WO2020238026A1 - 显示面板的显示控制方法、显示控制装置及显示设备 - Google Patents

显示面板的显示控制方法、显示控制装置及显示设备 Download PDF

Info

Publication number
WO2020238026A1
WO2020238026A1 PCT/CN2019/115853 CN2019115853W WO2020238026A1 WO 2020238026 A1 WO2020238026 A1 WO 2020238026A1 CN 2019115853 W CN2019115853 W CN 2019115853W WO 2020238026 A1 WO2020238026 A1 WO 2020238026A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
display area
sub
brightness
data line
Prior art date
Application number
PCT/CN2019/115853
Other languages
English (en)
French (fr)
Inventor
许传志
张露
沈志华
韩珍珍
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2020238026A1 publication Critical patent/WO2020238026A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • This application relates to the field of display technology, and in particular to a display control method, display control device and display device of a display panel.
  • the present application provides a display control method of a display panel.
  • the display area of the display panel includes a first display area, a second display area, and a third display adjacent to the first display area and the second display area.
  • Area, the third display area includes a first sub-display area adjacent to the first display area and a second sub-display area adjacent to the second display area
  • the display panel includes a display substrate and located on the display substrate
  • the polarizing structure above, the polarizing structure covers the second display area and the second sub-display area, but does not cover the first display area and the first sub-display area, and is located in the first display area
  • the transmittance of the display substrate is greater than that of the display substrate located in the second display area;
  • the display control method includes:
  • the second data line input voltage of the second sub-display area is determined, and the first corresponding The relationship is different from the second corresponding relationship.
  • the present application also provides a display control device for a display panel.
  • the display area of the display panel includes a first display area, a second display area, and a third display area adjacent to the first display area and the second display area.
  • a display area, the third display area includes a first sub-display area adjacent to the first display area and a second sub-display area adjacent to the second display area
  • the display panel includes a display substrate and located in the display A polarizing structure on a substrate, the polarizing structure covers the second display area and the second sub-display area, but does not cover the first display area and the first sub-display area, and is located in the first display area
  • the light transmittance of the display substrate in the second display area is greater than the light transmittance of the display substrate in the second display area;
  • the display control device includes:
  • the first determining module is configured to determine the first data line input of the first sub-display area according to the target display brightness and the first corresponding relationship between the display brightness corresponding to the first sub-display area and the data line input voltage Voltage;
  • the second determining module is configured to determine the second data line input of the second sub-display area according to the target display brightness and the second corresponding relationship between the display brightness corresponding to the second sub-display area and the data line input voltage Voltage, the first correspondence is different from the second correspondence.
  • the present application also provides a display device, including a display panel, a photosensitive device, and the above-mentioned display control device of the display panel;
  • the display area of the display panel includes a first display area, a second display area, and a third display area adjacent to the first display area and the second display area, and the third display area includes a first display area adjacent to the second display area.
  • a first sub-display area of a display area and a second sub-display area adjacent to the second display area, the display panel includes a display substrate and a polarizing structure on the display substrate, the polarizing structure covering the first The second display area and the second sub-display area, and do not cover the first display area and the first sub-display area, the transmittance of the display substrate in the first display area is greater than that in the second display area
  • the light transmittance of the display substrate in the display area, and a photosensitive device is arranged under the first display area;
  • the photosensitive device can emit or collect light through the first display area.
  • the display control method, display control device, and display device of the display panel provided by the embodiments of the present application can determine the first data line input voltage of the first sub-display area according to the target display brightness and the first corresponding relationship of the first sub-display area. And determine the second data line input voltage of the second sub-display area according to the second correspondence between the target display brightness and the second sub-display area, so that the display brightness of the first sub-display area and the second sub-display area are both the target display
  • the brightness that is, the display brightness of the first sub-display area and the second sub-display area are the same, which can avoid the problem of poor user experience caused by the difference in display brightness of the first sub-display area and the second sub-display area.
  • FIG. 1 is a top view of a display panel provided by an embodiment of the present application.
  • Fig. 2 is a cross-sectional view of the display panel shown in Fig. 1.
  • FIG. 3 is a top view of the third and fourth sub-display areas added to the display panel shown in FIG. 1.
  • Fig. 4 is a cross-sectional view of the display panel shown in Fig. 3.
  • FIG. 5 is a flowchart of a display control method of a display panel provided by an embodiment of the present application.
  • FIG. 6 is a block diagram of a display control device for a display panel provided by an embodiment of the application.
  • the photosensitive devices can be arranged behind the transparent display area by setting a transparent display area on the above electronic devices , In order to realize the full-screen display of electronic equipment while ensuring the normal operation of the photosensitive device.
  • the display surface of the electronic device is provided with a polarizer, and the polarizer can dissipate the reflected light on the surface of the display panel and improve the user experience.
  • the non-transparent display area of the electronic device is completely covered by the polarizer, the non-transparent display area has the best display effect and the user experience is the best.
  • the transparent display area of the electronic device is not provided with a polarizer to prevent the polarizer from affecting the light transmittance of the transparent display area, thereby affecting the normal operation of the photosensitive device arranged behind the transparent display area.
  • the transparent display area is partially covered by the polarizer, or part of the non-transparent display area is not covered by the polarizer, resulting in the electronic device
  • the embodiments of the present application provide a display control method and display control device of a display panel.
  • the display control method and display control device of the display panel in the embodiments of the present application will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the features in the following embodiments can be mutually supplemented or combined.
  • the display area of the display panel 100 includes a first display area 10, a second display area 20, and a third display area 30 adjacent to the first display area 10 and the second display area 20.
  • the third display area 30 includes a first sub display area 311 adjacent to the first display area 10 and a second sub display area 322 adjacent to the second display area 20.
  • the display panel 100 includes a display substrate 101 and a polarizing structure 102 on the display substrate 101.
  • the polarizing structure 102 covers the second display area 20 and the second sub-display area 322, but does not cover the first display area 10 and the first sub-display area 311.
  • the light transmittance of the display substrate 101 located in the first display area 10 is greater than the light transmittance of the display substrate 101 located in the second display area 20.
  • a photosensitive device may be provided behind the first display area 10 so that the photosensitive device can pass through the A display area 10 collects or emits light, so that a full-screen display of the display panel is realized under the premise of ensuring the normal operation of the photosensitive device.
  • the third display area 30 is the bonding error area of the polarizing structure 102.
  • the existence of the third display area 30 makes the polarizer 102 even if there is deviation during bonding, it will not appear that the polarizer 102 covers a part of the first display area 10 or Part of the second display area 20 is not covered by the polarizer 102.
  • the polarizing structure 102 may be a polarizer.
  • FIG. 5 is a flowchart of a display control method of a display panel provided by an embodiment of the application. As shown in Figure 5, the display control method includes the following steps:
  • Step 110 Obtain the target display brightness of the display area.
  • Step 120 Determine the first data line input voltage of the first sub display area according to the target display brightness and the first corresponding relationship between the display brightness corresponding to the first sub display area and the data line input voltage.
  • Step 130 Determine the second data line input voltage of the second sub-display area according to the target display brightness and the second corresponding relationship between the display brightness corresponding to the second sub-display area and the data line input voltage.
  • the first corresponding relationship and the second corresponding relationship are The relationship is different.
  • the display control method of the display panel provided by the embodiment of the application can determine the first data line input of the first sub-display area according to the target display brightness and the first corresponding relationship between the display brightness corresponding to the first sub-display area and the data line input voltage Voltage, and determine the second data line input voltage of the second sub-display area according to the target display brightness and the second correspondence between the display brightness corresponding to the second sub-display area and the data line input voltage, so that the first sub-display area and the second sub-display area
  • the display brightness of the two sub-display areas is the target display brightness, that is, the display brightness of the first sub-display area and the second sub-display area are the same, which can avoid the difference in display brightness between the first sub-display area and the second sub-display area This leads to the problem of poor user experience.
  • step 120 and step 130 are performed is not limited. Step 120 may be performed first, and then step 130 may be performed, step 130 may be performed first, and then step 120 may be performed, or step 120 and step 120 may be performed simultaneously. Step 130.
  • the target display brightness refers to the final brightness of the display panel controlled by the display control method.
  • the display control method further includes the following steps 140 and 150.
  • Step 140 Determine the third data line input voltage of the first display area according to the target display brightness and the first gamma curve corresponding to the first display area, where the first gamma curve is the display brightness of the first display area and the data line input voltage Relationship curve
  • Step 150 Determine the fourth data line input voltage of the second display area according to the target display brightness and the second gamma curve corresponding to the second display area.
  • the second gamma curve is the display brightness of the second display area and the data line input voltage
  • the relationship curve of the first gamma curve is different from the second gamma curve.
  • the display brightness of the first display area and the second display area can be the target display brightness, so that the first display area, the second display area, the first sub display area and the second sub display area
  • the display brightness is the same, which is more conducive to improving the user experience.
  • step 140 and step 150 in the embodiment of the present application is not limited. Step 140 can be executed first, and then step 150 can be executed, step 150 can be executed first, then step 140 can be executed, or step 140 and step can be executed simultaneously. 150.
  • the structure of the third display area 30 may have various situations.
  • the specific process of determining the first data line input voltage of the first sub display area 311 and the second data line input voltage of the second sub display area 322 is different, which will be described in detail below.
  • the structure of the display substrate 101 located in the third display area 30 and the display substrate 101 located in the first display area 10 may be the same, and the first corresponding relationship is the first gamma curve corresponding to the first display area 10.
  • the first gamma curve is the relationship curve between the display brightness of the first display area and the input voltage of the data line.
  • the third display area 30 may only include the first sub display area 311 and the second sub display area 322.
  • the display substrate 101 located in the third display area 30 has the same structure as the display substrate 101 located in the first display area 10. It refers to the display substrate located in the first display area 10 and the display substrate located in the third display area 30,
  • the pixel density, pixel size, driving mode, light transmittance, etc. are all the same, and the gamma curve corresponding to the first display area 10 and the gamma curve corresponding to the first sub-display area 311 of the third display area 30 not covered by the polarizing structure
  • the gamma curve corresponding to the first sub-display area 311 of the third display area 30 is the first gamma curve.
  • the display substrate located in the third display area 30 has the same structure as the display substrate 101 located in the first display area 10
  • the display substrate located in the third display area 30 and the display substrate located in the first display area 10 can be prepared at the same time. Reduce the complexity of the preparation process of the display substrate.
  • the step 120 of determining the first data line input voltage of the first sub-display area can be implemented by the following steps:
  • the first data line input voltage of the first sub-display area can be determined through the first gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • Step 130 can be implemented in the following two ways.
  • the second correspondence relationship includes a third gamma curve corresponding to the second sub-display area, and the third gamma curve is the relationship curve between the display brightness of the second sub-display area and the input voltage of the data line, and The three gamma curve is different from the first gamma curve. Since the display substrate of the first display area 10 and the display substrate of the second sub-display area 322 have the same structure, the polarizing structure 102 is not covered on the first display area 10, and the second sub-display area 322 covers the polarizing structure. The gamma curves corresponding to the display area 10 and the second sub-display area 322 are different.
  • the step 130 of determining the second data line input voltage of the second sub-display area can be implemented by the following steps:
  • the second data line input voltage of the second sub-display area can be determined by the third gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • the second correspondence relationship includes the first gamma curve and the relationship between the target display brightness corresponding to the second sub-display area and the display brightness before passing through the polarizing structure.
  • the step 130 of determining the second data line input voltage of the second sub-display area includes the following steps 131 and 132.
  • Step 131 Determine the first display brightness of the second sub-display area according to the target display brightness and the relationship between the target display brightness corresponding to the second sub-display area and the display brightness before passing through the polarization structure.
  • step 132 the voltage corresponding to the first gamma curve of the first display brightness is determined, and this voltage is the second data line input voltage.
  • the determined first display brightness of the second sub-display area is greater than the target display brightness.
  • the data line input voltage of the second sub-display area is the second data line input voltage
  • the brightness of the second sub-display area before passing through the polarizing structure is the first display brightness
  • the first display brightness will lose brightness when passing through the polarizing structure , So that the final brightness of the second sub-display area is the target display brightness.
  • the first sub-display area and the second sub-display area can share one gamma curve, which can reduce the number of gamma curves stored on the driver chip, thereby reducing the burden on the driver chip.
  • the relationship between the target display brightness corresponding to the second sub-display area and the display brightness before passing through the polarization structure satisfies the following formula:
  • L 2 ′ represents the target display brightness of the second sub-display area before passing through the polarizing structure
  • L 2 represents the target display brightness of the second sub-display area
  • represents the light transmittance of the polarizing structure.
  • the first display brightness corresponding to the target display brightness of the second sub-display area can be calculated.
  • the calculation process is simple and the calculation amount is small.
  • the structure of the display substrate located in the third display area 30 and the display substrate located in the second display area 20 may be the same.
  • the second correspondence relationship is a second gamma curve corresponding to the second display area, and the second gamma curve is a relationship curve between the display brightness of the second display area and the input voltage of the data line.
  • the third display area 30 may only include the first sub display area 311 and the second sub display area 322.
  • the display substrate located in the third display area 30 has the same structure as the display substrate located in the second display area 20, which refers to the display substrate located in the second display area 20 and the display substrate located in the third display area 30, the pixel density , Pixel size, driving mode, light transmittance, etc. are the same, and the gamma curve corresponding to the second display area 20 is the same as the gamma curve corresponding to the second sub-display area 322 covered by the polarizing structure in the third display area 30 , The gamma curve corresponding to the second sub-display area 322 of the third display area 30 is the second gamma curve.
  • the display substrate located in the third display area 30 has the same structure as the display substrate 101 located in the second display area 20
  • the display substrate located in the third display area 30 and the display substrate located in the second display area 20 can be prepared at the same time. In order to reduce the complexity of the manufacturing process of the display panel.
  • the step 130 of determining the second data line input voltage of the second sub-display area can be implemented by the following steps:
  • the second data line input voltage of the second sub-display area can be determined by the second gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • step 120 can be implemented in the following two ways.
  • the first corresponding relationship includes a fourth gamma curve corresponding to the first sub-display area, the fourth gamma curve is the relationship curve between the display brightness of the first sub-display area and the input voltage of the data line, and the fourth gamma curve
  • the Gamma curve is different from the second gamma curve. Since the display substrate 101 of the first sub-display area 311 has the same structure as the display substrate 101 of the second display area 20, but the first sub-display area 311 is not covered with the polarizing structure 102, the second display area 20 is covered with the polarizing structure, Therefore, the gamma curves corresponding to the first sub-display area 311 and the second display area 20 are different.
  • the step 120 of determining the first data line input voltage of the first sub-display area can be implemented by the following steps:
  • the input voltage of the first data line of the first sub-display area can be determined by the fourth gamma curve and the target display brightness, so that the data processing of the driving chip is relatively simple.
  • the first correspondence relationship includes the second gamma curve and the relationship between the target display brightness corresponding to the first sub-display area and the display brightness after passing through the polarization structure.
  • the step 120 of determining the first data line input voltage of the first sub-display area may include the following steps 121 and 122 .
  • Step 121 Determine the second display brightness of the first sub display area according to the target display brightness and the relationship between the target display brightness corresponding to the first sub display area and the display brightness after passing through the polarization structure.
  • Step 122 Determine the voltage corresponding to the second gamma curve of the second display brightness, and the voltage is the input voltage of the first data line.
  • the determined second display brightness of the first sub-display area is less than the target display brightness.
  • the data line input voltage of the second sub-display area is the second data line input voltage
  • the brightness of the second sub-display area after passing through the polarizing structure is the second display brightness. Since the polarizing structure is not covered on the second sub-display area, the final brightness of the second sub-display area is the target display brightness.
  • the first sub-display area, the second sub-display area, and the second display area can share a gamma curve, which can reduce the number of gamma curves stored on the driver chip, thereby reducing the burden on the driver chip.
  • the relationship between the target display brightness corresponding to the first sub-display area and the display brightness after passing through the polarization structure satisfies the following formula:
  • L 1 represents a first sub-display region of the target display luminance in the luminance after the polarizing structure
  • L 1 represents the target display brightness of the first sub-display area
  • represents the light transmittance of the polarizing structure.
  • the first display brightness corresponding to the target display brightness of the first sub-display area can be calculated.
  • the calculation process is simple and the calculation amount is small.
  • the light transmittance of the third display area is greater than the light transmittance of the second display area and is smaller than the light transmittance of the first display area.
  • the above-mentioned light transmittance setting can be achieved by setting the pixel density of the third display area to be less than the pixel density of the second display area and greater than the pixel density of the first display area.
  • the third display area 30 may only include the first sub display 311 and the second sub display area 322.
  • the first corresponding relationship is a fifth gamma curve corresponding to the first sub-display area
  • the fifth gamma curve is a relationship curve between the display brightness of the first sub-display area and the input voltage of the data line. Since the structure of the first sub-display area and the structure of the first display area and the structure of the second display area are different, the fifth gamma curve corresponding to the first sub-display area corresponds to the first gamma curve corresponding to the first display area, and The second gamma curves corresponding to the second display area are all different.
  • the step 120 of determining the first data line input voltage of the first sub-display area can be implemented by the following steps:
  • the input voltage of the first data line of the first sub-display area can be determined by the fifth gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • step 130 can be implemented in the following two ways.
  • the second corresponding relationship is a sixth gamma curve
  • the sixth gamma curve is a relationship curve between the display brightness of the second sub-display area and the input voltage of the data line. Since the structure of the display substrate 101 of the first sub-display area is the same as that of the display substrate 101 of the second sub-display area, but the first sub-display area is not covered by the polarizing structure and the second sub-display area is covered by the polarizing structure, the first sub-display area The fifth gamma curve corresponding to the area is different from the sixth gamma curve corresponding to the second sub-display area.
  • the step 130 of determining the second data line input voltage of the second sub-display area can be implemented by the following steps:
  • the second data line input voltage of the second sub-display area can be determined by the sixth gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • the second correspondence relationship includes the fifth gamma curve, the relationship between the target display brightness corresponding to the second sub-display area and the display brightness before passing through the polarizing structure.
  • the step 130 of determining the second data line input voltage of the second sub-display area may include the following steps 133 and 134.
  • Step 133 Determine the third display brightness of the second sub display area according to the target display brightness and the relationship between the target display brightness corresponding to the second sub display area and the display brightness before passing through the polarization structure.
  • Step 134 Determine the voltage corresponding to the third display brightness on the fifth gamma curve, and the voltage is the second data line input voltage.
  • the determined third display brightness of the second sub-display area is greater than the target display brightness.
  • the data line input voltage of the second sub-display area is the second data line input voltage
  • the brightness of the second sub-display area before passing through the polarization structure is the third display brightness
  • the third display brightness will lose brightness when passing through the polarization structure , So that the final brightness of the second sub-display area is the target display brightness.
  • the first sub-display area and the second sub-display area can share one gamma curve, which can reduce the number of gamma curves stored on the driver chip, thereby reducing the burden on the driver chip.
  • the relationship between the target display brightness corresponding to the second sub-display area and the display brightness before passing through the polarization structure satisfies the following formula:
  • L 3 ′ represents the target display brightness of the second sub-display area before passing through the polarization structure
  • L 3 represents the target display brightness of the second sub-display area
  • represents the light transmittance of the polarizing structure.
  • the third display brightness corresponding to the target display brightness of the second sub-display area can be calculated.
  • the calculation process is simple and the calculation amount is small.
  • the third display area 30 may include a first area 31 adjacent to the first display area 10 and a second area 32 adjacent to the second display area 20.
  • the first area 31 includes a first sub display area 311 and a third sub display area 312, and the second area 32 includes a second sub display area 322 and a fourth sub display area 321.
  • the display substrate located in the first area 31 has the same structure as the display substrate located in the first display area 10.
  • the display substrate located in the second area 32 has the same structure as the display substrate located in the second display area 20.
  • the third sub-display area 312 is covered by the polarizing structure 102, and the fourth sub-display area 321 is not covered by the polarizing structure.
  • the display substrate in the first area 31 has the same structure as the display substrate in the first display area 10
  • the display substrate in the first area 31 and the display substrate in the first display area 10 can be prepared at the same time.
  • the display substrate located in the second area 32 has the same structure as the display substrate located in the second display area 322
  • the display substrate located in the second area 32 and the display substrate located in the second display area 322 can be prepared at the same time, thereby reducing the display The complexity of the preparation process of the panel.
  • the display control method further includes the following steps 160 and 170.
  • Step 160 Determine the fifth data line input voltage of the third sub display area according to the target display brightness and the third corresponding relationship between the display brightness corresponding to the third sub display area and the data line input voltage.
  • Step 170 Determine the sixth data line input voltage of the fourth sub display area according to the target display brightness and the fourth corresponding relationship between the display brightness corresponding to the fourth sub display area and the data line input voltage.
  • step 160 can be executed first, and then step 170 can be executed, step 170 can be executed first, then step 160 can be executed, or step 160 can also be executed simultaneously. And step 170.
  • the display brightness of the third sub-display area and the fourth sub-display area can be the target display brightness, so that the display brightness of the first display area, the second display area and the third display area are all the same , Which is more conducive to improving the user experience.
  • the first corresponding relationship is a first gamma curve corresponding to the first display area
  • the first gamma curve is a relationship curve between the display brightness of the first display area and the input voltage of the data line.
  • the second correspondence relationship is a second gamma curve corresponding to the second display area
  • the second gamma curve is a relationship curve between the display brightness of the second display area and the input voltage of the data line.
  • the corresponding gamma curve of the first display area and the first sub-display area is the first gamma curve.
  • the second display area and the second sub-display area have the same structure, and the second display area and the second sub-display area are both covered by the polarizing structure, the corresponding gamma curves of the second display area and the second sub-display area are the same , That is, the gamma curve corresponding to the second sub-display area is the second gamma curve.
  • the step 120 of determining the first data line input voltage of the first sub-display area can be implemented by the following process:
  • the step 130 of determining the second data line input voltage of the second sub-display area can be implemented by the following process:
  • the first data line input voltage of the first sub-display area can be determined by the first gamma curve and the target display brightness
  • the second data of the second sub-display area can be determined by the second gamma curve and the target display brightness Line input voltage
  • step 160 can be implemented in the following two ways:
  • the third corresponding relationship may be a seventh gamma curve corresponding to the third sub-display area, and the seventh gamma curve is a relationship curve between the display brightness and the data line input voltage corresponding to the third sub-display area.
  • the seventh gamma curve is different from the first gamma curve and the second gamma curve.
  • the step 160 of determining the input voltage of the fifth data line in the third sub-display area can be implemented by the following process:
  • the input voltage of the first data line of the first sub-display area can be determined by the seventh gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • the third correspondence relationship includes the first gamma curve and the relationship between the target display brightness corresponding to the third sub-display area and the display brightness before passing through the polarizing structure.
  • the step 160 of determining the fifth data line input voltage of the third sub-display area includes the following steps 161 and 162.
  • Step 161 Determine the fourth display brightness of the third sub-display area according to the target display brightness and the relationship between the target display brightness corresponding to the third sub-display area and the display brightness before passing through the polarization structure.
  • Step 162 Determine the voltage corresponding to the fourth display brightness on the first gamma curve, and the voltage is the input voltage of the fifth data line.
  • the determined fourth display brightness of the third sub-display area is greater than the target display brightness.
  • the data line input voltage of the third sub-display area is the fifth data line input voltage
  • the brightness of the third sub-display area before passing through the polarizing structure is the fourth display brightness.
  • the fourth display brightness will lose brightness when passing through the polarization structure, so that the brightness finally presented in the third sub-display area is the target display brightness.
  • the first display area, the first sub-display area, and the third sub-display area can share a gamma curve, which can reduce the number of gamma curves stored on the driver chip, thereby reducing the burden on the driver chip .
  • the relationship between the target display brightness corresponding to the third sub-display area and the display brightness before passing through the polarization structure satisfies the following formula:
  • L 4 represents a third sub-target region of the display luminance displayed through the polarizer before the structure
  • L 4 represents the target display brightness of the third sub-display area
  • represents the light transmittance of the polarizing structure.
  • the fourth display brightness corresponding to the target display brightness of the third sub-display area can be calculated.
  • the calculation process is simple and the calculation amount is small.
  • step 170 can be implemented in the following two ways.
  • the fourth corresponding relationship may be the eighth gamma curve corresponding to the fourth sub-display area, and the eighth gamma curve is the relationship curve between the display brightness and the data line input voltage corresponding to the fourth sub-display area.
  • the first gamma curve, the second gamma curve, the seventh gamma curve, and the eighth gamma curve are all different.
  • the step 170 of determining the sixth data line input voltage of the fourth sub-display area can be implemented by the following process:
  • the input voltage of the second data line of the second sub-display area can be determined by the eighth gamma curve and the target display brightness, and the data processing of the driving chip is relatively simple.
  • the fourth correspondence relationship includes the second gamma curve and the relationship between the target display brightness corresponding to the fourth sub-display area and the display brightness after passing through the polarization structure.
  • the step 170 of determining the sixth data line input voltage of the fourth sub-display area may include the following steps 171 and 172.
  • Step 171 Determine the fifth display brightness of the fourth sub display area according to the target display brightness and the relationship between the target display brightness corresponding to the fourth sub display area and the display brightness after passing through the polarization structure.
  • Step 172 Determine the voltage corresponding to the fifth display brightness on the second gamma curve, and this voltage is the sixth data line input voltage.
  • the determined fifth display brightness of the fourth sub-display area is less than the target display brightness.
  • the data line input voltage of the fourth sub-display area is the sixth data line input voltage
  • the brightness of the second sub-display area after passing through the polarizing structure is the fifth display brightness. Since the fourth sub-display area is not covered with a polarizing structure, the brightness finally presented in the fourth sub-display area is the target display brightness.
  • the fourth sub-display area, the second sub-display area, and the second display area can share a gamma curve, which can reduce the number of gamma curves stored on the driver chip, thereby reducing the burden on the driver chip.
  • the relationship between the target display brightness corresponding to the fourth sub-display area and the display brightness after passing through the polarization structure satisfies the following formula:
  • L 5 'region represents a fourth sub display object displayed on the display brightness of the brightness-polarization structure
  • L 5 represents the target display brightness of the fourth sub-display area
  • represents the light transmittance of the polarizing structure.
  • the fifth display brightness corresponding to the target display brightness of the fourth sub-display area can be calculated.
  • the calculation process is simple and the calculation amount is small.
  • An embodiment of the present application also provides a display control device for a display panel.
  • the display area of the display panel includes a first display area, a second display area, and a third display area adjacent to the first display area and the second display area.
  • the three display areas include a first sub-display area adjacent to the first display area and a second sub-display area adjacent to the second display area.
  • the display panel includes a display substrate and a polarizing structure on the display substrate. The polarizing structure covers the second display area and The second sub-display area does not cover the first display area and the first sub-display area, and the light transmittance of the display substrate in the first display area is greater than the light transmittance of the display substrate in the second display area.
  • the display control device includes: an obtaining module 210 for obtaining the target display brightness of the display area; a first determining module 220 for obtaining the target display brightness and the display brightness corresponding to the first sub-display area and the data line input voltage
  • the first corresponding relationship of the first sub-display area determines the first data line input voltage
  • the second determination module 230 is used to determine the second sub-display area corresponding to the display brightness and the data line input voltage according to the target display brightness
  • the corresponding relationship determines the second data line input voltage of the second sub-display area, and the first corresponding relationship is different from the second corresponding relationship.
  • the display control device of the display panel provided in the above embodiment is only illustrated by the division of the above-mentioned functional modules.
  • the above-mentioned function allocation can be completed by different functional modules as required, that is, the internal structure of the device is divided into Different functional modules to complete all or part of the functions described above.
  • the display control device for the display panel provided in the above-mentioned embodiment belongs to the same concept as the above-mentioned embodiment of the display control method for the display panel.
  • the specific implementation process please refer to the method embodiment part, which will not be repeated here.
  • An embodiment of the present application also provides a display device, which includes a display panel, a photosensitive device, and the above-mentioned display control device of the display panel.
  • the display area of the display panel includes a first display area, a second display area, and a third display area adjacent to the first display area and the second display area.
  • the third display area includes a first sub-display area adjacent to the first display area and Adjacent to the second sub-display area of the second display area, the display panel includes a display substrate and a polarizing structure on the display substrate.
  • the polarizing structure covers the second display area and the second sub-display area, and does not cover the first display area and the first display area.
  • the light transmittance of the display substrate located in the first display area is greater than the light transmittance of the display substrate located in the second display area, and a photosensitive device is arranged under the first display area.
  • the photosensitive device can emit or collect light through the first display area.
  • the photosensitive device may include a camera or a light sensor.
  • the first display area is at least partially surrounded by the third display area.
  • the first display area can be in the shape of a drop shape, a circle, a rectangle, an ellipse, a semicircle, a semiellipse, or a diamond shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板(100)的显示控制方法、显示控制装置及显示设备。显示面板(100)的显示区包括第一显示区(10)、第二显示区(20)、及邻接第一显示区(10)和第二显示区(20)的第三显示区(30),第三显示区(30)包括第一子显示区(311)和第二子显示区(322),显示面板(100)包括显示基板(101)及偏光结构(102),偏光结构(102)覆盖第二显示区(20)和第二子显示区(322),且未覆盖第一显示区(10)和第一子显示区(311),位于第一显示区(10)的显示基板(101)的透光率大于位于第二显示区(20)的显示基板(101)。显示控制方法包括:获取显示区的目标显示亮度(110);根据目标显示亮度以及第一对应关系,确定第一子显示区(311)的第一数据线输入电压(120);根据目标显示亮度以及第二对应关系,确定第二子显示区(322)的第二数据线输入电压(130)。

Description

显示面板的显示控制方法、显示控制装置及显示设备
相关申请
本申请要求2019年05月31日申请的,申请号为201910471630.X,名称为“显示面板的显示控制方法、显示控制装置及显示设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板的显示控制方法、显示控制装置及显示设备。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。传统的电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等,故而可采用在显示屏上开槽(Notch)的方式,在开槽区域设置摄像头、听筒以及红外感应元件等,但开槽区域并不能用来显示画面;或者采用在屏幕上开孔的方式,但对于实现摄像功能的电子设备来说,外界光线可通过屏幕上的开孔处进入位于屏幕下方的感光元件。但是这些电子设备均不具有真正意义上的全面屏,并不能实现在整个屏幕的各个区域均进行显示,如在摄像头区域不能显示画面。
发明内容
本申请提供了一种显示面板的显示控制方法,所述显示面板的显示区包括第一显示区、第二显示区、及邻接所述第一显示区和所述第二显示区的第三显示区,所述第三显示区包括邻接所述第一显示区的第一子显示区和邻接所述第二显示区的第二子显示区,所述显示面板包括显示基板及位于所述显示基板上的偏光结构,所述偏光结构覆盖所述第二显示区和所述第二子显示区,且未覆盖所述第一显示区和所述第一子显示区,位于所述第一显示区的显示基板的透光率大于位于所述第二显示区的显示基板的透光率;所述显示控制方法包括:
获取所述显示区的目标显示亮度;
根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定所述第一子显示区的第一数据线输入电压;
根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与数据线输入电压的第二 对应关系,确定所述第二子显示区的第二数据线输入电压,所述第一对应关系与所述第二对应关系不同。
本申请还提供了一种显示面板的显示控制装置,所述显示面板的显示区包括第一显示区、第二显示区、及邻接所述第一显示区和所述第二显示区的第三显示区,所述第三显示区包括邻接所述第一显示区的第一子显示区和邻接所述第二显示区的第二子显示区,所述显示面板包括显示基板及位于所述显示基板上的偏光结构,所述偏光结构覆盖所述第二显示区和所述第二子显示区,且未覆盖所述第一显示区和所述第一子显示区,位于所述第一显示区的显示基板的透光率大于位于所述第二显示区的显示基板的透光率;所述显示控制装置包括:
获取模块,用于获取所述显示区的目标显示亮度;
第一确定模块,用于根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定所述第一子显示区的第一数据线输入电压;
第二确定模块,用于根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定所述第二子显示区的第二数据线输入电压,所述第一对应关系与所述第二对应关系不同。
本申请还提供了一种显示设备,包括显示面板、感光器件以及上述的显示面板的显示控制装置;
所述显示面板的显示区包括第一显示区、第二显示区、及邻接所述第一显示区和所述第二显示区的第三显示区,所述第三显示区包括邻接所述第一显示区的第一子显示区和邻接所述第二显示区的第二子显示区,所述显示面板包括显示基板及位于所述显示基板上的偏光结构,所述偏光结构覆盖所述第二显示区和所述第二子显示区,且未覆盖所述第一显示区和所述第一子显示区,位于所述第一显示区的显示基板的透光率大于位于所述第二显示区的显示基板的透光率,所述第一显示区下方设置有感光器件;
所述感光器件可透过所述第一显示区发射或者采集光线。
本申请实施例提供的显示面板的显示控制方法、显示控制装置及显示设备,可根据目标显示亮度及第一子显示区的第一对应关系确定第一子显示区的第一数据线输入电压,并根据目标显示亮度及第二子显示区的第二对应关系确定第二子显示区的第二数据线输入电压,从而使得第一子显示区和第二子显示区的显示亮度均为目标显示亮度,也即是第一子显示区与第二子显示区的显示亮度相同,可避免由于第一子显示区与第二子显示区的显示亮度不同而导致的用户使用体验较差的问题。
附图说明
图1是本申请实施例提供的一种显示面板的俯视图。
图2是图1所示的显示面板的剖视图。
图3是图1所示的显示面板上增设第三、第四子显示区的俯视图。
图4是图3所示的显示面板的剖视图。
图5是本申请实施例提供的一种显示面板的显示控制方法的流程图。
图6为本申请实施例提供的一种显示面板的显示控制装置的框图。
具体实施方式
下面将结合附图对示例性实施例进行详细地说明。下面的描述涉及附图时,除非另有说明,否则不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所记载的、与本申请的一些方面相一致的装置的例子。
在诸如手机和平板电脑等智能电子设备上,由于需要集成诸如前置摄像头、光线感应器等感光器件,可通过在上述电子设备上设置透明显示区的方式,将感光器件设置在透明显示区后方,以在保证感光器件正常工作的情况下来实现电子设备的全面屏显示。
通常电子设备的显示面设置有偏光片,偏光片可消散显示面板表面的反射光,改善用户的使用体验。电子设备的非透明显示区全部被偏光片覆盖时,则非透明显示区的显示效果最好,用户的使用体验最好。电子设备的透明显示区不设置偏光片,以避免偏光片影响透明显示区的透光率,进而影响设置在透明显示区后方的感光器件的正常工作。但是由于存在贴合误差,一般偏光片贴合在电子设备上后,会存在透明显示区部分地被偏光片遮盖,或者非透明显示区的部分区域未被偏光片遮盖的情况,从而导致电子设备在显示时,透明显示区被偏光片遮盖的地方与未被遮盖的地方存在亮度差,和/或非透明显示区被偏光片遮盖的地方与未被遮盖的地方存在亮度差,进而影响用户的使用体验。
为解决上述问题,本申请实施例提供了一种显示面板的显示控制方法及显示控制装置。下面结合附图,对本申请实施例中的显示面板的显示控制方法及显示控制装置进行详细说明。在不冲突的情况下,下述的各个实施例中的特征可以相互补充或相互组合。
本申请实施例提供的显示面板的显示控制方法及显示控制装置用于控制显示面板的显示。参见图1至图4,显示面板100的显示区包括第一显示区10、第二显示区20、及邻接第一显示区10和第二显示区20的第三显示区30。第三显示区30包括邻接第一显 示区10的第一子显示区311和邻接第二显示区20的第二子显示区322。显示面板100包括显示基板101及位于显示基板101上的偏光结构102。偏光结构102覆盖第二显示区20和第二子显示区322,但未覆盖第一显示区10和第一子显示区311。位于第一显示区10的显示基板101的透光率大于位于第二显示区20的显示基板101的透光率。
由于位于第一显示区10的显示基板101的透光率大于位于第二显示区20的显示基板101的透光率,则可在第一显示区10后方设置感光器件,从而感光器件可通过第一显示区10采集或发射光线,使得在保证感光器件正常工作的前提下实现显示面板的全面屏显示。
第三显示区30为偏光结构102的贴合误差区,第三显示区30的存在使得偏光片102即使贴合时出现偏差,也不会出现偏光片102覆盖第一显示区10的部分区域或者第二显示区20的部分区域未被偏光片102遮盖的情况。其中,偏光结构102可为偏光片。
图5为本申请实施例提供的显示面板的显示控制方法的流程图。如图5所示,显示控制方法包括以下步骤:
步骤110,获取显示区的目标显示亮度。
步骤120,根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压。
步骤130,根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压,第一对应关系与第二对应关系不同。
本申请实施例提供的显示面板的显示控制方法,可根据目标显示亮度及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系确定第一子显示区的第一数据线输入电压,并根据目标显示亮度及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系确定第二子显示区的第二数据线输入电压,从而使得第一子显示区和第二子显示区的显示亮度均为目标显示亮度,也即是第一子显示区与第二子显示区的显示亮度相同,可避免由于第一子显示区与第二子显示区的显示亮度不同而导致的用户使用体验较差的问题。
本申请实施例中,步骤120和步骤130执行的先后顺序不做限定,可先执行步骤120,再执行步骤130,也可先执行步骤130,再执行步骤120,或者也可同时执行步骤120和步骤130。
在本申请实施中,目标显示亮度指的是通过显示控制方法控制显示面板最终呈现的亮度。
在一个实施例中,显示控制方法还包括如下步骤140和步骤150。
步骤140,根据目标显示亮度以及第一显示区对应的第一伽玛曲线确定第一显示区的第 三数据线输入电压,第一伽玛曲线为第一显示区的显示亮度与数据线输入电压的关系曲线;
步骤150,根据目标显示亮度以及第二显示区对应的第二伽玛曲线确定第二显示区的第四数据线输入电压,第二伽玛曲线为第二显示区的显示亮度与数据线输入电压的关系曲线,第一伽玛曲线与第二伽玛曲线不同。
通过步骤140和步骤150,可使得第一显示区和第二显示区的显示亮度均为目标显示亮度,从而使第一显示区、第二显示区、第一子显示区和第二子显示区的显示亮度均相同,更利于提高用户的使用体验。
本申请实施例中步骤140和步骤150执行的先后顺序不做限定,可先执行步骤140,再执行步骤150,也可先执行步骤150,再执行步骤140,或者也可同时执行步骤140和步骤150。
在本申请实施例中,第三显示区30的结构可有多种情况。第三显示区30的结构不同时,确定第一子显示区311的第一数据线输入电压及第二子显示区322的第二数据线输入电压的具体过程不同,下面将进行详细说明。
第一种情况下,位于第三显示区30的显示基板101与位于第一显示区10的显示基板101的结构可相同,第一对应关系为第一显示区10对应的第一伽玛曲线,第一伽玛曲线为第一显示区的显示亮度与数据线输入电压的关系曲线。参见图1和图2,第三显示区30可只包括第一子显示区311和第二子显示区322。
位于第三显示区30的显示基板101与位于第一显示区10的显示基板101的结构相同,指的是,位于第一显示区10的显示基板与位于第三显示区30的显示基板中,像素密度、像素大小、驱动方式、透光率等均相同,以及第一显示区10对应的伽玛曲线与第三显示区30未被偏光结构覆盖的第一子显示区311对应的伽玛曲线也相同,即第三显示区30的第一子显示区311对应的伽玛曲线为第一伽玛曲线。位于第三显示区30的显示基板101与位于第一显示区10的显示基板101的结构相同时,位于第三显示区30的显示基板与位于第一显示区10的显示基板可同时制备,以降低显示基板的制备工艺的复杂度。
根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压的步骤120,可通过如下步骤实现:
确定目标显示亮度在第一伽玛曲线上对应的电压,该电压即为第一数据线输入电压。
如此,通过第一伽玛曲线及目标显示亮度即可确定第一子显示区的第一数据线输入电压,驱动芯片的数据处理比较简单。
步骤130可由以下两种方式实现。
在第一个方式中,第二对应关系包括第二子显示区对应的第三伽玛曲线,第三伽玛曲线为第二子显示区的显示亮度与数据线输入电压的关系曲线,并且第三伽玛曲线与第一伽玛曲线不同。由于第一显示区10的显示基板与第二子显示区322的显示基板虽然结构相同,但是第一显示区10上未覆盖偏光结构102,第二子显示区322覆盖了偏光结构,则第一显示区10与第二子显示区322对应的伽玛曲线不同。
根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压的步骤130,可通过如下步骤实现:
确定目标显示亮度在第三伽玛曲线上对应的电压,该电压即为第二数据线输入电压。
如此,通过第三伽玛曲线及目标显示亮度即可确定第二子显示区的第二数据线输入电压,驱动芯片的数据处理比较简单。
在第二个方式中,第二对应关系包括第一伽玛曲线、及第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系。
根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压的步骤130,包括如下步骤131和步骤132。
步骤131,根据目标显示亮度以及第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系,确定第二子显示区的第一显示亮度。
在步骤132中,确定第一显示亮度在第一伽玛曲线上对应的电压,该电压即为第二数据线输入电压。
上述步骤中,根据目标显示亮度以及第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系,确定出的第二子显示区的第一显示亮度大于目标显示亮度。第二子显示区的数据线输入电压为第二数据线输入电压时,第二子显示区经过偏光结构前的亮度即为第一显示亮度,第一显示亮度在经过偏光结构时会发生亮度损失,从而使得第二子显示区最终呈现的亮度为目标显示亮度。
上述步骤中,第一子显示区和第二子显示区可共用一个伽玛曲线,可减小驱动芯片上存储的伽玛曲线的数量,进而减轻驱动芯片的负担。
进一步地,第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系满足如下公式:
Figure PCTCN2019115853-appb-000001
式中,
L 2’表示第二子显示区的目标显示亮度经过偏光结构前的显示亮度;
L 2表示第二子显示区的目标显示亮度;
φ表示偏光结构的透光率。
根据目标显示亮度及上述计算公式即可计算出第二子显示区的目标显示亮度对应的第一显示亮度,计算过程简单,计算量小。
第二种情况下,位于第三显示区30的显示基板与位于第二显示区20的显示基板的结构可相同。第二对应关系为第二显示区对应的第二伽玛曲线,第二伽玛曲线为第二显示区的显示亮度与数据线输入电压的关系曲线。参见图1和图2,第三显示区30可只包括第一子显示区311和第二子显示区322。
位于第三显示区30的显示基板与位于第二显示区20的显示基板的结构相同,指的是,位于第二显示区20的显示基板与位于第三显示区30的显示基板中,像素密度、像素大小、驱动方式、透光率等均相同,以及第二显示区20对应的伽玛曲线与第三显示区30中被偏光结构覆盖的第二子显示区322对应的伽玛曲线也相同,则第三显示区30的第二子显示区322对应的伽玛曲线为第二伽玛曲线。位于第三显示区30的显示基板101与位于第二显示区20的显示基板101的结构相同时,位于第三显示区30的显示基板可与位于第二显示区20的显示基板可同时制备,以降低显示面板的制备工艺的复杂度。
根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压的步骤130可通过如下步骤实现:
确定目标显示亮度在第二伽玛曲线上对应的电压,该电压即为第二数据线输入电压。
如此,通过第二伽玛曲线及目标显示亮度即可确定第二子显示区的第二数据线输入电压,驱动芯片的数据处理比较简单。
在一个实施例中,步骤120可由以下两种方式实现。
第一种方式中,第一对应关系包括第一子显示区对应的第四伽玛曲线,第四伽玛曲线为第一子显示区的显示亮度与数据线输入电压的关系曲线,第四伽玛曲线与第二伽玛曲线不同。由于第一子显示区311的显示基板101与第二显示区20的显示基板101的结构相同,但是第一子显示区311上未覆盖偏光结构102,第二显示区20上覆盖了偏光结 构,则第一子显示区311与第二显示区20对应的伽玛曲线不同。
根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压的步骤120,可通过如下步骤实现:
确定目标显示亮度在第四伽玛曲线上对应的电压,该电压即为第一数据线输入电压。
如此,通过第四伽玛曲线及目标显示亮度即可确定第一子显示区的第一数据线输入电压,使得驱动芯片的数据处理比较简单。
在第二个方式中,第一对应关系包括第二伽玛曲线、及第一子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系。
根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压的步骤120,可包括如下步骤121和步骤122。
步骤121,根据目标显示亮度以及第一子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系,确定第一子显示区的第二显示亮度。
步骤122,确定第二显示亮度在第二伽玛曲线上对应的电压,该电压即为第一数据线输入电压。
上述步骤中,根据目标显示亮度以及第一子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系,确定出的第一子显示区的第二显示亮度小于目标显示亮度。第二子显示区的数据线输入电压为第二数据线输入电压时,若第二子显示区上覆盖有偏光结构,第二子显示区经过偏光结构后的亮度即为第二显示亮度。由于第二子显示区上未覆盖偏光结构,从而使得第二子显示区最终呈现的亮度为目标显示亮度。
上述步骤中,第一子显示区、第二子显示区及第二显示区可共用一个伽玛曲线,可减小驱动芯片上存储的伽玛曲线的数量,进而减轻驱动芯片的负担。
进一步地,第一子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系满足如下公式:
L 1’=L 1
式中,
L 1’表示第一子显示区的目标显示亮度经过偏光结构后的显示亮度;
L 1表示第一子显示区的目标显示亮度;
φ表示偏光结构的透光率。
根据目标显示亮度及上述计算公式即可计算出第一子显示区的目标显示亮度对应的第一显示亮度,计算过程简单,计算量小。
第三种情况下,第三显示区的透光率大于第二显示区的透光率,且小于第一显示区的透光率。可通过设置第三显示区的像素密度小于第二显示区的像素密度,且大于第一显示区的像素密度,来实现上述透光率的设置。参见图1和图2,第三显示区30可只包括第一子显示311和第二子显示区322。
在一个实施例中,第一对应关系为第一子显示区对应的第五伽玛曲线,第五伽玛曲线为第一子显示区的显示亮度与数据线输入电压的关系曲线。由于第一子显示区与第一显示区的结构和第二显示区的结构均不同,则第一子显示区对应的第五伽玛曲线与第一显示区对应的第一伽玛曲线、以及与第二显示区对应的第二伽玛曲线均不同。
根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压的步骤120,可通过如下步骤实现:
确定目标显示亮度在第五伽玛上对应的电压,该电压即为第一数据线输入电压。
如此,通过第五伽玛曲线及目标显示亮度即可确定第一子显示区的第一数据线输入电压,驱动芯片的数据处理比较简单。
在一个实施例中,步骤130可由以下两种方式实现。
第一种方式中,第二对应关系为第六伽玛曲线,第六伽玛曲线为第二子显示区的显示亮度与数据线输入电压的关系曲线。由于第一子显示区显示基板101与第二子显示区的显示基板101的结构相同,但是第一子显示区未被偏光结构覆盖,第二子显示区被偏光结构覆盖,则第一子显示区对应的第五伽玛曲线与第二子显示区对应的第六伽玛曲线不同。
根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压的步骤130可通过如下步骤实现:
确定目标显示亮度在第六伽玛曲线上对应的电压,该电压即为第二数据线输入电压。
如此,通过第六伽玛曲线及目标显示亮度即可确定第二子显示区的第二数据线输入电压,驱动芯片的数据处理比较简单。
第二种方式中,第二对应关系包括第五伽玛曲线、第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系。
根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压的步骤130可包括如下步骤133和步骤 134。
步骤133,根据目标显示亮度以及第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系,确定第二子显示区的第三显示亮度。
步骤134,确定第三显示亮度在第五伽玛曲线上对应的电压,该电压即为第二数据线输入电压。
上述步骤中,根据目标显示亮度以及第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系,确定出的第二子显示区的第三显示亮度大于目标显示亮度。第二子显示区的数据线输入电压为第二数据线输入电压时,第二子显示区经过偏光结构前的亮度即为第三显示亮度,第三显示亮度在经过偏光结构时会发生亮度损失,从而使得第二子显示区最终呈现的亮度为目标显示亮度。
上述步骤中,第一子显示区和第二子显示区可共用一个伽玛曲线,可减小驱动芯片上存储的伽玛曲线的数量,进而减轻驱动芯片的负担。
进一步地,第二子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系满足如下公式:
Figure PCTCN2019115853-appb-000002
式中,
L 3’表示第二子显示区的目标显示亮度经过偏光结构前的显示亮度;
L 3表示第二子显示区的目标显示亮度;
φ表示偏光结构的透光率。
根据目标显示亮度及上述计算公式即可计算出第二子显示区的目标显示亮度对应的第三显示亮度,计算过程简单,计算量小。
在第四种情况下,参见图3和图4,第三显示区30可包括与第一显示区10邻接的第一区域31及与第二显示区20邻接的第二区域32,第一区域31包括第一子显示区311和第三子显示区312,第二区域32包括第二子显示区322和第四子显示区321。位于第一区域31的显示基板与位于第一显示区10的显示基板的结构相同。位于第二区域32的显示基板与位于第二显示区20的显示基板的结构相同。第三子显示区312被偏光结构102覆盖,第四子显示区321未被偏光结构覆盖。由于位于第一区域31的显示基板与位于第一显示区10的显示基板的结构相同,则位于第一区域31的显示基板与位于第一显 示区10的显示基板可同时制备。由于位于第二区域32的显示基板与位于第二显示区322的显示基板的结构相同,则位于第二区域32的显示基板与位于第二显示区322的显示基板可同时制备,从而可降低显示面板的制备工艺的复杂度。
在一个实施例中,显示控制方法还包括如下步骤160和步骤170。
步骤160,根据目标显示亮度及第三子显示区对应的显示亮度与数据线输入电压的第三对应关系,确定第三子显示区的第五数据线输入电压。
步骤170,根据目标显示亮度及第四子显示区对应的显示亮度与数据线输入电压的第四对应关系,确定第四子显示区的第六数据线输入电压。
其中,本申请实施例中步骤160和步骤170执行的先后顺序不做限定,可先执行步骤160,再执行步骤170,也可先执行步骤170,再执行步骤160,或者也可同时执行步骤160和步骤170。
通过步骤160和步骤170,可使得第三子显示区和第四子显示区的显示亮度均为目标显示亮度,从而使第一显示区、第二显示区和第三显示区的显示亮度均相同,更利于提高用户的使用体验。
在一个实施例中,第一对应关系为第一显示区对应的第一伽玛曲线,第一伽玛曲线为第一显示区的显示亮度与数据线输入电压的关系曲线。第二对应关系为第二显示区对应的第二伽玛曲线,第二伽玛曲线为第二显示区的显示亮度与数据线输入电压的关系曲线。由于第一显示区与第一子显示区的结构相同,且第一显示区和第一子显示区均未被偏光结构覆盖,则第一显示区与第一子显示区的对应的伽玛曲线相同,即第一子显示区对应的伽玛曲线为第一伽玛曲线。由于第二显示区与第二子显示区的结构相同,且第二显示区和第二子显示区均被偏光结构覆盖,则第二显示区与第二子显示区的对应的伽玛曲线相同,即第二子显示区对应的伽玛曲线为第二伽玛曲线。
根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压的步骤120,可通过如下过程实现:
确定目标显示亮度在第一伽玛曲线上对应的电压,该电压即为第一数据线输入电压。
根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压的步骤130,可通过如下过程实现:
确定目标显示亮度在第二伽玛曲线上对应的电压,该电压即为第二数据线输入电压;
如此,通过第一伽玛曲线及目标显示亮度即可确定第一子显示区的第一数据线输入电压,通过第二伽玛曲线及目标显示亮度即可确定第二子显示区的第二数据线输入电压, 驱动芯片的数据处理比较简单。
在一个实施例中,步骤160可由以下两种方式实现:
第一个方式中,第三对应关系可为第三子显示区对应的第七伽玛曲线,第七伽玛曲线为第三子显示区对应的显示亮度与数据线输入电压的关系曲线。第七伽玛曲线与第一伽玛曲线、第二伽玛曲线均不同。
根据目标显示亮度及第三子显示区对应的显示亮度与数据线输入电压的第三对应关系,确定第三子显示区的第五数据线输入电压的步骤160,可通过如下过程实现:
确定目标显示亮度在第七伽玛曲线上对应的电压,该电压即为第五数据线输入电压。
如此,通过第七伽玛曲线及目标显示亮度即可确定第一子显示区的第一数据线输入电压,驱动芯片的数据处理比较简单。
在第二个方式中,第三对应关系包括第一伽玛曲线、及第三子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系。
根据目标显示亮度及第三子显示区对应的显示亮度与数据线输入电压的第三对应关系,确定第三子显示区的第五数据线输入电压的步骤160,包括如下步骤161和步骤162。
步骤161,根据目标显示亮度以及第三子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系,确定第三子显示区的第四显示亮度。
步骤162,确定第四显示亮度在第一伽玛曲线上对应的电压,该电压即为第五数据线输入电压。
上述步骤中,根据目标显示亮度以及第三子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系,确定出的第三子显示区的第四显示亮度大于目标显示亮度。第三子显示区的数据线输入电压为第五数据线输入电压时,第三子显示区经过偏光结构前的亮度即为第四显示亮度。第四显示亮度在经过偏光结构时会发生亮度损失,从而使得第三子显示区最终呈现的亮度为目标显示亮度。
第二种方式中,第一显示区、第一子显示区及第三子显示区可共用一个伽玛曲线,则可减小驱动芯片上存储的伽玛曲线的数量,进而减轻驱动芯片的负担。
进一步地,第三子显示区对应的目标显示亮度与经过偏光结构前的显示亮度的关系满足如下公式:
Figure PCTCN2019115853-appb-000003
式中,
L 4’表示第三子显示区的目标显示亮度在经过偏光结构前的显示亮度;
L 4表示第三子显示区的目标显示亮度;
φ表示偏光结构的透光率。
根据目标显示亮度及上述计算公式即可计算出第三子显示区的目标显示亮度对应的第四显示亮度,计算过程简单,计算量小。
在一个实施例中,步骤170可由以下两种方式实现。
在第一个方式中,第四对应关系可为第四子显示区对应的第八伽玛曲线,第八伽玛曲线为第四子显示区对应的显示亮度与数据线输入电压的关系曲线。第一伽玛曲线、第二伽玛曲线、第七伽玛曲线及第八伽玛曲线均不同。
根据目标显示亮度及第四子显示区对应的显示亮度与数据线输入电压的第三对应关系,确定第四子显示区的第六数据线输入电压的步骤170,可通过如下过程实现:
确定目标显示亮度在第八伽玛曲线上对应的电压,该电压即为第六数据线输入电压。
如此,通过第八伽玛曲线及目标显示亮度即可确定第二子显示区的第二数据线输入电压,驱动芯片的数据处理比较简单。
在第二个方式中,第四对应关系包括第二伽玛曲线、及第四子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系。
根据目标显示亮度及第四子显示区对应的显示亮度与数据线输入电压的第四对应关系,确定第四子显示区的第六数据线输入电压的步骤170可包括如下步骤171和步骤172。
步骤171,根据目标显示亮度以及第四子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系,确定第四子显示区的第五显示亮度。
步骤172,确定第五显示亮度在第二伽玛曲线上对应的电压,该电压即为第六数据线输入电压。
上述步骤中,根据目标显示亮度以及第四子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系,确定出的第四子显示区的第五显示亮度小于目标显示亮度。第四子显示区的数据线输入电压为第六数据线输入电压时,若第一子显示区上覆盖有偏光结构,第二子显示区经过偏光结构后的亮度即为第五显示亮度。由于第四子显示区上未覆盖偏光结构,从而使得第四子显示区最终呈现的亮度为目标显示亮度。
上述步骤中,第四子显示区、第二子显示区及第二显示区可共用一个伽玛曲线,则可减小驱动芯片上存储的伽玛曲线的数量,进而减轻驱动芯片的负担。
进一步地,第四子显示区对应的目标显示亮度与经过偏光结构后的显示亮度的关系满足如下公式:
L 5’=L 5
式中,
L 5’表示第四子显示区的目标显示亮度经过偏光结构后的显示亮度;
L 5表示第四子显示区的目标显示亮度;
φ表示偏光结构的透光率。
根据目标显示亮度及上述计算公式即可计算出第四子显示区的目标显示亮度对应的第五显示亮度,计算过程简单,计算量小。
本申请实施例还提供了一种显示面板的显示控制装置,显示面板的显示区包括第一显示区、第二显示区、及邻接第一显示区和第二显示区的第三显示区,第三显示区包括邻接第一显示区的第一子显示区和邻接第二显示区的第二子显示区,显示面板包括显示基板及位于显示基板上的偏光结构,偏光结构覆盖第二显示区和第二子显示区,且未覆盖第一显示区和第一子显示区,位于第一显示区的显示基板的透光率大于位于第二显示区的显示基板的透光率。
参见图6,显示控制装置包括:获取模块210,用于获取显示区的目标显示亮度;第一确定模块220,用于根据目标显示亮度以及第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定第一子显示区的第一数据线输入电压;第二确定模块230,用于根据目标显示亮度以及第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定第二子显示区的第二数据线输入电压,第一对应关系与第二对应关系不同。
上述实施例提供的显示面板的显示控制装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的显示面板的显示控制装置与上述的显示面板的显示控制方法的实施例属于同一构思,其具体实现过程详见方法实施例部分,这里不再赘述。
本申请实施例还提供了一种显示设备,显示设备包括显示面板、感光器件以及上述的显示面板的显示控制装置。
显示面板的显示区包括第一显示区、第二显示区、及邻接第一显示区和第二显示区的第三显示区,第三显示区包括邻接第一显示区的第一子显示区和邻接第二显示区的第二子显示区,显示面板包括显示基板及位于显示基板上的偏光结构,偏光结构覆盖第二 显示区和第二子显示区,且未覆盖第一显示区和第一子显示区,位于第一显示区的显示基板的透光率大于位于第二显示区的显示基板的透光率,第一显示区下方设置有感光器件。
感光器件可透过第一显示区发射或者采集光线。感光器件可包括摄像头或者光线传感器等。
第一显示区至少部分被第三显示区包围。第一显示区可呈水滴形、圆形、矩形、椭圆形、半圆形、半椭圆形或菱形等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种显示面板的显示控制方法,所述显示面板的显示区包括第一显示区、第二显示区、及邻接所述第一显示区和所述第二显示区的第三显示区,所述第三显示区包括邻接所述第一显示区的第一子显示区和邻接所述第二显示区的第二子显示区,所述显示面板包括显示基板及位于所述显示基板上的偏光结构,所述偏光结构覆盖所述第二显示区和所述第二子显示区,且未覆盖所述第一显示区和所述第一子显示区,位于所述第一显示区的显示基板的透光率大于位于所述第二显示区的显示基板的透光率;所述显示控制方法包括:
    获取所述显示区的目标显示亮度;
    根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定所述第一子显示区的第一数据线输入电压;
    根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的第二对应关系,确定所述第二子显示区的第二数据线输入电压,所述第一对应关系与所述第二对应关系不同。
  2. 根据权利要求1所述的显示控制方法,其中,所述显示控制方法还包括:
    根据所述目标显示亮度以及所述第一显示区对应的第一伽玛曲线确定所述第一显示区的第三数据线输入电压,所述第一伽玛曲线为所述第一显示区的显示亮度与所述数据线输入电压的关系曲线;
    根据所述目标显示亮度以及所述第二显示区对应的第二伽玛曲线确定所述第二显示区的第四数据线输入电压,所述第二伽玛曲线为所述第二显示区的显示亮度与所述数据线输入电压的关系曲线,所述第一伽玛曲线与所述第二伽玛曲线不同。
  3. 根据权利要求1所述的显示控制方法,其中,位于所述第三显示区的显示基板与位于所述第一显示区的显示基板的结构相同,所述第一对应关系为所述第一显示区对应的第一伽玛曲线,所述第一伽玛曲线为所述第一显示区的显示亮度与所述数据线输入电压的关系曲线;
    所述根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与所述数据线输入电压的所述第一对应关系,确定所述第一子显示区的所述第一数据线输入电压,包括:
    确定所述目标显示亮度在所述第一伽玛曲线上对应的电压,所述电压即为所述第一数据线输入电压。
  4. 根据权利要求3所述的显示控制方法,其中,所述第二对应关系包括所述第二子 显示区对应的第三伽玛曲线,所述第三伽玛曲线为所述第二子显示区的显示亮度与所述数据线输入电压的关系曲线,所述第三伽玛曲线与所述第一伽玛曲线不同;
    所述根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的所述第二对应关系,确定所述第二子显示区的所述第二数据线输入电压,包括:
    确定所述目标显示亮度在所述第三伽玛曲线上对应的电压,所述电压即为所述第二数据线输入电压。
  5. 根据权利要求3所述的显示控制方法,其中,
    所述第二对应关系包括所述第一伽玛曲线、及所述第二子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系:
    所述根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的所述第二对应关系,确定所述第二子显示区的所述第二数据线输入电压,包括:
    根据所述目标显示亮度以及所述第二子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系,确定所述第二子显示区的第一显示亮度;
    确定所述第一显示亮度在所述第一伽玛曲线上对应的电压,所述电压即为所述第二数据线输入电压。
  6. 根据权利要5所述的显示控制方法,其中,所述第二子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系满足如下公式:
    Figure PCTCN2019115853-appb-100001
    其中,
    L 2’表示所述第二子显示区的目标显示亮度在经过所述偏光结构前的显示亮度;
    L 2表示所述第二子显示区的目标显示亮度;
    φ表示所述偏光结构的透光率。
  7. 根据权利要求1所述的显示控制方法,其中,位于所述第三显示区的显示基板与位于所述第二显示区的显示基板的结构相同,所述第二对应关系为所述第二显示区对应的第二伽玛曲线,所述第二伽玛曲线为所述第二显示区的显示亮度与所述数据线输入电压的关系曲线;
    所述根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的所述第二对应关系,确定所述第二子显示区的所述第二数据线输入电压,包括:
    确定所述目标显示亮度在所述第二伽玛曲线上对应的电压,所述电压即为所述第二数据线输入电压。
  8. 根据权利要求7所述的显示控制方法,其中,所述第一对应关系包括所述第一子显示区对应的第四伽玛曲线,所述第四伽玛曲线为所述第一子显示区的显示亮度与数据线输入电压的关系曲线,所述第四伽玛曲线与所述第二伽玛曲线不同;
    所述根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与所述数据线输入电压的所述第一对应关系,确定所述第一子显示区的所述第一数据线输入电压,包括:
    确定所述目标显示亮度在所述第四伽玛曲线上对应的电压,所述电压即为所述第一数据线输入电压。
  9. 根据权利要求7所述的显示控制方法,其中,
    所述第一对应关系包括所述第二伽玛曲线、及所述第一子显示区对应的目标显示亮度与经过所述偏光结构后的显示亮度的关系;
    所述根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与所述数据线输入电压的所述第一对应关系,确定所述第一子显示区的所述第一数据线输入电压,包括:
    根据所述目标显示亮度以及所述第一子显示区对应的目标显示亮度与经过所述偏光结构后的显示亮度的所述关系,确定所述第一子显示区的第二显示亮度;
    确定所述第二显示亮度在所述第二伽玛曲线上对应的电压,所述电压即为所述第一数据线输入电压。
  10. 根据权利要求9所述的显示控制方法,其中,所述第一子显示区对应的目标显示亮度与经过所述偏光结构后的显示亮度的关系满足如下公式:
    L 1’=L 1
    其中,
    L 1’表示所述第一子显示区的目标显示亮度经过所述偏光结构后的显示亮度;
    L 1表示所述第一子显示区的目标显示亮度;
    φ表示所述偏光结构的透光率。
  11. 根据权利要求1所述的显示控制方法,其中,所述第三显示区的透光率大于所述第二显示区的透光率,且小于所述第一显示区的透光率;
    所述第一对应关系为所述第一子显示区对应的第五伽玛曲线,所述第五伽玛曲线为所述第一子显示区的显示亮度与所述数据线输入电压的关系曲线,所述第五伽玛曲线与 所述第一显示区对应的第一伽玛曲线及所述第二显示区对应的第二伽玛曲线均不同;
    所述根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与所述数据线输入电压的所述第一对应关系,确定所述第一子显示区的所述第一数据线输入电压,包括:
    确定所述目标显示亮度在所述第五伽玛上对应的电压,所述电压即为所述第一数据线输入电压。
  12. 根据权利要求11所述的显示控制方法,其中,所述第二对应关系为第六伽玛曲线,所述第六伽玛曲线为所述第二子显示区的显示亮度与所述数据线输入电压的关系曲线,所述第六伽玛曲线与所述第五伽玛曲线不同;
    所述根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的所述第二对应关系,确定所述第二子显示区的所述第二数据线输入电压,包括:
    确定所述目标显示亮度在所述第六伽玛曲线上对应的电压,所述电压即为所述第二数据线输入电压。
  13. 根据权利要求11所述的显示控制方法,其中,
    所述第二对应关系包括所述第五伽玛曲线、所述第二子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系;
    所述根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的所述第二对应关系,确定所述第二子显示区的所述第二数据线输入电压,包括:
    根据所述目标显示亮度以及所述第二子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系,确定所述第二子显示区的第三显示亮度;
    确定所述第三显示亮度在所述第五伽玛曲线上对应的电压,所述电压即为所述第二数据线输入电压。
  14. 根据权利要求13所述的显示控制方法,其中,所述第二子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系满足如下公式:
    Figure PCTCN2019115853-appb-100002
    其中,
    L 3’表示所述第二子显示区的目标显示亮度在经过所述偏光结构前的显示亮度;
    L 3表示所述第二子显示区的目标显示亮度;
    φ表示所述偏光结构的透光率。
  15. 根据权利要求1所述的显示控制方法,其中,所述第三显示区包括与所述第一显示区邻接的第一区域及与所述第二显示区邻接的第二区域,所述第一区域包括所述第一子显示区和第三子显示区,所述第二区域包括所述第二子显示区和第四子显示区;位于所述第一区域的显示基板与位于所述第一显示区的显示基板的结构相同,位于所述第二区域的显示基板与位于所述第二显示区的显示基板的结构相同;所述第三子显示区被所述偏光结构覆盖,所述第四子显示区未被所述偏光结构覆盖;
    所述显示控制方法还包括:
    根据所述目标显示亮度及所述第三子显示区对应的显示亮度与所述数据线输入电压的第三对应关系,确定所述第三子显示区的第五数据线输入电压;
    根据所述目标显示亮度及所述第四子显示区对应的显示亮度与所述数据线输入电压的第四对应关系,确定所述第四子显示区的第六数据线输入电压。
  16. 根据权利要求15所述的显示控制方法,其中,所述第一对应关系为所述第一显示区对应的第一伽玛曲线,所述第一伽玛曲线为所述第一显示区的显示亮度与数据线输入电压的关系曲线,所述第二对应关系为所述第二显示区对应的第二伽玛曲线,所述第二伽玛曲线为所述第二显示区的显示亮度与数据线输入电压的关系曲线;
    所述根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定所述第一子显示区的第一数据线输入电压,包括:确定所述目标显示亮度在所述第一伽玛曲线上对应的电压,该电压即为所述第一数据线输入电压;
    所述根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与数据线输入电压的第二对应关系,确定所述第二子显示区的第二数据线输入电压,包括:确定所述目标显示亮度在所述第二伽玛曲线上对应的电压,所述电压即为所述第二数据线输入电压。
  17. 根据权利要求16所述的显示控制方法,其中,所述第三对应关系为所述第三子显示区对应的第七伽玛曲线,所述第七伽玛曲线为所述第三子显示区对应的显示亮度与所述数据线输入电压的关系曲线,所述第一伽玛曲线、所述第二伽玛曲线及所述第七伽玛曲线均不同;
    所述根据所述目标显示亮度及所述第三子显示区对应的显示亮度与所述数据线输入电压的第三对应关系,确定所述第三子显示区的所述第五数据线输入电压,包括:确定所述目标显示亮度在所述第七伽玛曲线上对应的电压,所述电压即为所述第五数据线输入电压;或者,
    所述第三对应关系包括所述第一伽玛曲线、及所述第三子显示区对应的目标显示亮 度与经过所述偏光结构前的显示亮度的关系;
    所述根据所述目标显示亮度及所述第三子显示区对应的显示亮度与所述数据线输入电压的第三对应关系,确定所述第三子显示区的所述第五数据线输入电压,包括:
    根据所述目标显示亮度以及所述第三子显示区对应的目标显示亮度与经过所述偏光结构前的显示亮度的关系,确定所述第三子显示区的第四显示亮度;
    确定所述第四显示亮度在所述第一伽玛曲线上对应的电压,所述电压即为第五数据线输入电压。
  18. 根据权利要求17所述的显示控制方法,其中,所述第四对应关系为所述第四子显示区对应的第八伽玛曲线,所述第八伽玛曲线为所述第四子显示区对应的显示亮度与所述数据线输入电压的关系曲线,所述第一伽玛曲线、所述第二伽玛曲线及所述第八伽玛曲线均不同;
    所述根据所述目标显示亮度及所述第四子显示区对应的显示亮度与所述数据线输入电压的第三对应关系,确定所述第四子显示区的所述第六数据线输入电压,包括:确定所述目标显示亮度在所述第八伽玛曲线上对应的电压,所述电压即为所述第六数据线输入电压;或者,
    所述第四对应关系包括所述第二伽玛曲线、及所述第四子显示区对应的目标显示亮度与经过所述偏光结构后的显示亮度的关系;
    所述根据所述目标显示亮度及所述第四子显示区对应的显示亮度与所述数据线输入电压的第四对应关系,确定所述第四子显示区的所述第六数据线输入电压,包括:
    根据所述目标显示亮度以及所述第四子显示区对应的目标显示亮度与经过所述偏光结构后的显示亮度的关系,确定所述第四子显示区的第五显示亮度;
    确定所述第五显示亮度在所述第二伽玛曲线上对应的电压,所述电压即为第六数据线输入电压。
  19. 一种显示面板的显示控制装置,所述显示面板的显示区包括第一显示区、第二显示区、及邻接所述第一显示区和所述第二显示区的第三显示区,所述第三显示区包括邻接所述第一显示区的第一子显示区和邻接所述第二显示区的第二子显示区,所述显示面板包括显示基板及位于所述显示基板上的偏光结构,所述偏光结构覆盖所述第二显示区和所述第二子显示区,且未覆盖所述第一显示区和所述第一子显示区,位于所述第一显示区的显示基板的透光率大于位于所述第二显示区的显示基板的透光率;所述显示控制装置包括:
    获取模块,用于获取所述显示区的目标显示亮度;
    第一确定模块,用于根据所述目标显示亮度以及所述第一子显示区对应的显示亮度与数据线输入电压的第一对应关系,确定所述第一子显示区的第一数据线输入电压;
    第二确定模块,用于根据所述目标显示亮度以及所述第二子显示区对应的显示亮度与所述数据线输入电压的第二对应关系,确定所述第二子显示区的第二数据线输入电压,所述第一对应关系与所述第二对应关系不同。
  20. 一种显示设备,包括显示面板、感光器件以及权利要求21所述的显示面板的显示控制装置;
    所述显示面板的显示区包括第一显示区、第二显示区、及邻接所述第一显示区和所述第二显示区的第三显示区,所述第三显示区包括邻接所述第一显示区的第一子显示区和邻接所述第二显示区的第二子显示区,所述显示面板包括显示基板及位于所述显示基板上的偏光结构,所述偏光结构覆盖所述第二显示区和所述第二子显示区,且未覆盖所述第一显示区和所述第一子显示区,位于所述第一显示区的显示基板的透光率大于位于所述第二显示区的显示基板的透光率,所述第一显示区下方设置有感光器件;
    所述感光器件可透过所述第一显示区发射或者采集光线。
PCT/CN2019/115853 2019-05-31 2019-11-06 显示面板的显示控制方法、显示控制装置及显示设备 WO2020238026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910471630.X 2019-05-31
CN201910471630.XA CN110767140B (zh) 2019-05-31 2019-05-31 显示面板的显示控制方法、显示控制装置及显示设备

Publications (1)

Publication Number Publication Date
WO2020238026A1 true WO2020238026A1 (zh) 2020-12-03

Family

ID=69329027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115853 WO2020238026A1 (zh) 2019-05-31 2019-11-06 显示面板的显示控制方法、显示控制装置及显示设备

Country Status (2)

Country Link
CN (1) CN110767140B (zh)
WO (1) WO2020238026A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354306B (zh) * 2020-04-07 2022-01-07 Oppo广东移动通信有限公司 显示装置、电子设备及显示方法
CN111724732B (zh) * 2020-06-17 2021-09-10 Oppo广东移动通信有限公司 电子设备及显示装置的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035573A (ja) * 1998-07-16 2000-02-02 Hitachi Ltd 液晶表示装置
WO2012133160A1 (ja) * 2011-03-30 2012-10-04 シャープ株式会社 照明装置およびそれを備えた表示装置
CN105096896A (zh) * 2015-09-18 2015-11-25 京东方科技集团股份有限公司 伽马电压调节方法及装置
CN108648683A (zh) * 2018-06-29 2018-10-12 厦门天马微电子有限公司 一种阵列基板、触控显示面板和触控显示装置
CN108666354A (zh) * 2018-05-14 2018-10-16 昆山国显光电有限公司 显示面板和显示装置
CN109493798A (zh) * 2017-09-11 2019-03-19 三星显示有限公司 显示装置及其补偿数据的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479808B2 (ja) * 2009-08-06 2014-04-23 株式会社ジャパンディスプレイ 表示装置
CN108376696B (zh) * 2017-09-30 2020-08-25 云谷(固安)科技有限公司 终端及显示屏
WO2019062236A1 (zh) * 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN112767871B (zh) * 2017-10-27 2023-06-23 武汉天马微电子有限公司 一种显示面板和电子设备
CN109192759B (zh) * 2018-08-29 2021-09-21 京东方科技集团股份有限公司 显示面板及显示面板的制备方法
CN208861990U (zh) * 2018-10-31 2019-05-14 昆山维信诺科技有限公司 显示屏及显示终端
CN109767699A (zh) * 2019-03-12 2019-05-17 华勤通讯技术有限公司 一种显示面板及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035573A (ja) * 1998-07-16 2000-02-02 Hitachi Ltd 液晶表示装置
WO2012133160A1 (ja) * 2011-03-30 2012-10-04 シャープ株式会社 照明装置およびそれを備えた表示装置
CN105096896A (zh) * 2015-09-18 2015-11-25 京东方科技集团股份有限公司 伽马电压调节方法及装置
CN109493798A (zh) * 2017-09-11 2019-03-19 三星显示有限公司 显示装置及其补偿数据的方法
CN108666354A (zh) * 2018-05-14 2018-10-16 昆山国显光电有限公司 显示面板和显示装置
CN108648683A (zh) * 2018-06-29 2018-10-12 厦门天马微电子有限公司 一种阵列基板、触控显示面板和触控显示装置

Also Published As

Publication number Publication date
CN110767140B (zh) 2021-02-26
CN110767140A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
TWI670635B (zh) 觸控面板及其裝置
JP6246292B2 (ja) 光検出機能を備えるoledディスプレイ装置
CN109001935B (zh) 液晶显示装置
US20190130822A1 (en) Electronic device having display
US11119347B2 (en) Display device, electronic apparatus, and image acquisition method
TWI554993B (zh) 具有光感應輸入的顯示驅動電路
EP4246503A2 (en) Electronic device having display
WO2017080042A1 (zh) Lcd面板、终端及感光控制方法
CN107168465A (zh) 显示模组及显示装置
US20220149117A1 (en) Display apparatus and electronic device
WO2017052777A1 (en) Imaging system management for camera mounted behind transparent display
TWI581157B (zh) 觸控顯示裝置
WO2016095307A1 (zh) 阵列基板及显示装置
US20200356747A1 (en) Display module and mobile terminal
KR20200118266A (ko) 표시 장치 및 이의 제조 방법
TWI512556B (zh) 觸控顯示裝置及其製造方法
TWI674457B (zh) 顯示裝置與含其的電子裝置
WO2021184434A1 (zh) 一种显示装置
WO2016090974A1 (zh) 多面显示器件
JP6900507B2 (ja) 端末画面、端末画面の制御方法、および端末
US20160216817A1 (en) Array substrate, method for producing the same and display apparatus
CN209327746U (zh) 显示屏组件及电子设备
WO2019200529A1 (zh) 图像处理方法、装置和电子设备
WO2020238026A1 (zh) 显示面板的显示控制方法、显示控制装置及显示设备
WO2017059680A1 (zh) 液晶显示组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931396

Country of ref document: EP

Kind code of ref document: A1