宽或小于特定频率范围,接收通道所使用的带宽在不同时刻进行频率切换。
通过通道使用的带宽在不同时刻进行频率切换,使得通道能够遍历更大的带宽范围,使得有限的通道带宽能够对带宽更大的信道做指示。
在第一方面的一种可能的实现方式中,M个发射通道中的至少一个发射通道的信号通过多个发射支路输出至天线单元,发射支路上设置有移相控制单元。
在第一方面的一种可能的实现方式中,N个接收通道中的至少一个接收通道通过多个接收支路接收来自天线单元的信号,接收支路上设置有移相控制单元。
在第一方面的一种可能的实现方式中,M个发射通道驱动全部或部分天线阵列。可选的,M个发射通道通过开关或者双工器驱动天线阵列。
在第一方面的一种可能的实现方式中,N个接收通道驱动全部或部分天线阵列。可选的,N个接收通道通过开关或者双工器驱动天线阵列。
在第一方面的一种可能的实现方式中,发射通道为发射中频通道。
在第一方面的一种可能的实现方式中,接收通道为接收中频通道。
通过减少中频通道的数量或者中频通道使用的带宽,减少中频域处理的信号总量,减少了系统的资源开销,降低了功耗。在第一方面的一种可能的实现方式中,将第一信号映射到M个发射通道包括:将第一信号映射到P个分载波通道,将P个分载波通道输出的信号映射到M个发射通道,分载波通道的带宽为一个载波带宽,P为大于或等于1的整数。可选的,P满足以下公式:P*载波带宽=M*发射通道所使用的带宽,或者P*载波带宽<M*发射通道所使用的带宽。
当分载波通道的总带宽等于发射通道使用的总带宽时,实现了发射通道对多载波信号的聚合。当分载波通道的总带宽小于发射通道使用的总带宽时,分载波通道需要处理的信号量少于发射通道处理的信号量,相应的基带单元需要输出的信号量减少,减少了系统的资源开销,降低了功耗。
在第一方面的一种可能的实现方式中,将N个接收通道输出的信号汇聚为基带信号包括:将N个接收通道输出的信号映射到Q个分载波通道,将Q个分载波通道输出的信号汇聚为基带信号,分载波通道的带宽为一个载波带宽,Q为大于或等于1的整数。可选的,Q满足以下公式:Q*载波带宽=N*接收通道所使用的带宽,或者Q*载波带宽<N*接收通道所使用的带宽。
当分载波通道的总带宽等于接收通道使用的总带宽时,接收通道中聚合的多载波信号可以在分载波通道中分为单载波信号。当分载波通道的总带宽小于接收通道使用的总带宽时,可以灵活选择部分接收通道输出的信号输入到分载波通道中,也可以灵活选择接收通道输出的信号中部分频段的信号输入分载波通道,也可以灵活选择部分接收通道输出的信号中部分频段的信号输入分载波通道,使得分载波通道需要处理的信号量少于接收通道处理的信号量,相应的输入基带单元的信号量减少,减少了系统的资源开销,降低了功耗。
本申请实施例第二方面提供了一种信号处理装置,包括:
接收单元,用于从基带单元接收第一信号;处理单元,用于将第一信号映射到M个发射通道,M小于或等于可用的发射通道数量和/或发射通道所使用的带宽小于或等于发射通道可用的带宽,M为大于或等于1的整数;和/或,
接收单元,用于从射频单元接收第二信号并输入接收通道;处理单元,用于将N个接收通道输出的信号汇聚为基带信号,N小于或等于可用的接收通道数量和/或接收通道所使用的带宽小于或等于接收通道可用的带宽,N为大于或等于1的整数。
在第二方面的一种可能的实现方式中,M个发射通道所使用的带宽之和与N个接收通道所使用的带宽之和相等。
在第二方面的一种可能的实现方式中,处理单元还用于:根据第一映射策略将第一信号映射到M个发射通道。
在第二方面的一种可能的实现方式中,第一映射策略包括M和/或发射通道所使用的带宽。
在第二方面的一种可能的实现方式中,接收单元还用于:从基带单元接收第一映射策略。
在第二方面的一种可能的实现方式中,处理单元还用于:根据第二映射策略将N个接收通道输出的信号汇聚为基带信号。
在第二方面的一种可能的实现方式中,第二映射策略包括N和/或接收通道所使用的带宽。
在第二方面的一种可能的实现方式中,接收单元还用于:从基带单元接收第二映射策略。
在第二方面的一种可能的实现方式中,处理单元还用于:当发射通道所使用的带宽小于发射通道可用的带宽或小于特定频率范围,发射通道所使用的带宽在不同时刻进行频率切换。
在第二方面的一种可能的实现方式中,处理单元还用于:当接收通道所使用的带宽小于接收通道可用的带宽或小于特定频率范围,接收通道所使用的带宽在不同时刻进行频率切换。
在第二方面的一种可能的实现方式中,处理单元还用于:M个发射通道中的至少一个发射通道的信号通过多个发射支路输出至天线单元,发射支路上设置有移相控制单元。
在第二方面的一种可能的实现方式中,处理单元还用于:N个接收通道中的至少一个接收通道通过多个接收支路接收来自天线单元的信号,接收支路上设置有移相控制单元。
在第二方面的一种可能的实现方式中,处理单元还用于:M个发射通道驱动全部或部分天线阵列。可选的,M个发射通道通过开关或者双工器驱动天线阵列。
在第二方面的一种可能的实现方式中,处理单元还用于:N个接收通道驱动全部或部分天线阵列。可选的,N个接收通道通过开关或者双工器驱动天线阵列。
在第二方面的一种可能的实现方式中,发射通道为发射中频通道。
在第二方面的一种可能的实现方式中,接收通道为接收中频通道。
在第二方面的一种可能的实现方式中,处理单元还用于:将第一信号映射到P个分 载波通道,将P个分载波通道输出的信号映射到M个发射通道,分载波通道的带宽为一个载波带宽,P为大于或等于1的整数,P满足以下公式:P*载波带宽=M*发射通道所使用的带宽。
在第二方面的一种可能的实现方式中,处理单元还用于:将N个接收通道输出的信号映射到Q个分载波通道,将Q个分载波通道输出的信号汇聚为基带信号,分载波通道的带宽为一个载波带宽,Q为大于或等于1的整数,Q满足以下公式:Q*载波带宽=N*接收通道所使用的带宽。
本申请实施例第三方面提供了一种信号处理装置,包括:一个或一个以上处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当计算机执行指令被处理器执行时,通信装置执行如上述第一方面或第一方面任意一种实现方式所述的方法。
本申请实施例第四方面提供了一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如上述第一方面或第一方面任意一种实现方式所述的方法。
本申请实施例第五方面提供了一种基站,包括:基带单元、天线单元、和如上述第二方面或第三方面所述的信号处理装置或如第四方面所述的芯片或者芯片系统。
其中,第二方面至第五方面的技术效果可参见第一方面的有益效果。
附图说明
图1为本申请实施例中一种信号处理装置的示意图;
图2为本申请实施例中另一种信号处理装置的示意图;
图3为本申请实施例中异频轮训的示意图;
图4为本申请实施例中同频轮训的示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c或a、b和c,其中a、b和c可以是单个,也可以是多个。
本申请实施例提供的信号处理的方法可以应用于各种移动通信系统,例如:长期 演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、5G(例如新无线(new radio,NR)系统),以及未来通信系统。
下面结合附图对本申请实施例提供的信号处理的方法进行详细说明。本申请实施例提供的信号处理的方法可以应用于信号处理装置,该信号处理装置可以部署在或者集成在基站或者终端中。
基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代通信(3G)网络中,称为节点B(Node B),或者应用于第五代通信系统中等等。
终端包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)、车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。
图1为本申请实施例提供的一种信号处理装置的示意图。图1示出了该信号处理装置所包含的逻辑单元,以便于介绍本申请提出的信号处理方法。图1所示的信号处理装置至少包括中频单元。可选的,该信号处理装置还可以包括射频单元。中频单元和射频单元可以与基带单元和天线单元相连接;或者,基带单元和/或天线单元与中频单元和射频单元均包含在该信号处理装置中。可以理解的是,该信号处理装置所包含的逻辑单元为功能上的划分,在实际实现时,可以有另外的划分方式,例如多个单元的功能可以结合或集成到一个另一个装置上;各逻辑单元可以是或者也可以不是物理上分开的,各逻辑单元可以是一个物理单元或多个物理单元,即可以部署在一个装置中,也可以部署在分布式部署的多个装置中,本申请对此不做限定。
其中,基带单元具有基带处理功能。基带单元还可以用于向中射频单元发送控制信号,以使得中射频单元执行相应操作,控制信号例如可以包括下文中的映射策略。
射频单元中可以包括一个或者多个发射(transmit,Tx)射频通道、以及一个或者多个接收(receive,Rx)射频通道。Tx射频通道可以包括功率放大器(power amplifier,PA)。Tx射频通道还可以包括发射滤波器(Tx filter)。Rx射频通道可以包括低噪声放大器(low noise amplifier,LNA)。Rx射频通道还可以包括接收滤波器(Rx filter)。射频单元还可以包括与Tx射频通道一一对应的数模转换器(digital to analog converter,DAC),信号经过DAC转换后输入Tx射频通道;射频单元还可以包括与Rx射频通道一一对应的模数转换器(analog to digital converter,ADC),信号经过Rx射频通道 后输入ADC。
中频单元用于对基带信号进行处理并输出至多路射频发射通道,也用于将来自多路射频接收通道的信号转换为基带信号。中频单元可以包括与Tx射频通道和Rx射频通道一一对应的Tx中频通道和Rx中频通道。Tx中频通道和Rx中频通道可以包括滤波模块、速率变换模块等功能模块,用于对输入中频通道的信号进行滤波、速率变换等处理。基带信号可以通过映射网络映射为多路信号,并输入各Tx中频通道。多路Rx中频通道输出的信号可以通过汇聚网络汇聚为基带信号,输入基带单元。其中,映射网络和汇聚网络具体可以通过矩阵运算的方式实现。
上述中频单元和射频单元也可以合称为中射频单元,可以理解的是,中射频单元用于对基带信号进行功率放大或滤波,以将基带信号转换为射频信号,并将射频信号转换为基带信号。
天线单元可用于实现射频信号的接收或发送,即实现射频信号与电磁波之间的能量转换。
如图1所示的信号处理装置的下行发射侧和上行接收侧在进行信号处理时有多种实现方式,下面分别对该信号处理装置的下行发射侧和上行接收侧可能的信号处理过程进行详细介绍。
关于该信号处理装置的下行发射侧:
从基带单元接收第一信号,该信号在下文中简称为基带信号;将第一信号映射到Tx中频通道。下面,对第一信号映射到Tx中频通道的过程进行详细介绍。
该信号处理装置中,可用的Tx中频通道数量为G,Tx中频通道可用的带宽为BW G。可用的可以理解为硬件支持的或者配置的最大可用的或者允许使用的。在信号处理过程中,实际使用的Tx中频通道数量可以小于或等于可用的Tx中频通道数量,各Tx中频通道实际使用的通道带宽可以小于或等于Tx中频通道可用的带宽。Tx中频通道实际使用的带宽(或者简称为Tx中频通道所使用的带宽),可以理解为Tx中频通道进行数字中频域处理(例如进行速率变换、滤波等处理)时所使用的载波带宽之和。示例性的,一个Tx中频通道可以使用4个载波,每个载波的载波带宽为BW,则一个Tx中频通道所使用的带宽为4*BW。
在第一种可能的实现方式中,Tx中频通道使用的通道数量为G。该G路Tx中频通道所使用的带宽为BW G。也就是说,映射网络将基带信号映射为G路,并输出到G路Tx中频通道。
在第二种可能的实现方式中,Tx中频通道可用的通道数量仍然为G,但仅使用其中的M路,M小于G。也就是说,映射网络将基带信号仅映射为M路,并输出到M路Tx中频通道。由于基带信号仅需要映射到G路Tx中频通道中的M路,映射网络的规模更小,映射网络处理的数据量更小,节省了计算资源,降低了系统的资源开销。
在第三种可能的实现方式中,Tx中频通道可用的通道数量仍然为G,Tx中频通道可用的带宽仍然为BW G,但仅使用部分带宽BW G’,其中BW G’小于BW G。即映射网络将基带信号映射为G路之后,Tx中频通道对各路信号的数字中频域处理所使用的实际带宽为BW G’。
在第四种可能的实现方式中,可以结合上述第二种可能的实现方式和第三种可能 的实现方式,即Tx中频通道可用的通道数量仍然为G,Tx中频通道可用的带宽仍然为BW G,但仅使用其中的M路,且该M路Tx中频通道仅使用部分带宽BW G’。其中M小于G,且BW G’小于BW G。也就是说,映射网络将基带信号仅映射为M路,并输出到M路Tx中频通道,该M路Tx中频通道进行数字中频域处理所使用的实际带宽为BW G’。
示例性的,当下行业务复用流数不高,则可以选择上述第二种可能的实现方式;当下行业务复用流数较高,则可以选择上述第三种可能的实现方式。
当下行的总业务需求量大,但对复用流数即接收天线的增益不敏感,则可以选择上述第二种可能的实现方式,即仅减少使用的通道数量而不减少通道使用的带宽;当上行总业务需求量不大,但对接收天线的增益很敏感,例如用户覆盖受限场景,则可以选择上述第三种可能的实现方式,即减少通道使用的带宽而不减少通道数量。
Tx中频通道与DAC、Tx射频通道一一对应。可选的,Tx射频通道和天线单元之间可以设置有分路器,分路器和天线单元之间的各支路上还可以设置有移相器。分路器用于对Tx射频通道输出的信号进行分路,并对分路后的信号进行移相操作。从而可以使Tx射频通道驱动更多天线阵列从而获得更好的天线侧阵面收益;也可以使得Tx射频通道输出至天线单元的信号路数可以多于Tx中频通道的路数,以避免中频通道数量减少时对天线侧阵面收益产生不利影响。
可选的,上述Tx射频通道可以驱动天线单元中全部或者部分天线阵列。Tx射频通道具体可以通过开关或双工器来控制驱动天线单元中全部或者部分天线阵列。
关于该信号处理装置的上行接收侧:
从射频单元接收第二信号,该信号在下文中简称为射频信号;将第二信号输入到Rx中频通道,将部分或全部Rx中频通道输出的信号汇聚并输入到基带单元。Rx中频通道输出的信号汇聚并输入基带单元的信号在下文中简称为基带信号。下面,Rx中频通道的信号汇聚为基带信号的过程进行详细介绍。
该信号处理装置中,可用的Rx中频通道数量为H,Rx中频通道可用的带宽为BW H。可用的可以理解为硬件支持的或者配置的最大可用的或者允许使用的。在信号处理过程中,实际使用的Rx中频通道数量可以小于或等于可用的Rx中频通道数量,各Rx中频通道实际使用的通道带宽可以小于或等于Rx中频通道可用的带宽。Rx中频通道实际使用的带宽(或者简称为Rx中频通道所使用的带宽),可以理解为Rx中频通道进行数字中频域处理(例如进行速率变换、滤波等处理)时所使用的载波带宽之和。示例性的,一个Rx中频通道可以使用4个载波,每个载波的载波带宽为BW,则一个Tx中频通道所使用的带宽为4*BW。
在第一种可能的实现方式中,Rx中频通道使用的通道数量为H。该H路Rx中频通道所使用的带宽为BW H
在第二种可能的实现方式中,Rx中频通道可用的通道数量仍然为H,但仅其中的N路信号由汇聚网络汇聚为基带信号,N小于H。该N路Rx中频通道所使用带宽可以为BW H。具体的,H路Rx中频通道输出的信号中仅有N路信号输入到汇聚网络;或者,多于N路的Rx中频通道输出的信号输入汇聚网络后,汇聚网络仅选择其中N路信号汇聚为基带信号。由于汇聚网络仅需要将N路信号汇聚为基带信号,汇聚网络 的规模更小,汇聚网络处理的数据量更小,节省了计算资源,降低了系统的资源开销。
在第三种可能的实现方式中,Rx中频通道可用的通道数量仍然为H,Rx中频通道可用的带宽仍然为BW H,但仅使用部分带宽BW H’,其中BW H’小于BW H。即各路ADC输出的信号输入到各Rx中频通道,Rx中频通道对各路信号的数字中频域处理所使用的实际带宽为BW H’。
在第四种可能的实现方式中,可以结合上述第二种可能的实现方式和第三种可能的实现方式,即Rx中频通道可用的通道数量仍然为H,Rx中频通道可用的带宽仍然为BW H,但仅其中的N路信号由汇聚网络汇聚为基带信号,且该N路Rx中频通道仅使用部分带宽BW H’,N小于H,且BW H’小于BW H。具体的,H路Rx中频通道均使用部分带宽BW H’,且该H路Rx中频通道输出的信号中仅有N路信号输入到汇聚网络,汇聚为基带信号;或者,H路Rx中频通道均使用部分带宽BW H’,且该H路Rx中频通道输出的信号输入汇聚网络,汇聚网络仅选择其中N路信号汇聚为基带信号;或者,H路Rx中频通道中仅有N路Rx中频通道使用部分带宽BW H’,且该N路Rx中频通道输出的信号输入到汇聚网络,汇聚为基带信号。上述H路Rx中频通道均使用部分带宽BW H’中的“H路”可以替换为“多于N路”,后续处理过程中的“H路”也可相应替换为“多于N路”。
示例性的,当上行的总业务需求量大,但对复用流数即接收天线的增益不敏感,则可以选择上述第二种可能的实现方式,即仅减少使用的通道数量而不减少通道使用的带宽;当上行总业务需求量不大,但对接收天线的增益很敏感,例如用户覆盖受限场景,则可以选择上述第三种可能的实现方式,即减少通道使用的带宽而不减少通道数量。
Rx中频通道与ADC、Rx射频通道一一对应。可选的,Rx射频通道和天线单元之间可以设置有合路器,合路器与天线单元之间的各支路上可以设置有移相器。移相器用于对来自天线单元的信号进行移相,合路器用于将经过移相的多路信号进行合路。从而可以使Rx射频通道驱动更多天线阵列从而获得更好的天线侧阵面收益;也可以使得Rx射频通道接收的天线单元的信号路数多于Rx中频通道的路数,以避免中频通道数量减少时对天线侧阵面收益产生不利影响。中频通道数量减少可以理解为上述实现方式中仅部分Rx中频通道输出的信号由汇聚网络汇聚为基带信号。
可选的,上述Rx射频通道可以驱动天线单元中全部或者部分天线阵列。Rx射频通道具体可以通过开关或者双工器来控制驱动天线单元中全部或者部分天线阵列。
可以理解的是,上述下行发射侧的四种可能的实现方式中的任一种可以与上行接收侧的四种可能的实现方式中的任一种结合使用,本申请对此不作限定。
可选的,上述下行发射侧所有中频通道实际使用的带宽之和与上行接收侧的中频通道实际使用的带宽之和相同。示例性的,当下行发射侧采用上述第一种实现方式,上行接收侧采用上述第四种实现方式时,可以存在如下关系:G*BW G=N*BW N
可选的,信号处理装置在每个时隙确定或改变下行发射侧的实现方式和/或上行接收侧的实现方式。确定或改变上述上行/下行实现方式的时间间隔可以为一个时隙、或者可以为一个帧,可以为其他的时间长度,本申请对此不作限定。
可选的,当中频通道仅使用可用带宽中的部分带宽时,可以进行跳频配置(即跳频轮训),也就是下行发射侧或者上行接收侧的中频通道在不同时刻可以使用可用带宽中的不同部分,或者中频通道在不同时刻可以使用特定带宽范围内的不同部分,该特定带宽范围小于可用带宽。中频通道的带宽发生变化的时间间隔可以与上述确定或改变上述上行/下行实现方式的时间间隔相同,或者可以小于上述确定或改变上述上行/下行实现方式的时间间隔。通过跳频配置可以实现Rx中频通道或者Tx中频通道对可用带宽的全频段的遍历或者对特定带宽范围的遍历,也就能通过各通道有限的带宽对可用带宽的全频段信道做指示或者对特定带宽范围的信道做指示。从而也可以满足上下行信道的互异性需求。
跳频配置包括异频轮训和同频轮训。
如图3所示,异频轮训为下行发射侧或者上行接收侧的各中频通道在同一时刻使用的带宽不同,且下一个切换时刻各中频通道使用的带宽发生切换。异频轮训例如可以是:在时刻#1,Rx中频通道1使用0-25MHz频段作为使用带宽,Rx中频通道2使用25-50MHz频段作为使用带宽,Rx中频通道3使用50-75MHz频段作为使用带宽,Rx中频通道4使用75-100MHz频段作为使用带宽;在时刻#2,Rx中频通道1使用25-50MHz频段作为使用带宽,Rx中频通道2使用50-75MHz频段作为使用带宽,Rx中频通道3使用75-100MHz频段作为使用带宽,Rx中频通道4使用0-25MHz频段作为使用带宽;在时刻#3,Rx中频通道1使用50-75MHz频段作为使用带宽,Rx中频通道2使用75-100MHz频段作为使用带宽,Rx中频通道3使用0-25MHz频段作为使用带宽,Rx中频通道4使用25-50MHz频段作为使用带宽;在时刻#4,Rx中频通道1使用75-100MHz频段作为使用带宽,Rx中频通道2使用0-25MHz频段作为使用带宽,Rx中频通道3使用25-50MHz频段作为使用带宽,Rx中频通道4使用50-75MHz频段作为使用带宽。经过上述4次切换,该4个Rx中频通道均遍历了100MHz的频段。
如图4所示,同频轮训为下行发射侧或者上行接收侧的各中频通道在同一时刻使用的带宽相同,且下一个切换时刻各中频通道使用的带宽发生切换。同频轮训例如可以是:在时刻#1,4个Rx中频通道均使用0-25MHz频段作为使用带宽;在时刻#2,4个Rx中频通道均使用25-50MHz频段作为使用带宽;在时刻#3,4个Rx中频通道均使用50-75MHz频段作为使用带宽;在时刻#4,4个Rx中频通道均使用75-100MHz频段作为使用带宽。经过上述4次切换,该4个Rx中频通道均遍历了100MHz的频段。
可选的,该信号处理装置可以根据映射策略进行上述中频域的信号处理。该映射策略用于指示或者用于描述该信号处理过程中下行发射侧以及上行接收侧中频通道的使用策略。该映射策略可以在本地配置,或者从基带单元接收。基带单元可以根据信号质量、数据量等信息确定映射策略。
一种可能的实现方式中,映射策略用于指示下行发射侧的实现方式和/或上行接收侧的实现方式。可选的,映射策略包括上行映射策略指示信息和下行映射策略指示信息。示例性的,映射策略用于指示上行接收侧采用上述第一种实现方式,且下行发射侧采用上述第四种实现方式;根据该映射策略以及H、BW H、M、BW G的取值,进行 上述中频域的信号处理。H、BW H、M、BW G的取值可以在本地配置,或者可以约定默认的值。
一种可能的实现方式中,映射策略用于指示以下信息中的一项或多项:实际使用的Tx中频通道数量、Tx中频通道实际使用的通道带宽、实际使用的Rx中频通道数量、Rx中频通道实际使用的通道带宽。示例性的,映射策略包括上述信息中的一项或多项。
可以理解的是,上述映射网络通过矩阵运算来实现时,矩阵的规模可以灵活调整,从而使输出信号的路数可以灵活变化。映射网络的矩阵规模可以根据上述映射策略确定。上述汇聚网络通过矩阵运算来实现时,矩阵的规模也可以灵活调整,从而能够根据输入信号的路数不同灵活调整矩阵规模。
上述图1所示的信号处理装置的信号处理过程具体还可以通过如图2所示的方式来实现。
关于该信号处理装置的下行发射侧:
该信号处理装置的中频单元还可以包括设置在映射网络和Tx中频通道之间的多路分载波处理通道。分载波处理通道用于对信号进行分载波处理,例如对信号进行单载波粒度的速率变换,滤波等处理。分载波处理通道相较于上述中频通道可以实现更细粒度的信号处理。本申请实施例中,分载波处理通道中各通道的带宽BW C可以设置为一个载波带宽,该载波带宽对应上述Tx中频通道中一个载波的带宽,即上述BW。分载波处理通道中各通道的带宽BW C还可以设置为其他值,本申请对此不做限定。分载波处理通道的带宽可以在部署该信号处理装置时设置,也可以在其他时刻通过其他方式设置或者改变,本申请对此不做限定。可以理解的是,在下一次设置或者改变该分载波处理通道的带宽之前,该带宽固定。
分载波处理通道的数量可以满足如下条件:分载波处理通道的通道数量*BW CT≤Tx中频通道的可用通道数量*Tx中频通道的可用带宽。
一种可能的实现方式中,分载波处理通道的通道数量*BW CT<Tx中频通道的使用通道数量*Tx中频通道的使用带宽,即分载波处理通道的总带宽<Tx中频通道使用的总带宽。可选的,分载波处理通道数量可以在部署该信号处理装置时设置,也可以在其他时刻通过其他方式设置或者改变,也可以周期性设置或者改变。下面将该实现方式中的分载波处理通道的通道数量简称为M’。
也就是说,映射网络#10将基带信号映射为M’路信号并输入到M’路分载波处理通道,然后映射网络#11将M’路信号映射为多路信号输入到Tx中频通道。
由于分载波处理通道的总带宽<Tx中频通道使用的总带宽,映射网络#11需要将M’路信号映射为多于M’路的信号,从而由于映射后的信号数量变多,使得映射后的总带宽增加,能够匹配Tx中频通道使用的总带宽。且分载波通道需要处理的信号量少于Tx中频通道处理的信号量,相应的基带单元需要输出的信号量减少,减少了系统的资源开销,降低了功耗。
一种可能的实现方式中,分载波处理通道数量*BW=Tx中频通道的使用通道数量*Tx中频通道的使用带宽,即分载波处理通道的总带宽=Tx中频通道使用的总带宽。多路分载波处理通道中使用几路通道可以取决于中频通道的映射策略。分载波通道的 总带宽等于Tx中频通道使用的总带宽时,实现了Tx中频通道对多载波信号的聚合。下面对此进行详细介绍。
具体的,上述图1的第一种可能的实现方式中,中频通道的映射策略为使用G路Tx中频通道,且该G路Tx中频通道使用的带宽为BW G。则映射网络#10可以将基带信号映射为G’路,该G’路信号分别经过分载波处理通道,然后映射网络#11将G’路分载波处理通道输出的信号映射为G路并输入Tx中频通道。G’满足以下公式:G’*BW=G*BW G
具体的,上述图1的第二种可能的实现方式中,中频通道的映射策略为仅使用G路Tx中频通道中的M路,且该M路中频通道使用的带宽为BW G。则映射网络#10可以将基带信号映射为M’路,该M’路信号分别经过分载波处理通道,然后映射网络#11将M’路分载波处理通道输出的信号映射为M路并输入Tx中频通道。M’满足以下公式:M’*BW=M*BW G
具体的,上述图1的第三种可能的实现方式中,中频通道的映射策略为使用G路Tx中频通道,且该G路中频通道使用的带宽为BW G’。则映射网络#10可以将基带信号映射为G’路,该G’路信号分别经过分载波处理通道,然后映射网络#11将G’路分载波处理通道输出的信号映射为G路并输入Tx中频通道。G’满足以下公式:G’*BW=G*BW G’。
具体的,上述图1的第四种可能的实现方式中,中频通道的映射策略为使用G路Tx中频通道中的M路,且该M路中频通道使用的带宽为BW G’。则映射网络#10可以将基带信号映射为M’路,该M’路信号分别经过分载波处理通道,然后映射网络#11将M’路分载波处理通道输出的信号映射为M路并输入Tx中频通道。M’满足以下公式:M’*BW=M*BW G’。
关于该信号处理装置的上行接收侧:
该信号处理装置的中频单元还可以包括设置在映射网络和Rx中频通道之间的多路分载波处理通道。分载波处理通道与上述下行发射侧的分载波处理通道的功能类似,此处不作赘述。
分载波处理通道的数量可以满足如下条件:分载波处理通道的通道数量*BW CR≤Rx中频通道的可用通道数量*Rx中频通道的可用带宽。
一种可能的实现方式中,分载波处理通道的通道数量*BW CR<Rx中频通道的使用通道数量*Rx中频通道的使用带宽,即分载波处理通道的总带宽<Rx中频通道使用的总带宽。可选的,分载波处理通道数量可以在部署该信号处理装置时设置,也可以在其他时刻通过其他方式设置或者改变,也可以周期性设置或者改变。下面将该实现方式中的分载波处理通道的通道数量简称为N’。
可以理解的是,在该实现方式中,映射网络#20需要对Rx中频通道输出的信号进行压缩,使得映射后信号的总带宽匹配分载波通道的总带宽。映射网络#20可以仅选择部分Rx中频通道输出的信号进行映射,也可以选择Rx中频通道输出的信号中部分频段的信号进行映射,也可以选择部分Rx中频通道输出的信号中部分频段的信号进行映射。使得分载波通道需要处理的信号量少于接收通道处理的信号量,相应的输入基带单元的信号量减少,减少了系统的资源开销,降低了功耗。也就是说,对于Rx 中频通道输出的信号,映射网络#20可以通过减少信号通道数量和/或减少各路信号带宽的方式减少信号总带宽,以匹配分载波通道的总带宽。示例性的,当Rx中频通道使用16路通道,每通道使用的带宽为4*BW,分载波处理通道的通道数量为8,分载波处理通道的带宽BW CR为BW时,映射网络#20可以仅选择2路Rx中频通道输出的信号进行映射,也可以选择8路Rx中频通道输出的信号,并截取其中带宽为BW的信号进行映射,也可以选择4路Rx中频通道输出的信号,并截取其中带宽为2*BW的信号进行映射。
一种可能的实现方式中,分载波处理通道数量*BW=TX中频通道的使用通道数量*TX中频通道的使用带宽,即分载波处理通道的总带宽等于Rx中频通道使用的总带宽。多路分载波处理通道中使用几路通道可以取决于中频通道的映射策略。分载波通道的总带宽等于Rx接收通道使用的总带宽时,Rx中频通道中聚合的多载波信号可以在分载波通道中分为单载波信号。下面对此进行详细介绍。
具体的,上述第一种可能的实现方式中,中频通道的映射策略为使用H路Rx中频通道,且该H路Rx中频通道使用的带宽为BW H。则映射网络#20可以将H路Rx中频通道输出的信号映射为H’路,该H’路信号分别经过分载波处理通道,然后汇聚网络将H’路分载波处理通道输出的信号汇聚为基带信号。H’满足以下公式:H’*BW=H*BW H
具体的,上述第二种可能的实现方式中,中频通道的映射策略为仅使用H路Rx中频通道中的N路,且该N路中频通道使用的带宽为BW H。则映射网络#20可以将N路Rx中频通道输出的信号映射为N’路,该N’路信号分别经过分载波处理通道,然后汇聚网络将N’路分载波处理通道输出的信号汇聚为基带信号。N’满足以下公式:N’*BW=N*BW G
具体的,上述第三种可能的实现方式中,中频通道的映射策略为使用H路Rx中频通道,且该H路中频通道使用的带宽为BW H’。则映射网络#20可以将H路Rx中频通道输出的信号映射为H’路,该H’路信号分别经过分载波处理通道,然后汇聚网络将H’路分载波处理通道输出的信号汇聚为基带信号。H’满足以下公式:H’*BW=H*BW G’。
具体的,上述第四种可能的实现方式中,中频通道的映射策略为使用H路Rx中频通道中的N路,且该N路中频通道使用的带宽为BW H’。则映射网络#20可以将N路Rx中频通道输出的信号映射为M’路,该M’路信号分别经过分载波处理通道,然后汇聚网络将N’路分载波处理通道输出的信号汇聚为基带信号。N’满足以下公式:N’*BW=N*BW G’。
上述信号处理装置的所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施 例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
示例性的,上述信号处理装置可以包括接收单元和处理单元,接收单元用于执行上述图1或图2所示的信号处理装置的接收动作,处理单元用于执行上述图1或图2所示的信号处理装置的映射等处理动作。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。

Claims (49)

  1. 一种信号处理的方法,其特征在于,
    从基带单元接收第一信号,将所述第一信号映射到M个发射通道,所述M小于可用的发射通道数量和/或所述发射通道所使用的带宽小于所述发射通道可用的带宽,所述M为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    从射频单元接收第二信号并输入接收通道,将N个所述接收通道输出的信号汇聚为基带信号,所述N为大于或等于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述M个所述发射通道所使用的带宽之和与所述N个所述接收通道所使用的带宽之和相等。
  4. 根据权利要求2或3所述的方法,其特征在于,所述N小于可用的接收通道数量和/或所述接收通道所使用的带宽小于所述接收通道可用的带宽。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述将所述第一信号映射到M个发射通道包括:
    根据第一映射策略将所述第一信号映射到所述M个所述发射通道。
  6. 根据权利要求5所述的方法,其特征在于,所述第一映射策略包括所述M和/或所述发射通道所使用的带宽。
  7. 根据权利要求5或6所述的方法,其特征在于,还包括:
    从基带单元接收所述第一映射策略。
  8. 根据权利要求2所述的方法,其特征在于,所述将N个所述接收通道输出的信号汇聚为基带信号包括:
    根据第二映射策略将所述N个所述接收通道输出的信号汇聚为所述基带信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第二映射策略包括所述N和/或所述接收通道所使用的带宽。
  10. 根据权利要求8或9所述的方法,其特征在于,还包括:
    从基带单元接收所述第二映射策略。
  11. 根据权利要求1-10任一所述的方法,其特征在于,当所述发射通道所使用的带宽小于所述发射通道可用的带宽,所述发射通道所使用的带宽在不同时刻进行频率切换。
  12. 根据权利要求2-11任一所述的方法,其特征在于,当所述接收通道所使用的带宽小于所述接收通道可用的带宽,所述接收通道所使用的带宽在不同时刻进行频率切换。
  13. 根据权利要求1-12任一所述的方法,其特征在于,所述M个发射通道中的至少一个发射通道的信号通过多个发射支路输出至天线单元,所述发射支路上设置有移相控制单元。
  14. 根据权利要求2-13任一所述的方法,其特征在于,所述N个接收通道中的至少一个接收通道通过多个接收支路接收来自天线单元的信号,所述接收支路上设置有移相控制单元。
  15. 根据权利要求1-14任一所述的方法,其特征在于,所述M个发射通道驱动全 部或部分天线阵列。
  16. 根据权利要求2-15任一所述的方法,其特征在于,所述N个接收通道驱动全部或部分天线阵列。
  17. 根据权利要求1-16任一所述的方法,其特征在于,所述发射通道为发射中频通道。
  18. 根据权利要求17所述的方法,其特征在于,所述接收通道为接收中频通道。
  19. 根据权利要求1-18任一所述的方法,其特征在于,所述将所述第一信号映射到M个发射通道包括:
    将所述第一信号映射到P个分载波通道,将所述P个分载波通道输出的信号映射到所述M个所述发射通道,所述分载波通道的带宽为一个载波带宽,所述P为大于或等于1的整数。
  20. 根据权利要求10所述的方法,其特征在于,所述P满足以下公式:
    P*载波带宽=M*所述发射通道所使用的带宽;或者,
    P*载波带宽<M*所述发射通道所使用的带宽。
  21. 根据权利要求2-20任一所述的方法,其特征在于,所述将N个所述接收通道输出的信号汇聚为基带信号包括:
    将所述N个所述接收通道输出的信号映射到Q个分载波通道,将所述Q个分载波通道输出的信号汇聚为基带信号,所述分载波通道的带宽为一个载波带宽,所述Q为大于或等于1的整数。
  22. 根据权利要求21所述的方法,其特征在于,所述Q满足以下公式:
    Q*载波带宽=N*所述接收通道所使用的带宽;或者,
    Q*载波带宽<N*所述接收通道所使用的带宽。
  23. 一种信号处理的方法,其特征在于,
    从射频单元接收第二信号并输入接收通道,将N个所述接收通道输出的信号汇聚为基带信号,所述N小于可用的接收通道数量和/或所述接收通道所使用的带宽小于所述接收通道可用的带宽,所述N为大于或等于1的整数。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    从基带单元接收第一信号,将所述第一信号映射到M个发射通道,所述M为大于或等于1的整数。
  25. 根据权利要求24所述的方法,其特征在于,所述M个所述发射通道所使用的带宽之和与所述N个所述接收通道所使用的带宽之和相等。
  26. 根据权利要求24或25所述的方法,其特征在于,所述M小于可用的发射通道数量和/或所述发射通道所使用的带宽小于所述发射通道可用的带宽。
  27. 根据权利要求23-26任一所述的方法,其特征在于,所述将N个所述接收通道输出的信号汇聚为基带信号包括:
    根据第二映射策略将所述N个所述接收通道输出的信号汇聚为所述基带信号。
  28. 根据权利要求27所述的方法,其特征在于,所述第二映射策略包括所述N和/或所述接收通道所使用的带宽。
  29. 根据权利要求27或28所述的方法,其特征在于,还包括:
    从基带单元接收所述第二映射策略。
  30. 根据权利要求24所述的方法,其特征在于,所述将所述第一信号映射到M个发射通道包括:
    根据第一映射策略将所述第一信号映射到所述M个所述发射通道。
  31. 根据权利要求30所述的方法,其特征在于,所述第一映射策略包括所述M和/或所述发射通道所使用的带宽。
  32. 根据权利要求30或31所述的方法,其特征在于,还包括:
    从基带单元接收所述第一映射策略。
  33. 根据权利要求23-29任一所述的方法,其特征在于,当所述接收通道所使用的带宽小于所述接收通道可用的带宽,所述接收通道所使用的带宽在不同时刻进行频率切换。
  34. 根据权利要求24-33任一所述的方法,其特征在于,当所述发射通道所使用的带宽小于所述发射通道可用的带宽,所述发射通道所使用的带宽在不同时刻进行频率切换。
  35. 根据权利要求23-34任一所述的方法,其特征在于,所述N个接收通道中的至少一个接收通道通过多个接收支路接收来自天线单元的信号,所述接收支路上设置有移相控制单元。
  36. 根据权利要求24-35任一所述的方法,其特征在于,所述M个发射通道中的至少一个发射通道的信号通过多个发射支路输出至天线单元,所述发射支路上设置有移相控制单元。
  37. 根据权利要求23-36任一所述的方法,其特征在于,所述N个接收通道驱动全部或部分天线阵列。
  38. 根据权利要求24-37任一所述的方法,其特征在于,所述M个发射通道驱动全部或部分天线阵列。
  39. 根据权利要求23-38任一所述的方法,其特征在于,所述接收通道为接收中频通道。
  40. 根据权利要求39所述的方法,其特征在于,所述发射通道为发射中频通道。
  41. 根据权利要求23-40任一所述的方法,其特征在于,所述将N个所述接收通道输出的信号汇聚为基带信号包括:
    将所述N个所述接收通道输出的信号映射到Q个分载波通道,将所述Q个分载波通道输出的信号汇聚为基带信号,所述分载波通道的带宽为一个载波带宽,所述Q为大于或等于1的整数。
  42. 根据权利要求41所述的方法,其特征在于:所述Q满足以下公式:
    Q*载波带宽=N*所述接收通道所使用的带宽;或者,
    Q*载波带宽<N*所述接收通道所使用的带宽。
  43. 根据权利要求24-41任一所述的方法,其特征在于,所述将所述第一信号映射到M个发射通道包括:
    将所述第一信号映射到P个分载波通道,将所述P个分载波通道输出的信号映射到所述M个所述发射通道,所述分载波通道的带宽为一个载波带宽,所述P为大于或 等于1的整数。
  44. 根据权利要求43所述的方法,其特征在于,所述P满足以下公式:
    P*载波带宽=M*所述发射通道所使用的带宽;或者,
    P*载波带宽<M*所述发射通道所使用的带宽。
  45. 一种信号处理装置,其特征在于,包括一个或一个以上处理器和存储器,所述存储器存储有可在所述处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述信号处理装置执行如权利要求1-22任一所述的方法。
  46. 一种信号处理装置,其特征在于,包括一个或一个以上处理器和存储器,所述存储器存储有可在所述处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述信号处理装置执行如权利要求23-44任一所述的方法。
  47. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1-22中任一项所述的方法。
  48. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求23-44中任一项所述的方法。
  49. 一种基站,其特征在于,包括基带单元、天线单元,和如权利要求45或46所述的信号处理装置,或者和如权利要求47或48所述的可读存储介质。
PCT/CN2021/143661 2021-12-31 2021-12-31 一种信号处理的方法、装置、芯片和基站 WO2023123346A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180105174.2A CN118414791A (zh) 2021-12-31 2021-12-31 一种信号处理的方法、装置、芯片和基站
PCT/CN2021/143661 WO2023123346A1 (zh) 2021-12-31 2021-12-31 一种信号处理的方法、装置、芯片和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143661 WO2023123346A1 (zh) 2021-12-31 2021-12-31 一种信号处理的方法、装置、芯片和基站

Publications (1)

Publication Number Publication Date
WO2023123346A1 true WO2023123346A1 (zh) 2023-07-06

Family

ID=86997240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143661 WO2023123346A1 (zh) 2021-12-31 2021-12-31 一种信号处理的方法、装置、芯片和基站

Country Status (2)

Country Link
CN (1) CN118414791A (zh)
WO (1) WO2023123346A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690368A (zh) * 2007-01-19 2010-03-31 蔚蓝公司 具有降低的传输发射的无线收发机
CN101697627A (zh) * 2009-10-28 2010-04-21 深圳华为通信技术有限公司 测试具有分集接收功能的无线终端接收性能的方法及系统
CN102547720A (zh) * 2010-12-08 2012-07-04 中兴通讯股份有限公司 一种增加无线接入网下行传输带宽的方法及系统
CN102917460A (zh) * 2011-08-03 2013-02-06 中兴通讯股份有限公司 一种时分复用发射通道的方法及系统
CN103067080A (zh) * 2012-12-14 2013-04-24 中国科学院深圳先进技术研究院 毫米波信号的多通道传输系统
CN104541459A (zh) * 2012-05-16 2015-04-22 Lg电子株式会社 通过减少的传输资源块和功率传送上行链路信号的无线设备和e节点b
CN104685923A (zh) * 2013-03-28 2015-06-03 华为技术有限公司 带宽分配方法、装置、用户设备和基站
CN111181674A (zh) * 2020-03-13 2020-05-19 普联技术有限公司 信道处理方法、装置及设备
CN112583455A (zh) * 2019-09-29 2021-03-30 上海华为技术有限公司 一种信号处理方法以及基站
US20210367855A1 (en) * 2020-05-20 2021-11-25 Hewlett Packard Enterprise Development Lp Network-aware workload management using artificial intelligence and exploitation of asymmetric link for allocating network resources

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690368A (zh) * 2007-01-19 2010-03-31 蔚蓝公司 具有降低的传输发射的无线收发机
CN101697627A (zh) * 2009-10-28 2010-04-21 深圳华为通信技术有限公司 测试具有分集接收功能的无线终端接收性能的方法及系统
CN102547720A (zh) * 2010-12-08 2012-07-04 中兴通讯股份有限公司 一种增加无线接入网下行传输带宽的方法及系统
CN102917460A (zh) * 2011-08-03 2013-02-06 中兴通讯股份有限公司 一种时分复用发射通道的方法及系统
CN104541459A (zh) * 2012-05-16 2015-04-22 Lg电子株式会社 通过减少的传输资源块和功率传送上行链路信号的无线设备和e节点b
CN103067080A (zh) * 2012-12-14 2013-04-24 中国科学院深圳先进技术研究院 毫米波信号的多通道传输系统
CN104685923A (zh) * 2013-03-28 2015-06-03 华为技术有限公司 带宽分配方法、装置、用户设备和基站
CN112583455A (zh) * 2019-09-29 2021-03-30 上海华为技术有限公司 一种信号处理方法以及基站
CN111181674A (zh) * 2020-03-13 2020-05-19 普联技术有限公司 信道处理方法、装置及设备
US20210367855A1 (en) * 2020-05-20 2021-11-25 Hewlett Packard Enterprise Development Lp Network-aware workload management using artificial intelligence and exploitation of asymmetric link for allocating network resources

Also Published As

Publication number Publication date
CN118414791A (zh) 2024-07-30

Similar Documents

Publication Publication Date Title
US11831422B2 (en) Apparatus, system and method of transmitting a PPDU over a 320 megahertz channel bandwidth
WO2021004305A1 (zh) 射频电路及终端设备
US9655112B2 (en) Apparatus, system and method of communicating a wireless communication frame with a header
US11979925B2 (en) Apparatus, system and method of communicating a multi-link element
CN105376872A (zh) 一种支持载波聚合的方法及终端
CN110650473B (zh) 一种能力上报的方法及装置
WO2011072567A1 (zh) 一种资源配置方法和设备
CN108616298B (zh) 兼容wifi模组和移动通信模组的mimo系统和移动终端
CN111602445B (zh) 通信的方法、网络设备和终端设备
US20210408985A1 (en) Multi-mode power amplifier system and related wireless devices and methods
EP3002969B1 (en) Communication method and device
CN103685086B (zh) 一种支持多芯片架构的基带信号处理器及其处理方法
CN113938875A (zh) 一种能力上报的方法及装置
US11985080B2 (en) Apparatus, system, and method of communicating an extremely high throughput (EHT) physical layer (PHY) protocol data unit (PPDU)
CN110035548B (zh) 通信的方法和通信设备
CN111478709B (zh) 载波聚合电路及移动终端
WO2023123346A1 (zh) 一种信号处理的方法、装置、芯片和基站
US20120183087A1 (en) Method and apparatus for multiple frequency point multiple access
US20230028973A1 (en) Apparatus, system, and method of time-sensitive communication via a multi user (mu) multiple-input-multiple-output (mimo) (mu-mimo) transmission
US11990963B2 (en) Radio communication apparatus and radio transmission method
US20240163942A1 (en) Apparatus, system, and method of conditioned communication over a millimeter wave (mmwave) link
WO2024130657A1 (zh) 信息处理方法及装置、终端设备、网络设备
US20240031087A1 (en) Apparatus, system, and method of 40 megahertz operating non access point (non-ap) station
CN114402534B (zh) 通信装置、终端设备及通信方法
US20220338026A1 (en) Apparatus, system, and method of communicating a beamformed transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE