WO2024087093A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2024087093A1
WO2024087093A1 PCT/CN2022/127927 CN2022127927W WO2024087093A1 WO 2024087093 A1 WO2024087093 A1 WO 2024087093A1 CN 2022127927 W CN2022127927 W CN 2022127927W WO 2024087093 A1 WO2024087093 A1 WO 2024087093A1
Authority
WO
WIPO (PCT)
Prior art keywords
phr
pusch
information
parameter
pucch
Prior art date
Application number
PCT/CN2022/127927
Other languages
English (en)
French (fr)
Inventor
刘哲
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/127927 priority Critical patent/WO2024087093A1/zh
Publication of WO2024087093A1 publication Critical patent/WO2024087093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a wireless communication method, terminal equipment, and network equipment.
  • the Uplink Control Information (UCI) carried on the PUCCH can be multiplexed onto the PUSCH according to the multiplexing rules.
  • the PUCCH may overlap with the PUSCH associated with multiple spatial parameters in the time domain. How to deal with such scenarios is a problem that needs to be solved.
  • how to report the Power Headroom Report (PHR) is also a problem that needs to be solved.
  • the embodiment of the present application provides a method, terminal device and network device for wireless communication, and designs a corresponding processing method for some PUCCHs that have conflicts in the time domain and cannot find PUSCHs associated with the same spatial parameters to multiplex, thereby optimizing PUCCH transmission.
  • the terminal device can report the PHR corresponding to the spatial parameter information, thereby realizing the PHR reporting in the multi-antenna panel (panel) simultaneous transmission scenario.
  • a wireless communication method comprising:
  • the terminal device multiplexes the UCI information carried by P PUCCHs out of the M PUCCHs into the PUSCHs in the N PUSCHs that are associated with the same spatial parameters as the P PUCCHs, wherein the M PUCCHs overlap with the N PUSCHs in the time domain.
  • there are S PUCCHs in the M PUCCHs that overlap with the PUSCHs in the N PUSCHs in the time domain, and M, N, P and S are all positive integers, and S M-P;
  • the terminal device multiplexes the UCI information carried in the S PUCCHs to the PUSCH associated with the first target spatial parameter in the N PUSCHs; or, the terminal device transmits first uplink information, wherein the first uplink information does not include at least one of the following: part or all of the S PUCCHs, part or all of the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • a wireless communication method comprising:
  • the terminal device reports the PHR corresponding to the spatial parameter information.
  • a wireless communication method comprising:
  • the network device receives a power headroom report PHR corresponding to the spatial parameter information.
  • a terminal device for executing the method in the first aspect.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect.
  • a terminal device for executing the method in the second aspect.
  • the terminal device includes a functional module for executing the method in the above-mentioned second aspect.
  • a network device for executing the method in the third aspect.
  • the network device includes a functional module for executing the method in the third aspect above.
  • a terminal device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method in the above-mentioned first aspect.
  • a terminal device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method in the above-mentioned second aspect.
  • a network device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the third aspect above.
  • a device for implementing the method in any one of the first to third aspects above.
  • the apparatus includes: a processor, configured to call and run a computer program from a memory, so that a device equipped with the apparatus executes the method in any one of the first to third aspects described above.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method in any one of the first to third aspects above.
  • a computer program product comprising computer program instructions, which enable a computer to execute the method in any one of the first to third aspects above.
  • a computer program which, when executed on a computer, enables the computer to execute the method in any one of the first to third aspects described above.
  • the terminal device multiplexes the UCI information carried in the S PUCCHs to the PUSCH associated with the first target spatial parameter in the N PUSCHs, or the first uplink information transmitted by the terminal device does not include at least one of the following: part or all of the PUCCHs in the S PUCCHs, part or all of the PUSCHs in the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the terminal device can multiplex the UCI information carried in the PUCCH to the PUSCH associated with a specific spatial parameter, or the terminal device can discard the PUCCH, or the terminal device can discard the PUSCH that overlaps with the PUCCH in the time domain, thereby optimizing the PUCCH transmission.
  • the terminal device can report the PHR corresponding to the spatial parameter information, thereby realizing the PHR reporting in the multi-antenna panel (panel) simultaneous interpretation scenario.
  • FIG1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • FIG2 is a schematic diagram of a PUSCH carrying a PHR provided in the present application.
  • FIG3 is a schematic diagram of another PUSCH carrying PHR provided in the present application.
  • FIG4 is a schematic diagram of a method of performing uplink transmission simultaneously by multiple panels/TRPs provided in the present application.
  • FIG5 is a schematic diagram of a multi-PUSCH transmission with multi-DCI scheduling provided in the present application.
  • FIG6 is a schematic diagram of a conflict between PUCCH and PUSCH in the time domain provided by the present application.
  • FIG. 7 is a schematic diagram of another type of conflict between PUCCH and PUSCH in the time domain provided by the present application.
  • FIG8 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • FIG9 is a schematic diagram of a method of performing uplink transmission simultaneously on multiple panels/TRPs according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • FIG11 is a schematic diagram of a first PUSCH provided according to an embodiment of the present application.
  • FIG12 is a schematic diagram of a second PUSCH provided according to an embodiment of the present application.
  • FIG13 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG14 is a schematic block diagram of another terminal device provided according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG16 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • FIG18 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • LTE on unlicensed spectrum LTE-based ac
  • LTE-U LTE-based access to unlicensed spectrum
  • NR-U NR-based access to unlicensed spectrum
  • NTN Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • IoT Wireless Fidelity
  • WiFi fifth-generation (5G) systems
  • 6G sixth-generation
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • SL sidelink
  • V2X vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, a standalone (SA) networking scenario, or a non-standalone (NSA) networking scenario.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • NSA non-standalone
  • the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, where the licensed spectrum can also be considered as an unshared spectrum.
  • the communication system in the embodiments of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range of 410 MHz to 7.125 GHz), or to the FR2 frequency band (corresponding to the frequency band range of 24.25 GHz to 52.6 GHz), or to new frequency bands such as high-frequency frequency bands corresponding to the frequency band range of 52.6 GHz to 71 GHz or the frequency band range of 71 GHz to 114.25 GHz.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, etc.
  • STATION, ST in a WLAN
  • a cellular phone a cordless phone
  • Session Initiation Protocol (SIP) phone Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)/system on chip (SoC), etc.
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal device in industrial control a wireless terminal device in self-driving
  • a wireless terminal device in remote medical a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (eNB or eNodeB) in LTE, or a relay station or access point, or a network device or a base station (gNB) or a transmission reception point (TRP) in a vehicle-mounted device, a wearable device, and an NR network, or a network device in a future evolved PLMN network or a network device in an NTN network, etc.
  • AP access point
  • BTS base station
  • NodeB NodeB
  • NB base station
  • gNB base station
  • TRP transmission reception point
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
  • the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • terminal devices include mobile phones, machine facilities, customer premises equipment (CPE), industrial equipment, vehicles, etc.; network devices may be access network devices (such as gNB), core network devices, etc.
  • CPE customer premises equipment
  • gNB access network devices
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of an existing LTE protocol, NR protocol, Wi-Fi protocol, or a protocol related to other communication systems.
  • the present application does not limit the protocol type.
  • Type 1 or Type 3 PHR it will be reported by the terminal device to the network device through the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • Type1 PHR is used to report the power margin of the terminal device for sending PUSCH.
  • Type1 PHR is divided into: PHR based on the actual sent PUSCH and PHR based on the reference PUSCH.
  • the PHR based on the actually transmitted PUSCH is the difference between the maximum transmit power of the terminal device and the actually transmitted PUSCH power, as shown in Formula 1.
  • b represents bandwidth part (Bandwidth Part, BWP);
  • f indicates a carrier (for example, an uplink (UL) carrier or a supplementary uplink carrier (SUL) within a cell);
  • UL uplink
  • SUL supplementary uplink carrier
  • c indicates serving cell
  • i indicates transmission occasion
  • j indicates parameter configuration index
  • the open-loop power control parameters in the above formula 1 include:
  • P O_PUSCH, b, f, c (j): represents the target received power
  • PL b,f,c (q d ): represents the path loss value measured according to the reference signal for path loss
  • the closed-loop power control parameters in the above formula 1 include:
  • f b, f, c (i, l) indicates the closed-loop power control adjustment state, including cumulative closed-loop power control (acting on the power control accumulated value through the accumulator) and absolute closed-loop power control (acting directly on the power adjustment value);
  • the PHR based on the reference PUSCH is the difference between the maximum transmit power of the terminal device and the reference PUSCH power. It can be understood that the carrier does not send PUSCH at the time of calculating the PHR, as shown in Formula 2.
  • Type3PHR is used to report the power margin of the terminal device to send the sounding reference signal (SRS), and Type3PHR is reported only on carriers that are not configured with PUSCH.
  • SRS sounding reference signal
  • Type3PHR is divided into: PHR based on the actual sent SRS and PHR based on the reference SRS.
  • the PHR based on the actually transmitted SRS is the difference between the maximum transmission power of the terminal device and the actually transmitted SRS power, as shown in Formula 3.
  • q s represents the index of the SRS resource set
  • h b,f,c (i,l): indicates the adjustment status of SRS closed-loop power control.
  • the power control of SRS is performed based on an SRS resource set, and the SRS resources in an SRS resource set use the same power control parameters.
  • the SRS resource set index of the open-loop power control parameters PO_SRS,b,f,c ( qs ) and ⁇ SRS,b,f,c ( qs ) and the reference signal index used to calculate the path loss PLb ,f,c ( qd ) are all based on the SRS resource set configuration and configured by RRC signaling.
  • h b,f,c (i,l) may be indicated by RRC signaling to use the same closed-loop power adjustment state as associated with the nearest PUSCH in the time domain, or to use an independent closed-loop power control adjustment state.
  • the PHR based on the reference SRS is the difference between the maximum transmission power of the terminal device and the reference SRS power. It can be understood that the carrier does not send SRS at the time of calculating the PHR, as shown in Formula 4.
  • the terminal device sends PUSCH in multiple cells at the same time, and the subcarrier spacing of the activated bandwidth part (Band Width Part, BWP) of different cells is different, then:
  • uplink multi-antenna panel (panel)/transmission reception point (Transmission Reception Point, TRP) transmission related to the present application is explained.
  • the terminal is configured with multiple panels and supports simultaneous transmission of uplink information on multiple panels, multiple uplink information can be transmitted on multiple panels at the same time, as shown in Figure 4, to improve the uplink spectrum efficiency.
  • the uplink transmission of the same multiple panels/TRPs can be scheduled through a single downlink control information (Downlink Control Information, DCI) or through multiple DCIs.
  • DCI Downlink Control Information
  • the multiple PUSCHs sent by the UE are in a unified transmission configuration indication (Transmission Configuration Indicator, TCI) scenario. Multiple PUSCHs are associated with different TCI states and may not overlap, partially overlap, or completely overlap in the time domain.
  • the UE can only send a maximum of 2 PUCCHs in a time-division manner in one time slot, and at least one of them is a short-format PUCCH.
  • the timing relationship is set to allow the UE to have enough time to determine whether different PUCCHs need to be multiplexed, and if multiplexing is required, consider the time required to repackage the uplink control information (UCI).
  • UCI uplink control information
  • PUCCH and PUSCH overlap in the time domain, it supports the UCI information carried in PUCCH to be carried on PUSCH for transmission, and certain timing requirements need to be met during multiplexing.
  • Multiple PUSCHs scheduled by multiple DCIs can overlap, partially overlap, or not overlap in the time domain, as shown in Figure 5.
  • the PUCCHs corresponding to the PDSCHs associated with different spatial parameters can be fed back jointly or independently. If fed back independently, the PUCCHs are sent respectively using spatial parameters 1 and 2.
  • the PUCCHs can be transmitted simultaneously through a single DCI indication, or through multiple DCI indications.
  • PUCCH1 associated with spatial parameter 1 can be multiplexed to PUSCH1 with the same spatial parameter
  • PUCCH2 associated with spatial parameter 2 can be multiplexed to PUSCH2 with the same spatial parameter
  • PUSCH1 and PUSCH2 can be transmitted simultaneously.
  • PUCCH1 associated with spatial parameter 1 in scenario 1 can be multiplexed to PUSCH1 of the same spatial parameter, but PUSCH1 and PUCCH2 associated with spatial parameter 2 also overlap in the time domain; PUSCH1 associated with spatial parameter 1 and PUCCH1 associated with spatial parameter 2 in scenario 2 overlap in the time domain.
  • PUCCH2 in scenario 1 may not find PUSCH with the same spatial parameter to multiplex
  • PUCCH1 in scenario 2 may not find PUSCH with the same spatial parameter to multiplex. How to handle PUCCH and PUSCH associated with different spatial parameters is a problem that needs to be solved.
  • the present application proposes a scheme for PUCCH multiplexing transmission.
  • the terminal device can multiplex the UCI information carried in the PUCCH to the PUSCH associated with specific spatial parameters, or the terminal device can discard the PUCCH, or the terminal device can discard the PUSCH that overlaps with the PUCCH in the time domain, thereby optimizing the PUCCH transmission.
  • the present application proposes a PHR reporting scheme, whereby the terminal device can report the PHR corresponding to the spatial parameter information, thereby realizing PHR reporting in a multi-antenna panel (panel) simultaneous transmission scenario.
  • FIG8 is a schematic flow chart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG8 , the wireless communication method 200 may include at least part of the following contents:
  • the terminal device multiplexes the UCI information carried in the S PUCCHs to the PUSCH associated with the first target spatial parameter in the N PUSCHs; or, the terminal device transmits first uplink information, wherein the first uplink information does not include at least one of the following: part or all of the PUCCHs in the S PUCCHs, part or all of the PUSCHs in the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the first uplink information transmitted by the terminal device does not include at least one of the following: some or all of the S PUCCHs, and some or all of the N PUSCHs that overlap with the S PUCCHs in the time domain. That is, the terminal device discards or ignores at least one of the following: some or all of the S PUCCHs, and some or all of the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the first uplink information may include at least one of the following: PUCCHs other than discarded or ignored PUCCHs in the S PUCCHs, and PUSCHs other than discarded or ignored PUSCHs in the N PUSCHs.
  • the S PUCCHs are PUCCHs that conflict with PUSCHs in the time domain and cannot find PUSCHs associated with the same spatial parameters to multiplex.
  • the S PUCCHs may include PUCCH2 in scenario 1 as shown in FIG. 7
  • the S PUCCHs may also include PUCCH1 in scenario 2 as shown in FIG. 7 .
  • the M PUCCHs overlap with the N PUSCHs in the time domain, including at least one of the following:
  • PUCCH and PUSCH partially overlap in the time domain, and PUCCH and PUSCH completely overlap in the time domain.
  • the M PUCCHs and the N PUSCHs are located in the same time unit.
  • the time unit is one of: a time slot, a mini-slot, a plurality of symbols, a subframe, a transmission occasion.
  • the N PUSCHs include at least one of the following: a dynamically scheduled PUSCH, and a non-scheduled PUSCH.
  • the first target space parameter is predefined (such as agreed upon by protocol), or the first target space parameter is preconfigured (such as preconfigured or semi-statically configured), or the first target space parameter is configured by a network device (such as dynamically configured).
  • the M PUCCHs and the N PUSCHs meet the timing condition for UCI information multiplexing.
  • the spatial parameters in the embodiments of the present application may refer to the spatial configuration (spatial setting) or spatial relationship (Spatial relation) used for transmission of uplink information (such as PUCCH and/or PUSCH), etc.
  • the spatial parameters include but are not limited to at least one of the following:
  • Antenna panel (panel) information TRP information, control resource set (Control Resource Set, CORESET) group information, transmission configuration indication (Transmission Configuration Indicator, TCI) status information, reference signal set information, reference signal information, beam information, capability set information.
  • TRP Transmission Configuration Indicator
  • the antenna panel information may include an antenna panel identification (ID) or index.
  • ID antenna panel identification
  • index index
  • the TRP information may include a TRP ID or index.
  • the CORESET group information may include an ID or index of the CORESET group.
  • the TCI state information may include a unified TCI state or an uplink TCI state (UL TCI state), or a joint TCI state.
  • the reference signal set information may include at least one of the following: synchronization signal block (Synchronization Signal Block, SSB) set information, channel state information reference signal (CSI-RS) resource set information, sounding reference signal (Sounding Reference Signal, SRS) resource set information, demodulation reference signal (Demodulation Reference Signal, DMRS) resource set information.
  • SSB Synchronization Signal Block
  • CSI-RS channel state information reference signal
  • SRS Sounding reference signal
  • DMRS demodulation reference signal
  • the reference signal set information may include an index of a reference signal set, such as an index of an SSB set, or an index of a CSI-RS resource set, or an index of an SRS resource set, or an index of a DMRS resource set.
  • an index of a reference signal set such as an index of an SSB set, or an index of a CSI-RS resource set, or an index of an SRS resource set, or an index of a DMRS resource set.
  • the reference signal information may include at least one of the following: SSB information, CSI-RS resource information, SRS resource information, DMRS resource information.
  • the reference signal information may be an index of an SRS resource, an SSB resource, a CSI-RS resource, or a DMRS resource.
  • the beam information may include a beam ID or index.
  • the beam may also be referred to as a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission), or a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or a spatial reception parameter (Spatial Rx parameter).
  • a spatial domain transmission filter Spatial domain transmission filter or Spatial domain filter for transmission
  • a spatial domain reception filter Spatial domain reception filter or Spatial domain filter for reception
  • a spatial reception parameter Spatial Rx parameter
  • the capability set information may include one or more parameters.
  • the capability set information may be a capability set supported by the terminal device or reference signal information associated with a capability set supported by the terminal device.
  • the capability set information includes but is not limited to at least one of the following:
  • Maximum number of SRS ports maximum number of uplink transmission layers, codebook subset type, uplink full-power transmission mode, SRS antenna switching capability, SRS carrier switching capability, number of SRS resources sent simultaneously, maximum modulation mode for uplink data transmission, maximum modulation mode for downlink data transmission, number of Hybrid Automatic Repeat Request (HARQ) processes supported by the terminal device, channel bandwidth supported by the terminal device, number of transmitting antennas supported by the terminal device, Physical Downlink Shared Channel (PDSCH) processing capability, PUSCH processing capability, power saving capability of the terminal device, coverage enhancement capability of the terminal device, data transmission rate improvement capability of the terminal device, short-delay processing capability of the terminal device, small data transmission capability of the terminal device, inactive data transmission capability of the terminal device, transmission reliability capability of the terminal device, ultra-reliable and low-latency communication (URLLC) data transmission capability of the terminal device.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Downlink Shared Channel
  • associating uplink information (such as PUCCH and/or PUSCH) with TCI state information may include:
  • the transmission beam of the uplink information is determined based on the TCI status information.
  • the association of uplink information (such as PUCCH and/or PUSCH) and antenna panel information may include:
  • the uplink information is sent via the antenna panel indicated by the antenna panel information.
  • the association of uplink information (such as PUCCH and/or PUSCH) and TRP information may include:
  • the uplink information is sent to the TRP indicated by the TRP information.
  • associating uplink information (such as PUCCH and/or PUSCH) with CORESET group information may include:
  • the CORESET group indicated by the CORESET group information is the CORESET group to which the CORESET where the physical downlink control channel (PDCCH) triggering the uplink information is located belongs, or, the CORESET group may be the CORESET group for which high-level signaling configures resources for sending uplink information.
  • PDCCH physical downlink control channel
  • associating uplink information (such as PUCCH and/or PUSCH) with reference signal set information may include:
  • the reference signal set associated with the antenna panel used to transmit uplink information or the reference signal set configured by the network device for uplink information, or the reference signal set associated with the PDCCH corresponding to the uplink information.
  • associating uplink information (such as PUCCH and/or PUSCH) with reference signal information may include:
  • the beam used to transmit uplink information is determined according to a transmit beam of a reference signal indicated by the reference signal information, or is determined according to a receive beam of a reference signal indicated by the reference signal information.
  • associating uplink information (such as PUCCH and/or PUSCH) with beam information may include:
  • the uplink information is sent via the beam indicated by the beam information.
  • associating uplink information (such as PUCCH and/or PUSCH) with capability set information may include:
  • the transmission parameters of the uplink information are determined according to the capability set information.
  • the terminal device multiplexes the UCI information carried in the S PUCCHs to the PUSCH associated with the first target spatial parameter in the N PUSCHs, including:
  • the terminal device multiplexes the UCI information carried in the S PUCCHs into the PUSCH associated with the first target spatial parameter in the N PUSCHs.
  • the backhaul connection between TRPs may be ideal or non-ideal.
  • information can be exchanged quickly and dynamically between TRPs, that is, in an ideal backhaul scenario, the transmission delay of information interaction is small, such as the transmission delay of information interaction is less than a first preset value, wherein the first preset value is agreed upon by the protocol, or the first preset value is configured by the network device.
  • the terminal device multiplexes the UCI information carried in the S PUCCHs to the PUSCH associated with the first target space parameter in the N PUSCHs.
  • ideal backhaul can be a backhaul with very high throughput and very low latency, such as backhaul in a point-to-point optical fiber connection scenario.
  • Non-ideal backhaul has a larger latency, such as Digital Subscriber Line (DSL), microwave and other backhauls (such as relays).
  • Ideal backhaul corresponds to scenarios with high throughput and low latency, such as optical fiber; non-ideal backhaul: relative to ideal backhaul, has a larger latency and lower throughput, such as microwave.
  • the terminal device may transmit the first uplink information according to a priority order. In other words, the terminal device discards or ignores at least one of the following according to a priority order: some or all of the S PUCCHs, and some or all of the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the first uplink information does not include the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain;
  • the first uplink information does not include the i-th PUCCH
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device when the priority index associated with the i-th PUCCH is higher than the priority index associated with the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the terminal device discards or ignores the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain; and/or,
  • the terminal device discards or ignores the i-th PUCCH
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device can discard or ignore PUSCH or PUCCH based on the priority index. For example, the terminal device can discard or ignore all PUCCHs among S PUCCHs, or the terminal device can discard or ignore all PUSCHs among N PUSCHs that overlap with S PUCCHs in the time domain, or the terminal device can discard or ignore some PUCCHs among S PUCCHs and some PUSCHs among N PUSCHs that overlap with S PUCCHs in the time domain.
  • the priority index associated with the PUCCH may be configured or indicated by the network device, and/or the priority index associated with the PUSCH may be configured or indicated by the network device.
  • the first uplink information does not include the PUSCH among the N PUSCHs that overlaps with the i-th PUCCH in the time domain; and/or,
  • the first uplink information does not include the i-th PUCCH
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device when the priority of UCI information carried in the i-th PUCCH is higher than the priority of information carried in the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the terminal device discards or ignores the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain; and/or,
  • the terminal device discards or ignores the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device can discard or ignore PUSCH or PUCCH based on the priority of UCI information carried in PUCCH and the priority of information carried in PUSCH. For example, the terminal device can discard or ignore all PUCCHs in S PUCCHs, or the terminal device can discard or ignore all PUSCHs in N PUSCHs that overlap with S PUCCHs in the time domain, or the terminal device can discard or ignore some PUCCHs in S PUCCHs and some PUSCHs in N PUSCHs that overlap with S PUCCHs in the time domain.
  • the information carried by PUSCH includes at least one of the following: Hybrid Automatic Repeat reQuest (HARQ), Channel State Information (CSI), and data.
  • HARQ Hybrid Automatic Repeat reQuest
  • CSI Channel State Information
  • the UCI information carried by the PUCCH includes: one or more of: HARQ information, CSI information, SR information, and LRR.
  • the terminal device determines the priority of the ith PUCCH and the priority of the PUSCH in the N PUSCHs that overlaps with the ith PUCCH in the time domain according to the content carried by the ith PUCCH and the content carried by the PUSCH in the N PUSCHs that overlaps with the ith PUCCH in the time domain;
  • the first uplink information does not include the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain; and/or, in a case where the priority of the i-th PUCCH is lower than the priority of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the first uplink information does not include the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device determines the priority of the ith PUCCH and the priority of the PUSCH in the N PUSCHs that overlaps with the ith PUCCH in the time domain according to the content carried by the ith PUCCH and the content carried by the PUSCH in the N PUSCHs that overlaps with the ith PUCCH in the time domain;
  • the terminal device In the case where the priority of the i-th PUCCH is higher than the priority of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the terminal device abandons or ignores the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain; and/or, in the case where the priority of the i-th PUCCH is lower than the priority of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the terminal device abandons or ignores the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the priority of a PUCCH carrying at least one of a hybrid automatic repeat request-acknowledgement (HARQ-ACK), a scheduling request (SR), and a link recovery request (LRR) is higher than the priority of a PUSCH carrying a channel state information (CSI).
  • HARQ-ACK hybrid automatic repeat request-acknowledgement
  • SR scheduling request
  • LRR link recovery request
  • a PUCCH carrying at least one of HARQ-ACK, SR, and LRR has a higher priority than a PUSCH not carrying HARQ-ACK.
  • the priority of the PUSCH carrying HARQ-ACK is higher than the priority of the PUCCH carrying CSI.
  • the priority of a PUCCH carrying CSI is higher than the priority of a PUSCH not carrying CSI.
  • a PUCCH carrying at least one of HARQ-ACK, SR, and LRR has a higher priority than a PUSCH not carrying HARQ-ACK and CSI.
  • the priority of the PUCCH carrying CSI is higher than the priority of the PUSCH carrying CSI.
  • the priority of a PUSCH carrying HARQ-ACK is higher than the priority of a PUCCH carrying at least one of SR and LRR.
  • the priority of a PUSCH carrying CSI is higher than the priority of a PUCCH carrying CSI.
  • the order of priority from highest to lowest is as follows:
  • Highest priority PUCCH carrying HARQ-ACK and/or SR, and/or LRR has a higher priority; or PUSCH carrying HARQ-ACK has a higher priority;
  • Second highest priority PUCCH carrying CSI; or, PUSCH carrying CSI;
  • Lowest priority PUSCH that does not carry UCI information.
  • the backhaul connection between TRPs may be ideal or non-ideal.
  • information can be exchanged quickly and dynamically between TRPs, that is, in an ideal backhaul scenario, the transmission delay of information exchange is small, such as the transmission delay of information exchange is less than a first preset value, wherein the first preset value is agreed upon by the protocol, or the first preset value is configured by the network device.
  • the terminal device transmits the first uplink information, and the first uplink information does not include a PUCCH associated with the second target space parameter among the S PUCCHs, and a PUSCH associated with the second target space parameter among the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the terminal device discards or ignores at least one of the following: a PUCCH associated with the second target space parameter among the S PUCCHs, and a PUSCH associated with the second target space parameter among the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the terminal device may discard or ignore transmissions associated with specific spatial parameters (PUCCH and/or PUSCH).
  • the transmission scheme of the S PUCCHs is a single frequency network (SFN), and/or the transmission scheme of the PUSCHs among the N PUSCHs that overlap with the S PUCCHs in the time domain is SFN.
  • SFN single frequency network
  • the first uplink information does not include at least one of the following: the PUCCHs among the S PUCCHs associated with the second target spatial parameter, and the PUSCHs among the N PUSCHs that overlap with the S PUCCHs in the time domain that are associated with the second target spatial parameter; or, when the transmission scheme of the S PUCCHs is SFN, and/or the transmission scheme of the PUSCHs among the N PUSCHs that overlap with the S PUCCHs in the time domain is SFN, the terminal device discards or ignores at least one of the following: the PUCCHs among the S PUCCHs associated with the second target spatial parameter, and the PUSCHs among the N PUSCHs that overlap with the S PUCCHs in the time domain that are associated with the second target spatial parameter.
  • the second target space parameters are predefined (such as agreed upon by protocol), or the second target space parameters are preconfigured (such as preconfigured or semi-statically configured), or the second target space parameters are configured by the network device (such as dynamically configured).
  • repeated transmissions of uplink information are respectively associated with different spatial parameters, for example, one repeated transmission of uplink information is associated with a first spatial parameter, and another repeated transmission of uplink information is associated with a second spatial parameter.
  • a repeated transmission of a PUSCH is sent to different TRPs through different antenna panels (panels) of a terminal device.
  • the PUSCH sent by panel1 of the terminal device is associated with the first TCI state, recorded as the first PUSCH; the PUSCH sent by panel2 of the terminal device is associated with the second TCI state, recorded as the second PUSCH.
  • a rule is formulated to discard the PUCCH or PUSCH associated with the second target space parameter.
  • the first uplink information when the i-th PUCCH is a PUCCH repeatedly transmitted in the time domain, the first uplink information does not include the current transmission of the i-th PUCCH; and/or, when the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain is a PUSCH repeatedly transmitted in the time domain, the first uplink information does not include the current transmission of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device when the i-th PUCCH is a PUCCH repeatedly transmitted in the time domain, the terminal device abandons or ignores the current transmission of the i-th PUCCH; and/or, when the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain is a PUSCH repeatedly transmitted in the time domain, the terminal device abandons or ignores the current transmission of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • a rule is formulated so that the PUCCH that is repeatedly transmitted in the time domain abandons the current transmission, and/or the PUSCH that is repeatedly transmitted in the time domain abandons the current transmission.
  • the transmission scheme of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain is space division multiplexing (Space Division Multiplexing, SDM), the first uplink information does not include the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device when the priority index associated with the i-th PUCCH is the same as the priority index associated with the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, and the transmission scheme of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain is SDM, the terminal device discards or ignores the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the SDM transmission scheme includes SDM transmission scheme A and SDM transmission scheme B.
  • SDM transmission scheme A Different transmission layers of uplink information (such as PUCCH and/or PUSCH) are associated with different spatial parameters, for example, part of the transmission layer of the uplink information is associated with the first spatial parameter, and another part of the transmission layer of the uplink information is associated with the second spatial parameter.
  • different transmission layers of a PUSCH can be sent to different TRPs through different panels of the terminal device. For example, different transmission layers sent to different TRPs through different panels can be considered as different PUSCHs.
  • part of the transmission layer of the PUSCH sent through panel1 is associated with the first TCI state, which is recorded as the first PUSCH; another part of the transmission layer of the PUSCH sent through panel2 is associated with the second TCI state, which is recorded as the second PUSCH.
  • the first PUSCH and the second PUSCH are different transmission layers of the same transmission block (TB).
  • SDM transmission scheme B The repeated transmission of uplink information (such as PUCCH and/or PUSCH) (which can be different redundancy versions (Redundancy Version, RV)) is associated with different spatial parameters respectively. For example, one repeated transmission of uplink information is associated with the first spatial parameter, and another repeated transmission of uplink information is associated with the second spatial parameter.
  • uplink information such as PUCCH and/or PUSCH
  • RV redundancy Version
  • the PUSCH sent by panel1 of the terminal device is associated with the first TCI state, recorded as the first PUSCH; the PUSCH sent by panel2 of the UE is associated with the second TCI state, recorded as the second PUSCH. It can be understood that the first PUSCH and the second PUSCH are repeated transmissions of the same TB.
  • the first uplink information when the first uplink information does not include a PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, and UCI information carried in at least one PUCCH in the M PUCCHs is multiplexed to be transmitted on a PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the first uplink information includes the i-th PUCCH and the at least one PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device when the terminal device discards or ignores the PUSCH of the N PUSCHs that overlaps with the i-th PUCCH in the time domain, and UCI information carried in at least one PUCCH of the M PUCCHs is multiplexed to be transmitted on the PUSCH of the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the terminal device transmits the i-th PUCCH and the at least one PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the terminal device transmits the first uplink information.
  • the terminal device discards or ignores at least one of the following: part or all of the S PUCCHs, part or all of the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the backhaul connection between the TRPs may be ideal or non-ideal.
  • the TRPs can quickly and dynamically exchange information, that is, in an ideal backhaul scenario, the transmission delay of the information interaction is small, such as the transmission delay of the information interaction is less than a first preset value, wherein the first preset value is agreed upon by the protocol, or the first preset value is configured by the network device.
  • the TRPs can only quasi-statically exchange information, that is, in a non-ideal backhaul scenario, the transmission delay of the information interaction is large, such as the transmission delay of the information interaction is greater than a second preset value, wherein the second preset value is agreed upon by the protocol, or the second preset value is configured by the network device. Therefore, in a non-ideal backhaul scenario, the terminal device discards or ignores at least one of the following: part or all of the S PUCCHs, and part or all of the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the terminal device multiplexes the UCI information carried in the S PUCCHs to the PUSCH associated with the first target spatial parameter in the N PUSCHs, or the first uplink information transmitted by the terminal device does not include at least one of the following: part or all of the PUCCHs in the S PUCCHs, part or all of the PUSCHs in the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the terminal device can multiplex the UCI information carried in the PUCCH to the PUSCH associated with a specific spatial parameter, or the terminal device can discard or ignore the PUCCH, or the terminal device can discard or ignore the PUSCH that overlaps with the PUCCH in the time domain, thereby optimizing the PUCCH transmission.
  • FIG. 10 is a schematic flow chart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 10 , the wireless communication method 300 may include at least part of the following contents:
  • the terminal device reports the PHR corresponding to the spatial parameter information
  • the network device receives the PHR corresponding to the spatial parameter information.
  • the terminal device may report the PHR corresponding to the spatial parameter information, for example, the terminal device reports the PHR corresponding to the first target spatial parameter among multiple spatial parameters, or the terminal device reports the PHR corresponding to each spatial parameter among multiple spatial parameters, or the terminal device reports the total PHR corresponding to each spatial parameter among multiple spatial parameters.
  • the PHR reporting in the scenario of multi-antenna panel simultaneous transmission can be realized.
  • the embodiments of the present application can be applied to PHR reporting in a multi-panel simultaneous transmission scenario with multi-DCI scheduling.
  • the spatial parameters in the embodiments of the present application may refer to the spatial configuration (spatial setting) or spatial relationship (Spatial relation) used for transmission of uplink information (such as PUCCH and/or PUSCH), etc.
  • the spatial parameters include but are not limited to at least one of the following:
  • Antenna panel (panel) information TRP information, control resource set (Control Resource Set, CORESET) group information, transmission configuration indication (Transmission Configuration Indicator, TCI) status information, reference signal set information, reference signal information, beam information, capability set information.
  • TRP Transmission Configuration Indicator
  • the antenna panel information may include an antenna panel identification (ID) or index.
  • ID antenna panel identification
  • index index
  • the TRP information may include a TRP ID or index.
  • the CORESET group information may include an ID or index of the CORESET group.
  • the TCI state information may include a unified TCI state or an uplink TCI state (UL TCI state), or a joint TCI state.
  • the reference signal set information may include at least one of the following: synchronization signal block (Synchronization Signal Block, SSB) set information, channel state information reference signal (CSI-RS) resource set information, sounding reference signal (Sounding Reference Signal, SRS) resource set information, demodulation reference signal (Demodulation Reference Signal, DMRS) resource set information.
  • SSB Synchronization Signal Block
  • CSI-RS channel state information reference signal
  • SRS Sounding reference signal
  • DMRS demodulation reference signal
  • the reference signal set information may include an index of a reference signal set, such as an index of an SSB set, or an index of a CSI-RS resource set, or an index of an SRS resource set, or an index of a DMRS resource set.
  • an index of a reference signal set such as an index of an SSB set, or an index of a CSI-RS resource set, or an index of an SRS resource set, or an index of a DMRS resource set.
  • the reference signal information may include at least one of the following: SSB information, CSI-RS resource information, SRS resource information, DMRS resource information.
  • the reference signal information may be an index of an SRS resource, an SSB resource, a CSI-RS resource, or a DMRS resource.
  • the beam information may include a beam ID or index.
  • the beam may also be referred to as a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission), or a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or a spatial reception parameter (Spatial Rx parameter).
  • a spatial domain transmission filter Spatial domain transmission filter or Spatial domain filter for transmission
  • a spatial domain reception filter Spatial domain reception filter or Spatial domain filter for reception
  • a spatial reception parameter Spatial Rx parameter
  • the capability set information may include one or more parameters.
  • the capability set information may be a capability set supported by the terminal device or reference signal information associated with a capability set supported by the terminal device.
  • the capability set information includes but is not limited to at least one of the following:
  • Maximum number of SRS ports maximum number of uplink transmission layers, codebook subset type, uplink full-power transmission mode, SRS antenna switching capability, SRS carrier switching capability, number of SRS resources sent simultaneously, maximum modulation mode for uplink data transmission, maximum modulation mode for downlink data transmission, number of Hybrid Automatic Repeat Request (HARQ) processes supported by the terminal device, channel bandwidth supported by the terminal device, number of transmitting antennas supported by the terminal device, Physical Downlink Shared Channel (PDSCH) processing capability, PUSCH processing capability, power saving capability of the terminal device, coverage enhancement capability of the terminal device, data transmission rate improvement capability of the terminal device, short-delay processing capability of the terminal device, small data transmission capability of the terminal device, inactive data transmission capability of the terminal device, transmission reliability capability of the terminal device, ultra-reliable and low-latency communication (URLLC) data transmission capability of the terminal device.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Downlink Shared Channel
  • associating uplink information (such as PUCCH and/or PUSCH) with TCI state information may include:
  • the transmission beam of the uplink information is determined based on the TCI status information.
  • the association of uplink information (such as PUCCH and/or PUSCH) and antenna panel information may include:
  • the uplink information is sent via the antenna panel indicated by the antenna panel information.
  • the association of uplink information (such as PUCCH and/or PUSCH) and TRP information may include:
  • the uplink information is sent to the TRP indicated by the TRP information.
  • associating uplink information (such as PUCCH and/or PUSCH) with CORESET group information may include:
  • the CORESET group indicated by the CORESET group information is the CORESET group to which the CORESET where the physical downlink control channel (PDCCH) triggering the uplink information is located belongs, or, the CORESET group may be the CORESET group for which high-level signaling configures resources for sending uplink information.
  • PDCCH physical downlink control channel
  • associating uplink information (such as PUCCH and/or PUSCH) with reference signal set information may include:
  • the reference signal set associated with the antenna panel used to transmit uplink information or the reference signal set configured by the network device for uplink information, or the reference signal set associated with the PDCCH corresponding to the uplink information.
  • associating uplink information (such as PUCCH and/or PUSCH) with reference signal information may include:
  • the beam used to transmit uplink information is determined according to a transmit beam of a reference signal indicated by the reference signal information, or is determined according to a receive beam of a reference signal indicated by the reference signal information.
  • associating uplink information (such as PUCCH and/or PUSCH) with beam information may include:
  • the uplink information is sent via the beam indicated by the beam information.
  • associating uplink information (such as PUCCH and/or PUSCH) with capability set information may include:
  • the transmission parameters of the uplink information are determined according to the capability set information.
  • the above S310 may specifically include:
  • the terminal device reports a PHR corresponding to a first target space parameter among multiple space parameters; or,
  • the terminal device reports a PHR corresponding to each of the multiple spatial parameters; or,
  • the terminal device reports the total PHR corresponding to each of the multiple spatial parameters.
  • the multiple space parameters may be space parameters configured by the network device, or the multiple space parameters may be space parameters supported by the terminal device.
  • the multiple space parameters include a first space parameter and a second space parameter.
  • the first target space parameter is predefined (such as agreed upon by protocol), or the first target space parameter is preconfigured (such as preconfigured or semi-statically configured), or the first target space parameter is configured by a network device (such as dynamically configured).
  • the terminal device when the terminal device reports a PHR corresponding to a first target spatial parameter among multiple spatial parameters, the PHR corresponding to the first target spatial parameter is carried through a first PUSCH;
  • the first PUSCH is a PUSCH associated with the first target spatial parameter, or the first PUSCH is a PUSCH transmitted first in the time domain among the PUSCHs respectively associated with the multiple spatial parameters.
  • the first target spatial parameter is spatial parameter 1.
  • the first PUSCH is the PUSCH associated with spatial parameter 1, that is, in scenario 1, the PHR corresponding to spatial parameter 1 is carried by the PUSCH associated with spatial parameter 1.
  • the first PUSCH is the PUSCH that is first transmitted in the time domain among the PUSCHs associated with spatial parameter 1 and spatial parameter 2, that is, in scenario 2, since the PUSCH associated with spatial parameter 2 is first transmitted in the time domain, the PHR corresponding to spatial parameter 1 is carried by the PUSCH associated with spatial parameter 2.
  • the PHR corresponding to the first target space parameter is an actual PHR, or the PHR corresponding to the first target space parameter is a virtual PHR.
  • the PHR corresponding to the first target space parameter is the actual PHR.
  • the first time interval is a scheduling interval from PDCCH to PUSCH, or the first time interval is a processing time of PUSCH.
  • the PHR corresponding to the first target spatial parameter is the actual PHR.
  • the time unit can be one of the following: time slot, symbol, subframe, micro-time slot or mini-time slot, absolute time second (s) or millisecond (ms) or microsecond ( ⁇ s).
  • the first PUSCH is a dynamically scheduled PUSCH or a non-scheduled PUSCH.
  • the PHR corresponding to the first target space parameter is calculated based on a power control parameter associated with the first target space parameter.
  • the terminal device when the terminal device reports a PHR corresponding to each of the multiple spatial parameters, the PHR corresponding to each of the multiple spatial parameters is carried by the second PUSCH; or,
  • the total PHR corresponding to each of the multiple spatial parameters is carried by the second PUSCH;
  • the second PUSCH is a PUSCH associated with a second target spatial parameter among the multiple spatial parameters, or the second PUSCH is a PUSCH transmitted first in the time domain among the PUSCHs respectively associated with the multiple spatial parameters.
  • the second target spatial parameter is a spatial parameter whose associated PHR among multiple spatial parameters meets the trigger condition. For example, if the PHR associated with the first spatial parameter meets the trigger condition, the PHR corresponding to each spatial parameter is reported, or the PHR associated with all spatial parameters is reported and carried on the PUSCH associated with the first spatial parameter.
  • the PUSCH associated with spatial parameter 1 is transmitted first in the time domain, and the second PUSCH is the PUSCH associated with spatial parameter 1, that is, in scenario 1, the PHRs corresponding to spatial parameter 1 and spatial parameter 2 are respectively carried by the PUSCH associated with spatial parameter 1, or the total PHRs corresponding to spatial parameter 1 and spatial parameter 2 are carried by the PUSCH associated with spatial parameter 1.
  • the PHR associated with spatial parameter 2 meets the triggering condition, that is, in scenario 2, the second PUSCH is the PUSCH associated with spatial parameter 2, the PHRs corresponding to spatial parameter 1 and spatial parameter 2 are respectively carried by the PUSCH associated with spatial parameter 2, or the total PHRs corresponding to spatial parameter 1 and spatial parameter 2 are carried by the PUSCH associated with spatial parameter 2.
  • the PHR corresponding to each of the multiple spatial parameters is an actual PHR, or the PHR corresponding to each of the multiple spatial parameters is a virtual PHR.
  • the terminal device when the terminal device reports a PHR corresponding to each of the multiple spatial parameters, assuming that the multiple spatial parameters include a first spatial parameter and a second spatial parameter, the PHR reported by the terminal device may include one of the following combinations:
  • the PHR reported by the terminal device may be one of the following:
  • the PHR corresponding to the i-th spatial parameter is the actual PHR; wherein the i-th spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the first time interval is a scheduling interval from PDCCH to PUSCH, or the first time interval is a processing time of PUSCH.
  • the PHR corresponding to the i-th spatial parameter is the actual PHR; wherein the i-th spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the time unit can be one of the following: time slot, symbol, subframe, micro-time slot or mini-time slot, absolute time second (s) or millisecond (ms) or microsecond ( ⁇ s).
  • the PHR corresponding to the ith spatial parameter is calculated based on a power control parameter associated with the ith spatial parameter; wherein the ith spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the second PUSCH is a dynamically scheduled PUSCH or a non-scheduled PUSCH.
  • the terminal device receives first configuration information
  • the first configuration information includes at least a PHR reporting method and/or PHR mode information
  • the PHR is reported in a manner of reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters, or the PHR is reported in a manner of reporting the PHR corresponding to each of the multiple spatial parameters, or the PHR is reported in a manner of reporting the total PHR corresponding to each of the multiple spatial parameters;
  • the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the first target spatial parameter is effective, or the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the multiple spatial parameters are all effective.
  • the first configuration information is configuration information of a PHR sent by a network device.
  • the first configuration information is carried by at least one of the following:
  • Radio Resource Control signaling, downlink control information (DCI), media access control layer control element (MAC CE) signaling.
  • DCI downlink control information
  • MAC CE media access control layer control element
  • the terminal device determines to trigger PHR reporting.
  • the terminal device determines to trigger a PHR report, which can be understood as the terminal device determining to trigger a PHR report corresponding to the first target spatial parameter.
  • the terminal device determines to trigger a PHR report, which can be understood as the terminal device determines to trigger a PHR report corresponding to any spatial parameter.
  • the terminal device determines to trigger the PHR report, which can be understood as the terminal device determines to trigger the PHR report corresponding to any spatial parameter, or the terminal device determines to trigger the PHR report corresponding to all spatial parameters.
  • the above S310 may specifically include: the terminal device reports the PHR corresponding to the spatial parameter information according to the reporting method of the PHR.
  • the reporting method of the PHR is determined based on the capability information of the terminal device
  • the capability information of the terminal device includes the PHR reporting method supported by the terminal device;
  • the PHR reporting methods supported by the terminal device include at least one of the following: reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters, reporting the PHR corresponding to each spatial parameter among the multiple spatial parameters, and reporting the total PHR corresponding to each spatial parameter among the multiple spatial parameters.
  • the reporting method of the PHR indicated by the network device in the first configuration information is to report the PHR corresponding to the first target spatial parameter among the multiple spatial parameters.
  • the reporting method of the PHR indicated by the network device in the first configuration information is to report the PHR corresponding to each of the multiple spatial parameters.
  • the reporting method of the PHR indicated by the network device in the first configuration information is to report the total PHR corresponding to each of the multiple spatial parameters.
  • the above S310 may specifically include:
  • the terminal device reports the PHR corresponding to the first target space parameter among the multiple space parameters; and/or,
  • the terminal device When the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the multiple spatial parameters is effective, the terminal device reports the PHR corresponding to each of the multiple spatial parameters, or the terminal device reports the total PHR corresponding to each of the multiple spatial parameters.
  • the PHR mode information is an RRC parameter twoPHRMode, which is used to indicate that the configuration information of the PHR corresponding to the first target space parameter is effective when the RRC parameter twoPHRMode is not configured to be enabled (enable), and is used to indicate that the configuration information of the PHR corresponding to the multiple space parameters is effective when the RRC parameter twoPHRMode is configured to be enabled (enable).
  • the first configuration information further includes at least one of the following:
  • PHR periodic timer phr-PeriodicTimer
  • PHR reporting prohibition timer phr-ProhibitTimer
  • PHR transmission power factor change phr-Tx-PowerFactorChange
  • path loss change PHR mode of another cell group in dual connectivity (phr-ModeOtherCG)
  • MPE maximum permissible exposure
  • P-MPR Power Management Maximum Power Reduction
  • P-MPR Power Management Maximum Power Reduction
  • threshold mpe-Threshold
  • MPE reporting prohibition timer mpe-ProhibitTimer
  • the terminal device may report the PHR corresponding to the spatial parameter information, for example, the terminal device reports the PHR corresponding to the first target spatial parameter among multiple spatial parameters, or the terminal device reports the PHR corresponding to each spatial parameter among multiple spatial parameters, or the terminal device reports the total PHR corresponding to each spatial parameter among multiple spatial parameters.
  • the PHR reporting in the multi-panel simultaneous interpretation scenario can be realized.
  • Fig. 13 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes: a processing unit 410 and a communication unit 420;
  • the processing unit 410 is also used to multiplex the UCI information carried in the S PUCCHs to the PUSCH associated with the first target spatial parameter in the N PUSCHs; or, the communication unit 420 is used to transmit first uplink information, wherein the first uplink information does not include at least one of the following: part or all of the PUCCHs in the S PUCCHs, part or all of the PUSCHs in the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the processing unit 410 is specifically configured to:
  • the UCI information carried in the S PUCCHs is multiplexed into the PUSCH associated with the first target spatial parameter in the N PUSCHs.
  • the first target space parameter is predefined, or the first target space parameter is preconfigured, or the first target space parameter is configured by a network device.
  • the communication unit 420 is used to:
  • the first uplink information is transmitted according to the priority order.
  • the communication unit 420 is used to:
  • the first uplink information is transmitted, and the first uplink information does not include the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain;
  • the priority index associated with the i-th PUCCH is lower than the priority index associated with the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, transmitting the first uplink information, and the first uplink information does not include the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the communication unit 420 is specifically used to:
  • the first uplink information is transmitted, and the first uplink information does not include the PUSCH among the N PUSCHs that overlaps with the i-th PUCCH in the time domain; and/or,
  • the first uplink information is transmitted, and the first uplink information does not include the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the processing unit 410 is further configured to determine the priority of the ith PUCCH and the priority of the PUSCH in the N PUSCHs that overlaps with the ith PUCCH in the time domain according to the content carried by the ith PUCCH and the content carried by the PUSCH in the N PUSCHs that overlaps with the ith PUCCH in the time domain;
  • the communication unit 420 is specifically used for:
  • the priority of the i-th PUCCH is lower than the priority of a PUSCH among the N PUSCHs that overlaps with the i-th PUCCH in the time domain, transmitting the first uplink information, and the first uplink information does not include the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the priority of the PUCCH carrying at least one of the hybrid automatic repeat request-acknowledgement HARQ-ACK, the scheduling request SR and the link recovery request LRR is higher than the priority of the PUSCH carrying the channel state information CSI; and/or,
  • the priority of a PUCCH carrying at least one of HARQ-ACK, SR and LRR is higher than the priority of a PUSCH not carrying HARQ-ACK; and/or,
  • the priority of the PUSCH carrying HARQ-ACK is higher than the priority of the PUCCH carrying CSI; and/or,
  • the priority of the PUCCH carrying CSI is higher than the priority of the PUSCH not carrying CSI; and/or,
  • the priority of a PUCCH carrying at least one of HARQ-ACK, SR and LRR is higher than the priority of a PUSCH not carrying HARQ-ACK and CSI; and/or,
  • the priority of the PUCCH carrying CSI is higher than the priority of the PUSCH carrying CSI; and/or,
  • the priority of the PUSCH carrying HARQ-ACK is higher than the priority of the PUCCH carrying at least one of SR and LRR.
  • the communication unit 420 is specifically used to:
  • the first uplink information is transmitted, and the first uplink information does not include at least one of the following: a PUCCH associated with the second target space parameter in the S PUCCHs, and a PUSCH associated with the second target space parameter in the N PUSCHs that overlap with the S PUCCHs in the time domain.
  • the transmission scheme of the S PUCCHs is a single frequency network (SFN), and/or the transmission scheme of the PUSCHs among the N PUSCHs that overlap with the S PUCCHs in the time domain is SFN.
  • SFN single frequency network
  • the second target space parameter is predefined, or the second target space parameter is preconfigured, or the second target space parameter is configured by a network device.
  • the communication unit 420 is specifically used to:
  • the current transmission of the i-th PUCCH is abandoned; and/or, in a case where the PUSCH overlapping with the i-th PUCCH in the time domain among the N PUSCHs is a PUSCH repeatedly transmitted in the time domain, the first uplink information is transmitted, and the first uplink information does not include the current transmission of the PUSCH overlapping with the i-th PUCCH in the time domain among the N PUSCHs;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the communication unit 420 is specifically used to:
  • the priority index associated with the i-th PUCCH is the same as the priority index associated with the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, and the transmission scheme of the PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain is space division multiplexing SDM, the first uplink information is transmitted, and the first uplink information does not include the i-th PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the first uplink information when the first uplink information does not include a PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, and UCI information carried in at least one PUCCH in the M PUCCHs is multiplexed to be transmitted on a PUSCH in the N PUSCHs that overlaps with the i-th PUCCH in the time domain, the first uplink information includes at least the i-th PUCCH and the at least one PUCCH;
  • the i-th PUCCH belongs to the S PUCCHs, i is a positive integer, and 1 ⁇ i ⁇ S.
  • the communication unit 420 is specifically used to:
  • the first uplink information is transmitted.
  • the N PUSCHs include at least one of the following: a dynamically scheduled PUSCH, and a non-scheduled PUSCH.
  • the M PUCCHs and the N PUSCHs meet the timing condition for UCI information multiplexing.
  • the M PUCCHs and the N PUSCHs are located in the same time unit.
  • the time unit is one of: a time slot, a mini-slot, a plurality of symbols, a subframe, a transmission occasion.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the corresponding processes of the terminal device in the method 200 shown in Figure 8, which will not be repeated here for the sake of brevity.
  • FIG14 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the first communication unit 510 is configured to report a power headroom report PHR corresponding to the space parameter information.
  • the first communication unit 510 is specifically used to:
  • the terminal device when the terminal device reports a PHR corresponding to a first target spatial parameter among multiple spatial parameters, the PHR corresponding to the first target spatial parameter is carried through a first physical uplink shared channel PUSCH;
  • the first PUSCH is a PUSCH associated with the first target spatial parameter, or the first PUSCH is a PUSCH transmitted first in the time domain among the PUSCHs respectively associated with the multiple spatial parameters.
  • the PHR corresponding to the first target space parameter is an actual PHR, or the PHR corresponding to the first target space parameter is a virtual PHR.
  • the PHR corresponding to the first target spatial parameter is the actual PHR
  • the PHR corresponding to the first target spatial parameter is the actual PHR.
  • the first PUSCH is a dynamically scheduled PUSCH or a non-scheduled PUSCH.
  • the PHR corresponding to the first target space parameter is calculated based on a power control parameter associated with the first target space parameter.
  • the first target space parameter is predefined, or the first target space parameter is preconfigured, or the first target space parameter is configured by a network device.
  • the terminal device when the terminal device reports a PHR corresponding to each of the multiple spatial parameters, the PHR corresponding to each of the multiple spatial parameters is carried by the second PUSCH; or,
  • the total PHR corresponding to each of the multiple spatial parameters is carried through the second PUSCH;
  • the second PUSCH is a PUSCH associated with a second target spatial parameter among the multiple spatial parameters, or the second PUSCH is a PUSCH transmitted first in the time domain among the PUSCHs respectively associated with the multiple spatial parameters.
  • the second target spatial parameter is a spatial parameter of the multiple spatial parameters whose associated PHR meets the trigger condition.
  • the PHR corresponding to each of the multiple spatial parameters is an actual PHR, or the PHR corresponding to each of the multiple spatial parameters is a virtual PHR.
  • the PHR corresponding to the i-th spatial parameter is the actual PHR
  • the PHR corresponding to the i-th spatial parameter is the actual PHR
  • the i-th spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the PHR corresponding to the i-th spatial parameter is calculated based on a power control parameter associated with the i-th spatial parameter
  • the i-th spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the second PUSCH is a dynamically scheduled PUSCH or a non-scheduled PUSCH.
  • the first time interval is a scheduling interval from a physical downlink control channel PDCCH to a PUSCH, or the first time interval is a processing time of the PUSCH.
  • the terminal device 500 further includes: a second communication unit 520;
  • the second communication unit 520 is used to receive first configuration information
  • the first configuration information includes at least a PHR reporting method and/or PHR mode information
  • the PHR is reported in a manner of reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters, or the PHR is reported in a manner of reporting the PHR corresponding to each of the multiple spatial parameters, or the PHR is reported in a manner of reporting the total PHR corresponding to each of the multiple spatial parameters;
  • the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the first target spatial parameter is effective, or the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the multiple spatial parameters are all effective.
  • the communication unit 510 when the first configuration information at least includes a reporting mode of the PHR, the communication unit 510 is specifically configured to:
  • the PHR corresponding to the space parameter information is reported according to the reporting mode of the PHR.
  • the reporting method of the PHR is determined based on the capability information of the terminal device
  • the capability information of the terminal device includes the PHR reporting method supported by the terminal device;
  • the PHR reporting methods supported by the terminal device include at least one of the following: reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters, reporting the PHR corresponding to each spatial parameter among the multiple spatial parameters, and reporting the total PHR corresponding to each spatial parameter among the multiple spatial parameters.
  • the communication unit 510 when the first configuration information includes at least the PHR mode information, is specifically configured to:
  • the PHR mode information is used to indicate that configuration information of the PHR corresponding to the first target spatial parameter is effective, reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters; and/or,
  • the PHR mode information is used to indicate that configuration information of the PHR corresponding to the multiple space parameters is effective, the PHR corresponding to each of the multiple space parameters is reported, or the total PHR corresponding to each of the multiple space parameters is reported.
  • the PHR mode information is an RRC parameter twoPHRMode, which is used to indicate that the configuration information of the PHR corresponding to the first target space parameter is effective when the RRC parameter twoPHRMode is not configured to be enabled, and is used to indicate that the configuration information of the PHR corresponding to the multiple space parameters is effective when the RRC parameter twoPHRMode is configured to be enabled.
  • the first configuration information further includes at least one of the following:
  • PHR periodic timer timer for prohibiting PHR reporting, change in PHR sending power factor or path loss, PHR mode of another cell group in dual connection, multi-cell PHR or single-cell PHR, reporting permission of maximum allowed exposure MPE, threshold of power management maximum power fallback P-MPR, and timer for prohibiting MPE reporting.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • terminal device 500 may correspond to the terminal device in the embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 500 are respectively for realizing the corresponding processes of the terminal device in the method 300 shown in Figure 10, which will not be repeated here for the sake of brevity.
  • FIG15 shows a schematic block diagram of a network device 600 according to an embodiment of the present application.
  • the network device 600 includes:
  • the first communication unit 610 is configured to receive a power headroom report PHR corresponding to the space parameter information.
  • the first communication unit 610 is specifically used to:
  • a total PHR corresponding to each of the plurality of spatial parameters is received.
  • the network device when the network device receives a PHR corresponding to a first target spatial parameter among multiple spatial parameters, the PHR corresponding to the first target spatial parameter is carried through a first physical uplink shared channel PUSCH;
  • the first PUSCH is a PUSCH associated with the first target spatial parameter, or the first PUSCH is a PUSCH transmitted first in the time domain among the PUSCHs respectively associated with the multiple spatial parameters.
  • the PHR corresponding to the first target space parameter is an actual PHR, or the PHR corresponding to the first target space parameter is a virtual PHR.
  • the PHR corresponding to the first target spatial parameter is the actual PHR
  • the PHR corresponding to the first target spatial parameter is the actual PHR.
  • the first PUSCH is a dynamically scheduled PUSCH or a non-scheduled PUSCH.
  • the PHR corresponding to the first target space parameter is calculated based on a power control parameter associated with the first target space parameter.
  • the first target space parameter is predefined, or the first target space parameter is preconfigured, or the first target space parameter is configured by a network device.
  • the PHR corresponding to each of the multiple spatial parameters is carried by the second PUSCH; or,
  • the total PHR corresponding to each of the multiple spatial parameters is carried through a second PUSCH;
  • the second PUSCH is a PUSCH associated with a second target spatial parameter among the multiple spatial parameters, or the second PUSCH is a PUSCH transmitted first in the time domain among the PUSCHs respectively associated with the multiple spatial parameters.
  • the second target spatial parameter is a spatial parameter of the multiple spatial parameters whose associated PHR meets the trigger condition.
  • the PHR corresponding to each of the multiple spatial parameters is an actual PHR, or the PHR corresponding to each of the multiple spatial parameters is a virtual PHR.
  • the PHR corresponding to the i-th spatial parameter is the actual PHR
  • the PHR corresponding to the i-th spatial parameter is the actual PHR
  • the i-th spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the PHR corresponding to the i-th spatial parameter is calculated based on a power control parameter associated with the i-th spatial parameter
  • the i-th spatial parameter belongs to the multiple spatial parameters, and i is a positive integer.
  • the second PUSCH is a dynamically scheduled PUSCH or a non-scheduled PUSCH.
  • the first time interval is a scheduling interval from a physical downlink control channel PDCCH to a PUSCH, or the first time interval is a processing time of the PUSCH.
  • the network device 600 further includes a second communication unit 620;
  • the second communication unit 620 is used to send the first configuration information
  • the first configuration information includes at least a PHR reporting method and/or PHR mode information
  • the PHR is reported in a manner of reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters, or the PHR is reported in a manner of reporting the PHR corresponding to each of the multiple spatial parameters, or the PHR is reported in a manner of reporting the total PHR corresponding to each of the multiple spatial parameters;
  • the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the first target space parameter is effective, or the PHR mode information is used to indicate that the configuration information of the PHR corresponding to the multiple space parameters are all effective.
  • the PHR corresponding to the spatial parameter information received by the network device is sent based on the reporting method of the PHR.
  • the reporting method of the PHR is determined based on the capability information of the terminal device
  • the capability information of the terminal device includes the PHR reporting method supported by the terminal device;
  • the PHR reporting methods supported by the terminal device include at least one of the following: reporting the PHR corresponding to the first target spatial parameter among the multiple spatial parameters, reporting the PHR corresponding to each spatial parameter among the multiple spatial parameters, and reporting the total PHR corresponding to each spatial parameter among the multiple spatial parameters.
  • the second communication unit 610 when the first configuration information includes at least the PHR mode information, is specifically configured to:
  • the PHR mode information is used to indicate that configuration information of the PHR corresponding to the first target spatial parameter is effective, receiving the PHR corresponding to the first target spatial parameter among the multiple spatial parameters; and/or,
  • the PHR mode information is used to indicate that configuration information of the PHR corresponding to the multiple spatial parameters is effective, the PHR corresponding to each of the multiple spatial parameters is received, or the total PHR corresponding to each of the multiple spatial parameters is received.
  • the PHR mode information is an RRC parameter twoPHRMode, which is used to indicate that the configuration information of the PHR corresponding to the first target space parameter is effective when the RRC parameter twoPHRMode is not configured to be enabled, and is used to indicate that the configuration information of the PHR corresponding to the multiple space parameters is effective when the RRC parameter twoPHRMode is configured to be enabled.
  • the first configuration information further includes at least one of the following:
  • PHR periodic timer timer for prohibiting PHR reporting, change in PHR sending power factor or path loss, PHR mode of another cell group in dual connection, multi-cell PHR or single-cell PHR, reporting permission of maximum allowed exposure MPE, threshold of power management maximum power fallback P-MPR, and timer for prohibiting MPE reporting.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the network device 600 may correspond to the network device in the embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 600 are respectively for realizing the corresponding processes of the network device in the method 300 shown in Figure 10, which will not be repeated here for the sake of brevity.
  • Fig. 16 is a schematic structural diagram of a communication device 700 provided in an embodiment of the present application.
  • the communication device 700 shown in Fig. 16 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the communication device 700 may further include a transceiver 730 , and the processor 710 may control the transceiver 730 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of the antennas may be one or more.
  • the processor 710 may implement the function of a processing unit in a terminal device, or the processor 710 may implement the function of a processing unit in a network device, which will not be described in detail here for the sake of brevity.
  • the transceiver 730 may implement the function of a communication unit in a terminal device, which will not be described in detail here for the sake of brevity.
  • the transceiver 730 may implement the function of a communication unit in a network device, which will not be described in detail here for the sake of brevity.
  • the communication device 700 may specifically be a network device of an embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 700 may specifically be a terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which will not be described herein for the sake of brevity.
  • Fig. 17 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the device 800 shown in Fig. 17 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the apparatus 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
  • the apparatus 800 may further include an input interface 830.
  • the processor 810 may control the input interface 830 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the processor 810 may be located inside or outside the chip.
  • the processor 810 may implement the function of a processing unit in a terminal device, or the processor 810 may implement the function of a processing unit in a network device, which will not be described in detail here for the sake of brevity.
  • the input interface 830 may implement the function of a communication unit in a terminal device, or the input interface 830 may implement the function of a communication unit in a network device.
  • the apparatus 800 may further include an output interface 840.
  • the processor 810 may control the output interface 840 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the processor 810 may be located inside or outside the chip.
  • the output interface 840 may implement the function of a communication unit in a terminal device, or the output interface 840 may implement the function of a communication unit in a network device.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the apparatus may be applied to a terminal device in an embodiment of the present application, and the apparatus may implement the corresponding processes implemented by the terminal device in each method in an embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the device mentioned in the embodiments of the present application may also be a chip, for example, a system-on-chip, a system-on-chip, a chip system, or a system-on-chip chip.
  • FIG18 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For the sake of brevity, they will not be repeated here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信的方法、终端设备和网络设备,对于一些与PUSCH在时域上存在冲突,且找不到有关联相同空间参数的PUSCH来复用的PUCCH,设计了相应的处理方式,从而优化了PUCCH传输。此外,在本申请的实施例中,终端设备可以上报空间参数信息对应的PHR,从而可以实现多天线面板同传场景下的PHR上报。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)如果在时域发生冲突(即在时域上重叠),则按照复用规则,可以将PUCCH上承载的上行控制信息(Uplink Control Information,UCI)信息复用到PUSCH上。然而,对于一些时域上冲突的场景,PUCCH可能与多个空间参数关联的PUSCH在时域重叠,此种场景下应如何处理,是一个需要解决的问题。此外,多天线面板(panel)同传场景下,何如上报功率余量报告(Power Headroom Report,PHR),也是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,对于一些时域上存在冲突且找不到关联有相同空间参数的PUSCH来复用的PUCCH,设计了相应的处理方式,从而优化了PUCCH传输。此外,在本申请实施例中,终端设备可以上报空间参数信息对应的PHR,从而,可以现实多天线面板(panel)同传场景下的PHR上报。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备将M个PUCCH中的P个PUCCH承载的UCI信息复用到N个PUSCH中与该P个PUCCH关联相同空间参数的PUSCH中,其中,该M个PUCCH与该N个PUSCH在时域上重叠,在复用之后,该M个PUCCH中存在S个PUCCH与该N个PUSCH中的PUSCH在时域上重叠,M、N、P和S均为正整数,且S=M-P;
该终端设备将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中第一目标空间参数关联的PUSCH;或者,该终端设备传输第一上行信息,其中,该第一上行信息不包括以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
第二方面,提供了一种无线通信的方法,该方法包括:
终端设备上报空间参数信息对应的PHR。
第三方面,提供了一种无线通信的方法,该方法包括:
网络设备接收空间参数信息对应的功率余量报告PHR。
第四方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第五方面,提供了一种终端设备,用于执行上述第二方面中的方法。
具体地,该终端设备包括用于执行上述第二方面中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第三方面中的方法。
具体地,该网络设备包括用于执行上述第三方面中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该终端设备执行上述第一方面中的方法。
第八方面,提供了一种终端设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该终端设备执行上述第二方面中的方法。
第九方面,提供了一种网络设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该网络设备执行上述第三方面中的方法。
第十方面,提供了一种装置,用于实现上述第一方面至第三方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
通过上述第一方面的技术方案,终端设备将S个PUCCH中承载的UCI信息复用到N个PUSCH 中第一目标空间参数关联的PUSCH,或者,终端设备传输的第一上行信息中不包括以下至少之一:S个PUCCH中的部分或全部PUCCH,N个PUSCH中与S个PUCCH在时域上重叠的部分或全部PUSCH。也即,对于一些时域上存在冲突且找不到关联有相同空间参数的PUSCH来复用的PUCCH,终端设备可以将该PUCCH中承载的UCI信息复用到特定空间参数关联的PUSCH,或者终端设备可以舍弃该PUCCH,或者终端设备可以舍弃与该PUCCH在时域上重叠的PUSCH,从而优化了PUCCH传输。
通过上述第二方面和第三方面的技术方案,终端设备可以上报空间参数信息对应的PHR,从而,可以现实多天线面板(panel)同传场景下的PHR上报。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种承载PHR的PUSCH的示意性图。
图3是本申请提供的另一种承载PHR的PUSCH的示意性图。
图4是本申请提供的一种多panel/TRP同时进行上行传输的示意性图。
图5是本申请提供的一种多DCI调度的多PUSCH传输的示意性图。
图6是本申请提供的一种PUCCH与PUSCH在时域上冲突的示意性图。
图7是本申请提供的另一种PUCCH与PUSCH在时域上冲突的示意性图。
图8是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图9是本申请实施例提供的一种多panel/TRP同时进行上行传输的示意性图。
图10是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图11是根据本申请实施例提供的第一PUSCH的示意性图。
图12是根据本申请实施例提供的第二PUSCH的示意性图。
图13是根据本申请实施例提供的一种终端设备的示意性框图。
图14是根据本申请实施例提供的另一种终端设备的示意性框图。
图15是根据本申请实施例提供的一种网络设备的示意性框图。
图16是根据本申请实施例提供的一种通信设备的示意性框图。
图17是根据本申请实施例提供的一种装置的示意性框图。
图18是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统、第六代通信(6th-Generation,6G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,侧行(sidelink,SL)通信,车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以 认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者发送接收点(Transmission Reception Point,TRP),或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及终端设备和网络设备,其中,终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;网络设备可以是接入网设备(如gNB),核心网设备等。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为便于更好的理解本申请实施例,对本申请相关的功率余量报告(Power headroom report,PHR)机制进行说明。
无论类型1(Type1)或类型3(Type3)的PHR,都会通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)由终端设备上报给网络设备。
Type1 PHR用于上报终端设备发送PUSCH的功率余量,Type1 PHR区分为:基于实际发送的PUSCH的PHR和基于参考PUSCH的PHR。
在一些实施例中,基于实际发送的PUSCH的PHR是终端设备的最大发送功率与实际发送的PUSCH功率的差值,如公式1所示。
Figure PCTCN2022127927-appb-000001
其中,在公式1中,PH的单位是dB;
b:表示带宽部分(Bandwidth Part,BWP);
f:表示载波(carrier)(例如,小区(cell)内的上行(UL)载波或者补充上行载波(supplementary UL,SUL));
c:表示服务小区(serving cell);
i:表示传输时机(transmission occasion);
j:表示参数配置索引;
q d:用于路径损耗测量的参考信号的索引;
l:闭环功率控制调整状态的索引。
上述公式1中的开环功率控制参数包括:
P O_PUSCH,b,f,c(j):表示目标接收功率;
α b,f,c(j):表示路径损耗的加权因子;
PL b,f,c(q d):表示根据用于路径损耗的参考信号测量得到的路径损耗值;
上述公式1中的闭环功率控制参数包括:
f b,f,c(i,l):表示闭环功率控制调整状态,包括累积闭环功率控制(通过累加器,作用于功率控制累加值)和绝对闭环功率控制(直接作用于功率调整值);
P CMAX,f,c(i):表示终端设备在服务小区c的载波f的最大发送功率;
Figure PCTCN2022127927-appb-000002
表示PUSCH的传输带宽(资源分配的资源块(resource block,RB)数)。
在一些实施例中,基于参考PUSCH的PHR是终端设备的最大发送功率与参考PUSCH功率的差值,可以理解为该载波在计算PHR的时刻并没有发送PUSCH,如公式2所示。
Figure PCTCN2022127927-appb-000003
其中,在公式2中,
Figure PCTCN2022127927-appb-000004
表示基于特定参数值确定的最大发送功率,与上述公式1中相同的参数与上述含义相同,这里不再赘述。
Type3PHR用于上报终端设备发送探测参考信号(Sounding Reference Signal,SRS)的功率余量,并且只在没有配置PUSCH的载波才会上报Type3PHR。Type3PHR区分为:基于实际发送的SRS的PHR和基于参考SRS的PHR。
在一些实施例中,基于实际发送的SRS的PHR是终端设备的最大发送功率与实际发送的SRS功率的差值,如公式3所示。
Figure PCTCN2022127927-appb-000005
其中,在公式3中,与上述公式1中相同的参数与上述含义相同,这里不再赘述,其中,
q s:表示SRS资源集的索引;
h b,f,c(i,l):表示SRS闭环功率控制的调整状态。
SRS的功率控制是基于SRS资源集进行的,一个SRS资源集内的SRS资源采用相同的功率控制参数。
开环功率控制参数P O_SRS,b,f,c(q s)和α SRS,b,f,c(q s)的SRS资源集索引以及用于计算路径损耗PL b,f,c(q d)的参考信号索引都是基于SRS资源集配置的,并且由RRC信令配置的。
h b,f,c(i,l),可以由RRC信令指示与时域最近的PUSCH关联采用相同的闭环功率调整状态,或者采用独立的闭环功率控制调整状态。
在一些实施例中,基于参考SRS的PHR是终端设备的最大发送功率与参考SRS功率的差值,可以理解为该载波在计算PHR的时刻并没有发送SRS,如公式4所示。
Figure PCTCN2022127927-appb-000006
其中,在公式4中,
Figure PCTCN2022127927-appb-000007
表示基于特定参数值确定的最大发送功率,与上述公式1中相同的参数与上述含义相同,这里不再赘述。
为便于更好的理解本申请实施例,对本申请相关的上报多各小区的PHR进行说明。
如果终端设备同时在多个小区发送PUSCH,并且不同小区的激活带宽部分(Band Width Part,BWP)的子载波间隔不同,则:
当承载PHR的PUSCH所在的服务小区1(cell 1),cell1的激活BWP1的子载波间隔(Subcarrier spacing,SCS)为μ 1,另一个发送PUSCH的服务小区2(cell 2),cell2的激活BWP2的子载波间隔(SCS)为μ 2,若μ 12,则与cell1的承载PUSCH的时隙对应的cell2的多个时隙中完全重叠的第一个时隙,cell2上报该时隙的PHR,如图2所示,μ 1=15KHz,μ 2=60KHz;若μ 1=μ 2,则与cell1的承载PUSCH的时隙对应的cell2的第一个有重叠的第一个时隙,cell2上报该时隙的PHR,如图3所示,μ 1=15KHz,μ 2=15KHz。
为便于更好的理解本申请实施例,对本申请相关的上行多天线面板(panel)/发送接收点(Transmission Reception Point,TRP)传输进行说明。
如果终端配置有多个panel,且支持在多个panel上同时传输上行信息,则可以同时传输在多个panel发送多个上行信息,如图4所示,以提高上行的频谱效率。同样多panel/TRP的上行传输可以是通过单下行控制信息(Downlink Control Information,DCI)调度的,或者是通过多个DCI调度的。UE发送的多个PUSCH是在统一传输配置指示(Transmission Configuration Indicator,TCI)场景的,多个PUSCH与不同的TCI状态关联,并且在时域可以不重叠,或部分重叠,或完全重叠。
为便于更好的理解本申请实施例,对本申请相关的物理上行控制信道(Physical Uplink Control Channel,PUCCH)之间,PUCCH与PUSCH发生冲突时的处理进行说明。
UE在一个时隙中最多只能以时分的方式发送2个PUCCH,且至少有一个是短格式的PUCCH。当多个PUCCH在时域有重叠,时序关系的设定是为了UE有足够的时间判断不同的PUCCH是否需要复用,以及如果需要复用,考虑上行控制信息(Uplink Control Information,UCI)重新组包所需要的时间。NR中为了降低UE上行传输之间的干扰,当PUCCH和PUSCH在时域重叠时,支持将PUCCH中携带的UCI信息承载于PUSCH来进行传输,复用时需要满足一定的时序要求。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
多DCI调度的多个PUSCH可以在时域重叠,或部分重叠,或不重叠,如图5所示。不同空间参数关联的PDSCH对应的PUCCH可以联合反馈,也可以独立反馈,若独立反馈,则采用空间参数1和空间参数2分别发送PUCCH。另外在多panel同传的情况下,可以通过单DCI指示同时传输PUCCH,或者通过多DCI指示同时传输PUCCH。
问题1.如图6所示,PUCCH和PUSCH如果在时域发生冲突,则按照复用规则,将PUCCH(或称之为PUCCH上承载的UCI信息)复用到PUSCH上进行传输。对于与不同空间参数关联的PUCCH和PUSCH应如何处理,如图5的场景1和场景2所示。场景1中与空间参数1关联的PUCCH1可以复用到同一空间参数的PUSCH1,PUSCH1和PUSCH2可以同时传输。场景2中与空间参数1关联的PUCCH1可以复用到同一空间参数的PUSCH1,与空间参数2关联的PUCCH2可以复用到同一空间参数的PUSCH2,PUSCH1和PUSCH2可以同时传输。然而,对于其他场景,例如,如图7的场景1和场景2所示,场景1中与空间参数1关联的PUCCH1可以复用到同一空间参数的PUSCH1,但是PUSCH1与空间参数2关联的PUCCH2在时域也有重叠;场景2中与空间参数1关联的PUSCH1和与空间参数2关联的PUCCH1在时域有重叠。也即,在如图7中,场景1中的PUCCH2可能找不到相同空间参数的PUSCH来复用,场景2中的PUCCH1可能找不到相同空间参数的PUSCH来复用,对于与不同空间参数关联的PUCCH和PUSCH应如何处理,是一个需要解决的问题。
问题2.多天线面板(panel)同传场景下,如何上报PHR,是一个需要解决的问题。
基于上述问题1,本申请提出了一种PUCCH复用传输的方案,对于一些时域上存在冲突且找不到关联有相同空间参数的PUSCH来复用的PUCCH,终端设备可以将该PUCCH中承载的UCI信息复用到特定空间参数关联的PUSCH,或者终端设备可以舍弃该PUCCH,或者终端设备可以舍弃与该PUCCH在时域上重叠的PUSCH,从而优化了PUCCH传输。
基于上述问题2,本申请提出了一种PHR上报方案,终端设备可以上报空间参数信息对应的PHR,从而,可以现实多天线面板(panel)同传场景下的PHR上报。
以下通过具体实施例详述本申请的技术方案。
图8是根据本申请实施例的无线通信的方法200的示意性流程图,如图8所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备将M个PUCCH中的P个PUCCH承载的UCI信息复用到N个PUSCH中与该P个PUCCH关联相同空间参数的PUSCH中,其中,该M个PUCCH与该N个PUSCH在时域上重叠,在复用之后,该M个PUCCH中存在S个PUCCH与该N个PUSCH中的PUSCH在时域上重叠,M、N、P和S均为正整数,且S=M-P;
S220,该终端设备将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中第一目标空间参数关联的PUSCH;或者,该终端设备传输第一上行信息,其中,该第一上行信息不包括以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
在一些实施例中,该终端设备传输的该第一上行信息中不包括以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。也即,该终端设备舍弃或忽略以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
在一些实施例中,该第一上行信息可以包括以下至少之一:该S个PUCCH中除了舍弃或忽略的PUCCH之外的PUCCH,该N个PUSCH中除了舍弃或忽略的PUSCH之外的PUSCH。
在一些实施例中,该S个PUCCH为时域上与PUSCH存在冲突且找不到关联相同空间参数的PUSCH来复用的PUCCH。具体例如,该S个PUCCH可以包括如图7所示的场景1中的PUCCH2,该S个PUCCH也可以包括如图7所示的场景2中的PUCCH1。
在一些实施例中,该M个PUCCH与该N个PUSCH在时域上重叠,包括以下至少之一:
PUCCH与PUSCH在时域上部分重叠,PUCCH与PUSCH在时域上完全重叠。
在一些实施例中,该M个PUCCH与该N个PUSCH位于相同的时间单元。可选地,该时间单元为以下之一:时隙,迷你时隙(mini-slot),多个符号,子帧,传输时机(transmission occasion)。
在一些实施例中,该N个PUSCH包括以下至少之一:动态调度的PUSCH,免调度的PUSCH。
在一些实施例中,第一目标空间参数为预定义(如协议约定)的,或者,第一目标空间参数为预配置(如预先配置或半静态配置)的,或者,第一目标空间参数为网络设备配置(如动态配置)的。
在一些实施例中,该M个PUCCH和该N个PUSCH满足UCI信息复用的时序条件。
应理解,在本申请实施例中的空间参数可以指用于上行信息(如PUCCH和/或PUSCH)传输的空间配置(spatial setting),或空间关系(Spatial relation)等。
在本申请一些实施例中,空间参数包括但不限于以下至少之一:
天线面板(panel)信息,TRP信息,控制资源集(Control Resource Set,CORESET)组信息,传输配置指示(Transmission Configuration Indicator,TCI)状态信息,参考信号集合信息,参考信号信息,波束信息,能力集合信息。
在一些实施例中,天线面板信息可以包括天线面板标识(Identity,ID)或索引。
在一些实施例中,TRP信息可以包括TRP ID或索引。
在一些实施例中,CORESET组信息可以包括CORESET组的ID或索引。
在一些实施例中,TCI状态信息可以包括统一TCI状态(unified TCI state)或上行TCI状态(UL TCI state),或联合TCI状态(joint TCI state)。
在一些实施例中,参考信号集合信息可以包括以下至少之一:同步信号块(Synchronization Signal Block,SSB)集合信息,信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源集合信息,探测参考信号(Sounding Reference Signal,SRS)资源集合信息,解调参考信号(Demodulation Reference Signal,DMRS)资源集合信息。
例如,参考信号集合信息可以包括参考信号集合的索引,例如SSB集合的索引,或CSI-RS资源集合的索引,或SRS资源集合的索引,或DMRS资源集合的索引。
在一些实施例中,参考信号信息可以包括以下至少之一:SSB信息,CSI-RS资源信息,SRS资源信息,DMRS资源信息。例如,参考信号信息可以为SRS资源、SSB资源、CSI-RS资源或DMRS资源的索引。
在一些实施例中,波束信息可以包括波束ID或索引。
在本申请实施例中,波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission),或者,空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,能力集合信息可以包括一个或多个参数。例如,能力集合信息可以为终端设备支持的能力集合或终端设备支持的能力集合关联的参考信号信息。
在一些实施例中,该能力集合信息包括以下但不限于以下中的至少之一:
最大SRS端口数,最大上行传输层数,码本子集类型,上行满功率发送模式,SRS天线切换能力,SRS载波切换能力,同时发送的SRS资源个数、上行数据传输的最大调制方式、下行数据传输的最大调制方式、终端设备支持的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程数目、终端设备支持的信道带宽、终端设备支持的发送天线数目、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)处理能力、PUSCH处理能力、终端设备的功率节省能力、终端设备的覆盖增强能力、终端设备数据传输速率提升能力、终端设备的短时延处理能力、终端设备的小数据传输能力、终端设备非活动数据传输能力、终端设备传输可靠性能力、终端设备的高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)数据传输能力。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与TCI状态信息关联可以包括:
上行信息的发送波束是根据TCI状态信息确定的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)和天线面板信息关联可以包括:
上行信息是通过天线面板信息所指示的天线面板发送的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)和TRP信息关联可以包括:
上行信息是发送给TRP信息所指示的TRP的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与CORESET组信息关联可以包括:
CORESET组信息所指示的CORESET组是触发上行信息的物理下行控制信道(Physical Downlink Control Channel,PDCCH)所在的CORESET所属的CORESET组,或者,也可以是CORESET组是高层信令为发送上行信息的资源配置的CORESET组。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与参考信号集合信息关联可以包括:
用于传输上行信息的天线面板所关联的参考信号集合,或者网络设备为上行信息配置的参考信号集合,或者上行信息对应的PDCCH所关联的参考信号集合。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与参考信号信息关联可以包括:
用于传输上行信息的波束是根据所述参考信号信息所指示的参考信号的发送波束确定的,或者,根据所述参考信号信息所指示的参考信号的接收波束确定的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与波束信息关联可以包括:
上行信息是通过波束信息所指示的波束发送的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与能力集合信息关联可以包括:
上行信息的传输参数是根据能力集合信息确定的。
在一些实施例中,该终端设备将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中第一目标空间参数关联的PUSCH,包括:
在理想回传(backhaul)场景下,该终端设备将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中该第一目标空间参数关联的PUSCH。
需要说明的是,在终端设备与多个TRP通信的情况下,TRP之间的backhaul连接可以是理想的或者非理想的。理想的backhaul下TRP之间可以快速动态的进行信息交互,也即,在理想回传(backhaul)场景下,信息交互的传输时延较小,如信息交互的传输时延小于第一预设值,其中,该第一预设值由协议约定,或者,该第一预设值由网络设备配置。非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互,也即,在非理想回传(backhaul)场景下,信息交互的传输时延较大,如信息交互的传输时延大于第二预设值,其中,该第二预设值由协议约定,或者,该第二预设值由网络设备配置。因此,在理想回传(backhaul)场景下,该终端设备将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中该第一目标空间参数关联的PUSCH。
因此,在本实施例中,不舍弃信息,能保证PUCCH的正常传输,也能保证PUSCH的正常传输。
应理解,理想回传(backhaul),可以是非常高的吞吐量和非常低的延迟的回传,如点到点之间使用光纤连接场景下的回传。非理想回传(backhaul),回传的时延较大,如数字用户线路(Digital Subscriber Line,DSL)、微波和其他回传(如中继)等。理想回传:对应高吞吐低时延的场景,例如,光纤;非理想回传:相对理想回传,时延较大,吞吐量也较低,例如:微波。
在一些实施例中,该终端设备可以根据优先级顺序传输该第一上行信息。换句话说,该终端设备根据优先级顺序舍弃或忽略以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
在一些实施例中,在第i个PUCCH关联的优先级索引(priority index)高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引(priority index)的情况下,该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在第i个PUCCH关联的优先级索引低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引的情况下,该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在第i个PUCCH关联的优先级索引(priority index)高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引(priority index)的情况下,该终端设备舍弃或忽略该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在第i个PUCCH关联的优先级索引低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引的情况下,该终端设备舍弃或忽略该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
也即,终端设备可以基于优先级索引(priority index)舍弃或忽略PUSCH或PUCCH。具体例如,终端设备可以舍弃或忽略S个PUCCH中的全部PUCCH,或者,终端设备可以舍弃或忽略N个PUSCH中与S个PUCCH在时域上重叠的全部PUSCH,或者,终端设备可以舍弃或忽略S个PUCCH中的 部分PUCCH和N个PUSCH中与S个PUCCH在时域上重叠的部分PUSCH。
可选地,PUCCH关联的优先级索引可以由网络设备配置或指示,和/或,PUSCH关联的优先级索引可以由网络设备配置或指示。
在一些实施例中,在第i个PUCCH中承载的UCI信息的优先级高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在第i个PUCCH中承载的UCI信息的优先级低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在第i个PUCCH中承载的UCI信息的优先级高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,该终端设备舍弃或忽略该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在第i个PUCCH中承载的UCI信息的优先级低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,该终端设备舍弃或忽略该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
也即,终端设备可以基于PUCCH中承载的UCI信息的优先级和PUSCH中承载的信息的优先级,舍弃或忽略PUSCH或PUCCH。具体例如,终端设备可以舍弃或忽略S个PUCCH中的全部PUCCH,或者,终端设备可以舍弃或忽略N个PUSCH中与S个PUCCH在时域上重叠的全部PUSCH,或者,终端设备可以舍弃或忽略S个PUCCH中的部分PUCCH和N个PUSCH中与S个PUCCH在时域上重叠的部分PUSCH。
在一些实施例中,PUSCH承载的信息包括以下至少之一:混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ),信道状态信息(Channel State Information,CSI),数据(data)。
在一些实施例中,PUCCH承载的UCI信息包括:HARQ信息,CSI信息,SR信息,LRR中的一项或多项。
在一些实施例中,在第i个PUCCH关联的优先级索引与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同的情况下,该终端设备根据该第i个PUCCH承载的内容与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH承载的内容,确定该第i个PUCCH的优先级和该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级;
在该第i个PUCCH的优先级高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,在该第i个PUCCH的优先级低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在第i个PUCCH关联的优先级索引与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同的情况下,该终端设备根据该第i个PUCCH承载的内容与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH承载的内容,确定该第i个PUCCH的优先级和该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级;
在该第i个PUCCH的优先级高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,该终端设备舍弃或忽略该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,在该第i个PUCCH的优先级低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,该终端设备舍弃或忽略该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,承载混合自动重传请求-应答(Hybrid Automatic Repeat request Acknowledgement,HARQ-ACK)、调度请求(Scheduling Request,SR)和链路恢复请求(link recovery request,LRR)中的至少之一的PUCCH的优先级高于承载信道状态信息(Channel State Information,CSI)的PUSCH的优先级。
在一些实施例中,承载HARQ-ACK、SR和LRR中的至少之一的PUCCH的优先级高于未承载HARQ-ACK的PUSCH的优先级。
在一些实施例中,承载HARQ-ACK的PUSCH的优先级高于承载CSI的PUCCH的优先级。
在一些实施例中,承载CSI的PUCCH的优先级高于未承载CSI的PUSCH的优先级。
在一些实施例中,承载HARQ-ACK、SR和LRR中的至少之一的PUCCH的优先级高于未承载HARQ-ACK和CSI的PUSCH的优先级。
在一些实施例中,承载CSI的PUCCH的优先级高于承载CSI的PUSCH的优先级。
在一些实施例中,承载HARQ-ACK的PUSCH的优先级高于承载SR和LRR中的至少之一的PUCCH的优先级。
在一些实施例中,承载CSI的PUSCH的优先级高于承载CSI的PUCCH的优先级。
在一些实施例中,优先级由高到低的顺序如下:
优先级最高:HARQ-ACK和/或SR,和/或LRR的PUCCH承载优先级更高;或者承载HARQ-ACK的PUSCH则优先级更高;
优先级次高:承载CSI的PUCCH;或者,承载CSI的PUSCH;
优先级最低:没有承载UCI信息的PUSCH。
在终端设备与多个TRP通信的情况下,TRP之间的backhaul连接可以是理想的或者非理想的,理想的backhaul下TRP之间可以快速动态的进行信息交互,也即,在理想回传(backhaul)场景下,信息交互的传输时延较小,如信息交互的传输时延小于第一预设值,其中,该第一预设值由协议约定,或者,该第一预设值由网络设备配置。非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互,也即,在非理想回传(backhaul)场景下,信息交互的传输时延较大,如信息交互的传输时延大于第二预设值,其中,该第二预设值由协议约定,或者,该第二预设值由网络设备配置。因此,在本实施例中,避免因为TRP之间由于非理想backhaul而无法交互UCI信息,制定规则使得高优先级的PUCCH或PUSCH正常传输。
在一些实施例中,该终端设备传输该第一上行信息,且该第一上行信息不包括该S个PUCCH中与第二目标空间参数关联的PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH中与第二目标空间参数关联的PUSCH。
在一些实施例中,该终端设备舍弃或忽略以下至少之一:该S个PUCCH中与第二目标空间参数关联的PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH中与第二目标空间参数关联的PUSCH。
也即,该终端设备可以舍弃或忽略特定空间参数关联的传输(PUCCH和/或PUSCH)。
在一些实施例中,该S个PUCCH的传输方案为单频网络(Single Frequency Network,SFN),和/或,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH的传输方案为SFN。
也即,在该S个PUCCH的传输方案为SFN,和/或,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH的传输方案为SFN的情况下,该第一上行信息不包括以下至少之一:该S个PUCCH中与第二目标空间参数关联的PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH中与第二目标空间参数关联的PUSCH;或者,在该S个PUCCH的传输方案为SFN,和/或,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH的传输方案为SFN的情况下,该终端设备舍弃或忽略以下至少之一:该S个PUCCH中与第二目标空间参数关联的PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH中与第二目标空间参数关联的PUSCH。
在一些实施例中,第二目标空间参数为预定义(如协议约定)的,或者,第二目标空间参数为预配置(如预先配置或半静态配置)的,或者,第二目标空间参数为网络设备配置(如动态配置)的。
在一些实施例中,在SFN传输方案中,上行信息(如PUCCH和/或PUSCH)的重复传输分别与不同的空间参数关联,例如,上行信息的一次重复传输与第一空间参数关联,上行信息的另一次重复传输与第二空间参数关联。具体的,以上行信息为PUSCH、空间参数为TCI状态为例,如图9所示,一个PUSCH的重复传输通过终端设备的不同天线面板(panel)发送给不同的TRP。例如,通过终端设备的panel1发送的PUSCH与第一TCI状态关联,记为第一PUSCH;通过终端设备的panel2发送的PUSCH与第二TCI状态关联,记为第二PUSCH。
因此,在本实施例中,避免因为TRP之间由于非理想backhaul而无法交互UCI信息,制定规则使得舍弃与第二目标空间参数关联的PUCCH或PUSCH。
在一些实施例中,在第i个PUCCH为时域上重复传输的PUCCH的情况下,该第一上行信息不包括该第i个PUCCH的本次传输;和/或,在该N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH为时域上重复传输的PUSCH的情况下,该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的本次传输;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在第i个PUCCH为时域上重复传输的PUCCH的情况下,该终端设备舍弃或忽略该第i个PUCCH的本次传输;和/或,在该N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH为时域上重复传输的PUSCH的情况下,该终端设备舍弃或忽略该N个PUSCH中与该第i个PUCCH 在时域上重叠的PUSCH的本次传输;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
因此,在本实施例中,避免因为TRP之间由于非理想backhaul而无法交互UCI信息,制定规则使得时域上重复传输的PUCCH舍弃本次传输,和/或,时域上重复传输的PUSCH舍弃本次传输。
在一些实施例中,在第i个PUCCH关联的优先级索引与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同,且该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的传输方案为空分复用(Space Division Multiplexing,SDM)的情况下,该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在第i个PUCCH关联的优先级索引与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同,且该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的传输方案为SDM的情况下,该终端设备舍弃或忽略该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,SDM传输方案包括SDM传输方案A和SDM传输方案B。
SDM传输方案A:上行信息(如PUCCH和/或PUSCH)的不同传输层分别与不同的空间参数关联,例如上行信息的部分传输层与第一空间参数关联,上行信息的另一部分传输层与第二空间参数关联。具体的,如图9所示,在SDM传输方案A中,以上行信息为PUSCH、空间参数为TCI状态为例,一个PUSCH的不同传输层可以通过终端设备的不同panel发送给不同的TRP,例如,通过不同的panel发送给不同TRP的不同传输层可以认为是不同的PUSCH。例如,通过panel1发送的PUSCH的部分传输层与第一TCI状态关联,记为第一PUSCH;通过panel2发送的PUSCH的另一部分传输层与第二TCI状态关联,记为第二PUSCH。可以理解为,第一PUSCH、第二PUSCH为同一个传输块(transmission block,TB)的不同传输层。
SDM传输方案B:上行信息(如PUCCH和/或PUSCH)的重复传输(可以是不同的冗余版本(Redundancy Version,RV))分别与不同的空间参数关联,例如,上行信息的一次重复传输与第一空间参数关联,上行信息的另一次重复传输与第二空间参数关联。具体的,如图9所示,在SDM传输方案B中,以上行信息为PUSCH、空间参数为TCI状态为例,一个PUSCH的重复传输通过终端设备的不同panel发送给不同的TRP。例如,通过终端设备的panel1发送的PUSCH与第一TCI状态关联,记为第一PUSCH;通过UE的panel2发送的PUSCH与第二TCI状态关联,记为第二PUSCH。可以理解为,第一PUSCH、第二PUSCH为同一个TB的重复传输。
在一些实施例中,在该第一上行信息不包括该N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH,且该M个PUCCH中存在至少一个PUCCH中承载的UCI信息复用到了该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH上传输的情况下,该第一上行信息包括该第i个PUCCH和该至少一个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在该终端设备舍弃或忽略该N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH,且该M个PUCCH中存在至少一个PUCCH中承载的UCI信息复用到了该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH上传输的情况下,该终端设备传输该第i个PUCCH和该至少一个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
因此,在本实施例中,避免因为舍弃PUSCH而导致复用到该PUSCH上的UCI信息无法传输。
在一些实施例中,在非理想回传(backhaul)场景下,该终端设备传输该第一上行信息。
在一些实施例中,在非理想回传(backhaul)场景下,该终端设备舍弃或忽略以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
需要说明的是,在终端设备与多个TRP通信的情况下,TRP之间的backhaul连接可以是理想的或者非理想的,理想的backhaul下TRP之间可以快速动态的进行信息交互,也即,在理想回传(backhaul)场景下,信息交互的传输时延较小,如信息交互的传输时延小于第一预设值,其中,该第一预设值由协议约定,或者,该第一预设值由网络设备配置。非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互,也即,在非理想回传(backhaul)场景下,信息交互的传输时延较大,如信息交互的传输时延大于第二预设值,其中,该第二预设值由协议约定,或者,该第二预 设值由网络设备配置。因此,在非理想回传(backhaul)场景下,该终端设备舍弃或忽略以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
因此,在本申请实施例中,终端设备将S个PUCCH中承载的UCI信息复用到N个PUSCH中第一目标空间参数关联的PUSCH,或者,终端设备传输的第一上行信息中不包括以下至少之一:S个PUCCH中的部分或全部PUCCH,N个PUSCH中与S个PUCCH在时域上重叠的部分或全部PUSCH。也即,对于一些时域上存在冲突且找不到关联有相同空间参数的PUSCH来复用的PUCCH,终端设备可以将该PUCCH中承载的UCI信息复用到特定空间参数关联的PUSCH,或者终端设备可以舍弃或忽略该PUCCH,或者终端设备可以舍弃或忽略与该PUCCH在时域上重叠的PUSCH,从而优化了PUCCH传输。
图10是根据本申请实施例的无线通信的方法300的示意性流程图,如图10所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,终端设备上报空间参数信息对应的PHR;
S320,网络设备接收空间参数信息对应的PHR。
在本申请实施例中,终端设备可以上报空间参数信息对应的PHR,例如,终端设备上报多个空间参数中第一目标空间参数对应的PHR,或者,终端设备上报多个空间参数中各个空间参数分别对应的PHR,或者,终端设备上报多个空间参数中各个空间参数对应的总的PHR。从而,可以现实多天线面板(panel)同传场景下的PHR上报。
本申请实施例可以应用于多DCI调度的多panel同传场景下的PHR上报。
应理解,在本申请实施例中的空间参数可以指用于上行信息(如PUCCH和/或PUSCH)传输的空间配置(spatial setting),或空间关系(Spatial relation)等。
在本申请一些实施例中,空间参数包括但不限于以下至少之一:
天线面板(panel)信息,TRP信息,控制资源集(Control Resource Set,CORESET)组信息,传输配置指示(Transmission Configuration Indicator,TCI)状态信息,参考信号集合信息,参考信号信息,波束信息,能力集合信息。
在一些实施例中,天线面板信息可以包括天线面板标识(Identity,ID)或索引。
在一些实施例中,TRP信息可以包括TRP ID或索引。
在一些实施例中,CORESET组信息可以包括CORESET组的ID或索引。
在一些实施例中,TCI状态信息可以包括统一TCI状态(unified TCI state)或上行TCI状态(UL TCI state),或联合TCI状态(joint TCI state)。
在一些实施例中,参考信号集合信息可以包括以下至少之一:同步信号块(Synchronization Signal Block,SSB)集合信息,信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源集合信息,探测参考信号(Sounding Reference Signal,SRS)资源集合信息,解调参考信号(Demodulation Reference Signal,DMRS)资源集合信息。
例如,参考信号集合信息可以包括参考信号集合的索引,例如SSB集合的索引,或CSI-RS资源集合的索引,或SRS资源集合的索引,或DMRS资源集合的索引。
在一些实施例中,参考信号信息可以包括以下至少之一:SSB信息,CSI-RS资源信息,SRS资源信息,DMRS资源信息。例如,参考信号信息可以为SRS资源、SSB资源、CSI-RS资源或DMRS资源的索引。
在一些实施例中,波束信息可以包括波束ID或索引。
在本申请实施例中,波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission),或者,空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,能力集合信息可以包括一个或多个参数。例如,能力集合信息可以为终端设备支持的能力集合或终端设备支持的能力集合关联的参考信号信息。
在一些实施例中,该能力集合信息包括以下但不限于以下中的至少之一:
最大SRS端口数,最大上行传输层数,码本子集类型,上行满功率发送模式,SRS天线切换能力,SRS载波切换能力,同时发送的SRS资源个数、上行数据传输的最大调制方式、下行数据传输的最大调制方式、终端设备支持的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程数目、终端设备支持的信道带宽、终端设备支持的发送天线数目、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)处理能力、PUSCH处理能力、终端设备的功率节省能力、终端 设备的覆盖增强能力、终端设备数据传输速率提升能力、终端设备的短时延处理能力、终端设备的小数据传输能力、终端设备非活动数据传输能力、终端设备传输可靠性能力、终端设备的高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)数据传输能力。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与TCI状态信息关联可以包括:
上行信息的发送波束是根据TCI状态信息确定的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)和天线面板信息关联可以包括:
上行信息是通过天线面板信息所指示的天线面板发送的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)和TRP信息关联可以包括:
上行信息是发送给TRP信息所指示的TRP的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与CORESET组信息关联可以包括:
CORESET组信息所指示的CORESET组是触发上行信息的物理下行控制信道(Physical Downlink Control Channel,PDCCH)所在的CORESET所属的CORESET组,或者,也可以是CORESET组是高层信令为发送上行信息的资源配置的CORESET组。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与参考信号集合信息关联可以包括:
用于传输上行信息的天线面板所关联的参考信号集合,或者网络设备为上行信息配置的参考信号集合,或者上行信息对应的PDCCH所关联的参考信号集合。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与参考信号信息关联可以包括:
用于传输上行信息的波束是根据所述参考信号信息所指示的参考信号的发送波束确定的,或者,根据所述参考信号信息所指示的参考信号的接收波束确定的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与波束信息关联可以包括:
上行信息是通过波束信息所指示的波束发送的。
在一些实施例中,上行信息(如PUCCH和/或PUSCH)与能力集合信息关联可以包括:
上行信息的传输参数是根据能力集合信息确定的。
在一些实施例中,上述S310具体可以包括:
该终端设备上报多个空间参数中第一目标空间参数对应的PHR;或者,
该终端设备上报多个空间参数中各个空间参数分别对应的PHR;或者,
该终端设备上报多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,该多个空间参数可以网络设备配置的空间参数,或者,该多个空间参数可以终端设备支持的空间参数。例如,该多个空间参数包括第一空间参数和第二空间参数。
在一些实施例中,第一目标空间参数为预定义(如协议约定)的,或者,第一目标空间参数为预配置(如预先配置或半静态配置)的,或者,第一目标空间参数为网络设备配置(如动态配置)的。
在一些实施例中,在终端设备上报多个空间参数中第一目标空间参数对应的PHR的情况下,该第一目标空间参数对应的PHR通过第一PUSCH承载;
其中,该第一PUSCH为与该第一目标空间参数关联的PUSCH,或者,该第一PUSCH为该多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
具体例如,如图11所示,第一目标空间参数为空间参数1。在场景1中,第一PUSCH为与空间参数1关联的PUSCH,也即,在场景1中,空间参数1对应的PHR通过空间参数1关联的PUSCH承载。在场景2中,第一PUSCH为空间参数1和空间参数2分别关联的PUSCH中在时域上最先传输的PUSCH,也即,在场景2中,由于空间参数2关联的PUSCH中在时域上最先传输,空间参数1对应的PHR通过空间参数2关联的PUSCH承载。
在一些实施例中,该第一目标空间参数对应的PHR为实际PHR,或者,该第一目标空间参数对应的PHR为虚拟PHR。
在一些实施例中,若与该第一目标空间参数关联的PUSCH对应的调度信息或配置信息早于该第一PUSCH的第一个符号之前的第一时间间隔,该第一目标空间参数对应的PHR为实际PHR。
在一些实施例中,该第一时间间隔为PDCCH到PUSCH的调度间隔,或者,该第一时间间隔为PUSCH的处理时间。
在一些实施例中,若与该第一目标空间参数关联的PUSCH与该第一PUSCH在同一个时间单元内发送,该第一目标空间参数对应的PHR为实际PHR。可选地,该时间单元可以为以下之一:时隙,符号,子帧,微时隙或迷你时隙,绝对时间秒(s)或毫秒(ms)或微秒(μs)。
在一些实施例中,该第一PUSCH为动态调度的PUSCH或免调度的PUSCH。
在一些实施例中,该第一目标空间参数对应的PHR基于与该第一目标空间参数关联的功率控制参数计算得到。
在一些实施例中,在终端设备上报多个空间参数中各个空间参数分别对应的PHR的情况下,该多个空间参数中各个空间参数分别对应的PHR通过第二PUSCH承载;或者,
在终端设备上报多个空间参数中各个空间参数对应的总的PHR的情况下,该多个空间参数中各个空间参数对应的总的PHR通过第二PUSCH承载;
其中,该第二PUSCH为与该多个空间参数中的第二目标空间参数关联的PUSCH,或者,该第二PUSCH为该多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
在一些实施例中,该第二目标空间参数为多个空间参数中关联的PHR满足触发条件的空间参数。例如,第一空间参数关联的PHR满足触发条件,则上报各个空间参数分别对应的PHR,或者,上报所有空间参数关联的PHR,并承载于与第一空间参数关联的PUSCH。
具体例如,如图12所示,在场景1中,空间参数1关联的PUSCH中在时域上最先传输,第二PUSCH为与空间参数1关联的PUSCH,也即,在场景1中,空间参数1和空间参数2分别对应的PHR通过空间参数1关联的PUSCH承载,或者,空间参数1和空间参数2对应的总的PHR通过空间参数1关联的PUSCH承载。如图12所示,在场景2中,与空间参数2关联的PHR满足触发条件,也即,在场景2中,第二PUSCH为空间参数2关联的PUSCH,空间参数1和空间参数2分别对应的PHR通过空间参数2关联的PUSCH承载,或者,空间参数1和空间参数2对应的总的PHR通过空间参数2关联的PUSCH承载。
在一些实施例中,该多个空间参数中各个空间参数分别对应的PHR为实际PHR,或者,该多个空间参数中各个空间参数分别对应的PHR为虚拟PHR。
具体例如,在终端设备上报多个空间参数中各个空间参数分别对应的PHR的情况下,假设该多个空间参数包括第一空间参数和第二空间参数,则终端设备上报的PHR可以包括如下组合之一:
{实际PHR,实际PHR},
{虚拟PHR,虚拟PHR},
{实际PHR,虚拟PHR},
{虚拟PHR,实际PHR}。
在一些实施例中,在终端设备上报多个空间参数中各个空间参数对应的总的PHR的情况下,终端设备上报的PHR可以为以下之一:
总的实际PHR,总的虚拟PHR,总的实际PHR+虚拟PHR。
在一些实施例中,若与第i个空间参数关联的PUSCH对应的调度信息或配置信息早于该第二PUSCH的第一个符号之前的第一时间间隔,该第i个空间参数对应的PHR为实际PHR;其中,该第i个空间参数属于该多个空间参数,i为正整数。
在一些实施例中,该第一时间间隔为PDCCH到PUSCH的调度间隔,或者,该第一时间间隔为PUSCH的处理时间。
在一些实施例中,若与第i个空间参数关联的PUSCH与该第二PUSCH在同一个时间单元内发送,该第i个空间参数对应的PHR为实际PHR;其中,该第i个空间参数属于该多个空间参数,i为正整数。可选地,该时间单元可以为以下之一:时隙,符号,子帧,微时隙或迷你时隙,绝对时间秒(s)或毫秒(ms)或微秒(μs)。
在一些实施例中,第i个空间参数对应的PHR基于与该第i个空间参数关联的功率控制参数计算得到;其中,该第i个空间参数属于该多个空间参数,i为正整数。
在一些实施例中,该第二PUSCH为动态调度的PUSCH或免调度的PUSCH。
在一些实施例中,该终端设备接收第一配置信息;
其中,该第一配置信息至少包括PHR的上报方式和/或PHR模式信息;
其中,该PHR的上报方式为上报该多个空间参数中该第一目标空间参数对应的PHR,或者,该PHR的上报方式为上报该多个空间参数中各个空间参数分别对应的PHR,或者,该PHR的上报方式为上报该多个空间参数中各个空间参数对应的总的PHR;
其中,该PHR模式信息用于指示该第一目标空间参数对应的PHR的配置信息生效,或者,该PHR模式信息用于指示该多个空间参数对应的PHR的配置信息均生效。
在一些实施例中,该第一配置信息为网络设备发送的PHR的配置信息。
在一些实施例中,该第一配置信息通过以下至少之一承载:
无线资源控制(Radio Resource Control,RRC)信令,下行控制信息(Downlink Control Information,DCI),媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)信令。
在一些实施例中,在接收到该第一配置信息之后,该终端设备确定触发PHR上报。
具体例如,在终端设备上报多个空间参数中第一目标空间参数对应的PHR的情况下,终端设备确定触发PHR上报,可以理解为终端设备确定触发第一目标空间参数对应的PHR上报。
具体例如,在终端设备上报多个空间参数中各个空间参数分别对应的PHR的情况下,终端设备确定触发PHR上报,可以理解为终端设备确定触发任意空间参数对应的PHR上报。
具体例如,在终端设备上报多个空间参数中各个空间参数对应的总的PHR的情况下,终端设备确定触发PHR上报,可以理解为终端设备确定触发任意空间参数对应的PHR上报,或者终端设备确定触发所有空间参数对应的PHR上报。
在一些实施例中,在该第一配置信息至少包括该PHR的上报方式的情况下,上述S310具体可以包括:该终端设备根据该PHR的上报方式上报空间参数信息对应的PHR。
在一些实施例中,该PHR的上报方式基于该终端设备的能力信息确定;
其中,该终端设备的能力信息包括该终端设备支持的PHR上报方式;
其中,该终端设备支持的PHR上报方式包括以下至少之一:上报该多个空间参数中该第一目标空间参数对应的PHR,上报该多个空间参数中各个空间参数分别对应的PHR,上报该多个空间参数中各个空间参数对应的总的PHR。
具体例如,在终端设备至少支持上报该多个空间参数中该第一目标空间参数对应的PHR的情况下,网络设备在第一配置信息中指示的PHR的上报方式为上报该多个空间参数中该第一目标空间参数对应的PHR。
具体又例如,在终端设备至少支持上报该多个空间参数中各个空间参数分别对应的PHR的情况下,网络设备在第一配置信息中指示的PHR的上报方式为上报该多个空间参数中各个空间参数分别对应的PHR。
具体再例如,在终端设备至少支持上报该多个空间参数中各个空间参数对应的总的PHR的情况下,网络设备在第一配置信息中指示的PHR的上报方式为上报该多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,在第一配置信息至少包括该PHR模式信息的情况下,上述S310具体可以包括:
在该PHR模式信息用于指示该第一目标空间参数对应的PHR的配置信息生效的情况下,该终端设备上报该多个空间参数中该第一目标空间参数对应的PHR;和/或,
在该PHR模式信息用于指示该多个空间参数对应的PHR的配置信息均生效的情况下,该终端设备上报该多个空间参数中各个空间参数分别对应的PHR,或者,该终端设备上报该多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,该PHR模式信息为RRC参数twoPHRMode,在该RRC参数twoPHRMode未配置为使能(enable)时用于指示该第一目标空间参数对应的PHR的配置信息生效,在该RRC参数twoPHRMode配置为使能(enable)时用于指示该多个空间参数对应的PHR的配置信息均生效。
在一些实施例中,该第一配置信息还包括以下至少之一:
PHR的周期定时器(phr-PeriodicTimer),禁止PHR上报的定时器(phr-ProhibitTimer),PHR发送功率因素变化量(phr-Tx-PowerFactorChange)或者路径损耗变化量,双连接时另外一个小区组的PHR模式(phr-ModeOtherCG),多小区PHR或单小区PHR,最大允许暴露(maximum permissible exposure,MPE)的上报许可(mpe-Reporting-FR2),功率管理最大功率回退(Power Management Maximum Power Reduction,P-MPR)的阈值(mpe-Threshold),MPE禁止上报的定时器(mpe-ProhibitTimer)。
因此,在本申请实施例中,终端设备可以上报空间参数信息对应的PHR,例如,终端设备上报多个空间参数中第一目标空间参数对应的PHR,或者,终端设备上报多个空间参数中各个空间参数分别对应的PHR,或者,终端设备上报多个空间参数中各个空间参数对应的总的PHR。从而,可以现实多panel同传场景下的PHR上报。
上文结合图8至图12,详细描述了本申请的方法实施例,下文结合图13至图18,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图13示出了根据本申请实施例的终端设备400的示意性框图。如图13所示,该终端设备400包括:处理单元410和通信单元420;
该处理单元410用于将M个物理上行控制信道PUCCH中的P个PUCCH承载的上行控制信息UCI信息复用到N个物理上行共享信道PUSCH中与该P个PUCCH关联相同空间参数的PUSCH中,其中,该M个PUCCH与该N个PUSCH在时域上重叠,在复用之后,该M个PUCCH中存在S个PUCCH与该N个PUSCH中的PUSCH在时域上重叠,M、N、P和S均为正整数,且S=M-P;
该处理单元410还用于将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中第一目标空间参数关联的PUSCH;或者,该通信单元420用于传输第一上行信息,其中,该第一上行信息不包括以下至少之一:该S个PUCCH中的部分或全部PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的部分或全部PUSCH。
在一些实施例中,该处理单元410具体用于:
在理想回传场景下,将该S个PUCCH中承载的UCI信息复用到该N个PUSCH中该第一目标空间参数关联的PUSCH。
在一些实施例中,该第一目标空间参数为预定义的,或者,该第一目标空间参数为预配置的,或者,该第一目标空间参数为网络设备配置的。
在一些实施例中,该通信单元420用于具体用于:
根据优先级顺序传输该第一上行信息。
在一些实施例中,该通信单元420用于具体用于:
在第i个PUCCH关联的优先级索引高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引的情况下,传输该第一上行信息,且该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在第i个PUCCH关联的优先级索引低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引的情况下,传输该第一上行信息,且该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,该通信单元420具体用于:
在第i个PUCCH中承载的上行控制信息UCI信息的优先级高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,传输该第一上行信息,且该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在第i个PUCCH中承载的UCI信息的优先级低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,传输该第一上行信息,且该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在第i个PUCCH关联的优先级索引与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同的情况下,该处理单元410还用于根据该第i个PUCCH承载的内容与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH承载的内容,确定该第i个PUCCH的优先级和该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级;
该通信单元420具体用于:
在该第i个PUCCH的优先级高于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,传输该第一上行信息,且该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH;和/或,
在该第i个PUCCH的优先级低于该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,传输该第一上行信息,且该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,承载混合自动重传请求-应答HARQ-ACK、调度请求SR和链路恢复请求LRR中的至少之一的PUCCH的优先级高于承载信道状态信息CSI的PUSCH的优先级;和/或,
承载HARQ-ACK、SR和LRR中的至少之一的PUCCH的优先级高于未承载HARQ-ACK的PUSCH的优先级;和/或,
承载HARQ-ACK的PUSCH的优先级高于承载CSI的PUCCH的优先级;和/或,
承载CSI的PUCCH的优先级高于未承载CSI的PUSCH的优先级;和/或,
承载HARQ-ACK、SR和LRR中的至少之一的PUCCH的优先级高于未承载HARQ-ACK和CSI的PUSCH的优先级;和/或,
承载CSI的PUCCH的优先级高于承载CSI的PUSCH的优先级;和/或,
承载HARQ-ACK的PUSCH的优先级高于承载SR和LRR中的至少之一的PUCCH的优先级。
在一些实施例中,该通信单元420具体用于:
传输该第一上行信息,且该第一上行信息不包括以下至少之一:该S个PUCCH中与第二目标空间参数关联的PUCCH,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH中与第二目标空间参数关联的PUSCH。
在一些实施例中,该S个PUCCH的传输方案为单频网络SFN,和/或,该N个PUSCH中与该S个PUCCH在时域上重叠的PUSCH的传输方案为SFN。
在一些实施例中,该第二目标空间参数为预定义的,或者,该第二目标空间参数为预配置的,或者,该第二目标空间参数为网络设备配置的。
在一些实施例中,该通信单元420具体用于:
在第i个PUCCH为时域上重复传输的PUCCH的情况下,舍弃该第i个PUCCH的本次传输;和/或,在该N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH为时域上重复传输的PUSCH的情况下,传输该第一上行信息,且该第一上行信息不包括该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的本次传输;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,该通信单元420具体用于:
在第i个PUCCH关联的优先级索引与该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同,且该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH的传输方案为空分复用SDM的情况下,传输该第一上行信息,且该第一上行信息不包括该第i个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,在该第一上行信息不包括该N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH,且该M个PUCCH中存在至少一个PUCCH中承载的UCI信息复用到了该N个PUSCH中与该第i个PUCCH在时域上重叠的PUSCH上传输的情况下,该第一上行信息至少包括该第i个PUCCH和该至少一个PUCCH;
其中,该第i个PUCCH属于该S个PUCCH,i为正整数,且1≤i≤S。
在一些实施例中,该通信单元420具体用于:
在非理想回传场景下,传输该第一上行信息。
在一些实施例中,该N个PUSCH包括以下至少之一:动态调度的PUSCH,免调度的PUSCH。
在一些实施例中,该M个PUCCH和该N个PUSCH满足UCI信息复用的时序条件。
在一些实施例中,该M个PUCCH与该N个PUSCH位于相同的时间单元。可选地,该时间单元为以下之一:时隙,迷你时隙(mini-slot),多个符号,子帧,传输时机(transmission occasion)。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图14示出了根据本申请实施例的终端设备500的示意性框图。如图14所示,终端设备500包括:
第一通信单元510,用于上报空间参数信息对应的功率余量报告PHR。
在一些实施例中,该第一通信单元510具体用于:
上报多个空间参数中第一目标空间参数对应的PHR;或者,
上报多个空间参数中各个空间参数分别对应的PHR;或者,
上报多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,在该终端设备上报多个空间参数中第一目标空间参数对应的PHR的情况下,该第一目标空间参数对应的PHR通过第一物理上行共享信道PUSCH承载;
其中,该第一PUSCH为与该第一目标空间参数关联的PUSCH,或者,该第一PUSCH为该多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
在一些实施例中,该第一目标空间参数对应的PHR为实际PHR,或者,该第一目标空间参数对应的PHR为虚拟PHR。
在一些实施例中,若与该第一目标空间参数关联的PUSCH对应的调度信息或配置信息早于该第一PUSCH的第一个符号之前的第一时间间隔,该第一目标空间参数对应的PHR为实际PHR;或者,
若与该第一目标空间参数关联的PUSCH与该第一PUSCH在同一个时间单元内发送,该第一目标空间参数对应的PHR为实际PHR。
在一些实施例中,该第一PUSCH为动态调度的PUSCH或免调度的PUSCH。
在一些实施例中,该第一目标空间参数对应的PHR基于与该第一目标空间参数关联的功率控制参数计算得到。
在一些实施例中,该第一目标空间参数为预定义的,或者,该第一目标空间参数为预配置的,或 者,该第一目标空间参数为网络设备配置的。
在一些实施例中,在该终端设备上报多个空间参数中各个空间参数分别对应的PHR的情况下,该多个空间参数中各个空间参数分别对应的PHR通过第二PUSCH承载;或者,
在该终端设备上报多个空间参数中各个空间参数对应的总的PHR的情况下,该多个空间参数中各个空间参数对应的总的PHR通过第二PUSCH承载;
其中,该第二PUSCH为与该多个空间参数中的第二目标空间参数关联的PUSCH,或者,该第二PUSCH为该多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
在一些实施例中,该第二目标空间参数为该多个空间参数中关联的PHR满足触发条件的空间参数。
在一些实施例中,该多个空间参数中各个空间参数分别对应的PHR为实际PHR,或者,该多个空间参数中各个空间参数分别对应的PHR为虚拟PHR。
在一些实施例中,若与第i个空间参数关联的PUSCH对应的调度信息或配置信息早于该第二PUSCH的第一个符号之前的第一时间间隔,该第i个空间参数对应的PHR为实际PHR;或者,
若与第i个空间参数关联的PUSCH与该第二PUSCH在同一个时间单元内发送,该第i个空间参数对应的PHR为实际PHR;
其中,该第i个空间参数属于该多个空间参数,i为正整数。
在一些实施例中,第i个空间参数对应的PHR基于与该第i个空间参数关联的功率控制参数计算得到;
其中,该第i个空间参数属于该多个空间参数,i为正整数。
在一些实施例中,该第二PUSCH为动态调度的PUSCH或免调度的PUSCH。
在一些实施例中,该第一时间间隔为物理下行控制信道PDCCH到PUSCH的调度间隔,或者,该第一时间间隔为PUSCH的处理时间。
在一些实施例中,该终端设备500还包括:第二通信单元520;
该第二通信单元520用于接收第一配置信息;
其中,该第一配置信息至少包括PHR的上报方式和/或PHR模式信息;
其中,该PHR的上报方式为上报该多个空间参数中该第一目标空间参数对应的PHR,或者,该PHR的上报方式为上报该多个空间参数中各个空间参数分别对应的PHR,或者,该PHR的上报方式为上报该多个空间参数中各个空间参数对应的总的PHR;
其中,该PHR模式信息用于指示该第一目标空间参数对应的PHR的配置信息生效,或者,该PHR模式信息用于指示该多个空间参数对应的PHR的配置信息均生效。
在一些实施例中,在该第一配置信息至少包括该PHR的上报方式的情况下,该通信单元510具体用于:
根据该PHR的上报方式上报空间参数信息对应的PHR。
在一些实施例中,该PHR的上报方式基于该终端设备的能力信息确定;
其中,该终端设备的能力信息包括该终端设备支持的PHR上报方式;
其中,该终端设备支持的PHR上报方式包括以下至少之一:上报该多个空间参数中该第一目标空间参数对应的PHR,上报该多个空间参数中各个空间参数分别对应的PHR,上报该多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,在该第一配置信息至少包括该PHR模式信息的情况下,该通信单元510具体用于:
在该PHR模式信息用于指示该第一目标空间参数对应的PHR的配置信息生效的情况下,上报该多个空间参数中该第一目标空间参数对应的PHR;和/或,
在该PHR模式信息用于指示该多个空间参数对应的PHR的配置信息均生效的情况下,上报该多个空间参数中各个空间参数分别对应的PHR,或者,上报该多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,该PHR模式信息为RRC参数twoPHRMode,在该RRC参数twoPHRMode未配置为使能时用于指示该第一目标空间参数对应的PHR的配置信息生效,在该RRC参数twoPHRMode配置为使能时用于指示该多个空间参数对应的PHR的配置信息均生效。
在一些实施例中,该第一配置信息还包括以下至少之一:
PHR的周期定时器,禁止PHR上报的定时器,PHR发送功率因素变化量或者路径损耗变化量,双连接时另外一个小区组的PHR模式,多小区PHR或单小区PHR,最大允许暴露MPE的上报许可,功率管理最大功率回退P-MPR的阈值,MPE禁止上报的定时器。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
图15示出了根据本申请实施例的网络设备600的示意性框图。如图15所示,网络设备600包括:
第一通信单元610,用于接收空间参数信息对应的功率余量报告PHR。
在一些实施例中,该第一通信单元610具体用于:
接收多个空间参数中第一目标空间参数对应的PHR;或者,
接收多个空间参数中各个空间参数分别对应的PHR;或者,
接收多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,在该网络设备接收多个空间参数中第一目标空间参数对应的PHR的情况下,该第一目标空间参数对应的PHR通过第一物理上行共享信道PUSCH承载;
其中,该第一PUSCH为与该第一目标空间参数关联的PUSCH,或者,该第一PUSCH为该多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
在一些实施例中,该第一目标空间参数对应的PHR为实际PHR,或者,该第一目标空间参数对应的PHR为虚拟PHR。
在一些实施例中,若与该第一目标空间参数关联的PUSCH对应的调度信息或配置信息早于该第一PUSCH的第一个符号之前的第一时间间隔,该第一目标空间参数对应的PHR为实际PHR;或者,
若与该第一目标空间参数关联的PUSCH与该第一PUSCH在同一个时间单元内发送,该第一目标空间参数对应的PHR为实际PHR。
在一些实施例中,该第一PUSCH为动态调度的PUSCH或免调度的PUSCH。
在一些实施例中,该第一目标空间参数对应的PHR基于与该第一目标空间参数关联的功率控制参数计算得到。
在一些实施例中,该第一目标空间参数为预定义的,或者,该第一目标空间参数为预配置的,或者,该第一目标空间参数为网络设备配置的。
在一些实施例中,在该网络设备接收多个空间参数中各个空间参数分别对应的PHR的情况下,该多个空间参数中各个空间参数分别对应的PHR通过第二PUSCH承载;或者,
在该网络设备接收多个空间参数中各个空间参数对应的总的PHR的情况下,该多个空间参数中各个空间参数对应的总的PHR通过第二PUSCH承载;
其中,该第二PUSCH为与该多个空间参数中的第二目标空间参数关联的PUSCH,或者,该第二PUSCH为该多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
在一些实施例中,该第二目标空间参数为该多个空间参数中关联的PHR满足触发条件的空间参数。
在一些实施例中,该多个空间参数中各个空间参数分别对应的PHR为实际PHR,或者,该多个空间参数中各个空间参数分别对应的PHR为虚拟PHR。
在一些实施例中,若与第i个空间参数关联的PUSCH对应的调度信息或配置信息早于该第二PUSCH的第一个符号之前的第一时间间隔,该第i个空间参数对应的PHR为实际PHR;或者,
若与第i个空间参数关联的PUSCH与该第二PUSCH在同一个时间单元内发送,该第i个空间参数对应的PHR为实际PHR;
其中,该第i个空间参数属于该多个空间参数,i为正整数。
在一些实施例中,第i个空间参数对应的PHR基于与该第i个空间参数关联的功率控制参数计算得到;
其中,该第i个空间参数属于该多个空间参数,i为正整数。
在一些实施例中,该第二PUSCH为动态调度的PUSCH或免调度的PUSCH。
在一些实施例中,该第一时间间隔为物理下行控制信道PDCCH到PUSCH的调度间隔,或者,该第一时间间隔为PUSCH的处理时间。
在一些实施例中,该网络设备600还包括第二通信单元620;
该第二通信单元620用于发送第一配置信息;
其中,该第一配置信息至少包括PHR的上报方式和/或PHR模式信息;
其中,该PHR的上报方式为上报该多个空间参数中该第一目标空间参数对应的PHR,或者,该PHR的上报方式为上报该多个空间参数中各个空间参数分别对应的PHR,或者,该PHR的上报方式 为上报该多个空间参数中各个空间参数对应的总的PHR;
其中,该PHR模式信息用于指示该第一目标空间参数对应的PHR的配置信息生效,或者,该PHR模式信息用于指示该多个空间参数对应的PHR的配置信息均生效。
在一些实施例中,在该第一配置信息至少包括该PHR的上报方式的情况下,该网络设备接收的空间参数信息对应的PHR基于该PHR的上报方式发送。
在一些实施例中,该PHR的上报方式基于终端设备的能力信息确定;
其中,该终端设备的能力信息包括该终端设备支持的PHR上报方式;
其中,该终端设备支持的PHR上报方式包括以下至少之一:上报该多个空间参数中该第一目标空间参数对应的PHR,上报该多个空间参数中各个空间参数分别对应的PHR,上报该多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,在该第一配置信息至少包括该PHR模式信息的情况下,该第二通信单元610具体用于:
在该PHR模式信息用于指示该第一目标空间参数对应的PHR的配置信息生效的情况下,接收该多个空间参数中该第一目标空间参数对应的PHR;和/或,
在该PHR模式信息用于指示该多个空间参数对应的PHR的配置信息均生效的情况下,接收该多个空间参数中各个空间参数分别对应的PHR,或者,接收该多个空间参数中各个空间参数对应的总的PHR。
在一些实施例中,该PHR模式信息为RRC参数twoPHRMode,在该RRC参数twoPHRMode未配置为使能时用于指示该第一目标空间参数对应的PHR的配置信息生效,在该RRC参数twoPHRMode配置为使能时用于指示该多个空间参数对应的PHR的配置信息均生效。
在一些实施例中,该第一配置信息还包括以下至少之一:
PHR的周期定时器,禁止PHR上报的定时器,PHR发送功率因素变化量或者路径损耗变化量,双连接时另外一个小区组的PHR模式,多小区PHR或单小区PHR,最大允许暴露MPE的上报许可,功率管理最大功率回退P-MPR的阈值,MPE禁止上报的定时器。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备600可对应于本申请方法实施例中的网络设备,并且网络设备600中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例提供的一种通信设备700示意性结构图。图16所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图16所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,如图16所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,处理器710可以实现终端设备中的处理单元的功能,或者,处理器710可以实现网络设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器730可以实现终端设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器730可以实现网络设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备700具体可为本申请实施例的终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的装置的示意性结构图。图17所示的装置800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图17所示,装置800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一些实施例中,该装置800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。可选地,处理器810可以位于芯片内或芯片外。
在一些实施例中,处理器810可以实现终端设备中的处理单元的功能,或者,处理器810可以实现网络设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,输入接口830可以实现终端设备中的通信单元的功能,或者,输入接口830可以实现网络设备中的通信单元的功能。
在一些实施例中,该装置800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。可选地,处理器810可以位于芯片内或芯片外。
在一些实施例中,输出接口840可以实现终端设备中的通信单元的功能,或者,输出接口840可以实现网络设备中的通信单元的功能。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图18是本申请实施例提供的一种通信系统900的示意性框图。如图18所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程 序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (73)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备将M个物理上行控制信道PUCCH中的P个PUCCH承载的上行控制信息UCI信息复用到N个物理上行共享信道PUSCH中与所述P个PUCCH关联相同空间参数的PUSCH中,其中,所述M个PUCCH与所述N个PUSCH在时域上重叠,在复用之后,所述M个PUCCH中存在S个PUCCH与所述N个PUSCH中的PUSCH在时域上重叠,M、N、P和S均为正整数,且S=M-P;
    所述终端设备将所述S个PUCCH中承载的UCI信息复用到所述N个PUSCH中第一目标空间参数关联的PUSCH;或者,所述终端设备传输第一上行信息,其中,所述第一上行信息不包括以下至少之一:所述S个PUCCH中的部分或全部PUCCH,所述N个PUSCH中与所述S个PUCCH在时域上重叠的部分或全部PUSCH。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备将所述S个PUCCH中承载的UCI信息复用到所述N个PUSCH中第一目标空间参数关联的PUSCH,包括:
    在理想回传场景下,所述终端设备将所述S个PUCCH中承载的UCI信息复用到所述N个PUSCH中所述第一目标空间参数关联的PUSCH。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述第一目标空间参数为预定义的,或者,所述第一目标空间参数为预配置的,或者,所述第一目标空间参数为网络设备配置的。
  4. 如权利要求1所述的方法,其特征在于,
    所述终端设备传输第一上行信息,包括:
    所述终端设备根据优先级顺序传输所述第一上行信息。
  5. 如权利要求4所述的方法,其特征在于,
    所述终端设备根据优先级顺序传输所述第一上行信息,包括:
    在第i个PUCCH关联的优先级索引高于所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH关联的优先级索引的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH;和/或,
    在第i个PUCCH关联的优先级索引低于所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH关联的优先级索引的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述第i个PUCCH;
    其中,所述第i个PUCCH属于所述S个PUCCH,i为正整数,且1≤i≤S。
  6. 如权利要求4所述的方法,其特征在于,
    所述终端设备根据优先级顺序传输所述第一上行信息,包括:
    在第i个PUCCH中承载的上行控制信息UCI信息的优先级高于所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH;和/或,
    在第i个PUCCH中承载的UCI信息的优先级低于所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH中承载的信息的优先级的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述第i个PUCCH;
    其中,所述第i个PUCCH属于所述S个PUCCH,i为正整数,且1≤i≤S。
  7. 如权利要求4所述的方法,其特征在于,
    所述终端设备根据优先级顺序传输所述第一上行信息,包括:
    在第i个PUCCH关联的优先级索引与所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同的情况下,所述终端设备根据所述第i个PUCCH承载的内容与所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH承载的内容,确定所述第i个PUCCH的优先级和所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH的优先级;
    在所述第i个PUCCH的优先级高于所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH;和/或,
    在所述第i个PUCCH的优先级低于所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH的优先级的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述第i个PUCCH;
    其中,所述第i个PUCCH属于所述S个PUCCH,i为正整数,且1≤i≤S。
  8. 如权利要求7所述的方法,其特征在于,
    承载混合自动重传请求-应答HARQ-ACK、调度请求SR和链路恢复请求LRR中的至少之一的PUCCH的优先级高于承载信道状态信息CSI的PUSCH的优先级;和/或,
    承载HARQ-ACK、SR和LRR中的至少之一的PUCCH的优先级高于未承载HARQ-ACK的PUSCH的优先级;和/或,
    承载HARQ-ACK的PUSCH的优先级高于承载CSI的PUCCH的优先级;和/或,
    承载CSI的PUCCH的优先级高于未承载CSI的PUSCH的优先级;和/或,
    承载HARQ-ACK、SR和LRR中的至少之一的PUCCH的优先级高于未承载HARQ-ACK和CSI的PUSCH的优先级;和/或,
    承载CSI的PUCCH的优先级高于承载CSI的PUSCH的优先级;和/或,
    承载HARQ-ACK的PUSCH的优先级高于承载SR和LRR中的至少之一的PUCCH的优先级。
  9. 如权利要求1所述的方法,其特征在于,
    所述终端设备传输第一上行信息,包括:
    所述终端设备传输所述第一上行信息,且所述第一上行信息不包括以下至少之一:所述S个PUCCH中与第二目标空间参数关联的PUCCH,所述N个PUSCH中与所述S个PUCCH在时域上重叠的PUSCH中与第二目标空间参数关联的PUSCH。
  10. 如权利要求9所述的方法,其特征在于,
    所述S个PUCCH的传输方案为单频网络SFN,和/或,所述N个PUSCH中与所述S个PUCCH在时域上重叠的PUSCH的传输方案为SFN。
  11. 如权利要求9或10所述的方法,其特征在于,
    所述第二目标空间参数为预定义的,或者,所述第二目标空间参数为预配置的,或者,所述第二目标空间参数为网络设备配置的。
  12. 如权利要求1所述的方法,其特征在于,
    所述终端设备传输第一上行信息,包括:
    在第i个PUCCH为时域上重复传输的PUCCH的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述第i个PUCCH的本次传输;和/或,
    在所述N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH为时域上重复传输的PUSCH的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH的本次传输;
    其中,所述第i个PUCCH属于所述S个PUCCH,i为正整数,且1≤i≤S。
  13. 如权利要求1所述的方法,其特征在于,
    所述终端设备传输第一上行信息,包括:
    在第i个PUCCH关联的优先级索引与所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH关联的优先级索引相同,且所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH的传输方案为空分复用SDM的情况下,所述终端设备传输所述第一上行信息,且所述第一上行信息不包括所述第i个PUCCH;
    其中,所述第i个PUCCH属于所述S个PUCCH,i为正整数,且1≤i≤S。
  14. 如权利要求5至13中任一项所述的方法,其特征在于,
    在所述第一上行信息不包括所述N个PUSCH中与第i个PUCCH在时域上重叠的PUSCH,且所述M个PUCCH中存在至少一个PUCCH中承载的UCI信息复用到了所述N个PUSCH中与所述第i个PUCCH在时域上重叠的PUSCH上传输的情况下,所述第一上行信息至少包括所述第i个PUCCH和所述至少一个PUCCH;
    其中,所述第i个PUCCH属于所述S个PUCCH,i为正整数,且1≤i≤S。
  15. 如权利要求1、4至14中任一项所述的方法,其特征在于,
    所述终端设备传输第一上行信息,包括:
    在非理想回传场景下,所述终端设备传输所述第一上行信息。
  16. 如权利要求1至15中任一项所述的方法,其特征在于,
    所述N个PUSCH包括以下至少之一:动态调度的PUSCH,免调度的PUSCH。
  17. 如权利要求1至16中任一项所述的方法,其特征在于,
    所述M个PUCCH和所述N个PUSCH满足UCI信息复用的时序条件。
  18. 如权利要求1至17中任一项所述的方法,其特征在于,
    所述M个PUCCH和所述N个PUSCH位于相同的时间单元。
  19. 如权利要求18所述的方法,其特征在于,
    所述时间单元为以下之一:时隙,迷你时隙,多个符号,子帧,传输时机。
  20. 一种无线通信的方法,其特征在于,包括:
    终端设备上报空间参数信息对应的功率余量报告PHR。
  21. 如权利要求20所述的方法,其特征在于,
    所述终端设备上报空间参数信息对应的PHR,包括:
    所述终端设备上报多个空间参数中第一目标空间参数对应的PHR;或者,
    所述终端设备上报多个空间参数中各个空间参数分别对应的PHR;或者,
    所述终端设备上报多个空间参数中各个空间参数对应的总的PHR。
  22. 如权利要求21所述的方法,其特征在于,
    在所述终端设备上报多个空间参数中第一目标空间参数对应的PHR的情况下,所述第一目标空间参数对应的PHR通过第一物理上行共享信道PUSCH承载;
    其中,所述第一PUSCH为与所述第一目标空间参数关联的PUSCH,或者,所述第一PUSCH为所述多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
  23. 如权利要求22所述的方法,其特征在于,所述第一目标空间参数对应的PHR为实际PHR,或者,所述第一目标空间参数对应的PHR为虚拟PHR。
  24. 如权利要求23所述的方法,其特征在于,
    若与所述第一目标空间参数关联的PUSCH对应的调度信息或配置信息早于所述第一PUSCH的第一个符号之前的第一时间间隔,所述第一目标空间参数对应的PHR为实际PHR;或者,
    若与所述第一目标空间参数关联的PUSCH与所述第一PUSCH在同一个时间单元内发送,所述第一目标空间参数对应的PHR为实际PHR。
  25. 如权利要求22至24中任一项所述的方法,其特征在于,
    所述第一PUSCH为动态调度的PUSCH或免调度的PUSCH。
  26. 如权利要求21至25中任一项所述的方法,其特征在于,
    所述第一目标空间参数对应的PHR基于与所述第一目标空间参数关联的功率控制参数计算得到。
  27. 如权利要求21至26中任一项所述的方法,其特征在于,
    所述第一目标空间参数为预定义的,或者,所述第一目标空间参数为预配置的,或者,所述第一目标空间参数为网络设备配置的。
  28. 如权利要求21所述的方法,其特征在于,
    在所述终端设备上报多个空间参数中各个空间参数分别对应的PHR的情况下,所述多个空间参数中各个空间参数分别对应的PHR通过第二PUSCH承载;或者,
    在所述终端设备上报多个空间参数中各个空间参数对应的总的PHR的情况下,所述多个空间参数中各个空间参数对应的总的PHR通过第二PUSCH承载;
    其中,所述第二PUSCH为与所述多个空间参数中的第二目标空间参数关联的PUSCH,或者,所述第二PUSCH为所述多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
  29. 如权利要求28所述的方法,其特征在于,
    所述第二目标空间参数为所述多个空间参数中关联的PHR满足触发条件的空间参数。
  30. 如权利要求28或29所述的方法,其特征在于,所述多个空间参数中各个空间参数分别对应的PHR为实际PHR,或者,所述多个空间参数中各个空间参数分别对应的PHR为虚拟PHR。
  31. 如权利要求28至30中任一项所述的方法,其特征在于,
    若与第i个空间参数关联的PUSCH对应的调度信息或配置信息早于所述第二PUSCH的第一个符号之前的第一时间间隔,所述第i个空间参数对应的PHR为实际PHR;或者,
    若与第i个空间参数关联的PUSCH与所述第二PUSCH在同一个时间单元内发送,所述第i个空间参数对应的PHR为实际PHR;
    其中,所述第i个空间参数属于所述多个空间参数,i为正整数。
  32. 如权利要求28至31中任一项所述的方法,其特征在于,
    第i个空间参数对应的PHR基于与所述第i个空间参数关联的功率控制参数计算得到;
    其中,所述第i个空间参数属于所述多个空间参数,i为正整数。
  33. 如权利要求28至32中任一项所述的方法,其特征在于,
    所述第二PUSCH为动态调度的PUSCH或免调度的PUSCH。
  34. 如权利要求24或31所述的方法,其特征在于,
    所述第一时间间隔为物理下行控制信道PDCCH到PUSCH的调度间隔,或者,所述第一时间间 隔为PUSCH的处理时间。
  35. 如权利要求21至34中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一配置信息;
    其中,所述第一配置信息至少包括PHR的上报方式和/或PHR模式信息;
    其中,所述PHR的上报方式为上报所述多个空间参数中所述第一目标空间参数对应的PHR,或者,所述PHR的上报方式为上报所述多个空间参数中各个空间参数分别对应的PHR,或者,所述PHR的上报方式为上报所述多个空间参数中各个空间参数对应的总的PHR;
    其中,所述PHR模式信息用于指示所述第一目标空间参数对应的PHR的配置信息生效,或者,所述PHR模式信息用于指示所述多个空间参数对应的PHR的配置信息均生效。
  36. 如权利要求35所述的方法,其特征在于,
    在所述第一配置信息至少包括所述PHR的上报方式的情况下,所述终端设备上报空间参数信息对应的PHR,包括:
    所述终端设备根据所述PHR的上报方式上报空间参数信息对应的PHR。
  37. 如权利要求35或36所述的方法,其特征在于,
    所述PHR的上报方式基于所述终端设备的能力信息确定;
    其中,所述终端设备的能力信息包括所述终端设备支持的PHR上报方式;
    其中,所述终端设备支持的PHR上报方式包括以下至少之一:上报所述多个空间参数中所述第一目标空间参数对应的PHR,上报所述多个空间参数中各个空间参数分别对应的PHR,上报所述多个空间参数中各个空间参数对应的总的PHR。
  38. 如权利要求35所述的方法,其特征在于,
    在所述第一配置信息至少包括所述PHR模式信息的情况下,所述终端设备上报空间参数信息对应的PHR,包括:
    在所述PHR模式信息用于指示所述第一目标空间参数对应的PHR的配置信息生效的情况下,所述终端设备上报所述多个空间参数中所述第一目标空间参数对应的PHR;和/或,
    在所述PHR模式信息用于指示所述多个空间参数对应的PHR的配置信息均生效的情况下,所述终端设备上报所述多个空间参数中各个空间参数分别对应的PHR,或者,所述终端设备上报所述多个空间参数中各个空间参数对应的总的PHR。
  39. 如权利要求35或38所述的方法,其特征在于,
    所述PHR模式信息为RRC参数twoPHRMode,在所述RRC参数twoPHRMode未配置为使能时用于指示所述第一目标空间参数对应的PHR的配置信息生效,在所述RRC参数twoPHRMode配置为使能时用于指示所述多个空间参数对应的PHR的配置信息均生效。
  40. 如权利要求35至39中任一项所述的方法,其特征在于,
    所述第一配置信息还包括以下至少之一:
    PHR的周期定时器,禁止PHR上报的定时器,PHR发送功率因素变化量或者路径损耗变化量,双连接时另外一个小区组的PHR模式,多小区PHR或单小区PHR,最大允许暴露MPE的上报许可,功率管理最大功率回退P-MPR的阈值,MPE禁止上报的定时器。
  41. 一种无线通信的方法,其特征在于,包括:
    网络设备接收空间参数信息对应的功率余量报告PHR。
  42. 如权利要求41所述的方法,其特征在于,
    所述网络设备接收空间参数信息对应的PHR,包括:
    所述网络设备接收多个空间参数中第一目标空间参数对应的PHR;或者,
    所述网络设备接收多个空间参数中各个空间参数分别对应的PHR;或者,
    所述网络设备接收多个空间参数中各个空间参数对应的总的PHR。
  43. 如权利要求42所述的方法,其特征在于,
    在所述网络设备接收多个空间参数中第一目标空间参数对应的PHR的情况下,所述第一目标空间参数对应的PHR通过第一物理上行共享信道PUSCH承载;
    其中,所述第一PUSCH为与所述第一目标空间参数关联的PUSCH,或者,所述第一PUSCH为所述多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
  44. 如权利要求43所述的方法,其特征在于,所述第一目标空间参数对应的PHR为实际PHR,或者,所述第一目标空间参数对应的PHR为虚拟PHR。
  45. 如权利要求44所述的方法,其特征在于,
    若与所述第一目标空间参数关联的PUSCH对应的调度信息或配置信息早于所述第一PUSCH的 第一个符号之前的第一时间间隔,所述第一目标空间参数对应的PHR为实际PHR;或者,
    若与所述第一目标空间参数关联的PUSCH与所述第一PUSCH在同一个时间单元内发送,所述第一目标空间参数对应的PHR为实际PHR。
  46. 如权利要求43至45中任一项所述的方法,其特征在于,
    所述第一PUSCH为动态调度的PUSCH或免调度的PUSCH。
  47. 如权利要求42至46中任一项所述的方法,其特征在于,
    所述第一目标空间参数对应的PHR基于与所述第一目标空间参数关联的功率控制参数计算得到。
  48. 如权利要求42至47中任一项所述的方法,其特征在于,
    所述第一目标空间参数为预定义的,或者,所述第一目标空间参数为预配置的,或者,所述第一目标空间参数为网络设备配置的。
  49. 如权利要求42所述的方法,其特征在于,
    在所述网络设备接收多个空间参数中各个空间参数分别对应的PHR的情况下,所述多个空间参数中各个空间参数分别对应的PHR通过第二PUSCH承载;或者,
    在所述网络设备接收多个空间参数中各个空间参数对应的总的PHR的情况下,所述多个空间参数中各个空间参数对应的总的PHR通过第二PUSCH承载;
    其中,所述第二PUSCH为与所述多个空间参数中的第二目标空间参数关联的PUSCH,或者,所述第二PUSCH为所述多个空间参数分别关联的PUSCH中在时域上最先传输的PUSCH。
  50. 如权利要求49所述的方法,其特征在于,
    所述第二目标空间参数为所述多个空间参数中关联的PHR满足触发条件的空间参数。
  51. 如权利要求49或50所述的方法,其特征在于,所述多个空间参数中各个空间参数分别对应的PHR为实际PHR,或者,所述多个空间参数中各个空间参数分别对应的PHR为虚拟PHR。
  52. 如权利要求49至51中任一项所述的方法,其特征在于,
    若与第i个空间参数关联的PUSCH对应的调度信息或配置信息早于所述第二PUSCH的第一个符号之前的第一时间间隔,所述第i个空间参数对应的PHR为实际PHR;或者,
    若与第i个空间参数关联的PUSCH与所述第二PUSCH在同一个时间单元内发送,所述第i个空间参数对应的PHR为实际PHR;
    其中,所述第i个空间参数属于所述多个空间参数,i为正整数。
  53. 如权利要求49至52中任一项所述的方法,其特征在于,
    第i个空间参数对应的PHR基于与所述第i个空间参数关联的功率控制参数计算得到;
    其中,所述第i个空间参数属于所述多个空间参数,i为正整数。
  54. 如权利要求49至53中任一项所述的方法,其特征在于,
    所述第二PUSCH为动态调度的PUSCH或免调度的PUSCH。
  55. 如权利要求45或52所述的方法,其特征在于,
    所述第一时间间隔为物理下行控制信道PDCCH到PUSCH的调度间隔,或者,所述第一时间间隔为PUSCH的处理时间。
  56. 如权利要求42至55中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一配置信息;
    其中,所述第一配置信息至少包括PHR的上报方式和/或PHR模式信息;
    其中,所述PHR的上报方式为上报所述多个空间参数中所述第一目标空间参数对应的PHR,或者,所述PHR的上报方式为上报所述多个空间参数中各个空间参数分别对应的PHR,或者,所述PHR的上报方式为上报所述多个空间参数中各个空间参数对应的总的PHR;
    其中,所述PHR模式信息用于指示所述第一目标空间参数对应的PHR的配置信息生效,或者,所述PHR模式信息用于指示所述多个空间参数对应的PHR的配置信息均生效。
  57. 如权利要求56所述的方法,其特征在于,
    在所述第一配置信息至少包括所述PHR的上报方式的情况下,所述网络设备接收的空间参数信息对应的PHR基于所述PHR的上报方式发送。
  58. 如权利要求56或57所述的方法,其特征在于,
    所述PHR的上报方式基于终端设备的能力信息确定;
    其中,所述终端设备的能力信息包括所述终端设备支持的PHR上报方式;
    其中,所述终端设备支持的PHR上报方式包括以下至少之一:上报所述多个空间参数中所述第一目标空间参数对应的PHR,上报所述多个空间参数中各个空间参数分别对应的PHR,上报所述多个空间参数中各个空间参数对应的总的PHR。
  59. 如权利要求56所述的方法,其特征在于,
    在所述第一配置信息至少包括所述PHR模式信息的情况下,所述网络设备接收空间参数信息对应的PHR,包括:
    在所述PHR模式信息用于指示所述第一目标空间参数对应的PHR的配置信息生效的情况下,所述网络设备接收所述多个空间参数中所述第一目标空间参数对应的PHR;和/或,
    在所述PHR模式信息用于指示所述多个空间参数对应的PHR的配置信息均生效的情况下,所述网络设备接收所述多个空间参数中各个空间参数分别对应的PHR,或者,所述网络设备接收所述多个空间参数中各个空间参数对应的总的PHR。
  60. 如权利要求56或59所述的方法,其特征在于,
    所述PHR模式信息为RRC参数twoPHRMode,在所述RRC参数twoPHRMode未配置为使能时用于指示所述第一目标空间参数对应的PHR的配置信息生效,在所述RRC参数twoPHRMode配置为使能时用于指示所述多个空间参数对应的PHR的配置信息均生效。
  61. 如权利要求56至60中任一项所述的方法,其特征在于,
    所述第一配置信息还包括以下至少之一:
    PHR的周期定时器,禁止PHR上报的定时器,PHR发送功率因素变化量或者路径损耗变化量,双连接时另外一个小区组的PHR模式,多小区PHR或单小区PHR,最大允许暴露MPE的上报许可,功率管理最大功率回退P-MPR的阈值,MPE禁止上报的定时器。
  62. 一种终端设备,其特征在于,包括:通信单元和处理单元;
    所述处理单元用于将M个物理上行控制信道PUCCH中的P个PUCCH承载的上行控制信息UCI信息复用到N个物理上行共享信道PUSCH中与所述P个PUCCH关联相同空间参数的PUSCH中,其中,所述M个PUCCH与所述N个PUSCH在时域上重叠,在复用之后,所述M个PUCCH中存在S个PUCCH与所述N个PUSCH中的PUSCH在时域上重叠,M、N、P和S均为正整数,且S=M-P;
    所述处理单元还用于将所述S个PUCCH中承载的UCI信息复用到所述N个PUSCH中第一目标空间参数关联的PUSCH;或者,所述通信单元用于传输第一上行信息,其中,所述第一上行信息不包括以下至少之一:所述S个PUCCH中的部分或全部PUCCH,所述N个PUSCH中与所述S个PUCCH在时域上重叠的部分或全部PUSCH。
  63. 一种终端设备,其特征在于,包括:
    第一通信单元,用于上报空间参数信息对应的功率余量报告PHR。
  64. 一种网络设备,其特征在于,包括:
    第一通信单元,用于接收空间参数信息对应的功率余量报告PHR。
  65. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至19中任一项所述的方法。
  66. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求20至40中任一项所述的方法。
  67. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述网络设备执行如权利要求41至61中任一项所述的方法。
  68. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至19中任一项所述的方法。
  69. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求20至40中任一项所述的方法。
  70. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求41至61中任一项所述的方法。
  71. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求1至19中任一项所述的方法被实现,或者,如权利要求20至40中任一项所述的方法被实现,或者,如权利要求41至61中任一项所述的方法被实现。
  72. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求1至19中任一项所述的方法被实现,或者,如权利要求20至40中任一项所述的方法被实现,或者,如权利要求41至61中任一项所述的方法被实现。
  73. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求1至19中任一项 所述的方法被实现,或者,如权利要求20至40中任一项所述的方法被实现,或者,如权利要求41至61中任一项所述的方法被实现。
PCT/CN2022/127927 2022-10-27 2022-10-27 无线通信的方法、终端设备和网络设备 WO2024087093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127927 WO2024087093A1 (zh) 2022-10-27 2022-10-27 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127927 WO2024087093A1 (zh) 2022-10-27 2022-10-27 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024087093A1 true WO2024087093A1 (zh) 2024-05-02

Family

ID=90829588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127927 WO2024087093A1 (zh) 2022-10-27 2022-10-27 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024087093A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536397A (zh) * 2019-08-13 2019-12-03 中兴通讯股份有限公司 一种信息发送方法、信息接收方法及装置
US20200205090A1 (en) * 2018-12-21 2020-06-25 Lenovo (Singapore) Pte. Ltd. Reporting power headroom
CN113396616A (zh) * 2019-02-15 2021-09-14 联想(新加坡)私人有限公司 用于确定触发的功率余量报告的基础的方法和装置
CN114071571A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行信道间冲突的传输方法、装置及存储介质
CN114930960A (zh) * 2020-11-27 2022-08-19 北京小米移动软件有限公司 上行控制信息传输方法、装置及存储介质
CN115175332A (zh) * 2021-04-06 2022-10-11 维沃移动通信有限公司 上行信道传输方法、装置、终端及网络侧设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200205090A1 (en) * 2018-12-21 2020-06-25 Lenovo (Singapore) Pte. Ltd. Reporting power headroom
CN113396616A (zh) * 2019-02-15 2021-09-14 联想(新加坡)私人有限公司 用于确定触发的功率余量报告的基础的方法和装置
CN110536397A (zh) * 2019-08-13 2019-12-03 中兴通讯股份有限公司 一种信息发送方法、信息接收方法及装置
CN114071571A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行信道间冲突的传输方法、装置及存储介质
CN114930960A (zh) * 2020-11-27 2022-08-19 北京小米移动软件有限公司 上行控制信息传输方法、装置及存储介质
CN115175332A (zh) * 2021-04-06 2022-10-11 维沃移动通信有限公司 上行信道传输方法、装置、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Introduction of further enhancements on MIMO for NR", 3GPP DRAFT; R1-2112446, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 8 November 2021 (2021-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052082635 *

Similar Documents

Publication Publication Date Title
US11962387B2 (en) Wireless communication method and apparatus
WO2020147131A1 (zh) 无线通信方法、终端设备和网络设备
US11528731B2 (en) Communication method and communications apparatus
WO2022104545A1 (zh) 无线通信的方法、终端设备和网络设备
US20230137907A1 (en) Wireless communication method, terminal device, and network device
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
CN115413045A (zh) 信息传输方法、终端设备和网络设备
US20230354415A1 (en) Channel access method and device
WO2021159413A1 (zh) 下行传输方法和终端设备
WO2024087093A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2024026839A1 (zh) 无线通信的方法和终端设备
WO2023141824A1 (zh) 无线通信的方法和终端设备
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
US20230354207A1 (en) Wireless communication method, terminal device and network device
WO2024065890A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031237A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
US20230421297A1 (en) Method for processing sidelink retransmission resources, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963077

Country of ref document: EP

Kind code of ref document: A1