WO2023122914A1 - 环境光传感器和电子设备 - Google Patents

环境光传感器和电子设备 Download PDF

Info

Publication number
WO2023122914A1
WO2023122914A1 PCT/CN2021/141792 CN2021141792W WO2023122914A1 WO 2023122914 A1 WO2023122914 A1 WO 2023122914A1 CN 2021141792 W CN2021141792 W CN 2021141792W WO 2023122914 A1 WO2023122914 A1 WO 2023122914A1
Authority
WO
WIPO (PCT)
Prior art keywords
ambient light
filter unit
filter
units
light sensor
Prior art date
Application number
PCT/CN2021/141792
Other languages
English (en)
French (fr)
Inventor
钟松锦
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP21904611.7A priority Critical patent/EP4230973A1/en
Priority to KR1020227022522A priority patent/KR20230106119A/ko
Priority to PCT/CN2021/141792 priority patent/WO2023122914A1/zh
Priority to US17/847,391 priority patent/US11808625B2/en
Publication of WO2023122914A1 publication Critical patent/WO2023122914A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/505Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by lighting fixtures other than screens, monitors, displays or CRTs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • G01J1/0492Optical or mechanical part supplementary adjustable parts with spectral filtering using at least two different filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources

Definitions

  • the present application relates to the field of sensors, and more particularly, to an ambient light sensor and electronic equipment.
  • the present application provides an ambient light sensor and an electronic device, which can improve the detection accuracy and detection performance of the ambient light sensor, thereby improving user experience of the electronic device where the ambient light sensor is located.
  • an ambient light sensor including: an array of filter units, including a plurality of filter units, the plurality of filter units include a color filter unit, a white filter unit and a transparent filter unit, and the white filter unit The unit is used to pass visible light signals and block infrared light signals, and the transparent filter unit is used to pass visible light signals and infrared light signals; the pixel unit array is located under the filter unit array, and the pixel unit array includes a plurality of pixel units, and the plurality of pixel units It is used for receiving the light signal after the ambient light passes through a plurality of filter units to detect the ambient light.
  • the number of color filter units is greater than or equal to that of white filter units, and/or the number of color filter units is greater than the number of transparent filter units.
  • the ratio of the number of transparent filter units to the number of multiple filter units is less than or equal to 9%, and/or, the ratio of the number of transparent filter units to the number of multiple filter units is less than or equal to 9%.
  • the ratio of the number of filter units is greater than or equal to 4%.
  • the white filter unit and/or the transparent filter unit are located in an edge region of the filter unit array.
  • the ratio of the pixel values of the pixel units corresponding to the blue filter unit and the red filter unit is used to detect the color temperature of the ambient light.
  • the pixel value of the pixel unit corresponding to the green filter unit is used to detect the illuminance of ambient light.
  • a plurality of filter units are arranged in N rows, and each row of filter units in the N rows of filter units includes: a red filter unit, a green filter unit, and a blue filter unit, wherein, N is a positive integer.
  • each row of filter units in the N rows of filter units further includes a white filter unit.
  • a plurality of filter units are arranged in M columns, and each row of filter units in the M columns of filter units includes: a red filter unit, a green filter unit, and a blue filter unit, wherein, M is a positive integer.
  • each column of filter units in the M columns of filter units further includes a white filter unit.
  • the filter unit array further includes: a light blocking unit for blocking and absorbing light signals; a pixel unit corresponding to the light blocking unit in the pixel unit array is used for detecting the noise floor of the ambient light sensor.
  • a plurality of filter units are arranged in N rows, and an end of each row of N rows of filter units is provided with a light blocking unit, wherein N is a positive integer.
  • a gap is formed between two adjacent filter units in the filter unit array, and the width of the gap is greater than 20 ⁇ m.
  • the ambient light sensor can be configured to be disposed under the display screen of the electronic device, and the ambient light sensor is used to receive ambient light passing through the display screen to perform ambient light detection.
  • the pixel unit corresponding to the white filter unit and the pixel unit corresponding to the transparent filter unit are used to jointly detect the signal amount of the infrared light signal in the ambient light, and the signal amount of the infrared light signal is used to correct the color The pixel value of the pixel unit corresponding to the filter unit.
  • the color filter unit includes one or more of a blue filter unit, a red filter unit, and a green filter unit, and the signal amount of the infrared light signal is used to correct the blue filter unit , the pixel value of the pixel unit corresponding to one or more filter units in the red filter unit and the green filter unit.
  • the pixel unit corresponding to the white filter unit and the pixel unit corresponding to the transparent filter unit are used to jointly detect the signal amount of the infrared light signal in the ambient light, and the signal amount of the infrared light signal is used to determine the environmental The light source type corresponding to the light.
  • an electronic device including: a display screen and the ambient light sensor provided in the first aspect or any possible implementation manner of the first aspect, wherein the sensing data obtained by the ambient light sensor is used to adjust Optical parameters of the display.
  • the ambient light sensor is disposed below the display area of the display screen.
  • an ambient light sensor is installed in the electronic device. Since the ambient light sensor has high detection accuracy and detection performance, the optical parameters of the display screen can be adjusted according to the sensing data of the ambient light sensor. The adjustment of the display screen is made more precise to adapt to the current ambient light, thereby improving the user's experience of using the electronic device.
  • FIG. 1 is a schematic front view of an electronic device to which the present application is applicable.
  • FIG. 2 is a schematic cross-sectional view of an ambient light sensor disposed under a display screen provided by an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of the ambient light sensor shown in Fig. 3 along the direction A-A'.
  • Fig. 5 is a spectrum diagram of a halogen lamp provided by an embodiment of the present application.
  • Fig. 6 is a spectrum diagram of various light sources with different color temperatures provided by an embodiment of the present application.
  • FIG. 7 is a schematic graph of the transmittance of a display screen to light signals of different wavelength bands in ambient light provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a filter unit array provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another filter unit array provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another filter unit array provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another filter unit array provided by an embodiment of the present application.
  • the relevant technical solutions of the ambient light sensor can be applied to various electronic devices, especially for computers (Computers) and their peripherals, communications (Communications) and consumer electronics (Consumer-Electronics) )
  • these three types of related 3C electronic products such as smartphones, laptops, tablets, smart wearable devices, home appliances, game devices, etc.
  • the technical solution involved in the embodiment of the present application also relates to other types of electronic equipment such as automotive electronics, which is not specifically limited in the embodiment of the present application.
  • the ambient light sensor provided in the embodiment of the present application may be applied to a smart phone, a tablet computer, and other mobile terminals with display screens or other terminal devices.
  • the ambient light sensor can be arranged between the middle frame and the display screen of the electronic device, and located under the cover glass (Cover Glass, CG) of the electronic device, so as to realize the ambient light of the environment where the electronic device is located. detection.
  • the ambient light sensor may also be disposed in a local area below the display screen of the electronic device, thereby forming an under-display ambient light detection device.
  • FIG. 1 shows a schematic front view of an electronic device 10 to which the present application is applicable.
  • the electronic device 10 includes a middle frame 120 and a display screen 110 , and there is a gap area 130 between the display screen 110 and the middle frame 120 .
  • the area where the display screen 110 shown in FIG. 1 is the display area of the display screen 110
  • a cover plate may be provided in the gap area 130 for protecting the display screen 110 and providing a touch interface for the user's finger 140 .
  • the display screen 110 may be a self-luminous display screen, which uses a self-luminous display unit as a display pixel.
  • the display screen 110 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-light-emitting diode (Micro-LED) display screen.
  • the display screen 110 may also be a liquid crystal display (Liquid Crystal Display, LCD) or other passive light-emitting display screens, which are not limited in this embodiment of the present application.
  • middle frame 120 shown in FIG. 1 may include the outer frame of the electronic device 10.
  • outer frame shown in FIG. 1 A frame for carrying various components inside an electronic device, including but not limited to motherboards, batteries, cameras, cables, various sensors, microphones, earpieces, and other components.
  • the ambient light sensor 100 is disposed below the display area of the display screen 110 for detecting the ambient light L0 passing through the display screen 110 .
  • a cover plate 140 is provided on the upper surface of the display screen 110, and the cover plate 140 may be made of a transparent hard material such as glass or resin.
  • the lower surface of the display screen 110 is provided with a protective layer 111
  • the protective layer 111 is generally the rear panel of the display screen, which may be a black sheet layer or a printing layer for shielding light, including at least a part of metal material for heat dissipation, And it can also include a foam layer to play the role of cushioning and protection.
  • a window is formed in the protective layer 111, and the ambient light sensor 100 is disposed under the window, and the ambient light L0 is transmitted to the ambient light through the cover plate 140, the display screen 110 and the window in the protective layer 111. sensor 100, so that the ambient light sensor 100 performs ambient light detection based on the received ambient light L0.
  • the ambient light sensor 100 is provided with a plurality of color filters (Color Filter, CF) 103 of different colors.
  • the color filter 103 is arranged above the photosensitive element of the ambient light sensor 100, so that the photosensitive element in the ambient light sensor 100 can receive colored light signals of various colors, so that the ambient light sensor 100 can detect relevant optical parameters of ambient light. , to improve the detection performance of the ambient light sensor 100 .
  • the present application provides an ambient light sensor, which can detect the signal amount of the infrared light signal in the ambient light. According to the signal amount of the infrared light signal, the detection result of the ambient light sensor can be corrected or optimized, and the detection result of the ambient light sensor can be improved. accuracy and detection performance.
  • the filter unit array 210 includes a plurality of filter units, wherein the plurality of filter units include a color filter unit 201, a white filter unit 202 and a transparent filter unit 203, and the white filter unit 202 is used to pass visible light signal and block the infrared light signal, the transparent filter unit 203 is used to pass the visible light signal and the infrared light signal;
  • a filter unit array 210 is disposed above it.
  • the filter unit array 210 can be prepared on the upper surface of the pixel unit array 220 through a semiconductor manufacturing process, so that the filter unit 210 is disposed above the pixel unit array 220 .
  • the pixel unit corresponding to the white filter unit 202 is used to detect the visible light signal in the ambient light
  • the pixel unit corresponding to the transparent filter unit 203 is used to detect the visible light signal in the ambient light. According to the pixel values of the pixel units corresponding to the white filter unit 202 and the transparent filter unit 203 , the signal amount of the infrared light signal in the ambient light can be determined.
  • an infrared cut filter (Infrared cut filter, IRCF) layer is disposed in the white filter unit 202 to block infrared light signals.
  • the top of the transparent filter unit 203 may be an air layer, or a transparent medium layer, designed to pass visible light signals and infrared light signals.
  • the pixel unit corresponding to the filter unit refers to the pixel unit capable of receiving the light signal passing through the filter unit.
  • the pixel units that receive the optical signals passing through the same filter unit are simply referred to as pixel units corresponding to the filter unit.
  • a white filter unit 202 and a transparent filter unit 203 are provided in the ambient light sensor 200 at the same time, and according to the pixel units corresponding to the white filter unit 202 and the transparent filter unit 203, it is possible to detect
  • the signal amount of the infrared light signal in the ambient light can correct or optimize the detection result of the ambient light sensor 200 according to the signal amount of the infrared light signal, and improve the detection accuracy and detection performance of the ambient light sensor 200 .
  • the pixel unit corresponding to the white filter unit and the pixel unit corresponding to the transparent filter unit are used to jointly detect the signal amount of the infrared light signal in the ambient light, and the infrared light signal in the ambient light
  • the semaphore of can be used to determine the type of light source corresponding to the ambient light.
  • Fig. 5 shows a spectrum diagram of a halogen lamp provided by an embodiment of the present application.
  • infrared light signals account for a large proportion
  • short-wavelength optical signals such as blue light signals and green light signals account for a relatively small proportion.
  • a white filter unit 202 and a transparent filter unit 203 are set in the ambient light sensor 200, and the pixel values of the pixel units corresponding to the white filter unit 202 and the transparent filter unit 203 can be Determine the proportion of the infrared light signal in the ambient light, so that it can be determined that the type of light source corresponding to the current ambient light is a halogen light source.
  • the processing unit of the ambient light sensor 200 can select an appropriate algorithm to process the pixel values generated by the pixel unit array 220 of the ambient light sensor 100 to obtain more accurate ambient light detection results.
  • the pixel unit corresponding to the white filter unit corresponds to the transparent filter unit
  • the pixel units are used to jointly detect the signal amount of the infrared light signal in the ambient light, and the signal amount of the infrared light signal in the ambient light can be used to correct the pixel value of the pixel unit corresponding to the color filter unit 201, so as to correct the signal amount of the infrared light signal in the ambient light
  • the detection value of the colored light signal improves the detection accuracy and detection performance of the ambient light sensor 200 for the colored light signal in ambient light.
  • the color filter unit 201 includes one or more of a blue filter unit, a red filter unit, and a green filter unit, and the signal amount of the infrared light signal is used to correct the blue filter unit, red filter unit, The pixel value of the pixel unit corresponding to one or more filter units in the filter unit and the green filter unit.
  • the pixel value of the pixel unit corresponding to the color filter unit 201 may be used to detect the color temperature of the ambient light. Correcting the pixel value of the pixel unit corresponding to the color filter unit 201 through the signal amount of the infrared light signal can further correct the detection result of the color temperature of the ambient light and improve the detection accuracy of the color temperature of the ambient light.
  • Fig. 6 shows the spectrum diagrams of various light sources with different color temperatures provided by the embodiment of the present application.
  • the color temperature is positively correlated with the ratio of the signal amount of the blue light signal to the signal amount of the red light signal in the light signal, that is, the signal amount of the blue light signal in the light signal of the light source is equal to the red light signal
  • the ratio of the signal amount the higher the color temperature of the light signal of the light source.
  • the signal amount of the infrared light signal determined by the pixel value of the pixel unit corresponding to the white filter unit 202 and the transparent filter unit 203 can be used to correct the corresponding value of the blue filter unit and/or the red filter unit.
  • the pixel value of the pixel unit and the ratio of the pixel value of the pixel unit corresponding to the blue filter unit and the red filter unit are used to detect the color temperature of the ambient light.
  • the pixel value of the pixel unit corresponding to the red filter unit can be corrected by the following formula:
  • R' is the corrected pixel value of the pixel unit corresponding to the red filter unit
  • R is the original pixel value of the pixel unit corresponding to the red filter unit
  • W is the original pixel value of the pixel unit corresponding to the transparent filter unit 203
  • C is the original pixel value of the pixel unit corresponding to the white filter unit 202
  • is a preset coefficient.
  • the color temperature of the ambient light such as correlated color temperature (CCT)
  • correction methods shown above can also be used to correct the pixel value of the pixel unit corresponding to the red filter unit or the pixel value of the pixel unit corresponding to the blue filter unit.
  • the embodiment of the application does not limit the specific correction method.
  • the ratio of the number of blue filter units to the number of multiple filter units, and the ratio of the number of red filter units may be greater than a certain preset threshold, so as to ensure the detection accuracy of the blue light signal and the red light signal by the ambient light sensor 200 .
  • the preset threshold may be 15%, or any value above 15%.
  • the pixel value of the pixel unit corresponding to the color filter unit 201 can be used to detect the color temperature of ambient light
  • the pixel value of the pixel unit corresponding to the color filter unit 201 can also be used to detect The illuminance of the ambient light. Further, by correcting the pixel value of the pixel unit corresponding to the color filter unit 201 through the signal quantity of the infrared light signal, the detection result of the ambient light illuminance can be further corrected, and the detection accuracy of the ambient light illuminance can be improved.
  • the three primary color (RGB) light signals in the ambient light stimulate the three photoreceptor cells of the human eye, and three stimulation values of XYZ can be obtained, and the stimulation value Y can be used to represent the illuminance of the ambient light.
  • RGB red, green, blue
  • XYZ the stimulation value Y
  • the transformation relationship between the RGB signal quantity and the XYZ stimulus value is shown in the following formula:
  • the ambient light sensor 200 can be used to detect the signal amount of the green light signal in the ambient light to detect the signal amount of the green light signal in the ambient light. of illumination.
  • the color filter unit 201 includes a green filter unit, which is mainly used to pass the green light signal, but due to the filter Due to the limitation of the preparation process of the unit, the green filter unit also passes part of the infrared light signal. Therefore, based on the pixel values of the pixel units corresponding to the white filter unit 202 and the transparent filter unit 203, after determining the signal amount of the infrared light signal in the ambient light, the pixel value of the pixel unit corresponding to the green filter unit is corrected , a relatively accurate signal amount of the green light signal in the ambient light can be obtained, thereby obtaining a relatively accurate detection result of the illuminance of the ambient light.
  • the pixel value of the pixel unit corresponding to the green filter unit can be corrected by the following formula:
  • G' is the corrected pixel value of the pixel unit corresponding to the green filter unit
  • G is the original pixel value of the pixel unit corresponding to the green filter unit
  • W is the original pixel value of the pixel unit corresponding to the transparent filter unit 203
  • C is the original pixel value of the pixel unit corresponding to the white filter unit 202
  • is a preset coefficient.
  • the illuminance of the ambient light can be calculated by the following formula:
  • ILL is the illuminance of ambient light
  • k is a preset coefficient
  • the ratio of the number of green filter units to the number of multiple filter units may be greater than a certain preset threshold, In order to ensure the detection accuracy of the green light signal by the ambient light sensor 200 .
  • the color filter unit 201 The number may be greater than or equal to the number of white filter units 202 , and/or, the number of color filter units 201 may be greater than the number of transparent filter units 203 .
  • the number of filter units of any color in the color filter units 201 may be greater than or equal to the number of white filter units 202 , and/or greater than the number of transparent filter units 203 .
  • the filter unit array 210 includes the white filter unit 202 and the transparent filter unit 203, a large number of color filter units are also arranged in the filter unit array 210 201.
  • the detection accuracy of color light signals in ambient light can be greatly improved, so as to improve the detection accuracy of optical parameters such as color temperature and illuminance of ambient light, and improve the performance of the ambient light sensor 200 .
  • the ratio of the number of white filter units 202 to the number of the plurality of filter units is less than or equal to 20%.
  • the ratio of the number of transparent filter units 203 to the number of the plurality of filter units is less than or equal to 9%.
  • the number of white filter units 202 and transparent filter units 203 may also be greater than a certain threshold, so as to ensure that there is a sufficient number of white filter units in the filter unit array 210.
  • a filter unit 202 and a transparent filter unit 203 may also be greater than a certain threshold, so as to ensure that there is a sufficient number of white filter units in the filter unit array 210.
  • the ratio of the number of white filter units 202 to the number of the plurality of filter units is greater than or equal to 5%.
  • the white filter unit 202 and the transparent filter unit 203 can be further arranged in the edge area of the filter unit array 210, so as to ensure that the color filter unit 201 corresponds to The collection effect of the pixel unit on the color light signal further improves the detection accuracy and detection performance of the ambient light sensor 200 .
  • the color filter unit 201 of the filter unit array 210 includes a red filter unit 2011 and a blue filter unit 2013 at the same time.
  • the number of white filter units 202 is five, which are respectively distributed in the edge and center of the filter unit array 210 .
  • the number of transparent filter units 203 is two, which are respectively distributed at two corners of the filter unit array 210 .
  • the number of transparent filter units 203 is the smallest, and the number of white filter units 202 is less than or equal to
  • Fig. 8 to Fig. 10 are only examples, showing schematic diagrams of several kinds of filter unit arrays 210 provided by the embodiments of the present application. If one or more preset ratio conditions are met, the present application can also provide more types of filter unit arrays 210 , which will not be specifically illustrated or discussed here. Specifically, the filter unit array 210 may satisfy one or more of the following preset ratio conditions:
  • the ratio of the number of white filter units 202 to the number of multiple filter units is less than or equal to 20%;
  • the ratio of the number of white filter units 202 to the number of multiple filter units is greater than or equal to 5%;
  • the ratio of the number of transparent filter units 203 to the number of multiple filter units is less than or equal to 9%;
  • the ratio of the number of transparent filter units 203 to the number of multiple filter units is greater than or equal to 4%;
  • the ratio of the number of blue filter units 2013 to the number of multiple filter units is greater than or equal to 24%.
  • each row of filter units in the filter unit array 201 includes: a red filter unit 2011, a green filter unit 2012 And the blue filter unit 2013. Therefore, in this embodiment, the ambient light sensor 200 can evenly sample light signals of multiple colors, which can further improve the detection effect of the ambient light sensor 200 for light signals of multiple colors, so as to improve the detection accuracy of the ambient light sensor 200 and detection performance.
  • each row of filter units may further include: a white filter unit 202 , so as to achieve uniform sampling of the white light signal by the ambient light sensor 200 .
  • each row of filter units in the filter unit array 210 includes only one white filter unit 202.
  • the white filter unit can also be avoided.
  • the large number of light units 202 affects the detection effect of the ambient light sensor 200 on color light signals.
  • each column of filter units in the filter unit array 201 includes: a red filter unit 2011, a green filter unit 2012, and a blue filter unit Unit 2013.
  • each row and column of filter units in the filter unit array 210 includes: a red filter unit 2011 , a green filter unit 2012 and a blue filter unit 2013 .
  • each column of filter units may further include: a white filter unit 202 .
  • each row and column of filter units in the filter unit array 210 includes: a red filter unit 2011 , a green filter unit 2012 , a blue filter unit 2013 and a white filter unit 202 .
  • the ambient light sensor 200 can more uniformly and comprehensively sample the light signals of multiple colors and the white light signal, thereby further improving the performance of the ambient light sensor 200 on the light signals of multiple colors and the white light signal. signal detection effect, so as to improve the detection accuracy and detection performance of the ambient light sensor 200 .
  • FIG. 11 shows a schematic diagram of another filter unit array 210 according to the embodiment of the present application.
  • the filter unit array 210 further includes: a light blocking unit 204 , configured to block and absorb light signals.
  • a light blocking unit 204 configured to block and absorb light signals.
  • the pixel unit array 220 a pixel unit corresponding to the light blocking unit is provided, and the pixel unit is used for detecting the noise floor of the ambient light sensor 200 .
  • the pixel unit corresponding to the light blocking unit 204 is used to detect the noise floor of the current ambient light sensor 200 , the detection of the noise floor has high accuracy, and the noise floor can be used to correct the pixel unit array 220 corresponding to The pixel values of the pixel units of the filter unit are used to further improve the detection accuracy and detection performance of the ambient light sensor 200 .
  • the size of the light blocking unit 204 is the same as that of the filter unit.
  • one light blocking unit 204 is provided at the end of each filter unit in N rows of filter units.
  • one light blocking unit 204 may also be provided at the end of each column of filter units in the M columns of filter units.
  • the light blocking unit 204 can be evenly arranged on the edge of the filter unit array 210, which will not affect the detection of the light signal by the pixel unit corresponding to the filter unit.
  • the pixel units corresponding to the light units provide noise floor information to accurately correct the pixel values of the pixel units corresponding to each row of filter units or each column of filter units, and improve the signal-to-noise ratio of the ambient light sensor 200 .
  • a gap is designed between two adjacent filter units, and in the case of fluctuations in the preparation process of the filter units, it can be ensured that two adjacent filter units will not overlap, ensuring that the ambient light sensor 200 The quality of the collected light signal is to ensure the detection effect of the ambient light sensor 200 .
  • optical signal crosstalk occurs between two adjacent filter units, and the closer the distance between two adjacent filter units, the greater the degree of crosstalk. Therefore, designing a gap with a certain width between two adjacent filter units can reduce the crosstalk phenomenon between two adjacent filter units, thereby further ensuring the quality of the light signal collected by the ambient light sensor 200 to ensure the environment The detection effect of the light sensor 200.
  • each filter unit may be greater than 36 ⁇ m ⁇ 36 ⁇ m, so as to ensure the filter performance of each filter unit and reduce crosstalk between two adjacent filter units.
  • each filter unit may correspond to a plurality of pixel units in the pixel unit array 220 .
  • each filter unit corresponds to P ⁇ P pixel units in the pixel unit array 220 , where P is a positive integer greater than or equal to 5.
  • the ambient light sensor 200 may be disposed in the first area 101 or the second area 102 of the electronic device 10 shown in FIG. 1 .
  • the ambient light sensor 200 when the ambient light sensor 200 is disposed in the second area 102 , that is, disposed below the display area of the display screen 110 , its setting manner can refer to the relevant description of the embodiment shown in FIG. 2 .
  • the electronic device is provided with an ambient light sensor 200 , and the sensing data detected by the ambient light sensor 200 can be used to adjust the optical parameters of the display screen 110 .
  • the color temperature of the ambient light detected by the ambient light sensor 200 can be used to adjust the color temperature of the display screen 110
  • the illuminance of the ambient light detected by the ambient light sensor 200 can be used to adjust the brightness of the display screen 110 .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种环境光传感器(200)和电子设备,能够提高环境光传感器(200)的检测精度以及检测性能。环境光传感器(200)包括:滤光单元阵列(210),包括多个滤光单元,多个滤光单元包括彩色滤光单元(201)、白色滤光单元(202)和透明滤光单元(203),白色滤光单元(202)用于通过可见光信号并阻挡红外光信号,透明滤光单元(203)用于通过可见光信号和红外光信号;像素单元阵列(220),包括多个像素单元,多个像素单元用于接收环境光经过多个滤光单元后的光信号以进行环境光检测。根据红外光信号的信号量可以校正或优化环境光传感器(200)的检测结果,提高环境光传感器(200)的检测精度以及检测性能。

Description

环境光传感器和电子设备 技术领域
本申请涉及传感器领域,并且更具体地,涉及一种环境光传感器和电子设备。
背景技术
随着电子设备(例如,智能终端设备:手机、平板电脑等)的发展,环境光传感器逐渐成为一个标配的传感器,该环境光传感器用于检测智能终端设备所在环境中环境光的强度,检测得到的环境光的强度可具有多种用途,例如,终端设备的屏幕亮度可跟随环境光的强度自动调节,提升用户对终端设备的使用体验。
鉴于该环境光传感器在电子设备中的广泛使用,如何提高环境光传感器的检测精度以及检测性能,进而提升用户对环境光传感器所在电子设备的使用体验,是一项亟待解决的技术问题。
发明内容
本申请提供一种环境光传感器和电子设备,能够提高环境光传感器的检测精度以及检测性能,进而提升用户对环境光传感器所在电子设备的使用体验。
第一方面,提供一种环境光传感器,包括:滤光单元阵列,包括多个滤光单元,该多个滤光单元包括彩色滤光单元、白色滤光单元和透明滤光单元,白色滤光单元用于通过可见光信号并阻挡红外光信号,透明滤光单元用于通过可见光信号和红外光信号;像素单元阵列,位于滤光单元阵列下方,像素单元阵列包括多个像素单元,多个像素单元用于接收环境光经过多个滤光单元后的光信号以进行环境光检测。
通过本申请实施例的技术方案,在环境光传感器中同时设置白色滤光单元和透明滤光单元,根据该白色滤光单元和透明滤光单元对应的像素单元,能够检测得到环境光中红外光信号的信号量,根据该红外光信号的信号量可以校正或优化环境光传感器的检测结果,提高环境光传感器的检测精度以及检测性能。
在一些可能的实施方式中,在多个滤光单元中,彩色滤光单元的数量大于或等于白色滤光单元的数量,和/或,彩色滤光单元的数量大于透明滤光单元的数量。
在一些可能的实施方式中,在多个滤光单元中,白色滤光单元的数量与多个滤光单元的数量之比小于或等于20%,和/或,白色滤光单元的数量与多个滤光单元的数量之比大于或等于5%。
在一些可能的实施方式中,在多个滤光单元中,透明滤光单元的数量与多个滤光单元的数量之比小于或等于9%,和/或,透明滤光单元的数量与多个滤光单元的数量之比大于或等于4%。
在一些可能的实施方式中,白色滤光单元和/或透明滤光单元位于滤光单元阵列的边缘区域。
在一些可能的实施方式中,在多个滤光单元中,彩色滤光单元包括:蓝色滤光单元和红色滤光单元;蓝色滤光单元的数量与多个滤光单元的数量之比大于或等于24%;和/或,红色滤光单元的数量与多个滤光单元的数量之比大于或等于15%。
在一些可能的实施方式中,蓝色滤光单元和红色滤光单元对应的像素单元的像素值之比用于检测环境光的色温。
在一些可能的实施方式中,在多个滤光单元中,彩色滤光单元包括:绿色滤光单元,绿色滤光单元的数量与多个滤光单元的数量之比大于或等于24%。
在一些可能的实施方式中,绿色滤光单元对应的像素单元的像素值用于检测环境光的照度。
在一些可能的实施方式中,多个滤光单元排列为N行,该N行滤光单元的每行滤光单元包括:红色滤光单元、绿色滤光单元以及蓝色滤光单元,其中,N为正整数。
在一些可能的实施方式中,N行滤光单元的每行滤光单元还包括白色滤光单元。
在一些可能的实施方式中,多个滤光单元排列为M列,M列滤光单元的每行滤光单元包括:红色滤光单元、绿色滤光单元以及蓝色滤光单元,其中,M为正整数。
在一些可能的实施方式中,M列滤光单元的每列滤光单元还包括白色滤 光单元。
在一些可能的实施方式中,滤光单元阵列还包括:光阻挡单元,用于阻挡和吸收光信号;像素单元阵列中对应于光阻挡单元的像素单元用于检测环境光传感器的底噪。
在一些可能的实施方式中,多个滤光单元排列为N行,N行滤光单元中每行的端部设置有一个光阻挡单元,其中,N为正整数。
在一些可能的实施方式中,滤光单元阵列中相邻两个滤光单元之间形成有间隙,间隙的宽度大于20μm。
在一些可能的实施方式中,滤光单元阵列中,每个滤光单元对应于像素单元阵列中的P×P个像素单元,其中,P为大于或等于5的正整数。
在一些可能的实施方式中,环境光传感器能够被配置为设置于电子设备的显示屏下方,环境光传感器用于接收穿过显示屏后的环境光以进行环境光检测。
在一些可能的实施方式中,白色滤光单元对应的像素单元和透明滤光单元对应的像素单元用于共同检测环境光中红外光信号的信号量,该红外光信号的信号量用于校正彩色滤光单元对应的像素单元的像素值。
在一些可能的实施方式中,彩色滤光单元包括蓝色滤光单元、红色滤光单元和绿色滤光单元中的一种或多种,红外光信号的信号量用于校正蓝色滤光单元、红色滤光单元和绿色滤光单元中一种或多种滤光单元对应的像素单元的像素值。
在一些可能的实施方式中,白色滤光单元对应的像素单元和透明滤光单元对应的像素单元用于共同检测环境光中红外光信号的信号量,该红外光信号的信号量用于确定环境光对应的光源类型。
第二方面,提供一种电子设备,包括:显示屏以及第一方面或第一方面中任一可能的实施方式中提供的环境光传感器,其中,环境光传感器检测得到的传感数据用于调整显示屏的光学参数。
在一些可能的实施方式中,环境光传感器设置于显示屏的显示区域的下方。
通过本申请实施例的技术方案,在电子设备中设置环境光传感器,由于该环境光传感器具有较高的检测精度以及检测性能,根据该环境光传感器的传感数据调节显示屏的光学参数,可以使得显示屏的调节更为精准以适应当 前的环境光,从而可以提升用户对于电子设备的使用体验。
附图说明
图1是本申请可以适用的一种电子设备的正面示意图。
图2是本申请一实施例提供的环境光传感器设置于显示屏下方的截面示意图。
图3是本申请一实施例提供的一种环境光传感器的示意性俯视图。
图4是图3所示环境光传感器沿A-A’方向的示意性截面图。
图5是本申请一实施例提供的一种卤素灯的光谱图。
图6是本申请一实施例提供的具有不同色温的多种光源的光谱图。
图7是本申请一实施例提供的一种显示屏对环境光中不同波段光信号的透过率示意曲线图。
图8是本申请一实施例提供的一种滤光单元阵列的示意图。
图9是本申请一实施例提供的另一滤光单元阵列的示意图。
图10是本申请一实施例提供的另一滤光单元阵列的示意图。
图11是本申请一实施例提供的另一滤光单元阵列的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的环境光传感器(Ambient Light Sensor,ALS)的相关技术方案可以应用于各种电子设备,尤其适用于电脑(Computer)及其周边、通讯(Communications)和消费电子(Consumer-Electronics)这三种类型相关的3C电子产品,例如,智能手机、笔记本电脑、平板电脑、智能穿戴设备、家电设备、游戏设备等等。此外,本申请实施例涉及的技术方案还涉及汽车电子等其他类型的电子设备,本申请实施例对此不做具体限定。
作为一种应用场景,本申请实施例提供的环境光传感器可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备。例如, 在一些实施方式中,环境光传感器可以设置于中框与电子设备的显示屏之间,并位于电子设备的盖板玻璃(Cover Glass,CG)下方,以实现电子设备所在环境的环境光检测。或者,在另一些实施方式中,环境光传感器也可以设置在电子设备的显示屏下方的局部区域,从而形成屏下(Under-display)环境光检测装置。
图1示出了本申请可以适用的一种电子设备10的正面示意图。
如图1所示,该电子设备10包括中框120和显示屏110,该显示屏110和中框120之间具有间隙区域130。其中,图1中所示的显示屏110所在区域为显示屏110的显示区域,间隙区域130中可设置有盖板,用于保护显示屏110且为用户手指140提供触摸界面。
可选地,显示屏110可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏110可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他可替代实施例中,显示屏110也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。
此外,图1中所示的中框120可包括电子设备10的外框,除图1中所示的外框以外,本申请实施例中的中框120还包括设置于显示屏110下方,用于承载电子设备内部各种组件的框架,其内部各种组件包括但不限于主板,电池、摄像头,排线,各种感应器,话筒,听筒等等零部件。
由于在电子设备的整机设计时,会优先考虑摄像头,主板,扬声器,振动马达等较大元件的布置,环境光传感器等小型传感器则一般设置于图1所示的第一区域101中,该第一区域101为上述间隙区域130中位于电子设备上部的局部区域。或者,在另一些相关技术中,环境光传感器单独设置于图1所示的第二区域102中,该第二区域102可为显示屏110的上部的显示区域。
图2示出了环境光传感器设置于显示屏110下方的截面示意图。
如图2所示,电子设备10中,环境光传感器100设置于显示屏110的显示区域的下方,用于检测穿过显示屏110后的环境光L0。
可选地,显示屏110的上表面设置有盖板140,该盖板140可以为玻璃或者树脂等透明硬性材料。
显示屏110的下表面设置有保护层111,该保护层111一般为显示屏的后面板,其可以是用于遮蔽光的黑色片状层或者印刷层,其中包括至少一部分金属材料用于散热,且还可以包括泡棉层以起到缓冲以及保护的作用。
如图2所示,该保护层111中形成有开窗,环境光传感器100设置于该开窗下方,环境光L0经过盖板140、显示屏110以及保护层111中的开窗传递至环境光传感器100,以使得该环境光传感器100基于接收的环境光L0进行环境光检测。
在一些相关实施方式中,环境光传感器100中设置有多种不同颜色的彩色滤光片(Color Filter,CF)103。该彩色滤光片103设置于环境光传感器100的感光元件的上方,以使得环境光传感器100中的感光元件能够接收多种颜色的彩色光信号,便于环境光传感器100检测环境光的相关光学参数,提升环境光传感器100的检测性能。
但在该实施方式中,由于彩色滤光片103的制造工艺等原因的限制,会使得彩色滤光片103通过的彩色光信号中可能夹杂有红外光信号的干扰,从而影响环境光传感器100对于环境光中彩色光信号的检测精度,进而影响了环境光传感器100的检测精度。
鉴于此,本申请提供一种环境光传感器,能够检测得到环境光中红外光信号的信号量,根据该红外光信号的信号量可以校正或优化环境光传感器的检测结果,提高环境光传感器的检测精度以及检测性能。
图3示出了本申请实施例提供的一种环境光传感器200的示意性俯视图,图4为该环境光传感器200沿A-A’方向的示意性截面图。
如图3和图4所示,在本申请实施例中,该环境光传感器200包括:
滤光单元阵列210,包括多个滤光单元,其中,该多个滤光单元包括彩色滤光单元201、白色滤光单元202和透明滤光单元203,该白色滤光单元202用于通过可见光信号并阻挡红外光信号,该透明滤光单元203用于通过可见光信号和红外光信号;
像素单元阵列220,位于滤光单元阵列210下方,该像素单元阵列220包括多个像素单元,该多个像素单元用于接收环境光经过多个滤光单元后的光信号以进行环境光检测。
具体地,在本申请实施例中,环境光传感器200包括:用于感测光信号的像素单元阵列220,该像素单元阵列220中包括多个用于感测光信号的像 素单元。该像素单元包括但不限于是光电二极管(photodiode,PD),光电三极管等等光电感应器件。
对应于该像素单元阵列220,其上方设置有滤光单元阵列210。可选地,在一些实施方式中,该滤光单元阵列210可通过半导体制备工艺制备于像素单元阵列220的上表面,以实现滤光单元210设置在像素单元阵列220的上方。
对于该滤光单元阵列210,其包括多个滤光单元,每个滤光单元可用于通过目标波段的光信号以实现滤光功能。具体地,该滤光单元在本申请实施例中可为滤光片或者为滤光层,其制备方法可以参见相关技术中的相关描述,本申请实施例对于滤光单元的结构以及制备方式不做具体限定。
在本申请实施例中,滤光单元阵列210中的多个滤光单元包括:彩色滤光单元201,白色滤光单元202以及透明滤光单元203。具体地,彩色滤光单元201用于通过可见光中部分波段的彩色光信号。可选地,该滤光单元阵列201中可仅包括一种颜色的彩色滤光单元,或者,该滤光单元阵列201中也可包括多种颜色的彩色滤光单元。作为示例而非限定,该彩色滤光单元201包括但不限于是三原色滤光单元,即红、绿、蓝(red green blue,RGB)三种颜色的滤光单元,或者,也可以是三补色滤光单元,即青、品红、黄(cyan magenta yellow,CMY)三种颜色的滤光单元,或者,还可以为一种原色两种补色,或者一种补色两种原色的滤光单元。
另外,在本申请实施例中,白色滤光单元202能够通过全部可见光波段的光信号,即白色滤光单元202能够通过白光。与此同时,该白色滤光单元202能够吸收和/或反射红外波段的光信号,以阻挡该红外波段的光信号通过该白色滤光单元202。区别于该白色滤光单元202,透明滤光单元203不仅能够通过全部可见光波段的光信号,而且还能够通过红外波段的光信号。
因此,当环境光穿过滤光单元阵列210后,对应于该白色滤光单元202的像素单元用于检测环境光中的可见光信号,对应于透明滤光单元203的像素单元用于检测环境光中的可见光信号以及红外光信号,根据该白色滤光单元202和透明滤光单元203对应的像素单元的像素值,可以确定环境光中红外光信号的信号量。
可选地,在一些实施方式中,白色滤光单元202中设置有红外截止滤光(Infrared cut filter,IRCF)层,以阻挡红外光信号。而透明滤光单元203上 方可以为空气层,或者透明介质层,旨在能够通过可见光信号以及红外光信号。
需要说明的是,在本申请实施例中,滤光单元对应的像素单元是指能够接收到通过该滤光单元后的光信号的像素单元。为了便于描述,在本申请中,接收通过同一滤光单元后的光信号的像素单元均简称为与该滤光单元对应的像素单元。
通过本申请实施例的技术方案,在环境光传感器200中同时设置白色滤光单元202和透明滤光单元203,根据该白色滤光单元202和透明滤光单元203对应的像素单元,能够检测得到环境光中红外光信号的信号量,根据该红外光信号的信号量可以校正或优化环境光传感器200的检测结果,提高环境光传感器200的检测精度以及检测性能。
可选地,在一些实施方式中,白色滤光单元对应的像素单元和所述透明滤光单元对应的像素单元用于共同检测环境光中红外光信号的信号量,该环境光中红外光信号的信号量可以用于确定该环境光对应的光源类型。
图5示出了本申请实施例提供的一种卤素灯的光谱图。
如图5所示,对于卤素灯光源而言,其发射的光信号中,红外光信号的占比较大,而蓝光信号、绿光信号等短波长光信号的占比较小。通过本申请实施例的技术方案,在环境光传感器200中设置白色滤光单元202和透明滤光单元203,通过该白色滤光单元202和透明滤光单元203对应的像素单元的像素值,可以确定环境光中红外光信号的占比,从而确定可确定当前环境光对应的光源类型为卤素灯光源。
基于该环境光对应的光源类型,环境光传感器200的处理单元可以选择合适的算法,对该环境光传感器100的像素单元阵列220产生的像素值进行处理,得到较为准确的环境光检测结果。
可以理解的是,不同类型的光源,其光信号中红外光的信号量的占比会有一定的变化,通过检测环境光中红外光信号的信号量,除了可以确定当前环境光的光源类型如图5所示的卤素灯光源以外,还可以为其它类型的光源,本申请实施例对该光源的具体类型不作限定,旨在能够通过红外光的信号量进行区分即可。
可选地,除了可以根据环境光中红外光信号的信号量,确定该环境光对应的光源类型以外,在另一些实施方式中,白色滤光单元对应的像素单元和 所述透明滤光单元对应的像素单元用于共同检测环境光中红外光信号的信号量,且该环境光中红外光信号的信号量可以用于校正彩色滤光单元201对应的像素单元的像素值,以校正环境光中彩色光信号的检测值,提高环境光传感器200对于环境光中彩色光信号的检测精度以及检测性能。
可选地,彩色滤光单元201包括蓝色滤光单元、红色滤光单元和绿色滤光单元中的一种或多种,该红外光信号的信号量用于校正蓝色滤光单元、红色滤光单元和绿色滤光单元中一种或多种滤光单元对应的像素单元的像素值。
在一些示例中,彩色滤光单元201对应的像素单元的像素值可以用于检测环境光的色温。通过红外光信号的信号量校正彩色滤光单元201对应的像素单元的像素值,可以进一步校正环境光的色温检测结果,提高环境光的色温检测精度。
图6示出了本申请实施例提供的具有不同色温的多种光源的光谱图。
如图6所示,对于不同色温的光源,其色温跟光信号中蓝光信号的信号量与红光信号的信号量之比呈正相关关系,即光源光信号中蓝光信号的信号量与红光信号的信号量之比越大,则光源光信号的色温越高。
因此,在本申请实施例中,在环境光传感器200的滤光单元阵列210中,彩色滤光单元201包括:蓝色滤光单元和红色滤光单元,该蓝色滤光单元和红色滤光单元主要用于分别通过蓝光信号和红光信号,但由于滤光单元的制备工艺的限制,该蓝色滤光单元和红色滤光单元,尤其是红色滤光单元还会通过部分红外光信号。
鉴于此,通过上述白色滤光单元202和透明滤光单元203对应的像素单元的像素值确定的红外光信号的信号量可以用于校正该蓝色滤光单元和/或红色滤光单元对应的像素单元的像素值,该蓝色滤光单元和红色滤光单元对应的像素单元的像素值之比用于进行环境光的色温检测。
作为一种示意性的校正方式,红色滤光单元对应的像素单元的像素值可通过如下公式进行校正:
R’=R×(1+K×θ);
K=(W-C)/R;
其中,R’为红色滤光单元对应的像素单元校正后的像素值,R为红色滤光单元对应的像素单元的原始像素值,W为透明滤光单元203对应的像素单 元的原始像素值,C为白色滤光单元202对应的像素单元的原始像素值,θ为预设系数。上述公式中的(W-C)可以表征环境光信号中的红外光的信号量。
当通过上述公式对红色滤光单元对应的像素单元的像素值进行校正后,环境光的色温,例如相关色温(correlated color temperature,CCT),可以通过如下公式进行计算:
CCT=α×B/R’;
其中,B为蓝色滤光单元对应的像素单元的像素值,α为预设系数。
可以理解的是,除了上文所示的校正方式以外,还可以采用其它校正方式对红色滤光单元对应的像素单元的像素值或者蓝色滤光单元对应的像素单元的像素值进行校正,本申请实施例对于具体的校正方式不做限定。
可选地,为了进一步提高环境光的色温检测精度,在环境光传感器200的滤光单元阵列210中,蓝色滤光单元的数量与多个滤光单元的数量之比,以及红色滤光单元的数量与多个滤光单元的数量之比可以大于某预设阈值,以保证环境光传感器200对蓝光信号以及红光信号的检测准确度。作为示例而非限定,该预设阈值可以为15%,或者15%以上的任意数值。
可选地,彩色滤光单元201对应的像素单元的像素值除了可以用于检测环境光的色温以外,在另一些示例中,彩色滤光单元201对应的像素单元的像素值也可以用于检测环境光的照度。进一步,通过红外光信号的信号量校正彩色滤光单元201对应的像素单元的像素值,可以进一步校正环境光的照度检测结果,提高环境光的照度检测精度。
具体地,环境光中的三原色(RGB)光信号对人眼的三种感光细胞进行刺激,可以得到XYZ三种刺激值,其中刺激值Y即可用于表征环境光的照度。作为示例而非限定,RGB信号量与XYZ刺激值之间的变换关系如下公式所示:
Figure PCTCN2021141792-appb-000001
由上述公式可以看出,环境光照度(刺激值Y)主要取决于环境光中绿光信号的信号量,因此,环境光传感器200能够用于检测环境光中绿光信号的信号量以检测环境光的照度。
因此,在本申请实施例中,在环境光传感器200的滤光单元阵列210中, 彩色滤光单元201包括绿色滤光单元,该绿色滤光单元主要用于通过绿光信号,但由于滤光单元的制备工艺的限制,该绿色滤光单元还会通过部分红外光信号。因此,基于上述白色滤光单元202和透明滤光单元203对应的像素单元的像素值,确定环境光中红外光信号的信号量后,对该绿色滤光单元对应的像素单元的像素值进行校正,可以得到环境光中较为准确的绿光信号的信号量,从而得到较为准确的环境光的照度检测结果。
作为一种示意性的校正方式,绿色滤光单元对应的像素单元的像素值可通过如下公式进行校正:
G’=G-β×(W-C);
其中,G’为绿色滤光单元对应的像素单元校正后的像素值,G为绿色滤光单元对应的像素单元的原始像素值,W为透明滤光单元203对应的像素单元的原始像素值,C为白色滤光单元202对应的像素单元的原始像素值,β为预设系数。上述公式中的(W-C)可以表征环境光信号中的红外光的信号量。
当通过上述公式对绿色滤光单元对应的像素单元的像素值进行校正后,环境光的照度(Illuminance),可以通过如下公式进行计算:
ILL=k×G’;
其中,ILL为环境光的照度,k为预设系数。
可以理解的是,除了上文所示的校正方式以外,还可以采用其它校正方式对绿色滤光单元对应的像素单元的像素值进行校正,本申请实施例对于具体的校正方式不做限定。
可选地,为了进一步提高环境光的照度检测精度,在环境光传感器200的滤光单元阵列210中,绿色滤光单元的数量与多个滤光单元的数量之比可以大于某预设阈值,以保证环境光传感器200对绿光信号的检测准确度。
通过上述申请实施例的说明可知,相对于彩色滤光单元201,白色滤光单元202和透明滤光单元203起到是辅助作用,因此,在上述多个实施例中,彩色滤光单元201的数量可以大于或等于白色滤光单元202的数量,和/或,彩色滤光单元201的数量可以大于透明滤光单元203的数量。可选地,彩色滤光单元201中任意一种颜色的滤光单元的数量可以大于或等于白色滤光单元202的数量,和/或,大于透明滤光单元203的数量。
通过该实施方式的技术方案,在保证滤光单元阵列210中包含白色滤光 单元202和透明滤光单元203的基础上,在该滤光单元阵列210中还设置有较多数量彩色滤光单元201,能够较大程度的提高环境光中彩色光信号的检测精度,以提高环境光的色温、照度等光学参数的检测精度,提升环境光传感器200的性能。
作为示例,在滤光单元阵列210的多个滤光单元中,白色滤光单元202的数量与多个滤光单元的数量之比小于或等于20%。
作为示例,在滤光单元阵列210的多个滤光单元中,透明滤光单元203的数量与多个滤光单元的数量之比小于或等于9%。
可选地,在滤光单元阵列210的多个滤光单元中,白色滤光单元202和透明滤光单元203的数量也可大于一定阈值,以保证滤光单元阵列210中具有足够数量的白色滤光单元202和透明滤光单元203。
作为示例,在滤光单元阵列210的多个滤光单元中,白色滤光单元202的数量与多个滤光单元的数量之比大于或等于5%。
作为示例,在滤光单元阵列210的多个滤光单元中,透明滤光单元203的数量与多个滤光单元的数量之比大于或等于4%。
另外,在滤光单元阵列210的多个滤光单元中,白色滤光单元202和透明滤光单元203还可以进一步设置于滤光单元阵列210的边缘区域,从而保证彩色滤光单元201对应的像素单元对彩色光信号的采集效果,进而提高环境光传感器200的检测精度和检测性能。
在一些实施方式中,滤光单元阵列210的彩色滤光单元201同时包括红色滤光单元2011和蓝色滤光单元2013。
可选地,如上文所述,该红色滤光单元2011和蓝色滤光单元2013的像素值可以用于检测环境光的色温。
可选地,在滤光单元阵列210中,该红色滤光单元2011和蓝色滤光单元2013的数量可以大于一定阈值,以保证环境光传感器200对红光信号和蓝光信号的检测效果,进一步地,可以保证环境光色温的检测效果。
作为示例,在滤光单元阵列210中,蓝色滤光单元2013的数量与多个滤光单元的数量之比大于或等于24%;和/或,红色滤光单元2011的数量与多个滤光单元的数量之比大于或等于15%。
在一些应用场景中,环境光传感器200能够被配置为设置于电子设备的显示屏110下方,环境光传感器200用于接收穿过显示屏110后的环境光以 进行环境光检测。
例如,如图2所示,环境光传感器200能够被配置为设置于盖板140和显示屏110的下方,显示屏110中包括半导体电路、有机材料、偏振片、聚酰亚胺(Polyimide,PI)薄膜等种种叠层,导致环境光中不同波段的光信号通过显示屏110的透过率不同。
图7示出了一种显示屏110对环境光中不同波段光信号的透过率的示意曲线图。
如图7所示,该显示屏110对于450nm至500nm之间的蓝光信号的透过率较低,而对于红光信号具有较高的透过率。
因此,在环境光传感器200设置于显示屏110的下方的情况下,该环境光传感器200中蓝色滤光单元2013的占比可增大,以提高环境光传感器200对蓝光信号的检测效果,进而提高环境光传感器200对环境光色温的检测精度。
而由于显示屏110对于红光信号具有相对较高的透过率,因而,在环境光传感器200中,红色滤光单元2011的占比可适当减小,即红色滤光单元2011的数量可以小于或等于蓝色滤光单元2013的数量。
通过本申请实施例的技术方案,在环境光传感器200的滤光单元阵列210中,蓝色滤光单元的数量与多个滤光单元的数量之比大于或等于24%,可以保证滤光单元阵列210中具有足够数量的蓝色滤光单元,降低显示屏110对于蓝光信号的影响,提高环境光传感器200对蓝光信号的检测性能。类似地,在环境光传感器200的滤光单元阵列210中,红色滤光单元的数量与多个滤光单元的数量之比大于或等于15%,在适当降低红色滤光单元2011的数量的情况下,可以保证滤光单元阵列210中具有足够数量的红色滤光单元2011,进而保证环境光传感器200对红光信号的检测性能。
在另一些实施方式中,滤光单元阵列210的彩色滤光单元201还可包括绿色滤光单元2012。
可选地,如上文所述,该绿色滤光单元2012的像素值可以用于检测环境光的照度。
可选地,在滤光单元阵列210中,该绿色滤光单元2012的数量可以大于一定阈值,以保证环境光传感器200对绿光信号的检测效果,进一步地,可以保证环境光照度的检测效果。
作为示例,在滤光单元阵列210中,该绿色滤光单元2012的数量与多个滤光单元的数量之比大于或等于24%。
图8至图10示出了本申请实施例提供的几种滤光单元阵列210的示意图。
具体的,该滤光单元阵列210中多个滤光单元阵列排列为N行M列,其中,N和M均为正整数。作为示例,在该图8至图10所示实施例中,N=M=5。
如图8所示,在滤光单元阵列210中,红色滤光单元2011的数量为5个,绿色滤光单元2012的数量为5个,蓝色滤光单元2013的数量为8个。其中,蓝色滤光单元2011与全部滤光单元的数量之比为32%。在该实施例中,蓝色滤光单元2013的占比最大,因而该滤光单元阵列210所在的环境光传感器200能够较优的适用于显示屏下方。且在该实施例中,环境光传感器200对于环境光的色温检测的精度较高。
如图9所示,在滤光单元阵列210中,红色滤光单元2011的数量为5个,绿色滤光单元2012的数量为8个,蓝色滤光单元2013的数量为5个。其中,绿色滤光单元2012与全部滤光单元的数量之比为32%。在该实施例中,绿色滤光单元2012的占比最大,环境光传感器200对于环境光的照度检测的精度较高。
如图10所示,在滤光单元阵列210中,红色滤光单元2011、绿色滤光单元2012以及蓝色滤光单元2013的数量均为6个。该红色滤光单元2011与全部滤光单元的数量之比、绿色滤光单元2012与全部滤光单元的数量之比、以及蓝色滤光单元2013与全部滤光单元的数量之比均为24%。在该实施例中,环境光传感器200对于环境光的色温以及照度检测的精度均较高。
可选地,在上述图8至图10所示实施例中,白色滤光单元202的数量为5个,其分别分布于滤光单元阵列210中边缘以及中心。透明滤光单元203的数量为2个,其分别分布于滤光单元阵列210的两角。
可选地,在上述图8至图10所示实施例中,在滤光单元阵列210的多个滤光单元中,透明滤光单元203的数量最少,白色滤光单元202的数量小于或等于任意一种颜色的彩色滤光单元201的数量,而在彩色滤光单元201中,绿色滤光单元2012或者蓝色滤光单元2013的数量可大于或等于红色滤光单元2011的数量。
可以理解的是,上文图8至图10仅作为示例,示出了本申请实施例提 供的几种滤光单元阵列210的示意图。在满足一种或多种预设比例条件下,,本申请还可以提供更多种类型的滤光单元阵列210,此处不再做具体图示和论述。具体地,滤光单元阵列210可以满足如下一种或多种预设比例条件:
(1)白色滤光单元202的数量与多个滤光单元的数量之比小于或等于20%;
(2)白色滤光单元202的数量与多个滤光单元的数量之比大于或等于5%;
(3)透明滤光单元203的数量与多个滤光单元的数量之比小于或等于9%;
(4)透明滤光单元203的数量与多个滤光单元的数量之比大于或等于4%;
(5)红色滤光单元2011的数量与多个滤光单元的数量之比大于或等于15%;
(6)绿色滤光单元2012的数量与多个滤光单元的数量之比大于或等于24%;
(7)蓝色滤光单元2013的数量与多个滤光单元的数量之比大于或等于24%。
在满足上述一项或多项比例条件的基础上,可选地,在滤光单元阵列201的N行滤光单元中,每行滤光单元包括:红色滤光单元2011、绿色滤光单元2012以及蓝色滤光单元2013。因而,在该实施方式中,环境光传感器200对于多种颜色的光信号能够均匀采样,可以进一步提高环境光传感器200对于多种颜色的光信号的检测效果,以提高环境光传感器200的检测精度和检测性能。
可选地,在滤光单元阵列210的每行滤光单元均包括红色滤光单元2011、绿色滤光单元2012以及蓝色滤光单元2013的基础上,在该滤光单元阵列210中,一行或者多行滤光单元还包括白色滤光单元202。
可选地,在该滤光单元阵列210中,每行滤光单元均可进一步包括:白色滤光单元202,以实现环境光传感器200对于白光信号的均匀采样。
可选地,该滤光单元阵列210的每行滤光单元仅包括一个白色滤光单元202,通过该实施方式,在保证环境光传感器200对白光信号进行均匀采样的同时,还可以避免白色滤光单元202的数量较多,影响环境光传感器200 对彩色光信号的检测效果。
可选地,在上述申请实施例的基础上,在滤光单元阵列201的M列滤光单元中,每列滤光单元包括:红色滤光单元2011、绿色滤光单元2012以及蓝色滤光单元2013。换言之,在本申请实施例中,滤光单元阵列210的每行以及每列滤光单元均包括:红色滤光单元2011、绿色滤光单元2012以及蓝色滤光单元2013。
可选地,每列滤光单元还可以进一步包括:白色滤光单元202。换言之,滤光单元阵列210的每行以及每列滤光单元均包括:红色滤光单元2011、绿色滤光单元2012、蓝色滤光单元2013以及白色滤光单元202。
通过该实施方式的技术方案,环境光传感器200对于多种颜色的光信号以及白色光信号能够更为均匀且全面的进行采样,从而进一步提高环境光传感器200对于多种颜色的光信号以及白色光信号的检测效果,以提高环境光传感器200的检测精度和检测性能。
图11示出了本申请实施例另一种滤光单元阵列210的示意图。
如图11所示,在本申请实施例中,滤光单元阵列210还包括:光阻挡单元204,用于阻挡和吸收光信号。另外,在像素单元阵列220中,设置有对应于该光阻挡单元的像素单元,该像素单元用于检测环境光传感器200的底噪。
具体地,在本申请实施例中,在环境光传感器200中,其像素单元阵列220除了包括多个用于感测光信号的像素单元以外,还需包括必须的其它相关器件以及金属连线,以形成检测电路。当像素单元未接收光信号,由于环境温度、运行时间等多种因素的影响,检测电路内部也会形成电流信号(也称暗电流)。当像素单元接收光信号时,该电流信号会形成环境光传感器200的底噪,干扰和影响该环境光传感器200的最终检测结果。
鉴于此,在环境传感器200的滤光单元阵列210中,除了滤光单元以外,还设置有光阻挡单元204,该光阻挡单元204也可以看成是黑色滤光单元,其用于吸收和阻挡环境光中的全部可见光信号以及红外光信号等等。当像素单元阵列220中对应于滤光单元的像素单元接收光信号以进行环境光检测时,该像素单元阵列220中对应于光阻挡单元204的像素单元未接收光信号以检测当前环境光传感器200的底噪。通过该实施方式,利用光阻挡单元204对应的像素单元检测当前环境光传感器200的底噪,该底噪的检测具有较高的 准确性,且该底噪可用于校正像素单元阵列220中对应于滤光单元的像素单元的像素值,以进一步提高环境光传感器200的检测精度和检测性能。
可选地,如图11所示,该光阻挡单元204的尺寸与滤光单元的尺寸相同。通过该实施方式,可以便于光阻挡单元204与滤光单元一起制造,也便于利用该光阻挡单元204对应的像素单元的像素值校正滤光单元对应的像素单元的像素值。
可选地,如图11所示,在滤光单元阵列210中,N行滤光单元中每行滤光单元的端部设置有一个光阻挡单元204。或者,在其它实施方式中,M列滤光单元中每列滤光单元的端部也可设置有一个光阻挡单元204。通过该实施方式,该光阻挡单元204可以均匀的设置在滤光单元阵列210的边缘,不会影响滤光单元对应的像素单元对于光信号的检测,且为每行滤光单元或者每列滤光单元对应的像素单元提供底噪信息,以准确校正每行滤光单元或者每列滤光单元对应的像素单元的像素值,提高环境光传感器200的信号信噪比。
可选地,参见图3至图4以及图8至图11所示的滤光单元阵列210,其中相邻两个滤光单元之间形成有间隙,该间隙的宽度可大于或大于20μm。具体地,该相邻两个滤光单元为行方向上相邻的两个滤光单元或者列方向上相邻的两个滤光单元。可选地,在一些实施方式中,该间隙可对应于3个或3个以上的像素单元。
通过该实施方式,相邻两个滤光单元之间设计有间隙,在滤光单元的制备工艺波动的情况下,可以保证相邻两个滤光单元不会发生交叠,保证环境光传感器200采集的光信号的质量以保证环境光传感器200的检测效果。另外,相邻两个滤光单元之间会发生光信号串扰现象,相邻两个滤光单元之间的距离越近,则串扰程度越大。因此,在相邻两个滤光单元之间设计有一定宽度的间隙,可以降低相邻两个滤光单元之间的串扰现象,从而进一步保证环境光传感器200采集的光信号的质量以保证环境光传感器200的检测效果。
可选地,在一些实施方式中,每个滤光单元的面积可以大于36μm×36μm,从而保证每个滤光单元的滤光性能,且降低相邻两个滤光单元之间的串扰现象。可选地,每个滤光单元可以对应于像素单元阵列220中的多个像素单元。例如,每个滤光单元对应于像素单元阵列220中的P×P个像素单元,其中,P为大于或等于5的正整数。
本申请实施例还提供了一种电子设备,该电子设备可以包括上述任一申请实施例的环境光传感器200和显示屏110。
可选地,该环境光传感器200可以设置于图1中所示的电子设备10中的第一区域101或者第二区域102。
可选地,当环境光传感器200设置于第二区域102,即设置于显示屏110的显示区域下方时,其设置方式可以参见图2所示实施例的相关描述。
具体地,该电子设备中设置环境光传感器200,该环境光传感器200检测得到的传感数据能够用于调整显示屏110的光学参数。例如,环境光传感器200检测得到的环境光的色温能够用于调节显示屏110的色温,该环境光传感器200检测得到的环境光的照度能够用于调节显示屏110的亮度。通过本申请实施例的技术方案,可以实现针对环境光对显示屏110起到更为全面的调节,以提升用户对于电子设备的使用体验。
另外,由于本申请实施例中提供的环境光传感器200具有较高的检测精度以及检测性能,在电子设备中设置该环境光传感器200,可以使得显示屏110的调节更为精准以适应当前的环境光,从而进一步提升用户对于电子设备的使用体验。
应理解,本申请中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,本申请中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现 该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种环境光传感器,其特征在于,包括:
    滤光单元阵列,包括多个滤光单元,所述多个滤光单元包括彩色滤光单元、白色滤光单元和透明滤光单元,所述白色滤光单元用于通过可见光信号并阻挡红外光信号,所述透明滤光单元用于通过可见光信号和红外光信号;
    像素单元阵列,位于所述滤光单元阵列下方,所述像素单元阵列包括多个像素单元,所述多个像素单元用于接收环境光经过所述多个滤光单元后的光信号以进行环境光检测。
  2. 根据权利要求1所述的环境光传感器,其特征在于,在所述多个滤光单元中,所述彩色滤光单元的数量大于或等于所述白色滤光单元的数量,和/或,所述彩色滤光单元的数量大于所述透明滤光单元的数量。
  3. 根据权利要求1或2所述的环境光传感器,其特征在于,在所述多个滤光单元中,所述白色滤光单元的数量与所述多个滤光单元的数量之比小于或等于20%,和/或,所述白色滤光单元的数量与所述多个滤光单元的数量之比大于或等于5%。
  4. 根据权利要求1至3中任一项所述的环境光传感器,其特征在于,在所述多个滤光单元中,所述透明滤光单元的数量与所述多个滤光单元的数量之比小于或等于9%,和/或,所述透明滤光单元的数量与所述多个滤光单元的数量之比大于或等于4%。
  5. 根据权利要求1至4中任一项所述的环境光传感器,其特征在于,所述白色滤光单元和/或所述透明滤光单元位于所述滤光单元阵列的边缘区域。
  6. 根据权利要求1至5中任一项所述的环境光传感器,其特征在于,在所述多个滤光单元中,所述彩色滤光单元包括:蓝色滤光单元和红色滤光单元;
    所述蓝色滤光单元的数量与所述多个滤光单元的数量之比大于或等于24%;和/或,所述红色滤光单元的数量与所述多个滤光单元的数量之比大于或等于15%。
  7. 根据权利要求6所述的环境光传感器,其特征在于,所述蓝色滤光单元和所述红色滤光单元对应的像素单元的像素值之比用于检测环境光的色温。
  8. 根据权利要求1至7中任一项所述的环境光传感器,其特征在于,在所述多个滤光单元中,所述彩色滤光单元包括:绿色滤光单元,所述绿色滤光单元的数量与所述多个滤光单元的数量之比大于或等于24%。
  9. 根据权利要求8所述的环境光传感器,其特征在于,所述绿色滤光单元对应的像素单元的像素值用于检测环境光的照度。
  10. 根据权利要求1至9中任一项所述的环境光传感器,其特征在于,所述多个滤光单元排列为N行,N行滤光单元的每行滤光单元包括:红色滤光单元、绿色滤光单元以及蓝色滤光单元,其中,N为正整数。
  11. 根据权利要求10所述的环境光传感器,其特征在于,所述N行滤光单元的每行滤光单元还包括所述白色滤光单元。
  12. 根据权利要求10或11所述的环境光传感器,其特征在于,所述多个滤光单元排列为M列,M列滤光单元的每行滤光单元包括:所述红色滤光单元、所述绿色滤光单元以及所述蓝色滤光单元,其中,M为正整数。
  13. 根据权利要求12所述的环境光传感器,其特征在于,所述M列滤光单元的每列滤光单元还包括所述白色滤光单元。
  14. 根据权利要求1至13中任一项所述的环境光传感器,其特征在于,所述滤光单元阵列还包括:光阻挡单元,用于阻挡和吸收光信号;
    所述像素单元阵列中对应于所述光阻挡单元的像素单元用于检测所述环境光传感器的底噪。
  15. 根据权利要求14所述的环境光传感器,其特征在于,所述多个滤光单元排列为N行,N行滤光单元中每行的端部设置有一个所述光阻挡单元,其中,N为正整数。
  16. 根据权利要求1至15中任一项所述的环境光传感器,其特征在于,所述滤光单元阵列中相邻两个滤光单元之间形成有间隙,所述间隙的宽度大于20μm。
  17. 根据权利要求1至16中任一项所述的环境光传感器,其特征在于,所述滤光单元阵列中,每个滤光单元对应于所述像素单元阵列中的P×P个像素单元,其中,P为大于或等于5的正整数。
  18. 根据权利要求1至17中任一项所述的环境光传感器,其特征在于,所述白色滤光单元对应的像素单元和所述透明滤光单元对应的像素单元用于共同检测环境光中红外光信号的信号量,所述红外光信号的信号量用于校 正所述彩色滤光单元对应的像素单元的像素值。
  19. 根据权利要求18所述的环境光传感器,其特征在于,所述彩色滤光单元包括蓝色滤光单元、红色滤光单元和绿色滤光单元中的一种或多种,所述红外光信号的信号量用于校正所述蓝色滤光单元、所述红色滤光单元和所述绿色滤光单元中一种或多种滤光单元对应的像素单元的像素值。
  20. 根据权利要求1至19中任一项所述的环境光传感器,其特征在于,所述白色滤光单元对应的像素单元和所述透明滤光单元对应的像素单元用于共同检测环境光中红外光信号的信号量,所述红外光信号的信号量用于确定所述环境光对应的光源类型。
  21. 根据权利要求1至20中任一项所述的环境光传感器,其特征在于,所述环境光传感器能够被配置为设置于电子设备的显示屏下方,所述环境光传感器用于接收穿过所述显示屏后的环境光以进行环境光检测。
  22. 一种电子设备,其特征在于,包括:显示屏以及
    如权利要求1至21中任一项所述的环境光传感器,其中,所述环境光传感器检测得到的传感数据用于调整所述显示屏的光学参数。
  23. 根据权利要求22所述的电子设备,其特征在于,所述环境光传感器设置于所述显示屏的显示区域的下方。
PCT/CN2021/141792 2021-12-27 2021-12-27 环境光传感器和电子设备 WO2023122914A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21904611.7A EP4230973A1 (en) 2021-12-27 2021-12-27 Ambient light sensor and electronic device
KR1020227022522A KR20230106119A (ko) 2021-12-27 2021-12-27 환경광 센서 및 전자기기
PCT/CN2021/141792 WO2023122914A1 (zh) 2021-12-27 2021-12-27 环境光传感器和电子设备
US17/847,391 US11808625B2 (en) 2021-12-27 2022-06-23 Ambient light sensor and electronic device wherein a detected signal amount of infrared light in the ambient light is configured to correct a pixel value of a pixel unit corresponding to a color light filtering unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141792 WO2023122914A1 (zh) 2021-12-27 2021-12-27 环境光传感器和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,391 Continuation US11808625B2 (en) 2021-12-27 2022-06-23 Ambient light sensor and electronic device wherein a detected signal amount of infrared light in the ambient light is configured to correct a pixel value of a pixel unit corresponding to a color light filtering unit

Publications (1)

Publication Number Publication Date
WO2023122914A1 true WO2023122914A1 (zh) 2023-07-06

Family

ID=86897517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141792 WO2023122914A1 (zh) 2021-12-27 2021-12-27 环境光传感器和电子设备

Country Status (4)

Country Link
US (1) US11808625B2 (zh)
EP (1) EP4230973A1 (zh)
KR (1) KR20230106119A (zh)
WO (1) WO2023122914A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095495A (zh) * 2009-09-22 2011-06-15 英特赛尔美国股份有限公司 用作环境光传感器的光电检测器
TWM498898U (zh) * 2013-02-20 2015-04-11 Ju-Ho Lo 彩色環境光源感測器
CN109738060A (zh) * 2018-12-18 2019-05-10 惠科股份有限公司 一种检测环境因素的传感装置及其使用方法
CN111968600A (zh) * 2020-08-28 2020-11-20 Oppo广东移动通信有限公司 显示装置、电子设备及电子设备的控制方法
CN112951862A (zh) * 2012-12-19 2021-06-11 唯亚威通讯技术有限公司 包括一个或多个金属-电介质滤光器的传感器设备
US20210311231A1 (en) * 2020-04-07 2021-10-07 Rohm Co., Ltd. Optical Sensor and Electronic Apparatus
CN215187066U (zh) * 2021-01-13 2021-12-14 深圳市万普拉斯科技有限公司 图像传感器和终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475464B1 (ko) 2008-05-09 2014-12-22 삼성전자 주식회사 적층형 이미지 센서
US8624341B2 (en) 2011-01-26 2014-01-07 Maxim Integrated Products, Inc. Light sensor having IR cut and color pass interference filter integrated on-chip
US8274051B1 (en) * 2011-04-29 2012-09-25 Texas Advanced Optoelectronic Solutions, Inc. Method and device for optoelectronic sensors with IR blocking filter
EP2700920B1 (en) * 2012-08-23 2016-06-22 ams AG Light sensor system and method for processing light sensor signals
JP6161007B2 (ja) * 2012-09-14 2017-07-12 パナソニックIpマネジメント株式会社 固体撮像装置及びカメラモジュール
EP2768023B1 (en) 2013-02-19 2019-10-09 ams AG Method of producing a radiation sensor semiconductor device comprising a multiple colour filter
CN105430359B (zh) 2015-12-18 2018-07-10 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
US10254160B2 (en) * 2016-05-16 2019-04-09 Apple Inc. Color ambient light sensor circuitry for electronic devices
JP6765235B2 (ja) * 2016-07-01 2020-10-07 ローム株式会社 光センサ及びその補正方法
JP2018093284A (ja) 2016-11-30 2018-06-14 マクセル株式会社 可視近赤外同時撮像装置
US10553179B2 (en) * 2017-09-08 2020-02-04 Apple Inc. Electronic devices with ambient light sensors
CN111133446B (zh) 2018-12-13 2021-11-05 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095495A (zh) * 2009-09-22 2011-06-15 英特赛尔美国股份有限公司 用作环境光传感器的光电检测器
CN112951862A (zh) * 2012-12-19 2021-06-11 唯亚威通讯技术有限公司 包括一个或多个金属-电介质滤光器的传感器设备
TWM498898U (zh) * 2013-02-20 2015-04-11 Ju-Ho Lo 彩色環境光源感測器
CN109738060A (zh) * 2018-12-18 2019-05-10 惠科股份有限公司 一种检测环境因素的传感装置及其使用方法
US20210311231A1 (en) * 2020-04-07 2021-10-07 Rohm Co., Ltd. Optical Sensor and Electronic Apparatus
CN111968600A (zh) * 2020-08-28 2020-11-20 Oppo广东移动通信有限公司 显示装置、电子设备及电子设备的控制方法
CN215187066U (zh) * 2021-01-13 2021-12-14 深圳市万普拉斯科技有限公司 图像传感器和终端

Also Published As

Publication number Publication date
KR20230106119A (ko) 2023-07-12
US20230204412A1 (en) 2023-06-29
EP4230973A4 (en) 2023-08-23
US11808625B2 (en) 2023-11-07
EP4230973A1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US10911656B2 (en) Optical isolation systems for displays
US10580341B2 (en) Electronic device with color sensing ambient light sensor
EP3605207B1 (en) Array substrate, display screen, and electronic device
US10019926B2 (en) Adaptive calibration and adaptive transformation matrices for ambient light sensors
US10444555B2 (en) Display screen, electronic device, and light intensity detection method
US7881603B2 (en) Dichroic aperture for electronic imaging device
US11125609B2 (en) Photodetector and electronic apparatus
WO2010084641A1 (ja) 光強度センサ付き液晶表示装置
WO2010117114A1 (en) Display apparatus
WO2010117115A1 (en) Display apparatus
WO2020108174A1 (zh) 显示屏组件及电子设备
WO2020052029A1 (zh) 显示面板
CN216978134U (zh) 环境光传感器和电子设备
CN110459125B (zh) 显示模组及电子设备
JP2024513414A (ja) ディスプレイパネル、ディスプレイモジュール、および電子デバイス
WO2024082942A1 (zh) 环境光传感器和电子设备
US10903288B2 (en) Display panel
CN216770790U (zh) 环境光传感器和电子设备
US10203244B2 (en) Light detection device and electronic apparatus
WO2023122914A1 (zh) 环境光传感器和电子设备
JP2014116710A (ja) 撮像装置、撮影条件設定方法、及びプログラム
WO2020238026A1 (zh) 显示面板的显示控制方法、显示控制装置及显示设备
CN114485926B (zh) 环境光传感器和电子设备
US11372281B2 (en) Display panel and terminal device
US20230027218A1 (en) Display Screen and Terminal

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021904611

Country of ref document: EP

Effective date: 20220620