WO2020248794A1 - 一种功率控制方法、通信方法、装置及存储介质 - Google Patents

一种功率控制方法、通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2020248794A1
WO2020248794A1 PCT/CN2020/091655 CN2020091655W WO2020248794A1 WO 2020248794 A1 WO2020248794 A1 WO 2020248794A1 CN 2020091655 W CN2020091655 W CN 2020091655W WO 2020248794 A1 WO2020248794 A1 WO 2020248794A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
terminal device
cellular
side link
lte
Prior art date
Application number
PCT/CN2020/091655
Other languages
English (en)
French (fr)
Inventor
黎超
冯淑兰
邓猛
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020248794A1 publication Critical patent/WO2020248794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • This application relates to the field of communication technology, and in particular to a power control method, communication method, device, and storage medium.
  • V2V vehicle to vehicle
  • V2P vehicle to pedestrian
  • V2I vehicle to infrastructure
  • V2N vehicle to network
  • V2N uses a cellular link (also called uplink and downlink) for communication.
  • V2V, V2P, and V2I use side-line links for communication.
  • Side-line link communication is defined based on direct communication between terminal equipment and terminal equipment, and does not require base station forwarding.
  • LTE and NR long term evolution
  • LTE and NR are parallel uplink transmission
  • the LTE link is controlled according to their respective transmit power control methods.
  • the NR-V2X link is introduced into NR.
  • This application provides a power control method, a communication method, a device, and a storage medium, which are used to provide a power distribution method for NR side links under different link parallel transmissions.
  • the present application provides a power control method.
  • the method includes a terminal device determining a first transmit power of a new radio (NR) side uplink on a target time domain resource, and except for the NR side uplink According to the corresponding transmission power of each link of the NR, according to the first transmission power and the corresponding transmission power of each link except the NR side link, determine the first actual transmission of the NR side link on the target time domain resource power.
  • the target time domain resources are the time domain resources of the overlapping part occupied by the transmission of the NR side link and the transmission of each link except the NR side link, the transmission of the NR side link and the NR side link The transmission of each link outside the link occupies different frequency domain resources.
  • this application provides a power allocation method for NR side links under different link parallel transmissions.
  • each link except the NR side link includes NR cellular link; or, includes NR cellular link and LTE cellular link; or includes NR cellular link and LTE cellular link And LTE side link.
  • the transmission of the NR cellular link is the same as the transmission of the NR side link
  • Occupying different frequency domain resources may specifically refer to: the transmission of the NR cellular link and the transmission of the NR side link occupy different frequency domain resources in the same BWP of the same carrier; or, the NR cellular The transmission of the link and the transmission of the NR side link occupy different BWPs of the same carrier; or, the transmission of the NR cellular link and the transmission of the NR side link occupy different carriers of the same frequency band Or, the transmission of the NR cellular link and the transmission of the NR side link occupy different carriers in different frequency bands.
  • This application exemplarily provides the following three implementation manners for determining the first actual transmit power.
  • Implementation mode 1 If the terminal device determines that the sum of the first transmit power and the transmit power corresponding to each link except the NR side link is greater than the maximum transmit power of the terminal device, the first transmit power is reduced to the first 1. Actual transmit power; where the first actual transmit power satisfies the first actual transmit power and the sum of the transmit powers corresponding to each link except the NR side link does not exceed the maximum transmit power; or satisfies the first actual transmit power The sum of the transmit power corresponding to each link except the NR side link does not exceed the maximum transmit power, and the difference between the first actual transmit power and the first transmit power does not exceed the preset value. In this way, the first transmission power of the NR side uplink can be prevented from being reduced too much, causing the NR side uplink to fail to communicate normally.
  • Implementation manner 2 The terminal device subtracts the maximum transmit power of the terminal device from the difference of the second transmit power corresponding to each link outside the NR side uplink to determine the first actual transmit power.
  • Implementation mode 3 The terminal device determines the maximum transmit power of the terminal device minus the difference of the transmit power corresponding to each link outside the NR side uplink, and the power determined based on the path loss on the NR side uplink and the transmission bandwidth , At least two of the power determined based on the path loss and transmission bandwidth on each link except the NR side link, and the power determined based on the channel quality, and determine the minimum value of the determined at least two Is the first actual transmit power.
  • the terminal equipment determines the carrier where the supported NR side link is located, and the multi-carrier combination mode of the carrier where each link except the NR side link is located.
  • Determine capability information where the capability information includes at least one of the multi-carrier combination modes, and send the capability information to the network device or other terminal devices.
  • the terminal device reports the capability information of each link it supports to the network device or the communication peer device.
  • the network device or the communication peer device can determine whether the multi-carrier transmission is currently activated according to the capability information of the terminal device. Is it possible to schedule multiple links for parallel data transmission, or a transmission method that can be carried out between two communicating terminal devices. In other words, the network device can make reasonable scheduling for each link supported by the terminal device based on the capability information reported by the terminal device.
  • the carrier combination when each link except the NR side link includes an NR cellular link, the carrier combination includes different carriers in the same frequency band with the NR side link and the NR cellular link; Or the NR side link and the NR cellular link have different carriers in different frequency bands; or the NR side link and the NR cellular link correspond to the same carrier.
  • the present application provides a communication method.
  • the method includes that the terminal equipment can be based on the type of the first information to be transmitted on the NR side link and the type of the second information to be transmitted on the NR cellular link, or according to the NR
  • the type of the second information to be transmitted on the cellular link determines the target link, and the terminal device communicates through the target link.
  • the target link is an NR side link or an NR cellular link.
  • the type of the first information and the second information is used to determine which link the terminal device currently transmits data through. In this way, it helps to reduce the complexity of terminal implementation and minimize the amount of discarded or suspended parts. The impact of information on transmission.
  • the type of the second information is aperiodic sounding reference signal (sounding reference signal, SRS), hybrid automatic repeat request (HARQ) feedback information, scheduling request (scheduling request, SR), reference signal reception
  • SRS sounding reference signal
  • HARQ hybrid automatic repeat request
  • SR scheduling request
  • RSRP reference signal receiving power
  • SR reference signal reception
  • RSRP reference signal receiving power
  • SR reference signal reception
  • RSRP reference signal receiving power
  • the NR cellular link is determined as the target link.
  • the HARQ feedback information includes an acknowledgement (acknowledgement, Ack) response message or a non-acknowledged NACK response news.
  • the type of the second information is any one of periodic SRS, semi-persistent SRS, codebook SRS, non-codebook SRS, and channel state information (channel state information, CSI), determine the NR side link Is the target link.
  • the priority of the first information is higher than the first threshold
  • the type of the second information is periodic SRS, semi-persistent SRS, codebook SRS, non-codebook SRS, channel state information (channel state information, CSI), determine the NR side uplink as the target link.
  • the terminal device determines that the first information is the first data packet and the second information is the second data packet, and the terminal device is to receive the first data packet and to send the second data packet, or the terminal The device is to send the first data packet and to receive the second data packet; if it is determined that the NR side link and the NR cellular link are on the same carrier or on different carriers of the same frequency band, the NR cellular link is determined to be the target link. It can also be understood that the type of the second information is a data packet. When both the NR side link and the NR cellular link are transmitting data packets, the data packets on the NR cellular link can be processed preferentially. In this way, the implementation cost and complexity of the terminal equipment is reduced as much as possible. Impact on cellular links, and avoid interference in terminal equipment.
  • the target link is determined according to the priority of the data packet corresponding to the feedback information.
  • This application exemplarily shows three possible implementation manners.
  • One is that when the type of the first information is HARQ feedback information and the priority of the data packet of the feedback information is higher than a second threshold, it is determined that the NR cellular link is the target link.
  • the other is to separately determine the priority of the data packet corresponding to the feedback information and the priority of the first information, and determine the link corresponding to the higher priority as the target link.
  • Another is that when the priority of the first information is higher than a third threshold, the NR side link is determined as a target link.
  • the present application provides a communication method, which includes a terminal device determining the supported side link and the multi-carrier combination of the carrier on which the cellular link is located, determining capability information, and reporting to the network device or other terminal device Sending capability information, where the multi-carrier combination mode includes the combination of the carrier where the NR side link is located and the carrier where each link except the NR side link is located, and the capability information includes the multi-carrier combination At least one of the ways.
  • the terminal device reports the capability information of each link it supports to the network device, and the network device can determine whether multi-carrier transmission is currently activated according to the capability information of the terminal device and whether it can schedule multiple links in parallel data transmission. In other words, the network device can make reasonable scheduling for each link supported by the terminal device based on the capability information reported by the terminal device.
  • the multi-carrier combination mode includes: the NR side link and the NR cellular link are different carriers in the same frequency band; or, the NR side The uplink and the NR cellular link have different carriers in different frequency bands; or, the NR side link and the NR cellular link correspond to the same carrier.
  • the combination of multiple carriers includes: LTE side link and NR cellular link are different carriers in the same frequency band; or, LTE The side link and the NR cellular link are on different carriers in different frequency bands; or, the LTE side link and the NR cellular link are on the same carrier.
  • the multi-carrier combination includes: NR side link, LTE cellular link, NR cellular link Different carriers in the same frequency band; or different carriers in NR side link, LTE cellular link, NR cellular link in different frequency bands; or NR side link, LTE cellular link, NR cellular link Any two are in a different carrier in the same frequency band, and the other is in a different carrier in a different frequency band; or the NR side link, LTE cellular link, and NR cellular link are on the same carrier in the same frequency band.
  • the combination of multiple carriers includes: LTE side link, LTE cellular link, NR cellular link Different carriers in the same frequency band; or different carriers in LTE side link, LTE cellular link, NR cellular link in different frequency bands; or LTE side link, LTE cellular link, NR cellular link Any two are in different carriers in the same frequency band, and the other is in different carriers in different frequency bands; or the same carrier in the same frequency band for LTE side link, LTE cellular link, and NR cellular link.
  • the multi-carrier combination includes: LTE side link, NR side link Different carriers in the same frequency band of LTE cellular link, NR cellular link; or different carriers of LTE side link, NR side link, LTE cellular link, NR cellular link in different frequency bands; Or any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link are in different carriers in the same frequency band, and the other two are in different carriers in different frequency bands; or LTE side Any three of the uplink, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands; or LTE side link Any two of the NR side link, LTE cellular link, and NR cellular link are in different carriers in the same frequency band, and the other two in different frequency bands are in the same carrier in the same frequency band.
  • the capability information further includes at least one of the following: any one of the LTE side link, NR side link, LTE cellular link, and NR cellular link supported by the terminal device The maximum transmission rate of the corresponding terminal device; the maximum transmission rate of any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link supported by the terminal device respectively ; The maximum transmission rate of the terminal equipment corresponding to any three of the LTE side link, NR side link, LTE cellular link, and NR cellular link supported by the terminal device; the LTE side link supported by the terminal device The maximum transmission rate of the four terminal equipment corresponding to the link, NR side link, LTE cellular link, and NR cellular link; the LTE side link, NR side link, LTE supported by the terminal device A cellular link and a multiple-input multiple-output (MIMO) mode supported by at least one of the NR cellular links.
  • MIMO multiple-input multiple-output
  • the capability information also includes the total maximum number of transmission channels supported by the terminal device, or the relationship between the NR side link and any of the links except the NR side link.
  • the maximum number of carriers; or, the total maximum number of transmission channels on any one of the NR side links and each link except the NR side link; or, the NR side link and the NR side link The channel bandwidth on any one of the links outside the link; or the subcarrier spacing between the NR side link and any one of the links except the NR side link, where NR The side link and any one of the links except the NR side link work on the same carrier or on different carriers in the same frequency bandwidth; among them, the links outside the NR side link
  • the path includes at least one of the following: LTE side link, LTE cellular link, and NR cellular link.
  • an embodiment of the present application provides a communication device, which has the function of implementing the communication device in the foregoing embodiment.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform corresponding functions of the communication device in the communication method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data packets necessary for the communication device.
  • the communication device further includes a transceiver, and the transceiver is used to support communication between the communication device and network equipment and the like.
  • the transceiver can be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may be a communication device, or a component that can be used in a communication device, such as a chip or a chip system or a circuit.
  • an embodiment of the present application provides a communication device, which is used to implement any one of the foregoing first aspect or the first aspect, or is used to implement any one of the foregoing second or second aspects , Or used to implement the third aspect or any one of the methods in the third aspect, including corresponding functional modules, respectively used to implement the steps in the above methods.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a transceiving unit, and these units can perform corresponding functions in the foregoing method examples.
  • a processing unit and a transceiving unit can perform corresponding functions in the foregoing method examples.
  • the present application provides a chip system including a processor.
  • it may further include a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the device installed with the chip system executes the first aspect to the second aspect and possible implementations thereof Any method in.
  • an embodiment of the present application provides a computer storage medium.
  • the computer storage medium stores instructions, which when run on a computer, cause the computer to execute the method in the first aspect or any possible implementation of the first aspect , Or cause the computer to execute the method in the second aspect or any possible implementation of the second aspect, or cause the computer to execute the third aspect or the method in any possible implementation of the third aspect.
  • the embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method in the first aspect or any possible implementation of the first aspect, or cause the computer to execute The second aspect or the method in any possible implementation of the second aspect, or the computer is caused to execute the third aspect or the method in any possible implementation of the third aspect.
  • Figure 1 is a schematic diagram of a communication system architecture provided by this application.
  • FIG. 2 is a schematic flowchart of a power control method provided by this application.
  • FIG. 3 is a schematic flowchart of a method for determining the first actual transmit power of an NR side link provided by this application;
  • Figure 4a is a schematic diagram of carrier aggregation provided by this application.
  • FIG. 4b is a schematic diagram of another carrier aggregation provided by this application.
  • FIG. 4c is a schematic diagram of another carrier aggregation provided by this application.
  • FIG. 5 is a schematic flow diagram of a communication method provided by this application.
  • FIG. 6 is a schematic flowchart of another communication method provided by this application.
  • FIG. 7 is a schematic flowchart of another communication method provided by this application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by this application.
  • first and second in the embodiments of the present application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • Fig. 1 exemplarily shows a schematic diagram of a communication system architecture to which the present application is applicable.
  • the communication system includes network equipment and terminal equipment.
  • it may also include the global navigation satellite system (GNSS), also known as the global navigation satellite system.
  • Figure 1 shows an example of a communication system including a network device and two terminal devices.
  • the communication system includes a network device 100, a terminal device 101, a terminal device 102, and a GNSS 103, where the terminal device is a vehicle-mounted terminal as an example.
  • the network device 100 can communicate with the terminal device 101 and the terminal device 102 in a wireless manner.
  • NR cellular link also called NR-Uu link
  • LTE cellular link also called LTE-Uu link
  • Both the NR cellular link and the LTE cellular link include a downlink and/or an uplink.
  • the terminal device 101 and the terminal device 102 can communicate in a wireless manner, for example, they can communicate through a sidelink (Sidelink, SL) air interface (also known as a sidelink air interface or a direct communication interface), including but It is not limited to passing through the NR side link (NR-V2X link) and the LTE side link (LTE-V2X link).
  • the side link is defined for the direct communication between the terminal device 101 and the terminal device 102, that is, the communication between the terminal device 101 and the terminal device 102 does not need to be forwarded by the base station.
  • V2X can specifically include: vehicle to vehicle (V2V), vehicle to pedestrian (V2P), vehicle to roadside unit (V2R), vehicle to infrastructure (V2R) Infrastructure (V2I) and vehicle to network (V2N) interaction.
  • V2N uses a cellular link (also called uplink and downlink) for communication.
  • V2V, V2P and V2I use the side link for communication.
  • terminal devices include devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (V2X) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station, MS), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), mobile terminal (mobile terminal, MT), virtual reality (virtual reality, VR) terminal, augmented reality (augmented reality, AR) terminal, wireless terminal in industrial control (industrial control), autonomous driving (self driving) Wireless terminals in the smart city, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart cities, and smart cities.
  • IoT Internet of things
  • IoT Internet
  • the wireless terminal, user agent, or user device in a smart home may include mobile phones (or "cellular" phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • mobile phones or "cellular" phones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • Network equipment for example, includes access network (access network, AN) equipment, which can also be referred to as wireless access network equipment, and is used to connect terminal equipment to equipment in the wireless network.
  • AN access network
  • AN access network equipment
  • a base station for example, an access point
  • V2X vehicle-to-everything
  • the access network equipment may be a roadside unit (RSU).
  • RSU roadside unit
  • the base station can be used to convert the received air frame and Internet Protocol (IP) packets to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include The fifth generation of mobile communication technology (the 5th generation, 5G) NR system in the next generation node B (next generation node B, gNB), transmission reception node (transmission reception point, TRP) (also known as the transceiver node), baseband processing Unit (building base band unit, BBU) and radio frequency unit (Radio Remote Unit, RRU), BBU and active antenna unit (AAU), or may also include cloud access network (cloud radio access network, Cloud RAN) ) Centralized unit (CU) and distributed unit (DU) in the system, or may also include the access point in the wireless fidelity (W
  • the function of the RSU can be either an in-vehicle device function or a network device function.
  • the above introduction takes the RSU as an access network device as an example.
  • GNSS is a space-based radio navigation and positioning system that can provide terminal equipment with full 3D coordinates and speed and time information on the surface of the earth or any place in near-earth space.
  • the various terminal devices and network devices described above can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted. If it is located on a vehicle (for example, placed in a vehicle or installed in a vehicle), it can be regarded as an on-board terminal device, which is also called an on-board unit (OBU), for example. It can also be deployed on the water, or can also be deployed on aircraft, balloons and satellites in the air, which is not limited in this application.
  • OBU on-board unit
  • the communication system may be a long term evolution (LTE) system, a 5G communication system (such as a new radio (NR) system, and a communication system that integrates multiple communication technologies (such as LTE and NR)
  • LTE long term evolution
  • 5G communication system such as a new radio (NR) system
  • NR new radio
  • the communication system may also be other communication systems, or other communication systems that may appear in the future, which is not limited by this application.
  • the work scenarios supported by the side link include both scenarios with cellular network coverage and scenarios without cellular network deployment.
  • the terminal equipment supporting the side link is in the coverage of the cellular network, the Uu air interface can be used for communication under the control of the cellular network, and the spectrum of the cellular link can be used; regardless of whether there is network coverage, the SL air interface can be used for side
  • the intelligent transportation spectrum near 5.9 GHz can be used.
  • V2X can combine the Uu interface and the SL air interface, and jointly use them for side-link services.
  • the form and quantity of the network equipment and terminal equipment shown in FIG. 1 are only for example, and do not constitute a limitation to this application.
  • the terminal equipment UE101, the terminal equipment 102 and the GNSS 103 may be only a unidirectional link from the GNSS to the terminal equipment, or there may be an opposite link as shown in FIG. 1, which is not the case in the embodiment of this application. Make a limit.
  • the terminal equipment can support time division multiplexing or frequency division multiplexing of the NR link and the LTE link.
  • time division multiplexing only one of the two carriers can be selected for transmission at a time point, and for frequency division multiplexing, simultaneous transmission of two links can be supported at one time point.
  • frequency division multiplexing simultaneous transmission of two links can be supported at one time point.
  • parallel transmission power control needs to be considered. The use of parallel transmission power control first needs to solve the problem of transmission power allocation of terminal equipment.
  • a power control method provided for this application includes the following steps:
  • Step 201 The terminal device determines the first transmission power of the NR side uplink and the respective transmission powers corresponding to each link except the NR side uplink on the target time domain resource.
  • the target time domain resources are the time domain resources of the overlapping part occupied by the transmission of the NR side link and the transmission of each link except the NR side link, the transmission of the NR side link and the NR side link
  • the transmission of each link outside the link occupies different frequency domain resources.
  • the transmission on the NR side uplink and the time domain resources occupied by the transmission of each link except the NR side uplink are completely or partially overlapped, it can also be understood that the transmission on the NR side uplink is the same as the transmission on the NR side.
  • the transmission of each link outside the uplink is frequency-division multiplexing (FDM), also called frequency-division multitasking.
  • FDM is a way of modulating multiple baseband signals onto different frequency carriers.
  • a multiplexing technique that superimposes to form a composite signal.
  • the transmission of the NR side uplink is not fully aligned with the timing of each link except the NR side uplink, and/or when the transmission of the NR side uplink is not the same as that of the NR side uplink
  • the sub-carrier spacing used by each link is different, partial overlap will occur.
  • Step 202 The terminal device determines the first actual transmission power of the NR side uplink on the target time domain resource according to the first transmission power and the transmission power corresponding to each link except the NR side uplink.
  • This application exemplarily provides the following three implementation manners for determining the first actual transmit power.
  • Implementation mode 1 If the terminal device determines that the sum of the first transmit power and the transmit power corresponding to each link except the NR side link is greater than the maximum transmit power of the terminal device, the first transmit power is reduced to the first 1. Actual transmit power; where the first actual transmit power satisfies the first actual transmit power and the sum of the transmit powers corresponding to each link except the NR side link does not exceed the maximum transmit power; or satisfies the first actual transmit power The sum of the transmit power corresponding to each link except the NR side link does not exceed the maximum transmit power, and the difference between the first actual transmit power and the first transmit power does not exceed the preset value. In this way, the first transmission power of the NR side uplink can be prevented from being reduced too much, causing the NR side uplink to fail to communicate normally.
  • Implementation manner 2 The terminal device subtracts the maximum transmit power of the terminal device from the difference of the second transmit power corresponding to each link outside the NR side uplink to determine the first actual transmit power.
  • Implementation mode 3 The terminal device determines the maximum transmit power of the terminal device minus the difference of the transmit power corresponding to each link outside the NR side uplink, and the power determined based on the path loss on the NR side uplink and the transmission bandwidth , At least two of the power determined based on the path loss and transmission bandwidth on each link except the NR side link, and the power determined based on the channel quality, and determine the minimum value of the determined at least two Is the first actual transmit power.
  • the present application provides a method for power allocation of the NR side uplink under different link parallel transmission.
  • the maximum transmit power of a terminal device can specifically refer to the maximum transmit power of a terminal device on one carrier, or the maximum transmit power of a terminal device on multiple carriers, or the total power of a terminal device on multiple carrier groups. Transmit power, or the maximum transmit power of a terminal device on a specific channel.
  • the maximum transmit power of the terminal device may be configured by signaling, may also be predefined, or may also be pre-configured.
  • the value of the maximum transmit power of the terminal device may be a linear value or a logarithmic value, which is not limited in this application.
  • the power control method shown in FIG. 2 is described in detail in the following three scenarios.
  • the terminal device transmits in parallel on the target time domain resource.
  • Scenario 1 NR side link and NR cellular link. That is, each link except the NR side link includes NR cellular link.
  • the first transmit power of NR side link is available Indicates that the second transmit power of the NR cellular link is available Maximum transmit power available for terminal equipment Said.
  • the values of i 1 and i 2 may be the same or different.
  • this application exemplarily provides the following three ways to determine the first actual transmit power of the NR side link.
  • Method 1 Reduce the first transmission power.
  • FIG. 3 it is a schematic flowchart of a method for determining the first actual transmit power of an NR side link provided in this application. The method includes the following steps:
  • Step 31 Determine the first transmit power of the NR side link and the second transmit power of the NR cellular link.
  • Step 32 Determine the sum of the first transmission power and the second transmission power.
  • Step 33 Determine whether the sum of the first transmit power and the second transmit power is greater than the maximum transmit power of the terminal device. If it is greater than the maximum transmit power of the terminal device, go to step 34; if it is not greater, the NR side link and the NR cellular link can be implemented separately. Some mechanisms perform power control, which will not be repeated in this application.
  • step 34 if Go to step 34; if Then the NR side link and the NR cellular link can perform power control according to the existing mechanism.
  • Step 34 Reduce the first transmission power of the NR side uplink to the first actual transmission power.
  • the first actual transmission power needs to satisfy: the sum of the first actual transmission power and the second transmission power does not exceed the maximum transmission power of the terminal device.
  • the data transmitted on the NR side link can be directly discarded or suspended.
  • Manner 2 Determine the difference between the maximum transmission power of the terminal device and the second transmission power as the first actual transmission power. Specifically, it can mean that the terminal device determines the first transmission power of the NR side link and the second transmission power of the NR cellular link; the difference between the maximum transmission power of the terminal device and the second transmission power is determined as the first actual transmission power.
  • Manner 3 Determine the minimum value among multiple items as the first actual transmit power.
  • the implementation manner 3 may specifically include the following processes:
  • the power determined based on the path loss and transmission bandwidth on the NR side link can be represented by 10log 10 (aM PSSCH + bM PSCCH ), which is determined based on the path loss and transmission bandwidth of the terminal equipment and network equipment on the NR cellular link
  • the power can be represented by ⁇ 10log 10 (M PSSCH )+ PO_PSSCH + ⁇ PSSCH ⁇ PL ⁇ ; the power determined based on the channel quality can be represented by P MAX_CBR .
  • the minimum of these two items The value determines the first actual transmit power. Specifically, it may be: min ⁇ the difference between the maximum transmission power of the terminal device minus the second transmission power, the power determined based on the path loss on the NR side uplink and the transmission bandwidth ⁇ .
  • the minimum of these two items The value determines the first actual transmit power. Specifically, it may be: min ⁇ the difference between the maximum transmission power of the terminal device minus the second transmission power, the power determined based on the path loss on the NR cellular link and the transmission bandwidth ⁇ .
  • the determined at least two items include the difference between the maximum transmit power of the terminal device minus the second transmit power, the power determined based on the path loss on the NR side link and the transmission bandwidth, and the power based on the NR cellular link.
  • the power determined by the path loss and transmission bandwidth, and the power determined based on the channel quality any of the following can be performed:
  • the first is to determine the difference between the maximum transmit power of the terminal equipment and the second transmit power, the power determined based on the path loss and the transmission bandwidth on the NR side link, and the power based on the terminal equipment and network equipment on the NR cellular link.
  • the minimum of the power determined by the path loss and the transmission bandwidth and the power determined based on the channel quality is determined as the first actual transmission power.
  • it can be: min ⁇ the difference between the maximum transmission power of the terminal device minus the second transmission power, the power determined based on the path loss on the NR cellular link and the transmission bandwidth ⁇ ; or, min ⁇ the maximum transmission power of the terminal device minus Remove the difference of the second transmit power, the power determined based on the channel quality ⁇ ; or, min ⁇ power determined based on the path loss and transmission bandwidth on the NR side link, based on the path loss and transmission bandwidth on the NR cellular link Determined power ⁇ ; or, min ⁇ power determined based on the path loss and transmission bandwidth on the NR side link, power determined based on the channel quality ⁇ ; or, min ⁇ based on the path loss and transmission bandwidth on the NR cellular link Determined power, power determined based on channel quality ⁇ .
  • the difference between the maximum transmit power of the terminal equipment and the second transmit power, the power determined based on the path loss and transmission bandwidth on the NR side link, and the power determined based on the terminal equipment and network equipment on the NR cellular link The minimum value of any three of the power determined by the path loss and the transmission bandwidth, and the power determined based on the channel quality is determined as the first actual transmission power.
  • the third type is the difference between the maximum transmit power of the terminal equipment and the second transmit power, the power determined based on the path loss and transmission bandwidth on the NR side link, and the power based on the terminal equipment and network equipment on the NR cellular link.
  • the minimum of the power determined by the path loss and the transmission bandwidth, and the power determined based on the channel quality, is determined as the first actual transmission power.
  • min The difference between the maximum transmit power of the terminal device and the second transmit power, the power determined based on the path loss and transmission bandwidth on the NR side link, and the power based on the terminal device and the network device on the NR cellular link The path loss and the power determined by the transmission bandwidth, and the power determined based on the channel quality ⁇ .
  • the transmission of the NR cellular link and the transmission of the NR side link occupy different frequency domain resources specifically including any of the following situations.
  • Case 1 NR cellular link transmission and NR side link transmission occupy the same bandwidth part (BWP) of the same carrier.
  • Case 2 NR cellular link transmission and NR side link transmission occupy different BWPs of the same carrier.
  • Case four NR cellular link transmission and NR side link transmission occupy different carriers in different frequency bands.
  • one carrier can be divided into multiple BWPs.
  • BWPs usually only one or a limited number of BWPs can work at the same time at a time.
  • Activating multiple BWPs at the same time requires that the radio frequency unit and baseband unit of the UE have the ability to transmit and receive multiple BWPs in parallel, that is, multiple BWPs in parallel place additional requirements on the power consumption, cost, and processing capabilities of terminal devices.
  • Scenario two, NR side link, NR cellular link and LTE cellular link That is, each link except the NR side link includes NR cellular link and LTE cellular link.
  • the first transmit power of the NR side link is available Indicates that the second transmit power of the NR cellular link is available
  • the third transmit power of the LTE cellular link is available Indicates that the maximum transmit power of the terminal equipment is used Said.
  • i 1 represents the time slot on the NR cellular link
  • i 2 represents the time slot on the NR side link
  • i 3 represents the LTE cellular chain
  • the time slots on the road overlap completely or partially, and the values of i 1 , i 2 and i 3 may be the same or different.
  • the NR cellular link and the LTE cellular link are on different carriers, and the NR cellular link and the NR side link can be on the same carrier or on different carriers.
  • the carrier where the link is located refers to the carrier used during link transmission, or refers to the carrier where the transmission resource is located during link transmission.
  • the carrier on which the NR cellular link is located refers to the carrier used for transmission on the NR cellular link, or refers to the carrier on which transmission resources are located for transmission on the NR cellular link.
  • the carrier on which the NR side link is located refers to the carrier used during NR side link transmission, or refers to the carrier where the transmission resource is located during NR side link transmission.
  • the carrier on which the LTE cellular link is located refers to the carrier used during LTE cellular link transmission, or refers to the carrier on which transmission resources are located during LTE cellular link transmission.
  • the carrier on which the LTE side link is located refers to the carrier used during LTE side link transmission, or refers to the carrier where the transmission resource is located during LTE side link transmission.
  • the present application exemplarily provides the following three ways to determine the first actual transmit power of the NR side link.
  • Method A reduce the first transmit power.
  • the method A may specifically include the following processes:
  • the first actual transmission power satisfies: the sum of the first actual transmission power, the second transmission power, and the third transmission power does not exceed the maximum transmission power of the terminal device.
  • the NR side link in order to prevent the first transmission power of the NR side link from being reduced too much, causing the NR side link to fail to communicate normally, it is necessary to ensure the sum of the first actual transmission power, the second transmission power and the third transmission power The maximum transmission power of the terminal device is not exceeded, and the difference between the first actual transmission power and the first transmission power is not greater than the first preset value. If the difference between the first actual transmission power and the first transmission power is greater than the first preset value, the data transmitted on the NR side link can be directly discarded or suspended.
  • the terminal device may specifically refer to a terminal device, which determines the first transmission power of the NR side link, the second transmission power of the NR cellular link, and the third transmission power of the LTE cellular link.
  • the terminal device determines the first actual transmission power by subtracting the second transmission power from the maximum transmission power of the terminal device, subtracting the third transmission power, and subtracting the third transmission power of the LTE cellular link.
  • Method C Determine the minimum value among multiple items as the first actual transmission power.
  • the implementation manner C may specifically include the following processes:
  • the difference between the maximum transmit power of the terminal device minus the second transmit power and the third transmit power which is determined based on the path loss on the NR side uplink and the transmission bandwidth Power, power determined based on the path loss and transmission bandwidth of the terminal equipment and network equipment on the NR cellular link, power determined based on the path loss on the LTE cellular link and the transmission bandwidth, and power determined based on the channel quality.
  • the determined at least two items include the maximum transmit power of the terminal device minus the difference of the second transmit power and the difference of the third transmit power, and the sum of the transmission power based on the path loss on the LTE cellular link.
  • the minimum value of these two items is used to determine the first actual transmit power. Specifically, it may be: min ⁇ the difference between the maximum transmission power of the terminal device minus the second transmission power and then the difference between the third transmission power, and the power determined based on the path loss on the LTE cellular link and the transmission bandwidth ⁇ .
  • the determined at least two items include: the maximum transmit power of the terminal device minus the difference of the second transmit power and the difference of the third transmit power, based on the path loss and transmission bandwidth on the NR side uplink Determined power, power determined based on the path loss and transmission bandwidth of the terminal equipment and network equipment on the NR cellular link, power determined based on the path loss on the LTE cellular link and the transmission bandwidth, and power determined based on the channel quality .
  • the first is to subtract the difference between the maximum transmission power of the terminal equipment from the second transmission power and then subtract the difference between the third transmission power, the power determined based on the path loss on the NR side uplink and the transmission bandwidth, and the power based on the terminal Either the path loss of the device and the network equipment on the NR cellular link and the power determined by the transmission bandwidth, the power determined based on the path loss on the LTE cellular link and the transmission bandwidth, and the power determined based on the channel quality.
  • the minimum value is determined as the first actual transmit power.
  • the maximum transmit power of the terminal device is subtracted from the difference of the second transmit power and then the difference of the third transmit power is subtracted, the power determined based on the path loss on the NR side uplink and the transmission bandwidth, and the power based on the terminal
  • the third type is to subtract the difference between the maximum transmission power of the terminal equipment and the second transmission power and then subtract the difference between the third transmission power, the power determined based on the path loss on the NR side uplink and the transmission bandwidth, and the power based on the terminal.
  • the minimum of the power determined by the path loss and transmission bandwidth of the device and the network equipment on the NR cellular link, the power determined based on the path loss on the LTE cellular link and the transmission bandwidth, and the power determined based on the channel quality. Determined as the first actual transmit power.
  • the transmission of the NR cellular link, the transmission of the NR side link and the LTE cellular link occupy different frequency domain resources specifically including any of the following situations.
  • NR side link, LTE cellular link, and NR cellular link are different carriers in the same frequency band.
  • Case 2 NR side link, LTE cellular link, and NR cellular link have different carriers in different frequency bands.
  • Case 3 Any two of the NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands.
  • Case 4 NR side link, LTE cellular link, and NR cellular link are on the same carrier in the same frequency band.
  • each link except the NR side link includes the NR cellular link, the LTE cellular link, and the LTE side link.
  • the first transmit power of NR side link is available Indicates that the second transmit power of the NR cellular link is available
  • the third transmit power of the LTE cellular link is available
  • the fourth transmit power of the LTE side link is available
  • the maximum transmit power of the terminal equipment is used Said.
  • i 1 represents the time slot on the NR cellular link
  • i 2 represents the time slot on the NR side link
  • i 3 represents the LTE cell
  • the time slots on the link and the time slots on the LTE side link represented by i 4 overlap completely or partially, and the values of i 1 , i 2 , i 3 and i 4 may be the same or different.
  • the NR cellular link and the LTE cellular link are on different carriers.
  • the NR cellular link and the NR side link can be on the same carrier or on different carriers.
  • the NR side link and LTE side links are on different carriers.
  • the present application exemplarily provides the following six ways to determine the first actual transmit power of the NR side link.
  • the method a can specifically include the following processes:
  • the first actual transmission power satisfies: the sum of the first actual transmission power, the second transmission power, the third transmission power, and the fourth transmission power does not exceed the maximum transmission power of the terminal device.
  • the first actual transmission power of the NR side link is the same as the second transmission power, the third transmission power and the first transmission power. 4.
  • the sum of the transmission power does not exceed the maximum transmission power of the terminal device, and the difference between the first actual transmission power and the first transmission power is not greater than the first preset value. If the difference between the first actual transmission power and the first transmission power is greater than the first preset value, the data transmitted on the NR side link can be directly discarded or suspended.
  • Manner b The difference between the maximum transmission power of the terminal device minus the second transmission power, the third transmission power, and the fourth transmission power is determined as the first actual transmission power.
  • the implementation manner b may specifically include the following processes:
  • the difference between the maximum transmission power of the terminal device minus the second transmission power, the third transmission power, and the fourth transmission power is determined as the first actual transmission power.
  • Manner c Determine the minimum value of the multiple items as the first actual transmit power.
  • the implementation manner 3 may specifically include the following processes:
  • the maximum transmit power of the terminal device minus the second transmit power, then the third transmit power, and the fourth transmit power, based on the difference between the NR side uplink Power determined by path loss and transmission bandwidth, power determined based on path loss and transmission bandwidth of terminal equipment and network equipment on NR cellular link, power determined based on path loss on LTE cellular link and transmission bandwidth, based on LTE The power determined by the path loss and transmission bandwidth on the side link, and the power determined based on the channel quality.
  • the determined at least two items include the difference between the maximum transmit power of the terminal device minus the second transmit power, the third transmit power, and the fourth transmit power, based on the difference between the NR side uplink Power determined by path loss and transmission bandwidth, power determined based on path loss and transmission bandwidth of terminal equipment and network equipment on NR cellular link, power determined based on path loss on LTE cellular link and transmission bandwidth, based on LTE
  • any of the following methods can be performed:
  • the first is the difference between the maximum transmission power of the terminal equipment minus the second transmission power, the third transmission power, and the fourth transmission power, which is determined based on the path loss on the NR side uplink and the transmission bandwidth Power, power determined based on the path loss and transmission bandwidth of the terminal equipment and network equipment on the NR cellular link, power determined based on the path loss on the LTE cellular link and the transmission bandwidth, based on the path on the LTE side link
  • the minimum of any two of the power determined by the loss and the transmission bandwidth and the power determined based on the channel quality is determined as the first actual transmission power.
  • the second type is the difference between the maximum transmission power of the terminal equipment minus the second transmission power, the third transmission power, and the fourth transmission power, which is determined based on the path loss on the NR side uplink and the transmission bandwidth.
  • Power power determined based on the path loss and transmission bandwidth of the terminal equipment and network equipment on the NR cellular link, power determined based on the path loss on the LTE cellular link and the transmission bandwidth, based on the path on the LTE side link
  • the minimum value of any three of the power determined by the loss and the transmission bandwidth and the power determined based on the channel quality is determined as the first actual transmit power.
  • the third type is the difference between the maximum transmission power of the terminal equipment minus the second transmission power, the third transmission power, and the fourth transmission power, which is determined based on the path loss on the NR side uplink and the transmission bandwidth Power, power determined based on the path loss and transmission bandwidth of the terminal equipment and network equipment on the NR cellular link, power determined based on the path loss on the LTE cellular link and the transmission bandwidth, based on the path on the LTE side link.
  • the minimum of the power determined by the loss and the transmission bandwidth and the power determined based on the channel quality is determined as the first actual transmission power.
  • the determined at least two items include the maximum transmit power of the terminal device minus the second transmit power, the third transmit power, and the fourth transmit power, and the difference based on the LTE cellular link
  • the minimum value of these two items is used to determine the first actual transmit power. Specifically, it can be: min ⁇ The difference between the maximum transmit power of the terminal device minus the second transmit power, then the third transmit power, and the fourth transmit power, based on the sum of the path loss on the LTE cellular link Transmission bandwidth determined power ⁇ .
  • Method d According to priority rules, power is allocated among the four links of NR side link, NR cellular link, LTE cellular link and LTE side link.
  • the actual transmission power of the LTE cellular link is controlled. Is the third transmit power, the actual transmit power of the LTE side link is the fourth transmit power, the actual transmit power of the NR cellular link is the second transmit power, and the actual transmit power of the NR side link is the first transmit power. It can also be understood that the transmit power is preferentially allocated to links other than the NR side link, and when the difference between the remaining power and the first transmit power of the NR side link is greater than the preset value, it is directly discarded Or suspend data on the NR side uplink.
  • Method e allocate to some links according to priority rules, and allocate the remaining power according to the priority of data packets on the link.
  • power is allocated to LTE cellular links and LTE side links with higher priority, and the remaining power is allocated according to the data packets to be transmitted on the NR cellular link and NR side link. Priority to allocate power.
  • power is allocated to higher priority LTE cellular links and LTE side links, and then determined according to the priority of the data packets to be transmitted on the NR cellular link and NR side link Which link to drop the packet.
  • Method f using signaling to indicate to which link or links the power is preferentially allocated. Further optionally, the remaining links are equally allocated power or allocated according to the priority of the data packets to be transmitted on the respective links.
  • the remaining power is equally distributed to the NR cellular link and the NR side link.
  • the transmission of the NR cellular link, the transmission of the NR side link and the LTE cellular link occupy different frequency domain resources, specifically including any of the following situations.
  • LTE side link, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band.
  • Case 2 LTE side link, NR side link, LTE cellular link, and NR cellular link have different carriers in different frequency bands.
  • Case 3 Any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other two are on different carriers in different frequency bands.
  • Case 4 Any three of the LTE side link, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands.
  • Case 5 Any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other two are on different carriers in different frequency bands. The same carrier in a frequency band.
  • the terminal equipment in this application can simultaneously support NR cellular link, LTE cellular link, NR side link and LTE side link to work in parallel on different carriers. It should be noted that the total number of carriers used on the above four links does not exceed the maximum total number of carriers supported by the terminal equipment, and the total number of transmission channels used by the above four links does not exceed the total maximum transmission channels supported by the terminal equipment number.
  • CA Carrier Aggregation, carrier aggregation or carrier combination
  • CA technology can aggregate 2 to 5 component carriers (CC) to achieve a maximum transmission bandwidth of 100 MHz, which can effectively increase the transmission rate.
  • CA can support the aggregation of continuous carriers in one frequency band (as shown in Figure 4a).
  • Carrier 1 and carrier 2 are two continuous carriers in one frequency band.
  • CA can also support non-continuous carriers in the same frequency band (intra-band).
  • Carrier aggregation (as shown in Figure 4b), carrier 1 and carrier 2 can also be two non-contiguous carriers in the same frequency band, that is, carrier aggregation in the same frequency band can be divided into continuous carrier aggregation and non-contiguous carrier aggregation Carrier aggregation.
  • CA can also support the aggregation of carriers in different frequency bands (inter-band) (as shown in Figure 4c).
  • Carrier 1 is in Band 1
  • Carrier 2 is in Band 2.
  • the two carriers of different frequency bands are aggregated so that one user is in different Two carriers of the frequency band are used for transmission.
  • a communication method provided by this application includes the following steps:
  • Step 501 The terminal device determines the supported multi-carrier combination mode of the carrier where the side link and the cellular link are located.
  • the multi-carrier combination manner includes the combination of the carrier where the NR side link is located and the carrier where each link except the NR side link is located.
  • the combination of multiple carriers includes any of the following scenarios.
  • NR side link and NR cellular link are on different carriers in the same frequency band.
  • NR side link and NR cellular link have different carriers in different frequency bands.
  • the carrier combination mode may also include: the NR side link and the NR cellular link are on the same BWP of the same carrier, or NR The side link and the NR cellular link have different BWPs in the same carrier.
  • the capability information may include any one or more of scenario 1a, scenario 1b, and scenario 1c.
  • the combination of multiple carriers includes any of the following scenarios.
  • NR side link, LTE cellular link, and NR cellular link are different carriers in the same frequency band.
  • any two of the NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands.
  • NR side link, LTE cellular link, and NR cellular link are on the same carrier in the same frequency band.
  • the capability information may include any one or more of scenario 2a, scenario 2b, scenario 2c, and scenario 2d.
  • the carrier combination mode also includes: the NR side link, the LTE cellular link and the NR cellular link are on the same carrier.
  • the same BWP of a carrier; or NR side link, LTE cellular link and NR cellular link with different BWPs in the same carrier; or any of NR side link, LTE cellular link and NR cellular link Two are in the same BWP of the same carrier, and the other is in a different BWP of the same carrier.
  • the combination of multiple carriers includes any of the following scenarios.
  • LTE side link, NR side link, LTE cellular link, and NR cellular link are different carriers in the same frequency band.
  • LTE side link, NR side link, LTE cellular link, and NR cellular link have different carriers in different frequency bands.
  • any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link are in different carriers in the same frequency band, and the other two are in different carriers in different frequency bands.
  • any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other two are on different carriers in different frequency bands. The same carrier in the frequency band.
  • any three of the LTE side link, the NR side link, the LTE cellular link, and the NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands.
  • the carrier combination mode also includes: NR side link, LTE cellular link, LTE side link and NR cellular link are on the same BWP of the same carrier; or NR side link, LTE cellular link, LTE side link and NR cellular link are in different BWPs on the same carrier; Or any two of the NR side link, LTE cellular link and NR cellular link are in the same BWP in the same carrier, and the other two are in another BWP of the same carrier; or LTE side link, NR side link Any three of the link, the LTE cellular link, and the NR cellular link are in different BWPs on the same carrier, and the other one is in different BWPs on the same carrier.
  • the capability information may include any one or more of scenario 3a, scenario 3b, scenario 3c, scenario 3d, and scenario 3e.
  • the multi-carrier combination method can be independent of the above-mentioned power control process.
  • the power control method shown in FIG. 2 and the communication method shown in FIG. 5 are independent of each other.
  • the multi-carrier combination method can also be combined with the power control process. That is to say, based on the above-mentioned power control process shown in FIG. 2, the multi-carrier combination mode of the carrier where the multiple links are provided; or it may be based on the multi-chain combination provided in the communication method shown in FIG. 5 Power control method for parallel transmission.
  • the multi-carrier combination method is based on the combination methods introduced in the above scenario 1, scenario 2 and scenario 3, and may also include: 1) LTE side link + NR cellular link; 2) LTE side link Link + LTE cellular link and NR cellular link.
  • the combination of multiple carriers includes any of the following scenarios.
  • the LTE side link and the NR cellular link are on the same carrier.
  • the carrier combination method further includes: the LTE side link and the NR cellular link are on the same BWP of the same carrier, or the LTE side
  • the uplink and NR cellular links have different BWPs in the same carrier.
  • the combination of multiple carriers includes any of the following scenarios.
  • LTE side link, LTE cellular link, and NR cellular link are different carriers in the same frequency band.
  • LTE side link LTE cellular link
  • NR cellular link have different carriers in different frequency bands.
  • any two of the LTE side link, the LTE cellular link, and the NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands.
  • LTE side link, LTE cellular link, and NR cellular link are on the same carrier in the same frequency band.
  • the carrier combination mode also includes: the LTE side link, the LTE cellular link and the NR cellular link are on the same carrier.
  • the same BWP of a carrier; or different BWPs of LTE side link, LTE cellular link and NR cellular link in the same carrier; or any of LTE side link, LTE cellular link and NR cellular link Two are in the same BWP of the same carrier, and the other is in a different BWP of the same carrier.
  • Step 502 The terminal device determines capability information, where the capability information includes at least one of the multi-carrier combination modes.
  • the capability information further includes at least one of the following: LTE side links, NR side links, LTE cellular links, and NR cellular links supported by the terminal device
  • the maximum transmission rate of the terminal device corresponding to any one of the links; any two of the LTE side link, NR side link, LTE cellular link, and the NR cellular link supported by the terminal device
  • the maximum transmission rate of the terminal device corresponding to each type; the terminal corresponding to any three of the LTE side link, NR side link, LTE cellular link, and the NR cellular link supported by the terminal device
  • a multiple-input multiple-output MIMO mode supported by at least one of the LTE side link, the NR side link, the LTE cellular link, and the NR cellular link supported by the terminal device.
  • the MIMO mode includes any one of the following: a single-antenna transmission mode, a multi-antenna transmission mode, a transmit diversity transmission mode, and a spatial multiplexing transmission mode.
  • the transmission diversity can be space frequency block coding (SFBC), space-time block coding (STBC), cyclic delay diversity (CDD), codebook-based Distribution diversity, any one of non-codebook-based distribution diversity.
  • the spatial multiplexing may be any of single-user spatial multiplexing, multi-user spatial multiplexing, codebook-based spatial multiplexing, and non-code division-based spatial multiplexing.
  • it may further include the maximum number of antennas required or supported by the terminal device.
  • the capability information further includes the total maximum number of transmission channels supported by the terminal device, or the maximum number of carriers of any one of the NR side link and each link except the NR side link ; Or, the total maximum number of transmission channels on any one of the NR side uplink and each link except the NR side uplink; or, the NR side uplink and the NR side uplink The channel bandwidth on any one of the links; or the subcarrier spacing between the NR side link and any one of the links except the NR side link, where the NR side link The link and any one of the links except the NR side link work on the same carrier or on different carriers in the same frequency bandwidth; among them, each link except the NR side link includes the following At least one of them: LTE side link, LTE cellular link and NR cellular link. Among them, the greater the total maximum number of transmission channels supported by the terminal device, the greater the maximum transmission rate of the terminal device supported by the terminal device.
  • the terminal device since the total maximum number of transmission channels supported by the terminal device is fixed, the terminal device needs to determine the combination of multiple carriers and the capability information of the terminal device according to the total maximum number of transmission channels supported. In other words, the multi-carrier combination mode and capability information of the terminal device is limited by the total maximum number of transmission channels supported by the terminal device. When the number of carriers or channels used by a link increases, the number of carriers or channels available for another link will inevitably decrease.
  • Example 1 The bandwidth part (BWP) of the cellular link and the BWP of the side link use exactly the same carrier set. For example, ⁇ C 0 , C 1 , C 2 , C 3 ⁇ , and they share a radio frequency (RF) channel.
  • RF radio frequency
  • the total maximum number of transmission channels supported by the terminal device can be one or more.
  • the LTE side link and the NR side link may be on the same carrier or on different carriers.
  • Example 2 The BWP of the cellular link and the BWP of the side link use completely different carrier sets.
  • the cellular link uses ⁇ C 0 , C 1 ⁇
  • the side link uses ⁇ C 2 , C 3 ⁇ , and they use different RF channels.
  • the total maximum number of transmission channels supported by the terminal device can be two or Multiple.
  • ⁇ C 0 , C 1 ⁇ may be the frequency band of the cellular link
  • ⁇ C 2 , C 3 ⁇ may be the frequency band of the intelligent transport system (intelligent transport system, ITS) or the frequency band of the cellular link
  • ITS intelligent transport system
  • ⁇ C 0 , C 1 ⁇ may be the frequency band of the cellular link
  • C 2 may be the frequency band of the cellular link
  • C 3 may be the frequency band of the ITS.
  • the LTE side link and the NR side link may be on the same carrier, or on C 2 and C 3 respectively.
  • Example 3 The carrier set used by the BWP of the cellular link is included in the carrier set used by the BWP of the side link.
  • the cellular link uses ⁇ C 0 , C 1 ⁇
  • the side link uses ⁇ C 0 , C 1 , C 2 , C 3 ⁇
  • They use different RF channels.
  • the total maximum number of transmission channels supported by the terminal device is at least 2.
  • ⁇ C 0 , C 1 ⁇ may be the frequency band of the cellular link.
  • ⁇ C 2 , C 3 ⁇ can be the ITS frequency band or the cellular link frequency band.
  • the carrier set used by the BWP of the cellular link includes the carrier set used by the BWP of the side link.
  • the cellular link uses ⁇ C 0 , C 1 , C 2 , C 3 ⁇
  • the side link uses ⁇ C 2 , C 3 ⁇ .
  • the terminal equipment uses the same RF chain
  • the path in ⁇ C 0 , C 1 ⁇ can be the same RF chain or different RF channel chains, depending on whether it is inter-band or intra-band.
  • Example 5 The BWP of the cellular link and the BWP of the side link use part of the same carrier or carrier set.
  • the cellular link uses ⁇ C 0 , C 1 , C 2 ⁇ , while the side link uses ⁇ C 2 , C 3 ⁇ , and they use different RF channels.
  • C 2 is the carrier of the cellular link.
  • C 3 is the ITS carrier.
  • the total maximum number of transmission channels supported by the terminal device is at least 2. It should be understood that if the number of RF channels is 2, ⁇ C 0 , C 1 , C 2 ⁇ must be the carrier on the intra-band.
  • Step 503 The terminal device sends capability information to the network device.
  • the terminal device may also send capability information to other terminal devices.
  • the network device or other terminal device receives the capability information from the terminal device.
  • the terminal device reports the capability information of each link it supports to the network device or other terminal devices.
  • the network device can determine whether to activate multi-carrier transmission or not according to the capability information of the terminal device. And to determine whether multiple links can be scheduled for parallel data transmission. In other words, the network device can make reasonable scheduling for each link supported by the terminal device based on the capability information reported by the terminal device.
  • the network device will configure the terminal device to transmit data on different links based on the capability information reported by the terminal device.
  • the terminal device reports to the network device that it supports simultaneous (frequency-division multiplexing (FDM)) data transmission on the NR cellular link and the NR side link on the same carrier, the terminal device will Data will be transmitted simultaneously on the NR cellular link and the NR side link.
  • FDM frequency-division multiplexing
  • the terminal device when the terminal device reports to the network device that it supports simultaneous data transmission on the same carrier (FDM) on the NR cellular link, NR side link, LTE cellular link and LTE side link, the terminal device will Simultaneously transmit data on the NR cellular link, NR side link, LTE cellular link and LTE side link.
  • FDM carrier
  • the terminal device determines that the data to be transmitted on the NR cellular link and the NR side link partially or completely overlap in the time domain, another processing method is to use a certain link as the target link for actual transmission Perform normal communication and discard or suspend data on the remaining links.
  • the target link for actual transmission needs to be determined according to a certain method or rule.
  • Step 601 The terminal device according to the type of the first information to be transmitted on the NR side link and the type of the second information to be transmitted on the NR cellular link, or according to the type of the second information to be transmitted on the NR cellular link, Determine the target link, the target link is NR side link or NR cellular link.
  • transmission means receiving or sending.
  • the second information may be carried in a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Step 602 The terminal device communicates through the target link.
  • the first information transmitted by the terminal device through the NR side link discards or suspends the second information on the NR cellular link.
  • the terminal device transmits the second information through the NR cellular link, and discards or suspends the first information on the NR side link.
  • the type of the second information is any one of aperiodic SRS, HARQ feedback information, scheduling request SR, RSRP, and beam recovery request message
  • the NR cellular link is the target Link
  • the HARQ feedback information includes an ACK response message or a NACK response message.
  • the NR side link is determined as the target link.
  • the NR side link is determined as the target link.
  • the terminal device may receive first indication information from the network device, where the first indication information is used to indicate whether the target link is an NR side link or an NR cellular link.
  • a terminal device receives a dynamically scheduled downlink control information (DCI) command from a network device, and may use 1 bit in the DCI command to indicate the target link.
  • DCI downlink control information
  • 1 may be used to indicate that the target link is an NR side link
  • 0 may be used to indicate that the target link is an NR cellular link.
  • 1 indicates that the terminal device transmits data through the NR side link, and discards or suspends data on other links
  • using 0 indicates that the terminal device transmits data through the NR cellular link, and discards or suspends data on other links.
  • the first indication information may also be a system message or a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the priorities of the two data packets can be compared, and the link corresponding to the data packet with the higher priority is the target link road.
  • the target link is determined according to the priority of the data packet corresponding to the feedback information.
  • This application exemplarily shows three possible implementation manners.
  • One is that when the first information is HARQ feedback information and the priority of the data packet of the feedback information is higher than a second threshold, it is determined that the NR cellular link is the target link.
  • the other is to separately determine the priority of the data packet corresponding to the feedback information and the priority of the first information, and determine the link corresponding to the higher priority as the target link.
  • Another is that when the priority of the first information is higher than a third threshold, the NR side link is determined as a target link.
  • the type of the first information and the second information determines which link the terminal device currently transmits data through. This helps to reduce the complexity of terminal implementation and minimize Because of the impact of discarding or suspending part of the information on the transmission.
  • the terminal device can either send the first information or receive the first information on the NR side uplink.
  • the terminal device determines that the first information is the first data packet, and the second information is the second data packet, and the NR side link and the NR cellular link are on the same carrier or adjacent carriers in the same frequency band.
  • Two links on the same carrier or on adjacent carriers share the same RF filter, and the transmission and reception interference in the terminal equipment cannot be suppressed. Therefore, the transmission of the NR cellular link will affect the NR side. There is interference in link reception.
  • this application provides the following communication method.
  • another communication method provided by this application includes the following steps:
  • Step 701 The terminal device determines that the first information on the NR side link is a first data packet, and the second information on the NR cellular link is a second data packet.
  • the terminal device is to receive the first data packet and is to send the second data packet, or the terminal device is to send the first data packet and is to receive the second data packet.
  • Step 702 If the terminal device determines that the NR side link and the NR cellular link are on the same carrier or on different carriers in the same frequency band, the NR cellular link is determined as the target link.
  • the data transmission of the NR cellular link of the terminal device is the highest priority. That is, when there is data transmission on the NR cellular link on the configured NR transmission resources, the NR side uplink stops receiving data.
  • the terminal device may also determine whether to stop receiving the first data packet of the NR side uplink according to the priority of the first data packet.
  • the network device configures different priorities for different types of data packets.
  • the NR side link of the terminal device determines whether to stop receiving the first data packet of the NR side link by analyzing the high-level priority information of the received data packet.
  • the priority judgment can be compared with a configured threshold, or can be compared with the priority of the second data packet to be sent on the NR cellular link of the terminal device, or it can be signaling (such as priority information).
  • Command carries information indicating priority.
  • the terminal device may also determine whether to stop receiving the first data packet of the NR side link according to the priority of the NR side link resource pool. Specifically, when the network device configures the resource pool of the NR side link for the terminal device, it configures the corresponding priority of the resource pool. Or, further, the priority of the NR side link may also be passed by the terminal device at the transmitting end.
  • Fig. 8 exemplarily shows a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 800 in this example may be the terminal device in the foregoing content, and may execute the solutions corresponding to the terminal device in FIG. 2, FIG. 5, FIG. 6 and FIG. 7 above.
  • the terminal device 800 may also be the terminal device 101 or the terminal device 102 in FIG. 1 described above.
  • the terminal device 800 includes a processor, a memory, a control circuit, and an antenna.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute software programs, and process data of the software programs, for example, to support the terminal device 800 to execute any of the above-mentioned embodiments by the terminal device 800 Method of execution.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 8 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in this application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device 800. Execute the software program and process the data of the software program.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards
  • the terminal device 800 may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device 800 may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built into the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiving function can be regarded as the transceiving unit 902 of the terminal device 900, and the processor with the processing function can be regarded as the processing unit 901 of the terminal device 900.
  • the transceiver unit 902 may also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 902 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiver unit 902 can be regarded as the sending unit, that is, the transceiver unit 902 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the antenna On the downlink, the antenna receives the downlink signal (including data and/or control information) sent by the network device, and on the uplink, the antenna sends the uplink signal (including data) to the network device or other terminal equipment. And/or control information).
  • service data and signaling messages are processed. These units are based on the radio access technology adopted by the radio access network (for example, LTE, NR, and other evolved system access technologies) To process.
  • the processor is also used to control and manage the actions of the terminal device, and is used to execute the processing performed by the terminal device in the foregoing embodiment.
  • the processor is also used to support the terminal device to execute the execution method involving the terminal device in FIG. 8.
  • FIG. 8 only shows a simplified design of the terminal device.
  • the terminal device may include any number of antennas, memories, processors, etc., and all terminal devices that can implement the application are within the protection scope of the application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the transceiver unit is referred to as a transceiver
  • the processing unit is referred to as a processor as an example.
  • the processor is used to determine the first transmit power of the NR side link and the corresponding transmit power of each link except the NR side link on the target time domain resource, according to the The first transmission power and the transmission power corresponding to each link except the NR side link, determine the first actual transmission power of the NR side link on the target time domain resource; wherein,
  • the target time domain resource is the time domain resource of the overlapping part occupied by the transmission of the NR side uplink and the transmission of each link except the NR side uplink. Transmission and transmission of each link except the NR side link occupies different frequency domain resources; the transceiver is used to transmit data.
  • the processor is configured to: if it is determined that the sum of the first transmit power and the transmit power corresponding to each link except the NR side link is greater than the maximum transmit power of the terminal device, then Reduce the first transmission power to the first actual transmission power; wherein the first actual transmission power satisfies any one of the following: the first actual transmission power is divided by the NR side line The sum of the transmission powers corresponding to each link outside the link does not exceed the maximum transmission power; the first actual transmission power and the sum of the transmission powers corresponding to each link except the NR side link The maximum transmission power is not exceeded, and the difference between the first actual transmission power and the first transmission power is not greater than a preset value.
  • the processor is configured to: subtract the maximum transmit power of the terminal device from the difference of the second transmit power corresponding to each link outside the NR side uplink, and determine it as the first One actual transmit power.
  • the processor is configured to: determine the maximum transmit power of the terminal device minus the difference of the transmit powers corresponding to the respective links outside the NR side uplink; based on the NR side uplink Power determined based on the path loss and transmission bandwidth of the NR; power determined based on the path loss and transmission bandwidth of each link except the NR side link; any at least two of the power content determined based on the channel quality, and The minimum value of the determined at least two items is determined as the first actual transmission power.
  • each link except the NR side link includes any one of the following: NR cellular link; NR cellular link and LTE cellular link; NR cellular link, LTE cellular link and LTE side link.
  • the processor is further configured to: determine the combination of the supported NR side link and the carrier on which each link except the NR side link is located; determine capability information .
  • the transceiver is also configured to send the capability information to a network device or other terminal devices, where the capability information includes at least one of the multi-carrier combination modes.
  • each link except the NR side link includes an NR cellular link
  • the combination of the carrier includes any one of the following: the NR side link and the NR cellular link Different carriers in the same frequency band; different carriers of the NR side link and the NR cellular link in different frequency bands; the NR side link and the NR cellular link correspond to the same carrier.
  • the processor is configured to perform according to the type of the first information to be transmitted on the NR side link and the second information to be transmitted on the NR cellular link, or according to the type of the second information to be transmitted on the NR cellular link
  • the type of the second information to be transmitted determines the target link, and the target link is an NR side link or an NR cellular link.
  • the transceiver is used to communicate through the target link.
  • the processor It is specifically used to determine that the NR cellular link is the target link.
  • the processor is specifically configured to determine that the NR side link is the target link.
  • the processor is configured to determine the target link according to the priority of the data packet corresponding to the feedback information.
  • the processor is specifically configured to: determine that the first information is a first data packet, the second information is a second data packet, and the terminal device is to receive the first data packet and to send the first data packet. Two data packets, or the terminal device is to send the first data packet and to receive the second data packet; if it is determined that the NR side link and the NR cellular link are on the same carrier or on different carriers in the same frequency band , It is determined that the NR cellular link is the target link.
  • the processor is used to determine the supported multi-carrier combination mode of the carrier where the side link and the cellular link are located, and determine capability information.
  • the multi-carrier combination mode includes the location of the NR side link.
  • the combination of the carrier where each link except the NR side link is located, and the capability information includes at least one of the multi-carrier combination modes.
  • the transceiver is used to send the capability information to a network device or other terminal devices.
  • the side link includes an NR side link
  • the cellular link includes an NR cellular link
  • the multi-carrier combination manner includes any one of the following: the The NR side link and the NR cellular link are on different carriers in the same frequency band; or, the NR side link and the NR cellular link are on different carriers in different frequency bands; or, the NR side The uplink and the NR cellular link correspond to the same carrier.
  • the combination of multiple carriers includes: LTE side link and NR cellular link are different carriers in the same frequency band; or, LTE The side link and the NR cellular link are on different carriers in different frequency bands; or, the LTE side link and the NR cellular link are on the same carrier.
  • the multi-carrier combination includes: NR side link, LTE cellular link, NR cellular link Different carriers in the same frequency band; or different carriers in NR side link, LTE cellular link, NR cellular link in different frequency bands; or NR side link, LTE cellular link, NR cellular link Any two are in a different carrier in the same frequency band, and the other is in a different carrier in a different frequency band; or the NR side link, LTE cellular link, and NR cellular link are on the same carrier in the same frequency band.
  • the combination of multiple carriers includes: LTE side link, LTE cellular link, NR cellular link Different carriers in the same frequency band; or different carriers in LTE side link, LTE cellular link, NR cellular link in different frequency bands; or LTE side link, LTE cellular link, NR cellular link Any two are in different carriers in the same frequency band, and the other is in different carriers in different frequency bands; or the same carrier in the same frequency band for LTE side link, LTE cellular link, and NR cellular link.
  • the multi-carrier combination includes: LTE side link, NR side link Different carriers in the same frequency band of LTE cellular link, NR cellular link; or different carriers of LTE side link, NR side link, LTE cellular link, NR cellular link in different frequency bands; Or any two of the LTE side link, NR side link, LTE cellular link, and NR cellular link are in different carriers in the same frequency band, and the other two are in different carriers in different frequency bands; or LTE side Any three of the uplink, NR side link, LTE cellular link, and NR cellular link are on different carriers in the same frequency band, and the other is on different carriers in different frequency bands; or LTE side link Any two of the NR side link, LTE cellular link, and NR cellular link are in different carriers in the same frequency band, and the other two in different frequency bands are in the same carrier in the same frequency band.
  • the capability information further includes at least one of the following: LTE side links, NR side links, LTE cellular links, and the NR supported by the terminal device
  • the maximum transmission rate of the terminal device corresponding to any one of the cellular links; any of the LTE side link, NR side link, LTE cellular link, and the NR cellular link supported by the terminal device
  • the maximum transmission rates of the two corresponding terminal devices; any three of the LTE side link, NR side link, LTE cellular link, and the NR cellular link supported by the terminal device respectively correspond to The maximum transmission rate of the terminal device; the maximum transmission rate of the four terminal devices corresponding to the LTE side link, NR side link, LTE cellular link, and the NR cellular link supported by the terminal device; terminal;
  • the MIMO mode includes any one of the following: a single-antenna transmission mode, a multi-antenna transmission mode, a transmit diversity transmission mode, and a spatial multiplexing transmission mode.
  • the transmission diversity may be any of SFBC, STBC, CDD, codebook-based transmission diversity, and non-codebook-based transmission diversity.
  • the spatial multiplexing may be any of single-user spatial multiplexing, multi-user spatial multiplexing, codebook-based spatial multiplexing, and non-code division-based spatial multiplexing.
  • it may further include the maximum number of antennas required or supported by the terminal device.
  • the capability information further includes: the total maximum number of transmission channels supported by the terminal device, or the maximum number of carriers of any one of the NR side link and each link except the NR side link ; Or, the total maximum number of transmission channels on any one of the NR side uplink and each link except the NR side uplink; or, the NR side uplink and the NR side uplink The channel bandwidth on any one of the links; or the subcarrier spacing between the NR side link and any one of the links except the NR side link, where the NR side link The link and any one of the links except the NR side link work on the same carrier or on different carriers in the same frequency bandwidth; among them, each link except the NR side link includes the following At least one of them: LTE side link, LTE cellular link and NR cellular link.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the present application provides a terminal device for executing any solution on the terminal device side in the foregoing method flow.
  • Fig. 9 exemplarily shows a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 900 includes a processing unit 901 and a transceiver unit 902.
  • the terminal device 900 in this example may be the terminal device in the foregoing content, and may execute the solutions corresponding to the terminal device in FIG. 2, FIG. 5, FIG. 6 and FIG. 7 above.
  • the terminal device 900 may also be the terminal device 101 or the terminal device 102 in FIG. 1 described above.
  • the processing unit 901 is configured to determine the first transmission power of the NR side uplink and the transmission power corresponding to each link except the NR side uplink on the target time domain resource, Determine the first actual transmission power of the NR side uplink on the target time domain resource according to the first transmission power and the transmission power corresponding to each link except the NR side uplink;
  • the target time domain resource is the time domain resource of the overlapping portion occupied by the transmission of the NR side link and the transmission of each link except the NR side link, and the NR side link
  • the frequency domain resources occupied by the transmission of the channel and the transmission of each link except the NR side link are different; the transceiver unit 902 is used to transmit data.
  • the processing unit 901 is configured to determine the target link according to the type of the first information to be transmitted on the NR side uplink and the type of the second information to be transmitted on the NR cellular link,
  • the target link is an NR side link or an NR cellular link.
  • the transceiver unit 902 is configured to communicate through the target link.
  • the processing unit 901 is used to determine the supported multi-carrier combination mode of the carrier where the side link and the cellular link are located.
  • the multi-carrier combination mode includes the carrier where the NR side link is located,
  • the capability information is determined in combination with the carrier where each link except the NR side link is located.
  • the transceiving unit 902 is configured to send the capability information to a network device or other terminal devices, and the capability information includes at least one of a multi-carrier combination manner.
  • the processing unit 901 may be implemented by the processor in FIG. 8 described above, and the transceiving unit 902 may be implemented by the transceiver 8 in FIG. 8 described above. That is to say, the transceiver unit 902 in this application can execute the solution executed by the transceiver of FIG. 8, and the processing unit 901 in this application can execute the solution executed by the processor of FIG. 8.
  • the processing unit 901 in this application can execute the solution executed by the processor of FIG. 8.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices. Instructions can be stored in a computer storage medium, or transmitted from one computer storage medium to another computer storage medium.
  • instructions can be sent from a website, computer, server, or data packet center through wired (such as coaxial cable, optical fiber, digital Subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data packet center for transmission.
  • a computer storage medium may be any available medium that can be accessed by a computer or a data packet storage device such as a server or a data packet center integrated with one or more available media.
  • Usable media can be magnetic media (for example, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical media (for example, CD, DVD, BD, HVD, etc.), or semiconductor media (for example, ROM, EPROM, EEPROM, etc.)
  • Non-volatile memory NAND FLASH
  • solid state disk Solid State Disk, SSD
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the embodiments of the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data packet processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device. Realize the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These instructions can also be loaded on a computer or other programmable data packet processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, thereby executing instructions on the computer or other programmable equipment Provides steps for realizing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种功率控制方法、通信方法、装置及存储介质,其中,功率控制方法包括:终端设备在目标时域资源上确定NR侧行链路的第一发射功率和除NR侧行链路外的各个链路分别对应的发射功率;终端设备根据第一发射功率和除NR侧行链路外的各个链路分别对应的发射功率,确定NR侧行链路在目标时域资源上的第一实际发射功率;其中,目标时域资源为NR侧行链路的传输与除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同。本申请给出了在不同链路并行传输下,NR侧行链路的功率分配方法。

Description

一种功率控制方法、通信方法、装置及存储介质
相关申请的交叉引用
本申请要求在2019年06月13日提交中国专利局、申请号为201910509474.1、发明名称为“一种功率控制方法、通信方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率控制方法、通信方法、装置及存储介质。
背景技术
随着通信技术的发展,在第三代合作伙伴计划(3rd generation partnership project,3GPP)中提出了基于蜂窝网络的车联网技术。车联网技术提供了车到车(vehicle to vehicle,V2V)、车到人(vehicle to pedestrian,V2P)、车到基础设施(vehicle to infrastructure,V2I)和车到网络(vehicle to network,V2N)的交互。其中,V2N使用的是蜂窝链路(也称为上下行链路)进行通信。V2V、V2P和V2I使用的是侧行链路进行通信,侧行链路通信是基于终端设备和终端设备之间直接通信定义的,不需要基站转发。
现有技术中,支持长期演进(long term evolution,LTE)和新空口(new radio,NR)并行上行传输,在LTE与NR并行上行传输时,是按照各自的发射功率控制方式来控制LTE链路的上行发射功率和NR链路的上行发射功率。在NR中引入NR-V2X链路,目前对于NR-V2X链路与其它链路并行收发数据时,没有适配的功率控制方式。
发明内容
本申请提供一种功率控制方法、通信方法、装置及存储介质,用于给出了在不同链路并行传输下,NR侧行链路的功率分配方法。
第一方面,本申请提供一种功率控制方法,该方法包括终端设备在目标时域资源上确定新空口(new radio,NR)侧行链路的第一发射功率和除NR侧行链路外的各个链路分别对应的发射功率,根据第一发射功率和除NR侧行链路外的各个链路分别对应的发射功率,确定NR侧行链路在目标时域资源上的第一实际发射功率。其中,目标时域资源为NR侧行链路的传输与除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同。
基于该方案,本申请给出了在不同链路并行传输下,NR侧行链路的功率分配方法。
在一种可能的实现方式中,除NR侧行链路外的各个链路包括NR蜂窝链路;或者、包括NR蜂窝链路和LTE蜂窝链路;或者包括NR蜂窝链路、LTE蜂窝链路和LTE侧行链路。
示例性地,当除NR侧行链路外的各个链路包括NR蜂窝链路时,在所述目标时域资源上,所述NR蜂窝链路的传输与所述NR侧行链路的传输占用不同的频域资源,具体可以指:所述NR蜂窝链路的传输与所述NR侧行链路的传输占用同一个载波的同一个BWP 中的不同频域资源;或者,所述NR蜂窝链路的传输与所述NR侧行链路的传输占用同一个载波的不同BWP;或者,所述NR蜂窝链路的传输与所述NR侧行链路的传输占用同一个频段的不同的载波;或者,所述NR蜂窝链路的传输与所述NR侧行链路的传输占用不同频段的不同的载波。
本申请示例性地给出了如下三种确定第一实际发射功率的实现方式。
实现方式一,终端设备若确定第一发射功率与除NR侧行链路外的各个链路分别对应的发射功率之和,大于终端设备的最大发射功率,则将第一发射功率减小至第一实际发射功率;其中,第一实际发射功率满足第一实际发射功率与除NR侧行链路外的各个链路分别对应的发射功率之和不超过最大发射功率;或者满足第一实际发射功率与除NR侧行链路外的各个链路分别对应的发射功率之和不超过最大发射功率、且第一实际发射功率与第一发射功率之差不大于预设值。如此,可防止将NR侧行链路的第一发射功率下降的幅度太大,造成NR侧行链路不能正常通信。
实现方式二,终端设备将终端设备的最大发射功率减去除NR侧行链路外的各个链路分别对应的第二发射功率的差值,确定为第一实际发射功率。
实现方式三,终端设备确定终端设备的最大发射功率减去除NR侧行链路外的各个链路分别对应的发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于除NR侧行链路外的各个链路上的路损和传输带宽确定的功率、基于信道质量确定的功率中的任意至少两项,并将确定出的至少两项中的最小值确定为第一实际发射功率。
为了便于网络设备合理调度各个链路进行信息的传输,终端设备确定所支持的NR侧行链路所在的载波、与除NR侧行链路外的各个链路所在的载波的多载波组合方式,确定能力信息,能力信息包括多载波组合方式中的至少一种,并向网络设备或其它终端设备发送能力信息。终端设备通过将自己支持的各个链路的能力信息上报至网络设备或通信的对端设备,网络设备或通信的对端设备可根据终端设备的能力信息来确定当前是否激活多载波传输、以及确定是否可以调度多个链路并行进行数据传输、或在通信的两个终端设备之间能够进行的传输方式。也就是说,网络设备可基于终端设备上报的能力信息,对终端设备支持的各个链路做出合理的调度。
在一种可能的实现方式中,除NR侧行链路外的各个链路包括NR蜂窝链路时,载波的组合方式包括NR侧行链路和NR蜂窝链路在同一频带中的不同载波;或者NR侧行链路和NR蜂窝链路在不同频带中的不同载波;或者NR侧行链路与NR蜂窝链路对应同一载波。
第二方面,本申请提供一种通信方法,该方法包括终端设备可根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,或者根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,终端设备通过目标链路进行通信,目标链路为NR侧行链路或NR蜂窝链路。
基于该方案,通过第一信息和第二信息的类型,确定终端设备当前通过哪个链路传输数据,如此,如此,有助于降低终端实现的复杂度,且尽可能地减少因为丢弃或暂停部分信息对传输产生的影响。
当第二信息的类型为非周期的探测参考信号(sounding reference signal,SRS)、混合自动重传请求(hybrid automatic repeat request,HARQ)的反馈信息、调度请求(scheduling request,SR)、参考信号接收功率(reference signal receiving power,RSRP)、波束恢复请求 消息中的任意一种时确定NR蜂窝链路为目标链路,其中,HARQ的反馈信息包括确认(acknowledgement,Ack)应答消息或非确认NACK应答消息。
当第二信息的类型为周期的SRS、半持续的SRS、码本的SRS、非码本的SRS、信道状态信息(channel state information,CSI)中的任意一种时,确定NR侧行链路为目标链路。
进一步,当第一信息的优先级高于第一阈值、且第二信息的类型为周期的SRS、半持续的SRS、码本的SRS、非码本的SRS、信道状态信息(channel state information,CSI)中的任意一种时,确定NR侧行链路为目标链路。
在一种可能的实现方式,终端设备确定第一信息为第一数据包,第二信息为第二数据包,终端设备待接收第一数据包且待发送第二数据包,或者,所述终端设备待发送第一数据包且待接收第二数据包;若确定NR侧行链路与NR蜂窝链路在同一载波或在同一频带的不同载波,则确定NR蜂窝链路为目标链路。也可以理解为,第二信息的类型为数据包。在NR侧行链路与NR蜂窝链路的均是传输数据包时,可优先处理NR蜂窝链路上的数据包,如此,在降低终端设备的实现成本和复杂度时,还尽可能减少了对蜂窝链路的影响,且可避免终端设备内干扰的发生。
在一种可能的实现方式,当所述第一信息为混合自动重传请求HARQ的反馈信息、根据所述反馈信息对应的数据包的优先级确定所述目标链路。
本申请示例性地示出三种可能的实现方式。一种是,当所述第一信息的类型为HARQ的反馈信息、且所述反馈信息的数据包的优先级高于第二阈值时,确定所述NR蜂窝链路为目标链路。另一种是,分别确定所述反馈信息对应数据包的优先级和所述第一信息的优先级,将优先级高的所对应的链路确定为目标链路。再一种是,当所述第一信息的优先级高于第三阈值时,将所述NR侧行链路确定目标链路。
第三方面,本申请提供一种通信方法,该方法包括终端设备确定所支持的侧行链路和蜂窝链路所在的载波的多载波组合方式,确定能力信息,并向网络设备或其它终端设备发送能力信息,其中,多载波组合方式包括NR侧行链路所在的载波、与除所述NR侧行链路外的各个链路所在的载波的组合,所述能力信息包括所述多载波组合方式中的至少一种。
基于该方案,终端设备将自己支持的各个链路的能力信息上报至网络设备,网络设备可根据终端设备的能力信息来确定当前是否激活多载波传输、以及确定是否可以调度多个链路并行进行数据传输。也就是说,网络设备可基于终端设备上报的能力信息,对终端设备支持的各个链路做出合理的调度。
当侧行链路包括NR侧行链路,蜂窝链路包括NR蜂窝链路时,多载波组合方式包括:NR侧行链路和NR蜂窝链路在同一频带中的不同载波;或者,NR侧行链路和NR蜂窝链路在不同频带中的不同载波;或者,NR侧行链路与NR蜂窝链路对应同一载波。
当侧行链路包括LTE侧行链路,蜂窝链路包括NR蜂窝链路时,多载波的组合方式包括:LTE侧行链路和NR蜂窝链路在同一频带中的不同载波;或者,LTE侧行链路和NR蜂窝链路在不同频带中的不同载波;或者,LTE侧行链路和NR蜂窝链路在同一载波。
当侧行链路包括NR侧行链路,蜂窝链路包括LTE蜂窝链路和NR蜂窝链路时,多载波的组合方式包括:NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波;或NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波;或NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在 不同频带中的不同载波;或NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
当侧行链路包括LTE侧行链路,蜂窝链路包括LTE蜂窝链路和NR蜂窝链路时,多载波的组合方式包括:LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波;或LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波;或LTE侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在不同频带中的不同载波;或LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
当侧行链路包括LTE侧行链路、NR侧行链路,蜂窝链路包括LTE蜂窝链路和NR蜂窝链路时,多载波的组合方式包括:LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意三者在同一个频带中的不同载波,另外一者在不同频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波在同一个频带中的同一载波。
在一种可能的实现方式,能力信息还包括以下内容中的至少一项:终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及NR蜂窝链路中的任意一种对应的终端设备的最大传输速率;终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及NR蜂窝链路中的任意两种分别对应的终端设备的最大传输速率;终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及NR蜂窝链路中的任意三种分别对应的终端设备的最大传输速率;终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及NR蜂窝链路四种分别对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中至少一种链路所支持的多输入多输出(multiple-input multiple-output,MIMO)模式。如此,网络设备还可以根据MIMO模式确定每个载波上是否配置分发集。
在又一种可能的实现方式中,能力信息还包括终端设备支持的总的最大发射通道数、或者NR侧行链路与除NR侧行链路外的各个链路中任意一种链路的最大载波数;或者,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路上的总的最大发射通道数;或,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路上的信道带宽;或,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路的子载波间隔,其中NR侧行链路与除NR侧行链路外的各个链路中任意一种链路工作在同一个载波或工作在同一频带宽中的不同载波上;其中,NR侧行链路外的各个链路包括以下中的于少一种:LTE侧行链路、LTE蜂窝链路以及NR蜂窝链路。
第四方面,本申请实施例提供一种通信装置,该通信装置具有实现上述实施例中的通信装置的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示通信方法中通信装置的相应功能。该通信装置还可以包括存储器,该存 储可以与处理器耦合,其保存该通信装置必要的程序指令和数据包。可选地,该通信装置还包括收发器,该收发器用于支持该通信装置与网络设备等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。
在一个可能的实现方式中,该通信装置可以是通信装置,或者可用于通信装置的部件,例如芯片或芯片系统或者电路。
第五方面,本申请实施例提供一种通信装置,用于实现上述第一方面或第一方面中的任意一种方法,或者用于实现上述第二方面或第二方面中的任意一种方法,或者用于实现上述第三方面或第三方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和收发单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请提供了一种芯片系统,包括处理器。可选地,还可包括存储器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片系统的装置执行上述第一方面至第二方面及其可能的实施方式中的任一方法。
第七方面,本申请实施例提供一种计算机存储介质,计算机存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法、或者使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法、或者使得计算机执行第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法、或者使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法、或者使得计算机执行第三方面或第三方面的任意可能的实现方式中的方法。
附图说明
图1为本申请提供的一种通信系统架构示意图;
图2为本申请提供的一种功率控制方法流程示意图;
图3为本申请提供的一种确定NR侧行链路的第一实际发射功率的方法流程示意图;
图4a为本申请提供的一种载波聚合的示意图;
图4b为本申请提供的另一种载波聚合的示意图;
图4c为本申请提供的又一种载波聚合的示意图;
图5为本申请提供的一种通信方法流程示意图;
图6为本申请提供的另一种通信方法流程示意图;
图7为本申请提供的又一种通信方法流程示意图;
图8为本申请提供的一种终端设备的结构示意图;
图9为本申请提供的一种终端设备的结构示意图。
具体实施方式
应理解,本申请实施例中的术语“第一”、“第二”等是用于区别类似的对象,而不必 用于描述特定的顺序或先后次序。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。
图1示例性示出了本申请可适用的一种通信系统架构示意图。通信系统包括网络设备和终端设备。可选地,还可包括全球导航卫星系统(the global navigation satellite system,GNSS),也称为全球卫星导航系统。图1以通信系统包括一个网络设备和两个终端设备为例说明。如图1所示,该通信系统包括网络设备100、终端设备101、终端设备102和GNSS103,其中,终端设备以车载终端为例。网络设备100可通过无线的方式分别与终端设备101和终端设备102进行通信,例如可以通过蜂窝通信接口Uu空口进行通信,包括但不限于通过NR蜂窝链路(也可称为NR-Uu链路)和LTE蜂窝链路(也称为LTE-Uu链路)。NR蜂窝链路和LTE蜂窝链路均包括下行链路和/或上行链路。终端设备101和终端设备102之间可通过无线的方式进行通信,例如可以通过侧行链路(Sidelink,SL)空口(也可称为旁链路空口、或直连通信接口)通信,包括但不限于通过NR侧行链路(NR-V2X链路)和LTE侧行链路(LTE-V2X链路)。侧行链路是针对终端设备101和终端设备102之间直接通信定义的,也就是说终端设备101和终端设备102之间的通信不需要通过基站的转发。
其中,V2X可以具体包括:车到车(vehicle to vehicle,V2V)、车到人(vehicle to pedestrian,V2P)、车到路侧单元(vehicle to roadside unit,V2R)、车到基础设施(vehicle to infrastructure,V2I)和车到网络(vehicle to network,V2N)的交互。其中,V2N使用的是蜂窝链路(也称为上下行链路)进行通信。V2V、V2P和V2I使用的是侧行链路进行通信。
其中,1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle-to-everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、移动终端(mobile terminal,MT)、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫 描器等信息传感设备。
作为示例而非限定,在本申请中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括接入网(access network,AN)设备,又可称为无线接入网设备,用于将终端设备接入到无线网络中的设备。例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,又例如,车到一切(vehicle-to-everything,V2X)技术中的接入网设备可为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。接入网设备还可协调对空口的属性管理。示例性地,接入网设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的下一代节点B(next generation node B,gNB)、传输接收节点(transmission reception point,TRP)(也称为收发节点)、基带处理单元(building base band unit,BBU)和射频单元(Radio Remote Unit,RRU)、BBU与有源天线单元(active antenna unit,AAU),或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),或者也可以包括无线保真(wireless fidelity,Wi-Fi)系统中的接入点、或者还可以包括无线网络控制器(radio network controller,RNC)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved NodeB,或Home Node B,HNB),或者也可以包括未来通信网络中的基站、小站、微站等。本申请实施例并不限定。
需要说明的,RSU在功能上既可以是一个车载设备的功能,也可以是一个网络设备的功能。上述介绍以RSU为一个接入网络设备为例说明的。
3)GNSS,是能在地球表面或近地空间的任何地点为终端设备提供全3维坐标和速度以及时间信息的空基无线电导航定位系统。
如上介绍的各种终端设备和网络设备,可以部署在陆地上,包括室内或室外、手持或车载。如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。也可以部署在水面上,或者还可以部署在空中的飞机、气球和卫星上,本申请对此不做限定。
本申请中,通信系统可以是长期演进(long term evolution,LTE)系统,5G通信系统(例如新空口(new radio,NR)系统、多种通信技术融合的通信系统(例如LTE技术和NR技术融合的通信系统),还可以是其他通信系统,或未来可能出现的其他通信系统等,本申请不做限定。
需要说明的是,侧行链路可支持的工作场景既包括有蜂窝网络覆盖的场景、也包括没有蜂窝网络部署的场景。当支持侧行链路的终端设备处于蜂窝网络覆盖内时,可在蜂窝网络的控制下使用Uu空口进行通信,可使用蜂窝链路的频谱;无论是否有网络覆盖,均可采用SL空口进行侧行链路通信,可以使用5.9GHz附近的智能交通频谱。也就是说,V2X可将Uu接口和SL空口相结合,共同用于侧行链路的业务。
图1中所示的网络设备和终端设备的形态和数量仅用于举例,并不构成对本申请的限定。其中,终端设备UE101,终端设备102与GNSS 103之间可以是仅有GNSS到终端设备之间的单向链路,也可以有按图1所示的相向链路,本申请实施例对此不做限定。
对于终端设备而言,根据终端设备能力,终端设备可以支持NR链路和LTE链路的时分复用或频分复用。对于时分复用,在一个时间点只能选择两个载波中的一个进行发送,对于频分复用,在一个时间点可以支持两个链路同时的发送。对于时分复用的方式,在一个时间点只需要在不同链路上按各自链路上的功率控制机制来维持各个链路上的发射功率。而对于支持NR链路和LTE链路同时发送的终端设备,需要考虑并行的发射功率控制。采用并行的发射功率控制首先需要解决终端设备的发射功率分配问题。受终端设备最大总发射功率限制,即使两个载波采用独立的射频发送装置,但是在最大总发射功率上仍然要遵守一个终端设备所允许的最大总发射功率限制,这一限制带来的约束是在任一时刻,需要考虑发射功率分配的机制。
基于上述图1所示的应用场景,如图2所示,为本申请提供的一种的功率控制方法,该方法包括以下步骤:
步骤201,终端设备在目标时域资源上确定NR侧行链路的第一发射功率和除NR侧行链路外的各个链路分别对应的发射功率。
其中,目标时域资源为NR侧行链路的传输与除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同。当NR侧行链路的传输与除NR侧行链路外的各个链路的传输所占用的时域资源全部或部分重叠时,也可以理解为,NR侧行链路的传输与除NR侧行链路外的各个链路的传输为频分多路复用(frequency-division multiplexing,FDM),也叫分频多任务,FDM是一种将多路基带信号调制到不同频率载波上再进行叠加形成一个复合信号的多路复用技术。可选的,当NR侧行链路的传输与除NR侧行链路外的各个链路的定时未全对齐时,和/或当NR侧行链路的传输与除NR侧行链路外的各个链路使用的子载波间隔不同时,会发生部分重叠。
步骤202,终端设备根据第一发射功率和除NR侧行链路外的各个链路分别对应的发射功率,确定NR侧行链路在目标时域资源上的第一实际发射功率。
本申请示例性地提供了如下三种确定第一实际发射功率的实现方式。
实现方式一,终端设备若确定第一发射功率与除NR侧行链路外的各个链路分别对应的发射功率之和,大于终端设备的最大发射功率,则将第一发射功率减小至第一实际发射功率;其中,第一实际发射功率满足第一实际发射功率与除NR侧行链路外的各个链路分别对应的发射功率之和不超过最大发射功率;或者满足第一实际发射功率与除NR侧行链路外的各个链路分别对应的发射功率之和不超过最大发射功率、且第一实际发射功率与第一发射功率之差不大于预设值。如此,可防止将NR侧行链路的第一发射功率下降的幅度太大,造成NR侧行链路不能正常通信。
实现方式二,终端设备将终端设备的最大发射功率减去除NR侧行链路外的各个链路分别对应的第二发射功率的差值,确定为第一实际发射功率。
实现方式三,终端设备确定终端设备的最大发射功率减去除NR侧行链路外的各个链路分别对应的发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于除NR侧行链路外的各个链路上的路损和传输带宽确定的功率、基于信道质量确定的功率中的任意至少两项,并将确定出的至少两项中的最小值确定为第一实际发射功率。
通过上述步骤201至步骤202可以看出,本申请给出了在不同链路并行传输下,NR侧行链路的功率分配方法。
需要说明的是,终端设备的最大发射功率可以具体指:终端设备在一个载波上的最大发射功率,或终端设备在多个载波上的最大发射功率,或终端设备在多个载波组上的总发射功率,或终端设备在一个特定信道上的最大发射功率。
在一种可能的实现方式中,该终端设备的最大发射功率可以是信令配置的,也可以是预定义的,或者也可以是预配置的。该终端设备的最大发射功率的值可以是线性值,也可以是对数值,本申请对此不做限定。
本申请中,分如下三种场景详细介绍上述图2所示的功率控制方法。在如下三个场景下,终端设备在目标时域资源上并行传输。
场景一,NR侧行链路和NR蜂窝链路。也就是说,除NR侧行链路外的各个链路包括NR蜂窝链路。
针对场景一,NR侧行链路的第一发射功率可用
Figure PCTCN2020091655-appb-000001
表示,NR蜂窝链路的第二发射功率可用
Figure PCTCN2020091655-appb-000002
终端设备的最大发射功率可用
Figure PCTCN2020091655-appb-000003
表示。
Figure PCTCN2020091655-appb-000004
表示NR侧行链路在时隙i 2上的发射功率的线性值,
Figure PCTCN2020091655-appb-000005
表示NR蜂窝链路在时隙i 1上的发射功率的线性值,i 1表示的NR蜂窝链路上的时隙和i 2表示的NR侧行链路上的时隙全部重叠或者部分重叠,i 1和i 2的值可以相同也可以不同。
在该场景一下,本申请示例性地提供如下三种确定NR侧行链路的第一实际发射功率的方式。
方式1,降低第一发射功率。
如图3所示,为本申请提供的一种确定NR侧行链路的第一实际发射功率的方法流程示意图。该方法包括以下步骤:
步骤31,确定NR侧行链路的第一发射功率、以及NR蜂窝链路的第二发射功率。
步骤32,确定第一发射功率与第二发射功率之和。
步骤33,判断第一发射功率与第二发射功率之和是否大于终端设备的最大发射功率,若大于,执行步骤34;若不大于,则NR侧行链路和NR蜂窝链路可分别按现有的机制进行功率控制,本申请不再赘述。
也就是说,若
Figure PCTCN2020091655-appb-000006
执行步骤34;若
Figure PCTCN2020091655-appb-000007
Figure PCTCN2020091655-appb-000008
则NR侧行链路和NR蜂窝链路可分别按现有的机制进行功率控制。
步骤34,将NR侧行链路的第一发射功率减小至第一实际发射功率。
此处,第一实际发射功率需满足:第一实际发射功率与第二发射功率之和不超过终端 设备的最大发射功率。
进一步,为了防止将NR侧行链路的第一发射功率下降的幅度太大,造成NR侧行链路不能正常通信,要保证第一实际发射功率与第二发射功率之和不超过终端设备的最大发射功率、且第一实际发射功率与第一发射功率之差不大于第一预设值。若第一实际发射功率与第一发射功率之差大于第一预设值,则可直接丢弃或暂停NR侧行链路上传输的数据。
方式2,将终端设备的最大发射功率减去第二发射功率的差值确定为第一实际发射功率。具体可以指终端设备确定NR侧行链路的第一发射功率、以及NR蜂窝链路的第二发射功率;将终端设备的最大发射功率减去第二发射功率的差值确定为第一实际发射功率。
即第一实际发射
Figure PCTCN2020091655-appb-000009
方式3,将多项中的最小值确定为第一实际发射功率。
该实现方式3中,具体可以包括以下过程:
1),确定NR侧行链路的第一发射功率、以及NR蜂窝链路的第二发射功率。
2),确定以下内容中任意至少两项:终端设备的最大发射功率减去第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率。
其中,基于NR侧行链路上的路损和传输带宽确定的功率可用10log 10(aM PSSCH+bM PSCCH)表示、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率可用{10log 10(M PSSCH)+P O_PSSCHPSSCH·PL}表示;基于信道质量确定的功率可用P MAX_CBR表示。
3),将确定出的至少两项中的最小值确定为第一实际发射功率。
例如,确定出的至少两项包括终端设备的最大发射功率减去第二发射功率的差值、以及基于NR侧行链路上的路损和传输带宽确定的功率,则将这两项的最小值确定出第一实际发射功率。具体可以为:min{终端设备的最大发射功率减去第二发射功率的差值,基于NR侧行链路上的路损和传输带宽确定的功率}。
再比如,确定出的至少两项包括终端设备的最大发射功率减去第二发射功率的差值、以及基于NR蜂窝链路上的路损和传输带宽确定的功率,则将这两项的最小值确定出第一实际发射功率。具体可以为:min{终端设备的最大发射功率减去第二发射功率的差值,基于NR蜂窝链路上的路损和传输带宽确定的功率}。
再比如,确定出的至少两项为包括终端设备的最大发射功率减去第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率,则可以执行以下内容中任一种:
第一种,将终端设备的最大发射功率与第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率中任两项中的最小值,确定为第一实际发射功率。
具体可为:min{终端设备的最大发射功率减去第二发射功率的差值,基于NR蜂窝链路上的路损和传输带宽确定的功率};或者,min{终端设备的最大发射功率减去第二发射功率的差值,基于信道质量确定的功率};或者,min{基于NR侧行链路上的路损和传输带 宽确定的功率,基于NR蜂窝链路上的路损和传输带宽确定的功率};或者,min{基于NR侧行链路上的路损和传输带宽确定的功率,基于信道质量确定的功率};或者,min{基于NR蜂窝链路上的路损和传输带宽确定的功率,基于信道质量确定的功率}。
第二种,将终端设备的最大发射功率与第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率中任三项的最小值,确定为第一实际发射功率。
具体可为:min{终端设备的最大发射功率与第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率};或者,min{基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率};或者,min{终端设备的最大发射功率与第二发射功率的差值、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率};或者,min{终端设备的最大发射功率与第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率}。
第三种,将终端设备的最大发射功率与第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率四项中的最小值,确定为第一实际发射功率。
具体可为:min{终端设备的最大发射功率与第二发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率}。
在该场景一下,NR蜂窝链路的传输与NR侧行链路的传输占用不同的频域资源具体包括以下情形中的任一中。
情形一,NR蜂窝链路的传输与NR侧行链路的传输占用同一个载波的同一个带宽部分(bandwidth part,BWP)。
情形二,NR蜂窝链路的传输与NR侧行链路的传输占用同一个载波的不同BWP。
情形三,NR蜂窝链路的传输与NR侧行链路的传输占用同一个频段的不同的载波。
情形四,NR蜂窝链路的传输与NR侧行链路的传输占用不同频段的不同的载波。
本申请中,可以将一个载波分成多个BWP。对一个终端设备而言,通常一个时间上只能同时工作一个或有限个的BWP。同时激活多个BWP要求UE的射频单元和基带单元具有并行针对多个BWP进行发送和接收的能力,也就是说,并行多个BWP对终端设备的功率消耗、成本和处理能力有额外的要求。
场景二,NR侧行链路、NR蜂窝链路和LTE蜂窝链路。也就是说,除NR侧行链路外的各个链路包括NR蜂窝链路和LTE蜂窝链路。
针对场景二,NR侧行链路的第一发射功率可用
Figure PCTCN2020091655-appb-000010
表示,NR蜂窝链路的第二发射功率可用
Figure PCTCN2020091655-appb-000011
LTE蜂窝链路的第三发射功率可用
Figure PCTCN2020091655-appb-000012
表示,终端设备的最大发射功率用
Figure PCTCN2020091655-appb-000013
表示。
Figure PCTCN2020091655-appb-000014
表示NR侧行链路在时隙i 2上的发射功率的线性值,
Figure PCTCN2020091655-appb-000015
表示NR蜂窝链路在时隙i 1上的发射功率的线性值,
Figure PCTCN2020091655-appb-000016
表示LTE蜂窝链路 在i 3的发射功率的线性值,i 1表示的NR蜂窝链路上的时隙、i 2表示的NR侧行链路上的时隙、以及i 3表示的LTE蜂窝链路上的时隙全部重叠或者部分重叠,i 1、i 2和i 3的值可以相同也可以不同。
需要说明的是,NR蜂窝链路和LTE蜂窝链路在不同的载波上,NR蜂窝链路和NR侧行链路可以在同一载波上,也可以在不同的载波上。
需要进一步说明的是,链路所在的载波是指链路传输时所使用的载波,或者,是指链路传输时传输资源所在的载波。比如,NR蜂窝链路所在的载波是指NR蜂窝链路传输时所使用的载波,或者是指NR蜂窝链路传输时传输资源所在的载波。再比如,NR侧行链路所在的载波是指NR侧行链路传输时所使用的载波,或者是指NR侧行链路传输时传输资源所在的载波。再比如,LTE蜂窝链路所在的载波是指LTE蜂窝链路传输时所使用的载波,或者是指LTE蜂窝链路传输时传输资源所在的载波。再比如,LTE侧行链路所在的载波是指LTE侧行链路传输时所使用的载波,或者是指LTE侧行链路传输时传输资源所在的载波。
在该场景二下,本申请示例性地提供如下三种确定NR侧行链路的第一实际发射功率的方式。
方式A,降低第一发射功率。
该方式A中,具体可以包括以下过程:
1),确定NR侧行链路的第一发射功率、NR蜂窝链路的第二发射功率、以及LTE蜂窝链路的第三发射功率。
2),确定第一发射功率、第二发射功率和第三发射功率之和。
3),判断第一发射功率、第二发射功率和第三发射功率之和是否大于终端设备的最大发射功率;若是,执行步骤64;若否,则NR侧行链路、NR蜂窝链路和LTE蜂窝链路可分别按现有的机制进行功率控制,本申请不再赘述。
4),将NR侧行链路的第一发射功率减小至第一实际发射功率。
此处,第一实际发射功率满足:第一实际发射功率、第二发射功率和第三发射功率之和不超过终端设备的最大发射功率。
进一步,为了防止将NR侧行链路的第一发射功率下降的幅度太大,造成NR侧行链路不能正常通信,要保证第一实际发射功率与第二发射功率和第三发射功率之和不超过终端设备的最大发射功率、且第一实际发射功率与第一发射功率之差不大于第一预设值。若第一实际发射功率与第一发射功率之差大于第一预设值,则可直接丢弃或暂停NR侧行链路上传输的数据。
方式B,将终端设备的最大发射功率减去第二发射功率、再减去第三发射功率的差值确定为第一实际发射功率。
该实现方式B中,具体可以指终端设备,确定NR侧行链路的第一发射功率、NR蜂窝链路的第二发射功率、以及LTE蜂窝链路的第三发射功率。终端设备将终端设备的最大发射功率减去第二发射功率、再减去第三发射功率、再减去LTE蜂窝链路的第三发射功率的差确定第一实际发射功率。
此处,第一实际发射
Figure PCTCN2020091655-appb-000017
方式C,将多项中的最小值确定为第一实际发射功率。
该实现方式C中,具体可以包括以下过程:
1),确定NR侧行链路的第一发射功率、NR蜂窝链路的第二发射功率、以及LTE蜂窝链路的第三发射功率。
2),确定以下内容中任意至少两项:终端设备的最大发射功率减去第二发射功率再减去第三发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、以及基于信道质量确定的功率。
3),将确定出的至少两项中的最小值确定为第一实际发射功率。
示例性地,确定出的至少两项包括终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率的差值、以及基于LTE蜂窝链路上的路损以和输带宽确定的功率,则将步这两项的最小值确定出第一实际发射功率。具体可以为:min{终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率的差值,基于LTE蜂窝链路上的路损以和输带宽确定的功率}。
再比如,确定出的至少两项包括:终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、以及基于信道质量确定的功率,则可以执行以下方式中任一种:
第一种,将终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、以及基于信道质量确定的功率中任两项中的最小值,确定为第一实际发射功率。
第二种,将终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、以及基于信道质量确定的功率中任三项的最小值,确定为第一实际发射功率。
第三种,将终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、以及基于信道质量确定的功率四项中的最小值,确定为第一实际发射功率。
在该场景二下,NR蜂窝链路的传输、NR侧行链路的传输与LTE蜂窝链路占用不同的频域资源具体包括以下情形中的任一中。
情形一,NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波。
情形二,NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波。
情形三,NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在不同频带中的不同载波。
情形四,NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
场景三,NR侧行链路、NR蜂窝链路、LTE蜂窝链路和LTE侧行链路。也就是说,除NR侧行链路外的各个链路包括NR蜂窝链路、LTE蜂窝链路和LTE侧行链路。
针对场景三,NR侧行链路的第一发射功率可用
Figure PCTCN2020091655-appb-000018
表示,NR蜂窝链路的第二 发射功率可用
Figure PCTCN2020091655-appb-000019
LTE蜂窝链路的第三发射功率可用
Figure PCTCN2020091655-appb-000020
表示,LTE侧行链路的第四发射功率可用
Figure PCTCN2020091655-appb-000021
表示,终端设备的最大发射功率用
Figure PCTCN2020091655-appb-000022
表示。
Figure PCTCN2020091655-appb-000023
表示NR侧行链路在时隙i 2上的发射功率的线性值,
Figure PCTCN2020091655-appb-000024
表示NR蜂窝链路在时隙i 1上的发射功率的线性值,
Figure PCTCN2020091655-appb-000025
表示LTE蜂窝链路在i 3的发射功率的线性值,
Figure PCTCN2020091655-appb-000026
表示LTE侧行链路在i 4的发射功率的线性值,i 1表示的NR蜂窝链路上的时隙、i 2表示的NR侧行链路上的时隙、以及i 3表示的LTE蜂窝链路上的时隙、以及i 4表示的LTE侧行链路上的时隙全部重叠或者部分重叠,i 1、i 2、i 3和i 4的值可以相同也可以不同。
需要说明的是,NR蜂窝链路和LTE蜂窝链路在不同的载波上,NR蜂窝链路和NR侧行链路可以在同一载波上,也可以在不同的载波上,NR侧行链路和LTE侧行链路在不同的载波上。
在该场景三下,本申请示例性地提供如下六种确定NR侧行链路的第一实际发射功率的方式。
方式a,降低第一发射功率。
该方式a中,具体可以包括一下过程:
1),确定NR侧行链路的第一发射功率、NR蜂窝链路的第二发射功率、以及LTE蜂窝链路的第三发射功率、以及LTE侧行链路的第四发射功率。
2),确定第一发射功率、第二发射功率、第三发射功率和第四发射功率之和。
3),判断第一发射功率、第二发射功率、第三发射功率和第四发射功率之和,是否大于终端设备的最大发射功率;若是,执行步骤94;若否,则NR侧行链路、NR蜂窝链路、LTE蜂窝链路和LTE侧行链路可分别按现有的机制进行功率控制,本申请不再赘述。
4),将NR侧行链路的第一发射功率减小至第一实际发射功率。
此处,第一实际发射功率满足:第一实际发射功率与第二发射功率、第三发射功率和第四发射功率之和不超过终端设备的最大发射功率。
进一步,为了防止将NR侧行链路的第一发射功率下降的幅度太大,造成NR侧行链路不能正常通信,要保证第一实际发射功率与第二发射功率、第三发射功率和第四发射功率之和不超过终端设备的最大发射功率、且第一实际发射功率与第一发射功率之差不大于第一预设值。若第一实际发射功率与第一发射功率之差大于第一预设值,则可直接丢弃或暂停NR侧行链路上传输的数据。
方式b,将终端设备的最大发射功率减去第二发射功率、再减去第三发射功率、再减去第四发射功率的差值确定为第一实际发射功率。
该实现方式b中,具体可以包括以下过程:
1),确定NR侧行链路的第一发射功率、NR蜂窝链路的第二发射功率、LTE蜂窝链路的第三发射功率、以及LTE侧行链路的第四发射功率。
2),将终端设备的最大发射功率减去第二发射功率、再减去第三发射功率、再减去第四发射功率的差确定为第一实际发射功率。
此处,第一实际发射
Figure PCTCN2020091655-appb-000027
方式c,将多项中的最小值确定为第一实际发射功率。
该实现方式3中,具体可包括以下过程:
1),确定NR侧行链路的第一发射功率、NR蜂窝链路的第二发射功率、LTE蜂窝链路的第三发射功率、以及LTE侧行链路的第四发射功率。
2),确定以下内容中任意至少两项:终端设备的最大发射功率减去第二发射功率再减去第三发射功率再减去第四发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、基于LTE侧行链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率。
3),将确定出的至少两项中的最小值确定为第一实际发射功率。
示例性地,确定出的至少两项为包括终端设备的最大发射功率减去第二发射功率再减去第三发射功率再减去第四发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、基于LTE侧行链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率,则可以执行以下方式中任一种:
第一种,将终端设备的最大发射功率减去第二发射功率再减去第三发射功率再减去第四发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、基于LTE侧行链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率中任两项中的最小值,确定为第一实际发射功率。
第二种,将终端设备的最大发射功率减去第二发射功率再减去第三发射功率再减去第四发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、基于LTE侧行链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率中任三项的最小值,确定为第一实际发射功率。
第三种,将终端设备的最大发射功率减去第二发射功率再减去第三发射功率再减去第四发射功率的差值、基于NR侧行链路上的路损和传输带宽确定的功率、基于终端设备与网络设备在NR蜂窝链路上的路损和传输带宽确定的功率、基于LTE蜂窝链路上的路损以和输带宽确定的功率、基于LTE侧行链路上的路损和传输带宽确定的功率、以及基于信道质量确定的功率四项中的最小值,确定为第一实际发射功率。
再比如,确定出的至少两项包括终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率再减去第四发射功率的差值、以及基于LTE蜂窝链路上的路损以和输带宽确定的功率,则将步这两项的最小值确定出第一实际发射功率。具体可以为:min{终端设备的最大发射功率减去第二发射功率的差值再减去第三发射功率再减去第四发射功率的差值,基于LTE蜂窝链路上的路损以和输带宽确定的功率}。
方式d,按优先级规则在NR侧行链路、NR蜂窝链路、LTE蜂窝链路和LTE侧行链路四种链路之间分配功率。
例如,LTE蜂窝链路第一优先级,LTE侧行链路第二优先级,NR蜂窝链路第三优先级,NR侧行链路第四优先级,则控制LTE蜂窝链路的实际发射功率为第三发射功率,LTE侧行链路的实际发射功率为第四发射功率,NR蜂窝链路的实际发射功率为第二发射功率,NR侧行链路的实际发射功率为第一发射功率。也可以理解为,将发射功率优先分配给NR 侧行链路之外的其它链路,当剩下的功率与NR侧行链路的第一发射功率之差大于预设值时,则直接丢弃或暂停NR侧行链路上的数据。
方式e,按优先级规则分配给部分链路,剩下的功率再根据链路上数据包的优先级分配。
例如:按优先级规则将功率分配给优先级较高的LTE蜂窝链路和LTE侧行链路,将剩下的功率按NR蜂窝链路和NR侧行链路上各自待传输的数据包的优先级来分配功率。
再比如,按优先级规则将功率分配给优先级较高的LTE蜂窝链路和LTE侧行链路,再按NR蜂窝链路和NR侧行链路上待传输的数据包的优先级来决定丢掉哪个链路上的数据包。
方式f,使用信令来指示优先将功率分配给哪个或哪些链路。进一步可选地,剩下的链路平均分配功率或按各自链路上待传输的数据包的优先级来分配。
例如:按信令来指示优先将功率分配给LTE蜂窝链路和LTE侧行链路。进一步可选地,剩下的功率平均分配给NR蜂窝链路和NR侧行链路。
在该场景三下,NR蜂窝链路的传输、NR侧行链路的传输与LTE蜂窝链路占用不同的频域资源具体包括以下情形中的任一中。
情形一,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波。
情形二,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波。
情形三,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波。
情形四,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意三者在同一个频带中的不同载波,另外一者在不同频带中的不同载波。
情形五,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波在同一个频带中的同一载波。
本申请中终端设备可同时支持NR蜂窝链路、LTE蜂窝链路、NR侧行链路和LTE侧行链路在不同的载波上并行工作。需要说明的是,上述四个链路上使用的总载波数不超过终端设备支持的最大总载波数、且上述四个链路使用的总发射通道数不超过终端设备支持的总的最大发射通道数。
为了满足单用户峰值速率和系统容量提升的要求,一种办法就是增加系统传输带宽。在LTE-Advanced系统引入一项增加传输带宽的技术,也就是CA(Carrier Aggregation,载波聚合或载波组合)。CA技术可以将2~5个成员载波(component carrier,CC)聚合在一起,实现最大100MHz的传输带宽,可有效提高了传输速率。
如图4a、图4b和图4c所示,为本申请提供的三种载波聚合的方式。CA可以支持在一个频带内连续载波的聚合(如图4a所示),载波1和载波2是在一个频带内的两个连续载波,CA也可以支持在同频带(intra-band)内非连续载波的聚合(如图4b所示),载波1和载波2也可以是在一个频带内的两个非连续载波,也就是说,同频带内的载波聚合可分为连续的载波聚合和非连续的载波聚合。CA也可以支持在不同频带(inter-band)内载波的聚合(如图4c所示),载波1在频带1,载波2在频带2,将不同频带的两个载波聚合,使一个用户在不同频带的两个载波进行传输。
如图5所示,为本申请提供的一种通信方法,该方法包括以下步骤:
步骤501,终端设备确定所支持的侧行链路和蜂窝链路所在的载波的多载波组合方式。此处,多载波组合方式包括NR侧行链路所在的载波以及除所述NR侧行链路外的各个链路所在的载波的组合。
基于上述场景一,多载波的组合方式包括以下情形中的任一种。
情形1a,NR侧行链路和NR蜂窝链路在同一频带中的不同载波。
情形1b,NR侧行链路和NR蜂窝链路在不同频带中的不同载波。
情形1c,NR侧行链路和NR蜂窝链路在同一载波。
进一步可选地,当NR侧行链路与NR蜂窝链路在同一个载波时,载波组合方式还可以包括:NR侧行链路与NR蜂窝链路在同一个载波的同一个BWP,或NR侧行链路与NR蜂窝链路在同一个载波中的不同BWP。
相应地,在该场景一下,能力信息可包括情形1a、情形1b和情形1c中的任一项或任多项。
基于上述场景二,多载波的组合方式包括以下情形中的任一种。
情形2a,NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波。
情形2b,NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波。
情形2c,NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在不同频带中的不同载波。
情形2d,NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
相应地,在该场景二下,能力信息可包括情形2a、情形2b、情形2c和情形2d中的任一项或任多项。
进一步可选地,当NR侧行链路、LTE蜂窝链路与NR蜂窝链路在同一个载波时,载波组合方式还包括:NR侧行链路、LTE蜂窝链路与NR蜂窝链路在同一个载波的同一个BWP;或NR侧行链路、LTE蜂窝链路与NR蜂窝链路在同一个载波中的不同BWP;或NR侧行链路、LTE蜂窝链路与NR蜂窝链路中任意两个在同一个载波中的同一BWP,另一者在同一载波的不同BWP。
基于上述场景三,多载波的组合方式包括以下情形中的任一种。
情形3a,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波。
情形3b,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波。
情形3c,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波。
情形3d,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波在同一个频带中的同一载波。
情形3e,LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意三者在同一个频带中的不同载波,另外一者在不同频带中的不同载波。
进一步可选地,当NR侧行链路、LTE蜂窝链路、LTE侧行链路与NR蜂窝链路在同一个载波时,载波组合方式还包括:NR侧行链路、LTE蜂窝链路、LTE侧行链路与NR蜂窝链路在同一个载波的同一个BWP;或NR侧行链路、LTE蜂窝链路、LTE侧行链路与 NR蜂窝链路在同一个载波中的不同BWP;或NR侧行链路、LTE蜂窝链路与NR蜂窝链路中任意两个在同一个载波中的同一BWP,另两者在同一载波的另一个BWP;或者LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意三者在同一个载波中的不同BWP,另外一者在同一载波的不同BWP。
相应地,在该场景三下,能力信息可包括情形3a、情形3b、情形3c、情形3d和情形3e中的任一项或任多项。
本申请中,多载波组合的方式可独立于上述功率控制的过程。也就是说,上述图2所示的功率控制方法、与图5所示的通信方法相互独立。
或者,多载波组合的方式也可以与功率控制过程相结合。也就是说,基于上述图2所示的功率控制过程中,提供的多个链路所在的载波的多载波的组合方式;或者也可以是基于图5所示的通信方法中,提供的多链路并行传输时的功率控制方法。
本申请中,多载波组合的方式除了基于上述场景一、场景二和场景三中所介绍的组合方式外,还可包括:1)LTE侧行链路+NR蜂窝链路;2)LTE侧行链路+LTE蜂窝链路和NR蜂窝链路。
基于上述1)的场景,多载波的组合方式包括以下情形中的任一种。
情形4a,LTE侧行链路、NR蜂窝链路在同一频带中的不同载波;
情形4b,LTE侧行链路、NR蜂窝链路在不同频带中的不同载波;
情形4c,LTE侧行链路和NR蜂窝链路在同一载波。
进一步可选地,当LTE侧行链路与NR蜂窝链路在同一个载波时,载波组合方式还包括:LTE侧行链路与NR蜂窝链路在同一个载波的同一个BWP,或LTE侧行链路与NR蜂窝链路在同一个载波中的不同BWP。
基于上述2)的场景,多载波的组合方式包括以下情形中的任一种。
情形5a,LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波。
情形5b,LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波。
情形5c,LTE侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在不同频带中的不同载波。
情形5d,LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
进一步可选地,当LTE侧行链路、LTE蜂窝链路与NR蜂窝链路在同一个载波时,载波组合方式还包括:LTE侧行链路、LTE蜂窝链路与NR蜂窝链路在同一个载波的同一个BWP;或LTE侧行链路、LTE蜂窝链路与NR蜂窝链路在同一个载波中的不同BWP;或LTE侧行链路、LTE蜂窝链路与NR蜂窝链路中任意两个在同一个载波中的同一BWP,另一者在同一载波的不同BWP。
步骤502,终端设备确定能力信息,所述能力信息包括所述多载波组合方式中的至少一种。
在一种可能的实现方式,所述能力信息还包括以下内容中的至少一项:所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意一种对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意两种分别对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意三种分别对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链 路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路四种分别对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中至少一种链路所支持的多输入多输出MIMO模式。可选地,MIMO模式包括以下中的任意一种:单天线传输方式,多天线传输方式,发分集传输方式,空间复用传输方式。可选地,发分集可以是空频分组码(space frequency block coding,SFBC),空时分组编码(space–time block coding,STBC),循环延迟分集(cyclic delay diversity,CDD),基于码本的发分集,基于非码本的发分集中的任意一种。可选地,空间复用可以是单用户空间复用,多用户空间复用,基于码本的空间复用,基于非码分的空间复用中的任意一种。可选地,在各种MIMO传输模式下,还可以进一步包括终端设备所需要或所支持的最大天线数。
进一步地,所述能力信息还包括所述终端设备支持的总的最大发射通道数、或者NR侧行链路与除NR侧行链路外的各个链路中任意一种链路的最大载波数;或者,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路上的总的最大发射通道数;或,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路上的信道带宽;或,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路的子载波间隔,其中NR侧行链路与除NR侧行链路外的各个链路中任意一种链路工作在同一个载波或工作在同一频带宽中的不同载波上;其中,NR侧行链路外的各个链路包括以下中的于少一种:LTE侧行链路、LTE蜂窝链路以及NR蜂窝链路。其中,终端设备支持的总的最大发射通道数越多,终端设备支持的终端设备的最大传输速率越大。
需要说明的是,由于终端设备支持的总的最大发射通道数是一定的,终端设备需根据所支持的总的最大发射通道数,确定多载波的组合方式以及终端设备的能力信息。换句话说,终端设备多载波组合方式和能力信息受限于终端设备所支持的总的最大发射通道数。当一种链路使用的载波数或通道数增加时,必然会减少另一种链路可用的载波数或通道数。
下面给出几种能力信息的具体的示例。
示例一,蜂窝链路的部分带宽(bandwidth part,BWP)与侧行链路的BWP使用完全相同的载波集合。例如{C 0,C 1,C 2,C 3},且它们共用射频(radio frequency,RF)通道。终端设备支持的总的最大发射通道数可以是一个或多个。其中,LTE侧行链路和NR侧行链路可以是在同一载波,也可以在不同载波。
示例二,蜂窝链路的BWP与侧行链路的BWP使用完全不同的载波集合。例如蜂窝链路使用{C 0,C 1},而侧行链路使用{C 2,C 3},且它们使用不同的RF通道,终端设备支持的总的最大发射通道数可以是两个或多个。
其中,{C 0,C 1}可以是蜂窝链路的频带,{C 2,C 3}可以是智能交通系统(intelligent transport system,ITS)的频带也可以是蜂窝链路频带。或者,{C 0,C 1}可以是蜂窝链路的频带,C 2可以是蜂窝链路频带,C 3可以是ITS的频带。其中,LTE侧行链路和NR侧行链路可以是在同一载波,也可以分别在C 2和C 3上。
示例三,蜂窝链路的BWP使用的载波集合包含于与侧行链路的BWP使用的载波集合。例如蜂窝链路使用{C 0,C 1},而侧行链路使用{C 0,C 1,C 2,C 3},且它们使用不同的RF通道。终端设备支持的总的最大发射通道数至少是2个。其中,{C 0,C 1}可以是蜂窝链路的频带。{C 2,C 3}可以是ITS频带也可以是蜂窝链路的频带。
示例四,蜂窝链路的BWP使用的载波集合包括侧行链路的BWP使用的载波集合。例 如蜂窝链路使用{C 0,C 1,C 2,C 3},而侧行链路使用{C 2,C 3},在{C 2,C 3}上,终端设备使用相同的RF链路,在{C 0,C 1}可以是相同的RF链或不同的RF通道链,取决于是inter-band还是intra-band。
示例五,蜂窝链路的BWP与侧行链路的BWP使用部分相同的载波或载波集合。例如蜂窝链路使用{C 0,C 1,C 2},而侧行链路使用{C 2,C 3},且它们使用不同的RF通道。其中C 2是蜂窝链路的载波。C 3是ITS载波。终端设备支持的总的最大发射通道数至少是2个。应理解,如果RF通道数为2,则{C 0,C 1,C 2}必须是intra-band上的载波。
步骤503,终端设备向网络设备发送能力信息。
需要说明的是,该步骤503,也可以是终端设备向其他终端设备发送能力信息。
相应地,网络设备或其它终端设备接收来自终端设备的能力信息。
从上述步骤501至步骤503可以看出,终端设备将自己支持的各个链路的能力信息上报至网络设备或其它终端设备,网络设备可根据终端设备的能力信息来确定当前是否激活多载波传输、以及确定是否可以调度多个链路并行进行数据传输。也就是说,网络设备可基于终端设备上报的能力信息,对终端设备支持的各个链路做出合理的调度。
本申请中,网络设备会基于终端设备上报的能力信息为终端设备配置在不同的链路上传输数据。终端设备向网络设备上报能力信息的过程可参见上述介绍,此处不再赘述。例如,终端设备向网络设备上报支持在同一个载波上同时(频分多路复用(frequency-division multiplexing,FDM))在NR蜂窝链路和NR侧行链路上传输数据时,终端设备才会在NR蜂窝链路和NR侧行链路上同时传输数据。再比如,终端设备向网络设备上报支持在同一个载波上同时(FDM)在NR蜂窝链路、NR侧行链路、LTE蜂窝链路和LTE侧行链路上传输数据时,终端设备才会在NR蜂窝链路、NR侧行链路、LTE蜂窝链路和LTE侧行链路上同时传输数据。
当终端设备确定在NR蜂窝链路与NR侧行链路上待传输的数据在时域上部分或完全重叠时,另一种处理方式是将某个链路作为用于实际传输的目标链路进行正常通信,丢弃或暂停其余链路上的数据。可选地,需要根据一定的方式或规则来确定用于实际传输的目标链路。
如图6所示,为本申请提供的另一种通信方法。该方法包括以下步骤:
步骤601,终端设备根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,或者根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,目标链路为NR侧行链路或NR蜂窝链路。
此处,传输指接收或发送。可选地,第二信息可承载于物理上行链路控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)中。
步骤602,终端设备通过目标链路进行通信。
此处,当确定目标链路为NR侧行链路,则终端设备通过NR侧行链路传输的第一信息,丢弃或暂停NR蜂窝链路上的第二信息。当确定目标链路为NR蜂窝链路,则终端设备通过NR蜂窝链路传输第二信息,丢弃或暂停NR侧行链路上的第一信息。
在一种可能的实现方式中,当第二信息的类型为非周期的SRS、HARQ的反馈信息、调度请求SR、RSRP、波束恢复请求消息中的任意一种时,确定NR蜂窝链路为目标链路,其中,HARQ的反馈信息包括ACK应答消息或NACK应答消息。
在另一种可能的实现方式中,当第二信息的类型为周期的SRS、半持续的SRS、码本的SRS、非码本的SRS、信道状态信息(channel state information,CSI)中的任意一种时,确定NR侧行链路为目标链路。
在另一种可能的实现方式中,当第一信息的优先级高于第一阈值、且第二信息的类型为周期的SRS、半持续的SRS、码本的SRS、非码本的SRS、CSI中的任意一种时,确定NR侧行链路为目标链路。
在又一种可能的实现方式中,终端设备可接收来自网络设备的第一指示信息,第一指示信息用于指示目标链路为NR侧行链路还是NR蜂窝链路。例如,终端设备接收来自网络设备的动态调度的下行控制信息(downlink control information,DCI)指令,可在DCI指令中使用1比特来指示目标链路。示例性地,可用1指示目标链路为NR侧行链路,用0指示目标链路为NR蜂窝链路。也就是说,1指示终端设备通过NR侧行链路传输数据,丢弃或暂停其它链路上的数据;用0指示终端设备通过NR蜂窝链路传输数据,丢弃或暂停其它链路上的数据。可选的,第一指示信息还可以是系统消息或者无线资源控制(radio resource control,RRC)消息。
在再一种可能的实现方式中,当第一信息为数据包,第二信息也为数据包时,可比较两个数据包的优先级,优先级高的数据包对应的链路为目标链路。
在再一种可能的实现方式,当所述第一信息为混合自动重传请求HARQ的反馈信息、根据所述反馈信息对应的数据包的优先级确定所述目标链路。
本申请示例性地示出三种可能的实现方式。一种是,当所述第一信息为HARQ的反馈信息、且所述反馈信息的数据包的优先级高于第二阈值时,确定所述NR蜂窝链路为目标链路。另一种是,分别确定所述反馈信息对应数据包的优先级和所述第一信息的优先级,将优先级高的所对应的链路确定为目标链路。再一种是,当所述第一信息的优先级高于第三阈值时,将所述NR侧行链路确定目标链路。
通过上述步骤601至步骤602可以看出,通过第一信息和第二信息的类型,确定终端设备当前通过哪个链路传输数据,如此,有助于降低终端实现的复杂度,且尽可能地减少因为丢弃或暂停部分信息对传输产生的影响。
本申请中,网络设备为终端设备配置的传输资源上,终端设备在NR侧行链路上既可以发送第一信息,也可以接收第一信息。所述终端设备确定第一信息为第一数据包,第二信息为第二数据包,且NR侧行链路与NR蜂窝链路在同一个载波或在同一个频带的相邻载波上,由于在同一个载波或是在相邻的载波上的两个链路,共用了同一个射频滤波器,终端设备内的收发干扰不能被抑制,因此,会产生NR蜂窝链路的发送对NR侧行链路的接收有干扰。为了解决该问题,本申请提供如下一种通信方法。
如图7所示,为本申请提供的又一种通信方法,该方法包括以下步骤:
步骤701,终端设备确定NR侧行链路上的第一信息为第一数据包、NR蜂窝链路上的第二信息为第二数据包。
此处,具体可以是终端设备待接收第一数据包且待发送第二数据包,或者,所述终端设备待发送第一数据包且待接收第二数据包。
步骤702,终端设备若确定NR侧行链路与NR蜂窝链路在同一载波或在同一频带的不同载波,则确定NR蜂窝链路为目标链路。
也可以理解为,以终端设备的NR蜂窝链路的数据传输为最高优先级。即在配置的NR 传输资源上,有NR蜂窝链路的数据传输时,则NR侧行链路停止接收数据。
从上述步骤701至步骤702可以看出,在NR侧行链路与NR蜂窝链路的均是传输数据包时,可优先处理NR蜂窝链路上的数据包,如此,在降低终端设备的实现成本和复杂度时,还尽可能减少了对蜂窝链路的影响,且可避免终端设备内干扰的发生。
本申请中,终端设备还可根据第一数据包的优先级来确定是否停止接收NR侧行链路的第一数据包。具体可为:网络设备为不同的数据包的类型配置不同的优先级。终端设备的NR侧行链路通过解析接收的数据包的高层优先级信息来判断是否停止接收NR侧行链路的第一数据包。其中,优先级的判断可以是与配置的门限比较,也可以与终端设备的NR蜂窝链路的待发送的第二数据包的优先级进行比较,或者也可以是信令(例如优先级的信令)中携带指示优先级的信息。
可选地,终端设备还可以根据NR侧行链路资源池的优先级来判断是否停止接收NR侧行链路的第一数据包。具体地,网络设备在给终端设备配置NR侧行链路的资源池时,并配置这个资源池相应的优先级。或者,进一步,NR侧行链路的优先级还可以是发送端的终端设备通过。
基于上述内容和相同构思,本申请提供一种终端设备,用于执行上述方法流程中的终端设备侧的任一个方案。图8示例性示出了本申请提供的一种终端设备的结构示意图。该示例中的终端设备800可以是上述内容中的终端设备,可以执行上述图2、图5、图6和图7中终端设备对应执行的方案。该终端设备800也可以上述图1中的终端设备101或终端设备102。如图8所示,终端设备800包括处理器、存储器、控制电路以及天线。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备800执行上述任一实施例中由终端设备800执行的方法。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备800时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备800进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,需要说明的是,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。需要说明的是,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备800可以包括多个中央处理器以增强其处理能力,终端设备800的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据 进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个示例中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元902,将具有处理功能的处理器视为终端设备900的处理单元901。收发单元902也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元902中用于实现接收功能的器件视为接收单元,将收发单元902中用于实现发送功能的器件视为发送单元,即收发单元902包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在下行链路上,通过天线接收网络设备发送的下行链路信号(包括数据和/或控制信息),在上行链路上,通过天线向网络设备或其它终端设备发送上行链路信号(包括数据和/或控制信息),在处理器中,对业务数据和信令消息进行处理,这些单元根据无线接入网采用的无线接入技术(例如,LTE、NR及其他演进系统的接入技术)来进行处理。所述处理器还用于对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理。处理器还用于支持终端设备执行图8中涉及终端设备的执行方法。
可以理解的是,图8仅仅示出了所述终端设备的简化设计。在实际应用中,所述终端设备可以包含任意数量的天线,存储器,处理器等,而所有可以实现本申请的终端设备都在本申请的保护范围之内。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请中,以收发单元称为收发器,处理单元称为处理器为例。
在一种应用中,所述处理器用于在目标时域资源上确定NR侧行链路的第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,根据所述第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,确定所述NR侧行链路在所述目标时域资源上的第一实际发射功率;其中,所述目标时域资源为所述NR侧行链路的传输与所述除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,所述NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同;所述收发器,用于传输数据。
示例性地示出了以下三种处理器确定第一实际功率的方式。
在方式一中,所述处理器用于:若确定所述第一发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和,大于终端设备的最大发射功率,则将所述第一发射功率减小至所述第一实际发射功率;其中,所述第一实际发射功率满足以下内容中的任一项:所述第一实际发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和不超过所述最大发射功率;所述第一实际发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和不超过所述最大发射功率、且所述第一实际发射功率与所述第一发射功率之差不大于预设值。
在方式二中,所述处理器用于:将所述终端设备的最大发射功率减去除所述NR侧行链路外的各个链路分别对应的第二发射功率的差值,确定为所述第一实际发射功率。
在方式三种,处理器用于:确定所述终端设备的最大发射功率减去除所述NR侧行链路外的各个链路分别对应的发射功率的差值;基于所述NR侧行链路上的路损和传输带宽确定的功率;基于除所述NR侧行链路外的各个链路上的路损和传输带宽确定的功率;基 于信道质量确定的功率内容中的任意至少两项,并将确定出的至少两项中的最小值确定为所述第一实际发射功率。
在一种可能的实现方式中,除所述NR侧行链路外的各个链路包括以下内容中任一项:NR蜂窝链路;NR蜂窝链路和LTE蜂窝链路;NR蜂窝链路、LTE蜂窝链路和LTE侧行链路。
在一种可能的实现方式中,所述处理器还用于:确定所支持的NR侧行链路和除所述NR侧行链路外的各个链路所在的载波的组合方式;确定能力信息。所述收发器,还用于向网络设备或其它终端设备发送所述能力信息,所述能力信息包括所述多载波组合方式中的至少一种。
进一步,除所述NR侧行链路外的各个链路包括NR蜂窝链路,所述载波的组合方式包括以下内容中的任意一种:所述NR侧行链路和所述NR蜂窝链路在同一频带中的不同载波;所述NR侧行链路和所述NR蜂窝链路在不同频带中的不同载波;所述NR侧行链路与所述NR蜂窝链路对应同一载波。
在另一种应用中,所述处理器,用于根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,或者根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,所述目标链路为NR侧行链路或NR蜂窝链路。所述收发器,用于通过所述目标链路进行通信。
当所述第二信息的类型为非周期的SRS、HARQ的反馈信息(如ACK应答消息或NACK应答消息)、调度请求SR、RSRP、波束恢复请求消息中的任意一种时,所述处理器具体用于确定所述NR蜂窝链路为目标链路。
当所述第一信息的优先级高于第一阈值、且所述第二信息的类型为周期的SRS、半持续的SRS、码本的SRS、非码本的SRS、CSI中的任意一种时,所述处理器具体用于确定所述NR侧行链路为目标链路。
当所述第一信息为HARQ的反馈信息,所述处理器用于:根据所述反馈信息对应的数据包的优先级确定所述目标链路。
在一种可能的实现方式中,所述处理器具体用于:确定第一信息为第一数据包,所述第二信息为第二数据包,终端设备待接收第一数据包且待发送第二数据包,或者,所述终端设备待发送第一数据包且待接收第二数据包;若确定所述NR侧行链路与所述NR蜂窝链路在同一载波或在同一频带的不同载波,则确定所述NR蜂窝链路为目标链路。
在再一种应用中,所述处理器,用于确定所支持的侧行链路和蜂窝链路所在的载波的多载波组合方式,确定能力信息,多载波组合方式包括NR侧行链路所在的载波、与除所述NR侧行链路外的各个链路所在的载波的组合,所述能力信息包括所述多载波组合方式中的至少一种。所述收发器,用于向网络设备或其它终端设备发送所述能力信息。
在一种可能的实现方式中,所述侧行链路包括NR侧行链路,所述蜂窝链路包括NR蜂窝链路,所述多载波组合方式包括以下内容中的任意一种:所述NR侧行链路和所述NR蜂窝链路在同一频带中的不同载波;或者,所述NR侧行链路和所述NR蜂窝链路在不同频带中的不同载波;或者,所述NR侧行链路与所述NR蜂窝链路对应同一载波。
当侧行链路包括LTE侧行链路,蜂窝链路包括NR蜂窝链路时,多载波的组合方式包括:LTE侧行链路和NR蜂窝链路在同一频带中的不同载波;或者,LTE侧行链路和NR蜂窝链路在不同频带中的不同载波;或者,LTE侧行链路和NR蜂窝链路在同一载波。
当侧行链路包括NR侧行链路,蜂窝链路包括LTE蜂窝链路和NR蜂窝链路时,多载波的组合方式包括:NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波;或NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波;或NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在不同频带中的不同载波;或NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
当侧行链路包括LTE侧行链路,蜂窝链路包括LTE蜂窝链路和NR蜂窝链路时,多载波的组合方式包括:LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波;或LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波;或LTE侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另一者在不同频带中的不同载波;或LTE侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的同一载波。
当侧行链路包括LTE侧行链路、NR侧行链路,蜂窝链路包括LTE蜂窝链路和NR蜂窝链路时,多载波的组合方式包括:LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在同一个频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路在不同频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意三者在同一个频带中的不同载波,另外一者在不同频带中的不同载波;或LTE侧行链路、NR侧行链路、LTE蜂窝链路、NR蜂窝链路中的任意两者在同一个频带中的不同载波,另外两者在不同频带中的不同载波在同一个频带中的同一载波。
在一种可能的实现方式中,所述能力信息还包括以下内容中的至少一项:所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意一种对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意两种分别对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意三种分别对应的终端设备的最大传输速率;所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路四种分别对应的终端设备的最大传输速率;终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中至少一种链路所支持的多输入多输出MIMO模式。可选地,MIMO模式包括以下中的任意一种:单天线传输方式,多天线传输方式,发分集传输方式,空间复用传输方式。可选地,发分集可以是SFBC、STBC、CDD、基于码本的发分集,基于非码本的发分集中的任意一种。可选地,空间复用可以是单用户空间复用,多用户空间复用,基于码本的空间复用,基于非码分的空间复用中的任意一种。可选地,在各种MIMO传输模式下,还可以进一步包括终端设备所需要或所支持的最大天线数。
进一步,所述能力信息还包括:所述终端设备支持的总的最大发射通道数、或者NR侧行链路与除NR侧行链路外的各个链路中任意一种链路的最大载波数;或者,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路上的总的最大发射通道数;或,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路上的信道带宽;或,NR侧行链路与除NR侧行链路外的各个链路中任意一种链路的子载波间隔,其中NR侧行链路与除 NR侧行链路外的各个链路中任意一种链路工作在同一个载波或工作在同一频带宽中的不同载波上;其中,NR侧行链路外的各个链路包括以下中的于少一种:LTE侧行链路、LTE蜂窝链路以及NR蜂窝链路。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本申请中描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于上述内容和相同构思,本申请提供一种终端设备,用于执行上述方法流程中终端设备侧的任一个方案。图9示例性示出了本申请提供的一种终端设备的结构示意图。如图9所示,该终端设备900包括处理单元901和收发单元902。该示例中的终端设备900可以是上述内容中的终端设备,可以执行上述图2、图5、图6和图7中终端设备对应执行的方案。该终端设备900也可以上述图1中的终端设备101或终端设备102。
在一种应用中,所述处理单元901用于在目标时域资源上确定NR侧行链路的第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,根据所述第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,确定所述NR侧行链路在所述目标时域资源上的第一实际发射功率;其中,所述目标时域资源为所述NR侧行链路的传输与所述除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,所述NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同;所述收发单元902,用于传输数据。
本申请实施例中上述可选的实施方式的相关内容可以参见上述实施例,在此不再赘述。
在另一种应用中,所述处理单元901,用于根据在NR侧行链路上待传输的第一信息、以及NR蜂窝链路上待传输的第二信息的类型,确定目标链路,所述目标链路为NR侧行链路或NR蜂窝链路。所述收发单元902,用于通过所述目标链路进行通信。
本申请实施例中上述可选的实施方式的相关内容可以参见上述实施例,在此不再赘述。
在再一种应用中,所述处理单元901,用于确定所支持的侧行链路和蜂窝链路所在的 载波的多载波组合方式,多载波组合方式包括NR侧行链路所在的载波、与除所述NR侧行链路外的各个链路所在的载波的组合,确定能力信息。所述收发单元902,用于向网络设备或其它终端设备发送所述能力信息,能力信息包括多载波组合方式中的至少一种。
应理解,以上各终端设备的单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请中,处理单元901可以由上述图8的处理器实现,收发单元902可以由上述图8的收发器8实现。也就是说,本申请中收发单元902可以执行上述图8的收发器所执行的方案,本申请中处理单元901可以执行上述图8的处理器所执行的方案,其余内容可以参见上述内容,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现、当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。指令可以存储在计算机存储介质中,或者从一个计算机存储介质向另一个计算机存储介质传输,例如,指令可以从一个网站站点、计算机、服务器或数据包中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据包中心进行传输。计算机存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据包中心等数据包存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带、磁光盘(MO)等)、光介质(例如,CD、DVD、BD、HVD等)、或者半导体介质(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk,SSD))等。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据包处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据包处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些指令也可存储在能引导计算机或其他可编程数据包处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些指令也可装载到计算机或其他可编程数据包处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种功率控制方法,其特征在于,包括:
    终端设备在目标时域资源上确定NR侧行链路的第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率;
    所述终端设备根据所述第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,确定所述NR侧行链路在所述目标时域资源上的第一实际发射功率;
    其中,所述目标时域资源为所述NR侧行链路的传输与所述除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,所述NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备根据所述第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,确定所述NR侧行链路在所述目标时域资源上的第一实际发射功率,包括:
    所述终端设备若确定所述第一发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和,大于所述终端设备的最大发射功率,则将所述第一发射功率减小至所述第一实际发射功率;
    其中,所述第一实际发射功率满足以下内容中的任一项:
    所述第一实际发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和不超过所述最大发射功率;
    所述第一实际发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和不超过所述最大发射功率、且所述第一实际发射功率与所述第一发射功率之差不大于预设值。
  3. 如权利要求1所述的方法,其特征在于,所述终端设备根据所述第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,确定所述NR侧行链路在所述第一时域资源上的第一实际发射功率,包括:
    所述终端设备将所述终端设备的最大发射功率减去除所述NR侧行链路外的各个链路分别对应的第二发射功率的差值,确定为所述第一实际发射功率;或者,
    所述终端设备确定以下内容中的任意至少两项,并将确定出的至少两项中的最小值确定为所述第一实际发射功率:
    所述终端设备的最大发射功率减去除所述NR侧行链路外的各个链路分别对应的发射功率的差值;
    基于所述NR侧行链路上的路损和传输带宽确定的功率;
    基于除所述NR侧行链路外的各个链路上的路损和传输带宽确定的功率;
    基于信道质量确定的功率。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,除所述NR侧行链路外的各个链路包括以下内容中任一项:
    NR蜂窝链路;
    NR蜂窝链路和LTE蜂窝链路;
    NR蜂窝链路、LTE蜂窝链路和LTE侧行链路。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所支持的NR侧行链路所在的载波、与除所述NR侧行链路外的各个链路所在的载波的多载波组合方式;
    所述终端设备确定能力信息,所述能力信息包括所述多载波组合方式中的至少一种;
    所述终端设备向网络设备或其它终端设备发送所述能力信息。
  6. 如权利要求5所述的方法,其特征在于,除所述NR侧行链路外的各个链路包括NR蜂窝链路,所述载波的组合方式包括以下内容中的任意一种:
    所述NR侧行链路和所述NR蜂窝链路在同一频带中的不同载波;
    所述NR侧行链路和所述NR蜂窝链路在不同频带中的不同载波;
    所述NR侧行链路与所述NR蜂窝链路对应同一载波。
  7. 一种通信方法,其特征在于,包括:
    终端设备根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,或者根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,所述目标链路为NR侧行链路或NR蜂窝链路;
    所述终端设备通过所述目标链路进行通信。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,包括:
    当所述第二信息的类型为以下内容中的任意一种时,确定所述NR蜂窝链路为目标链路:
    非周期的探测参考信号SRS;
    混合自动重传请求HARQ的反馈信息;
    调度请求SR;
    参考信号接收功率RSRP;
    波束恢复请求消息。
  9. 如权利要求7所述的方法,其特征在于,所述终端设备根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,包括:
    当所述第二信息的类型为以下内容中的任意一种时,确定所述NR侧行链路为目标链路:
    周期的SRS;
    半持续的SRS;
    码本的SRS;
    非码本的SRS;
    信道状态信息CSI。
  10. 如权利要求7所述的方法,其特征在于,所述终端设备根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,确定目标链路,包括:
    当所述第一信息的优先级高于第一阈值、且所述第二信息的类型为以下内容中的任意一种时,确定所述NR侧行链路为目标链路:
    周期的SRS;
    半持续的SRS;
    码本的SRS;
    非码本的SRS;
    信道状态信息CSI。
  11. 如权利要求7所述的方法,其特征在于,所述终端设备根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,确定目标链路,包括:
    所述终端设备确定第一信息为第一数据包,所述第二信息为第二数据包;所述终端设备待接收第一数据包且待发送第二数据包,或者,所述终端设备待发送第一数据包且待接收第二数据包;
    所述终端设备若确定所述NR侧行链路与所述NR蜂窝链路在同一载波或在同一频带的不同载波,则确定所述NR蜂窝链路为目标链路。
  12. 如权利要求7所述的方法,其特征在于,所述终端设备根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,确定目标链路,包括:
    当所述第一信息为混合自动重传请求HARQ的反馈信息,根据所述反馈信息对应的数据包的优先级确定所述目标链路。
  13. 一种通信方法,其特征在于,包括:
    终端设备确定所支持的侧行链路和蜂窝链路所在的载波的多载波组合方式,多载波组合方式包括NR侧行链路所在的载波、与除所述NR侧行链路外的各个链路所在的载波的组合;
    所述终端设备确定能力信息,所述能力信息对应所述多载波组合方式;
    所述终端设备向网络设备或其它终端设备发送所述能力信息。
  14. 如权利要求13所述的方法,其特征在于,所述侧行链路包括NR侧行链路,所述蜂窝链路包括NR蜂窝链路,所述多载波组合方式包括以下内容中的任意一种:
    所述NR侧行链路和所述NR蜂窝链路在同一频带中的不同载波;
    所述NR侧行链路和所述NR蜂窝链路在不同频带中的不同载波;
    所述NR侧行链路与所述NR蜂窝链路对应同一载波。
  15. 如权利要求13所述的方法,其特征在于,所述能力信息还包括以下内容中的至少一项:
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意一种对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意两种分别对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意三种分别对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路四种分别对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中至少一种链路所支持的多输入多输出MIMO模式。
  16. 如权利要求13至14任一项所述的方法,其特征在于,所述能力信息还包括以下中的至少一种:
    所述终端设备支持的总的最大发射通道数;
    所述NR侧行链路与除所述NR侧行链路外的各个链路中任意一种链路的最大载波数;
    所述NR侧行链路与除所述NR侧行链路外的各个链路中任意一种链路上的总的最大 发射通道数;
    所述NR侧行链路与除所述NR侧行链路外的各个链路中任意一种链路上的信道带宽;
    所述NR侧行链路与除所述NR侧行链路外的各个链路中任意一种链路的子载波间隔,其中NR侧行链路与除所述NR侧行链路外的各个链路中任意一种链路工作在同一个载波或工作在同一频带宽中的不同载波上;
    其中,所述NR侧行链路外的各个链路包括以下中的于少一种:LTE侧行链路、LTE蜂窝链路以及所述NR蜂窝链路。
  17. 一种通信装置,其特征在于,包括处理器和收发器:
    所述处理器,用于在目标时域资源上确定NR侧行链路的第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,根据所述第一发射功率和除所述NR侧行链路外的各个链路分别对应的发射功率,确定所述NR侧行链路在所述目标时域资源上的第一实际发射功率;其中,所述目标时域资源为所述NR侧行链路的传输与所述除NR侧行链路外的各个链路的传输所占用的重叠部分的时域资源,所述NR侧行链路的传输以及除NR侧行链路外的各个链路的传输所占用频域资源不同;
    所述收发器,用于基于所述处理器确定的第一实际发射功率传输数据。
  18. 如权利要求17所述的通信装置,其特征在于,所述处理器具体用于:
    若确定所述第一发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和,大于终端设备的最大发射功率,则将所述第一发射功率减小至所述第一实际发射功率;
    其中,所述第一实际发射功率满足以下内容中的任一项:
    所述第一实际发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和不超过所述最大发射功率;
    所述第一实际发射功率与除所述NR侧行链路外的各个链路分别对应的发射功率之和不超过所述最大发射功率、且所述第一实际发射功率与所述第一发射功率之差不大于预设值。
  19. 如权利要求17所述的通信装置,其特征在于,所述处理器具体用于:
    将所述终端设备的最大发射功率减去除所述NR侧行链路外的各个链路分别对应的第二发射功率的差值,确定为所述第一实际发射功率;或者,确定以下内容中的任意至少两项,并将确定出的至少两项中的最小值确定为所述第一实际发射功率:
    所述终端设备的最大发射功率减去除所述NR侧行链路外的各个链路分别对应的发射功率的差值;基于所述NR侧行链路上的路损和传输带宽确定的功率;基于除所述NR侧行链路外的各个链路上的路损和传输带宽确定的功率;基于信道质量确定的功率。
  20. 如权利要求17至19中任一项所述的通信装置,其特征在于,除所述NR侧行链路外的各个链路包括以下内容中任一项:
    NR蜂窝链路;
    NR蜂窝链路和LTE蜂窝链路;
    NR蜂窝链路、LTE蜂窝链路和LTE侧行链路。
  21. 如权利要求17至20中任一项所述的通信装置,其特征在于,所述处理器还用于:
    确定所支持的NR侧行链路和除所述NR侧行链路外的各个链路所在的载波的组合方式;确定能力信息,所述能力信息包括所述多载波组合方式中的至少一种;
    所述收发器,还用于
    向网络设备或其它终端设备发送所述能力信息。
  22. 如权利要求20所述的通信装置,其特征在于,除所述NR侧行链路外的各个链路包括NR蜂窝链路,所述载波的组合方式包括以下内容中的任意一种:
    所述NR侧行链路和所述NR蜂窝链路在同一频带中的不同载波;
    所述NR侧行链路和所述NR蜂窝链路在不同频带中的不同载波;
    所述NR侧行链路与所述NR蜂窝链路对应同一载波。
  23. 一种通信装置,其特征在于,包括处理器和收发器:
    所述处理器,用于根据在NR侧行链路上待传输的第一信息以及NR蜂窝链路上待传输的第二信息的类型,或者根据NR蜂窝链路上待传输的第二信息的类型,确定目标链路,所述目标链路为NR侧行链路或NR蜂窝链路;
    所述收发器,用于通过所述目标链路进行通信。
  24. 如权利要求23所述的通信装置,其特征在于,所述处理器具体用于:
    当所述第二信息的类型为以下内容中的任意一种时确定所述NR蜂窝链路为目标链路:
    非周期的探测参考信号SRS;
    混合自动重传请求HARQ的反馈信息;
    调度请求SR;
    参考信号接收功率RSRP;
    波束恢复请求消息。
  25. 如权利要求23所述的通信装置,其特征在于,所述处理器具体用于:
    当所述第二信息的类型为以下内容中的任意一种时确定所述NR侧行链路为目标链路:
    周期的探测参考信号SRS;
    半持续的SRS;
    码本的SRS;
    非码本的SRS;
    信道状态信息CSI。
  26. 如权利要求23所述的通信装置,其特征在于,所述处理器具体用于:
    确定第一信息为第一数据包,所述第二信息为第二数据包;所述终端设备待接收第一数据包且待发送第二数据包,或者,所述终端设备待发送第一数据包且待接收第二数据包;
    若确定所述NR侧行链路与所述NR蜂窝链路在同一载波或在同一频带的不同载波,则确定所述NR蜂窝链路为目标链路。
  27. 如权利要求23所述的通信装置,其特征在于,所述处理器具体用于:
    当所述第一信息为混合自动重传请求HARQ的反馈信息,根据所述反馈信息对应的数据包的优先级确定所述目标链路。
  28. 一种通信装置,其特征在于,包括处理器和收发器:
    所述处理器,用于确定所支持的侧行链路和蜂窝链路所在的载波的多载波组合方式,确定能力信息,多载波组合方式包括NR侧行链路所在的载波、与除所述NR侧行链路外的各个链路所在的载波的组合,所述能力信息包括所述多载波组合方式中的至少一种;
    所述收发器,用于向网络设备或其它终端设备发送所述能力信息。
  29. 如权利要求28所述的通信装置,其特征在于,所述侧行链路包括NR侧行链路,所述蜂窝链路包括NR蜂窝链路,所述多载波组合方式包括以下内容中的任意一种:
    所述NR侧行链路和所述NR蜂窝链路在同一频带中的不同载波;
    所述NR侧行链路和所述NR蜂窝链路在不同频带中的不同载波;
    所述NR侧行链路与所述NR蜂窝链路对应同一载波。
  30. 如权利要求28所述的通信装置,其特征在于,所述能力信息还包括以下内容中的至少一项:
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意一种对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意两种分别对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中的任意三种分别对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路四种分别对应的所述终端设备的最大传输速率;
    所述终端设备所支持的LTE侧行链路、NR侧行链路、LTE蜂窝链路以及所述NR蜂窝链路中至少一种链路所支持的MIMO模式。
  31. 一种存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至16任一所述的方法。
PCT/CN2020/091655 2019-06-13 2020-05-21 一种功率控制方法、通信方法、装置及存储介质 WO2020248794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910509474.1A CN112087793A (zh) 2019-06-13 2019-06-13 一种功率控制方法、通信方法、装置及存储介质
CN201910509474.1 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248794A1 true WO2020248794A1 (zh) 2020-12-17

Family

ID=73733499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091655 WO2020248794A1 (zh) 2019-06-13 2020-05-21 一种功率控制方法、通信方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN112087793A (zh)
WO (1) WO2020248794A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123433A1 (zh) * 2021-12-31 2023-07-06 北京小米移动软件有限公司 终端的功率配置方法、装置、通信设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488384A (zh) * 2015-08-31 2017-03-08 电信科学技术研究院 一种发送数据包的方法及装置
EP3209083A1 (en) * 2016-02-05 2017-08-23 ASUSTek Computer Inc. Method and apparatus for latency reduction of device-to-device (d2d) message in a wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091425A2 (en) * 2009-02-09 2010-08-12 Interdigital Patent Holdings, Inc. Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers
CN101742625B (zh) * 2009-12-22 2012-09-05 华为技术有限公司 功率控制方法、装置和基站
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置
EP3836446B1 (en) * 2018-08-10 2023-06-07 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus, and system for transmitting feedback information between internet-of-vehicles devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488384A (zh) * 2015-08-31 2017-03-08 电信科学技术研究院 一种发送数据包的方法及装置
EP3209083A1 (en) * 2016-02-05 2017-08-23 ASUSTek Computer Inc. Method and apparatus for latency reduction of device-to-device (d2d) message in a wireless communication system

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion on PC5 Multiple Carrier", 3GPP TSG-RAN WG2 #93-BIS TDOC R2-162811, 15 April 2016 (2016-04-15), XP051082565, DOI: 20200720085334X *
ERICSSON: "Discussion on PC5 Multiple Carrier", 3GPP TSG-RAN WG2 #93-BIS TDOC R2-162811, 15 April 2016 (2016-04-15), XP051082565, DOI: 20200720105150X *
LG ELECTRONICS: "On D2D transmission power control in a multicarrier scenario", 3GPP TSG RAN WG1 MEETING #82 R1-154260, 28 August 2015 (2015-08-28), XP051001591, DOI: 20200720084625X *
LG ELECTRONICS: "On D2D transmission power control in a multicarrier scenario", 3GPP TSG RAN WG1 MEETING #82 R1-154260, 28 August 2015 (2015-08-28), XP051001591, DOI: 20200720105043X *
MEDIATEK INC.: "Prioritization of UL and SL transmission", 3GPP TSG-RAN WG2 MEETING #106 R2-1906337, 17 May 2019 (2019-05-17), XP051729804, DOI: 20200720084851X *
OPPO: "Left issues on MAC for NR-V2X", 3GPP TSG-RAN WG2 MEETING #106 R2-1905568, 17 May 2019 (2019-05-17), XP051729072, DOI: 20200720085058X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123433A1 (zh) * 2021-12-31 2023-07-06 北京小米移动软件有限公司 终端的功率配置方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN112087793A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
KR20220085782A (ko) 사이드링크에 대한 피드백 보고
KR102598362B1 (ko) 신호 전송 방법, 우선순위 구성 방법 및 장치
CN110113133A (zh) 用于波形选择和自适应的系统和方法
CN115136706A (zh) 用于用户装备内和用户装备间取消交叠通信的技术
EP4017196A1 (en) Method and device for determining priority of harq feedback in nr v2x
CN115136646A (zh) 数据传输方法、装置及设备
US11882556B2 (en) Transmission of physical uplink channels and signals for new radio beamformed system
EP4142413A1 (en) Sidelink feedback method and terminal device
CN114731690A (zh) 数据传输方法、装置及设备
CN114788204B (zh) Harq进程的状态确定方法、装置及设备
CN115428385A (zh) 用于调整时隙格式的信令
WO2021163990A1 (zh) 上行传输控制方法、装置及其设备
CN114885431A (zh) 一种通信方法及装置
WO2019192500A1 (zh) 通信方法和通信装置
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
EP3823397A1 (en) Traffic-dependent transmission for interference reduction
WO2020248794A1 (zh) 一种功率控制方法、通信方法、装置及存储介质
CN114731569A (zh) 经由初始侧链路控制信息通信为后续侧链路传输保留资源
CN115399025A (zh) 无线通信方法、终端设备和网络设备
JP2022554261A (ja) 電力割り当て方法及び装置
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
US20240137927A1 (en) Techniques for multiplexing uplink control information
US20230379954A1 (en) Sidelink channel state information reporting for multiple remote user equipments
US20230353314A1 (en) Method and apparatus for uplink control information transmission in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823288

Country of ref document: EP

Kind code of ref document: A1