WO2023123057A1 - 一种终端设备切换方法和基站 - Google Patents

一种终端设备切换方法和基站 Download PDF

Info

Publication number
WO2023123057A1
WO2023123057A1 PCT/CN2021/142503 CN2021142503W WO2023123057A1 WO 2023123057 A1 WO2023123057 A1 WO 2023123057A1 CN 2021142503 W CN2021142503 W CN 2021142503W WO 2023123057 A1 WO2023123057 A1 WO 2023123057A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
srs
effective antennas
ssb
Prior art date
Application number
PCT/CN2021/142503
Other languages
English (en)
French (fr)
Inventor
彭劲东
Original Assignee
上海华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华为技术有限公司 filed Critical 上海华为技术有限公司
Priority to PCT/CN2021/142503 priority Critical patent/WO2023123057A1/zh
Publication of WO2023123057A1 publication Critical patent/WO2023123057A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the technical field of communications, and in particular to a method for switching terminal equipment and a base station.
  • a common new radio (NR) terminal has 4 antennas, which can theoretically obtain high-flow performance.
  • indoor multi-path and frequency selection are serious.
  • there are only 4 effective antennas in a common RF combiner cell and the terminal can reach 1.1-1.2 gigabits per second (Gbps) at the near point, and only 600 megabits per second (Mbps) at the edge. )about.
  • Gbps gigabits per second
  • Mbps megabits per second
  • pRRU pico remote radio units
  • the terminal can reach 1.4-1.5Gbps at the near point and It can reach around 900Mbps.
  • the cell handover defined by the protocol is judged by the terminal device based on the strength of the broadcast channel synchronization signal and the physical broadcast channel block (synchronization signal and PBCH block, SSB) signal.
  • an end device can sample the A3 measurement to trigger a handover.
  • the terminal monitors the strength of the SSB signal of the local cell and the strength of the SSB signal of the neighboring cell. When the strength of the SSB signal of the neighboring cell is higher than the strength of the SSB signal of the local cell zone switching.
  • the reference signal receiving power (RSRP) of SSB cannot represent the performance gain of distributed head-end cooperation, that is, the handover method defined by the protocol does not consider the improvement of user performance (such as transmission rate) brought about by distributed head-end cooperation
  • the advantage is that the performance of switching terminal equipment is not guaranteed to be optimal. For example, if the source cell is a RF combining cell and the target cell is a distributed head-end cooperative cell, the strength of the SSB signal of the source cell is slightly higher than that of the target cell, and the target cell can already provide a higher transmission rate. End device switching too late.
  • the target cell is a radio frequency combiner cell and the source cell is a distributed head-end cooperative cell
  • the SSB signal strength of the target cell is slightly higher than that of the source cell, but the target cell cannot provide higher transmission rate, the end device switches too early.
  • Embodiments of the present application provide a terminal device handover method and a base station, which are used to improve the performance of the terminal device before and after handover.
  • the first aspect of the present application provides a terminal device handover method, which is used in a base station, where the base station is connected to a plurality of pRRUs, and at least one pRRU in the plurality of pRRUs forms a cell.
  • the channel sounding reference signal (sounding reference signal, SRS) configuration information of the terminal device is determined by the first cell, and the terminal is received by the first cell based on the SRS configuration information
  • the first SRS signal sent by the device and then determining the number of effective antennas of the first cell for the terminal device according to the first SRS signal, thereby determining the number of effective antennas of the first cell for the terminal device.
  • the second SRS signal sent by the terminal device is received by the second cell based on the SRS configuration information; and the effective antenna of the second cell for the terminal device is determined according to the second SRS signal , thereby determining the effective number of antennas of the second cell for the terminal equipment.
  • the number of effective antennas of the device realizes determining the number of effective antennas of the second cell for the terminal device according to the second SRS signal.
  • the first cell instructs the terminal device to obtain at least one SSB identifier of the second SSB signal broadcast by the second cell, and receives the at least one SSB identifier reported by the terminal device or The number of the at least one SSB identifier, and then determining the number of effective antennas of the second cell for the terminal device according to the number of the at least one SSB identifier, thereby determining the effective antennas of the second cell for the terminal device quantity.
  • determining the location of the terminal device updating a grid table according to the location of the terminal device, where the grid table includes a correspondence between the location of the terminal device and the first cell, Then, there is no need to detect the number of effective antennas of the first cell or the second cell for the terminal device, and it may be determined according to the location of the terminal device whether to execute the handover process of the terminal device.
  • the position of the terminal device is indicated by the signal strength of the SRS signal reported by the terminal device received by each of the multiple pRRUs corresponding to the first cell, and the corresponding The SRS signal reported by the terminal device received by each pRRU in the multiple pRRUs of the first cell, and the SRS signal strength of the SRS signal reported by the terminal device received by each of the multiple pRRUs corresponding to the first cell, thereby The location of the end device is determined.
  • the present application provides a base station, where the base station is configured to perform the method described in any one of the foregoing first aspects.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer executes the method described in any one of the above-mentioned first aspects. method.
  • the fourth aspect of the present application provides a computer program product, the computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can read the computer-readable storage medium.
  • the computer executes the instruction, and at least one processor executes the computer-executed instruction to make the device implement the method provided by the above first aspect or any possible implementation manner of the first aspect.
  • a fifth aspect of the present application provides a communication device, and the communication device may include at least one processor, a memory, and a communication interface. At least one processor is coupled with memory and a communication interface. The memory is used to store instructions, at least one processor is used to execute the instructions, and the communication interface is used to communicate with other communication devices under the control of the at least one processor. When the instruction is executed by the at least one processor, the at least one processor executes the method in the first aspect or any possible implementation manner of the first aspect.
  • a sixth aspect of the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to support a base station to implement the functions involved in the first aspect or any possible implementation manner of the first aspect.
  • the chip system may further include a memory, and the memory is used for storing necessary program instructions and data of the base station.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a composition structure of a network device using a distributed architecture provided by an embodiment of the present application
  • FIG. 2-1 is a schematic flowchart of Embodiment 1 of a method for switching a terminal device provided in the embodiment of the present application;
  • FIG. 2-2 is a specific example of implementing terminal device switching through the method of Embodiment 1 of the present application;
  • FIG. 3-1 is a schematic flowchart of Embodiment 2 of a method for switching a terminal device provided in an embodiment of the present application;
  • Figure 3-2 is a specific example of implementing terminal device switching through the method of Embodiment 2 of the present application;
  • FIG. 4-1 is a schematic flowchart of Embodiment 3 of a method for switching a terminal device provided in an embodiment of the present application;
  • Figure 4-2 is a schematic diagram of each pRRU among the multiple pRRUs corresponding to the first cell receiving the SRS signal sent by the terminal device in different time windows;
  • FIG. 5 is a schematic structural diagram of a base station provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided in this application can be applied to various communication systems, for example, it can be Internet of things (internet of things, IoT), narrowband Internet of things (narrow band internet of things, NB-IoT), long term evolution (long term evolution) , LTE), can also be the fifth generation (5 th generation, 5G) communication system, can also be LTE and 5G hybrid architecture, can also be 5G new radio (new radio, NR) system, global system for mobile communication (global system for mobile communication (GSM), mobile communication system (universal mobile telecommunications system, UMTS), code division multiple access (code division multiple access, CDMA) system, and new communication systems emerging in future communication development, etc.
  • IoT Internet of things
  • NB-IoT narrowband Internet of things
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE long term evolution
  • 5G fifth generation
  • 5G hybrid architecture can also be 5G new radio (new radio, NR) system
  • GSM global system for mobile communication
  • GSM
  • the terminal device involved in the embodiments of the present application is a device that provides voice and/or data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like. End devices may also be other processing devices connected to wireless modems.
  • the terminal device can communicate with one or more core networks through a radio access network (radio access network, RAN).
  • Radio access network radio access network, RAN
  • Terminal equipment may also be called wireless terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal, access terminal, user terminal, user agent, user device, or user equipment, etc.
  • Terminal equipment may be mobile terminals, such as mobile telephones (or "cellular" telephones) and computers with mobile terminals, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which communicate with wireless
  • the access networks exchange language and/or data.
  • the terminal equipment can also be a personal communication service (personal communication service, PCS) phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Common terminal devices include, for example: mobile phones, tablet computers, notebook computers, palmtop computers, mobile internet devices (mobile internet device, MID), wearable devices, such as smart watches, smart bracelets, pedometers, etc., but the implementation of this application Examples are not limited to this.
  • the network device involved in the embodiment of the present application can be used to convert received air frames and Internet protocol (internet protocol, IP) packets to each other, as a router between the terminal device and the rest of the access network, wherein The remainder of the access network may include IP networks and the like. Network devices may also coordinate attribute management for the air interface.
  • IP Internet protocol
  • the network equipment can be a base transceiver station (BTS) in the global system for mobile communication (GSM) or code division multiple access (CDMA), or it can be a wideband code division multiple access (CDMA)
  • a relay can be a distributed unit, a reception point (transmission reception point, TRP) or a transmission point (transmission point, TP) or any other wireless access device, but this embodiment of the application does not limited to this.
  • Network equipment can cover one or more cells.
  • a network device with a distributed architecture includes one or more radio frequency units, such as a pico remote radio unit (pRRU) and a baseband unit (BBU), as shown in Figure 1
  • pRRU pico remote radio unit
  • BBU baseband unit
  • FIG. 1 is only an exemplary illustration, and does not specifically limit the number of BBUs and pRRUs included in the network device.
  • a pRRU may include at least one antenna.
  • the pRRU is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to baseband signals, such as sending information/data/messages/commands to terminal equipment.
  • the BBU is mainly used for baseband processing and control of network devices.
  • the network device designed in the embodiment of the present application may also adopt the LampSite architecture.
  • LampSite adopts the system architecture of "BBU+rHUB+pRRU".
  • the base station consists of a base band unit (BBU), a low-power radio remote unit (picoremote radio unit, pRRU) and a remote radio unit hub (remote radio unit hub, rHUB) composition.
  • BBU base band unit
  • pRRU low-power radio remote unit
  • rHUB remote radio unit hub
  • One BBU can be connected to one or more rHUBs, and one rHUB can be connected to multiple pRRUs.
  • the BBU sends the signal to the rHUB
  • the rHUB and the pRRU are connected through a network cable
  • the rHUB distributes the signal to each pRRU
  • each pRRU processes the signal into a radio frequency signal
  • combined/ Transmission equipment such as splitters and antennas connect RF signals indoors.
  • the indoor terminal sends the feedback signal to the pRRU
  • each pRRU then sends the feedback signal to the rHUB
  • the rHUB performs radio frequency combination on each uplink data, and then sends it to the BBU for demodulation.
  • the same cell configured by multiple pRRUs may also be called a radio frequency combining cell.
  • a network device can cover one logical cell, and multiple physical cells can be configured under one logical cell, and multiple pRRUs can be connected under each physical cell.
  • the physical cell is a baseband processing resource, for example, a physical cell may correspond to the modulation and demodulation capability of the 20M bandwidth of the LTE air interface.
  • LampSite In indoor scenarios, digital devices are generally deployed as LampSite.
  • a cell formed by a LampSite is composed of multiple pRRUs, and one pRRU is also called a headend.
  • a typical pRRU is in the form of 4 transmission 4 receivers (4T4R), and there is also a form of 2T2R.
  • Lampsite generally has two types of typical networking in indoor scenarios: ordinary radio frequency combined cell and distributed multi-head end cooperative cell.
  • ordinary radio frequency combined cell and distributed multi-head end cooperative cell.
  • a common radio frequency combination cell is formed by multiple pRRUs, and all pRRUs perform radio frequency combination, then the form of 4T4R remains after combination, that is, the physical cell of a logical cell is in the form of 4T4R.
  • the logical cell is also formed by multiple pRRUs, and the multiple pRRUs form n radio frequency combining groups, and the n 4T4R radio frequency combining groups correspond to 4n effective antennas, that is, a logical cell It is in the form of 4*n T4*n R.
  • n 2
  • the physical cell of one logical cell is in the form of 8T8R.
  • the distributed multi-head-end cooperative cell can improve the performance of the terminal device, and the terminal device can be connected to more effective antennas in the distributed multi-head-end cooperative cell.
  • the physical cell of a logical cell is in the form of 8T8R, and the terminal equipment can be connected with 8 effective antennas.
  • a terminal device can be connected to fewer effective antennas in a distributed multi-head end cooperative cell.
  • the physical cell of a logical cell is in the form of 4T4R, and the terminal equipment can be connected with 4 effective antennas.
  • the distributed multi-head-end cooperative cell only targets the user data channel, and the broadcasting method of the SSB signal is the same as that of the common RF combination cell.
  • a common new radio (NR) terminal has 4 antennas, which can theoretically obtain high-flow performance.
  • indoor multi-path and frequency selection are serious.
  • there are only 4 effective antennas in a common RF combiner cell and the terminal can reach 1.1-1.2 gigabits per second (Gbps) at the near point, and only 600 megabits per second (Mbps) at the edge. )about.
  • Gbps gigabits per second
  • Mbps megabits per second
  • a distributed multi-head-end collaborative cell is used, and multiple pRRUs are jointly sent to solve the deep fading in the frequency domain and improve user performance.
  • the terminal can reach 1.4-1.5Gbps at the near point and about 900Mbps at the edge.
  • the cell handover defined by the protocol is judged by the terminal based on the strength of the broadcast channel synchronization signal and the physical broadcast channel block (synchronization signal and PBCH block, SSB) signal.
  • the terminal can sample the A3 measurement to trigger handover.
  • the terminal monitors the strength of the SSB signal of the local cell and the strength of the SSB signal of the neighboring cell. switch.
  • SSB RSRP cannot represent the performance gain of distributed head-end cooperation, that is, the handover method defined by the protocol does not consider the benefits of user performance (such as transmission rate) improvement brought about by distributed head-end cooperation, and cannot guarantee the optimal performance of handover terminals.
  • the source cell is a RF combining cell and the target cell is a distributed head-end cooperative cell
  • the strength of the SSB signal of the source cell is slightly higher than that of the target cell, and the target cell can already provide a higher transmission rate. Terminal switching is too late.
  • the target cell is a radio frequency combiner cell and the source cell is a distributed head-end cooperative cell
  • the SSB signal strength of the target cell is slightly higher than that of the source cell, but the target cell cannot provide higher transmission rate, the terminal switches too early.
  • embodiments of the present application provide a terminal device handover method and related equipment, so as to improve the performance of the terminal device before and after handover.
  • This application is applied to a base station, where multiple pRRUs are connected to the base station, and at least one pRRU among the multiple pRRUs forms a cell.
  • FIG. 2-1 is Embodiment 1 of a terminal device switching method proposed by this application, including:
  • a terminal device accesses a first cell.
  • the terminal device may enter the coverage area of the first cell while moving, or the terminal device may enter the coverage area of the first cell and power on and access the network when it is powered off, or the terminal device is powered on but turned off
  • the terminal device can access the first cell.
  • the first cell may be a common radio frequency combiner cell, or a distributed multi-headend cooperative cell, which is not limited here.
  • the first cell corresponds to at least one pRRU, and after the terminal device accesses the first cell, the terminal device can communicate with the at least one pRRU.
  • the terminal device may transmit an uplink signal to at least one pRRU corresponding to the first cell to transmit information, and the pRRU that receives the uplink signal transmits the information to the BBU.
  • the BBU may also send information to the terminal device through at least one pRRU corresponding to the first cell, and then the at least one pRRU corresponding to the first cell sends a downlink signal to the terminal device.
  • the first cell is a logical concept, and the first cell is formed by radio frequency signals of at least one pRRU through beamforming.
  • the communication between the terminal device and the first cell refers to that the terminal device sends and receives signals with at least one pRRU forming the first cell, so as to realize sending and receiving information between the terminal device and the BBU.
  • the first cell performs SRS measurement on the terminal device to obtain first SRS measurement information.
  • the BBU may determine the SRS configuration information of the terminal device, so as to perform SRS measurement on the terminal device.
  • the first cell can perform SRS measurement for the terminal device through the SRS configuration information, that is, the first cell receives the first SRS signal sent by the terminal device based on the SRS configuration information, and the first cell can determine the corresponding SRS signal of the first cell.
  • the first SRS signal strengths of the first SRS signals received by the respective antennas are used as the first SRS measurement information.
  • the first SRS measurement information may be the SRS RSRP of each effective antenna in at least one pRRU corresponding to the first cell.
  • the first cell can use each effective antenna to perform SRS measurement on the terminal equipment respectively, the SRS RSRP of each effective antenna can be obtained.
  • the first cell is a 4T4R common RF combined cell, which has 4 effective antennas, then the first cell can detect the SRS RSRP of each effective antenna in the 4 effective antennas.
  • the first cell is a multi-head end cooperative cell, which has 4n effective antennas, such as 8 effective antennas, then the first cell can detect the SRS RSRP of each effective antenna in the 8 effective antennas.
  • the terminal device detects the first SSB signal strength of the received first SSB signal broadcast by the first cell.
  • the first cell may configure A3 measurement for the terminal device, and send A3 configuration information to the terminal device.
  • the terminal device may detect the SSB signal strength of the received SSB signal according to the A3 configuration information. For example, the first cell broadcasts the first SSB signal. When the terminal device is within the coverage of the first cell, the terminal device can receive the first SSB signal broadcast by the first cell. Then the terminal device measures the first SSB signal of the first SSB signal. SSB signal strength.
  • the first SSB signal carries cell information of the first cell.
  • the cell information of the first cell is information such as a physical cell identifier (PCI) or other cell identifiers of the first cell, which is not limited here.
  • PCI physical cell identifier
  • the terminal device detects the second SSB signal strength of the received second SSB signal broadcast by the second cell.
  • the SSB signal strength of all received SSB signals may be measured, including the second SSB signal strength of the second SSB signal broadcast by the second cell.
  • the terminal device may receive the second SSB signal and detect the second SSB signal strength of the second SSB signal.
  • the second SSB signal carries cell information of the second cell.
  • the cell information of the second cell is information such as the PCI of the second cell or other cell identifiers, which is not limited here.
  • the first cell and the second cell may correspond to the same BBU, or may correspond to different BBUs respectively, which is not limited here.
  • the terminal device determines that the difference between the first SSB signal strength and the second SSB signal strength is within a preset range.
  • the terminal device after the terminal device detects the first SSB signal strength of the first SSB signal of the first cell and the second SSB signal strength of the second SSB signal of the second cell, it can and the second SSB signal strength to determine whether to report the A3 message.
  • the terminal device may determine whether to report the A3 message according to the difference between the first SSB signal strength and the second SSB signal strength. For example, let the difference between the signal strength of the first SSB and the signal strength of the second SSB be R (unit: decibel dB):
  • the first SSB signal strength of the first SSB signal received by the terminal device from the first cell is naturally higher than the signal strength of SSB signals received from other cells, for example, the first SSB signal strength of the second cell
  • the second SSB signal strength of the second SSB signal When the terminal device moves in the first cell, the closer to the second cell, the higher the second SSB signal strength of the second SSB signal can be received, and the farther away from the first cell, the higher the second SSB signal strength of the first SSB signal can be received.
  • the signal strength of an SSB is lower.
  • the terminal device determines to report the A3 message.
  • the terminal device determines that the difference between the first SSB signal strength and the second SSB signal strength is within the preset range, then the terminal device determines to report the A3 message, then executes the subsequent step 206, otherwise executes step 203- 204.
  • the terminal device reports the A3 message to the first cell.
  • the A3 message reported by the terminal device carries the cell information of the second cell.
  • the cell information of the second cell is acquired by the terminal device by receiving the second SSB signal broadcast by the second cell.
  • the terminal device may report the A3 message periodically, which is not limited here.
  • the first cell sends SRS configuration information about the terminal device to the second cell.
  • the first cell when the first cell receives the A3 message reported by the terminal device, it determines the second cell according to the cell information of the second cell in the A3 message, that is, sends the SRS configuration information about the terminal device to the second cell , so that the second cell performs SRS measurement on the terminal device according to the SRS configuration information.
  • the second cell performs SRS measurement on the terminal device according to the SRS configuration information of the terminal device, to obtain second SRS measurement information.
  • the second cell receives the second SRS signal sent by the terminal device based on the SRS configuration information.
  • the second cell may determine the second SRS signal received by each antenna corresponding to the second cell.
  • the second SRS signal strength of the signal is used as the second SRS measurement information.
  • the second SRS measurement information may be the SRS RSRP of each effective antenna in at least one pRRU corresponding to the second cell.
  • the second cell can use each effective antenna to perform SRS measurement on the terminal equipment respectively, the SRS RSRP of each effective antenna can be obtained.
  • the second cell is a 4T4R common RF combiner cell, which has 4 effective antennas, then the second cell can detect the SRS RSRP of each effective antenna in the 4 effective antennas.
  • the second cell is a multi-head end cooperative cell, which has 4n effective antennas, such as 8 effective antennas, then the second cell can detect the SRS RSRP of each effective antenna in the 8 effective antennas.
  • the second cell in order to ensure the accuracy of measuring the SRS RSRP of the effective antenna, the second cell needs to ensure that the SRS resources of the aforementioned terminal device and the served terminal device do not conflict. For this reason, the BBU may agree in advance the allocation manner of the SRS resources, so that the allocation of the SRS resources of the first cell and the second cell does not conflict. Alternatively, the second cell may feed back the SRS resource to the first cell, and then the first cell performs SRS resource reconfiguration and then notifies the second cell, which is not limited here.
  • the second cell sends the second SRS measurement information to the first cell.
  • the second cell after the second cell performs SRS measurement on the terminal equipment and obtains the second SRS measurement information, it may send the second SRS measurement information to the first cell, so that the first cell can judge whether to perform handover.
  • the second cell may periodically send the second SRS measurement information to the first cell, which is not limited here.
  • the first cell executes a process of switching the terminal device to the second cell.
  • the first cell may determine the number of effective antennas of the first cell for the terminal device, and determine the number of effective antennas of the second cell for the terminal device. In some feasible implementation manners, the first cell may determine the number of effective antennas of the first cell for the terminal device according to the first SRS signal. In some feasible implementation manners, the first cell may determine the first SRS signal strengths of the first SRS signals respectively received by the antennas corresponding to the first cell, and determine the first SRS signal strength of the first cell for the terminal device according to the first SRS signal strength. the number of effective antennas.
  • the first cell may determine the second SRS signal strength of the second SRS signal received by each antenna corresponding to the second cell according to the second SRS measurement information, and determine the second SRS signal strength according to the second SRS signal strength.
  • the first SRS measurement information may include the SRS RSRP of each effective antenna in at least one pRRU corresponding to the first cell, so as to obtain multiple SRS RSRPs.
  • the first cell may arrange the SRS RSRPs among the multiple SRS RSRPs in descending order, and determine the SRS RSRP with the highest signal strength among them. Then, the first cell can determine the SRS RSRP whose difference from the SRS RSRP with the highest signal strength is within a preset range among the multiple SRS RSRPs.
  • the preset range may be (0, 9dB).
  • the first cell can determine the number of SRS RSRPs whose difference from the SRS RSRP with the highest signal strength within a preset range among the multiple SRS RSRPs is the number of effective antennas. For example, if the first cell is a 4T4R common radio frequency combining cell, the number of detected effective antennas is four. For another example, if the first cell is a multi-head end coordinated cell, the number of detected effective antennas is 8.
  • the second SRS measurement information may include the SRS RSRP of each effective antenna in at least one pRRU corresponding to the second cell, so as to obtain multiple SRS RSRPs.
  • the first cell may arrange the SRS RSRPs among the multiple SRS RSRPs in descending order, and determine the SRS RSRP with the highest signal strength among them. Then, the first cell can determine the SRS RSRP whose difference from the SRS RSRP with the highest signal strength is within a preset range among the multiple SRS RSRPs.
  • the preset range may be (0, 9dB).
  • the first cell can determine the number of SRS RSRPs whose difference from the SRS RSRP with the highest signal strength within a preset range among the multiple SRS RSRPs is the number of effective antennas. For example, if the second cell is a 4T4R common radio frequency combined cell, the number of detected effective antennas is four. For another example, if the second cell is a multi-head end coordinated cell, the number of detected effective antennas is 8. In some feasible implementation manners, "determining the number of effective antennas of the second cell based on the second measurement information" may also be performed by the second cell, and then notifies the first cell of the number of effective antennas, which is not limited here.
  • the terminal device if the number of effective antennas in one cell is greater than the number of effective antennas in another cell, it can be considered that the cell with more effective antennas can bring a higher transmission rate to the terminal device, Then the terminal device can obtain better performance after accessing the cell. Therefore, if the number of active antennas of the second cell for the terminal device is greater than the number of active antennas of the first cell for the terminal device, the terminal device is handed over from the first cell to the second cell.
  • the cell with a higher average value of SRS RSRP corresponding to the effective antennas is determined. For example, the number of effective antennas in the first cell is 8, and the number of effective antennas in the second cell is 8. If the average value of the SRS RSRP corresponding to the effective antennas of the first cell is 10, and the average value of the SRS RSRP corresponding to the effective antennas of the second cell is 11, it is determined that switching to the second cell can improve the performance of the terminal device .
  • the average value of the SRS RSRP corresponding to the effective antennas of the first cell is 12, and the average value of the SRS RSRP corresponding to the effective antennas of the second cell is 11, then staying in the first cell can make the performance of the terminal device better.
  • the first cell broadcast received by the terminal device is compared The first SSB signal strength of the first SSB signal and the second SSB signal strength of the second SSB signal broadcast by the second cell, and select the cell corresponding to the SSB signal with higher signal strength. If the signal strength of the second SSB is higher, the terminal device should switch to the second cell; if the signal strength of the first SSB is higher, the terminal device should remain in the first cell.
  • the first cell may send the relevant information of the second cell to the terminal device, and send the relevant information of the terminal device to the second cell, so that the terminal device may be handed over from the first cell to the second cell.
  • the specific switching process is common knowledge, and will not be repeated here.
  • the first cell is formed by pRRU 1 and pRRU 2, and the first cell is a common RF combined cell.
  • the second cell is formed by pRRU 3 and pRRU 4, and the second cell is a distributed multi-head end cooperative cell. If each pRRU is in the form of 4T4R, then one pRRU can form 4 effective antennas, then the first cell as a common RF combining cell can form 4 effective antennas, and the second cell as a distributed multi-head end cooperative cell can form 4 effective antennas. 8 effective antennas.
  • the terminal device After the terminal device accesses the first cell, when the terminal device moves to the location shown in Figure 2-2, the terminal device reports an A3 message to the first cell. Then, the first cell configures SRS configuration information for the terminal device, and performs SRS measurement for the terminal device according to the SRS configuration information, to obtain first SRS measurement information.
  • the first SRS measurement information may indicate the number of effective antennas of the first cell for the terminal equipment.
  • the first cell sends the SRS configuration information of the terminal device to the second cell, so that the second cell performs SRS measurement on the terminal device based on the SRS configuration information, obtains the second SRS measurement information, and sends the second SRS measurement information to the first cell. district.
  • the second SRS measurement information may indicate the number of effective antennas of the second cell for the terminal equipment.
  • the first cell may determine the number of effective antennas of the first cell for the terminal device indicated by the first measurement information, and the number of effective antennas of the second cell for the terminal device indicated by the second measurement information, to determine that the terminal device receives Which performance is better when entering the first cell or the second cell.
  • the terminal device can detect cells with more effective antennas, which can improve the performance of the terminal device. If the number of effective antennas for the terminal device in the second cell is greater than the number of effective antennas for the terminal device in the first cell, the first cell executes a procedure for the terminal device to switch from the first cell to the second cell.
  • Figure 3-1 is the second embodiment of a terminal device switching method proposed in this application, including:
  • a terminal device accesses a first cell.
  • step 201 Please refer to step 201, which will not be repeated here.
  • the first cell may instruct the terminal device to obtain at least one SSB identifier of the second SSB signal broadcast by the second cell.
  • the first cell performs SRS measurement on the terminal device to obtain first SRS measurement information.
  • step 202 Please refer to step 202, which will not be repeated here.
  • the terminal device detects the received first SSB signal strength of the first SSB signal broadcast by the first cell.
  • step 203 Please refer to step 203, which will not be repeated here.
  • the terminal device detects the received second SSB signal strength of the second SSB signal broadcast by the first cell.
  • step 204 Please refer to step 204, which will not be repeated here.
  • the terminal device when it receives the second SSB signal broadcast by the second cell, it may acquire at least one SSB identifier of the second SSB signal broadcast by the second cell.
  • the protocol defines that the second cell can transmit 7 to 8 SSB beams at most, one SSB beam corresponds to one SSB identifier, and different SSB beams are staggered in the time domain.
  • Ordinary RF combiner cells can only send one SSB beam, which corresponds to one SSB identifier, while distributed head-end cells can transmit multiple different SSB identifiers through different RF combiner groups (each RF combiner group corresponds to 4 effective antennas) Corresponding SSB beams.
  • RF combining group 1 sends SSB beam 1 (corresponding to SSB ID-1), RF combining group 2 sends SSB beam 2 (corresponding to SSB ID-2), and so on.
  • the protocol defines that the maximum number of SSB identifiers is 8, and when the number of SSB beams is greater than 8, the value of the SSB identifier can be reused.
  • the SSB identifiers of the SSB beams sent by the radio frequency combining group 1 and the radio frequency combining group 9 are both SSB identifier-1. In this embodiment of the present application, as long as it is ensured that two adjacent pRRUs will not transmit SSB beams with the same SSB identifier, there is no limitation here.
  • the terminal device determines that the difference between the first SSB signal strength and the second SSB signal strength is within a preset range.
  • step 204 Please refer to step 204, which will not be repeated here.
  • the terminal device reports the A3 message to the first cell.
  • step 206 Please refer to step 206, which will not be repeated here.
  • the A3 message reported by the terminal device to the first cell also carries at least one SSB identifier or the number of at least one SSB identifier.
  • the second cell is a 4T4R common RF combined cell
  • the second SSB signal corresponds to the SSD ID of one SSB beam
  • the A3 message carries the SSB ID or the number of SSB IDs of the SSB beam is 1.
  • the second cell is a multi-head coordinated cell with a single pRRU of 4T4R
  • the second SSB signal corresponds to the SSB identifiers of multiple SSB beams
  • the A3 message carries the SSB identifiers or SSBs of each of the multiple SSB beams The number of identities.
  • the first cell executes a process of switching the terminal device to the second cell.
  • the first cell may determine the number of effective antennas of the second cell for the terminal device according to the number of at least one SSB identifier. For example, please refer to step 210, which will not be repeated here.
  • the first cell may determine the number of SSB identifiers according to the A3 message, so as to determine the number of effective antennas corresponding to the second cell. For example, if the pRRU of the second cell is in 4T4R form, and the number of SSB identifiers indicated by the A3 message is 1, then the number of effective antennas corresponding to the second cell is 4. For another example, if the pRRU of the second cell is in the form of 4T4R, and the number of SSB identifiers indicated by the A3 message is 2, then the number of effective antennas corresponding to the second cell is 8.
  • the first cell broadcast received by the terminal device is compared The first SSB signal strength of the first SSB signal and the second SSB signal strength of the second SSB signal broadcast by the second cell, and select the cell corresponding to the SSB signal with higher signal strength. If the signal strength of the second SSB is higher, the terminal equipment should be handed over to the second cell; if the signal strength of the first SSB is higher, the terminal equipment should remain in the first cell.
  • the SRS measurement of the terminal equipment is not required for the second cell measurement, that is, the number of SSB identifiers corresponding to the second SSB signal broadcast by the second cell can be obtained without the participation of the second base station, that is, Whether the terminal device should be handed over to the second cell can be judged, and since the participation of the second cell is not required, the execution is simpler and the feasibility is higher.
  • the first cell is formed by pRRU 1 and pRRU 2, the first cell is a common radio frequency combining cell, and both pRRU 1 and pRRU 2 correspond to SSB 1.
  • the second cell is formed by pRRU 3 and pRRU 4.
  • the second cell is a distributed multi-head end cooperative cell.
  • pRRU 3 corresponds to SSB 1
  • pRRU 4 corresponds to SSB 2. If each pRRU is in the form of 4T4R, then one pRRU can form 4 effective antennas, then the first cell as a common RF combining cell can form 4 effective antennas, and the second cell as a distributed multi-head end cooperative cell can form 4 effective antennas. 8 effective antennas.
  • the terminal device After the terminal device accesses the first cell, when the terminal device moves to the location shown in Figure 3-2, the terminal device reports an A3 message to the first cell. Then, the first cell configures SRS configuration information for the terminal device, and performs SRS measurement for the terminal device according to the SRS configuration information, to obtain first SRS measurement information.
  • the first SRS measurement information may indicate the number of effective antennas of the first cell for the terminal equipment.
  • the first cell acquires at least one SSB identifier of the second SSB signal broadcast in the second cell to the instructing terminal device, and informs the first cell of the quantity of the at least one SSB identifier of the second SSB signal.
  • the quantity of at least one SSB identifier of the second SSB signal is related to the quantity of effective antennas of the second cell.
  • the ratio of the number of at least one SSB identifier of the second SSB signal to the number of effective antennas of the second cell is 1:4.
  • the first cell may determine, according to the number of effective antennas of the first cell and the number of effective antennas of the first cell, which of the first cell and the second cell has better performance for the terminal device. Specifically, a cell with more effective antennas for the terminal device has better performance for the terminal device. If the number of effective antennas for the terminal device in the second cell is greater than the number of effective antennas for the terminal device in the first cell, the first cell executes a procedure for the terminal device to switch from the first cell to the second cell.
  • Figure 4-1 is a third embodiment of a terminal device switching method proposed in this application, including:
  • the terminal device when the terminal device is in a certain position of the first cell and switches to the second cell, then when other terminal devices appear in this position, it should also switch to the second cell. Therefore, in the embodiment of the present application, the characteristics of the location may be obtained, so that when the terminal device meets certain characteristics, it is determined that the terminal device is located in the location, and it should be handed over to the second cell.
  • the position of the terminal device in the first cell may be represented by the signal strength of the SRS signal sent by the terminal device detected by each pRRU in the first cell.
  • the first cell may configure periodic SRS measurement for the terminal device, and the SRS measurement instructs the terminal device to send an SRS signal in a given time window. Then, the terminal device transmits the SRS signal in a given time window. Next, each pRRU among the multiple pRRUs corresponding to the first cell sends and receives the SRS signal sent by the terminal device in different periods, and obtains the SRS signal strength corresponding to each pRRU among the multiple pRRUs.
  • each pRRU among the multiple pRRUs corresponding to the first cell may receive the SRS signal sent by the terminal device in different time windows.
  • the first cell corresponds to 2 pRRUs, namely pRRU 1 and pRRU 2.
  • time window 1 pRRU 1 receives the SRS signal sent by the terminal device
  • time window 2 pRRU 2 receives the SRS signal sent by the terminal device.
  • both time window 1 and time window 2 are within a given time window when the SRS measurement indicates that the terminal device is in a given time window.
  • the first cell can obtain the SRS signal strengths corresponding to pRRU 1 and pRRU 2 respectively.
  • each of the multiple pRRUs corresponding to the first cell can receive the SRS signal sent by the terminal device at the same time, but the rHUB acquires different pRRUs in different time windows to receive The received SRS signal is sent to the BBU, so as to obtain the SRS signal strength corresponding to each pRRU in the multiple pRRUs.
  • the first cell corresponds to 2 pRRUs, namely pRRU 1 and pRRU 2. Both pRRU 1 and pRRU 2 receive the SRS signal sent by the terminal device. In time window 1, rHUB obtains the SRS signal received by pRRU 1. In time window 2, rHUB obtains the SRS signal received by pRRU 2. Then, the first cell The SRS signal strength corresponding to pRRU 1 and pRRU 2 can be obtained respectively.
  • the position of the terminal device is indicated by the signal strength of the SRS signal reported by the terminal device received by each of the multiple pRRUs corresponding to the first cell
  • the first cell can obtain the multiple pRRUs corresponding to the first cell
  • the SRS signal reported by the terminal device received by each pRRU in the first cell is obtained, and the SRS signal strength of the SRS signal reported by the terminal device received by each pRRU corresponding to the first cell is used as the position of the terminal device.
  • the first cell consists of 4 pRRUs. If through the technical solution of the foregoing embodiment 1 or embodiment 2, when the terminal device is at position 1, it is handed over to the second cell, and when the terminal device is at position 2, it is handed over to the third cell, as shown in Table 1, Get the grid table.
  • the grid table may include multiple entries, and one entry is added each time a switch occurs, which is not limited here.
  • the first cell can monitor the signal strength of the SRS signal of the terminal device by monitoring each pRRU among the multiple pRRUs. If the signal strength of the SRS signal of the terminal device monitored by each pRRU is If the condition of an entry in the grid table is satisfied, the switching decision of the entry is executed.
  • the detection results of each pRRU of the SRS signal reported by the terminal equipment in the first cell need not exactly satisfy the value in the entry of the grid table, and the error may also be within plus or minus several dBm, Such as ⁇ 1 ⁇ 5dBm, there is no limitation here.
  • a base station 500 provided in the embodiment of the present application, the base station 500 is connected to multiple pRRUs, at least one pRRU in the multiple pRRUs forms a cell, including a transceiver module 501 and a processing module 502,
  • the transceiver module 501 is used to determine the number of effective antennas of the first cell for the terminal device, and the terminal device is a terminal device accessing the first cell;
  • the transceiver module 501 is also used to determine the number of effective antennas of the second cell Regarding the number of effective antennas of the terminal device, the second cell is an adjacent cell of the first cell; is more than the number of effective antennas of the second cell for the terminal device, then the terminal device is handed over from the first cell to the second cell.
  • the processing module 502 is further configured to use the first cell to determine the SRS configuration information of the terminal device; the transceiver module 501 is also configured to use the first cell based on the The SRS configuration information receives a first SRS signal sent by the terminal device; the processing module 502 is further configured to determine the number of effective antennas of the first cell for the terminal device according to the first SRS signal.
  • the transceiver module 501 is further configured to determine the first SRS signal strengths of the first SRS signals respectively received by the antennas corresponding to the first cell; the processing module 502 is also configured to The method is configured to determine the number of effective antennas of the first cell for the terminal device according to the SRS signal strength of each antenna corresponding to the first cell.
  • the transceiver module 501 is further configured to receive, through the second cell, the second SRS signal sent by the terminal device based on the SRS configuration information; the processing module 502 is further configured to determining the number of effective antennas of the second cell for the terminal device according to the second SRS signal.
  • the processing module 502 is further configured to determine the second SRS signal strength of the second SRS signal received by each antenna corresponding to the second cell; the processing module 502 is also configured to and determining the number of effective antennas of the second cell for the terminal device according to the second SRS signal strength.
  • the transceiving module 501 is further configured to instruct the terminal device to acquire at least one SSB identifier of the second SSB signal broadcast by the second cell through the first cell; the transceiving module 501, further configured to receive the at least one SSB identifier or the quantity of the at least one SSB identifier reported by the terminal device; the processing module 502, further configured to determine the first SSB identifier according to the quantity of the at least one SSB identifier The number of effective antennas of the second cell for the terminal device.
  • the transceiver module 501 is further configured to determine the location of the terminal device; the processing module 502 is also configured to update a grid table according to the location of the terminal device, and the grid The table includes a correspondence between the location of the terminal device and the first cell.
  • the position of the terminal device is indicated by the signal strength of the SRS signal reported by the terminal device received by each of the multiple pRRUs corresponding to the first cell; the transceiver module 501, It is also used to obtain the SRS signal reported by the terminal device received by each of the multiple pRRUs corresponding to the first cell, and obtain the SRS signal received by each of the multiple pRRUs corresponding to the first cell. SRS signal strength of the reported SRS signal.
  • the embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the above method embodiments.
  • the communication device 600 includes:
  • Receiver 601 , transmitter 602 , processor 603 and memory 604 may be connected through a bus or in other ways, wherein connection through a bus is taken as an example in FIG. 6 .
  • the memory 604 may include read-only memory and random-access memory, and provides instructions and data to the processor 603 .
  • a part of the memory 604 may also include a non-volatile random access memory (non-volatile random access memory, NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 604 stores operating systems and operating instructions, executable modules or data structures, or their subsets, or their extended sets, wherein the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 603 controls the operation of the communication device 600, and the processor 603 may also be called a central processing unit (central processing unit, CPU).
  • CPU central processing unit
  • various components of the communication device 600 are coupled together through a bus system, where the bus system may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • the various buses are referred to as bus systems in the figures.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 603 or implemented by the processor 603 .
  • the processor 603 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in the processor 603 or an instruction in the form of software.
  • the above-mentioned processor 603 may be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field-programmable gate array (field-programmable gate array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 604, and the processor 603 reads the information in the memory 604, and completes the steps of the above method in combination with its hardware.
  • the receiver 601 can be used to receive input digital or character information, and generate signal input related to the relevant settings and function control of the communication device 600.
  • the transmitter 602 can include a display device such as a display screen, and the transmitter 602 can be used to output through an external interface. Numeric or character information.
  • the processor 603 is configured to execute the terminal device handover method executed by the aforementioned communication apparatus 600 .
  • the base station when it is a chip, it includes: a processing unit and a communication unit, the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin or a circuit, etc. .
  • the processing unit may execute the computer-executed instructions stored in the storage unit, so that the chip in the terminal executes the method for sending wireless report information according to any one of the above-mentioned first aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (read -only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned above can be a general-purpose central processing unit, microprocessor, ASIC, or one or more integrated circuits for controlling the program execution of the above method.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be A physical unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between the modules indicates that they have communication connections, which can be specifically implemented as one or more communication buses or signal lines.
  • the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute the method described in each embodiment of the present application .
  • a computer device which can be a personal computer, a server, or a network device, etc.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wired eg, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种终端设备切换方法和基站,用于提高终端设备在切换前后的性能。本申请中,该方法用于基站,所述基站连接多个pRRU,所述多个pRRU中的至少一个pRRU组成一个小区。在本申请中,首先确定第一小区对于接入的终端设备的有效天线的数量,以及确定相邻的第二小区对于终端设备的有效天线的数量,若第二小区对于所述终端设备的有效天线的数量多于所述第一小区对于所述终端设备的有效天线的数量,则使终端设备从所述第一小区切换至所述第二小区,从而使终端设备获得更高的性能。

Description

一种终端设备切换方法和基站 技术领域
本申请涉及通信技术领域,尤其涉及一种终端设备切换方法和基站。
背景技术
常见的新空口(new radio,NR)的终端有4根天线,理论上可以获得高流性能。但是室内多径、频选情况严重,一般普通射频合路小区只有4根有效天线,终端在近点可以达到1.1~1.2千兆/秒(Gbps),在边缘仅能达到600兆/秒(Mbps)左右。而采用分布式多头端协作小区,多个微型射频拉远单元(pico remote radio unit,pRRU)联合发送,解决频域深衰,提升用户性能,终端在近点可到1.4~1.5Gbps,在边缘可以到900Mbps左右。
当前,协议定义的小区切换,是终端设备基于广播信道同步信号和物理广播信道块(synchronization signal and PBCH block,SSB)信号的强度来判断的。例如,终端设备可以采样A3测量来触发切换。具体的,终端监测本小区的SSB信号的强度和邻区的SSB信号的强度,当邻区SSB信号的强度比本小区的SSB信号的强度高出一定程度时,触发终端设备从本小区到邻区的切换。
由于SSB的参考信号接收功率(reference signal receiving power,RSRP)不能表征分布式头端协作的性能增益,即协议定义的切换方法未考虑分布式头端协作带来用户性能(例如传输速率)提升的好处,无法保证切换终端设备的性能最优。例如,若源小区为射频合路小区,目标小区为分布式头端协作小区,源小区的SSB信号的强度略高于目标小区的SSB信号的强度,目标小区已经可以提供更高的传输速率,终端设备切换过晚。又例如,若目标小区为射频合路小区,源小区为分布式头端协作小区,目标小区的SSB信号的强度略高于源区的SSB信号的强度,但是目标小区无法可以提供更高的传输速率,终端设备切换过早。
发明内容
本申请实施例提供了一种终端设备切换方法和基站,用于提高终端设备在切换前后的性能。
本申请第一方面提供了一种终端设备切换方法,用于基站,所述基站连接多个pRRU,所述多个pRRU中的至少一个pRRU组成一个小区。在本申请中,首先确定第一小区对于接入的终端设备的有效天线的数量,以及确定相邻的第二小区对于终端设备的有效天线的数量,若第二小区对于所述终端设备的有效天线的数量多于所述第一小区对于所述终端设备的有效天线的数量,则使终端设备从所述第一小区切换至所述第二小区,从而使终端设备获得更高的性能。
在一些可行的实现方式,通过所述第一小区确定所述终端设备的信道探测参考信号(sounding reference signal,SRS)配置信息,并通过所述第一小区基于所述SRS配置信息接收所述终端设备发送的第一SRS信号,接着根据所述第一SRS信号确定所述第一小区对于所述终端设备的有效天线的数量,从而确定了第一小区对于终端设备的有效天线的 数量。
在一些可行的实现方式,确定所述第一小区对应的各个天线分别接收所述第一SRS信号的第一SRS信号强度;根据所述第一小区对应的各个天线的SRS信号强度确定所述第一小区对于所述终端设备的有效天线的数量,从而实现了根据第一SRS信号确定所述第一小区对于终端设备的有效天线的数量。
在一些可行的实现方式,通过所述第二小区基于所述SRS配置信息接收所述终端设备发送的第二SRS信号;根据所述第二SRS信号确定所述第二小区对于终端设备的有效天线的数量,从而确定了第二小区对于终端设备的有效天线的数量。
在一些可行的实现方式,确定所述第二小区对应的各个天线分别接收所述第二SRS信号的第二SRS信号强度;根据所述第二SRS信号强度确定所述第二小区对于所述终端设备的有效天线的数量,实现了根据第二SRS信号确定第二小区对于终端设备的有效天线的数量。
在一些可行的实现方式,通过所述第一小区指示所述终端设备获取所述第二小区广播的第二SSB信号的至少一个SSB标识,接收所述终端设备上报的所述至少一个SSB标识或所述至少一个SSB标识的数量,再根据所述至少一个SSB标识的数量确定所述第二小区对于所述终端设备的有效天线的数量,从而确定了第二小区对于所述终端设备的有效天线的数量。
在一些可行的实现方式,通过确定所述终端设备的位置,根据所述终端设备的位置更新栅格表,所述栅格表包括所述终端设备的位置和所述第一小区的对应关系,那么在后续不需要检测第一小区或第二小区对于终端设备的有效天线的数量,可以根据终端设备的位置确定是否要执行终端设备的切换流程。
在一些可行的实现方式,所述终端设备的位置由所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的信号强度表示,获取所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号,得到所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的SRS信号强度,从而确定了终端设备的位置。
第二方面,本申请提供一种基站,所述基站用于执行前述第一方面中任一项所述的方法。
第三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面中任一项所述的方法。
本申请第四方面提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施上述第一方面或者第一方面的任一种可能的实现方式所提供的方法。
本申请第五方面提供一种通信装置,该通信装置可以包括至少一个处理器、存储器和通信接口。至少一个处理器与存储器和通信接口耦合。存储器用于存储指令,至少一个处理器用于执行该指令,通信接口用于在至少一个处理器的控制下与其他通信装置进行通信。该指令在被至少一个处理器执行时,使至少一个处理器执行第一方面或第一方面的任意可 能的实现方式中的方法。
本申请第六方面提供了一种芯片系统,该芯片系统包括处理器,用于支持基站实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存基站必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第二至第六方面或者其中任一种可能实现方式所带来的技术效果可参见第一方面或第一方面不同可能实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种网络设备的采用分布式架构的组成结构示意图;
图2-1为本申请实施例提供的一种终端设备切换方法的实施例一的流程示意图;
图2-2为通过本申请实施例一的方法实现终端设备切换的具体示例;
图3-1为本申请实施例提供的一种终端设备切换方法的实施例二的流程示意图;
图3-2为通过本申请实施例二的方法实现终端设备切换的具体示例;
图4-1为本申请实施例提供的一种终端设备切换方法的实施例三的流程示意图;
图4-2为第一小区对应的多个pRRU中的各个pRRU可以在不同的时间窗口接收终端设备发送的SRS信号的示意图;
图5为本申请实施例提供的一种基站的结构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请提供的通信方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5 th generation,5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统、全球移动通信系统(global system for mobile communication,GSM),移动通信系统(universal mobile telecommunications system,UMTS),码分多址接入(code division multiple access,CDMA)系统,以及未来通信发展中出现的新的通信系统等。
本申请实施例中涉及的终端设备,是一种向用户提供语音和/或数据连通性的设备, 例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以是连接到无线调制解调器的其他处理设备。终端设备可以通过无线接入网(radio access network,RAN)与一个或多个核心网进行通信。终端设备也可以称为无线终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment)等等。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。
本申请实施例中所涉及的网络设备,可以用于将收到的空中帧与网络协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可以包括IP网络等。网络设备还可以协调对空中接口的属性管理。例如,网络设备可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(Node B),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-Node B),还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit),可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。网络设备可以覆盖1个或多个小区。
进一步的,本申请实施例设计的网络设备可以采用分布式架构。以室内场景为例,分布式架构的网络设备包括一个或多个射频单元,如微型远端射频单元(pico remote radio unit,pRRU)和一个基带单元(baseband unit,BBU),如图1所示,应理解,图1仅是一种示例性说明,并不对网络设备所包括BBU、pRRU的数量进行具体限定。pRRU可以包括至少一个天线。pRRU主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送信息/数据/消息/指令。BBU主要用于进行基带处理,对网络设备进行控制等。
或者,本申请实施例设计的网络设备也可以采用LampSite架构。LampSite采用“BBU+rHUB+pRRU”的系统架构,基站由基带单元(base band unit,BBU)、小功率射频拉远单元(picoremote radio unit,pRRU)和射频拉远单元集线器(remote radio unit hub,rHUB)组成。一个BBU可以连接一个或多个rHUB,一个rHUB可以连接多个pRRU,并不对网 络设备所包括BBU、rHUB、pRRU的数量进行具体限定。其工作原理是:下行方向,BBU将信号发送给rHUB,rHUB与pRRU之间通过一根网线连接,rHUB将信号分发给各个pRRU,各个pRRU将信号处理为射频信号之后,通过射频馈线、合/分路器、天线等传输设备将射频信号接入室内。上行方向,室内的终端将反馈信号发送给pRRU,各个pRRU再将反馈信号发送给rHUB,rHUB对各个上行数据进行射频合路,再发送给BBU进行解调。因此,多个pRRU配置成的同一个小区也可以称为射频合路小区。网络设备可以覆盖一个逻辑小区,一个逻辑小区下面可以配置多个物理小区,每个物理小区下面,可以接多个pRRU。其中,物理小区为基带处理资源,例如,一个物理小区可以对应LTE空口20M带宽的调制解调能力。
室内场景一般部署数字化设备为LampSite,一个LampSite形成的小区由多个pRRU组成,其中一个pRRU又称为一个头端。典型的pRRU为4发送4接收(4 transmission 4 receiver,4T4R)的形态,也有2T2R的形态。
以4T4R的形态的pRRU为例,Lampsite在室内场景一般存在2种典型的组网:普通射频合路小区和分布式多头端协作小区。其中,普通射频合路小区由多个pRRU形成,且所有pRRU做射频合路,则合路后仍然为4T4R的形态,即一个逻辑小区的物理小区为4T4R的形态。而分布式多头端协作小区中,其逻辑小区也由多个pRRU形成,多个pRRU分别形成n个射频合路组,则这n个4T4R射频合路组对应4n根有效天线,即一个逻辑小区为4*n T4*n R的形态。例如当n=2时,即一个逻辑小区的物理小区为8T8R的形态。
需要说明的是,分布式多头端协作小区可以提升终端设备的性能,终端设备在分布式多头端协作小区中可以连接较多的有效天线。例如,一个逻辑小区的物理小区为8T8R的形态,终端设备可以连接8根有效天线。而在普通射频合路小区中,终端设备在分布式多头端协作小区中可以连接较少的有效天线。例如,一个逻辑小区的物理小区为4T4R的形态,终端设备可以连接4根有效天线。另外,分布式多头端协作小区只针对用户数据信道,而对于SSB信号的广播与普通射频合路小区的发送方式相同。
常见的新空口(new radio,NR)的终端有4根天线,理论上可以获得高流性能。但是室内多径、频选情况严重,一般普通射频合路小区只有4根有效天线,终端在近点可以达到1.1~1.2千兆/秒(Gbps),在边缘仅能达到600兆/秒(Mbps)左右。而采用分布式多头端协作小区,多个pRRU联合发送,解决频域深衰,提升用户性能,终端在近点可到1.4~1.5Gbps,在边缘可以到900Mbps左右。
当前,协议定义的小区切换,是终端基于广播信道同步信号和物理广播信道块(synchronization signal and PBCH block,SSB)信号的强度来判断的。例如,终端可以采样A3测量来触发切换。具体的,终端监测本小区的SSB信号的强度和邻区的SSB信号的强度,当邻区SSB信号的强度比本小区的SSB信号的强度高出一定程度时,触发终端从本小区到邻区的切换。
由于SSB RSRP不能表征分布式头端协作的性能增益,即协议定义的切换方法未考虑分布式头端协作带来用户性能(例如传输速率)提升的好处,无法保证切换终端的性能最优。例如,若源小区为射频合路小区,目标小区为分布式头端协作小区,源小区的SSB信号的强度略高于目标小区的SSB信号的强度,目标小区已经可以提供更高的传输速率,终端切 换过晚。又例如,若目标小区为射频合路小区,源小区为分布式头端协作小区,目标小区的SSB信号的强度略高于源区的SSB信号的强度,但是目标小区无法可以提供更高的传输速率,终端切换过早。
有基于此,本申请实施例提供一种终端设备切换方法以及相关设备,用于提高终端设备在切换前后的性能。
本申请应用于基站,基站连接多个pRRU,多个pRRU中的至少一个pRRU组成一个小区。在本申请中,首先确定第一小区对于接入的终端设备的有效天线的数量,以及确定相邻的第二小区对于终端设备的有效天线的数量,若第二小区对于终端设备的有效天线的数量多于第一小区对于终端设备的有效天线的数量,则使终端设备从第一小区切换至第二小区,从而使终端设备获得更高的性能。
为此,请参考图2-1,为本申请提出的一种终端设备切换方法的实施例一,包括:
201、终端设备接入第一小区。
在本申请实施例中,终端设备可以在移动中进入第一小区的覆盖范围,或者终端设备在关机状态时进入第一小区的覆盖范围并开机且接入网络,或者终端设备在开机状态但关闭网络时移动到第一小区的覆盖范围并接入网络,终端设备可以接入第一小区。在一些可行的实现方式中,第一小区可以是普通射频合路小区,也可以是分布式多头端协作小区,此处不做限定。
在一些可行的实现方式,第一小区对应至少一个pRRU,当终端设备接入第一小区后,终端设备可以与这至少一个pRRU通信。示例性的,终端设备可以通过向第一小区对应的至少一个pRRU发送上行信号,以传输信息,接收到上行信号的pRRU将信息传送给BBU。示例性的,BBU也可以通过第一小区对应的至少一个pRRU向终端设备发送信息,则第一小区对应的至少一个pRRU向终端设备发送下行信号。
需要说明的是,第一小区是一个逻辑概念,第一小区由至少一个pRRU的射频信号通过波束赋形形成。在本申请实施例中,终端设备与第一小区的通信指的是,终端设备与形成第一小区的至少一个pRRU收发信号,以实现终端设备和BBU之间收发信息。
202、第一小区对终端设备进行SRS测量,得到第一SRS测量信息。
在本申请实施例中,当终端设备接入第一小区后,BBU可以确定终端设备的SRS配置信息,以对终端设备进行SRS测量。在本申请实施例中,第一小区可以通过SRS配置信息为终端设备进行SRS测量,即第一小区基于SRS配置信息接收终端设备发送的第一SRS信号,第一小区可以确定第一小区对应的各个天线分别接收的第一SRS信号的第一SRS信号强度,作为第一SRS测量信息。在一些可行的实现方式中,第一SRS测量信息可以为第一小区对应的至少一个pRRU中的各个有效天线的SRS RSRP。
需要说明的是,若第一小区可以使用各个有效天线分别对终端设备进行SRS测量,得到各个有效天线的SRS RSRP。例如,第一小区为4T4R的普通射频合路小区,其具有4根有效天线的数量,那么第一小区可以检测得到4根有效天线中各个有效天线的SRS RSRP。又例如,第一小区为多头端协作小区,其具有4n根有效天线,例如8根有效天线,那么第一小区可以检测得到8根有效天线中各个有效天线的SRS RSRP。
203、终端设备检测接收到的第一小区广播的第一SSB信号的第一SSB信号强度。
在本申请实施例中,当终端设备接入第一小区后,第一小区可以为终端设备配置A3测量,并向终端设备发送A3配置信息。在本申请实施例中,终端设备可以根据A3配置信息检测接收到的SSB信号的SSB信号强度。例如,第一小区广播第一SSB信号,当终端设备在第一小区的覆盖范围时,终端设备即可接收到第一小区广播的第一SSB信号,那么终端设备测量第一SSB信号的第一SSB信号强度。
需要说明的是,第一SSB信号中携带第一小区的小区信息。例如,第一小区的小区信息为第一小区的物理小区标识(physical cell identifier,PCI)或其他小区标识等信息,此处不做限定。
204、终端设备检测接收到的第二小区广播的第二SSB信号的第二SSB信号强度。
在本申请实施例中,当终端设备配置了A3测量后,可以对测量所有接收到的SSB信号的SSB信号强度,包括第二小区广播的第二SSB信号的第二SSB信号强度。例如,当终端设备移动进入第二小区的覆盖范围时,第二小区广播第二SSB信号,那么终端设备可以接收到第二SSB信号,并检测第二SSB信号的第二SSB信号强度。
需要说明的是,第二SSB信号中携带第二小区的小区信息。例如,第二小区的小区信息为第二小区的PCI或其他小区标识等信息,此处不做限定。
在本申请实施例中,第一小区和第二小区可以对应相同的BBU,也可以分别对应不同的BBU,此处不做限定。
205、终端设备确定第一SSB信号强度和第二SSB信号强度之差在预设范围内。
在本申请实施例中,当终端设备检测到第一小区的第一SSB信号的第一SSB信号强度以及第二小区的第二SSB信号的第二SSB信号强度后,可以根据第一SSB信号强度和第二SSB信号强度确定是否上报A3消息。在一些可行的实现方式,终端设备可以根据第一SSB信号强度和第二SSB信号强度之差确定是否上报A3消息。例如,设第一SSB信号强度和第二SSB信号强度之差为R(单位:分贝dB):
R=(第一SSB信号强度-第二SSB信号强度)
若R在预设范围内,则确定上报A3消息。
例如,R小于等于R0,则确定上报A3消息,即预设范围为(-∞,R0]。即,当第一SSB信号强度与第二SSB信号强度高之差R小于等于R0时,确定上报A3消息。需要说明的是,R0可以配置,例如R0=15,或者R0=0,此处不做限定。
举例说明,终端设备接入第一小区后,终端设备接收到第一小区的第一SSB信号的第一SSB信号强度自然高于接收到其他小区的SSB信号的信号强度,例如第二小区的第二SSB信号的第二SSB信号强度。当终端设备在第一小区中移动时,越接近第二小区则可以接收到的第二SSB信号的第二SSB信号强度则越高,越远离第一小区则可以接收到的第一SSB信号的第一SSB信号强度则越低。当第二SSB信号的第二SSB信号强度高至一定值时,可以满足R小于等于R0,即R在预设范围(-∞,R0]内,则终端设备确定上报A3消息。
在本申请实施例中,若终端设备确定第一SSB信号强度和第二SSB信号强度之差在预设范围内,则终端设备确定上报A3消息,则执行后续步骤206,否则循环执行步骤203-204。
206、终端设备向第一小区上报A3消息。
在本申请实施例中,终端设备上报的A3消息中携带第二小区的小区信息。例如,第二小区的PCI或者其他小区信息,此处不做限定。需要说明的是,第二小区的小区信息是终端设备通过接收第二小区广播的第二SSB信号中获取的。在一些可行的实现方式中,终端设备可以周期性地上报A3消息,此处不做限定。
207、第一小区向第二小区发送关于终端设备的SRS配置信息。
在本申请实施例中,当第一小区接收到终端设备上报的A3消息时,根据A3消息中的第二小区的小区信息确定第二小区,即向第二小区发送关于终端设备的SRS配置信息,以使得第二小区根据SRS配置信息对终端设备进行SRS测量。
208、第二小区根据终端设备的SRS配置信息对终端设备进行SRS测量,得到第二SRS测量信息。
在本申请实施例中,第二小区基于SRS配置信息接收终端设备发送的第二SRS信号,在一些可行的实现方式中,第二小区可以确定第二小区对应的各个天线分别接收的第二SRS信号的第二SRS信号强度,作为第二SRS测量信息。在一些可行的实现方式中,第二SRS测量信息可以为第二小区对应的至少一个pRRU中的各个有效天线的SRS RSRP。
需要说明的是,若第二小区可以使用各个有效天线分别对终端设备进行SRS测量,得到各个有效天线的SRS RSRP。例如,第二小区为4T4R的普通射频合路小区,其具有4根有效天线的数量,那么第二小区可以检测得到4根有效天线中各个有效天线的SRS RSRP。又例如,第二小区为多头端协作小区,其具有4n根有效天线,例如8根有效天线,那么第二小区可以检测得到8根有效天线中各个有效天线的SRS RSRP。
需要说明的是,为了保证测量有效天线的SRS RSRP的准确性,第二小区需要保障前述终端设备和所服务的终端设备的SRS资源不冲突。为此,BBU可以提前约定SRS资源的分配方式,使得第一小区和第二小区的SRS资源的分配不冲突。或者,第二小区可以向第一小区反馈SRS资源,则第一小区进行SRS资源重配,再通知第二小区,此处不做限定。
209、第二小区向第一小区发送该第二SRS测量信息。
在本申请实施例中,当第二小区对终端设备进行SRS测量,得到第二SRS测量信息之后,可以向第一小区发送该第二SRS测量信息,让第一小区判断是否要进行切换。在一些可行的实现方式中,第二小区可以周期性地向第一小区发送第二SRS测量信息,此处不做限定。
210、第一小区执行终端设备切换至第二小区的流程。
在本申请实施例中,第一小区可以确定第一小区对于终端设备的有效天线的数量,并确定第二小区对于终端设备的有效天线的数量。在一些可行的实现方式中,第一小区可以根据第一SRS信号确定第一小区对于所述终端设备的有效天线的数量。在一些可行的实现方式中,第一小区可以确定第一小区对应的各个天线分别接收的所述第一SRS信号的第一SRS信号强度,并根据第一SRS信号强度确定第一小区对于终端设备的有效天线的数量。
在一些可行的实现方式中,第一小区可以根据第二SRS测量信息确定第二小区对应的各个天线分别接收的第二SRS信号的第二SRS信号强度,并根据第二SRS信号强度确定第二小区对于终端设备的有效天线的数量。
示例性的,第一SRS测量信息可以包括第一小区对应的至少一个pRRU中的各个有效天线的SRS RSRP,得到多个SRS RSRP。第一小区可以将多个SRS RSRP中各个SRS RSRP进行排降序排列,确定其中信号强度最高的SRS RSRP。然后,第一小区可以确定多个SRS RSRP中与信号强度最高的SRS RSRP之差在预设范围内容的SRS RSRP。例如,预设范围可以为(0,9dB)。最后,第一小区可以确定多个SRS RSRP中与信号强度最高的SRS RSRP之差在预设范围内容的SRS RSRP的数量,为有效天线数量。例如,若第一小区为4T4R的普通射频合路小区,所检测到的有效天线的数量为4根。又例如,若第一小区为多头端协作小区,所检测到的有效天线的数量为8根。
示例性的,第二SRS测量信息可以包括第二小区对应的至少一个pRRU中的各个有效天线的SRS RSRP,得到多个SRS RSRP。第一小区可以将多个SRS RSRP中各个SRS RSRP进行排降序排列,确定其中信号强度最高的SRS RSRP。然后,第一小区可以确定多个SRS RSRP中与信号强度最高的SRS RSRP之差在预设范围内容的SRS RSRP。例如,预设范围可以为(0,9dB)。最后,第一小区可以确定多个SRS RSRP中与信号强度最高的SRS RSRP之差在预设范围内容的SRS RSRP的数量,为有效天线数量。例如,若第二小区为4T4R的普通射频合路小区,所检测到的有效天线的数量为4根。又例如,若第二小区为多头端协作小区,所检测到的有效天线的数量为8根。在一些可行的实现方式中,“基于第二测量信息可以确定第二小区的有效天线的数量”也可以由第二小区执行,然后将有效天线的数量通知第一小区,此处不做限定。
在本申请实施例中,若一个小区的有效天线的数量比另一个小区的有效天线的数量多,那么可以认为具有更多有效天线的数量的小区可以为终端设备带来更高的传输速率,那么终端设备接入该小区后可以得到更优的性能。因此,若第二小区对于终端设备的有效天线的数量多于第一小区对于终端设备的有效天线的数量,则使终端设备从第一小区切换至第二小区。
在一些可行的实现方式中,若第一小区和第二小区的有效天线的数量相同,则确定有效天线对应的SRS RSRP的平均值较高的小区。例如,第一小区的有效天线的数量为8根,第二小区的有效天线的数量为8根。若第一小区的有效天线的对应的SRS RSRP的平均值为10,第人小区的有效天线的对应的SRS RSRP的平均值为11,则确定切换至第二小区可以让终端设备的性能更优。若第一小区的有效天线的对应的SRS RSRP的平均值为12,第二小区的有效天线的对应的SRS RSRP的平均值为11,则保留在第一小区可以让终端设备的 性能更优。
在一些可行的实现方式中,若第一小区和第二小区的有效天线的数量相同,且二者的有效天线对应的SRS RSRP的平均值相等,则比对终端设备接收到的第一小区广播的第一SSB信号的第一SSB信号强度以及第二小区广播的第二SSB信号的第二SSB信号强度,选择信号强度较高的SSB信号对应的小区。若第二SSB信号强度较高,则终端设备应当切换至第二小区;若第一SSB信号强度较高,则终端设备应当保留在第一小区。
在本申请实施例中,第一小区可以向终端设备发送第二小区的相关信息,并向第二小区发送终端设备的相关信息,以使得终端设备可以从第一小区切换至第二小区。具体的切换过程为公知常识,此处不做赘述。
举例说明,如图2-2所示,第一小区由pRRU 1和pRRU 2形成,第一小区为普通射频合路小区。第二小区由pRRU 3和pRRU 4形成,第二小区为分布式多头端协作小区。若各个pRRU均为4T4R的形态,那么一个pRRU可以形成4根有效天线,那么作为普通射频合路小区的第一小区可以形成4根有效天线,作为分布式多头端协作小区的第二小区可以形成8根有效天线。
当终端设备接入第一小区之后,当终端设备移动至如图2-2所示的位置时,终端设备向第一小区上报A3消息。则第一小区为终端设备配置SRS配置信息,并根据SRS配置信息为终端设备进行SRS测量,得到第一SRS测量信息。其中,第一SRS测量信息可以指示第一小区对于终端设备的有效天线的数量。同时,第一小区向第二小区发送终端设备的SRS配置信息,让第二小区基于SRS配置信息对终端设备进行SRS测量,得到第二SRS测量信息,并将第二SRS测量信息发送给第一小区。其中,第二SRS测量信息可以指示第二小区对于终端设备的有效天线的数量。那么,第一小区可以根据第一测量信息所指示的第一小区对于终端设备的有效天线的数量,以及第二测量信息所指示的第二小区对于终端设备的有效天线的数量,确定终端设备接入第一小区或第二小区时的哪个性能更优。具体的,当终端设备接入时,终端设备可以检测到的有效天线的数量更多的小区,可以使终端设备的性能更优。若第二小区对于终端设备的有效天线的数量多于第一小区对于终端设备的有效天线的数量更多,则第一小区执行终端设备从第一小区切换至第二小区的流程。
请参考图3-1,为本申请提出的一种终端设备切换方法的实施例二,包括:
301、终端设备接入第一小区。
请参考步骤201,此处不做赘述。
另外,在本申请实施例中,当终端设备接入第一小区后,第一小区可以指示终端设备获取第二小区广播的第二SSB信号的至少一个SSB标识。
302、第一小区对终端设备进行SRS测量,得到第一SRS测量信息。
请参考步骤202,此处不做赘述。
303、终端设备检测接收到的第一小区广播的第一SSB信号的第一SSB信号强度。
请参考步骤203,此处不做赘述。
304、终端设备检测接收到的第一小区广播的第二SSB信号的第二SSB信号强度。
请参考步骤204,此处不做赘述。
另外,在本申请实施例中,当终端设备接收到第二小区广播的第二SSB信号时,可以获取第二小区广播的第二SSB信号的至少一个SSB标识。需要说明的是,协议定义第二小区最多可以发送7~8个SSB波束,其中一个SSB波束对应一个SSB标识,不同SSB波束在时域上错开。普通射频合路小区仅能发送一个SSB波束,对应一个SSB标识,而分布式头端小区可以通过不同射频合路组(每个射频合路组对应4根有效天线),发送多个不同SSB标识对应的SSB波束。
例如,射频合路组1发送SSB波束1(对应SSB标识-1),射频合路组2发送SSB波束2(对应SSB标识-2),依次类推。需要说明的是,协议定义SSB标识的数量最多为8,当SSB波束的数量大于8时,SSB标识的值可以重复使用。例如,射频合路组1和射频合路组9发送的SSB波束的SSB标识都为SSB标识-1。在本申请实施例中,只要保证相邻的两个pRRU不会发送相同的SSB标识的SSB波束即可,此处不做限定。
305、终端设备确定第一SSB信号强度和第二SSB信号强度之差在预设范围内。
请参考步骤204,此处不做赘述。
306、终端设备向第一小区上报A3消息。
请参考步骤206,此处不做赘述。
另外,在本申请实施例中,终端设备向第一小区上报的A3消息中,还携带至少一个SSB标识或至少一个SSB标识的数量。例如,若第二小区为4T4R的普通射频合路小区,那么第二SSB信号对应1个SSB波束的SSD ID,那么A3消息中携带该SSB波束的SSB标识或SSB标识的数量为1。又例如,若第二小区为单pRRU为4T4R的多头端协作小区,那么第二SSB信号对应多个SSB波束的SSB标识,那么A3消息中携带多个SSB波束中各个SSB波束的SSB标识或SSB标识的数量。
307、第一小区执行终端设备切换至第二小区的流程。
在本申请实施例中,第一小区可以根据至少一个SSB标识的数量确定第二小区对于终端设备的有效天线的数量。示例性的,请参考步骤210,此处不做赘述。
另外,在本申请实施例中,第一小区可以根据A3消息确定SSB标识的数量,从而确定第二小区对应的有效天线的数量。例如,第二小区的pRRU为4T4R形态,且A3消息指示的SSB标识的数量为1,则第二小区对应的有效天线的数量为4。又例如,第二小区的pRRU为4T4R形态,且A3消息指示的SSB标识的数量为2,则第二小区对应的有效天线的数量为8。
在一些可行的实现方式中,若第一小区和第二小区的有效天线的数量相同,且二者的有效天线对应的SRS RSRP的平均值相等,则比对终端设备接收到的第一小区广播的第一SSB信号的第一SSB信号强度以及第二小区广播的第二SSB信号的第二SSB信号强度,选择信号强度较高的SSB信号对应的小区。若第二SSB信号强度较高,则终端设备应当切换 至第二小区;若第一SSB信号强度较高,则终端设备应当保留在第一小区。
本申请实施例二中,不需要第二小区测量对终端设备进行SRS测量,即不需要第二基站的参与,即可获取第二小区的广播的第二SSB信号对应的SSB标识的数量,即可判断终端设备是否应当切换至第二小区,由于不需要第二小区的参与,执行更简单,可行性更高。
举例说明,举例说明,如图3-2所示,第一小区由pRRU 1和pRRU 2形成,第一小区为普通射频合路小区,pRRU 1和pRRU 2均对应SSB 1。第二小区由pRRU 3和pRRU 4形成,第二小区为分布式多头端协作小区,pRRU 3对应SSB 1和pRRU 4对应SSB 2。若各个pRRU均为4T4R的形态,那么一个pRRU可以形成4根有效天线,那么作为普通射频合路小区的第一小区可以形成4根有效天线,作为分布式多头端协作小区的第二小区可以形成8根有效天线。
当终端设备接入第一小区之后,当终端设备移动至如图3-2所示的位置时,终端设备向第一小区上报A3消息。则第一小区为终端设备配置SRS配置信息,并根据SRS配置信息为终端设备进行SRS测量,得到第一SRS测量信息。其中,第一SRS测量信息可以指示第一小区对于终端设备的有效天线的数量。同时,第一小区向指示终端设备获取第二小区中广播的第二SSB信号的至少一个SSB标识,并告知第一小区第二SSB信号的至少一个SSB标识的数量。其中,第二SSB信号的至少一个SSB标识的数量与第二小区的有效天线的数量相关。例如,对于4T4R的形态的第二小区,第二SSB信号的至少一个SSB标识的数量与第二小区的有效天线的数量之比为1:4。若由于第二小区由pRRU 3和pRRU 4形成,第二小区为分布式多头端协作小区,pRRU 3对应SSB 1和pRRU 4对应SSB 2,那么第二SSB信号的至少一个SSB标识的数量为2,那么第二小区的有效天线的数量为2*4=8。那么,第一小区可以根据第一测量信息所指示的第一小区对于终端设备的有效天线的数量,由于第一小区由pRRU 1和pRRU 2形成,第一小区为普通射频合路小区,pRRU 1和pRRU 2均对应SSB 1,那么第一小区的有效天线的数量为1*4=4。
第一小区可以根据第一小区的有效天线的数量和第一小区的有效天线的数量确定第一小区和第二小区哪个对于终端设备的性能更优。具体的,对于终端设备的有效天线的数量更多的小区对于终端设备的性能更优。若第二小区对于终端设备的有效天线的数量多于第一小区对于终端设备的有效天线的数量更多,则第一小区执行终端设备从第一小区切换至第二小区的流程。
请参考图4-1,为本申请提出的一种终端设备切换方法的实施例三,包括:
401、获取终端设备的对于第一小区对应的多个pRRU中各个pRRU级的SRS信号强度。
在本申请实施例中,当终端设备在第一小区的某个位置时切换至第二小区,那么当其他终端设备出现在这个位置时也应当切换至第二小区。因此,在本申请实施例中,可以获取该位置的特征,以使得当终端设备满足某些特征时,确定终端设备位于该位置,则应当切换至第二小区。在一些可能的实现方式中,终端设备在第一小区中的位置可以由第一小区中各个pRRU检测到的终端设备发送的SRS信号的信号强度来表示。
示例性的,第一小区可以为终端设备配置周期性的SRS测量,SRS测量指示终端设备 在给定的时间窗口发送SRS信号。然后,终端设备在给定的时间窗口发送SRS信号。接着,第一小区对应的多个pRRU中的各个pRRU分别在不同周期发送接收终端设备发送的SRS信号,得到多个pRRU中各个pRRU对应的SRS信号强度。
在一些可能的实现方式中中,如图4-2所示,第一小区对应的多个pRRU中的各个pRRU可以在不同的时间窗口接收终端设备发送的SRS信号。例如,第一小区对应2个pRRU,分别为pRRU 1和pRRU 2。在时间窗口1,pRRU 1接收终端设备发送的SRS信号,在时间窗口2,pRRU 2接收终端设备发送的SRS信号。其中,时间窗口1和时间窗口2均在SRS测量指示终端设备在给定的时间窗口中。那么,第一小区即可得到pRRU 1和pRRU 2分别对应的SRS信号强度。
在一些可能的实现方式中中,如图4-2所示,第一小区对应的多个pRRU中的各个pRRU可以同时接收终端设备发送的SRS信号,但是rHUB在不同的时间窗口获取不同pRRU接收到的SRS信号,并发送给BBU,从而得到多个pRRU中各个pRRU对应的SRS信号强度。例如,第一小区对应2个pRRU,分别为pRRU 1和pRRU 2。pRRU 1和pRRU 2均接收到终端设备发送的SRS信号,在时间窗口1,rHUB获取pRRU 1接收到的SRS信号,在时间窗口2,rHUB获取pRRU 2接收到的SRS信号,那么,第一小区即可得到pRRU 1和pRRU 2分别对应的SRS信号强度。
402、根据终端设备的位置更新栅格表,栅格表包括终端设备的位置和所述第一小区的对应关系。
在本申请实施例中,终端设备的位置由第一小区对应的多个pRRU中各个pRRU接收到的终端设备上报的SRS信号的信号强度表示,第一小区可以获取第一小区对应的多个pRRU中各个pRRU接收到的终端设备上报的SRS信号,得到第一小区对应的多个pRRU中各个pRRU接收到的终端设备上报的SRS信号的SRS信号强度,以作为终端设备的位置。
示例性的,假如第一小区由4个pRRU组成。若通过前述实施例一或实施例二的技术方案中,当终端设备在位置1时,切换至第二小区,当终端设备在位置2时,切换至第三小区,那么如表1所示,得到栅格表。
表1
位置 pRRU 1 pRRU 2 pRRU 3 pRRU 4 切换决策
1 -80dBm -85dBm -95dBm -95dBm 第二小区
2 -95dBm -90dBm -85dBm -85dBm 第三小区
需要说明的是栅格表可以包括多个表项,每产生一次切换,则增加一个表项,此处不做限定。
403、根据栅格表执行切换流程。
在本申请实施例中,在建立栅格表之后,第一小区可以通过监测多个pRRU中各个pRRU监测终端设备的SRS信号的信号强度,若各个pRRU监测到的终端设备的SRS信号的信号强度满足栅格表中某个表项的条件,则执行该表项的切换决策。
例如,若第一小区中的终端设备被检测出其上报的SRS信号的各个pRRU检测结果如下:pRRU 1=-80dBm,pRRU 2=-85dBm,pRRU 3=-95dBm,pRRU 4=-95dBm。那么,第一小区可以将终端设备切换至第二小区。又例如,若第一小区中的终端设备被检测出其上报的SRS信号的各个pRRU检测结果如下:pRRU 1=-95dBm,pRRU 2=-90dBm,pRRU 3=-85dBm,pRRU 4=-85dBm。那么,第一小区可以将终端设备切换至第二小区。
在一些可能的实现方式中,第一小区中的终端设备被检测出其上报的SRS信号的各个pRRU检测结果不需要精确满足栅格表的表项中数值,也可以误差在正负若干dBm,如±1~5dBm,此处不做限定。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图5所示,本申请实施例提供的一种基站500,所述基站500连接多个pRRU,所述多个pRRU中的至少一个pRRU组成一个小区,包括收发模块501和处理模块502,其中,收发模块501,用于确定第一小区对于终端设备的有效天线的数量,所述终端设备为接入所述第一小区的终端设备;所述收发模块501,还用于确定第二小区对于所述终端设备的有效天线的数量,所述第二小区为所述第一小区的相邻小区;所述处理模块502,还用于若所述第一小区对于所述终端设备的有效天线的数量多于所述第二小区对于所述终端设备的有效天线的数量,则使所述终端设备从所述第一小区切换至所述第二小区。
在一些可行的实现方式中,所述处理模块502,还用于通过所述第一小区确定所述终端设备的SRS配置信息;所述收发模块501,还用于通过所述第一小区基于所述SRS配置信息接收所述终端设备发送的第一SRS信号;所述处理模块502,还用于根据所述第一SRS信号确定所述第一小区对于所述终端设备的有效天线的数量。
在一些可行的实现方式中,所述收发模块501,还用于确定所述第一小区对应的各个天线分别接收的所述第一SRS信号的第一SRS信号强度;所述处理模块502,还用于根据所述第一小区对应的各个天线的SRS信号强度确定所述第一小区对于所述终端设备的有效天线的数量。
在一些可行的实现方式中,所述收发模块501,还用于通过所述第二小区基于所述SRS配置信息接收所述终端设备发送的第二SRS信号;所述处理模块502,还用于根据所述第二SRS信号确定所述第二小区对于终端设备的有效天线的数量。
在一些可行的实现方式中,所述处理模块502,还用于确定所述第二小区对应的各个天线分别接收的所述第二SRS信号的第二SRS信号强度;所述处理模块502,还用于根据所述第二SRS信号强度确定所述第二小区对于所述终端设备的有效天线的数量。
在一些可行的实现方式中,所述收发模块501,还用于通过所述第一小区指示所述终 端设备获取所述第二小区广播的第二SSB信号的至少一个SSB标识;所述收发模块501,还用于接收所述终端设备上报的所述至少一个SSB标识或所述至少一个SSB标识的数量;所述处理模块502,还用于根据所述至少一个SSB标识的数量确定所述第二小区对于所述终端设备的有效天线的数量。
在一些可行的实现方式中,所述收发模块501,还用于确定所述终端设备的位置;所述处理模块502,还用于根据所述终端设备的位置更新栅格表,所述栅格表包括所述终端设备的位置和所述第一小区的对应关系。
在一些可行的实现方式中,所述终端设备的位置由所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的信号强度表示;所述收发模块501,还用于获取所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号,得到所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的SRS信号强度。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本申请实施例提供的另一种通信装置,请参阅图6所示,通信装置600包括:
接收器601、发射器602、处理器603和存储器604。在本申请的一些实施例中,接收器601、发射器602、处理器603和存储器604可通过总线或其它方式连接,其中,图6中以通过总线连接为例。
存储器604可以包括只读存储器和随机存取存储器,并向处理器603提供指令和数据。存储器604的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器604存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器603控制通信装置600的操作,处理器603还可以称为中央处理单元(central processing unit,CPU)。具体的应用中,通信装置600的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器603中,或者由处理器603实现。处理器603可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器603中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器603可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管 逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器604,处理器603读取存储器604中的信息,结合其硬件完成上述方法的步骤。
接收器601可用于接收输入的数字或字符信息,以及产生与通信装置600的相关设置以及功能控制有关的信号输入,发射器602可包括显示屏等显示设备,发射器602可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器603,用于执行前述通信装置600执行的终端设备切换方法。
在另一种可能的设计中,当基站为芯片时,包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线报告信息的发送方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制上述方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。

Claims (20)

  1. 一种终端设备切换方法,其特征在于,用于基站,所述基站连接多个微型射频拉远单元pRRU,所述多个pRRU中的至少一个pRRU组成一个小区,所述方法包括:
    确定第一小区对于终端设备的有效天线的数量,所述终端设备为接入所述第一小区的终端设备;
    确定第二小区对于所述终端设备的有效天线的数量,所述第二小区为所述第一小区的相邻小区;
    若所述第二小区对于所述终端设备的有效天线的数量多于所述第一小区对于所述终端设备的有效天线的数量,则使所述终端设备从所述第一小区切换至所述第二小区。
  2. 根据权利要求1所述方法,其特征在于,所述确定第一小区对于终端设备的有效天线的数量包括:
    确定所述终端设备的信道探测参考信号SRS配置信息;
    通过所述第一小区基于所述SRS配置信息接收所述终端设备发送的第一SRS信号;
    根据所述第一SRS信号确定所述第一小区对于所述终端设备的有效天线的数量。
  3. 根据权利要求2所述方法,其特征在于,所述根据所述第一SRS信号确定所述第一小区对于终端设备的有效天线的数量包括:
    确定所述第一小区对应的各个天线分别接收的所述第一SRS信号的第一SRS信号强度;
    根据所述第一SRS信号强度确定所述第一小区对于所述终端设备的有效天线的数量。
  4. 根据权利要求2或3所述方法,其特征在于,所述确定第二小区对于所述终端设备的有效天线的数量包括:
    通过所述第二小区基于所述SRS配置信息接收所述终端设备发送的第二SRS信号;
    根据所述第二SRS信号确定所述第二小区对于所述终端设备的有效天线的数量。
  5. 根据权利要求4所述方法,其特征在于,所述根据所述第二SRS信号确定所述第二小区对于所述终端设备的有效天线的数量包括:
    确定所述第二小区对应的各个天线分别接收的所述第二SRS信号的第二SRS信号强度;
    根据所述第二SRS信号强度确定所述第二小区对于所述终端设备的有效天线的数量。
  6. 根据权利要求2或3所述方法,其特征在于,所述确定第二小区对于所述终端设备的有效天线的数量包括:
    通过所述第一小区指示所述终端设备获取所述第二小区广播的第二广播信道同步信号和物理广播信道块SSB信号的至少一个SSB标识;
    接收所述终端设备上报的所述至少一个SSB标识或所述至少一个SSB标识的数量;
    根据所述至少一个SSB标识的数量确定所述第二小区对于所述终端设备的有效天线的数量。
  7. 根据权利要求1-6中任一项所述方法,其特征在于,所述使所述终端设备从所述第一小区切换至所述第二小区之后,还包括:
    确定所述终端设备的位置;
    根据所述终端设备的位置更新栅格表,所述栅格表包括所述终端设备的位置和所述第一小区的对应关系。
  8. 根据权利要求7所述方法,其特征在于,所述终端设备的位置由所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的信号强度表示,所述确定所述终端设备的位置包括:
    获取所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号,得到所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的SRS信号强度。
  9. 一种基站,其特征在于,所述基站连接多个pRRU,所述多个pRRU中的至少一个pRRU组成一个小区,包括:
    收发模块,用于确定第一小区对于终端设备的有效天线的数量,所述终端设备为接入所述第一小区的终端设备;
    所述收发模块,还用于确定第二小区对于所述终端设备的有效天线的数量,所述第二小区为所述第一小区的相邻小区;
    所述处理模块,还用于若所述第二小区对于所述终端设备的有效天线的数量多于所述第一小区对于所述终端设备的有效天线的数量,则使所述终端设备从所述第一小区切换至所述第二小区。
  10. 根据权利要求9所述基站,其特征在于,
    所述处理模块,还用于确定所述终端设备的SRS配置信息;
    所述收发模块,还用于通过所述第一小区基于所述SRS配置信息接收所述终端设备发送的第一SRS信号;
    所述处理模块,还用于根据所述第一SRS信号确定所述第一小区对于所述终端设备的有效天线的数量。
  11. 根据权利要求10所述基站,其特征在于,
    所述处理模块,还用于确定所述第一小区对应的各个天线分别接收的所述第一SRS信号的第一SRS信号强度;
    所述处理模块,还用于根据所述第一小区对应的各个天线的SRS信号强度确定所述第一小区对于所述终端设备的有效天线的数量。
  12. 根据权利要求10或11所述基站,其特征在于,
    所述收发模块,还用于通过所述第二小区基于所述SRS配置信息接收所述终端设备发送的第二SRS信号;
    所述处理模块,还用于根据所述第二SRS信号确定所述第二小区对于所述终端设备的有效天线的数量。
  13. 根据权利要求12所述基站,其特征在于,
    所述处理模块,还用于确定所述第二小区对应的各个天线分别接收的所述第二SRS信号的第二SRS信号强度;
    所述处理模块,还用于根据所述第二SRS信号强度确定所述第二小区对于所述终端设备的有效天线的数量。
  14. 根据权利要求10或11所述基站,其特征在于,
    所述收发模块,还用于通过所述第一小区指示所述终端设备获取所述第二小区广播的 第二SSB信号的至少一个SSB标识;
    所述收发模块,还用于接收所述终端设备上报的所述至少一个SSB标识或所述至少一个SSB标识的数量;
    所述处理模块,还用于根据所述至少一个SSB标识的数量确定所述第二小区对于所述终端设备的有效天线的数量。
  15. 根据权利要求9-14中任一项所述基站,其特征在于,
    所述收发模块,还用于确定所述终端设备的位置;
    所述处理模块,还用于根据所述终端设备的位置更新栅格表,所述栅格表包括所述终端设备的位置和所述第一小区的对应关系。
  16. 根据权利要求15所述基站,其特征在于,所述终端设备的位置由所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的信号强度表示;
    所述收发模块,还用于获取所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号,得到所述第一小区对应的多个pRRU中各个pRRU接收到的所述终端设备上报的SRS信号的SRS信号强度。
  17. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质存储有程序,所述程序使得计算机设备执行如权利要求1-8中任一项的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机执行指令,所述计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器从所述计算机可读存储介质中读取所述计算机执行指令,所述至少一个处理器执行所述计算机执行指令使得所述设备执行如权利要求1-8中任一项的方法。
  19. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器、存储器和通信接口;
    所述至少一个处理器与所述存储器和所述通信接口耦合;
    所述存储器用于存储指令,所述处理器用于执行所述指令,所述通信接口用于在所述至少一个处理器的控制下与其他通信装置进行通信;
    所述指令在被所述至少一个处理器执行时,使所述至少一个处理器执行如权利要求1-8中任一项的方法。
  20. 一种芯片系统,其特征在于,所述芯片系统包括处理器和存储器,所述存储器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如权利要求1-8中任一项的方法。
PCT/CN2021/142503 2021-12-29 2021-12-29 一种终端设备切换方法和基站 WO2023123057A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142503 WO2023123057A1 (zh) 2021-12-29 2021-12-29 一种终端设备切换方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142503 WO2023123057A1 (zh) 2021-12-29 2021-12-29 一种终端设备切换方法和基站

Publications (1)

Publication Number Publication Date
WO2023123057A1 true WO2023123057A1 (zh) 2023-07-06

Family

ID=86996766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142503 WO2023123057A1 (zh) 2021-12-29 2021-12-29 一种终端设备切换方法和基站

Country Status (1)

Country Link
WO (1) WO2023123057A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895308A (zh) * 2009-05-22 2010-11-24 鼎桥通信技术有限公司 多覆盖区小区的上行信号检测方法和下行信号发送方法
CN111757400A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法和通信装置
WO2021000209A1 (en) * 2019-07-01 2021-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for wireless communication
CN113615247A (zh) * 2019-01-30 2021-11-05 瑞典爱立信有限公司 基于波束信息的有条件移动性触发

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895308A (zh) * 2009-05-22 2010-11-24 鼎桥通信技术有限公司 多覆盖区小区的上行信号检测方法和下行信号发送方法
CN113615247A (zh) * 2019-01-30 2021-11-05 瑞典爱立信有限公司 基于波束信息的有条件移动性触发
CN111757400A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法和通信装置
WO2021000209A1 (en) * 2019-07-01 2021-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for wireless communication

Similar Documents

Publication Publication Date Title
US11606706B2 (en) Cell measurement in communication systems, related configuration and devices
US11172414B2 (en) Coordinated cell determining method and network device
WO2020192363A1 (zh) 一种通信方法及设备
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
JP7319394B2 (ja) 測定制御方法および装置、端末、ネットワーク機器
CN111436061A (zh) 用于在无线通信系统中配置回程链路的装置和方法
US11202220B2 (en) Method of adapting report mapping based on beamforming
US10411851B2 (en) Wireless communication method, device and system
JP2019524022A (ja) マルチリンク構成方法、基地局、およびユーザ機器
CN115399006A (zh) 多载波通信方法、终端设备和网络设备
WO2017028698A1 (zh) 一种数据传输方法、设备和系统
WO2013107213A1 (zh) 无线室内优化方法和设备
WO2021056844A1 (zh) 数据处理方法、主机单元、基站系统和存储介质
US11412488B2 (en) Resource allocation method and device
WO2022052117A1 (zh) 配置辅助上行链路sul的方法和装置
US20240022942A1 (en) Measurement parameter determination method, electronic device and storage medium
WO2023078239A1 (zh) 一种通信方法及装置
WO2023123057A1 (zh) 一种终端设备切换方法和基站
TW202002554A (zh) 無線通訊方法、網路設備和終端設備
TW201916621A (zh) 一種指示ue發射端口數量的方法、ue及網路設備
WO2022151494A1 (zh) 一种传输参数确定方法及装置
CN114208262B (zh) 载波测量方法和装置
TWI685223B (zh) 數據傳輸的方法和裝置
CN115989697A (zh) 一种通信方法及通信装置
US11115986B2 (en) Reference signal sending method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969426

Country of ref document: EP

Kind code of ref document: A1