WO2023123206A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023123206A1
WO2023123206A1 PCT/CN2021/143077 CN2021143077W WO2023123206A1 WO 2023123206 A1 WO2023123206 A1 WO 2023123206A1 CN 2021143077 W CN2021143077 W CN 2021143077W WO 2023123206 A1 WO2023123206 A1 WO 2023123206A1
Authority
WO
WIPO (PCT)
Prior art keywords
phr
information
spatial information
cell
pusch
Prior art date
Application number
PCT/CN2021/143077
Other languages
English (en)
French (fr)
Inventor
刘哲
陈文洪
史志华
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/143077 priority Critical patent/WO2023123206A1/zh
Publication of WO2023123206A1 publication Critical patent/WO2023123206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless communication method, a terminal device, and a network device.
  • the terminal device can report the power headroom report (Power headroom report, PHR) to the network device, and the PHR can be based on the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or detection
  • the transmission power of the reference signal Sounding Reference Signal, SRS
  • the PHR can be used to assist network devices in configuring power control related parameters. However, frequent reporting of the PHR will increase the signaling overhead. Therefore, how to report the PHR is an urgent task. problem to be solved.
  • the present application provides a wireless communication method, a terminal device, and a network device.
  • the terminal device can report a PHR corresponding to uplink information associated with spatial information to the network device.
  • a method for wireless communication including: a terminal device receives power headroom report PHR configuration information; and the terminal device reports a target PHR according to the PHR configuration information.
  • a wireless communication method including: a network device sends power headroom report (PHR) configuration information; and the network device receives a target PHR.
  • PHR power headroom report
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
  • the network device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the network device can configure PHR configuration information for the terminal device, and the terminal device can report a target PHR according to the PHR configuration information, which helps reduce signaling overhead caused by frequent reporting of PHRs.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of uplink transmission based on multiple TRPs provided by the present application.
  • FIG. 3 is a schematic diagram of another multi-TRP-based uplink transmission provided by the present application.
  • FIG. 4 is a schematic diagram of a PUCCH transmission based on multiple TRPs provided by the present application.
  • Fig. 5 is a schematic diagram of a configuration TCI state provided by the present application.
  • Fig. 6 is a schematic interaction diagram of a wireless communication method provided according to an embodiment of the present application.
  • FIG. 7 is a format diagram of a MAC CE carrying a single-cell PHR provided by an embodiment of the present application.
  • FIG. 8 is a format diagram of a MAC CE bearing multi-cell PHR provided by an embodiment of the present application.
  • FIG. 9 is a format diagram of a MAC CE bearing multi-cell PHR provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a method for determining a PUSCH carrying a multi-cell PHR provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a PUSCH used to determine a PHR of a cell provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a PUSCH used to determine a PHR of a cell provided by an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which is not limited in the present application.
  • PUSCH Physical Uplink Shared Channel
  • the transmission power of PUSCH can be expressed by the following formula (1):
  • the unit of the transmit power of the PUSCH is dBm
  • BWP Bandwidth Part
  • f indicates a carrier (for example, an uplink (UL) carrier in a cell (cell) or a supplementary uplink carrier (supplementary UL, SUL));
  • a carrier for example, an uplink (UL) carrier in a cell (cell) or a supplementary uplink carrier (supplementary UL, SUL));
  • c indicates serving cell
  • j indicates the parameter configuration index
  • the open-loop power control parameters in the above formula include:
  • ⁇ b,f,c (j): represents the weighting factor of the path loss
  • PL b,f,c (q d ): represents the path loss value measured from the reference signal used for the path loss
  • the closed-loop power control parameters in the above formula include:
  • f b, f, c (i, l) Indicates the closed-loop power control adjustment state, including cumulative closed-loop power control (acting on the accumulated value of power control through the accumulator) and absolute closed-loop power control (acting directly on the power adjustment value);
  • P CMAX,f,c (i): Indicates the maximum transmission power of the terminal equipment on the carrier f of the serving cell c;
  • the DCI includes the Sounding Reference Signal resource indication (Sounding Reference Signal resource indication, SRI) field
  • Sounding Reference Signal resource indication SRI
  • the NR supports configuring the mapping relationship between the open-loop power parameter and the closed-loop power parameter and the SRI field in the DCI through RRC signaling
  • the open-loop power parameter and the closed-loop power parameter are indicated by the state in the SRI field in the DCI.
  • PUCCH Physical Uplink Control Channel
  • the transmission power of PUSCH can be expressed by the following formula (2):
  • the power control mechanism of PUCCH also includes two parts: open-loop power control (P0, PL) and closed-loop power control (g).
  • P0, PL open-loop power control
  • g closed-loop power control
  • q u indicates the index of the parameter P O_PUCCH,b,f,c (q u );
  • ⁇ F_PUCCH (F): Indicates the PUCCH power adjustment value related to the PUCCH format (format);
  • ⁇ TF,b,f,c Indicates the power compensation factor related to the code rate
  • g b, f, c (i, l): indicates the adjustment state of the PUCCH closed-loop power control.
  • the value of the path loss compensation factor of the PUCCH is 1.
  • the open-loop power control parameters and closed-loop power control parameters of the PUCCH can be determined through the spatial relationship information according to the mapping relationship between the spatial information and the power control parameters configured in RRC signaling. Determine the corresponding open-loop power control parameters and closed-loop power control parameters.
  • the transmission power of the SRS can be expressed by the following formula (3):
  • the power control mechanism of SRS Similar to the power control mechanism of PUSCH, the power control mechanism of SRS also includes two parts: open-loop power control (P0, PL) and closed-loop power control (h). The same parameters have the same meaning as those represented in PUSCH power control. To repeat, among them,
  • q s indicates the index of the SRS resource set
  • the power control of the SRS is performed based on the SRS resource set, and the SRS resources in one SRS resource set use the same power control parameter.
  • Open-loop power control parameters P O_SRS,b,f,c (q s ) and SRS resource set index for ⁇ SRS,b,f,c (q s ) and for calculating path loss PL b,f,c (q d ) reference signal indexes are all configured based on the SRS resource set and configured by RRC signaling.
  • b, f, c (i, l) may be indicated by RRC signaling to adopt the same closed-loop power adjustment state associated with the closest PUSCH in the time domain, or to adopt an independent closed-loop power control adjustment state.
  • a Type 1 (Type1) or Type 3 (Type3) PHR may be reported, for example, the terminal device reports the PHR to the network device through a PUSCH.
  • Type1 PHR is used to report the power headroom of terminal equipment sending PUSCH, and Type1 PHR may include: PHR based on PUSCH actually sent and PHR based on reference PUSCH.
  • the PHR based on the actually sent PUSCH is the difference between the maximum transmit power of the terminal device and the actually sent PUSCH power.
  • the following formula (4) can be used to calculate:
  • the unit of PH is dB, and the meaning of each parameter in the formula refers to the description of the same parameter in the power control mechanism of PUSCH, which will not be repeated here.
  • the PHR based on the reference PUSCH is the difference between the maximum transmit power of the terminal device and the reference PUSCH power. It can be understood that the PUSCH is not sent on the carrier at the moment of calculating the PHR. For example, the following formula (5) can be used to calculate:
  • the unit of PH is dB, Indicates the maximum transmit power determined based on a specific parameter value.
  • dB Indicates the maximum transmit power determined based on a specific parameter value.
  • Type3 PHR is used to report the power headroom of terminal equipment to send SRS, and Type3 PHR will be reported only for carriers that are not configured with PUSCH.
  • Type3 PHR includes: PHR based on the actually sent SRS and PHR based on the reference SRS.
  • the PHR based on the actually sent SRS is the difference between the maximum transmit power of the terminal device and the actually sent SRS power.
  • the following formula (6) can be used to calculate:
  • the unit of PH is dB, and the meaning of each parameter in the formula refers to the description of the same parameter in the power control mechanism of the SRS, and will not be repeated here.
  • the PHR based on the reference SRS is the difference between the maximum transmit power of the terminal equipment and the reference SRS power. It can be understood that the carrier does not send SRS at the moment of calculating the PHR.
  • the following formula (7) can be used to calculate:
  • the unit of PH is dB, Indicates the maximum transmission power determined based on a specific parameter value.
  • dB Indicates the maximum transmission power determined based on a specific parameter value.
  • multiple antenna elements can be nested and combined with chips to form a panel, which makes it possible to configure multiple low-correlation panels on the transmitter.
  • multi-antenna beamforming Beamforming
  • the radio frequency links of multiple panels are independent, and each panel in multiple panels can form a transmission beam independently, and the beams formed by different panels can be the same or different.
  • a terminal transmitter can simultaneously send data streams on multiple panels through different beams to improve transmission capacity or reliability.
  • the terminal device needs to notify the network side of the number of configured antenna panels in the capability report. At the same time, the terminal device may also need to notify the network side whether it has the ability to simultaneously transmit signals on multiple antenna panels. Since the channel conditions corresponding to different panels are different, different panels need to adopt different transmission parameters according to their respective channel information. In order to obtain these transmission parameters, it is necessary to configure different Sounding Reference Signal Resources (SRS Resources) for different panels to obtain uplink channel information. For example, in order to perform uplink beam management, an SRS resource set (SRS Resource set) can be configured for each panel, so that each panel performs beam management separately and determines an independent analog beam.
  • SRS Resources Sounding Reference Signal Resources
  • each panel can have its own panel ID, which is used to associate different signals transmitted on the same panel, that is, the terminal device can think that the signals associated with the same panel ID need to be transmitted from the same panel.
  • PUCCH Physical Uplink Control Channel
  • TRP Transmission Reception Points
  • the backhaul (backhaul) connection between TRPs can be ideal or non-ideal.
  • TRPs can quickly and dynamically exchange information. Quasi-static information exchange.
  • multiple TRPs can independently schedule multiple Physical Downlink Shared Channel (PDSCH) transmissions of a terminal device based on different control channels, or can schedule transmissions of different TRPs based on the same control channel , where the data of different TRPs are based on different transport layers, and the latter can only be used in the case of ideal backhaul.
  • PDSCH Physical Downlink Shared Channel
  • different TRPs can also independently schedule the PUSCH transmission of the same terminal device.
  • Different PUSCH transmissions can be configured with independent transmission parameters, such as beam, precoding matrix, number of layers, etc.
  • the scheduled PUSCH transmissions can be transmitted in the same slot or in different slots. If the terminal device is simultaneously scheduled for two PUSCH transmissions in the same time slot, it needs to determine how to perform the transmission based on its own capabilities.
  • the terminal device can transmit the two PUSCHs at the same time, and the PUSCHs transmitted on different panels are aligned with the corresponding TRP for analog shaping, thus passing The space domain distinguishes different PUSCHs to improve uplink spectrum efficiency (as shown in Figure 2). If the terminal device has only a single panel, or does not support simultaneous transmission of multiple panels, the terminal device can only transmit PUSCH on one panel. Similar to the downlink, the PUSCH transmitted by different TRPs can be scheduled based on multiple downlink control information (Downlink Control Information, DCI), and these DCIs can be carried by different control resource sets (Control Resource Set, CORESET).
  • DCI Downlink Control Information
  • multiple CORESET groups are configured on the network side, and each TRP is scheduled based on the CORESETs in the respective CORESET groups, that is, different TRPs can be distinguished through the CORESET groups.
  • the network device may configure a CORESET group index for each CORESET, and different indexes indicate that different CORESET groups correspond to different TRPs.
  • PUSCHs transmitted to different TRPs can be scheduled based on a single DCI. At this time, the DCI needs to indicate beams and demodulation reference signal (Demodulation Reference Signal, DMRS) ports ( As shown in Figure 3), different transmission layers of a PUSCH can be transmitted on different panels.
  • DMRS demodulation Reference Signal
  • a similar method can also be used for PUCCH transmission. That is, the terminal device can configure different PUCCHs to be transmitted on different panels at the same time, and the beams based on different panels are different, and notify the terminal device through their respective space-related information. Take two different PUCCHs transmitted on different panels as an example, as shown in Figure 4, the PUCCHs transmitted on different panels can be used to carry uplink control information (Uplink Control Information, UCI) sent to different TRPs, for example, on panel1 The UCI on panel2 is sent to TRP1, and the UCI on panel2 is sent to TRP2.
  • UCI Uplink Control Information
  • a terminal device can use an analog beam to transmit uplink data and uplink control information.
  • the terminal device can perform uplink beam management based on the SRS signal, so as to determine the analog beam used for uplink transmission.
  • the network device may configure an SRS resource set 1 for the terminal device, and the SRS resource set 1 includes N SRS resources (wherein, N>1).
  • the terminal device may use different beams to send the N SRS resources, and the network side measures the reception quality of the N SRS resources respectively, and selects K SRS resources with the best reception quality.
  • the network side can further configure an SRS resource set 2, which includes K SRS resources, and make the terminal use the analog beam used by the K SRS resources selected in the SRS resource set 1 to transmit the SRS resources in the SRS resource set 2.
  • This can be realized by configuring the K SRS resources selected in the SRS resource set 1 as the reference SRS resources of the K SRS resources in the SRS resource set 2 respectively.
  • the network side can select an SRS resource with the best reception quality, and notify the terminal device of the corresponding SRS resource indicator (Sounding Reference Signal Resource Indicator, SRI).
  • SRI Sounding Reference Signal Resource Indicator
  • radio resource control Radio Resource Control, RRC
  • media access control Media Access Control, MAC
  • PUCCH-spatialrelationinfo the spatial correlation information (PUCCH-spatialrelationinfo) of N PUCCHs is firstly configured through high-level signaling, and then the spatial correlation information corresponding to each PUCCH resource is determined from the N PUCCH-spatialrelationinfo through MAC signaling.
  • the transmission configuration indicator Transmission Configuration Indicator, TCI
  • TCI Transmission Configuration Indicator
  • the network device can configure the corresponding TCI state for each downlink signal or downlink channel, and indicate the quasi-co-located (QCL) reference signal corresponding to the target downlink signal or target downlink channel, so that the terminal based on The reference signal is used to receive a target downlink signal or a target downlink channel.
  • QCL quasi-co-located
  • a TCI state can include the following configurations:
  • TCI state ID used to identify a TCI state
  • a QCL information contains the following information:
  • QCL type (type) configuration which can be one of QCL type A, QCL type B, QCL type C, and QCL type D;
  • QCL reference signal configuration including the cell ID where the reference signal is located, the bandwidth part (Band Width Part, BWP) ID, and the identification of the reference signal (which can be a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) resource ID or Synchronization Signal Block (SSB) index).
  • BWP Band Width Part
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • the QCL type of at least one of the QCL information in QCL information 1 and QCL information 2 must be one of typeA, typeB, and typeC, and the QCL type of the other QCL information (if configured) must be QCL type D.
  • 'QCL-TypeA' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ⁇ ;
  • 'QCL-TypeB' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread) ⁇ ;
  • 'QCL-TypeC' ⁇ Doppler shift (Doppler shift), average delay (average delay) ⁇ ;
  • the terminal device can assume that the target downlink channel and the reference SSB Or the target large-scale parameters of the reference CSI-RS resources are the same, so the same corresponding receiving parameters are used for reception, and the target large-scale parameters are determined through QCL type configuration.
  • the network device configures the QCL reference signal of the target downlink channel as a reference SSB or reference CSI-RS resource through the TCI state, and the QCL type is configured as type D, then the terminal device can adopt and receive the reference SSB or reference CSI-RS resource.
  • the receiving beam (that is, the Spatial Rx parameter) with the same RS resource is used to receive the target downlink channel.
  • the target downlink channel and its reference time synchronization/broadcast channel (SSB/PBCH) or reference CSI-RS resource are sent by the same TRP or the same antenna panel (panel) or the same beam at the network side. If the transmission TRP or transmission panel or transmission beam of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • the TCI state can be indicated by radio resource control (Radio Resource Control, RRC) signaling or a combination of RRC signaling and MAC signaling.
  • RRC Radio Resource Control
  • the available TCI state set is indicated through RRC signaling, and part of the TCI state is activated through the media access control (Media Access Control, MAC) layer signaling, and finally through the TCI state indication field in the DCI from The activated TCI state indicates one or two TCI states, which are used for the PDSCH scheduled by the DCI.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the network device indicates N candidate TCI states through RRC signaling, activates K TCI states through MAC signaling, and finally indicates 1 from the activated TCI states through the TCI state indication field in DCI One or two TCI states to use.
  • the PHR reported by the terminal device can be used to assist the network device in configuring power control related parameters, but frequent reporting of the PHR by the terminal device will increase the signaling overhead. Therefore, how to report the PHR to reduce the signaling overhead is an urgent problem to be solved. Furthermore, in some scenarios, PUSCH, PUCCH, and SRS may be sent based on spatial information (eg, panel, TCI status, etc.), in this case, how to report PHR is also an urgent problem to be solved.
  • spatial information eg, panel, TCI status, etc.
  • Fig. 6 is a schematic interaction diagram of a method 200 for wireless communication according to an embodiment of the present application. As shown in Fig. 6, the method 200 includes the following content:
  • the network device sends PHR configuration information
  • the terminal device receives PHR configuration information
  • the terminal device reports the target PHR according to the PHR configuration information.
  • the target PHR is a PHR determined according to first uplink information, and the first uplink information is associated with spatial information.
  • the target PHR is a PHR determined according to multiple pieces of uplink information
  • the multiple pieces of uplink information are associated with multiple pieces of spatial information
  • the multiple pieces of uplink information are sent simultaneously.
  • the target PHR may be used to report the PH of the first uplink information associated with the spatial information, or the PH of multiple pieces of uplink information associated with multiple pieces of spatial information and sent at the same time.
  • the first uplink information may be any uplink information, for example, the first uplink information may be one of the following: PUSCH, PUCCH, and SRS.
  • each uplink information in the plurality of uplink information may include one of the following: PUSCH, PUCCH, SRS.
  • the multiple pieces of uplink information include multiple PUSCHs, or multiple PUCCHs, or multiple SRSs, or may also include a combination of at least two of PUSCHs, PUCCHs, and SRSs.
  • spatial information may refer to a spatial setting or a spatial relation for uplink information transmission, for example including but not limited to at least one of the following: antenna panel information , CORESET group information, reference signal set information, TCI status information, and beam information.
  • an antenna panel group corresponds to an identity (Identity, ID) or index of an antenna panel group, and IDs or indexes corresponding to different antenna panel groups are different.
  • an antenna panel group may include one or more antenna panels.
  • antenna panels in the same antenna panel group may correspond to the same beam, and antenna panels in different antenna panel groups may correspond to different beams.
  • the antenna panel information may include the ID (ie, panel ID) or index of the antenna panel, or may also include the ID or index of the antenna panel group. That is, the uplink information may be associated with an antenna panel, or may also be associated with an antenna panel group.
  • the CORESET group information may include an ID or index of the CORESET group.
  • the reference signal set information may include the ID or index of the reference signal set.
  • the TCI status information may include a TCI indication.
  • the beam information may include an ID or index of a beam, or an ID or index of a beam group. That is, the uplink information may be associated with a beam, or may also be associated with a beam group.
  • the reference signal set may be a synchronization signal block (Synchronization Signal Block, SSB) set or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) set or an SRS set.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the beam can also be called a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission), or a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or Spatial Rx parameter.
  • a spatial domain transmission filter Spatial domain transmission filter or Spatial domain filter for transmission
  • a spatial domain reception filter Spatial domain reception filter or Spatial domain filter for reception
  • the association of multiple uplink information and multiple spatial information may be one-by-one association between multiple uplink information and multiple spatial information, and each uplink information is associated with one spatial information, for example, each uplink information is through the associated spatial information information sent.
  • multiple pieces of uplink information are sent at the same time, which may mean that time domain resources of the multiple pieces of uplink information overlap.
  • the multiple uplink information is transmitted in the same time unit, and the time domain resources of the multiple uplink information in the time unit overlap.
  • the time unit may be one or more time slots, one or more sub-slots (sub-slot), one or more sub-frames (subframe), or, one or more half-frames, or, one or more Multiple orthogonal frequency-division multiplexing (Orthogonal frequency-division multiplexing, OFDM) symbols, etc., which are not limited in this application.
  • OFDM Orthogonal frequency-division multiplexing
  • the time unit may include continuous time domain resources, for example, the time unit includes N consecutive symbols, where N is a positive integer greater than 1, for example, N is 2, 3 or 4, etc., or, It may also include M consecutive time slots, where M is a positive integer greater than 1, for example, M is 2, 3 or 4, and so on.
  • the time unit may also include discrete time domain resources.
  • the discrete time domain resources may be discrete P symbols in a time slot, or discrete Q subframes in a half frame, etc., where P and Q are positive integers greater than 1, for example, P is 2, 3 or 4 etc., Q is 2, 3 or 4 etc.
  • the multiple pieces of uplink information when multiple pieces of uplink information are transmitted in the same time unit, no matter whether the time domain resources occupied by the multiple pieces of uplink information overlap or not, it can be considered that the multiple pieces of uplink information are sent simultaneously. That is, as long as the time domain resources of the multiple pieces of uplink information are in the same time unit, it can be considered that the pieces of uplink information are sent simultaneously.
  • the multiple uplink information is multiple PUSCHs associated with multiple spatial information, and the multiple PUSCHs are sent simultaneously.
  • the multiple PUSCHs may be scheduled by multiple DCIs, and the multiple DCIs are used to schedule the multiple PUSCHs to be sent simultaneously on the same time unit.
  • the association of uplink information and spatial information may include but not limited to at least one of the following:
  • the uplink information is associated with the antenna panel information
  • Uplink information is associated with CORESET group information
  • the uplink information is associated with the reference signal set information
  • Uplink information is associated with TCI status information
  • Uplink information is associated with beam information.
  • associating the uplink information with the antenna panel information may include: the uplink information is sent through the antenna panel corresponding to the antenna panel information.
  • the association of the uplink information with the CORESET group information may include: the CORESET group corresponding to the CORESET group information is the CORESET group to which the CORESET that triggers the PDCCH that triggers the uplink information belongs to, or may also be the The corresponding CORESEST group is the CORESET group configured by high-layer signaling as resources for sending uplink information.
  • associating uplink information with reference signal set information may include:
  • the reference signal set corresponding to the reference signal set information is the reference signal set associated with the antenna panel used to transmit the uplink information, or the reference signal set configured by the network device for the uplink information, or the reference signal set for the PDCCH or PDSCH corresponding to the uplink information A set of associated reference signals.
  • the PDCCH corresponding to the uplink information may refer to the PDCCH that schedules the uplink information
  • the PDSCH corresponding to the uplink information may refer to Hybrid Automatic Repeat Request Acknowledgment (HARQ-ACK) information carried by the uplink information is the HARQ-ACK information of the PDSCH.
  • HARQ-ACK Hybrid Automatic Repeat Request Acknowledgment
  • the association between the uplink information and the TCI state information may include that the transmit beam of the uplink information is determined according to the TCI state information.
  • the association of the uplink information with the beam information may include that the uplink information is sent through a beam corresponding to the beam information.
  • the type of PH included in the target PHR can be Type 1 (Type 1), or Type 2 (Type 2) or Type 3 (Type 3), wherein, the PH of Type 1 can be determined according to the power of PUSCH Yes, Type 2 PH can be determined based on PUCCH power, Type 3 PH can be determined based on SRS power.
  • the target PHR may be carried by a media access control control element (Media Access Control Control Element, MAC CE).
  • Media Access Control Element Media Access Control Control Element, MAC CE
  • the PHR configuration information may be configuration related to reporting the PHR, for example, period information of reporting the PHR, conditions for reporting the PHR, cell type of the reported PHR, etc., and the present application is not limited thereto.
  • the PHR configuration information may be used to configure the reporting conditions of the PHR. Therefore, the terminal device reports the PHR according to the PHR configuration information, which is beneficial to avoid frequent reporting of the PHR and reduce signaling overhead.
  • the PHR configuration information is associated with the spatial information, or in other words, the PHR configuration information may be configured based on the spatial information, and the PHR configuration information is at the granularity of the spatial information.
  • corresponding PHR configuration information is configured for different spatial information. For example, when it is necessary to report the PHR corresponding to the first uplink information, wherein the first uplink information is associated with the first spatial information, the terminal device may report the PHR according to the PHR configuration information associated with the first spatial information.
  • the PHR configuration information includes but is not limited to at least one of the following high-level parameters:
  • the cell type of the reported PHR where the reported cell type of the PHR is a multi-cell PHR (MultipleEntryPHR) or a single-cell PHR (SingleEntryPHR);
  • the timer (mpe-ProhibitTimer) for prohibiting the reporting of MPE.
  • the PHR configuration information associated with each spatial information may include one or more configurations of the above-mentioned high-level parameters.
  • the high-level parameters included in the PHR configuration information associated with different spatial information may be the same, or may also be different.
  • the configurations corresponding to the same high-level parameters included in the PHR configuration information associated with different spatial information may be the same, or may also be different.
  • the PHR configuration information includes first PHR configuration information and second PHR configuration information
  • the first PHR configuration information is associated with the first spatial information
  • the second PHR configuration information is associated with the second spatial information
  • the first PHR configuration information The high-layer parameters included in the information and the second PHR configuration information are different, and/or the configurations corresponding to the same high-layer parameters included in the first PHR configuration information and the second PHR configuration information are different. That is, the network device may configure different high-layer parameters for different spatial information, and/or indicate different configurations for the same high-layer parameter, that is, the values of the same high-layer parameter are different.
  • the first PHR configuration information includes but is not limited to at least one of the following high-level parameters:
  • the second PHR configuration information includes but is not limited to at least one of the following high-level parameters:
  • the reporting permission of the second MPE, the threshold of the second P-MPR, and the timer for the second MPE to prohibit reporting are the reporting permission of the second MPE, the threshold of the second P-MPR, and the timer for the second MPE to prohibit reporting.
  • the report permission of the first MPE and the report permission of the second MPE correspond to different configurations.
  • the threshold of the first P-MPR is different from the threshold of the second P-MPR.
  • the configurations corresponding to the first MPE prohibiting reporting timer and the second MPE reporting prohibiting timer are different.
  • the association of the first PHR configuration information with the first spatial information includes at least one of the following:
  • the first PHR configuration information is associated with the first antenna panel information
  • the first PHR configuration information is associated with the first CORESET group information
  • the first PHR configuration information is associated with the first reference signal set information
  • the first PHR configuration information is associated with the first TCI status information
  • the first PHR configuration information is associated with first beam information.
  • the association of the second PHR configuration information with the second spatial information includes at least one of the following:
  • the second PHR configuration information is associated with the second antenna panel information
  • the second PHR configuration information is associated with the second CORESET group information
  • the second PHR configuration information is associated with the second reference signal set information
  • the second PHR configuration information is associated with the second TCI status information
  • the second PHR configuration information is associated with second beam information.
  • the network device may configure different PHR configuration information for different antenna panels, or configure different PHR configuration information for different CORESET groups, or configure different PHR configuration information for different reference signal sets, or, Different PHR configuration information is configured for different TCI states, or different PHR configuration information is configured for different beams.
  • the network device may associate different combinations of high-level parameters, and/or, the configuration of the associated high-level parameters is different, so that PHR reporting of spatial information granularity can be realized.
  • the first spatial information may be spatial information with an index of x
  • the second spatial information may be spatial information with an index of y, where x and y are integers, and the range of x and y is [0, N-1] , N is the total number of spatial information supported by the terminal device, and x and y are different.
  • N is predefined, or determined according to the capability of the terminal device.
  • the terminal device may report the maximum number of spatial information it supports to the network device, and the network device determines N based on the maximum number of spatial information reported by the terminal device.
  • N may be an integer multiple of 2, such as 2, 4, 6, 8 and so on.
  • the periodic timer of the PHR is used to control the reporting period or frequency of the PHR. For example, after the period timer of the PHR expires, the terminal device triggers to report the PHR. By configuring the periodic timer of the PHR, it is beneficial to prevent the terminal device from frequently reporting the PHR.
  • the time of phr-PeriodicTimer configured on the network device can be different.
  • the associated phr-PeriodicTimer is configured as 10 subframes
  • the associated phr-PeriodicTimer is configured as 20 subframes.
  • the timer for prohibiting PHR reporting is used to control the period or frequency of PHR reporting. For example, after the timer for prohibiting PHR reporting expires, the terminal device is triggered to report the PHR. By configuring a periodic timer that prohibits PHR reporting, it is beneficial to prevent terminal devices from frequently reporting PHR.
  • the time of the timer for prohibiting PHR reporting can be different.
  • the associated phr-ProhibitTimer is configured as 20 subframes
  • the associated phr-PeriodicTimer is configured as 50 subframes.
  • the variation of the transmit power factor or the variation of the path loss is represented by a decibel (dB), which can be used to indicate the reporting condition of the PHR, so as to prevent the terminal device from frequently reporting the PHR.
  • dB decibel
  • the terminal device triggers to report the PHR.
  • the variation of transmit power factor or the variation of path loss can be configured as different decibels.
  • the terminal device When the change of the path loss measured by the device exceeds the decibel number configured in the associated phr-Tx-PowerFactorChange, the terminal device is triggered to report the PHR.
  • the PHR mode of another cell group during dual connectivity includes a PHR based on actual transmission (that is, actual PHR, represented by real) and a PHR based on reference transmission (that is, virtual PHR, represented by virtual).
  • the network device when the terminal device is in dual connectivity (DC), when the terminal device reports PHR through a cell group, the network device can configure the PHR mode of another cell group, and the terminal device reports according to the PHR mode PHR of another cell group.
  • DC dual connectivity
  • the network device can configure the high-layer parameter phr-ModeOtherCG to be different modes. For example, for panel ID 0, phr-ModeOtherCG is configured as "real”, for panel ID 1, phr-ModeOtherCG is configured as "virtual”. Then, for the PHR reporting of the uplink information associated with different panels, the PHR reporting can be performed based on the configured mode.
  • the cell type of the reported PHR is used by the network device to indicate to the terminal device that the PHR reported by the terminal device is a multi-cell PHR or a single-cell PHR.
  • the single-cell PHR may refer to the PHR corresponding to a single cell, and the PHR corresponding to the single cell may be determined according to uplink information transmitted on the single cell. For example, it is determined according to the PUSCH, SRS or PUCCH transmitted on the single cell.
  • the multi-cell PHR may include a PHR corresponding to each cell in the multiple cells, where the PHR corresponding to each cell may be determined according to uplink information transmitted on the cell. For example, it is determined according to the PUSCH, SRS or PUCCH transmitted on the cell.
  • the MPE report permission is used to indicate whether the terminal device reports the MPE P-MPR value in the MAC CE bearing the PHR.
  • the MPE reporting permission can be configured differently. For example, if the panel ID is 0, it indicates that the terminal device needs to report the MPE in the MAC CE carrying the PHR. P- The MPR value, for the panel ID is 1, indicates that the terminal device does not need to report the MPE P-MPR value in the MAC CE carrying the PHR.
  • the terminal device reports the MPE P-MPR value.
  • the threshold of P-MPR can be configured differently. For example, for a panel ID of 0, the P-MPR threshold is 3dB, and for a panel ID of 1, the P-MPR threshold is 6dB.
  • the timer prohibited from reporting by the MPE is used for the network device to instruct the terminal device to prohibit reporting the timer of the MPE.
  • the timer for MPE to prohibit reporting can be configured differently. For example, if the panel ID is 0, the configured mpe-ProhibitTimer is 10 subframes; for the panel ID is 1, the configured mpe-ProhibitTimer is 20 subframes.
  • the PHR configuration information associated with each space information configured by the network device is carried in the same information element (InformationElement, IE).
  • InformationElement, IE InformationElement
  • the PHR configuration information associated with each spatial information is sequentially included in ascending order of the index or ID corresponding to the spatial information.
  • each PHR configuration information includes a space information ID or an index field, which is used for the space information associated with the PHR configuration information.
  • all the PHR configuration information associated with the spatial information may be carried in a newly defined IE, or carried in an existing IE, which is not limited in this application.
  • the PHR configuration information for all panel IDs can be carried in the newly defined IE, for example, the newly defined PHR-Config-r18IE is used to carry the PHR configuration information for all panels.
  • the PHR-Config-r18IE structure is as follows:
  • maxNrofpanel-IDs identifies the maximum number of panel IDs, corresponding to the aforementioned N.
  • the PHR configuration information associated with each panel may include the Panel ID associated with the PHR configuration information.
  • the above-mentioned panel-related parameters in the IE carrying the PHR configuration information can also be replaced with other spatial information-related parameters, for example, beam ID, CORESET group index, etc., the application is not limited thereto.
  • the PHR configuration information associated with each spatial information is independently carried in one IE.
  • the PHR configuration information for a panel ID can be carried in the newly defined IE, for example, the newly defined PHR-Config-panel-ID IE is used to carry the PHR configuration information associated with the panel ID.
  • the PHR-Config-panel-ID IE structure is as follows:
  • the PHR configuration information is configured based on other spatial information (for example, beam ID or CORESET group index)
  • the above-mentioned panel-related parameters in the IE carrying the PHR configuration information can be replaced by parameters of other spatial information, for example, beam ID association Parameters, parameters associated with the CORESET group index, etc., the present application is not limited thereto.
  • the method 200 further includes:
  • the terminal device determines whether a PHR trigger condition is met according to the PHR configuration information
  • the terminal device determines to report the target PHR.
  • the terminal device may determine whether the PHR reporting condition is satisfied according to the phr-PeriodicTimer or phr-ProhibitTimer associated with the spatial information.
  • the timer enabling condition of phr-PeriodicTimer or phr-ProhibitTimer may be receiving PHR configuration information.
  • the terminal device may determine whether the PHR reporting condition is met according to the variation of the transmit power factor or the variation of the path loss associated with the space information.
  • the change of the path loss measured by the terminal device exceeds the decibel number configured in the associated phr-Tx-PowerFactorChange, it is determined that the PHR reporting condition is met.
  • the terminal device may determine whether the PHR reporting condition is satisfied according to at least two high-layer parameters in the PHR configuration information.
  • the at least two high-level parameters may be phr-PeriodicTimer and transmission power factor variation or path loss variation, and the at least two high-level parameters are associated with the same spatial information.
  • the phr-PeriodicTimer times out, and the change of the path loss measured by the terminal device exceeds the decibel number configured in the associated phr-Tx-PowerFactorChange, it is determined that the PHR reporting condition is met.
  • the target PHR may be carried by MAC CE.
  • both single-cell PHR (Single entry PHR) and multi-cell PHR (Multiple entry PHR) can be carried by MAC CE.
  • the single-cell PHR or multi-cell PHR associated with the spatial information can be carried by the MAC CE.
  • the MAC CE structures bearing single-cell PHR and multi-cell PHR are described respectively.
  • Example 1-1 Single cell PHR (single entry PHR)
  • the target PHR includes the first PHR, the first PHR is a single-cell PHR, the first PHR is carried by the first MAC CE, and the first PHR is associated with the first spatial information.
  • the first PHR is a single cell PHR.
  • the associating the first PHR with the first spatial information may include that the first PHR is determined according to uplink information associated with the first spatial information. For example, determined according to PUSCH, PUCCH or SRS associated with the first spatial information.
  • uplink information For example, determined according to PUSCH, PUCCH or SRS associated with the first spatial information.
  • associating the first PHR with the first spatial information may include at least one of the following:
  • the first PHR is associated with the first antenna panel information
  • the first PHR is associated with the first CORESET group information
  • the first PHR is associated with the first reference signal set information
  • the first PHR is associated with the first TCI state information
  • the first PHR is associated with first beam information.
  • the first PHR is determined according to the uplink information associated with the first antenna panel information, or determined according to the uplink information associated with the first CORESET group information, or determined according to the uplink information associated with the first reference signal set information Determined, or determined according to uplink information associated with the first TCI state information, or determined according to uplink information associated with the first beam information.
  • the first PHR is the PHR of the first cell, and the first PHR may be determined according to the first uplink information, wherein the first uplink information is the first cell associated with the first spatial information upstream information.
  • the first PHR may be determined according to the power for actually sending the first uplink information, that is, the mode of the first PHR may be the actual PHR mode.
  • the first uplink information may be PUSCH, PUCCH or SRS.
  • the spatial information associated with the single-cell PHR carried in the first MAC CE may be indicated through displayed indication information or implicit indication information, and the present application does not limit the indication manner of the spatial information.
  • one or more bits in the first MAC CE are used to indicate spatial information associated with the first PHR.
  • one or more bits of the first MAC CE are used to indicate one of spatial information among antenna panel information, CORESET group information, reference signal set information, TCI status information and beam information associated with the first PHR.
  • the specific number of bits of the one or more bits may be determined according to the total number of indexes or IDs included in the spatial information. For example, if the one or more bits are used to indicate the antenna panel information associated with the first PHR, the specific number of bits of the one or more bits may be determined according to the total number of antenna panel information, as an example, if required To indicate two panel IDs, it can be indicated by 1 bit, or if more panel IDs need to be indicated, more bits are required, such as 2 bits, 3 bits, etc. For example, if four panel IDs need to be indicated, 2 bits are required.
  • the one or more bits may be idle (reserved) bits in the MAC CE, and the space information associated with the PHR carried in the MAC CE is indicated to the network equipment through the idle bits in the MAC CE, so that the network equipment can quickly obtain The PH corresponding to the spatial information.
  • the one or more bits are used to indicate the spatial information associated with the second PHR ;
  • the one or more bits are idle bits.
  • one or more bits of the first MAC CE are used to indicate at least one item of antenna panel information, CORESET group information, reference signal set information, TCI status information, and beam information.
  • the first MAC CE includes at least one bit group, each bit group includes one or more bits, each bit group corresponds to a type of spatial information, and the value of each bit group is used to indicate that the first Target spatial information associated with a PHR in the corresponding type of spatial information.
  • the at least one bit group corresponds to at least one type of spatial information
  • the at least one type of spatial information includes at least one of the following: antenna panel information, CORESET group information, reference signal set information , TCI status information, beam information.
  • the first MAC CE includes L bit groups, respectively corresponding to L types of spatial information, for example, L can be 1, 2 or 3, etc.
  • the L types of spatial information may include antenna panel information and CORESET group information.
  • the first MAC CE may include 2 bit groups, for example, the first bit group and the second bit group, which are respectively used to indicate the antenna panel information and CORESET group information associated with the first PHR.
  • the number of bits included in each bit group may be the same, or may also be different. For example, it may be determined according to the total number of indexes or IDs included in each type of spatial information, or may be determined according to the maximum value of the total number of indexes or IDs included in each type of spatial information.
  • the number of bits occupied by the first bit group may be determined according to the maximum number of panel IDs, or may also be determined according to the maximum value of the maximum number of indexes or IDs included in each type of spatial information.
  • the total number of panel IDs is 4, the total number of CORESET group indexes is 2, the total number of reference signal set indexes is 2, the total number of TCI indications is 8, and the total number of beam IDs is 16, the number of bits occupied by the first bit group may be determined according to the total number of panel IDs of 4, or may also be determined according to the total number of beam IDs of 16.
  • the first bit group can be 2 bits, or 4 bits.
  • the at least one bit group is used to indicate the spatial information associated with the first PHR; for a terminal device that does not support reporting For a terminal device of a PHR associated with spatial information, for example, a terminal device before R18, the at least one bit group is a spare bit.
  • the at least one bit group may be interpreted as spatial information associated with the first PHR, and for R18 terminal devices, the at least one bit group may not be interpreted.
  • the MAC CE includes 1 bit, which is used to indicate the panelID, for example, a value of 0 indicates panelID 0, and a value of 1 indicates panelID 1.
  • 1 bit which is used to indicate the panelID, for example, a value of 0 indicates panelID 0, and a value of 1 indicates panelID 1.
  • more bits may also be included.
  • the MAC CE also includes the type of PH, for example, it can be Type 1, Type 2 or Type 3.
  • the MAC CE may further include a target maximum transmit power corresponding to the panel ID.
  • the target maximum transmit power corresponding to the panel ID may be the maximum transmit power corresponding to the panel ID, or the maximum transmit power of the terminal device (or, the maximum transmit power on the carrier f of the cell c of the terminal device), Or, the sum of the maximum transmit power corresponding to all panelIDs of the terminal device.
  • the maximum transmit power corresponding to the panel ID may refer to the maximum transmit power that can be used when the panel corresponding to the panel ID is used to transmit uplink information.
  • the maximum transmit power corresponding to the panel ID is determined according to the capability of the terminal device.
  • the target maximum transmission power corresponding to the panel ID is P CMAX,f,c as an example, but this application is not limited thereto, wherein P CMAX,f,c represents the maximum transmission power of the terminal device power, or the maximum transmit power on carrier f in cell c of the terminal device.
  • the terminal device may report to the network device whether to support multiple uplink information to share the maximum transmission power, and the multiple uplink information is associated with multiple spatial information.
  • the target maximum transmission power corresponding to each spatial information may be the maximum transmission power of the terminal device, or one of the maximum transmission powers corresponding to all spatial information of the terminal device and.
  • the target maximum transmission power corresponding to each spatial information may be the maximum transmission power corresponding to the spatial information.
  • the target maximum transmission power information corresponding to the panel ID included in the MAC CE of the single-cell PHR associated with the panel may be is the maximum transmit power of the terminal device, or the sum of the maximum transmit power corresponding to all panel IDs of the terminal device.
  • the target maximum transmission power information corresponding to the panel ID included in the MAC CE carrying the single-cell PHR associated with the panel ID may be the maximum transmission power corresponding to the panel ID.
  • the MAC CE also includes first indication information, which is used to indicate the cell corresponding to the PH in the MAC CE.
  • first indication information is used to indicate the cell corresponding to the PH in the MAC CE.
  • the cell corresponding to the first PHR is a primary cell (PCell).
  • the MAC subheader (subheader) of the first MAC CE is used to indicate the spatial information associated with the first PHR.
  • the space information associated with the first PHR is identified through the MAC subheader of the first MACCE.
  • the logical channel identifier (Logical Channel Identity, LCID) in the MAC subheader of the first MAC CE is used to indicate the spatial information associated with the first PHR. That is, the spatial information associated with the single-cell PHR in the MAC CE bearing the single-cell PHR is identified through the LCID of the MAC subheader.
  • the MAC CE carrying the single-cell PHR associated with different spatial information is associated with the LCID value of the MAC subheader. In this case, the structure of the MAC CE does not need to be modified.
  • the terminal device may indicate different spatial information to the network device through different LCIDs.
  • the code point (codepoint) and/or index (index) of the LCID in the MAC subheader of the first MAC CE is used to indicate the spatial information associated with the first PHR.
  • the codepoint and/or index of the LCID has an association relationship with the spatial information, therefore, the terminal device may indicate different spatial information to the network device through different codepoints and/or indexes of the LCID.
  • the network device can determine the associated PHR of a single cell in the MAC CE associated with the LCID. the panel.
  • the LCID codepoint and/or index corresponding to the LCID value is associated with a single cell PHR whose panelID is x, where x is an integer, and the range of x is [0,N-1] , N is the total number of panels supported by the terminal device.
  • the LCID value is an LCID value of an uplink shared channel (Uplink Shared Channel(s), UL-SCH).
  • Uplink Shared Channel(s), UL-SCH Uplink Shared Channel
  • the terminal device supports N pieces of antenna panel information, and the N pieces of antenna panel information are associated with code points and/or indexes of N LCID values, where N is a positive integer.
  • any N codepoints and/or indexes with free LCID values can be used to associate single-cell PHRs associated with N panel IDs, and the rest The LCID value corresponding to the codepoint and/or index whose LCID value is free remains free.
  • the codepoints and/or indexes whose N LCID values are free are associated with the single-cell PHR associated with the N panel IDs, for example, the codepoints and/or indexes whose N LCID values are free correspond to the N panel IDs one-to-one , therefore, the panel associated with the single-cell PHR in the associated MAC CE can be determined according to the LCID value of the MAC subheader.
  • the terminal device can set the LCID value in the MAC subheader according to the space information associated with the PHR, and use the LCID value in the MAC subheader Indicates the spatial information associated with the PHR carried in the MAC CE associated with the MAC subheader.
  • the network device can determine the target space information according to the LCID in the MAC subheader associated with the MAC CE, and further determine the PHR carried in the MAC CE to correlate the target space information.
  • the PHR is carried by the MAC CE, and the PHR is associated with the spatial information, so it can be understood that the MAC CE carrying the PHR is associated with the spatial information.
  • any four MAC CEs of single-cell PHRs with panelIDs ranging from 0 to 3 in the codepoint and/or LCID values corresponding to indexes 35-44 can be used.
  • the LCID values corresponding to codepoints and/or indexes 35-38 respectively correspond to single-cell PHRs with panel IDs 0 to 3, and the LCID values corresponding to other codepoints and/or indexes are still reserved.
  • the codepoint and/or the N codepoints in the index 35-44 and/or The LCID value corresponding to the index is associated with the single-cell PHR corresponding to N panelIDs; for terminal devices that do not support the PHR associated with reporting spatial information, for example, for terminal devices before R18, the LCID value corresponding to codepoint and/or index 35-44 is still Is free (reserved).
  • codepoint0-249 corresponds to indexes 64-313, and any four of the corresponding LCID values are associated with single-cell PHRs whose panelIDs are 0-3.
  • Codepoint0-3 corresponds to indexes 64-67
  • the corresponding LCID values correspond to the MAC CEs of single-cell PHRs with panelIDs 0-3, respectively, and the LCID values corresponding to other codepoints or indexes are still reserved.
  • the N groups of codepoints and indexes in codepoint0-249 and indexes 64-313 are The corresponding LCID value is associated with the single-cell PHR corresponding to N panel IDs; for terminal devices that do not support the PHR associated with reporting spatial information, for example, for terminal devices before R18, the LCID values corresponding to codepoint0-249 and index 64-313 are still Idle (reserved).
  • Embodiment 1-2 Multi-cell PHR (Multiple entry PHR)
  • the target PHR includes a second PHR
  • the second PHR is a multi-cell PHR
  • the second PHR is carried by the second MAC CE
  • the second PHR is associated with the second spatial information
  • the second PHR is a multi-cell PHR.
  • the multi-cell PHR associated with the spatial information can be carried by the MAC CE.
  • the second spatial information may be any spatial information, or any spatial information in the spatial information actually used by the terminal device.
  • the terminal device needs to report at least one PHR of uplink information, wherein each uplink information is associated with one space information, and the space information associated with the at least one uplink information includes the second space information, then the target PHR may include the second Second PHR associated with spatial information.
  • the at least one piece of uplink information further includes third uplink information, where the third uplink information is associated with spatial information A, and the target PHR may further include a third PHR, where the third PHR is a multi-cell PHR associated with spatial information A.
  • the second PHR is taken as an example for description, and the specific implementation manner is also applicable to other multi-cell PHRs.
  • associating the second PHR with the second spatial information may include that the second PHR is determined according to uplink information associated with the second spatial information. For example, determined according to PUSCH, PUCCH or SRS associated with the second spatial information. For the association relationship between the second spatial information and the uplink information, reference may be made to the related descriptions of the foregoing embodiments, and details are not repeated here.
  • associating the second PHR with the second spatial information may include at least one of the following:
  • the second PHR is associated with the second antenna panel information
  • the second PHR is associated with the second CORESET group information
  • the second PHR is associated with the second reference signal set information
  • the second PHR is associated with the second TCI status information
  • the second PHR is associated with the second beam information.
  • the second PHR is determined according to the uplink information associated with the second antenna panel, or determined according to the uplink information associated with the second CORESET group, or determined according to the uplink information associated with the second reference signal set, Or, determined according to uplink information associated with the second TCI state, or determined according to uplink information associated with the second beam.
  • the second PHR includes a PHR corresponding to each cell in the plurality of cells.
  • the PHR corresponding to each cell may be determined according to uplink information associated with the second spatial information on each cell .
  • the second PHR includes a PHR corresponding to the second cell, and the second PHR may be determined according to second uplink information, where the second uplink information is uplink information associated with second spatial information on the second cell.
  • the second uplink information may be PUSCH, PUCCH or SRS.
  • the second MAC CE further includes second indication information, and the second indication information is used to indicate the cell corresponding to the second PHR, that is, the plurality of cells.
  • a bitmap (bitmap) manner may be used to indicate the multiple cells.
  • the second indication information includes a first bitmap, the first bitmap includes multiple bits, each bit corresponds to a cell, and the value of each bit is used to indicate whether to report the PHR of the corresponding cell.
  • the number of bits may be determined according to the maximum number of cells.
  • the spatial information associated with the multi-cell PHR carried in the second MAC CE may be indicated through displayed indication information or implicit indication information, and the present application does not limit the indication manner of the spatial information.
  • one or more bits in the second MAC CE are used to indicate spatial information associated with the second PHR.
  • one or more bits of the second MAC CE are used to indicate one of spatial information among antenna panel information, CORESET group information, reference signal set information, TCI status information and beam information associated with the second PHR.
  • the specific number of bits of the one or more bits may be determined according to the total number of indexes or IDs included in the spatial information. For example, if the one or more bits are used to indicate the antenna panel information associated with the second PHR, the specific number of bits of the one or more bits may be determined according to the total number of antenna panel information, as an example, if required To indicate two panel IDs, it can be indicated by 1 bit, or if more panel IDs need to be indicated, more bits are required, such as 2 bits, 3 bits, etc. For example, if four panel IDs need to be indicated, 2 bits are required.
  • the one or more bits may be idle bits in the MAC CE, and indicate to the network equipment the space information associated with the PHR carried in the MAC CE through the idle bits in the MAC CE, so that the network equipment can quickly obtain the space information Corresponding pH.
  • the one or more bits are used to indicate the spatial information associated with the second PHR ;
  • the one or more bits are idle bits.
  • one or more bits of the second MAC CE are used to indicate at least one item of antenna panel information, CORESET group information, reference signal set information, TCI status information, and beam information.
  • the second MAC CE includes at least one bit group, each bit group includes one or more bits, each bit group corresponds to a type of spatial information, and the value of each bit group is used to indicate that the first The target spatial information associated with the PHR in the corresponding type of spatial information.
  • the at least one bit group corresponds to at least one type of spatial information
  • the at least one type of spatial information includes at least one of the following: antenna panel information, CORESET group information, reference signal set information , TCI status information, beam information.
  • the second MAC CE includes X bit groups, respectively corresponding to X types of spatial information, for example, X can be 1, 2 or 3, etc.
  • the X types of spatial information may include antenna panel information and reference signal set information.
  • the second MAC CE may include 2 bit groups, such as the third bit group and the fourth bit group, which are respectively used to indicate the antenna panel information and reference signal set information associated with the second PHR.
  • the number of bits included in each bit group may be the same, or may also be different. For example, it may be determined according to the total number of indexes or IDs included in each type of spatial information, or may be determined according to the maximum value of the total number of indexes or IDs included in each type of spatial information.
  • the number of bits occupied by the third bit group may be determined according to the maximum number of panel IDs, or may also be determined according to the maximum value of the maximum number of indexes or IDs included in each type of spatial information.
  • the total number of panel IDs is 4, the total number of CORESET group indexes is 2, the total number of reference signal set indexes is 2, the total number of TCI indications is 8, and the total number of beam IDs is 16, the number of bits occupied by the third bit group may be determined according to the total number of panel IDs of 4, or may also be determined according to the total number of beam IDs of 16.
  • the third bit group can be 2 bits, or 4 bits.
  • the at least one bit group is used to indicate the spatial information associated with the second PHR; for a terminal device that does not support reporting For a terminal device of a PHR associated with spatial information, for example, a terminal device before R18, the at least one bit group is a spare bit.
  • the at least one bit group may be interpreted as the spatial information associated with the second PHR, and for R18 terminal devices, the at least one bit group may not be interpreted.
  • Figure 8 and Figure 9 taking the spatial information as an example of a panel ID, a format of a MAC CE for carrying a PHR provided by this application is described.
  • the MAC CE includes 1 bit, and the 1 bit is used to indicate the panelID, for example, the state 0 of the 1 bit indicates panelID 0, and the state 1 of the 1 bit indicates panelID 1.
  • the 1 bit is used to indicate the panelID, for example, the state 0 of the 1 bit indicates panelID 0, and the state 1 of the 1 bit indicates panelID 1.
  • more bits may also be included.
  • the MAC CE also includes PHs corresponding to multiple cells.
  • the MAC CE also includes the maximum transmit power Pmax corresponding to each cell, for example, the maximum transmit power Pmax c corresponding to the cell c may be the maximum transmit power PCMAX,f,c of the carrier f on the cell c, Wherein, c identifies a cell index, and f is a carrier index.
  • a Ci value of 0 indicates that the MAC CE does not include the PHR corresponding to the serving cell whose serving cell index is i
  • a Ci value of 1 indicates that the MAC CE includes the PHR corresponding to the serving cell whose serving cell index is i.
  • the maximum serving cell index is less than 8 (ServingCellIndex is less than 8), and for FIG. 9 , the maximum serving cell index is greater than or equal to 8.
  • the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the spatial information associated with the second PHR is identified through the MAC subheader of the second MACCE.
  • the LCID in the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the spatial information associated with the multi-cell PHR in the MAC CE bearing the multi-cell PHR is identified through the LCID of the MAC subheader.
  • the multi-cell PHR corresponding to different spatial information is associated with the LCID value of the MAC subheader. In this case, the structure of the MAC CE does not need to be modified.
  • the terminal device may indicate different spatial information to the network device through different LCIDs.
  • the code point (codepoint) and/or index of the LCID in the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the codepoint and/or index of the LCID has an association relationship with the spatial information, therefore, the terminal device may indicate different spatial information to the network device through different codepoints and/or indexes of the LCID.
  • the network device can determine the associated multi-cell PHR in the MAC CE associated with the LCID. the panel.
  • the LCID codepoint and/or index corresponding to the LCID value is associated with a single cell PHR whose panelID is x, where x is an integer, and the range of x is [0,N-1] , N is the total number of panels supported by the terminal device.
  • the LCID value is the LCID value of UL-SCH.
  • the terminal device supports N pieces of antenna panel information, and the N pieces of antenna panel information are associated with code points and/or indexes of N LCID values, where N is a positive integer.
  • any N codepoints and/or indexes whose LCID values are free can be used to associate the multi-cells associated with N panel IDs PHR, the LCID values corresponding to the codepoints and/or indexes whose LCID values are free are still free (reserved).
  • the codepoints and/or indexes whose N LCID values are free are associated with the multi-cell PHR associated with the N panel IDs, for example, the codepoints and/or indexes whose N LCID values are free correspond to the N panel IDs one-to-one , therefore, the panel associated with the multi-cell PHR in the associated MAC CE can be determined according to the LCID value of the MAC subheader.
  • the terminal device can set the LCID value in the MAC subheader according to the space information associated with the PHR, and use the LCID value in the MAC subheader Indicates the spatial information associated with the PHR carried in the MAC CE associated with the MAC subheader.
  • the network device can determine the target space information according to the LCID in the MAC subheader associated with the MAC CE, and further determine the PHR carried in the MAC CE to correlate the target space information.
  • the PHR is carried by the MAC CE, and the PHR is associated with the spatial information, so it can be understood that the MAC CE carrying the PHR is associated with the spatial information.
  • any 8 multi-cell PHRs with associated panelIDs from 0 to 3 in Codepoint and/or LCID values corresponding to indexes 35-44 can be used (including the largest cell index less than 8 and the largest cell index greater than or equal to 8 two situations).
  • Codepoint and/or LCID values corresponding to indexes 35-38 correspond to MAC CEs of multi-cell PHRs with panel IDs 0 to 3 (the largest cell index is less than 8), and Codepoints and/or LCIDs corresponding to indexes 39-42
  • the values correspond to the MAC CE of multi-cell PHR with panel ID 0-3 (the largest cell index is greater than or equal to 8), and the LCID values corresponding to other Codepoints and/or indexes are still reserved.
  • the codepoint and/or the 2N codepoints in the index 35-44 and/or The LCID value corresponding to the index is associated with the multi-cell PHR corresponding to N panel IDs; for terminal devices that do not support PHR associated with reporting spatial information, for example, for terminal devices before R18, the LCID value corresponding to codepoint and/or index 35-44 Still reserved.
  • codepoint0-249 corresponds to indexes 64-313, and any 8 groups of LCID values corresponding to the multi-cell PHR with panel ID 0-3 are associated.
  • Codepoint 0-3 corresponds to index 64-67
  • the corresponding LCID values correspond to the MAC CE of multi-cell PHR with panel ID 0-3 (the largest cell index is less than 8)
  • Codepoint 4-7 corresponds to the index 68-71
  • the corresponding LCID values correspond to the MAC CE of multi-cell PHR with panel ID 0 ⁇ 3 respectively (the largest cell index is greater than or equal to 8)
  • the LCID values corresponding to other Codepoints or indexes are still reserved.
  • the 2N groups of codepoints and indexes in codepoint0-249 and indexes 64-313 are The corresponding LCID value is associated with the multi-cell PHR corresponding to N panel IDs; for terminal devices that do not support the PHR associated with reporting spatial information, for example, for terminal devices before R18, the LCID values corresponding to codepoint0-249 and index 64-313 are still Idle (reserved).
  • the target PHR mode may be an actual PHR mode, or a reference PHR mode.
  • the target PHR may include the PH determined according to the power for actually sending uplink information.
  • the uplink information is PUSCH, and the PH can be determined according to formula (4).
  • the uplink information is SRS, and the PH may be determined according to formula (6).
  • the target PHR may include the PH determined according to the power of the reference uplink information.
  • the uplink information is PUSCH, and the PH can be determined according to formula (5).
  • the uplink information is SRS, and the PH may be determined according to formula (7).
  • the reference uplink information power may be predefined or configured by the network device.
  • the reference uplink information power may be reference PUSCH power or reference SRS power.
  • the target PHR includes a first PHR
  • the first PHR includes a single-cell PHR
  • the first PHR is carried by the first MAC CE
  • the first MAC CE is carried by the first PUSCH
  • the first PUSCH is a PUSCH associated with the first spatial information.
  • the first PUSCH may be the PUSCH associated with the first antenna panel, or the PUSCH associated with the first CORESET group, or the PUSCH associated with the first reference signal set, or the PUSCH associated with the first TCI state PUSCH, or, the PUSCH associated with the first beam.
  • the first PUSCH is an initial PUSCH with the earliest time domain position associated with the first spatial information after the terminal device determines to report the single-cell PHR. Reporting the single-cell PHR through the initial transmission PUSCH with the earliest time-domain position associated with the first spatial information is beneficial to ensure that the network device obtains the single-cell PHR reported by the terminal device as soon as possible.
  • the initial transmission PUSCH is the PUSCH transmitted for the first time, that is, the information carried in the PUSCH is the transport block (transport block, TB) transmitted for the first time.
  • the first PUSCH is the PUSCH with the earliest time domain position among the PUSCHs that are repeatedly transmitted and associated with the first spatial information after the terminal device determines to report the single-cell PHR.
  • the terminal device determines to report the single-cell PHR
  • the PUSCH with the earliest time domain position among the multiple repeatedly transmitted PUSCHs may be selected to report the PHR. Reporting the single-cell PHR through the PUSCH with the earliest time-domain position among the multiple repeatedly transmitted PUSCHs associated with the first spatial information is beneficial to ensure that the network device obtains the single-cell PHR reported by the terminal device as soon as possible.
  • the mode of the first PHR is an actual PHR mode, and the first PHR is determined according to the power of actually sending the first PUSCH.
  • the first PHR includes the PH determined according to the difference between the maximum transmission power of the terminal device and the actual transmission power of the first PUSCH.
  • the first PHR is the PHR of the first cell
  • the UL carrier and the SUL carrier are configured on the first cell
  • the terminal device may also determine which carrier in the first cell to use to determine the PHR.
  • the PHR of the first cell is determined according to the PHR of the target carrier on the first cell.
  • the target carrier is determined according to whether uplink information associated with the first spatial information is configured or scheduled on the UL carrier and the SUL carrier on the first cell.
  • the carrier configured or scheduled with the PUSCH associated with the first spatial information may be selected. carrier.
  • the PHR may be determined according to the PUSCH on the UL carrier. That is, the first PUSCH may be the PUSCH on the UL carrier.
  • the PHR may be determined according to the PUSCH on the SUL carrier. That is, the first PUSCH may be the PUSCH on the SUL carrier.
  • the PUSCH on the UL carrier or the SUL carrier can be selected to determine the PHR, that is, the first PUSCH It can be PUSCH on UL carrier or SUL carrier.
  • the PHR of the first cell is determined according to the PHR on the first carrier, where the third spatial information is different from the first spatial information.
  • the PHR may be determined according to the PUSCH on the UL carrier. That is, the first PUSCH may be the PUSCH on the UL carrier.
  • the PHR may be determined according to the PUSCH on the SUL carrier. That is, the first PUSCH may be the PUSCH on the SUL carrier.
  • the PUSCH on the UL carrier or the SUL carrier can be selected to determine the PHR, that is, the first PUSCH can be PUSCH on UL carrier or SUL carrier.
  • the target PHR includes a second PHR
  • the first PHR is a multi-cell PHR
  • the second PHR is carried by a second MAC CE
  • the second MAC CE is carried by a second PUSCH
  • the second PUSCH is the PUSCH associated with the second spatial information.
  • the second PUSCH may be the PUSCH associated with the second antenna panel, or the PUSCH associated with the second CORESET group, or the PUSCH associated with the second reference signal set, or the PUSCH associated with the second TCI state PUSCH, or, the PUSCH associated with the second beam.
  • the second PUSCH is the first transmitted PUSCH at the earliest time domain position associated with the second spatial information after the terminal device determines to report the multi-cell PHR. Reporting the multi-cell PHR through the initial transmission PUSCH with the earliest time domain position associated with the second spatial information is beneficial to ensure that the network device obtains the multi-cell PHR reported by the terminal device as soon as possible.
  • the second PUSCH is the PUSCH with the earliest time domain position among the PUSCHs that are repeatedly transmitted and associated with the second spatial information after the terminal device determines to report the multi-cell PHR.
  • the terminal device determines to report the multi-cell PHR
  • the PUSCH with the earliest time domain position among the multiple repeatedly transmitted PUSCHs may be selected to report the PHR. Reporting the multi-cell PHR through the PUSCH with the earliest time domain position among the multiple repeatedly transmitted PUSCHs associated with the second spatial information is beneficial to ensure that the network device obtains the multi-cell PHR reported by the terminal device as soon as possible.
  • multiple cells include cell 1 and cell 2.
  • the terminal device receives DCI, and the DCI is used to schedule PUSCH1 sent through the second panel
  • the terminal device receives another DCI or high-level configuration information for scheduling PUSCH2 sent through the second panel, wherein the time domain position of PUSCH2 is earlier than the time domain position of PUSCH1, but If PUSCH2 is a retransmission PUSCH, it may be determined that PUSCH1 is a PUSCH for carrying the second PHR.
  • the second PHR includes a PHR corresponding to each of the multiple cells, and the PHR corresponding to each cell may be determined according to a specific PUSCH on each cell.
  • the specific PUSCH and the second PUSCH on each cell overlap in time domain.
  • the multiple cells include the second cell, the second PHR includes the PHR corresponding to the second cell, and the PHR corresponding to the second cell is determined according to the third PUSCH on the second cell, that is, the third PUSCH is a specific PUSCH on the second cell.
  • the third PUSCH is the PUSCH actually sent, and the PHR mode corresponding to the second cell is the actual PHR.
  • the specific determination method is described later.
  • the third PUSCH is a reference PUSCH
  • the PHR mode corresponding to the second cell is a virtual PHR. The specific determination method is described later.
  • the second cell is any cell in the multiple cells, and the PHRs corresponding to other cells in the multiple cells are implemented in a similar manner, which will not be repeated here.
  • the cell where the second PUSCH is located is used as the reference cell, and the second cell can be determined according to the subcarrier spacing (Subcarrier spacing, SCS) of the reference cell for activating the uplink BWP and the SCS of the second cell for activating the uplink BWP.
  • SCS subcarrier spacing
  • the SCS of the activated uplink BWP of the reference cell and the SCS of the activated uplink BWP of the second cell are the same, at least one time slot on the activated uplink BWP of the second cell overlaps with the time slot of the second PUSCH, then the The PUSCH on the first time slot (that is, the time slot with the earliest domain position) in the at least one time slot is determined to be the third PUSCH.
  • the SCS of the activated uplink BWP of the reference cell is smaller than the SCS of the activated uplink BWP of the second cell, and the time slot where the second PUSCH is located overlaps with multiple time slots on the activated uplink BWP of the second cell, then the Among the multiple time slots, the PUSCH on the first time slot that completely overlaps with the time slot of the second PUSCH is determined as the third PUSCH.
  • the third PUSCH may be the PUSCH on the first time slot that overlaps with the time slot of the second PUSCH.
  • the third PUSCH is a PUSCH on the first time slot that overlaps with the time slot of the second PUSCH may refer to: the time slot of the third PUSCH and the time slot of the second PUSCH partially overlap, or completely overlap .
  • the time slots of the third PUSCH and the second PUSCH may completely overlap.
  • the time slot where the second PUSCH is located may overlap with two time slots on the second cell, then the third PUSCH may be the same as the time slot where the second PUSCH is located. There is the first of two time slots that overlap.
  • the SCS of the second cell is 15KHz
  • the reference cell is cell 1
  • the SCS of cell 1 is 15KHz
  • the second PUSCH is transmitted on time slot a, and is transmitted on time slot a in cell 2.
  • the overlapping time slots include time slot b and time slot c, wherein, time slot b is earlier than time slot c, that is, time slot b is the first time slot overlapping with time slot a on cell 2, then for cell 2,
  • the PHR of the PUSCH on time slot b may be reported.
  • the third PUSCH is the PUSCH on the first time slot that completely overlaps the time slot of the second PUSCH may refer to: the time slot of the second PUSCH completely covers the time slot of the third PUSCH, and the third PUSCH The time slot in which the PUSCH is located is the first time slot in all the time slots completely covered by the time slot in which the second PUSCH is located.
  • the SCS of the second cell is 15KHz
  • the reference cell is cell 1
  • the SCS of cell 1 is 60KHz
  • the second PUSCH is in time slot m
  • the time slots include time slot a, time slot b, time slot c and time slot d, wherein, time slot a is the first time slot completely overlapping with time slot m on cell 2, then for cell 2, the time slot can be reported PHR of PUSCH on slot a.
  • the method 200 further includes:
  • the scheduling signaling or high-level configuration information of the third PUSCH is received before the first reference time domain position, determine the PHR mode corresponding to the second cell in the plurality of cells, wherein the third PUSCH is on the second cell PUSCH associated with the second spatial information.
  • the scheduling signaling of the third PUSCH may include DCI.
  • the high-layer configuration information of the third PUSCH may include configuration information indicated by high-layer signaling (such as RRC signaling).
  • high-layer signaling such as RRC signaling
  • the mode of the PHR of the second cell is the actual PHR.
  • the third PUSCH scheduling signaling or high-level configuration information is received, indicating that the terminal device has enough processing time to send the third PUSCH, and has enough preparation time to prepare to bear the MACCE of the second PHR, Therefore, the PHR corresponding to the second cell may be determined according to the actual power for sending the third PUSCH.
  • the mode of the PHR of the second cell is a virtual PHR.
  • the PHR corresponding to the second cell can be determined according to the reference PUSCH power.
  • the first reference time domain position is the last symbol of the PDCCH carrying the DCI or the end position of the monitoring occasion where the PDCCH carrying the DCI is located.
  • the first reference time domain position is the first time domain position before the first symbol of the second PUSCH
  • the The time interval between the first time domain position and the first symbol of the second PUSCH is the processing time of the second PUSCH.
  • the processing time of the second PUSCH is the preparation time of the second PUSCH.
  • the processing time of the second PUSCH includes PUSCH preparation time and additional processing time.
  • the additional processing time is predefined, for example, the additional processing time is T additional symbols, and T additional is a positive integer, such as 2 symbols; or, the additional processing time is determined according to the processing capability of the terminal device; or , the additional processing time is reported through the capability information of the terminal device.
  • the terminal device reports the additional processing time supported by the terminal device through the third capability information of the terminal device.
  • the candidate additional processing time can be 0 symbol, 1 symbol, 2 symbols etc.
  • the UL carrier and the SUL carrier are configured on the second cell, and the terminal device may also determine which carrier in the second cell is used to determine the PHR using uplink information.
  • the PHR of the second cell is determined according to the PHR of the target carrier on the second cell.
  • the target carrier is determined according to whether uplink information associated with the second spatial information is configured or scheduled on the UL carrier and the SUL carrier on the second cell.
  • the PUSCH associated with the second spatial information may be configured or scheduled. Carrier of PUSCH.
  • the PHR may be determined according to the PUSCH on the UL carrier. That is, the third PUSCH may be the PUSCH on the UL carrier.
  • the PHR may be determined according to the PUSCH on the SUL carrier. That is, the third PUSCH may be the PUSCH on the SUL carrier.
  • the PUSCH on the UL carrier or the SUL carrier may be selected to determine the PHR, that is, the third PUSCH It can be PUSCH on UL carrier or SUL carrier.
  • the PHR of the second cell is determined according to the PHR on the second carrier, where the fourth spatial information is different from the second spatial information.
  • the PHR may be determined according to the PUSCH on the UL carrier. That is, the third PUSCH may be the PUSCH on the UL carrier.
  • the PHR may be determined according to the PUSCH on the SUL carrier. That is, the third PUSCH may be the PUSCH on the SUL carrier.
  • the PUSCH on the UL carrier or the SUL carrier can be selected to determine the PHR, that is, the third PUSCH can be PUSCH on UL carrier or SUL carrier.
  • the method 200 further includes:
  • the terminal device reports first capability information, where the first capability information is used to indicate whether the maximum transmission power can be shared among multiple pieces of uplink information of the terminal equipment, where the pieces of uplink information are associated with pieces of spatial information.
  • the first capability information is used to indicate whether the maximum transmission power can be shared among multiple pieces of uplink information of the terminal equipment, where the pieces of uplink information are associated with pieces of spatial information.
  • the sum of the transmission powers of the multiple pieces of uplink information does not exceed the maximum transmission power of the terminal device.
  • the transmission power of each uplink information does not exceed the maximum transmission power of the associated spatial information.
  • a plurality of spatial information includes spatial information 1, spatial information 2 and spatial information 3, the maximum transmission power of the terminal device is P CMAX,f,c , and each spatial information corresponds to a corresponding maximum transmission power, for example, spatial information 1 corresponds to The maximum transmission power of is P1, the maximum transmission power corresponding to spatial information 2 is P2, and the maximum transmission power corresponding to spatial information 3 is P3. Then, when multiple uplink information shares the maximum transmission power, the sum of the transmission powers of the uplink information associated with the three kinds of spatial information does not exceed P, and when the maximum transmission power is not updated for multiple uplink information, the transmission of the uplink information The power does not exceed the maximum transmission power of the space information associated with the uplink information.
  • the transmission power of the uplink information associated with space information 1 does not exceed P1
  • the transmission power of the uplink information associated with space information 2 does not exceed P2
  • the transmission power of the uplink information associated with space information 2 does not exceed P2.
  • the sending power of uplink information does not exceed P3.
  • the target maximum transmit power corresponding to each piece of spatial information of the terminal device is the maximum transmit power determined according to each piece of spatial information, which facilitates independent power control based on spatial information.
  • the maximum transmission power determined according to each piece of spatial information may correspond to the maximum transmission power corresponding to the preceding spatial information.
  • the maximum transmit power corresponding to the spatial information may refer to the maximum transmit power that can be used when the uplink information is transmitted according to the spatial information.
  • the maximum transmission power corresponding to the spatial information is determined according to the capability of the terminal device.
  • the target maximum transmit power corresponding to each space information of the terminal device is the maximum transmit power of the terminal device, or the maximum transmit power on the carrier in the cell of the terminal device, which is beneficial to realize the terminal Intra-device (or intra-carrier) power sharing.
  • the target maximum transmit power corresponding to each spatial information of the terminal device is the sum of the maximum transmit power corresponding to all spatial information of the terminal device, which is conducive to realizing power sharing.
  • the target maximum transmission power corresponding to each spatial information may be the maximum transmission power of the terminal device, or the maximum transmission power corresponding to all spatial information of the terminal device sum of power.
  • the target maximum transmission power corresponding to each spatial information may be the maximum transmission power corresponding to the spatial information.
  • the terminal device may send multiple pieces of uplink information at the same time, and the multiple pieces of uplink information are associated with multiple pieces of spatial information, and the terminal device may report the PHR determined according to the multiple pieces of uplink information to the network device. That is, the target PHR may be the PHR determined according to the multiple pieces of uplink information.
  • the PHR determined according to the first uplink information is recorded as the first type of PHR
  • the PHR determined according to multiple pieces of uplink information sent at the same time is recorded as the second type of PHR. That is, the first type of PHR is a PHR determined according to uplink information sent associated with a single spatial information, and the second type of PHR is a PHR determined according to multiple pieces of uplink information sent simultaneously with multiple pieces of spatial information.
  • the target PHR is determined according to the sum of the maximum transmission power of the terminal device and the power for simultaneously transmitting multiple pieces of uplink information through multiple pieces of spatial information.
  • the target PHR is determined according to the difference between the maximum transmit power of the terminal device and the sum of powers of the multiple uplink information.
  • the target PHR is determined according to the following formula:
  • PHR obj represents the target PHR
  • P CMAX,f,c represents the maximum transmission power of the terminal device, or the maximum transmission power on the carrier in the cell of the terminal device, or the maximum transmission power corresponding to all spatial information of the terminal device
  • the sum of sending power, P x represents the power of sending uplink information through spatial information x, and N represents the maximum number of spatial information supported by the terminal device.
  • the method 200 further includes:
  • the terminal device reports second capability information, where the second capability information is used to indicate whether the terminal device supports reporting of PHR determined according to multiple pieces of uplink information sent at the same time.
  • the multiple pieces of uplink information are associated with multiple pieces of spatial information, and for specific association relationships, refer to relevant descriptions of the foregoing embodiments.
  • the second capability information may also be used to indicate whether the terminal device supports simultaneous sending of multiple uplink information, where the multiple uplink information is associated with multiple spatial information. That is, the terminal device can report whether it supports simultaneous sending of multiple uplink information based on multiple spatial information.
  • the terminal device reports that it supports sending multiple pieces of uplink information at the same time, it supports reporting the PHR determined according to the multiple pieces of uplink information sent at the same time by default.
  • the PHR configuration information sent by the network device is determined according to the second capability information.
  • the network device configures the terminal device with PHR configuration information associated with the multiple spatial information, and the PHR configuration information can be used for Report the PHRs of the multiple concurrently sent uplink information. Further, the terminal device reports, based on the PHR configuration information, the PHR determined according to multiple pieces of uplink information sent at the same time.
  • the target PHR is the PHR determined according to the multiple uplink information, that is, the second type of PHR. It should be understood that in the embodiment of the present application, the second The class PHR may also be a single-cell PHR or a multi-cell PHR.
  • the single-cell PHR and multi-cell PHR in the first type of PHR are respectively recorded as the first type of single-cell PHR and the first type of multi-cell PHR
  • the single-cell PHR and multi-cell PHR in the second type of PHR are respectively recorded as the second-type single-cell PHR and the second-type multi-cell PHR.
  • the bearer mode of the second type of single-cell PHR can be determined according to the method described in Embodiment 1-1, or the second type can be determined according to the method described in Embodiment 1-2. Bearer mode of the multi-cell PHR.
  • one or more bits in the MAC CE are used to indicate whether the MAC CE includes the second type of single-cell PHR.
  • the MAC CE includes 1 bit
  • the state of the 1 bit is used to indicate whether the MAC CE includes the second type of single-cell PHR.
  • the state of the 1 bit is 1 to indicate that the MAC CE includes the second type of single-cell PHR.
  • the one or more bits may be idle bits in the MAC CE.
  • the MAC subheader of the MAC CE is used to indicate whether the MAC CE includes the second type of single-cell PHR. Or, identify the MAC CE second-type single-cell PHR through the MAC subheader of the MAC CE.
  • the code point (codepoint) and/or index (index) of the LCID in the MAC subheader of the MAC CE is used to indicate whether the MAC CE includes the second type of single-cell PHR.
  • the LCID value of the MAC subheader indicates whether the associated MAC CE includes the second type of single-cell PHR, without modifying the structure of the MAC CE.
  • the bearer mode of the second type of multi-cell PHR is similar and will not be repeated here.
  • one or more bits in the MAC CE are used to indicate whether the MAC CE is Including the second type of single-cell PHR or the second type of multi-cell PHR; for a terminal device that does not support PHR reporting associated with spatial information, for example, for a terminal device before R18, the one or more bits are idle bits.
  • the codepoint and/or index of the LCID in the MAC subheader of the MAC CE is associated with the second type of single-cell PHR or the second type of multi-cell PHR; for terminal devices that do not support the PHR associated with reporting spatial information, for example, for terminal devices before R18, the LCID in the MAC subheader of the MAC CE The LCID value corresponding to the codepoint and/or index is still reserved.
  • the reporting method of the second type of single-cell PHR can be determined according to the method described in Embodiment 2-1, or the reporting method of the second type of multi-cell PHR can be determined according to the method described in Embodiment 2-2. Reporting method of cell PHR.
  • the second type of single-cell PHR may be sent through the fourth PUSCH, and the determination manner of the fourth PUSCH may refer to the determination manner of the first PUSCH, and details are not repeated here for brevity.
  • the second type of multi-cell PHR may be sent through the fifth PUSCH, and the determination manner of the fifth PUSCH may refer to the determination manner of the second PUSCH, which will not be repeated here for brevity.
  • the terminal device may report one type of PHR at a time, for example, only report the first type of PHR, or only report the second type of PHR, or may report multiple types of PHR at the same time.
  • a PHR for example, reports a first type PHR and a second type PHR.
  • the embodiment of the present application does not limit the specific reporting manner of the PHR of the spatial information.
  • the terminal device reports a first target PHR, where the first target PHR includes a PHR determined according to the first uplink information and a PHR determined according to multiple pieces of uplink information.
  • the PHR determined according to the first uplink information is a first-type PHR
  • the PHR determined according to multiple pieces of uplink information is a second-type PHR.
  • the PHR configuration information sent by the network device may be used to configure the reporting of one type of PHR, for example, the reporting of the first type of PHR, or the reporting of the second type of PHR, that is, the PHR configuration
  • the information may be used to trigger the reporting of the first type of PHR, or the device of the second type of PHR, or the PHR configuration information may include the configuration information for the first type of PHR reporting, or include the configuration information for the second type of PHR reporting configuration information.
  • the configuration information sent by the network device may also be used to configure reporting of multiple types of PHRs. For example, reporting of Type 1 PHR and Type 2 PHR.
  • the PHR configuration information can be used to trigger devices of the first type of PHR and the second type of PHR, or in other words, the PHR configuration information can include configuration information for reporting the first type of PHR and configuration information for reporting the second type of PHR .
  • the embodiment of the present application does not limit the specific configuration manner of the PHR configuration information of the spatial information granularity.
  • the terminal device can receive the PHR configuration information of the spatial information granularity, and further report the spatial information such as the PHR to the network device, such as the single-cell PHR or the multi-cell PHR associated with the spatial information, or report to the network device based on the information related to the multi-cell PHR.
  • the network device such as the single-cell PHR or the multi-cell PHR associated with the spatial information
  • PHR of multiple uplink information associated with one spatial information so as to realize PHR reporting of spatial information granularity.
  • Fig. 13 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes: a communication unit 410, configured to receive power headroom report PHR configuration information; and,
  • the PHR configuration information is associated with spatial information.
  • the spatial information includes at least one of the following: antenna panel information, control resource set CORESET group information, reference signal set information, transmission configuration indication TCI status information, and beam information.
  • the target PHR is a PHR determined according to first uplink information, and the first uplink information is associated with spatial information, or, the target PHR is a PHR determined according to multiple uplink information, and the multiple A piece of uplink information is associated with multiple pieces of spatial information, and the pieces of uplink information are sent simultaneously.
  • the PHR configuration information includes at least one of the following high-level parameters:
  • the cell type of the reported PHR where the reported cell type of the PHR is a multi-cell PHR or a single-cell PHR;
  • the PHR configuration information includes first PHR configuration information and second PHR configuration information
  • the first PHR configuration information is associated with the first spatial information
  • the second PHR configuration information is associated with the second spatial information Association
  • the high-layer parameters included in the first PHR configuration information and the second PHR configuration information are different, and/or, the same high-layer parameters included in the first PHR configuration information and the second PHR configuration information correspond to The configuration is different.
  • the association of the first PHR configuration information with the first spatial information includes at least one of the following:
  • the first PHR configuration information is associated with the first antenna panel information
  • the first PHR configuration information is associated with the first CORESET group information
  • the first PHR configuration information is associated with first reference signal set information
  • the first PHR configuration information is associated with the first TCI status information
  • the first PHR configuration information is associated with first beam information.
  • the association of the second PHR configuration information with the second spatial information includes at least one of the following:
  • the second PHR configuration information is associated with the second antenna panel information
  • the second PHR configuration information is associated with the second CORESET group information
  • the second PHR configuration information is associated with second reference signal set information
  • the second PHR configuration information is associated with second TCI status information
  • the second PHR configuration information is associated with second beam information.
  • the first PHR configuration information includes the report permission of the first MPE
  • the second PHR configuration information includes the report permission of the second MPE, wherein the report permission of the first MPE and the first MPE The configurations corresponding to the reporting permission of the two MPEs are different.
  • the first space information includes panelID 0, and the report permission of the first MPE is used to indicate that the terminal device needs to report the MPEP-MPR value in the medium access control control element MACCE bearing the PHR;
  • the second spatial information includes panelID1, and the report permission of the second MPE is used to indicate that the terminal device does not need to report the MPEP-MPR value in the MACCE bearing the PHR.
  • the first PHR configuration information includes a threshold of a first P-MPR
  • the second PHR configuration information includes a threshold of a second P-MPR, wherein the threshold of the first P-MPR is the same as The thresholds of the second P-MPR are different.
  • the first spatial information includes panelID 0, and the threshold of the first P-MPR is 3dB;
  • the second spatial information includes panelID1, and the threshold of the second P-MPR is 6dB.
  • the first PHR configuration information includes a timer that the first MPE prohibits reporting
  • the second PHR configuration information includes a timer that the second MPE prohibits reporting, wherein the first MPE prohibits reporting The configuration corresponding to the timer is different from the timer that the second MPE prohibits reporting.
  • the first space information includes panelID 0, and the duration of the timer that the first MPE prohibits reporting is 10 subframes;
  • the second spatial information includes panelID1, and the duration of the second MPE reporting prohibition timer is 20 subframes.
  • the terminal device also includes:
  • a processing unit configured to determine whether a PHR trigger condition is met according to the PHR configuration information
  • the target PHR includes a first PHR
  • the first PHR is carried by a first medium access control element MAC CE
  • the first PHR is a PHR associated with the first spatial information.
  • the first PHR is a single cell PHR.
  • one or more bits in the first MAC CE are used to indicate spatial information associated with the first PHR.
  • the one or more bits are used to indicate the spatial information associated with the first PHR; for terminal devices before R18, the one or more bits are spare bits.
  • the first MAC CE includes at least one bit group, each bit group includes one or more bits, each bit group corresponds to a type of spatial information, and the value of each bit group is used for Indicates the target spatial information associated with the first PHR in the corresponding type of spatial information.
  • the at least one bit group corresponds to at least one type of spatial information
  • the at least one type of spatial information includes at least one of the following:
  • Antenna panel information CORESET group information, reference signal set information, TCI status information, beam information.
  • the at least one bit group is used to indicate the spatial information associated with the first PHR; for terminal devices before R18, the at least one bit group is a spare bit .
  • the MAC subheader of the first MAC CE is used to indicate spatial information associated with the first PHR.
  • the logical channel identifier LCID in the MAC subheader of the first MAC CE is used to indicate the spatial information associated with the first PHR.
  • the value of the LCID in the MAC subheader of the first MAC CE is a first value used to indicate the space information associated with the first PHR.
  • the first value is used to indicate the space information associated with the first PHR; for terminal devices before R18, the first value is an idle value.
  • codepoints and/or indexes of LCIDs of MAC subheaders associated with MAC CEs associated with different spatial information are different.
  • the terminal device supports N pieces of antenna panel information, and the N pieces of antenna panel information are associated with code points and/or indexes of N LCID values, where N is a positive integer.
  • the N LCID values are used to indicate the spatial information associated with the PHR; for terminal devices before R18, the N LCID values are idle values.
  • the first MAC CE further includes first indication information, which is used to indicate the cell corresponding to the PHR carried in the first MAC CE.
  • the first MAC CE is carried by a first physical uplink shared channel PUSCH, wherein the first PUSCH is a PUSCH associated with the first spatial information.
  • the first PUSCH is an initial transmission PUSCH with the earliest time domain position associated with the first spatial information after the terminal device determines to report the PHR determined according to the first uplink information; or,
  • the first PUSCH is the PUSCH with the earliest time domain position among the PUSCHs associated with the first spatial information that are repeatedly sent after the terminal device determines to report the PHR determined according to the first uplink information.
  • the mode of the first PHR is an actual PHR, and the first PHR is determined according to the actual transmission power of the first PUSCH.
  • the first PHR is the PHR of the first cell
  • the PHR of the first cell is determined according to the PHR of the target carrier on the first cell, wherein the target carrier is determined according to the It is determined by the uplink information associated with the first spatial information whether the uplink UL carrier and the auxiliary uplink SUL carrier on the first cell are configured or scheduled.
  • the target carrier is a carrier configured or scheduled with a PUSCH associated with the first spatial information among the UL carrier and the SUL carrier on the first cell; or,
  • the PUSCH associated with the first spatial information is not configured or scheduled on the UL carrier and SUL carrier on the first cell, but the first carrier of the UL carrier and SUL carrier on the first cell is scheduled Or it is configured to send the PUSCH through the third spatial information, then the PHR of the first cell is determined according to the PHR on the first carrier, where the third spatial information is different from the first spatial information.
  • the target PHR includes a second PHR
  • the second PHR is carried by a second MAC CE
  • the second PHR is a PHR associated with the second spatial information.
  • the second PHR is a multi-cell PHR.
  • one or more bits in the second MAC CE are used to indicate spatial information corresponding to the second PHR.
  • the one or more bits are used to indicate the spatial information associated with the second PHR; for terminal devices before R18, the one or more bits are spare bits.
  • the second MAC CE includes at least one bit group, each bit group includes one or more bits, each bit group corresponds to a type of spatial information, and the value of each bit group is used for Indicates the target spatial information associated with the second PHR in the corresponding type of spatial information.
  • the at least one bit group corresponds to at least one type of spatial information
  • the at least one type of spatial information includes at least one of the following:
  • Antenna panel information CORESET group information, reference signal set information, TCI status information, beam information.
  • the at least one bit group is used to indicate the spatial information associated with the second PHR; for terminal devices before R18, the at least one bit group is a spare bit .
  • the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the LCID in the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the value of the LCID in the MAC subheader of the second MAC CE is a second value used to indicate the spatial information associated with the second PHR.
  • the second value is used to indicate the space information associated with the second PHR; for terminal devices before R18, the second value is an idle value.
  • codepoints and/or indexes of LCIDs of MAC subheaders associated with MAC CEs associated with different spatial information are different.
  • the terminal device supports N pieces of antenna panel information, and the N pieces of antenna panel information are associated with code points and/or indexes of N LCID values, where N is a positive integer.
  • the N LCID values are used to indicate the spatial information associated with the PHR; for terminal devices before R18, the N LCID values are idle values.
  • the second MAC CE further includes second indication information, which is used to indicate the cell corresponding to the PHR carried in the second MAC CE.
  • the second MAC CE is carried by a second PUSCH, where the second PUSCH is a PUSCH associated with the second spatial information.
  • the second PHR includes PHRs respectively corresponding to multiple cells
  • the terminal device further includes:
  • a processing unit configured to determine a PHR mode corresponding to a second cell in the plurality of cells according to whether scheduling signaling or high-layer configuration information of a third PUSCH is received before the first reference time domain position, wherein the first The three PUSCHs are PUSCHs associated with the second spatial information on the second cell.
  • the determining the PHR mode corresponding to the second cell in the plurality of cells according to whether scheduling signaling or high-layer configuration information of the third PUSCH is received before the first reference time domain position includes:
  • the scheduling signaling or high-layer configuration information of the third PUSCH is received before the first reference time domain position, determine that the PHR mode of the second cell is the actual PHR, or
  • the first reference time domain position is the last symbol of the DCI or the end position of the detection opportunity MO where the DCI is located;
  • the first reference time domain position is the first time domain position before the first symbol of the second PUSCH, and the first time domain position is the same as the first time domain position
  • the time interval between the first symbols of the second PUSCH is the processing time of the second PUSCH.
  • the processing time of the second PUSCH is the preparation time of the second PUSCH, or,
  • the processing time of the second PUSCH includes preparation time of the PUSCH and additional processing time, wherein the additional processing time is predefined or determined according to the processing capability of the terminal device.
  • the third PUSCH is a PUSCH on the first time slot overlapping with the time slot where the second PUSCH is located;
  • the third PUSCH is a PUSCH on the first time slot that completely overlaps with the time slot where the second PUSCH is located;
  • the reference cell is a cell where the second PUSCH bearing the second PHR is located.
  • the second PHR includes a PHR corresponding to the second cell, and the PHR of the second cell is determined according to the PHR of the target carrier on the second cell, wherein the target carrier is determined according to Whether the UL carrier and the SUL carrier on the second cell are configured or scheduled is determined by uplink information associated with the second spatial information.
  • the target carrier is a carrier configured or scheduled with a PUSCH associated with the second spatial information among the UL carrier and the SUL carrier on the second cell; or,
  • the PHR of the second cell is determined according to the PHR on the second carrier, where the fourth spatial information is different from the second spatial information.
  • the communication unit 410 is further configured to: report first capability information, where the first capability information is used to indicate whether multiple uplink information associated with multiple spatial information of the terminal device can Share the maximum transmit power.
  • the target maximum transmit power corresponding to each spatial information of the terminal device is the maximum transmit power determined according to each spatial information, or the maximum transmit power of the terminal device, or the The sum of the maximum transmit power corresponding to all spatial information of the terminal device.
  • the communication unit 410 is further configured to: report second capability information, where the second capability information is used to indicate whether the terminal device supports reporting of a PHR determined according to a plurality of uplink information, wherein the Multiple pieces of uplink information are associated with multiple pieces of spatial information, and the pieces of uplink information are sent simultaneously.
  • the PHR configuration information is determined according to the second capability information.
  • the target PHR is a PHR determined according to a plurality of uplink information, wherein the plurality of uplink information is associated with a plurality of spatial information, and the plurality of uplink information is sent at the same time; wherein, the The target PHR is determined according to the sum of the maximum transmission power of the terminal device and the power for simultaneously transmitting the plurality of uplink information through the plurality of spatial information.
  • the target PHR is determined according to the following formula:
  • PHR obj represents the target PHR
  • P CMAX,f,c represents the maximum transmission power of the terminal device
  • P x represents the power for sending uplink information through spatial information x
  • N represents the maximum number of spatial information supported by the terminal device number.
  • N is predefined, or N is determined according to the capability of the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the The corresponding process of the terminal device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • Fig. 14 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of Figure 14 includes:
  • the communication unit 510 is configured to send power headroom report PHR configuration information; and receive a target PHR.
  • the PHR configuration information is associated with spatial information.
  • the spatial information includes at least one of the following: antenna panel information, control resource set CORESET group information, reference signal set information, transmission configuration indication TCI status information, and beam information.
  • the target PHR is a PHR determined according to first uplink information, and the first uplink information is associated with spatial information, or,
  • the target PHR is a PHR determined according to multiple pieces of uplink information, the multiple pieces of uplink information are associated with multiple pieces of spatial information, and the multiple pieces of uplink information are sent simultaneously.
  • the PHR configuration information includes at least one of the following high-level parameters: a periodic timer for power headroom reporting; a timer for prohibiting PHR reporting; transmission power factor variation or path loss variation; dual connectivity The PHR mode of another cell group; the cell type of the reported PHR, the cell type of the reported PHR is multi-cell PHR or single-cell PHR; the report permission of the maximum allowed exposed MPE; power management maximum power fallback P-MPR The threshold; the timer for MPE to prohibit reporting.
  • high-level parameters a periodic timer for power headroom reporting; a timer for prohibiting PHR reporting; transmission power factor variation or path loss variation; dual connectivity The PHR mode of another cell group; the cell type of the reported PHR, the cell type of the reported PHR is multi-cell PHR or single-cell PHR; the report permission of the maximum allowed exposed MPE; power management maximum power fallback P-MPR The threshold; the timer for MPE to prohibit reporting.
  • the PHR configuration information includes first PHR configuration information and second PHR configuration information
  • the first PHR configuration information is associated with the first spatial information
  • the second PHR configuration information is associated with the second spatial information Association
  • the high-layer parameters included in the first PHR configuration information and the second PHR configuration information are different, and/or, the same high-layer parameters included in the first PHR configuration information and the second PHR configuration information correspond to The configuration is different.
  • the association of the first PHR configuration information with the first spatial information includes at least one of the following:
  • the first PHR configuration information is associated with the first antenna panel information
  • the first PHR configuration information is associated with the first CORESET group information
  • the first PHR configuration information is associated with first reference signal set information
  • the first PHR configuration information is associated with the first TCI status information
  • the first PHR configuration information is associated with first beam information.
  • the association of the second PHR configuration information with the second spatial information includes at least one of the following:
  • the second PHR configuration information is associated with the second antenna panel information
  • the second PHR configuration information is associated with the second CORESET group information
  • the second PHR configuration information is associated with second reference signal set information
  • the second PHR configuration information is associated with second TCI status information
  • the second PHR configuration information is associated with second beam information.
  • the first PHR configuration information includes the report permission of the first MPE
  • the second PHR configuration information includes the report permission of the second MPE, wherein the report permission of the first MPE and the first MPE The configurations corresponding to the reporting permission of the two MPEs are different.
  • the first space information includes panelID 0, and the report permission of the first MPE is used to indicate that the terminal device needs to report the MPEP-MPR value in the medium access control control element MACCE bearing the PHR;
  • the second spatial information includes panelID1, and the report permission of the second MPE is used to indicate that the terminal device does not need to report the MPEP-MPR value in the MACCE bearing the PHR.
  • the first PHR configuration information includes a threshold of a first P-MPR
  • the second PHR configuration information includes a threshold of a second P-MPR, wherein the threshold of the first P-MPR is the same as The thresholds of the second P-MPR are different.
  • the first spatial information includes panelID 0, and the threshold of the first P-MPR is 3dB;
  • the second spatial information includes panelID1, and the threshold of the second P-MPR is 6dB.
  • the first PHR configuration information includes a timer that the first MPE prohibits reporting
  • the second PHR configuration information includes a timer that the second MPE prohibits reporting, wherein the first MPE prohibits reporting The configuration corresponding to the timer is different from the timer that the second MPE prohibits reporting.
  • the first spatial information includes panelID 0, and the duration of the timer that the first MPE prohibits reporting is 10 subframes; the second spatial information includes panelID1, and the timer that the second MPE prohibits reporting The duration of the timer is 20 subframes.
  • the target PHR includes a first PHR
  • the first PHR is carried by a first medium access control element MAC CE
  • the first PHR is a PHR associated with the first spatial information.
  • the first PHR is a single cell PHR.
  • one or more bits in the first MAC CE are used to indicate spatial information associated with the first PHR.
  • the one or more bits are used to indicate the spatial information associated with the first PHR; for terminal devices before R18, the one or more bits are spare bits.
  • the first MAC CE includes at least one bit group, each bit group includes one or more bits, each bit group corresponds to a type of spatial information, and the value of each bit group is used for Indicates the target spatial information associated with the first PHR in the corresponding type of spatial information.
  • the at least one bit group corresponds to at least one type of spatial information
  • the at least one type of spatial information includes at least one of the following: antenna panel information, CORESET group information, reference signal set information , TCI status information, beam information.
  • the at least one bit group is used to indicate the spatial information associated with the first PHR; for terminal devices before R18, the at least one bit group is a spare bit .
  • the MAC subheader of the first MAC CE is used to indicate spatial information associated with the first PHR.
  • the logical channel identifier LCID in the MAC subheader of the first MAC CE is used to indicate the spatial information associated with the first PHR.
  • the value of the LCID in the MAC subheader of the first MAC CE is a first value used to indicate the space information associated with the first PHR.
  • the first value is used to indicate the space information associated with the first PHR; for terminal devices before R18, the first value is an idle value.
  • codepoints and/or indexes of LCIDs of MAC subheaders associated with MAC CEs associated with different spatial information are different.
  • the terminal device supports N pieces of antenna panel information, and the N pieces of antenna panel information are associated with code points and/or indexes of N LCID values, where N is a positive integer.
  • the N LCID values are used to indicate the spatial information associated with the PHR; for terminal devices before R18, the N LCID values are idle values.
  • the first MAC CE further includes first indication information, which is used to indicate the cell corresponding to the PHR carried in the first MAC CE.
  • the first MAC CE is carried by a first physical uplink shared channel PUSCH, wherein the first PUSCH is a PUSCH associated with the first spatial information.
  • the first PUSCH is an initial transmission PUSCH with the earliest time domain position associated with the first spatial information after the terminal device determines to report the PHR determined according to the first uplink information; or,
  • the first PUSCH is the PUSCH with the earliest time domain position among the PUSCHs associated with the first spatial information that are repeatedly sent after the terminal device determines to report the PHR determined according to the first uplink information.
  • the mode of the first PHR is an actual PHR, and the first PHR is determined according to the actual transmission power of the first PUSCH.
  • the first PHR is the PHR of the first cell
  • the PHR of the first cell is determined according to the PHR of the target carrier on the first cell, wherein the target carrier is determined according to the It is determined by the uplink information associated with the first spatial information whether the uplink UL carrier and the auxiliary uplink SUL carrier on the first cell are configured or scheduled.
  • the target carrier is a carrier configured or scheduled with a PUSCH associated with the first spatial information among the UL carrier and the SUL carrier on the first cell; or,
  • the PUSCH associated with the first spatial information is not configured or scheduled on the UL carrier and SUL carrier on the first cell, but the first carrier of the UL carrier and SUL carrier on the first cell is scheduled Or it is configured to send the PUSCH through the third spatial information, then the PHR of the first cell is determined according to the PHR on the first carrier, where the third spatial information is different from the first spatial information.
  • the target PHR includes a second PHR
  • the second PHR is carried by a second MAC CE
  • the second PHR is a PHR associated with the second spatial information.
  • the second PHR is a multi-cell PHR.
  • one or more bits in the second MAC CE are used to indicate the spatial information corresponding to the second PHR.
  • the one or more bits are used to indicate the spatial information associated with the second PHR; for terminal devices before R18, the one or more bits are spare bits.
  • the second MAC CE includes at least one bit group, each bit group includes one or more bits, each bit group corresponds to a type of spatial information, and the value of each bit group is used for Indicates the target spatial information associated with the second PHR in the corresponding type of spatial information.
  • the at least one bit group corresponds to at least one type of spatial information
  • the at least one type of spatial information includes at least one of the following: antenna panel information, CORESET group information, reference signal set information , TCI status information, beam information.
  • the at least one bit group is used to indicate the spatial information associated with the second PHR; for terminal devices before R18, the at least one bit group is a spare bit .
  • the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the LCID in the MAC subheader of the second MAC CE is used to indicate the spatial information associated with the second PHR.
  • the value of the LCID in the MAC subheader of the second MAC CE is a second value used to indicate the spatial information associated with the second PHR.
  • the second value is used to indicate the space information associated with the second PHR; for terminal devices before R18, the second value is an idle value.
  • codepoints and/or indexes of LCIDs of MAC subheaders associated with MAC CEs associated with different spatial information are different.
  • the terminal device supports N pieces of antenna panel information, and the N pieces of antenna panel information are associated with code points and/or indexes of N LCID values, where N is a positive integer.
  • the N LCID values are used to indicate the spatial information associated with the PHR; for terminal devices before R18, the N LCID values are idle values.
  • the second MAC CE further includes second indication information, which is used to indicate the cell corresponding to the PHR carried in the second MAC CE.
  • the second MAC CE is carried by a second PUSCH, where the second PUSCH is a PUSCH associated with the second spatial information.
  • the communication unit 510 is further configured to: receive first capability information sent by a terminal device, where the first capability information is used to indicate a plurality of uplink information associated with a plurality of spatial information of the terminal device Whether the maximum transmission power can be shared among them.
  • the target maximum transmit power corresponding to each spatial information of the terminal device is the maximum transmit power determined according to each spatial information, or the maximum transmit power of the terminal device, or the The sum of the maximum transmit power corresponding to all spatial information of the terminal device.
  • the communication unit 510 is further configured to: receive second capability information sent by a terminal device, where the second capability information is used to indicate whether the terminal device supports reporting of a PHR determined according to a plurality of uplink information, Wherein, the multiple pieces of uplink information are associated with multiple pieces of spatial information, and the multiple pieces of uplink information are sent simultaneously.
  • the PHR configuration information is determined according to the second capability information.
  • the target PHR is a PHR determined according to a plurality of uplink information, wherein the plurality of uplink information is associated with a plurality of spatial information, and the plurality of uplink information is sent at the same time; wherein, the The target PHR is determined according to the sum of the maximum transmission power of the terminal device and the power for simultaneously transmitting the plurality of uplink information through the plurality of spatial information.
  • the target PHR is determined according to the following formula:
  • PHR obj represents the target PHR
  • P CMAX,f,c represents the maximum transmission power of the terminal device
  • P x represents the power for sending uplink information through spatial information x
  • N represents the maximum number of spatial information supported by the terminal device number.
  • N is predefined, or N is determined according to the capability of the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are to realize the For the sake of brevity, the corresponding flow of the network device in the shown method 200 is not repeated here.
  • FIG. 15 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 15 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 16 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 17 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 17 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备接收功率余量报告PHR配置信息;所述终端设备根据所述PHR配置信息,上报目标PHR。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,终端设备可以向网络设备上报功率余量报告(Power headroom report,PHR),该PHR可以是根据物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或探测参考信号(Sounding Reference Signal,SRS)的发送功率确定的,该PHR可以用于辅助网络设备配置功率控制相关参数,但是频繁上报PHR会增大信令开销,因此,如何进行PHR上报是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,终端设备能够向网络设备上报关联空间信息的上行信息对应的PHR。
第一方面,提供了一种无线通信的方法,包括:终端设备接收功率余量报告PHR配置信息;所述终端设备根据所述PHR配置信息,上报目标PHR。
第二方面,提供了一种无线通信的方法,包括:网络设备发送功率余量报告PHR配置信息;所述网络设备接收目标PHR。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,网络设备可以给终端设备配置PHR配置信息,终端设备可以根据该PHR配置信息上报目标PHR,有利于降低频繁上报PHR导致的信令开销。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请提供的一种基于多TRP的上行传输的示意性图。
图3是本申请提供的另一种基于多TRP的上行传输的示意性图。
图4是本申请提供的一种基于多TRP的PUCCH传输的示意性图。
图5是本申请提供的一种配置TCI状态的示意性图。
图6是根据本申请实施例提供的一种无线通信的方法的示意性交互图。
图7是本申请实施例提供的一种承载单小区PHR的MAC CE格式图。
图8是本申请实施例提供的一种承载多小区PHR的MAC CE格式图。
图9是本申请实施例提供的一种承载多小区PHR的MAC CE格式图。
图10是本申请实施例提供的一种承载多小区PHR的PUSCH的确定方式示意图。
图11是本申请实施例提供的一种用于确定小区的PHR的PUSCH的示意图。
图12是本申请实施例提供的一种用于确定小区的PHR的PUSCH的示意图。
图13是根据本申请实施例提供的一种终端设备的示意性框图。
图14是根据本申请实施例提供的一种网络设备的示意性框图。
图15是根据本申请实施例提供的一种通信设备的示意性框图。
图16是根据本申请实施例提供的一种芯片的示意性框图。
图17是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功 能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请相关的功率控制机制进行说明。
1、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)功率控制
PUSCH的功率控制机制包括开环功率控制和闭环功率控制两部分。开环功率控制参数由网络设备通过无线资源控制(Radio Resource Control,RRC)信令配置或重配置,是一种慢速和半静态的功率调整。闭环功率控制可以快速通过物理层信令下行控制信息(Downlink Control Information,DCI)调整功率。
PUSCH的发送功率可以采用如下公式(1)表示:
Figure PCTCN2021143077-appb-000001
其中,PUSCH的发送功率的单位为dBm;
b:表示带宽部分(Bandwidth Part,BWP);
f:表示载波(carrier)(例如,小区(cell)内的上行(UL)载波或者补充上行载波(supplementary UL,SUL));
c:表示服务小区(serving cell);
i:表示传输时机(transmission occasion);
j:表示参数配置索引;
q d:用于路径损耗测量的参考信号的索引;
l:闭环功率控制调整状态的索引;
上式中的开环功率控制参数包括:
P O_PUSCH,b,f,c(j):表示目标接收功率;
α b,f,c(j):表示路径损耗的加权因子;
PL b,f,c(q d):表示根据用于路径损耗的参考信号测量得到的路径损耗值;
上式中的闭环功率控制参数包括:
f b,f,c(i,l):表示闭环功率控制调整状态,包括累积闭环功率控制(通过累加器,作用于功率控制累加值)和绝对闭环功率控制(直接作用于功率调整值);
其他功率控制参数,包括:
P CMAX,f,c(i):表示终端设备在服务小区c的载波f的最大发送功率;
Figure PCTCN2021143077-appb-000002
表示PUSCH的传输带宽(资源分配的资源块(resource block,RB)数)。
如果DCI中包括探测参考信号资源指示(Sounding Reference Signal resource indication,SRI)域,并且,如果NR中支持通过RRC信令配置开环功率参数、闭环功率参数与DCI中的SRI域之间的映射关系,通过DCI中的SRI域中的状态来指示开环功率参数、闭环功率参数。
2、物理上行控制信道(Physical Uplink Control Channel,PUCCH)功率控制
PUSCH的发送功率可以采用如下公式(2)表示:
Figure PCTCN2021143077-appb-000003
与PUSCH的功率控制机制类似,PUCCH的功率控制机制也包括开环功率控制(P0,PL)和闭环功率控制(g)两部分,相同的参数与PUSCH功率控制中代表的含义相同,这里不再赘述,其中,
q u:表示参数P O_PUCCH,b,f,c(q u)的索引;
Δ F_PUCCH(F):表示PUCCH格式(format)相关的PUCCH功率调整值;
Δ TF,b,f,c(i):表示码率相关的功率补偿因子;
g b,f,c(i,l):表示PUCCH闭环功率控制的调整状态。
PUCCH的路径损耗补偿因子的值为1。
如果终端设备被配置空间信息(例如,beam信息),PUCCH的开环功率控制参数、闭环功率控制参数可以根据RRC信令配置的空间信息与功率控制参数之间的映射关系,通过空间关系信息来确定相应的开环功率控制参数、闭环功率控制参数。
3、SRS功率控制
SRS的发送功率可以采用如下公式(3)表示:
Figure PCTCN2021143077-appb-000004
与PUSCH的功率控制机制类似,SRS的功率控制机制也包括开环功率控制(P0,PL)和闭环功率控制(h)两部分,相同的参数与PUSCH功率控制中代表的含义相同,这里不再赘述,其中,
q s:表示SRS资源集的索引;
b,f,c(i,l):表示SRS闭环功率控制的调整状态。
SRS的功率控制是基于SRS资源集进行的,一个SRS资源集内的SRS资源采用相同的功率控制参数。
开环功率控制参数P O_SRS,b,f,c(q s)和α SRS,b,f,c(q s)的SRS资源集索引以及用于计算路径损耗PL b,f,c(q d)的参考信号索引都是基于SRS资源集配置的,并且由RRC信令配置的。
b,f,c(i,l),可以由RRC信令指示与时域最近的PUSCH关联采用相同的闭环功率调整状态,或者采用独立的闭环功率控制调整状态。
为便于理解本申请实施例的技术方案,对本申请相关的功率余量报告(Power headroom report,PHR)进行说明。
在一些实施例中,可以上报类型1(Type1)或类型3(Type3)的PHR,例如,终端设备通过PUSCH承载PHR上报给网络设备。
1、Type1 PHR
Type1 PHR用于上报终端设备发送PUSCH的功率余量,Type1 PHR可以包括:基于实际发送的PUSCH的PHR和基于参考PUSCH的PHR。
基于实际发送的PUSCH的PHR是终端设备的最大发送功率与实际发送的PUSCH功率的差值。例如,可以采用如下公式(4)计算:
Figure PCTCN2021143077-appb-000005
其中,PH的单位是dB,公式中的各个参数的含义参考PUSCH的功率控制机制中的相同参数的说明,这里不再赘述。
基于参考PUSCH的PHR是终端设备的最大发送功率与参考PUSCH功率的差值,可以理解为在计算PHR的时刻该载波上并没有发送PUSCH,例如,可以采用如下公式(5)计算:
Figure PCTCN2021143077-appb-000006
其中,PH的单位是dB,
Figure PCTCN2021143077-appb-000007
表示基于特定参数值确定的最大发送功率,公式中的各个参数的含义参考PUSCH的功率控制机制中的相同参数的说明,这里不再赘述。
2、Type3 PHR
Type3 PHR用于上报终端设备发送SRS的功率余量,并且只针对没有配置PUSCH的载波才会上报Type3 PHR。Type3 PHR包括:基于实际发送的SRS的PHR和基于参考SRS的PHR。
基于实际发送的SRS的PHR是终端设备的最大发送功率与实际发送的SRS功率的差值。例如,可以采用如下公式(6)计算:
PH type3,b,f,c(i,q s)=P CMAX,f,c(i)-{P O_SRS,b,f,c(q s)+10log 10(2 μ·M SRS,b,f,c(i))+α SRS,b,f,c(q s)·PL b,f,c(q d)+h b,f,c(i)}
                                                                 公式(6)
其中,PH的单位是dB,公式中的各个参数的含义参考SRS的功率控制机制中的相同参数的说明,这里不再赘述。
基于参考SRS的PHR是终端设备的最大发送功率与参考SRS功率的差值。可以理解为在计算PHR的时刻该载波并没有发送SRS,例如,可以采用如下公式(7)计算:
Figure PCTCN2021143077-appb-000008
其中,PH的单位是dB,
Figure PCTCN2021143077-appb-000009
表示基于特定参数值确定的最大发送功率,公式中的各个参数的含义参考SRS的功率控制机制中的相同参数的说明,这里不再赘述。
为便于理解本申请实施例的技术方案,对本申请相关的天线面板(panel)进行说明。
伴随着天线封装技术的不断演进,多个天线阵子(antenna elements)可以与芯片嵌套结合,形成一个panel,这使得在发射机配置多个低相关性的panel成为可能。通过多天线的波束赋形(Beamforming)技术,将发送信号能量汇集在某一方向上进行发送,可以有效提升覆盖,进而提高通信的性能。多个panel的射频链路是独立的,多个panel中的每个panel可以独立的形成发送波束,不同的panel形成的波束可以相同也可以不同。从而一个终端发射机可以通过不同的波束同时在多个 panel上发送数据流,以提升传输的容量或可靠性。
终端设备需要在能力上报中通知网络侧所配置的天线面板panel的数量。同时,终端设备还可能需要通知网络侧是否具备在多个天线面板上同时传输信号的能力。由于不同panel对应的信道条件是不同的,不同的panel需要根据各自的信道信息采用不同的传输参数。为了得到这些传输参数,需要为不同的panel配置不同的探测参考信号资源(Sounding Reference Signal Resource,SRS Resource)来获得上行信道信息。例如,为了进行上行的波束管理,可以为每个panel配置一个SRS资源集合(SRS Resource set),从而每个panel分别进行波束管理,确定独立的模拟波束。为了得到物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输所用的预编码信息,也可以为每个panel配置一个SRS资源集合,用于得到该panel上传输的PUSCH所用的波束、预编码向量、传输层数等传输参数。同时,多panel传输也可以应用于物理上行控制信道(Physical Uplink Control Channel,PUCCH),即同一个PUCCH资源或者同样时域资源上的PUCCH资源携带的信息可以同时通过不同的panel发送给网络侧。其中,每个panel可以有自己的panel ID,用于将同一个panel上传输的不同信号关联起来,即终端设备可以认为关联相同panel ID的信号需要从同一个panel上传输。
为便于理解本申请实施例的技术方案,对本申请相关的上行非相干传输进行说明。
在NR系统中,引入了基于多个传输接收点(Transmission Reception Point,TRP)的下行和上行的非相干传输。其中,TRP之间的回程(backhaul)连接可以是理想的或者非理想的,理想的backhaul下TRP之间可以快速动态的进行信息交互,非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互。在下行非相干传输中,多个TRP可以基于不同的控制信道独立调度一个终端设备的多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输,也可以基于同一个控制信道调度不同TRP的传输,其中不同TRP的数据基于不同的传输层,后者只能用于理想backhaul的情况。
在上行非相干传输中,不同TRP同样可以独立调度同一个终端设备的PUSCH传输。不同PUSCH传输可以配置独立的传输参数,例如波束、预编码矩阵、层数等。所调度的PUSCH传输可以在同样的时隙或不同的时隙传输。如果终端设备在同一个时隙被同时调度了两个PUSCH传输,则需要基于自身能力确定如何进行传输。如果终端设备配置有多个panel,且支持在多个panel上同时传输PUSCH,则终端设备可以同时传输这两个PUSCH,且不同panel上传输的PUSCH对准相应的TRP进行模拟赋形,从而通过空间域区分不同的PUSCH,提高上行的频谱效率(如图2)。如果终端设备只有单个panel,或者不支持多个panel同时传输,则终端设备只能在一个panel上传输PUSCH。与下行类似,不同TRP传输的PUSCH可以基于多个下行控制信息(Downlink Control Information,DCI)进行调度,这些DCI可以通过不同的控制资源集(Control Resource Set,CORESET)来承载。具体的,网络侧配置多个CORESET组,每个TRP基于各自的CORESET组中的CORESET进行调度,即可以通过CORESET组来区分不同的TRP。例如,网络设备可以为每个CORESET配置一个CORESET组索引,不同的索引指示不同的CORESE组对应不同的TRP。同样的,向不同TRP传输的PUSCH可以基于单个DCI进行调度,此时所述DCI中需要指示向不同TRP传输的PUSCH传输层分别基于的波束和解调参考信号(Demodulation Reference Signal,DMRS)端口(如图3),即一个PUSCH不同的传输层可以在不同的panel上传输。
类似的方法也可以用于PUCCH传输。即终端设备可以配置不同的PUCCH同时在不同的panel上传输,不同panel上基于的波束不同,分别通过各自的空间相关信息通知给终端设备。以两个不同的PUCCH在不同的panel上传输为例,如图4所示,不同panel上传输的PUCCH可以用于携带发给不同TRP的上行控制信息(Uplink Control Information,UCI),例如panel1上的UCI是发送给TRP1的,panel2上的UCI是发送给TRP2的。
为便于理解本申请实施例的技术方案,对本申请相关的上行波束管理进行说明。
在NR系统中,终端设备可以采用模拟波束来传输上行数据和上行控制信息。终端设备可以基于SRS信号来进行上行波束管理,从而确定上行传输所用的模拟波束。具体的,网络设备可以给终端设备配置SRS资源集合1,该SRS资源集合1中包含N个SRS资源(其中,N>1)。终端设备可以采用不同的波束发送所述N个SRS资源,网络侧分别对N个SRS资源进行接收质量的测量,选择其中接收质量最好的K个SRS资源。网络侧可以再配置一个SRS资源集合2,其中包括K个SRS资源,并令终端采用SRS资源集合1中选择出来的K个SRS资源所用的模拟波束来传输SRS资源集合2中的SRS资源。这可以通过将SRS资源集合1中选择出的K个SRS资源分别配置为SRS资源集合2中的K个SRS资源的参考SRS资源来实现。此时,基于终端设备在SRS资源集合2中传输的SRS,网络侧可以选择出接收质量最好的一个SRS资源,并将对应的SRS资源指示(Sounding Reference SignalResource Indicator,SRI)通知给终端设备。终端设备接收到SRI后,将SRI指示的SRS资源所 用的模拟波束确定为传输PUSCH所用的模拟波束。
为了确定PUCCH传输所采用的波束,在NR系统中,采用无线资源控制(Radio Resource Control,RRC)加媒体接入控制(Media Access Control,MAC)信令的方式来指示每个PUCCH资源上传输UCI所用的波束。具体的,先通过高层信令配置N个PUCCH的空间相关信息(PUCCH-spatialrelationinfo),再通过MAC信令从所述N个PUCCH-spatialrelationinfo中确定每个PUCCH资源分别对应的空间相关信息。
为便于更好的理解本申请实施例,对本申请相关的下行信号传输的传输配置指示(Transmission Configuration Indicator,TCI)状态进行说明。
在NR系统中,网络设备可以为每个下行信号或下行信道配置相应的TCI状态,指示目标下行信号或目标下行信道对应的准共址(Quasi-co-located,QCL)参考信号,从而终端基于该参考信号进行目标下行信号或目标下行信道的接收。
其中,一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1;
QCL信息2。
其中,一个QCL信息又包含如下信息:
QCL类型(type)配置,可以是QCL type A,QCL type B,QCL type C,QCL type D中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,带宽部分(Band Width Part,BWP)ID以及参考信号的标识(可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源ID或同步信号块(Synchronization Signal Block,SSB)索引)。
其中,QCL信息1和QCL信息2中的至少一个QCL信息的QCL类型必须为typeA,typeB,typeC中的一个,另一个QCL信息(如果配置)的QCL类型必须为QCL type D。
其中,不同QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
如果网络设备通过TCI状态配置目标下行信道的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeA,typeB或typeC,则终端设备可以假设所述目标下行信道与所述参考SSB或参考CSI-RS资源的目标大尺度参数是相同的,从而采用相同的相应接收参数进行接收,所述目标大尺度参数通过QCL类型配置来确定。类似的,如果网络设备通过TCI状态配置目标下行信道的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为type D,则终端设备可以采用与接收所述参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter),来接收所述目标下行信道。通常的,目标下行信道与其参考时间同步/广播信道(SSB/PBCH)或参考CSI-RS资源在网络侧由同一个TRP或者同一个天线面板(panel)或者相同的波束来发送。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,TCI状态可以通过无线资源控制(Radio Resource Control,RRC)信令或者RRC信令结合MAC信令的方式来指示。对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过媒体接入控制(Media Access Control,MAC)层信令来激活其中部分TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于所述DCI调度的PDSCH。例如,如图5所示,网络设备通过RRC信令指示N个候选的TCI状态,并通过MAC信令激活K个TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示1个或2个使用的TCI状态。
终端设备上报PHR可以用于辅助网络设备配置功率控制相关的参数,但是终端设备频繁上报PHR会增大信令开销,因此如何上报PHR以降低信令开销是一项亟需解决的问题。进一步地,在一些场景中,PUSCH、PUCCH,SRS可以是基于空间信息(例如,panel,TCI状态等)发送的,此情况下,如何进行PHR上报也是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图6是根据本申请实施例的无线通信的方法200的示意性交互图,如图6所示,该方法200包括 如下内容:
S210,网络设备发送PHR配置信息;
对应的,终端设备接收PHR配置信息;
S220,终端设备根据PHR配置信息,上报目标PHR。
在一些实施例中,目标PHR是根据第一上行信息确定的PHR,第一上行信息与空间信息关联。
在另一些实施例中,目标PHR是根据多个上行信息确定的PHR,该多个上行信息与多个空间信息关联,并且该多个上行信息是同时发送的。
即,目标PHR可以用于上报与空间信息关联的第一上行信息的PH,或者,与多个空间信息关联的同时发送的多个上行信息的PH。
应理解,在本申请实施例中,第一上行信息可以为任意上行信息,例如第一上行信息可以为以下中的一种:PUSCH,PUCCH,SRS。
类似地,该多个上行信息中的每个上行信息可以包括以下中的一种:PUSCH,PUCCH,SRS。
例如,该多个上行信息包括多个PUSCH,或者,多个PUCCH,或者,多个SRS,或者,也可以包括PUSCH、PUCCH和SRS中的至少两种的组合。
应理解,在本申请实施例中,空间信息可以指用于上行信息发送的空间配置(spatial setting),或空间关系(Spatial relation),例如包括但不限于以下中的至少一种:天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
在一些实施例中,一个天线面板组对应一个天线面板组的标识(Identity,ID)或索引,不同天线面板组对应的ID或索引不同。
在一些实施例中,一个天线面板组可以包括一个或多个天线面板。
在一些实施例中,同一天线面板组中的天线面板可以对应相同的波束,不同的天线面板组中的天线面板可以对应不同的波束。
在一些实施例中,天线面板信息可以包括天线面板的ID(即panel ID)或索引,或者,也可以包括天线面板组的ID或索引。即上行信息可以与一个天线面板关联,或者,也可以与一个天线面板组关联。
在一些实施例中,CORESET组信息可以包括CORESET组的ID或索引。
在一些实施例中,参考信号集合信息可以包括参考信号集合的ID或索引。
在一些实施例中,TCI状态信息可以包括TCI指示。
在一些实施例中,波束信息可以包括波束的ID或索引,或者,波束组的ID或索引。即上行信息可以与一个波束关联,或者,也可以与一个波束组关联。
在一些实施例中,该参考信号集合可以为同步信号块(Synchronization Signal Block,SSB)集合或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)集合或者SRS集合。
在本申请实施例中,波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission),或者,空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,多个上行信息和多个空间信息关联可以为多个上行信息和多个空间信息一一关联,每个上行信息关联一个空间信息,例如每个上行信息是通过关联的空间信息发送的。
在一些实施例中,多个上行信息是同时发送的,可以指该多个上行信息的时域资源存在重叠。例如该多个上行信息在同一时间单元上传输,该多个上行信息在该时间单元上的时域资源存在重叠。可选地,该时间单元可以为一个或多个时隙,一个或多个子时隙(sub-slot),一个或多个子帧(subframe),或者,一个或多个半帧,或者,一个或多个正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号等,本申请对此不作限定。
在一些实施例中,该时间单元可以包括连续的时域资源,例如,该时间单元包括连续的N个符号,该N为大于1的正整数,例如N为2、3或4等,或者,也可以包括连续的M个时隙,其中,M为大于1的正整数,例如,M为2、3或4等。
在另一些实施例中,该时间单元也可以包括离散的时域资源。例如,该离散的时域资源可以是一个时隙内的离散的P个符号,或者,一个半帧内的离散的Q个子帧等,其中,P,Q为大于1的正整数,例如,P为2、3或4等,Q为2、3或4等。
可选地,在一些实施例中,当多个上行信息在同一时间单元上传输时,无论该多个上行信息占用的时域资源是否重叠,均可以认为该多个上行信息是同时发送的。即,只要该多个上行信息的时域资源在同一时间单元上即可认为该多个上行信息是同时发送的。
在一些实施例中,该多个上行信息是关联多个空间信息的多个PUSCH,并且该多个PUSCH是同 时发送的。
可选地,该多个PUSCH可以是多个DCI调度的,该多个DCI用于调度该多个PUSCH在同一时间单元上同时发送。
在本申请一些实施例中,上行信息和空间信息关联可以包括但不限于以下中的至少一项:
上行信息与天线面板信息关联;
上行信息与CORESET组信息关联;
上行信息与参考信号集合信息关联;
上行信息与TCI状态信息关联;
上行信息与波束信息关联。
在一些实施例中,上行信息和天线面板信息关联可以包括:上行信息是通过该天线面板信息对应的天线面板发送的。
在一些实施例中,上行信息与CORESET组信息关联可以包括:该CORESET组信息所对应的CORESEST组是触发该上行信息的PDCCH所在的CORESET所属的CORESET组,或者,也可以是该CORESET组信息所对应的CORESEST组是高层信令为发送上行信息的资源配置的CORESET组。
在一些实施例中,上行信息与参考信号集合信息关联可以包括:
该参考信号集合信息所对应的参考信号集合为用于传输上行信息的天线面板所关联的参考信号集合,或者网络设备为上行信息配置的参考信号集合,或者为该上行信息对应的PDCCH或PDSCH所关联的参考信号集合。可选地,该上行信息对应的PDCCH可以指调度该上行信息的PDCCH,上行信息对应的PDSCH,可以指该上行信息承载的混合自动重传请求应答(Hybrid Automatic Repeat Request Acknowledgement,HARQ-ACK)信息是该PDSCH的HARQ-ACK信息。
在一些实施例中,上行信息与TCI状态信息关联可以包括上行信息的发送波束是根据TCI状态信息确定的。
在一些实施例中,上行信息与波束信息关联可以包括上行信息是通过该波束信息对应的波束发送的。
在一些实施例中,目标PHR包括的PH的类型可以是类型1(Type 1),或类型2(Type 2)或类型3(Type 3),其中,Type 1的PH可以是根据PUSCH的功率确定的,Type 2的PH可以是根据PUCCH的功率确定的,Type 3的PH可以是根据SRS的功率确定的。
在本申请一些实施例中,所述目标PHR可以是通过媒体接入控制控制元素(Media Access Control Control Element,MAC CE)承载的。
在本申请实施例中,PHR配置信息可以是与上报PHR相关的配置,例如,上报PHR的周期信息,上报PHR的条件,上报的PHR的小区类型等,本申请并不限于此。
在一些实施例中,所述PHR配置信息可以用于配置该PHR的上报条件,因此,终端设备根据该PHR配置信息进行PHR上报,有利于避免PHR的频繁上报,降低信令开销。
在本申请一些实施例中,PHR配置信息与空间信息关联,或者说,PHR配置信息可以是基于空间信息配置的,PHR配置信息是空间信息粒度的。
例如,针对不同的空间信息,配置对应的PHR配置信息。例如,在需要上报第一上行信息对应的PHR时,其中,该第一上行信息关联第一空间信息,则终端设备可以根据该第一空间信息关联的PHR配置信息,进行PHR上报。
在一些实施例中,所述PHR配置信息包括但不限于以下高层参数中的至少一项:
PHR的周期定时器(phr-PeriodicTimer);
禁止PHR上报的定时器(phr-ProhibitTimer);
发送功率因素变化量或者路径损耗变化量(phr-Tx-PowerFactorChange);
双连接时另外一个小区组的PHR模式(phr-ModeOtherCG);
上报的PHR的小区类型,所述上报的PHR的小区类型为多小区PHR(MultipleEntryPHR)或单小区PHR(SingleEntryPHR);
最大允许暴露(maximum permissible exposure,MPE)的上报许可(mpe-Reporting-FR2);
功率管理最大功率回退(Power Management Maximum Power Reduction,P-MPR)的阈值(mpe-Threshold);
MPE禁止上报的定时器(mpe-ProhibitTimer)。
在一些实施例中,每个空间信息关联的PHR配置信息均可以包括上述高层参数中的一项或多项配置。
在一些实施例中,不同空间信息关联的PHR配置信息包括的高层参数可以相同,或者,也可以 不同。
在一些实施例中,不同空间信息关联的PHR配置信息包括的相同的高层参数对应的配置可以相同,或者,也可以不同。
在一些实施例中,PHR配置信息包括第一PHR配置信息和第二PHR配置信息,第一PHR配置信息与第一空间信息关联,第二PHR配置信息与第二空间信息关联,第一PHR配置信息和第二PHR配置信息包括的高层参数不同,和/或,第一PHR配置信息和第二PHR配置信息包括的相同的高层参数对应的配置不同。即,网络设备可以针对不同的空间信息,配置不同的高层参数,和/或,针对相同的高层参数指示不同的配置,也即,相同的高层参数的取值不同。
在一些实施例中,所述第一PHR配置信息包括但不限于以下高层参数中的至少一项:
第一MPE的上报许可、第一P-MPR的阈值、第一MPE禁止上报的定时器。
在一些实施例中,所述第二PHR配置信息包括但不限于以下高层参数中的至少一项:
第二MPE的上报许可、第二P-MPR的阈值、第二MPE禁止上报的定时器。
在一些实施例中,所述第一MPE的上报许可和所述第二MPE的上报许可对应的配置不同。
在一些实施例中,所述第一P-MPR的阈值与所述第二P-MPR的阈值不同。
在一些实施例中,所述第一MPE禁止上报的定时器和所述第二MPE禁止上报的定时器对应的配置不同。
在一些实施例中,第一PHR配置信息与第一空间信息关联包括以下中的至少一种:
第一PHR配置信息与第一天线面板信息关联;
第一PHR配置信息与第一CORESET组信息关联;
第一PHR配置信息与第一参考信号集合信息关联;
第一PHR配置信息与第一TCI状态信息关联;
所述第一PHR配置信息与第一波束信息关联。
在一些实施例中,第二PHR配置信息与第二空间信息关联包括以下中的至少一种:
第二PHR配置信息与第二天线面板信息关联;
第二PHR配置信息与第二CORESET组信息关联;
第二PHR配置信息与第二参考信号集合信息关联;
第二PHR配置信息与第二TCI状态信息关联;
所述第二PHR配置信息与第二波束信息关联。
也就是说,网络设备可以针对不同的天线面板配置不同的PHR配置信息,或者,针对不同的CORESET组配置不同的PHR配置信息,或者,针对不同的参考信号集合配置不同的PHR配置信息,或者,针对不同的TCI状态配置不同的PHR配置信息,或者,针对不同的波束配置不同的PHR配置信息。
因此,在本申请实施例中,对于不同的空间信息,网络设备可以关联不同的高层参数的组合,和/或,关联的高层参数的配置不同,从而能够实现空间信息粒度的PHR上报。
在一些实施例中,第一空间信息可以是索引为x的空间信息,第二空间信息为索引为y的空间信息,x和y是整数,x和y的范围为[0,N-1],N为终端设备支持的空间信息的总数,x与y不相同。
在一些实施例中,N是预定义的,或者,是根据终端设备的能力确定的。例如终端设备可以向网络设备上报其支持的最大空间信息数,网络设备基于终端设备上报的最大空间信息数确定N。
在一些实施例中,该N可以是2的整数倍,例如2,4,6,8等。
在一些实施例中,该PHR的周期定时器用于控制PHR上报的周期或频率。例如,在PHR的周期定时器超时后,终端设备触发上报PHR。通过配置PHR的周期定时器,有利于避免终端设备频繁上报PHR。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,网络设备配置的phr-PeriodicTimer的时间可以不同。例如,对于panel ID为0,关联的phr-PeriodicTimer被配置为10个子帧(subframe),对于panel ID为1,关联的phr-PeriodicTimer被配置为20个subframe。当与不同panel关联的phr-PeriodicTimer超时后,终端设备被触发上报与该panel关联的上行信息的PHR。
在一些实施例中,该禁止PHR上报的定时器用于控制PHR上报的周期或频率。例如,在禁止PHR上报的定时器超时后,终端设备被触发上报PHR。通过配置禁止PHR上报的周期定时器,有利于避免终端设备频繁上报PHR。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,禁止PHR上报的定时器的时间可以不同。例如,对于panel ID为0,关联的phr-ProhibitTimer被配置为20个subframe,对于panel ID为1,关联的phr-PeriodicTimer被配置为50个subframe。当与不同panel关联的phr-ProhibitTimer超 时后,终端设备被触发上报与该panel关联的上行信息的PHR。
在一些实施例中,发送功率因素变化量或者路径损耗变化量采用分贝(dB)数表征,可以用于指示PHR的上报条件,避免终端设备频繁上报PHR。例如,在发送功率因素变化量或者路径损耗变化量超过配置的分贝数时,终端设备触发上报PHR。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,发送功率因素变化量或者路径损耗变化量可以被配置为不同的分贝数,则对于不同panel上的上行信息的PHR上报,当终端设备测量得到的路径损耗的变化超过关联的phr-Tx-PowerFactorChange配置的分贝数时,终端设备被触发上报PHR。
在一些实施例中,双连接时另外一个小区组的PHR模式包括基于实际传输的PHR(即实际PHR,采用real表示)和基于参考传输的PHR(即虚拟PHR,采用virtual表示)。
在一些实施例中,在终端设备处于双连接(dual connectivity,DC)时,终端设备通过一个小区组上报PHR时,网络设备可以配置另外一个小区组的PHR模式,终端设备按照该PHR模式来上报另外一个小区组的PHR。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,网络设备可以配置该高层参数phr-ModeOtherCG为不同的模式。例如,对于panel ID为0,phr-ModeOtherCG配置为“real”,对于panel ID为1,phr-ModeOtherCG配置为“virtual”。则对于与不同panel关联的上行信息的PHR上报,可以基于配置的模式进行PHR上报。
在一些实施例中,上报的PHR的小区类型用于网络设备指示终端设备上报的PHR是多小区PHR或单小区PHR。
可选地,单小区PHR可以指单个小区对应的PHR,该单个小区对应的PHR可以是根据该单个小区上传输的上行信息确定的。例如,根据该单个小区上传输的PUSCH或SRS或PUCCH确定。
可选地,多小区PHR可以包括多个小区中的每个小区对应的PHR,其中,每个小区对应的PHR可以是根据该小区上传输的上行信息确定的。例如,根据小区上传输的PUSCH或SRS或PUCCH确定。
在一些实施例中,MPE的上报许可用于指示终端设备是否在承载PHR的MAC CE中上报MPE P-MPR值。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,MPE的上报许可可以为不同的配置,例如,对于panel ID为0,指示终端设备需要在承载PHR的MAC CE中上报MPE P-MPR值,对于panel ID为1,指示终端设备不需要在承载PHR的MAC CE中上报MPE P-MPR值。
在一些实施例中,在P-MPR大于或等于P-MPR的阈值时,终端设备上报MPE P-MPR值。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,P-MPR的阈值可以为不同的配置。例如,对于panel ID为0,P-MPR的阈值为3dB,对于panel ID为1,P-MPR的阈值为6dB。
在一些实施例中,MPE禁止上报的定时器,用于网络设备指示终端设备禁止上报MPE的定时器。
以PHR配置信息与panel ID关联为例,对于不同的panel ID,MPE禁止上报的定时器可以为不同的配置。例如,对于panel ID为0,配置的mpe-ProhibitTimer为10个subframe,对于panel ID为1,配置的mpe-ProhibitTimer为20个subframe。
在一些实施例中,网络设备配置的每个空间信息关联的PHR配置信息均承载在同一个信息元素(InformationElement,IE)中。例如,按照空间信息对应的索引或ID由小到大的顺序依次包括每个空间信息关联的PHR配置信息。可选地,对于每个PHR配置信息均包括空间信息ID或索引字段,用于该PHR配置信息关联的空间信息。
在一些实施例中,所有空间信息关联的PHR配置信息可以承载在新定义的IE中,或者,承载在已有的IE中,本申请对此不作限定。
以空间信息为panel ID为例,针对所有panel ID的PHR配置信息可以承载在新定义的IE中,例如,新定义PHR-Config-r18IE,用于承载针对所有panel的PHR配置信息。
作为示例而非限定,PHR-Config-r18IE结构如下所示:
Figure PCTCN2021143077-appb-000010
Figure PCTCN2021143077-appb-000011
其中,maxNrofpanel-IDs标识panel ID的最大个数,对应前述N。
由此可见,可以对每个panel关联的PHR配置信息中包括该PHR配置信息所关联的Panel ID。
应理解,在PHR配置信息与其他空间信息(例如,波束ID或CORESET组索引)关联时,上述承载PHR配置信息的IE中的panel相关参数也可以替换为其他空间信息相关的参数,例如,波束ID,CORESET组索引等,本申请并不限于此。
在另一些实施例中,每个空间信息关联的PHR配置信息独立承载于一个IE中。
以空间信息为panel ID为例,针对一个panel ID的PHR配置信息可以承载在新定义的IE中,例如,新定义PHR-Config-panel-ID IE,用于承载panel ID关联的PHR配置信息。
作为示例而非限定,PHR-Config-panel-ID IE结构如下所示:
Figure PCTCN2021143077-appb-000012
应理解,当PHR配置信息基于其他空间信息(例如,波束ID或CORESET组索引)配置时,上述承载PHR配置信息的IE中的panel相关参数可以替换为其他空间信息的参数,例如,波束ID关联的参数,CORESET组索引关联的参数等,本申请并不限于此。
在本申请一些实施例中,所述方法200还包括:
所述终端设备根据所述PHR配置信息,确定是否满足PHR触发条件;
在满足PHR触发条件时,所述终端设备确定上报所述目标PHR。
在一些实施例中,终端设备可以根据空间信息关联的phr-PeriodicTimer或phr-ProhibitTimer确定是否满足PHR上报条件。
例如,在phr-PeriodicTimer或phr-ProhibitTimer超时时,确定满足PHR上报条件。
可选地,phr-PeriodicTimer或phr-ProhibitTimer的定时器开启条件可以是接收到PHR配置信息。
在一些实施例中,终端设备可以根据空间信息关联的发送功率因素变化量或者路径损耗变化量确 定是否满足PHR上报条件。
例如,当终端设备测量得到的路径损耗的变化超过关联的phr-Tx-PowerFactorChange配置的分贝数时,确定满足PHR上报条件。
在一些实施例中,终端设备可以根据PHR配置信息中的至少两种高层参数确定是否满足PHR上报条件。
例如,该至少两种高层参数可以是phr-PeriodicTimer和发送功率因素变化量或者路径损耗变化量,该至少两种高层参数与相同的空间信息关联。作为示例,当phr-PeriodicTimer超时,并且终端设备测量得到的路径损耗的变化超过关联的phr-Tx-PowerFactorChange配置的分贝数时,确定满足PHR上报条件。
在本申请一些实施例中,目标PHR可以通过MAC CE承载。
以下,结合实施例1,说明承载PHR的MAC CE结构设计。
例如,对于单小区PHR(Single entry PHR)和多小区PHR(Multiple entry PHR)均可以通过MAC CE承载。
即在本申请实施例中,可以通过MAC CE承载与空间信息关联的单小区PHR或多小区PHR。
结合实施例1-1和实施例1-2分别说明承载单小区PHR和多小区PHR的MAC CE结构。
实施例1-1:单小区PHR(single entry PHR)
在本申请一些实施例中,目标PHR包括第一PHR,第一PHR为单小区PHR,第一PHR通过第一MAC CE承载,第一PHR是与第一空间信息关联。
在一些实施例中,第一PHR是单小区PHR。
在一些实施例中,第一PHR与第一空间信息关联可以包括第一PHR是根据与第一空间信息关联的上行信息确定的。例如,根据与第一空间信息关联的PUSCH,PUCCH或SRS确定的。其中,第一空间信息和上行信息的关联关系可以参考前文实施例的相关描述,这里不再赘述。
在一些实施例中,第一PHR与第一空间信息关联可以包括以下中的至少一种:
第一PHR与第一天线面板信息关联;
第一PHR与第一CORESET组信息关联;
第一PHR与第一参考信号集合信息关联;
第一PHR与第一TCI状态信息关联;
第一PHR与第一波束信息关联。
例如,第一PHR是根据与第一天线面板信息关联的上行信息确定的,或者,根据与第一CORESET组信息关联的上行信息确定的,或者,根据与第一参考信号集合信息关联的上行信息确定的,或者,根据与第一TCI状态信息关联的上行信息确定的,或者,根据第一波束信息关联的上行信息确定的。
在一些实施例中,所述第一PHR为第一小区的PHR,则第一PHR可以是根据第一上行信息确定的,其中,第一上行信息是第一小区上与第一空间信息关联的上行信息。
在一些实施例中,第一PHR可以是根据实际发送第一上行信息的功率确定的,即第一PHR的模式可以是实际PHR模式。可选地,第一上行信息可以是PUSCH,PUCCH或SRS。
应理解,在本申请实施例中,可以通过显示的指示信息或隐式指示信息指示第一MAC CE中承载的单小区PHR所关联的空间信息,本申请对于该空间信息的指示方式不作限定。
在本申请一些实施例中,第一MAC CE中的一个或多个比特用于指示第一PHR关联的空间信息。
在一些实施例中,第一MAC CE的一个或多个比特用于指示第一PHR关联的天线面板信息、CORESET组信息、参考信号集合信息、TCI状态信息和波束信息中的一种空间信息。
在一些实施例中,所述一个或多个比特的具体比特数可以根据空间信息包括的索引或ID的总个数确定。例如,若所述一个或多个比特用于指示第一PHR关联的天线面板信息,则所述一个或多个比特的具体比特数可以根据天线面板信息的总个数确定,作为示例,若需要指示两个panel ID,则可以通过1比特指示,或者,若需要指示更多个panel ID,则需要更多个比特,例如2比特,3比特等。例如,若需要指示四个panel ID,则需要2比特。
可选地,该一个或多个比特可以是MAC CE中的空闲(reserved)比特,通过MAC CE中的空闲比特向网络设备指示MAC CE中承载的PHR所关联的空间信息,以便网络设备快速获取该空间信息对应的PH。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,该一个或多个比特用于指示第二PHR关联的空间信息;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,该一个或多个比特为空闲比特。
在另一些实施例中,第一MAC CE的一个或多个比特用于指示天线面板信息、CORESET组信息、参考信号集合信息、TCI状态信息和波束信息中的至少一项。
例如,所述第一MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第一PHR在对应类型的空间信息中所关联的目标空间信息。
在一些实施例中,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
作为示例,第一MAC CE包括L个比特组,分别对应L种空间信息,例如L可以为1,2或3等。
以L=2作为示例,该L种空间信息可以包括天线面板信息和CORESET组信息。则第一MAC CE可以包括2个比特组,例如第一比特组和第二比特组,分别用于指示第一PHR关联的天线面板信息和CORESET组信息。
在一些实施例中,每个比特组包括的比特数可以相同,或者,也可以不同。例如,可以根据每种空间信息包括的索引或ID的总个数确定,或者,也可以根据每种空间信息包括的索引或ID的总个数的最大值确定。
例如,第一比特组所占的比特数可以根据panel ID的最大个数确定,或者,也可以根据每种空间信息包括的索引或ID的最大个数的最大值确定。
作为示例,panel ID的总个数为4个,CORESET组索引的总个数为2,参考信号集合索引的总个数为2,TCI指示的总个数为8,波束ID的总个数为16,则第一比特组所占的比特数可以根据panel ID的总个数4确定,或者,也可以根据波束ID的总个数16确定。例如,第一比特组可以为2比特,或者,4比特。
在一些实施例中,对于支持上报空间信息关联的PHR的终端设备,例如R18及之后版本的终端设备,所述至少一个比特组用于指示所述第一PHR关联的空间信息;对于不支持上报空间信息关联的PHR的终端设备,例如,R18之前的终端设备,所述至少一个比特组为空闲比特。
即,对于R18及之后的终端设备,可以将该至少一个比特组解读为第一PHR关联的空间信息,对于R18之前的终端设备,可以不解读该至少一个比特组。
结合图7,以空间信息为panel ID为例,说明本申请提供的一种用于承载PHR的MAC CE的格式。
应理解,图7中所示例的MAC CE中的各个信息所占的比特数以及具体位置格式仅为示例,其可以根据具体承载的信息大小或实际需求灵活调整,本申请并不限于此。
如图7所示,MAC CE包括1比特,该1比特用于指示panelID,例如,取值为0表示panelID 0,取值为1表示panelID 1。可选地,当需要指示更多种panel ID时,也可以包括更多个比特。
可选地,该MAC CE中还包括PH的类型类型,例如可以是Type 1,Type 2或Type 3。
在一些实施例中,该MAC CE可以还包括panel ID对应的目标最大发送功率。
在一些实施例中,panel ID对应的目标最大发送功率可以为panel ID对应的最大发送功率,或者,终端设备的最大发送功率(或者,终端设备的小区c的载波f上的最大发送功率),或者,终端设备的所有panelID对应的最大发送功率之和。
可选地,panel ID对应的最大发送功率可以指使用该panelID对应的panel发送上行信息时,能够使用的最大发送功率。可选地,该panel ID对应的最大发送功率根据终端设备的能力确定。
在图7的MAC CE格式中,以panel ID对应的目标最大发送功率为P CMAX,f,c作为示例,但本申请并不限于此,其中,P CMAX,f,c表示终端设备的最大发送功率,或者,终端设备的小区c中的载波f上的最大发送功率。
在一些实施例中,终端设备可以向网络设备上报是否支持多个上行信息共享最大发送功率,该多个上行信息关联多个空间信息。
可选地,该多个上行信息共享最大发送功率的情况下,每个空间信息对应的目标最大发送功率可以是终端设备的最大发送功率,或者,终端设备的所有空间信息对应的最大发送功率之和。或者,在多个上行信息不共享最大发送功率的情况下,每个空间信息对应的目标最大发送功率可以是空间信息对应的最大发送功率。
例如,在多个上行信息关联多个panel ID,并且该多个上行信息共享最大发送功率的情况下,承载panel关联的单小区PHR的MAC CE中包括的panel ID对应的目标最大发送功率信息可以是终端 设备的最大发送功率,或者,终端设备的所有panel ID对应的最大发送功率之和。或者,在多个上行信息不共享最大发送功率的情况下,承载panel ID关联的单小区PHR的MAC CE中包括的panel ID对应的目标最大发送功率信息可以是该panel ID对应的最大发送功率。
可选地,该MAC CE中还包括第一指示信息,用于指示MAC CE中的PH对应的小区。例如在该示例中中,第一PHR对应的小区是主小区(PCell)。
在本申请另一些实施例中,第一MAC CE的MAC子头(subheader)用于指示第一PHR关联的空间信息。或者,通过第一MACCE的MAC子头识别第一PHR关联的空间信息。
在一些实施例中,第一MAC CE的MAC子头中的逻辑信道标识(Logical Channel Identity,LCID)用于指示第一PHR关联的空间信息。即通过MAC子头的LCID来识别承载单小区PHR的MAC CE中的单小区PHR关联的空间信息。通过MAC子头的LCID值来关联承载与不同空间信息关联的单小区PHR的MAC CE,这种情况下,可以不需要修改MAC CE的结构。
在一些实施例中,LCID和空间信息具有关联关系,因此,终端设备可以通过不同的LCID向网络设备指示不同的空间信息。
作为示例,第一MAC CE的MAC子头中的LCID的码点(codepoint)和/或索引(index)用于指示第一PHR关联的空间信息。
例如,LCID的codepoint和/或索引和空间信息具有关联关系,因此,终端设备可以通过不同的LCID的codepoint和/或索引向网络设备指示不同的空间信息。
以空间信息为panel ID为例,不同panelID关联的LCID的codepoint和/或索引不同,从而,网络设备可以基于LCID的codepoint和/或索引,确定该LCID关联的MAC CE中的单小区PHR所关联的panel。
以空间信息为panel ID为例,在一些实现方式中,LCID的codepoint和/或索引对应的LCID值关联panelID为x的单小区PHR,x是整数,x的范围为[0,N-1],N为终端设备支持的panel的总数。
在一些实施例中,LCID值为上行共享信道(UplinkSharedChannel(s),UL-SCH)的LCID值。
在一些实施例中,所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
例如,在LCID值为空闲的codepoint和/或索引的数量大于N的情况下,可以采用任意N个LCID值为空闲的codepoint和/或索引来关联N个panel ID所关联的单小区PHR,其余LCID值为空闲的codepoint和/或索引对应的LCID值仍然为空闲。
即,N个LCID值为空闲的codepoint和/或索引与N个panel ID关联的单小区PHR具有关联关系,例如,N个LCID值为空闲的codepoint和/或索引和N个panel ID一一对应,因此,根据MAC子头的LCID值可以确定关联的MAC CE中的单小区PHR所关联的panel。
因此,在本申请实施例中,通过将MAC子头中的LCID和空间信息关联,则终端设备可以根据PHR关联的空间信息设置MAC子头中的LCID值,通过该MAC子头中的LCID值指示该MAC子头关联的MAC CE中承载的PHR所关联的空间信息。
对应地,网络设备在接收到该MAC CE后,可以根据该MAC CE关联的MAC子头中的LCID确定目标空间信息,进一步确定该MAC CE中承载的PHR关联该目标空间信息。
应理解,在本申请实施例中,PHR是通过MAC CE承载的,PHR和空间信息关联,因此可以理解为承载该PHR的MAC CE和该空间信息关联。
以N为4示例,codepoint和/或索引和panel ID的关联关系可以如表1所示。
表1
codepoint/索引 LCID值
35 Panel ID=0单小区PHR
36 Panel ID=1单小区PHR
37 Panel ID=2单小区PHR
38 Panel ID=3单小区PHR
39-44 reserved
如表1所示,可以利用codepoint和/或索引35-44对应的LCID值中的任意4个关联panelID为0~3的单小区PHR的MAC CE。作为一个示例,codepoint和/或索引35-38对应的LCID值分别对应panel ID为0~3的单小区PHR,其余codepoint和/或索引对应的LCID值仍然为reserved。
应理解,表1中的codepoint和/或索引和panel ID的关联关系仅为示例,只要保证不同panel ID关联不同的codepoint和/或索引的取值即可,本申请对此不作限定。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,codepoint和/或索引35-44中的N个codepoint和/或索引所对应的LCID值关联N个panelID对应的单小区PHR;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,codepoint和/或索引35-44对应的LCID值仍为空闲(reserved)。
以N为4示例,codepoint和/或索引和panel ID的关联关系可以如表2所示。
表2
codepoint 索引 LCID值
0 64 Panel ID=0单小区PHR
1 65 Panel ID=1单小区PHR
2 66 Panel ID=2单小区PHR
3 67 Panel ID=3单小区PHR
4-249 68-313 reserved
如表2所示,codepoint0-249,对应索引64-313,所对应的LCID值中的任意4个关联panelID为0~3的单小区PHR。作为一个示例,Codepoint0-3,对应索引64-67,所对应的LCID值分别对应panelID为0~3的单小区PHR的MAC CE,其余codepoint或索引对应的LCID值仍然为reserved。
应理解,表2中的codepoint或索引和panel ID的关联关系仅为示例,只要保证不同panel ID关联codepoint和索引的不同取值组合即可,本申请对此不作限定。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,codepoint0-249和索引64-313中的N组codepoint和索引所对应的LCID值关联N个panel ID对应的单小区PHR;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,codepoint0-249和索引64-313对应的LCID值仍为空闲(reserved)。
实施例1-2:多小区PHR(Multiple entry PHR)
在本申请一些实施例中,目标PHR包括第二PHR,第二PHR为多小区PHR,第二PHR通过第二MAC CE承载,第二PHR与第二空间信息关联。
在一些实施例中,第二PHR是多小区PHR。
即在本申请实施例中,可以通过MAC CE承载与空间信息关联的多小区PHR。
可选地,第二空间信息可以是任一空间信息,或者,终端设备实际使用的空间信息中的任一空间信息。
在一些实施例中,终端设备需要上报至少一个上行信息的PHR,其中,每个上行信息关联一个空间信息,该至少一个上行信息关联的空间信息包括第二空间信息,则目标PHR可以包括第二空间信息关联的第二PHR。可选地,该至少一个上行信息还包括第三上行信息,第三上行信息关联空间信息A,该目标PHR还可以包括第三PHR,该第三PHR为空间信息A关联的多小区PHR。以下,以第二PHR为例进行说明,具体实现方式同样适用于其他多小区PHR。
在一些实施例中,第二PHR与第二空间信息关联可以包括第二PHR是根据与第二空间信息关联的上行信息确定的。例如,根据与第二空间信息关联的PUSCH,PUCCH或SRS确定的。其中,第二空间信息和上行信息的关联关系可以参考前文实施例的相关描述,这里不再赘述。在一些实施例中,第二PHR与第二空间信息关联可以包括以下中的至少一种:
第二PHR与第二天线面板信息关联;
第二PHR与第二CORESET组信息关联;
第二PHR与第二参考信号集合信息关联;
第二PHR与第二TCI状态信息关联;
第二PHR与第二波束信息关联。
例如,第二PHR是根据与第二天线面板关联的上行信息确定的,或者,根据与第二CORESET组关联的上行信息确定的,或者,根据与第二参考信号集合关联的上行信息确定的,或者,根据与第二TCI状态关联的上行信息确定的,或者,根据第二波束关联的上行信息确定的。
在一些实施例中,第二PHR包括多个小区中的每个小区对应的PHR,可选地,每个小区对应的PHR可以是根据每个小区上与第二空间信息关联的上行信息确定的。
例如,所述第二PHR包括第二小区对应的PHR,第二PHR可以是根据第二上行信息确定的,其中,第二上行信息是第二小区上与第二空间信息关联的上行信息。可选地,第二上行信息可以为PUSCH,PUCCH或SRS。
在一些实施例中,所述第二MAC CE还包括第二指示信息,第二指示信息用于指示第二PHR对 应的小区,即所述多个小区。可选地,可以采用比特映射(bitmap)方式指示所述多个小区。例如,第二指示信息包括第一位图,第一位图包括多个比特,每个比特对应一个小区,每个比特的取值用于指示是否上报对应小区的PHR。可选地,所述多个比特的位数可以根据最大小区个数确定。
应理解,在本申请实施例中,可以通过显示的指示信息或隐式指示信息指示第二MAC CE中携带的多小区PHR所关联的空间信息,本申请对于该空间信息的指示方式不作限定。
在本申请一些实施例中,第二MAC CE中的一个或多个比特用于指示第二PHR关联的空间信息。
在一些实施例中,第二MAC CE的一个或多个比特用于指示第二PHR关联的天线面板信息、CORESET组信息、参考信号集合信息、TCI状态信息和波束信息中的一种空间信息。
在一些实施例中,所述一个或多个比特的具体比特数可以根据空间信息包括的索引或ID的总个数确定。例如,若所述一个或多个比特用于指示第二PHR关联的天线面板信息,则所述一个或多个比特的具体比特数可以根据天线面板信息的总个数确定,作为示例,若需要指示两个panel ID,则可以通过1比特指示,或者,若需要指示更多个panel ID,则需要更多个比特,例如2比特,3比特等。例如,若需要指示四个panel ID,则需要2比特。
可选地,该一个或多个比特可以是MAC CE中的空闲比特,通过MAC CE中的空闲比特向网络设备指示MAC CE中携带的PHR所关联的空间信息,以便网络设备快速获取该空间信息对应的PH。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,该一个或多个比特用于指示第二PHR关联的空间信息;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,该一个或多个比特为空闲比特。
在另一些实施例中,第二MAC CE的一个或多个比特用于指示天线面板信息、CORESET组信息、参考信号集合信息、TCI状态信息和波束信息中的至少一项。
例如,所述第二MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第二PHR在对应类型的空间信息中所关联的目标空间信息。
在一些实施例中,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
作为示例,第二MAC CE包括X个比特组,分别对应X种空间信息,例如X可以为1,2或3等。
以X=2作为示例,该X种空间信息可以包括天线面板信息和参考信号集合信息。则第二MAC CE可以包括2个比特组,例如第三比特组和第四比特组,分别用于指示第二PHR关联的天线面板信息和参考信号集合信息。
在一些实施例中,每个比特组包括的比特数可以相同,或者,也可以不同。例如,可以根据每种空间信息包括的索引或ID的总个数确定,或者,也可以根据每种空间信息包括的索引或ID的总个数的最大值确定。
例如,第三比特组所占的比特数可以根据panel ID的最大个数确定,或者,也可以根据每种空间信息包括的索引或ID的最大个数的最大值确定。
作为示例,panel ID的总个数为4个,CORESET组索引的总个数为2,参考信号集合索引的总个数为2,TCI指示的总个数为8,波束ID的总个数为16,则第三比特组所占的比特数可以根据panel ID的总个数4确定,或者,也可以根据波束ID的总个数16确定。例如,第三比特组可以为2比特,或者,4比特。
在一些实施例中,对于支持上报空间信息关联的PHR的终端设备,例如R18及之后版本的终端设备,所述至少一个比特组用于指示所述第二PHR关联的空间信息;对于不支持上报空间信息关联的PHR的终端设备,例如,R18之前的终端设备,所述至少一个比特组为空闲比特。
即,对于R18及之后的终端设备,可以将该至少一个比特组解读为第二PHR关联的空间信息,对于R18之前的终端设备,可以不解读该至少一个比特组。结合图8和图9,以空间信息为panel ID为例,说明本申请提供的一种用于承载PHR的MAC CE的格式。
如图8所示,MAC CE包括1比特,该1比特用于指示panelID,例如,该1比特的状态0表示panelID 0,该1比特的状态1表示panelID 1。可选地,当需要指示更多种panel ID时,也可以包括更多个比特。
可选地,该MAC CE还包括多个小区对应的PH。
可选地,该MAC CE还包括每个小区对应的最大发送功率Pmax,例如,小区c对应的最大发送 功率Pmax c可以为该小区c上的载波f的最大发送功率P CMAX,f,c,其中,c标识小区索引,f为载波索引。
可选地,MAC CE还包括第一位图(C0~C7),其中,Ci用于指示是否上报服务小区索引为i的服务小区对应的PHR,其中,i=0,1,2,…,7。例如,Ci取值为0表示MAC CE中不包括服务小区索引为i的服务小区对应的PHR,Ci取值为1表示MAC CE中包括服务小区索引为i的服务小区对应的PHR。对于图8,最大服务小区索引小于8(ServingCellIndex小于8),对于图9,最大服务小区索引大于或等于8。
在本申请一些实施例中,第二MAC CE的MAC子头用于指示第二PHR关联的空间信息。或者,通过第二MACCE的MAC子头识别第二PHR关联的空间信息。
在一些实施例中,第二MAC CE的MAC子头中的LCID用于指示第二PHR关联的空间信息。
即通过MAC子头的LCID来识别承载多小区PHR的MAC CE中的多小区PHR关联的空间信息。通过MAC子头的LCID值来关联不同的空间信息对应的多小区PHR,这种情况下,可以不需要修改MAC CE的结构。
在一些实施例中,LCID和空间信息具有关联关系,因此,终端设备可以通过不同的LCID向网络设备指示不同的空间信息。
作为示例,第二MAC CE的MAC子头中的LCID的码点(codepoint)和/或索引用于指示第二PHR关联的空间信息。
例如,LCID的codepoint和/或索引和空间信息具有关联关系,因此,终端设备可以通过不同的LCID的codepoint和/或索引向网络设备指示不同的空间信息。
以空间信息为panel ID为例,不同panelID关联的LCID的codepoint和/或索引不同,从而,网络设备可以基于LCID的codepoint和/或索引,确定该LCID关联的MAC CE中的多小区PHR所关联的panel。
以空间信息为panel ID为例,在一些实现方式中,LCID的codepoint和/或索引对应的LCID值关联panelID为x的单小区PHR,x是整数,x的范围为[0,N-1],N为终端设备支持的panel的总数。
在一些实施例中,LCID值为UL-SCH的LCID值。
在一些实施例中,所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
例如,在LCID值为空闲的codepoint和/或索引的数量大于N的情况下,此时,可以采用任意N个LCID值为空闲的codepoint和/或索引来关联N个panel ID所关联的多小区PHR,其余LCID值为空闲的codepoint和/或索引对应的LCID值仍然为空闲(reserved)。
即,N个LCID值为空闲的codepoint和/或索引与N个panel ID关联的多小区PHR具有关联关系,例如,N个LCID值为空闲的codepoint和/或索引和N个panel ID一一对应,因此,根据MAC子头的LCID值可以确定关联的MAC CE中的多小区PHR所关联的panel。
因此,在本申请实施例中,通过将MAC子头中的LCID和空间信息关联,则终端设备可以根据PHR关联的空间信息设置MAC子头中的LCID值,通过该MAC子头中的LCID值指示该MAC子头关联的MAC CE中承载的PHR所关联的空间信息。
对应地,网络设备在接收到该MAC CE后,可以根据该MAC CE关联的MAC子头中的LCID确定目标空间信息,进一步确定该MAC CE中承载的PHR关联该目标空间信息。
应理解,在本申请实施例中,PHR是通过MAC CE承载的,PHR和空间信息关联,因此可以理解为承载该PHR的MAC CE和该空间信息关联。
以N为4示例,codepoint和/或索引和panel ID的关联关系可以如表3所示。
表3
codepoint/索引 LCID值
35 Panel ID=0多小区PHR(最大小区索引小于8)
36 Panel ID=1多小区PHR(最大小区索引小于8)
37 Panel ID=2多小区PHR(最大小区索引小于8)
38 Panel ID=3多小区PHR(最大小区索引小于8)
39 Panel ID=0多小区PHR(最大小区索引大于或等于8)
40 Panel ID=1多小区PHR(最大小区索引大于或等于8)
41 Panel ID=2多小区PHR(最大小区索引大于或等于8)
42 Panel ID=3多小区PHR(最大小区索引大于或等于8)
43-44 reserved
如表3所示,可以利用Codepoint和/或索引35-44对应的LCID值中的任意8个关联panelID为0~3的多小区PHR(包括最大小区索引小于8和最大小区索引大于或等于8两种情况)。
作为一个示例,Codepoint和/或索引35-38对应的LCID值分别对应panel ID为0~3的多小区PHR的MAC CE(最大小区索引小于8),Codepoint和/或索引39-42对应的LCID值分别对应panel ID为0~3的多小区PHR的MAC CE(最大小区索引大于或等于8),其余Codepoint和/或索引对应的LCID值仍然为reserved。
应理解,表3中的codepoint和/或索引和panel ID的关联关系仅为示例,只要保证不同panel ID关联不同的codepoint和/或索引即可,本申请对此不作限定。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,codepoint和/或索引35-44中的2N个codepoint和/或索引所对应的LCID值关联N个panel ID对应的多小区PHR;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,codepoint和/或索引35-44对应的LCID值仍为空闲(reserved)。
以N为4示例,codepoint和/或索引和panel ID的关联关系可以如表4所示。
表4
Codepoint 索引 LCID值
0 64 Panel ID=0多小区PHR(最大小区索引小于8)
1 65 Panel ID=1多小区PHR(最大小区索引小于8)
2 66 Panel ID=2多小区PHR(最大小区索引小于8)
3 67 Panel ID=3多小区PHR(最大小区索引小于8)
4 68 Panel ID=0多小区PHR(最大小区索引大于或等于8)
5 69 Panel ID=1多小区PHR(最大小区索引大于或等于8)
6 70 Panel ID=2多小区PHR(最大小区索引大于或等于8)
7 71 Panel ID=3多小区PHR(最大小区索引大于或等于8)
8-249 72-313 reserved
如表4所示,codepoint0-249,对应索引64-313,所对应的LCID值中的任意8组关联panel ID为0~3的多小区PHR。作为一个示例,Codepoint 0-3,对应索引64-67,所对应的LCID值分别对应panel ID为0~3的多小区PHR的MAC CE(最大小区索引小于8),Codepoint 4-7,对应索引68-71,所对应的LCID值分别对应panel ID为0~3的多小区PHR的MAC CE(最大小区索引大于或等于8),其余Codepoint或索引对应的LCID值仍然为reserved。
应理解,表4中的codepoint或索引和panel ID的关联关系仅为示例,只要保证不同panel ID关联codepoint和索引的不同取值组合即可,本申请对此不作限定。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,codepoint0-249和索引64-313中的2N组codepoint和索引所对应的LCID值关联N个panel ID对应的多小区PHR;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,codepoint0-249和索引64-313对应的LCID值仍为空闲(reserved)。
以下,结合实施例2,说明目标PHR的上报方式。
在本申请一些实施例中,目标PHR的模式可以是实际PHR模式,或者,参考PHR模式。
对于实际PHR模式,目标PHR可以包括根据实际发送上行信息的功率确定的PH。例如,上行信息为PUSCH,可以根据公式(4)确定PH。又例如,上行信息是SRS,可以根据公式(6)确定PH。
对于参考PHR模式,目标PHR可以包括根据参考上行信息功率确定的PH。例如,上行信息为PUSCH,可以根据公式(5)确定PH。又例如,上行信息是SRS,可以根据公式(7)确定PH。
可选地,参考上行信息功率可以是预定义的,或者是网络设备配置的。
可选地,参考上行信息功率可以是参考PUSCH功率,或参考SRS功率。
实施例2-1:单小区PHR
在本申请一些实施例中,目标PHR包括第一PHR,第一PHR包括单小区PHR,第一PHR通过第一MAC CE承载,第一MAC CE通过第一PUSCH承载,其中,第一PUSCH是与第一空间信息关联的PUSCH。其中,第一PUSCH与第一空间信息关联的具体实现参考前述实施例中上行信息和空间信息关联的相关描述,为了简洁,这里不再赘述。
可选地,第一PUSCH可以是与第一天线面板关联的PUSCH,或者,与第一CORESET组关联的 PUSCH,或者,与第一参考信号集合关联的PUSCH,或者,与第一TCI状态关联的PUSCH,或者,与第一波束关联的PUSCH。
在一些实施例中,第一PUSCH是在终端设备确定上报单小区PHR之后与第一空间信息关联的时域位置最早的初传PUSCH。通过与第一空间信息关联的时域位置最早的初传PUSCH上报单小区PHR,有利于保证网络设备尽早获取到终端设备上报的单小区PHR。初传PUSCH为第一次传输的PUSCH,即PUSCH中承载的信息为第一次传输的传输块(transportblock,TB)。
在另一些实施例中,第一PUSCH是在终端设备确定上报单小区PHR之后与第一空间信息关联的多次重复发送的PUSCH中的时域位置最早的PUSCH。
例如,在终端设备确定上报单小区PHR之后,若第一空间信息关联多个重复发送的PUSCH,则可以选择该多个重复发送的PUSCH中的时域位置最早的PUSCH上报PHR。通过与第一空间信息关联的多个重复发送的PUSCH中的时域位置最早的PUSCH上报单小区PHR,有利于保证网络设备尽早获取到终端设备上报的单小区PHR。
在本申请一些实施例中,第一PHR的模式为实际PHR模式,第一PHR是根据实际发送第一PUSCH的功率确定的。
例如,第一PHR包括根据终端设备的最大发送功率和实际发送第一PUSCH的功率的差值确定的PH。
在一些实施例中,所述第一PHR为第一小区的PHR,第一小区上配置UL载波和SUL载波,终端设备还可以确定采用第一小区中的哪个载波上的上行信息确定PHR。
例如,第一小区的PHR是根据第一小区上的目标载波的PHR确定的。可选地,该目标载波是根据所述第一小区上的UL载波和SUL载波上是否被配置或调度与第一空间信息关联的上行信息确定的。
在一些实施例中,若第一小区上的UL载波和SUL载波中存在被配置或调度与第一空间信息关联的PUSCH的载波,则可以选择被配置或调度与第一空间信息关联的PUSCH的载波。
作为示例,若第一小区上的UL载波被配置或调度与所述第一空间信息关联的PUSCH,则可以根据UL载波上的PUSCH确定PHR。即第一PUSCH可以是UL载波上的PUSCH。
作为示例,若第一小区上的SUL载波被配置或调度与所述第一空间信息关联的PUSCH,则可以根据SUL载波上的PUSCH确定PHR。即第一PUSCH可以是SUL载波上的PUSCH。
可选地,若第一小区上的UL载波和SUL载波上均被配置或调度与所述第一空间信息关联的PUSCH,则可以选择UL载波或SUL载波上的PUSCH确定PHR,即第一PUSCH可以是UL载波或SUL载波上的PUSCH。
在另一些实施例中,若所述第一小区上的UL载波和SUL载波上没有被配置或调度与第一空间信息关联的PUSCH,但是所述第一小区上的UL载波和SUL载波中的第一载波被调度或配置了通过第三空间信息发送PUSCH,则第一小区的PHR根据第一载波上的PHR确定,其中,所述第三空间信息与所述第一空间信息不同。
作为示例,若第一小区上的UL载波被配置或调度与第三空间信息关联的PUSCH,则可以根据UL载波上的PUSCH确定PHR。即第一PUSCH可以是UL载波上的PUSCH。
作为示例,若第一小区上的SUL载波被配置或调度与第三空间信息关联的PUSCH,则可以根据SUL载波上的PUSCH确定PHR。即第一PUSCH可以是SUL载波上的PUSCH。
可选地,若第一小区上的UL载波和SUL载波上均被配置或调度与第三空间信息关联的PUSCH,则可以选择UL载波或SUL载波上的PUSCH确定PHR,即第一PUSCH可以是UL载波或SUL载波上的PUSCH。
实施例2-2:多小区PHR
在本申请一些实施例中,目标PHR包括第二PHR,第一PHR为多小区PHR,第二PHR通过第二MAC CE承载,第二MAC CE通过第二PUSCH承载,其中,所述第二PUSCH是与第二空间信息关联的PUSCH。其中,第二PUSCH与第二空间信息关联的具体实现参考前述实施例中上行信息和空间信息关联的相关描述,为了简洁,这里步骤赘述。
可选地,第二PUSCH可以是与第二天线面板关联的PUSCH,或者,与第二CORESET组关联的PUSCH,或者,与第二参考信号集合关联的PUSCH,或者,与第二TCI状态关联的PUSCH,或者,与第二波束关联的PUSCH。
在一些实施例中,第二PUSCH是在终端设备确定上报多小区PHR之后与第二空间信息关联的时域位置最早的初传PUSCH。通过与第二空间信息关联的时域位置最早的初传PUSCH上报多小区PHR,有利于保证网络设备尽早获取到终端设备上报的多小区PHR。
在另一些实施例中,第二PUSCH是在终端设备确定上报多小区PHR之后与第二空间信息关联的 多次重复发送的PUSCH中的时域位置最早的PUSCH。
例如,在终端设备确定上报多小区PHR之后,若第二空间信息关联多个重复发送的PUSCH,则可以选择该多个重复发送的PUSCH中的时域位置最早的PUSCH上报PHR。通过与第二空间信息关联的多个重复发送的PUSCH中的时域位置最早的PUSCH上报多小区PHR,有利于保证网络设备尽早获取到终端设备上报的多小区PHR。
以第二空间信息为第二panel举例说明,如图10所示,多个小区包括小区1和小区2,在小区1上,终端设备接收到DCI,DCI用于调度通过第二panel发送的PUSCH1,在小区2中,在接收DCI之前,终端设备接收到另一DCI或高层配置信息,用于调度通过第二panel发送的PUSCH2,其中,PUSCH2的时域位置早于PUSCH1的时域位置,但是PUSCH2是重传PUSCH,则可以确定PUSCH1为用于承载第二PHR的PUSCH。
在本申请一些实施例中,第二PHR包括多个小区中的每个小区分别对应的PHR,每个小区对应的PHR可以是根据该每个小区上的特定PUSCH确定的。其中,每个小区上的特定PUSCH和第二PUSCH在时域上存在重叠。
在一些实施例中,所述多个小区中包括第二小区,第二PHR包括第二小区对应的PHR,第二小区对应的PHR是根据第二小区上的第三PUSCH确定的,即第三PUSCH是第二小区上的特定PUSCH。
在一些实施例中,第三PUSCH是实际发送的PUSCH,则第二小区对应的PHR模式是实际PHR。具体的确定方法见后文描述。
在另一些实施例中,第三PUSCH是参考PUSCH,则第二小区对应的PHR模式是虚拟PHR。具体的确定方法见后文描述。
应理解,第二小区为所述多个小区中的任意小区,所述多个小区中的其他小区对应的PHR的实现方式类似,这里不再赘述。
在一些实施例中,将第二PUSCH所在的小区作为参考小区,则可以根据参考小区的激活上行BWP的子载波间隔(Subcarrier spacing,SCS)和第二小区的激活上行BWP的SCS,确定该第三PUSCH,即确定根据第二小区上的哪个PUSCH确定该第二小区对应的PHR。
例如,当参考小区的激活上行BWP的SCS和第二小区的激活上行BWP的SCS相同时,第二小区的激活上行BWP上的至少一个时隙与第二PUSCH所在时隙存在重叠,则可以将该至少一个时隙中的第一个时隙(即时域位置最早的时隙)上的PUSCH确定为第三PUSCH。
又例如,当参考小区的激活上行BWP的SCS小于第二小区的激活上行BWP的SCS时,第二PUSCH所在时隙与第二小区的激活上行BWP上的多个时隙存在重叠,则可以将该多个时隙中与第二PUSCH所在时隙完全重叠的第一个时隙上的PUSCH确定为第三PUSCH。
即,第三PUSCH可以是与第二PUSCH所在时隙存在重叠的第一个时隙上的PUSCH。
在一些实施例中,第三PUSCH是与第二PUSCH所在时隙存在重叠的第一个时隙上的PUSCH可以指:第三PUSCH所在时隙和第二PUSCH所在时隙部分重叠,或者全部重叠。
例如,若参考小区和第二小区的时隙是对齐的,该第三PUSCH和第二PUSCH所在时隙可以是完全重叠的。又例如,若参考小区和第二小区是不对齐的,则第二PUSCH所在时隙可以与第二小区上的两个时隙存在重叠,则该第三PUSCH可以是与第二PUSCH所在时隙存在重叠的两个时隙中的第一个时隙。
举例说明,如图11所示,第二小区的SCS为15KHz,参考小区为小区1,小区1的SCS为15KHz,其中,第二PUSCH在时隙a上传输,在小区2上与时隙a存在重叠的时隙包括时隙b和时隙c,其中,时隙b早于时隙c,即时隙b是小区2上和时隙a存在重叠的第一个时隙,则对于小区2,可以上报时隙b上的PUSCH的PHR。
在一些实施例中,第三PUSCH是与第二PUSCH所在时隙完全重叠的第一个时隙上的PUSCH可以指:第二PUSCH所在时隙完全覆盖第三PUSCH所在时隙,并且,第三PUSCH所在时隙是第二PUSCH所在时隙完全覆盖的所有时隙中的第一个时隙。
举例说明,如图12所示,第二小区的SCS为15KHz,参考小区为小区1,小区1的SCS为60KHz,其中,第二PUSCH在时隙m,在小区2上与时隙m存在重叠的时隙包括时隙a、时隙b、时隙c和时隙d,其中,时隙a是小区2上和时隙m完全重叠的第一个时隙,则对于小区2,可以上报时隙a上的PUSCH的PHR。
在本申请一些实施例中,所述方法200还包括:
根据第一参考时域位置之前是否接收到第三PUSCH的调度信令或高层配置信息,确定所述多个小区中的第二小区对应的PHR的模式,其中,第三PUSCH为第二小区上与第二空间信息关联的PUSCH。
可选地,第三PUSCH的调度信令可以包括DCI。
可选地,第三PUSCH的高层配置信息可以包括高层信令(例如RRC信令)指示的配置信息。
在一些实施例中,若在第一参考时域位置之前,接收到第三PUSCH的调度信令或高层配置信息,确定第二小区的PHR的模式为实际PHR。
在第一参考时域位置之前,接收到第三PUSCH的调度信令或高层配置信息,表示终端设备有足够的处理时间发送第三PUSCH,并且有足够的准备时间准备承载第二PHR的MACCE,因此,可以根据实际发送第三PUSCH的功率确定第二小区对应的PHR。
在另一些实施例中,若在第一参考时域位置之前,未接收到第三PUSCH的调度信令或高层配置信息,确定第二小区的PHR的模式为虚拟PHR。
在第一参考时域位置之前,未接收到第三PUSCH的调度信令或高层配置信息,表示终端设备没有足够的处理时间发送第三PUSCH,并且没有足够的准备时间准备承载第二PHR的MACCE,因此,可以根据参考PUSCH功率确定第二小区对应的PHR。
在一些实施例中,若第二PUSCH是DCI调度的PUSCH,第一参考时域位置为承载该DCI的PDCCH的最后一个符号或者承载该DCI的PDCCH所在的检测时机(monitoring occasion)的结束位置。
在另一些实施例中,若第二PUSCH是高层信令(例如RRC信令)配置的PUSCH,第一参考时域位置为第二PUSCH的第一个符号之前的第一时域位置,所述第一时域位置与第二PUSCH的第一个符号之间的时间间隔为第二PUSCH的处理时间。
在一些实施例中,第二PUSCH的处理时间为第二PUSCH的准备时间。例如,第二PUSCH的处理时为T proc,2=max((N 2+d 2,1)(2048+144)·κ2 ·T C,d 2,2),其中,d 2,1=1,d 2,2=0,N 2是在特定子载波间隔μ时的PUSCH准备时间,N 2根据终端设备的处理能力确定,特定子载波间隔μ=min{第二PUSCH的子载波间隔,第二PUSCH对应的激活下行BWP的子载波间隔}。
在另一些实施例中,第二PUSCH的处理时间包括PUSCH的准备时间和额外处理时间。例如,第二PUSCH的处理时间为T proc,2=max((N 2+d 2,1+T additional)(2048+144)·κ2 ·T C,d 2,2),其中T additionai为额外处理时间。
可选地,额外处理时间是预定义的,例如,额外处理时间为T additional个符号,T additional为正整数,例如2个符号;或者,额外处理时间是根据终端设备的处理能力确定的;或者,额外处理时间是通过终端设备的能力信息上报的,例如,终端设备通过终端设备的第三能力信息上报终端设备支持的额外处理时间,候选的额外处理时间可以是0个符号,1个符号,2个符号等。
在一些实施例中,第二小区上配置UL载波和SUL载波,终端设备还可以确定采用第二小区中的哪个载波上的上行信息确定PHR。
例如,第二小区的PHR是根据所述第二小区上的目标载波的PHR确定的。可选地,目标载波是根据所述第二小区上的UL载波和SUL载波上是否被配置或调度与第二空间信息关联的上行信息确定的。
在一些实施例中,若第二小区上的UL载波和SUL载波中存在被配置或调度与第二空间信息关联的PUSCH的载波,则可以选择被配置或调度与所述第二空间信息关联的PUSCH的载波。
作为示例,若第二小区上的UL载波被配置或调度与第二空间信息关联的PUSCH,则可以根据UL载波上的PUSCH确定PHR。即第三PUSCH可以是UL载波上的PUSCH。
作为示例,若第二小区上的SUL载波被配置或调度与所述第二空间信息关联的PUSCH,则可以根据SUL载波上的PUSCH确定PHR。即第三PUSCH可以是SUL载波上的PUSCH。
可选地,若第二小区上的UL载波和SUL载波上均被配置或调度与所述第二空间信息关联的PUSCH,则可以选择UL载波或SUL载波上的PUSCH确定PHR,即第三PUSCH可以是UL载波或SUL载波上的PUSCH。
在另一些实施例中,若第二小区上的UL载波和SUL载波上没有被配置或调度与第二空间信息关联的PUSCH,但是第二小区上的UL载波和SUL载波中的第二载波被调度或配置了通过第四空间信息发送PUSCH,则第二小区的PHR根据第二载波上的PHR确定,其中,第四空间信息与所述第二空间信息不同。
作为示例,若第二小区上的UL载波被配置或调度与第四空间信息关联的PUSCH,则可以根据UL载波上的PUSCH确定PHR。即第三PUSCH可以是UL载波上的PUSCH。
作为示例,若第二小区上的SUL载波被配置或调度与第四空间信息关联的PUSCH,则可以根据SUL载波上的PUSCH确定PHR。即第三PUSCH可以是SUL载波上的PUSCH。
可选地,若第二小区上的UL载波和SUL载波上均被配置或调度与第四空间信息关联的PUSCH,则可以选择UL载波或SUL载波上的PUSCH确定PHR,即第三PUSCH可以是UL载波或SUL载波上的PUSCH。
在本申请一些实施例中,所述方法200还包括:
终端设备上报第一能力信息,第一能力信息用于指示终端设备的多个上行信息之间是否能够共享最大发送功率,其中,该多个上行信息关联多个空间信息。通过上报关联多个空间信息的上行信息之间共享发送功率,这样,关联不同空间信息的上行信息之间可以共享发送功率,增加了信息传输的灵活性。
可选地,在多个上行信息共享最大发送功率的情况下,该多个上行信息的发送功率之和不超过终端设备的最大发送功率。在多个上行信息不共享最大发送功率的情况下,每个上行信息的发送功率不超过关联的空间信息的最大发送功率。
例如,多个空间信息包括空间信息1,空间信息2和空间信息3,终端设备的最大发送功率为P CMAX,f,c,每个空间信息对应相应的最大发送功率,例如,空间信息1对应的最大发送功率是P1,空间信息2对应的最大发送功率是P2,空间信息3对应的最大发送功率是P3。则在多个上行信息共享最大发送功率的情况下,该三种空间信息关联的上行信息的发送功率之和不超过P,在多个上行信息不更新最大发送功率的情况下,上行信息的发送功率不超过该上行信息关联的空间信息的最大发送功率,例如,关联空间信息1的上行信息的发送功率不超过P1,关联空间信息2的上行信息的发送功率不超过P2,关联空间信息2的上行信息的发送功率不超过P3。
在一些实施例中,所述终端设备的每个空间信息对应的目标最大发送功率是根据所述每个空间信息确定的最大发送功率,有利于实现基于空间信息独立进行功率控制。
可选地,根据所述每个空间信息确定的最大发送功率可以对应于前文中的空间信息对应的最大发送功率。可选地,空间信息对应的最大发送功率可以指根据该空间信息发送上行信息时,能够使用的最大发送功率。可选地,该空间信息对应的最大发送功率根据终端设备的能力确定。
在一些实施例中,所述终端设备的每个空间信息对应的目标最大发送功率是所述终端设备的最大发送功率,或者,终端设备的小区内的载波上的最大发送功率,有利于实现终端设备内(或载波内)的功率共享。
在一些实施例中,所述终端设备的每个空间信息对应的目标最大发送功率是所述终端设备的所有空间信息对应的最大发送功率之和,有利于实现终端设备内(或载波内)的功率共享。
在一些实施例中,在多个上行信息共享最大发送功率的情况下,每个空间信息对应的目标最大发送功率可以是终端设备的最大发送功率,或者,终端设备的所有空间信息对应的最大发送功率之和。
在另一些实施例中,在多个上行信息不共享最大发送功率的情况下,每个空间信息对应的目标最大发送功率可以是空间信息对应的最大发送功率。
以下,结合实施例3,说明多个上行信息同时发送的PHR的上报方式。
实施例3:
在一些实施例中,终端设备可以同时发送多个上行信息,该多个上行信息关联多个空间信息,该终端设备可以向网络设备上报根据该多个上行信息确定的PHR。即目标PHR可以是根据该多个上行信息确定的PHR。
为便于区分和说明,在本申请实施例中,将根据第一上行信息确定的PHR记为第一类PHR,将根据同时发送的多个上行信息确定的PHR记为第二类PHR。即,该第一类PHR是根据关联单个空间信息发送的上行信息确定的PHR,该第二类PHR是根据多个空间信息的同时发送的多个上行信息确定的PHR。
在一些实施例中,目标PHR是根据终端设备的最大发送功率和通过多个空间信息同时发送多个上行信息的功率之和确定的。
在一些实施例中,目标PHR根据终端设备的最大发送功率和该多个上行信息的功率之和的差值确定。例如,所述目标PHR根据如下公式确定:
Figure PCTCN2021143077-appb-000013
其中,PHR obj表示目标PHR,P CMAX,f,c表示所述终端设备的最大发送功率,或者,终端设备的小区内的载波上的最大发送功率,或者,终端设备的所有空间信息对应的最大发送功率之和,P x表示通过空间信息x发送上行信息的功率,N表示所述终端设备支持的空间信息的最大个数。
在本申请一些实施例中,所述方法200还包括:
终端设备上报第二能力信息,第二能力信息用于指示终端设备是否支持上报根据同时发送的多个上行信息确定的PHR。其中,该多个上行信息关联多个空间信息,具体关联关系参考前文实施例的相关描述。
在一些实施例中,第二能力信息也可以用于指示终端设备是否支持同时发送多个上行信息,该多个上行信息关联多个空间信息。即终端设备可以上报是否支持基于多个空间信息同时发送多个上行信息。
可选地,若终端设备上报支持同时发送多个上行信息,则默认支持上报根据同时发送的多个上行信息确定的PHR。
在一些实施例中,网络设备发送的PHR配置信息是根据第二能力信息确定的。
例如,在第二能力信息指示支持上报根据同时发送的多个上行信息确定的PHR的情况下,网络设备给终端设备配置与该多个空间信息关联的PHR配置信息,该PHR配置信息可以用于上报该多个同时发送的上行信息的PHR。进一步地,终端设备基于该PHR配置信息上报根据同时发送的多个上行信息确定的PHR。
应理解,对于关联多个空间信息的同时发送的多个上行信息,该目标PHR是根据该多个上行信息确定的PHR,即第二类PHR,应理解,在本申请实施例中,第二类PHR也可以为单小区PHR,或者多小区PHR。
为便于区分和描述,将第一类PHR中的单小区PHR和多小区PHR分别记为第一类单小区PHR和第一类多小区PHR,将第二类PHR中的单小区PHR和多小区PHR分别记为第二类单小区PHR和第二类多小区PHR。
在本申请实施例中,可以根据实施例1-1中所述的方式确定该第二类单小区PHR的承载方式,或者,可以根据实施例1-2中所述的方式确定该第二类多小区PHR的承载方式。
作为一种实现方式,MAC CE中的一个或多个比特用于指示该MAC CE中是否包括第二类单小区PHR。例如,该MAC CE包括1比特,该1比特的状态用于指示该MAC CE是否包括第二类单小区PHR,例如,该1比特状态为1表示该MAC CE包括第二类单小区PHR。
可选地,该一个或多个比特可以为MAC CE中的空闲比特。利用MAC CE中的空闲比特向网络设备指示该MAC CE中包括第二类单小区PHR,以便网络设备快速获知终端设备的功率余量。
作为另一种实现方式,MAC CE的MAC子头用于指示该MAC CE中是否包括第二类单小区PHR。或者,通过MAC CE的MAC子头识别该MAC CE第二类单小区PHR。
作为示例,通过MAC CE的MAC子头中的LCID的码点(codepoint)和/或索引(index)用于指示该MAC CE是否包括第二类单小区PHR。通过MAC子头的LCID值指示关联的MAC CE中是否包括第二类单小区PHR,不需要修改MAC CE的结构。对于第二类多小区PHR的承载方式类似,这里不再赘述。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,MACCE中的一个或多个比特用于指示该MAC CE中是否包括第二类单小区PHR或第二类多小区PHR;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,该一个或多个比特为空闲比特。
在一些情况中,对于支持上报空间信息关联的PHR的终端设备,例如对于3GPP版本(Release,R)18及之后版本的终端设备,MAC CE的MAC子头中的LCID的codepoint和/或索引所对应的LCID值关联第二类单小区PHR或第二类多小区PHR;对于不支持上报空间信息关联的PHR的终端设备,例如对于R18之前的终端设备,MAC CE的MAC子头中的LCID的codepoint和/或索引对应的LCID值仍为空闲(reserved)。
在本申请实施例中,可以根据实施例2-1中所述的方式确定该第二类单小区PHR的上报方式,或者,根据实施例2-2中所述的方式确定该第二类多小区PHR的上报方式。
在一些实现方式中,第二类单小区PHR可以通过第四PUSCH发送,该第四PUSCH的确定方式可以参考第一PUSCH的确定方式,为了简洁,这里不再赘述。
在一些实现方式中,第二类多小区PHR可以通过第五PUSCH发送,该第五PUSCH的确定方式可以参考第二PUSCH的确定方式,为了简洁,这里不再赘述。
应理解,在本申请实施例中,所述终端设备可以一次上报一种类型的PHR,例如只上报第一类PHR,或者,只上报第二类PHR,或者,也可以同时上报多种类型的PHR,例如,上报第一类PHR和第二类PHR。本申请实施例对于空间信息的PHR的具体上报方式不作限定。
例如,终端设备上报第一目标PHR,该第一目标PHR包括根据第一上行信息确定的PHR和根据多个上行信息确定的PHR。其中,根据第一上行信息确定的PHR为第一类PHR,根据多个上行信息 确定的PHR为第二类PHR。
应理解,在本申请实施例中,网络设备发送的PHR配置信息可以用于配置一种类型的PHR的上报,例如第一类PHR的上报,或者,第二类PHR的上报,即,PHR配置信息可以用于触发第一类PHR的上报,或者,第二类PHR的设备,或者说,PHR配置信息可以包括用于第一类PHR上报的配置信息,或者,包括用于第二类PHR上报的配置信息。或者,网络设备发送的配置信息也可以用于配置多种类型的PHR的上报。例如,第一类PHR和第二类PHR的上报。即,PHR配置信息可以用于触发第一类PHR和第二类PHR的设备,或者说,PHR配置信息可以包括用于第一类PHR上报的配置信息和用于第二类PHR上报的配置信息。本申请实施例对于空间信息粒度的PHR配置信息的具体配置方式不作限定。
综上所述,终端设备可以接收空间信息粒度的PHR配置信息,进一步向网络设备上报空间信息例如的PHR,例如关联空间信息的单小区PHR或多小区PHR,或,向网络设备上报根据与多个空间信息关联的多个上行信息的PHR,从而实现空间信息粒度的PHR上报。
上文结合图6至图12,详细描述了本申请的方法实施例,下文结合图13至图17,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图13示出了根据本申请实施例的终端设备400的示意性框图。如图13所示,该终端设备400包括:通信单元410,用于接收功率余量报告PHR配置信息;以及,
根据所述PHR配置信息,上报目标PHR。
在一些实施例中,所述PHR配置信息与空间信息关联。
在一些实施例中,所述空间信息包括以下中的至少一种:天线面板信息,控制资源集CORESET组信息,参考信号集合信息,传输配置指示TCI状态信息,波束信息。
在一些实施例中,所述目标PHR是根据第一上行信息确定的PHR,所述第一上行信息与空间信息关联,或者,所述目标PHR是根据多个上行信息确定的PHR,所述多个上行信息与多个空间信息关联,并且所述多个上行信息是同时发送的。
在一些实施例中,所述PHR配置信息包括以下高层参数中的至少一项:
功率余量报告的周期定时器;
禁止PHR上报的定时器;
发送功率因素变化量或者路径损耗变化量;
双连接时另外一个小区组的PHR模式;
上报的PHR的小区类型,所述上报的PHR的小区类型为多小区PHR或单小区PHR;
最大允许暴露MPE的上报许可;
功率管理最大功率回退P-MPR的阈值;
MPE禁止上报的定时器。
在一些实施例中,所述PHR配置信息包括第一PHR配置信息和第二PHR配置信息,所述第一PHR配置信息与第一空间信息关联,所述第二PHR配置信息与第二空间信息关联,所述第一PHR配置信息和所述第二PHR配置信息包括的高层参数不同,和/或,所述第一PHR配置信息和所述第二PHR配置信息包括的相同的高层参数对应的配置不同。
在一些实施例中,所述第一PHR配置信息与第一空间信息关联包括以下中的至少一种:
所述第一PHR配置信息与第一天线面板信息关联;
所述第一PHR配置信息与第一CORESET组信息关联;
所述第一PHR配置信息与第一参考信号集合信息关联;
所述第一PHR配置信息与第一TCI状态信息关联;
所述第一PHR配置信息与第一波束信息关联。
在一些实施例中,所述第二PHR配置信息与第二空间信息关联包括以下中的至少一种:
所述第二PHR配置信息与第二天线面板信息关联;
所述第二PHR配置信息与第二CORESET组信息关联;
所述第二PHR配置信息与第二参考信号集合信息关联;
所述第二PHR配置信息与第二TCI状态信息关联;
所述第二PHR配置信息与第二波束信息关联。
在一些实施例中,所述第一PHR配置信息包括第一MPE的上报许可,所述第二PHR配置信息包括第二MPE的上报许可,其中,所述第一MPE的上报许可和所述第二MPE的上报许可对应的配置不同。
在一些实施例中,所述第一空间信息包括panelID 0,所述第一MPE的上报许可用于指示所述终 端设备需要在承载PHR的媒体接入控制控制元素MACCE中上报MPEP-MPR值;
所述第二空间信息包括panelID1,所述第二MPE的上报许可用于指示所述终端设备不需要在承载PHR的MACCE中上报MPEP-MPR值。
在一些实施例中,所述第一PHR配置信息包括第一P-MPR的阈值,所述第二PHR配置信息包括第二P-MPR的阈值,其中,所述第一P-MPR的阈值与所述第二P-MPR的阈值不同。
在一些实施例中,所述第一空间信息包括panelID 0,所述第一P-MPR的阈值为3dB;
所述第二空间信息包括panelID1,所述第二P-MPR的阈值为6dB。
在一些实施例中,所述第一PHR配置信息包括第一MPE禁止上报的定时器,所述第二PHR配置信息包括第二MPE禁止上报的定时器,其中,所述第一MPE禁止上报的定时器和所述第二MPE禁止上报的定时器对应的配置不同。
在一些实施例中,所述第一空间信息包括panelID 0,所述第一MPE禁止上报的定时器的时长为10个子帧;
所述第二空间信息包括panelID1,所述第二MPE禁止上报的定时器的时长为20个子帧。
在一些实施例中,所述终端设备还包括:
处理单元,用于根据所述PHR配置信息,确定是否满足PHR触发条件;
在满足PHR触发条件时,确定上报所述目标PHR。
在一些实施例中,所述目标PHR包括第一PHR,所述第一PHR通过第一媒体接入控制控制元素MAC CE承载,所述第一PHR是与第一空间信息关联的PHR。
在一些实施例中,所述第一PHR是单小区PHR。
在一些实施例中,所述第一MAC CE中的一个或多个比特用于指示所述第一PHR关联的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
在一些实施例中,所述第一MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第一PHR在对应类型的空间信息中所关联的目标空间信息。
在一些实施例中,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:
天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
在一些实施例中,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
在一些实施例中,所述第一MAC CE的MAC子头用于指示所述第一PHR关联的空间信息。
在一些实施例中,所述第一MAC CE的MAC子头中的逻辑信道标识LCID用于指示所述第一PHR关联的空间信息。
在一些实施例中,所述第一MAC CE的MAC子头中的LCID的取值为第一值用于指示所述第一PHR关联的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述第一值用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述第一值为空闲值。
在一些实施例中,与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
在一些实施例中,所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
在一些实施例中,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R 18之前的终端设备,所述N个LCID值为空闲值。
在一些实施例中,所述第一MAC CE中还包括第一指示信息,用于指示所述第一MAC CE中承载的PHR对应的小区。
在一些实施例中,所述第一MAC CE通过第一物理上行共享信道PUSCH承载,其中,所述第一PUSCH是与所述第一空间信息关联的PUSCH。
在一些实施例中,所述第一PUSCH是在所述终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的时域位置最早的初传PUSCH;或者,
所述第一PUSCH是在所述终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的多次重复发送的PUSCH中的时域位置最早的PUSCH。
在一些实施例中,所述第一PHR的模式为实际PHR,所述第一PHR是根据实际发送所述第一PUSCH的功率确定的。
在一些实施例中,所述第一PHR为第一小区的PHR,所述第一小区的PHR是根据所述第一小区上的目标载波的PHR确定的,其中,所述目标载波是根据所述第一小区上的上行UL载波和辅助上行SUL载波上是否被配置或调度与所述第一空间信息关联的上行信息确定的。
在一些实施例中,所述目标载波是所述第一小区上的UL载波和SUL载波中被配置或调度与所述第一空间信息关联的PUSCH的载波;或者,
若所述第一小区上的UL载波和SUL载波上没有被配置或调度与所述第一空间信息关联的PUSCH,但是所述第一小区上的UL载波和SUL载波中的第一载波被调度或配置了通过第三空间信息发送PUSCH,则所述第一小区的PHR根据所述第一载波上的PHR确定,其中,所述第三空间信息与所述第一空间信息不同。
在一些实施例中,所述目标PHR包括第二PHR,所述第二PHR通过第二MAC CE承载,所述第二PHR是与第二空间信息关联的PHR。
在一些实施例中,所述第二PHR为多小区PHR。
在一些实施例中,所述第二MAC CE中的一个或多个比特用于指示所述第二PHR对应的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
在一些实施例中,所述第二MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第二PHR在对应类型的空间信息中所关联的目标空间信息。
在一些实施例中,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:
天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
在一些实施例中,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
在一些实施例中,所述第二MAC CE的MAC子头用于指示所述第二PHR关联的空间信息。
在一些实施例中,所述第二MAC CE的MAC子头中的LCID用于指示所述第二PHR关联的空间信息。
在一些实施例中,所述第二MAC CE的MAC子头中的LCID的取值为第二值用于指示所述第二PHR关联的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述第二值用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述第二值为空闲值。
在一些实施例中,与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
在一些实施例中,所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
在一些实施例中,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R18之前的终端设备,所述N个LCID值为空闲值。
在一些实施例中,所述第二MAC CE中还包括第二指示信息,用于指示所述第二MAC CE中承载的PHR对应的小区。
在一些实施例中,所述第二MAC CE通过第二PUSCH承载,其中,所述第二PUSCH是与所述第二空间信息关联的PUSCH。
在一些实施例中,所述第二PHR包括多个小区分别对应的PHR,所述终端设备还包括:
处理单元,用于根据第一参考时域位置之前是否接收到第三PUSCH的调度信令或高层配置信息,确定所述多个小区中的第二小区对应的PHR的模式,其中,所述第三PUSCH为所述第二小区上与所述第二空间信息关联的PUSCH。
在一些实施例中,所述根据第一参考时域位置之前是否接收到第三PUSCH的调度信令或高层配置信息,确定所述多个小区中的第二小区对应的PHR的模式,包括:
若在所述第一参考时域位置之前,接收到所述第三PUSCH的调度信令或高层配置信息,确定所述第二小区的PHR的模式为实际PHR,或者
若在所述第一参考时域位置之前,未接收到所述第三PUSCH的调度信令或高层配置信息,确定 所述第二小区的PHR的模式为虚拟PHR。
在一些实施例中,若所述第二PUSCH是下行控制信息DCI调度的PUSCH,所述第一参考时域位置为所述DCI的最后一个符号或者所述DCI所在的检测时机MO的结束位置;或者
若所述第二PUSCH是高层信令配置的PUSCH,所述第一参考时域位置为所述第二PUSCH的第一个符号之前的第一时域位置,所述第一时域位置与所述第二PUSCH的第一个符号之间的时间间隔为所述第二PUSCH的处理时间。
在一些实施例中,所述第二PUSCH的处理时间为所述第二PUSCH的准备时间,或者,
所述第二PUSCH的处理时间包括所述PUSCH的准备时间和额外处理时间,其中,所述额外处理时间是预定义的,或者是根据所述终端设备的处理能力确定的。
在一些实施例中,当参考小区和所述第二小区的子载波间隔相同时,所述第三PUSCH是与所述第二PUSCH所在时隙存在重叠的第一个时隙上的PUSCH;或者
当参考小区和所述第二小区的子载波间隔不相同时,所述第三PUSCH是与所述第二PUSCH所在时隙完全重叠的第一个时隙上的PUSCH;
其中,所述参考小区是承载所述第二PHR的所述第二PUSCH所在的小区。
在一些实施例中,所述第二PHR包括第二小区对应的PHR,所述第二小区的PHR是根据所述第二小区上的目标载波的PHR确定的,其中,所述目标载波是根据所述第二小区上的UL载波和SUL载波上是否被配置或调度与所述第二空间信息关联的上行信息确定的。
在一些实施例中,所述目标载波是所述第二小区上的UL载波和SUL载波中被配置或调度与所述第二空间信息关联的PUSCH的载波;或者,
若所述第二小区上的UL载波和SUL载波上没有被配置或调度与所述第二空间信息关联的PUSCH,但是所述第二小区上的UL载波和SUL载波中的第二载波被调度或配置了通过第四空间信息发送PUSCH,则所述第二小区的PHR根据所述第二载波上的PHR确定,其中,所述第四空间信息与所述第二空间信息不同。
在一些实施例中,所述通信单元410还用于:上报第一能力信息,所述第一能力信息用于指示所述终端设备的与多个空间信息关联的多个上行信息之间是否能够共享最大发送功率。
在一些实施例中,所述终端设备的每个空间信息对应的目标最大发送功率是根据所述每个空间信息确定的最大发送功率,或者,所述终端设备的最大发送功率,或者,所述终端设备的所有空间信息对应的最大发送功率之和。
在一些实施例中,所述通信单元410还用于:上报第二能力信息,所述第二能力信息用于指示所述终端设备是否支持上报根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的。
在一些实施例中,所述PHR配置信息是根据所述第二能力信息确定的。
在一些实施例中,所述目标PHR是根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的;其中,所述目标PHR是根据终端设备的最大发送功率和通过所述多个空间信息同时发送所述多个上行信息的功率之和确定的。
在一些实施例中,所述目标PHR根据如下公式确定:
Figure PCTCN2021143077-appb-000014
其中,PHR obj表示目标PHR,P CMAX,f,c表示所述终端设备的最大发送功率,P x表示通过空间信息x发送上行信息的功率,N表示所述终端设备支持的空间信息的最大个数。
在一些实施例中,N是预定义的,或者,N是根据所述终端设备的能力确定的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6至12所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图14是根据本申请实施例的网络设备的示意性框图。图14的网络设备500包括:
通信单元510,用于发送功率余量报告PHR配置信息;以及接收目标PHR。
在一些实施例中,所述PHR配置信息与空间信息关联。
在一些实施例中,所述空间信息包括以下中的至少一种:天线面板信息,控制资源集CORESET组信息,参考信号集合信息,传输配置指示TCI状态信息,波束信息。
在一些实施例中,所述目标PHR是根据第一上行信息确定的PHR,所述第一上行信息与空间信 息关联,或者,
所述目标PHR是根据多个上行信息确定的PHR,所述多个上行信息与多个空间信息关联,并且所述多个上行信息是同时发送的。
在一些实施例中,所述PHR配置信息包括以下高层参数中的至少一项:功率余量报告的周期定时器;禁止PHR上报的定时器;发送功率因素变化量或者路径损耗变化量;双连接时另外一个小区组的PHR模式;上报的PHR的小区类型,所述上报的PHR的小区类型为多小区PHR或单小区PHR;最大允许暴露MPE的上报许可;功率管理最大功率回退P-MPR的阈值;MPE禁止上报的定时器。
在一些实施例中,所述PHR配置信息包括第一PHR配置信息和第二PHR配置信息,所述第一PHR配置信息与第一空间信息关联,所述第二PHR配置信息与第二空间信息关联,所述第一PHR配置信息和所述第二PHR配置信息包括的高层参数不同,和/或,所述第一PHR配置信息和所述第二PHR配置信息包括的相同的高层参数对应的配置不同。
在一些实施例中,所述第一PHR配置信息与第一空间信息关联包括以下中的至少一种:
所述第一PHR配置信息与第一天线面板信息关联;
所述第一PHR配置信息与第一CORESET组信息关联;
所述第一PHR配置信息与第一参考信号集合信息关联;
所述第一PHR配置信息与第一TCI状态信息关联;
所述第一PHR配置信息与第一波束信息关联。
在一些实施例中,所述第二PHR配置信息与第二空间信息关联包括以下中的至少一种:
所述第二PHR配置信息与第二天线面板信息关联;
所述第二PHR配置信息与第二CORESET组信息关联;
所述第二PHR配置信息与第二参考信号集合信息关联;
所述第二PHR配置信息与第二TCI状态信息关联;
所述第二PHR配置信息与第二波束信息关联。
在一些实施例中,所述第一PHR配置信息包括第一MPE的上报许可,所述第二PHR配置信息包括第二MPE的上报许可,其中,所述第一MPE的上报许可和所述第二MPE的上报许可对应的配置不同。
在一些实施例中,所述第一空间信息包括panelID 0,所述第一MPE的上报许可用于指示所述终端设备需要在承载PHR的媒体接入控制控制元素MACCE中上报MPEP-MPR值;
所述第二空间信息包括panelID1,所述第二MPE的上报许可用于指示所述终端设备不需要在承载PHR的MACCE中上报MPEP-MPR值。
在一些实施例中,所述第一PHR配置信息包括第一P-MPR的阈值,所述第二PHR配置信息包括第二P-MPR的阈值,其中,所述第一P-MPR的阈值与所述第二P-MPR的阈值不同。
在一些实施例中,所述第一空间信息包括panelID 0,所述第一P-MPR的阈值为3dB;
所述第二空间信息包括panelID1,所述第二P-MPR的阈值为6dB。
在一些实施例中,所述第一PHR配置信息包括第一MPE禁止上报的定时器,所述第二PHR配置信息包括第二MPE禁止上报的定时器,其中,所述第一MPE禁止上报的定时器和所述第二MPE禁止上报的定时器对应的配置不同。
在一些实施例中,所述第一空间信息包括panelID 0,所述第一MPE禁止上报的定时器的时长为10个子帧;所述第二空间信息包括panelID1,所述第二MPE禁止上报的定时器的时长为20个子帧。
在一些实施例中,所述目标PHR包括第一PHR,所述第一PHR通过第一媒体接入控制控制元素MAC CE承载,所述第一PHR是与第一空间信息关联的PHR。
在一些实施例中,所述第一PHR是单小区PHR。
在一些实施例中,该第一MAC CE中的一个或多个比特用于指示所述第一PHR关联的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
在一些实施例中,所述第一MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第一PHR在对应类型的空间信息中所关联的目标空间信息。
在一些实施例中,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
在一些实施例中,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第一PHR 关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
在一些实施例中,所述第一MAC CE的MAC子头用于指示所述第一PHR关联的空间信息。
在一些实施例中,所述第一MAC CE的MAC子头中的逻辑信道标识LCID用于指示所述第一PHR关联的空间信息。
在一些实施例中,所述第一MAC CE的MAC子头中的LCID的取值为第一值用于指示所述第一PHR关联的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述第一值用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述第一值为空闲值。
在一些实施例中,与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
在一些实施例中,所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
在一些实施例中,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R 18之前的终端设备,所述N个LCID值为空闲值。
在一些实施例中,所述第一MAC CE中还包括第一指示信息,用于指示所述第一MAC CE中承载的PHR对应的小区。
在一些实施例中,所述第一MAC CE通过第一物理上行共享信道PUSCH承载,其中,所述第一PUSCH是与所述第一空间信息关联的PUSCH。
在一些实施例中,所述第一PUSCH是在所述终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的时域位置最早的初传PUSCH;或者,
所述第一PUSCH是在所述终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的多次重复发送的PUSCH中的时域位置最早的PUSCH。
在一些实施例中,所述第一PHR的模式为实际PHR,所述第一PHR是根据实际发送所述第一PUSCH的功率确定的。
在一些实施例中,所述第一PHR为第一小区的PHR,所述第一小区的PHR是根据所述第一小区上的目标载波的PHR确定的,其中,所述目标载波是根据所述第一小区上的上行UL载波和辅助上行SUL载波上是否被配置或调度与所述第一空间信息关联的上行信息确定的。
在一些实施例中,所述目标载波是所述第一小区上的UL载波和SUL载波中被配置或调度与所述第一空间信息关联的PUSCH的载波;或者,
若所述第一小区上的UL载波和SUL载波上没有被配置或调度与所述第一空间信息关联的PUSCH,但是所述第一小区上的UL载波和SUL载波中的第一载波被调度或配置了通过第三空间信息发送PUSCH,则所述第一小区的PHR根据所述第一载波上的PHR确定,其中,所述第三空间信息与所述第一空间信息不同。
在一些实施例中,所述目标PHR包括第二PHR,所述第二PHR通过第二MAC CE承载,所述第二PHR是与第二空间信息关联的PHR。
在一些实施例中,所述第二PHR为多小区PHR。
在一些实施例中,第二MAC CE中的一个或多个比特用于指示所述第二PHR对应的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
在一些实施例中,所述第二MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第二PHR在对应类型的空间信息中所关联的目标空间信息。
在一些实施例中,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
在一些实施例中,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
在一些实施例中,所述第二MAC CE的MAC子头用于指示所述第二PHR关联的空间信息。
在一些实施例中,所述第二MAC CE的MAC子头中的LCID用于指示所述第二PHR关联的空间信息。
在一些实施例中,所述第二MAC CE的MAC子头中的LCID的取值为第二值用于指示所述第二PHR关联的空间信息。
在一些实施例中,对于R18及之后版本的终端设备,所述第二值用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述第二值为空闲值。
在一些实施例中,与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
在一些实施例中,所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
在一些实施例中,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R18之前的终端设备,所述N个LCID值为空闲值。
在一些实施例中,所述第二MAC CE中还包括第二指示信息,用于指示所述第二MAC CE中承载的PHR对应的小区。
在一些实施例中,所述第二MAC CE通过第二PUSCH承载,其中,所述第二PUSCH是与所述第二空间信息关联的PUSCH。
在一些实施例中,所述通信单元510还用于:接收终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备的与多个空间信息关联的多个上行信息之间是否能够共享最大发送功率。
在一些实施例中,所述终端设备的每个空间信息对应的目标最大发送功率是根据所述每个空间信息确定的最大发送功率,或者,所述终端设备的最大发送功率,或者,所述终端设备的所有空间信息对应的最大发送功率之和。
在一些实施例中,所述通信单元510还用于:接收终端设备发送的第二能力信息,所述第二能力信息用于指示所述终端设备是否支持上报根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的。
在一些实施例中,所述PHR配置信息是根据所述第二能力信息确定的。
在一些实施例中,所述目标PHR是根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的;其中,所述目标PHR是根据终端设备的最大发送功率和通过所述多个空间信息同时发送所述多个上行信息的功率之和确定的。
在一些实施例中,所述目标PHR根据如下公式确定:
Figure PCTCN2021143077-appb-000015
其中,PHR obj表示目标PHR,P CMAX,f,c表示所述终端设备的最大发送功率,P x表示通过空间信息x发送上行信息的功率,N表示所述终端设备支持的空间信息的最大个数。
在一些实施例中,N是预定义的,或者,N是根据所述终端设备的能力确定的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6至图12所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例提供的一种通信设备600示意性结构图。图15所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图15所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例的芯片的示意性结构图。图16所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图17是本申请实施例提供的一种通信系统900的示意性框图。如图17所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (130)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收功率余量报告PHR配置信息;
    所述终端设备根据所述PHR配置信息,上报目标PHR。
  2. 根据权利要求1所述的方法,其特征在于,所述PHR配置信息与空间信息关联。
  3. 根据权利要求2所述的方法,其特征在于,所述空间信息包括以下中的至少一种:
    天线面板信息,控制资源集CORESET组信息,参考信号集合信息,传输配置指示TCI状态信息,波束信息。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述目标PHR是根据第一上行信息确定的PHR,所述第一上行信息与空间信息关联,或者,
    所述目标PHR是根据多个上行信息确定的PHR,所述多个上行信息与多个空间信息关联,并且所述多个上行信息是同时发送的。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述PHR配置信息包括以下高层参数中的至少一项:
    功率余量报告的周期定时器;
    禁止PHR上报的定时器;
    发送功率因素变化量或者路径损耗变化量;
    双连接时另外一个小区组的PHR模式;
    上报的PHR的小区类型,所述上报的PHR的小区类型为多小区PHR或单小区PHR;
    最大允许暴露MPE的上报许可;
    功率管理最大功率回退P-MPR的阈值;
    MPE禁止上报的定时器。
  6. 根据权利要求5所述的方法,其特征在于,所述PHR配置信息包括第一PHR配置信息和第二PHR配置信息,所述第一PHR配置信息与第一空间信息关联,所述第二PHR配置信息与第二空间信息关联,所述第一PHR配置信息和所述第二PHR配置信息包括的高层参数不同,和/或,所述第一PHR配置信息和所述第二PHR配置信息包括的相同的高层参数对应的配置不同。
  7. 根据权利要求6所述的方法,其特征在于,所述第一PHR配置信息与第一空间信息关联包括以下中的至少一种:
    所述第一PHR配置信息与第一天线面板信息关联;
    所述第一PHR配置信息与第一CORESET组信息关联;
    所述第一PHR配置信息与第一参考信号集合信息关联;
    所述第一PHR配置信息与第一TCI状态信息关联;
    所述第一PHR配置信息与第一波束信息关联。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二PHR配置信息与第二空间信息关联包括以下中的至少一种:
    所述第二PHR配置信息与第二天线面板信息关联;
    所述第二PHR配置信息与第二CORESET组信息关联;
    所述第二PHR配置信息与第二参考信号集合信息关联;
    所述第二PHR配置信息与第二TCI状态信息关联;
    所述第二PHR配置信息与第二波束信息关联。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述第一PHR配置信息包括第一MPE的上报许可,所述第二PHR配置信息包括第二MPE的上报许可,其中,所述第一MPE的上报许可和所述第二MPE的上报许可对应的配置不同。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述第一空间信息包括panelID 0,所述第一MPE的上报许可用于指示所述终端设备需要在承载PHR的媒体接入控制控制元素MACCE中上报MPEP-MPR值;
    所述第二空间信息包括panelID1,所述第二MPE的上报许可用于指示所述终端设备不需要在承载PHR的MACCE中上报MPEP-MPR值。
  11. 根据权利要求6-10中任一项所述的方法,所述第一PHR配置信息包括第一P-MPR的阈值,所述第二PHR配置信息包括第二P-MPR的阈值,其中,所述第一P-MPR的阈值与所述第二P-MPR的阈值不同。
  12. 根据权利要求11所述的方法,其特征在于,所述第一空间信息包括panelID 0,所述第一P-MPR 的阈值为3dB;
    所述第二空间信息包括panelID1,所述第二P-MPR的阈值为6dB。
  13. 根据权利要求6-12中任一项所述的方法,所述第一PHR配置信息包括第一MPE禁止上报的定时器,所述第二PHR配置信息包括第二MPE禁止上报的定时器,其中,所述第一MPE禁止上报的定时器和所述第二MPE禁止上报的定时器对应的配置不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一空间信息包括panelID 0,所述第一MPE禁止上报的定时器的时长为10个子帧;
    所述第二空间信息包括panelID1,所述第二MPE禁止上报的定时器的时长为20个子帧。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述PHR配置信息,确定是否满足PHR触发条件;
    在满足PHR触发条件时,所述终端设备确定上报所述目标PHR。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述目标PHR包括第一PHR,所述第一PHR通过第一媒体接入控制控制元素MAC CE承载,所述第一PHR是与第一空间信息关联的PHR。
  17. 根据权利要求16所述的方法,其特征在于,所述第一PHR是单小区PHR。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一MAC CE中的一个或多个比特用于指示所述第一PHR关联的空间信息。
  19. 根据权利要求18所述的方法,其特征在于,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述第一MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第一PHR在对应类型的空间信息中所关联的目标空间信息。
  21. 根据权利要求20所述的方法,其特征在于,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:
    天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
  22. 根据权利要求20所述的方法,其特征在于,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
  23. 根据权利要求16或17所述的方法,其特征在于,所述第一MAC CE的MAC子头用于指示所述第一PHR关联的空间信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第一MAC CE的MAC子头中的逻辑信道标识LCID用于指示所述第一PHR关联的空间信息。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一MAC CE的MAC子头中的LCID的取值为第一值用于指示所述第一PHR关联的空间信息。
  26. 根据权利要求25所述的方法,其特征在于,对于R18及之后版本的终端设备,所述第一值用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述第一值为空闲值。
  27. 根据权利要求23-26中任一项所述的方法,其特征在于,
    与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
  28. 根据权利要求23-27中任一项所述的方法,其特征在于,
    所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
  29. 根据权利要求28所述的方法,其特征在于,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R 18之前的终端设备,所述N个LCID值为空闲值。
  30. 根据权利要求16-29中任一项所述的方法,其特征在于,所述第一MAC CE中还包括第一指示信息,用于指示所述第一MAC CE中承载的PHR对应的小区。
  31. 根据权利要求16-30中任一项所述的方法,其特征在于,所述第一MAC CE通过第一物理上行共享信道PUSCH承载,其中,所述第一PUSCH是与所述第一空间信息关联的PUSCH。
  32. 根据权利要求31的方法,其特征在于,所述第一PUSCH是在所述终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的时域位置最早的初传PUSCH;或者,
    所述第一PUSCH是在所述终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的多次重复发送的PUSCH中的时域位置最早的PUSCH。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一PHR的模式为实际PHR,所述第一PHR是根据实际发送所述第一PUSCH的功率确定的。
  34. 根据权利要求16-33中任一项所述的方法,其特征在于,所述第一PHR为第一小区的PHR,所述第一小区的PHR是根据所述第一小区上的目标载波的PHR确定的,其中,所述目标载波是根据所述第一小区上的上行UL载波和辅助上行SUL载波上是否被配置或调度与所述第一空间信息关联的上行信息确定的。
  35. 根据权利要求34所述的方法,其特征在于,所述目标载波是所述第一小区上的UL载波和SUL载波中被配置或调度与所述第一空间信息关联的PUSCH的载波;或者,
    若所述第一小区上的UL载波和SUL载波上没有被配置或调度与所述第一空间信息关联的PUSCH,但是所述第一小区上的UL载波和SUL载波中的第一载波被调度或配置了通过第三空间信息发送PUSCH,则所述第一小区的PHR根据所述第一载波上的PHR确定,其中,所述第三空间信息与所述第一空间信息不同。
  36. 根据权利要求1-15中任一项所述的方法,其特征在于,所述目标PHR包括第二PHR,所述第二PHR通过第二MAC CE承载,所述第二PHR是与第二空间信息关联的PHR。
  37. 根据权利要求36所述的方法,其特征在于,所述第二PHR为多小区PHR。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第二MAC CE中的一个或多个比特用于指示所述第二PHR对应的空间信息。
  39. 根据权利要求38所述的方法,其特征在于,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
  40. 根据权利要求36-39中任一项所述的方法,其特征在于,所述第二MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第二PHR在对应类型的空间信息中所关联的目标空间信息。
  41. 根据权利要求40所述的方法,其特征在于,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:
    天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
  42. 根据权利要求40所述的方法,其特征在于,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
  43. 根据权利要求36或37所述的方法,其特征在于,所述第二MAC CE的MAC子头用于指示所述第二PHR关联的空间信息。
  44. 根据权利要求43所述的方法,其特征在于,所述第二MAC CE的MAC子头中的LCID用于指示所述第二PHR关联的空间信息。
  45. 根据权利要求44所述的方法,其特征在于,所述第二MAC CE的MAC子头中的LCID的取值为第二值用于指示所述第二PHR关联的空间信息。
  46. 根据权利要求45所述的方法,其特征在于,对于R18及之后版本的终端设备,所述第二值用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述第二值为空闲值。
  47. 根据权利要求43-46中任一项所述的方法,其特征在于,
    与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
  48. 根据权利要求43-47中任一项所述的方法,其特征在于,
    所述终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
  49. 根据权利要求48所述的方法,其特征在于,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R18之前的终端设备,所述N个LCID值为空闲值。
  50. 根据权利要求36-49中任一项所述的方法,其特征在于,所述第二MAC CE中还包括第二指示信息,用于指示所述第二MAC CE中承载的PHR对应的小区。
  51. 根据权利要求36-50中任一项所述的方法,其特征在于,所述第二MAC CE通过第二PUSCH承载,其中,所述第二PUSCH是与所述第二空间信息关联的PUSCH。
  52. 根据权利要求36-51中任一项所述的方法,其特征在于,所述第二PHR包括多个小区分别对应的PHR,所述方法还包括:
    根据第一参考时域位置之前是否接收到第三PUSCH的调度信令或高层配置信息,确定所述多个小区中的第二小区对应的PHR的模式,其中,所述第三PUSCH为所述第二小区上与所述第二空间信 息关联的PUSCH。
  53. 根据权利要求52所述的方法,其特征在于,所述根据第一参考时域位置之前是否接收到第三PUSCH的调度信令或高层配置信息,确定所述多个小区中的第二小区对应的PHR的模式,包括:
    若在所述第一参考时域位置之前,接收到所述第三PUSCH的调度信令或高层配置信息,确定所述第二小区的PHR的模式为实际PHR,或者
    若在所述第一参考时域位置之前,未接收到所述第三PUSCH的调度信令或高层配置信息,确定所述第二小区的PHR的模式为虚拟PHR。
  54. 根据权利要求52或53所述的方法,其特征在于,若所述第二PUSCH是下行控制信息DCI调度的PUSCH,所述第一参考时域位置为所述DCI的最后一个符号或者所述DCI所在的检测时机MO的结束位置;或者
    若所述第二PUSCH是高层信令配置的PUSCH,所述第一参考时域位置为所述第二PUSCH的第一个符号之前的第一时域位置,所述第一时域位置与所述第二PUSCH的第一个符号之间的时间间隔为所述第二PUSCH的处理时间。
  55. 根据权利要求54所述的方法,其特征在于,所述第二PUSCH的处理时间为所述第二PUSCH的准备时间,或者,
    所述第二PUSCH的处理时间包括所述PUSCH的准备时间和额外处理时间,其中,所述额外处理时间是预定义的,或者是根据所述终端设备的处理能力确定的。
  56. 根据权利要求52-55中任一项所述的方法,其特征在于,
    当参考小区和所述第二小区的子载波间隔相同时,所述第三PUSCH是与所述第二PUSCH所在时隙存在重叠的第一个时隙上的PUSCH;或者
    当参考小区和所述第二小区的子载波间隔不相同时,所述第三PUSCH是与所述第二PUSCH所在时隙完全重叠的第一个时隙上的PUSCH;
    其中,所述参考小区是承载所述第二PHR的所述第二PUSCH所在的小区。
  57. 根据权利要求36-56中任一项所述的方法,其特征在于,
    所述第二PHR包括第二小区对应的PHR,所述第二小区的PHR是根据所述第二小区上的目标载波的PHR确定的,其中,所述目标载波是根据所述第二小区上的UL载波和SUL载波上是否被配置或调度与所述第二空间信息关联的上行信息确定的。
  58. 根据权利要求57所述的方法,其特征在于,
    所述目标载波是所述第二小区上的UL载波和SUL载波中被配置或调度与所述第二空间信息关联的PUSCH的载波;或者,
    若所述第二小区上的UL载波和SUL载波上没有被配置或调度与所述第二空间信息关联的PUSCH,但是所述第二小区上的UL载波和SUL载波中的第二载波被调度或配置了通过第四空间信息发送PUSCH,则所述第二小区的PHR根据所述第二载波上的PHR确定,其中,所述第四空间信息与所述第二空间信息不同。
  59. 根据权利要求1-58中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备上报第一能力信息,所述第一能力信息用于指示所述终端设备的与多个空间信息关联的多个上行信息之间是否能够共享最大发送功率。
  60. 根据权利要求1-59中任一项所述的方法,其特征在于,所述终端设备的每个空间信息对应的目标最大发送功率是根据所述每个空间信息确定的最大发送功率,或者,所述终端设备的最大发送功率,或者,所述终端设备的所有空间信息对应的最大发送功率之和。
  61. 根据权利要求1-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备上报第二能力信息,所述第二能力信息用于指示所述终端设备是否支持上报根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的。
  62. 根据权利要求61所述的方法,其特征在于,所述PHR配置信息是根据所述第二能力信息确定的。
  63. 根据权利要求1-62中任一项所述的方法,其特征在于,所述目标PHR是根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的;其中,所述目标PHR是根据终端设备的最大发送功率和通过所述多个空间信息同时发送所述多个上行信息的功率之和确定的。
  64. 根据权利要求63所述的方法,其特征在于,所述目标PHR根据如下公式确定:
    Figure PCTCN2021143077-appb-100001
    其中,PHR obj表示目标PHR,P CMAX,f,c表示所述终端设备的最大发送功率,P x表示通过空间信息x发送上行信息的功率,N表示所述终端设备支持的空间信息的最大个数。
  65. 根据权利要求64所述的方法,其特征在于,N是预定义的,或者,N是根据所述终端设备的能力确定的。
  66. 一种无线通信的方法,其特征在于,包括:
    网络设备发送功率余量报告PHR配置信息;
    所述网络设备接收目标PHR。
  67. 根据权利要求66所述的方法,其特征在于,所述PHR配置信息与空间信息关联。
  68. 根据权利要求67所述的方法,其特征在于,所述空间信息包括以下中的至少一种:
    天线面板信息,控制资源集CORESET组信息,参考信号集合信息,传输配置指示TCI状态信息,波束信息。
  69. 根据权利要求66-68中任一项所述的方法,其特征在于,所述目标PHR是根据第一上行信息确定的PHR,所述第一上行信息与空间信息关联,或者,
    所述目标PHR是根据多个上行信息确定的PHR,所述多个上行信息与多个空间信息关联,并且所述多个上行信息是同时发送的。
  70. 根据权利要求66-69中任一项所述的方法,其特征在于,所述PHR配置信息包括以下高层参数中的至少一项:
    功率余量报告的周期定时器;
    禁止PHR上报的定时器;
    发送功率因素变化量或者路径损耗变化量;
    双连接时另外一个小区组的PHR模式;
    上报的PHR的小区类型,所述上报的PHR的小区类型为多小区PHR或单小区PHR;
    最大允许暴露MPE的上报许可;
    功率管理最大功率回退P-MPR的阈值;
    MPE禁止上报的定时器。
  71. 根据权利要求70所述的方法,其特征在于,所述PHR配置信息包括第一PHR配置信息和第二PHR配置信息,所述第一PHR配置信息与第一空间信息关联,所述第二PHR配置信息与第二空间信息关联,所述第一PHR配置信息和所述第二PHR配置信息包括的高层参数不同,和/或,所述第一PHR配置信息和所述第二PHR配置信息包括的相同的高层参数对应的配置不同。
  72. 根据权利要求71所述的方法,其特征在于,所述第一PHR配置信息与第一空间信息关联包括以下中的至少一种:
    所述第一PHR配置信息与第一天线面板信息关联;
    所述第一PHR配置信息与第一CORESET组信息关联;
    所述第一PHR配置信息与第一参考信号集合信息关联;
    所述第一PHR配置信息与第一TCI状态信息关联;
    所述第一PHR配置信息与第一波束信息关联。
  73. 根据权利要求71或72所述的方法,其特征在于,所述第二PHR配置信息与第二空间信息关联包括以下中的至少一种:
    所述第二PHR配置信息与第二天线面板信息关联;
    所述第二PHR配置信息与第二CORESET组信息关联;
    所述第二PHR配置信息与第二参考信号集合信息关联;
    所述第二PHR配置信息与第二TCI状态信息关联;
    所述第二PHR配置信息与第二波束信息关联。
  74. 根据权利要求71-73中任一项所述的方法,其特征在于,所述第一PHR配置信息包括第一MPE的上报许可,所述第二PHR配置信息包括第二MPE的上报许可,其中,所述第一MPE的上报许可和所述第二MPE的上报许可对应的配置不同。
  75. 根据权利要求71-74中任一项所述的方法,其特征在于,所述第一空间信息包括panelID 0,所述第一MPE的上报许可用于指示终端设备需要在承载PHR的媒体接入控制控制元素MACCE中上报MPEP-MPR值;
    所述第二空间信息包括panelID1,所述第二MPE的上报许可用于指示终端设备不需要在承载PHR 的MACCE中上报MPEP-MPR值。
  76. 根据权利要求71-75中任一项所述的方法,所述第一PHR配置信息包括第一P-MPR的阈值,所述第二PHR配置信息包括第二P-MPR的阈值,其中,所述第一P-MPR的阈值与所述第二P-MPR的阈值不同。
  77. 根据权利要求76所述的方法,其特征在于,所述第一空间信息包括panelID 0,所述第一P-MPR的阈值为3dB;
    所述第二空间信息包括panelID1,所述第二P-MPR的阈值为6dB。
  78. 根据权利要求71-77中任一项所述的方法,所述第一PHR配置信息包括第一MPE禁止上报的定时器,所述第二PHR配置信息包括第二MPE禁止上报的定时器,其中,所述第一MPE禁止上报的定时器和所述第二MPE禁止上报的定时器对应的配置不同。
  79. 根据权利要求78所述的方法,其特征在于,所述第一空间信息包括panelID 0,所述第一MPE禁止上报的定时器的时长为10个子帧;
    所述第二空间信息包括panelID1,所述第二MPE禁止上报的定时器的时长为20个子帧。
  80. 根据权利要求66-79中任一项所述的方法,其特征在于,所述目标PHR包括第一PHR,所述第一PHR通过第一媒体接入控制控制元素MAC CE承载,所述第一PHR是与第一空间信息关联的PHR。
  81. 根据权利要求80所述的方法,其特征在于,所述第一PHR是单小区PHR。
  82. 根据权利要求80或81所述的方法,其特征在于,所述第一MAC CE中的一个或多个比特用于指示所述第一PHR关联的空间信息。
  83. 根据权利要求82所述的方法,其特征在于,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
  84. 根据权利要求80-83中任一项所述的方法,其特征在于,所述第一MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第一PHR在对应类型的空间信息中所关联的目标空间信息。
  85. 根据权利要求84所述的方法,其特征在于,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:
    天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
  86. 根据权利要求84或85所述的方法,其特征在于,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
  87. 根据权利要求80或81所述的方法,其特征在于,所述第一MAC CE的MAC子头用于指示所述第一PHR关联的空间信息。
  88. 根据权利要求87所述的方法,其特征在于,所述第一MAC CE的MAC子头中的逻辑信道标识LCID用于指示所述第一PHR关联的空间信息。
  89. 根据权利要求87或88所述的方法,其特征在于,所述第一MAC CE的MAC子头中的LCID的取值为第一值用于指示所述第一PHR关联的空间信息。
  90. 根据权利要求89所述的方法,其特征在于,对于R18及之后版本的终端设备,所述第一值用于指示所述第一PHR关联的空间信息;对于R18之前的终端设备,所述第一值为空闲值。
  91. 根据权利要求88-90中任一项所述的方法,其特征在于,
    与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
  92. 根据权利要求88-91中任一项所述的方法,其特征在于,终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
  93. 根据权利要求92所述的方法,其特征在于,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R 18之前的终端设备,所述N个LCID值为空闲值。
  94. 根据权利要求80-93中任一项所述的方法,其特征在于,所述第一MAC CE中还包括第一指示信息,用于指示所述第一MAC CE中承载的PHR对应的小区。
  95. 根据权利要求80-94中任一项所述的方法,其特征在于,所述第一MAC CE通过第一物理上行共享信道PUSCH承载,其中,所述第一PUSCH是与所述第一空间信息关联的PUSCH。
  96. 根据权利要求95的方法,其特征在于,所述第一PUSCH是在终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息关联的时域位置最早的初传PUSCH;或者,
    所述第一PUSCH是在终端设备确定上报根据第一上行信息确定的PHR之后与所述第一空间信息 关联的多次重复发送的PUSCH中的时域位置最早的PUSCH。
  97. 根据权利要求95或96所述的方法,其特征在于,所述第一PHR的模式为实际PHR,所述第一PHR是根据实际发送所述第一PUSCH的功率确定的。
  98. 根据权利要求80-97中任一项所述的方法,其特征在于,所述第一PHR为第一小区的PHR,所述第一小区的PHR是根据所述第一小区上的目标载波的PHR确定的,其中,所述目标载波是根据所述第一小区上的上行UL载波和辅助上行SUL载波上是否被配置或调度与所述第一空间信息关联的上行信息确定的。
  99. 根据权利要求98所述的方法,其特征在于,所述目标载波是所述第一小区上的UL载波和SUL载波中被配置或调度与所述第一空间信息关联的PUSCH的载波;或者,
    若所述第一小区上的UL载波和SUL载波上没有被配置或调度与所述第一空间信息关联的PUSCH,但是所述第一小区上的UL载波和SUL载波中的第一载波被调度或配置了通过第三空间信息发送PUSCH,则所述第一小区的PHR根据所述第一载波上的PHR确定,其中,所述第三空间信息与所述第一空间信息不同。
  100. 根据权利要求66-79中任一项所述的方法,其特征在于,所述目标PHR包括第二PHR,所述第二PHR通过第二MAC CE承载,所述第二PHR是与第二空间信息关联的PHR。
  101. 根据权利要求100所述的方法,其特征在于,所述第二PHR为多小区PHR。
  102. 根据权利要求100或101所述的方法,其特征在于,所述第二MAC CE中的一个或多个比特用于指示所述第二PHR对应的空间信息。
  103. 根据权利要求102所述的方法,其特征在于,对于R18及之后版本的终端设备,所述一个或多个比特用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述一个或多个比特为空闲比特。
  104. 根据权利要求100-103中任一项所述的方法,其特征在于,所述第二MAC CE包括至少一个比特组,每个比特组包括一个或多个比特,每个比特组对应一种类型的空间信息,每个比特组的取值用于指示所述第二PHR在对应类型的空间信息中所关联的目标空间信息。
  105. 根据权利要求104所述的方法,其特征在于,所述至少一个比特组对应至少一种类型的空间信息,所述至少一种类型的空间信息包括以下中的至少一种:
    天线面板信息,CORESET组信息,参考信号集合信息,TCI状态信息,波束信息。
  106. 根据权利要求105所述的方法,其特征在于,对于R18及之后版本的终端设备,所述至少一个比特组用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述至少一个比特组为空闲比特。
  107. 根据权利要求105或106所述的方法,其特征在于,所述第二MAC CE的MAC子头用于指示所述第二PHR关联的空间信息。
  108. 根据权利要求107所述的方法,其特征在于,所述第二MAC CE的MAC子头中的LCID用于指示所述第二PHR关联的空间信息。
  109. 根据权利要求108所述的方法,其特征在于,所述第二MAC CE的MAC子头中的LCID的取值为第二值用于指示所述第二PHR关联的空间信息。
  110. 根据权利要求109所述的方法,其特征在于,对于R18及之后版本的终端设备,所述第二值用于指示所述第二PHR关联的空间信息;对于R18之前的终端设备,所述第二值为空闲值。
  111. 根据权利要求107-110中任一项所述的方法,其特征在于,
    与不同空间信息关联的MAC CE关联的MAC子头的LCID的码点和/或索引不同。
  112. 根据权利要求107-111中任一项所述的方法,其特征在于,终端设备支持N个天线面板信息,所述N个天线面板信息关联N个LCID值的码点和/或索引,其中,N为正整数。
  113. 根据权利要求112所述的方法,其特征在于,对于R18及之后版本的终端设备,所述N个LCID值用于指示PHR关联的空间信息;对于R18之前的终端设备,所述N个LCID值为空闲值。
  114. 根据权利要求100-113中任一项所述的方法,其特征在于,所述第二MAC CE中还包括第二指示信息,用于指示所述第二MAC CE中承载的PHR对应的小区。
  115. 根据权利要求100-114中任一项所述的方法,其特征在于,所述第二MAC CE通过第二PUSCH承载,其中,所述第二PUSCH是与所述第二空间信息关联的PUSCH。
  116. 根据权利要求66-115中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备的与多个空间信息关联的多个上行信息之间是否能够共享最大发送功率。
  117. 根据权利要求116所述的方法,其特征在于,所述终端设备的每个空间信息对应的目标最 大发送功率是根据所述每个空间信息确定的最大发送功率,或者,所述终端设备的最大发送功率,或者,所述终端设备的所有空间信息对应的最大发送功率之和。
  118. 根据权利要求66-79中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备发送的第二能力信息,所述第二能力信息用于指示所述终端设备是否支持上报根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的。
  119. 根据权利要求118所述的方法,其特征在于,所述PHR配置信息是根据所述第二能力信息确定的。
  120. 根据权利要求66-119中任一项所述的方法,其特征在于,所述目标PHR是根据多个上行信息确定的PHR,其中,所述多个上行信息关联多个空间信息,并且所述多个上行信息是同时发送的;其中,所述目标PHR是根据终端设备的最大发送功率和通过所述多个空间信息同时发送所述多个上行信息的功率之和确定的。
  121. 根据权利要求120所述的方法,其特征在于,所述目标PHR根据如下公式确定:
    Figure PCTCN2021143077-appb-100002
    其中,PHR obj表示目标PHR,P CMAX,f,c表示所述终端设备的最大发送功率,P x表示通过空间信息x发送上行信息的功率,N表示所述终端设备支持的空间信息的最大个数。
  122. 根据权利要求121所述的方法,其特征在于,N是预定义的,或者,N是根据所述终端设备的能力确定的。
  123. 一种终端设备,其特征在于,包括:
    通信单元,用于接收功率余量报告PHR配置信息;以及,
    根据所述PHR配置信息,上报目标PHR。
  124. 一种网络设备,其特征在于,包括:
    通信单元,用于发送功率余量报告PHR配置信息;以及接收目标PHR。
  125. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至65中任一项所述的方法。
  126. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求66至122中任一项所述的方法。
  127. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至65中任一项所述的方法,或者如权利要求66至122中任一项所述的方法。
  128. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至65中任一项所述的方法,或者如权利要求66至122中任一项所述的方法。
  129. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至65中任一项所述的方法,或者如权利要求66至122中任一项所述的方法。
  130. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至65中任一项所述的方法,或者如权利要求66至122中任一项所述的方法。
PCT/CN2021/143077 2021-12-30 2021-12-30 无线通信的方法、终端设备和网络设备 WO2023123206A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143077 WO2023123206A1 (zh) 2021-12-30 2021-12-30 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143077 WO2023123206A1 (zh) 2021-12-30 2021-12-30 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023123206A1 true WO2023123206A1 (zh) 2023-07-06

Family

ID=86996995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143077 WO2023123206A1 (zh) 2021-12-30 2021-12-30 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023123206A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810970A (zh) * 2016-01-09 2018-11-13 华为技术有限公司 一种指示功率余量报告的方法和装置
WO2019029381A1 (zh) * 2017-08-11 2019-02-14 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点
CN110381527A (zh) * 2018-04-04 2019-10-25 中兴通讯股份有限公司 功率余量报告方法、tpc命令发送方法和装置、基站、终端
WO2021159266A1 (en) * 2020-02-11 2021-08-19 Qualcomm Incorporated Techniques for determining beam metrics for maximum permissible exposure reporting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810970A (zh) * 2016-01-09 2018-11-13 华为技术有限公司 一种指示功率余量报告的方法和装置
WO2019029381A1 (zh) * 2017-08-11 2019-02-14 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点
CN112969223A (zh) * 2017-08-11 2021-06-15 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点
CN110381527A (zh) * 2018-04-04 2019-10-25 中兴通讯股份有限公司 功率余量报告方法、tpc命令发送方法和装置、基站、终端
WO2021159266A1 (en) * 2020-02-11 2021-08-19 Qualcomm Incorporated Techniques for determining beam metrics for maximum permissible exposure reporting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ET AL.: "On NR Power Control", 3GPP TSG RAN WG1 MEETING NR#3; R1-1715454, 21 September 2017 (2017-09-21), XP051329383 *

Similar Documents

Publication Publication Date Title
US9860712B2 (en) Communicating broadcast signals in carrier-aggregated wireless networks
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
US20230095158A1 (en) Wireless communication method, terminal device and network device
JP7263464B2 (ja) 無線通信方法及び装置
WO2023123206A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022188253A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022088085A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2022104650A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2020248794A1 (zh) 一种功率控制方法、通信方法、装置及存储介质
WO2022016342A1 (zh) 信道加扰方法和终端设备
EP3624523B1 (en) Wireless communication method and terminal device
WO2024026839A1 (zh) 无线通信的方法和终端设备
WO2023141823A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023039805A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024087093A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050337A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151080A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022150993A1 (zh) 一种无线通信方法、装置、设备及存储介质
WO2023065335A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023142123A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022236487A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969568

Country of ref document: EP

Kind code of ref document: A1