WO2023120784A1 - Adversarial learning system for electric vehicle charging infrastructure power distribution - Google Patents

Adversarial learning system for electric vehicle charging infrastructure power distribution Download PDF

Info

Publication number
WO2023120784A1
WO2023120784A1 PCT/KR2021/019835 KR2021019835W WO2023120784A1 WO 2023120784 A1 WO2023120784 A1 WO 2023120784A1 KR 2021019835 W KR2021019835 W KR 2021019835W WO 2023120784 A1 WO2023120784 A1 WO 2023120784A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electric vehicle
information
requested
power distribution
Prior art date
Application number
PCT/KR2021/019835
Other languages
French (fr)
Korean (ko)
Inventor
홍충선
쉬라줌 무니르엠디.
김민석
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2023120784A1 publication Critical patent/WO2023120784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06Q50/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to an electric vehicle charging infrastructure power distribution system capable of efficiently distributing power to a plurality of charging stations through adversarial machine learning.
  • the present invention was supported by the group research support of the Ministry of Science and ICT (Task number: 1711135177, task number: 2020R1A4A1018607, research task name: Meta Federated Learning-based mobile edge computing system core structure development, task management institution: National Research Foundation of Korea, task performing agency : Kyunghee University Industry-University Cooperation Foundation, research period: 2021.06.01. ⁇ 2022.02.28.) and Ministry of Science and ICT (Ministry of Science and ICT) Information Communication Broadcasting Innovation Talent Fostering (Task number: 1711139517, task number: 2021-0-02068, research task name : AI innovation hub development, task management institution: National Institute of Information and Communications Technology Evaluation and Planning, task executing institution: Korea University, research period: 2021.07.01. ⁇ 2021.12.31.) Meanwhile, there is no property interest of the Korean government in any aspect of the present invention.
  • electric vehicles are classified into two types: manned electric vehicles and fully autonomous electric vehicles.
  • the electric vehicle is connected to the system through wireless communication technology. Because the charging requirements and actual behavior of EVs are different, it is essential to consider the behaviors of both manned EVs and fully autonomous EVs in order to capture the charging behavior of EVs.
  • Fully self-driving electric vehicles can sense their environment, move safely with little or no human input, and have powerful computing power and large data storage capable of making autonomous decisions on their own. Therefore, the fully autonomous electric vehicle estimates the exact energy demand for the EVSE at startup for the Electric Vehicle Supply Equipment (EVSE) selected by the Distribution System Operator (DSO) for self-analysis and charging. can request
  • EVSE Electric Vehicle Supply Equipment
  • DSO Distribution System Operator
  • manned electric vehicles involve humans in communicating information such as traffic information wirelessly with other vehicles, infrastructure, and devices. Therefore, there is no guarantee that human interaction is required to request energy demand, and manned electric vehicles require the exact amount of energy and charging time for vehicle charging. Additionally, it is entirely up to the driver whether or not to charge at the EVSE chosen by the DSO for vehicle charging. Due to this, there is a problem that a discrepancy may occur between the planned EVSE of the DSO and the EVSE actually used for charging.
  • the present invention is to provide an electric vehicle charging infrastructure power distribution system capable of maximizing the overall electricity utilization by increasing the use of each EVSE energy as a whole.
  • the present invention is to provide an electric vehicle charging infrastructure power distribution system that can more actively and efficiently overcome the irrational electric vehicle charging scheduling problem by processing an irrational charging session request of a manned electric vehicle driven by a human in a data information method. it is for
  • the present invention is to provide an electric vehicle charging infrastructure power distribution system capable of improving the charging speed in the overall charging infrastructure and greatly increasing the charging session fulfillment rate compared to the conventional electric vehicle charging system.
  • An electric vehicle charging infrastructure power distribution system includes a charging information collection unit provided at a plurality of charging stations and configured to collect charging-related information from an electric vehicle to be charged at the charging station; A central control unit configured to receive the charging-related information from the plurality of charging information collection units and to determine a power allocation amount of each charging station by using an artificial intelligence model based on the charging-related information collected for each charging station; and an energy distribution unit configured to distribute the amount of power allocated to the plurality of charging stations based on the determined power allocation amount.
  • a machine learning unit configured to learn the artificial intelligence model through a machine learning method by setting the charging related information as an input variable and setting the power allocation amount of the plurality of charging stations as an output variable may be further included.
  • the charging information collection unit receives requested energy information and requested charging speed information from the electric vehicle; And it can be configured to collect the actual energy information and actual charging speed information charged by the electric vehicle.
  • the central control unit calculates a requested charging time of the electric vehicle based on the requested energy information and the requested charging speed information; calculating an actual charging time of the electric vehicle based on the actual energy information and the actual charging speed information; And it may be configured to calculate a charging time error for each charging activity based on the requested charging time and the actual charging time.
  • the machine learning unit sets the charging time error as an input variable and sets the power allocation amount of the plurality of charging stations as an output variable so as to deliver the maximum amount of electricity to the plurality of electric vehicles. It can be configured to learn an intelligence model.
  • the vehicle may further include a self-driving electric vehicle classification unit configured to classify the electric vehicle that has delivered the charging-related information as a non-self-driving electric vehicle driven directly by a human when the charging time error is greater than or equal to a reference time error.
  • a self-driving electric vehicle classification unit configured to classify the electric vehicle that has delivered the charging-related information as a non-self-driving electric vehicle driven directly by a human when the charging time error is greater than or equal to a reference time error.
  • the machine learning unit sets the requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of non-autonomous electric vehicles as input variables, and transmits the maximum amount of power to the plurality of electric vehicles. It may be configured to learn the artificial intelligence model through a machine learning method by setting the power allocation of the plurality of charging stations as an output variable to do so.
  • the central control unit based on the location information of the plurality of self-driving electric vehicles, the location information of the plurality of self-driving electric vehicles, the current time information, and the location information of the plurality of charging stations, each using an artificial intelligence model. It may be configured to determine the power allocation of the charging station of the.
  • the artificial intelligence model includes an adversarial learning neural network that receives risk adversarial information as an input
  • the machine learning unit includes: the requested energy information and the requested charging speed information of the plurality of self-driving electric vehicles. , generate the danger adversarial information based on the actual energy information and the actual charging rate information; And it may be configured to perform adversarial machine learning on the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the adversarial learning neural network.
  • the artificial intelligence model includes a recurrent neural network that receives the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs
  • the machine learning unit includes the It may be configured to learn the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the recurrent neural network.
  • An electric vehicle charging infrastructure power distribution method includes the steps of collecting charging-related information from an electric vehicle to be charged at a charging station by a charging information collection unit provided at each of a plurality of charging stations; Receiving, by a central control unit, the charging-related information from a plurality of charging information collection units, and determining a power allocation of each charging station using an artificial intelligence model based on the charging-related information collected for each charging station. ; and distributing, by an energy distribution unit, an amount of power allocated to the plurality of charging stations based on the determined power allocation amount.
  • the method may further include, by a machine learning unit, learning the artificial intelligence model through a machine learning method by setting the charging related information as an input variable and setting the power allocation amount of the plurality of charging stations as an output variable. .
  • the collecting of the charging-related information may include receiving, by the charging information collection unit, requested energy information and requested charging speed information from the electric vehicle; and collecting actual energy information and actual charging speed information charged by the electric vehicle by the charging information collection unit.
  • the machine learning unit sets the charging time error as an input variable and determines the power allocation of the plurality of charging stations to deliver the maximum amount of power to the plurality of electric vehicles. It may include setting as an output variable and learning the artificial intelligence model through a machine learning method.
  • the method may further include classifying, by a self-driving electric vehicle classification unit, an electric vehicle that has delivered the charging-related information as a non-self-driving electric vehicle directly driven by a person if the charging time error is greater than or equal to a reference time error.
  • the machine learning unit sets requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of self-driving electric vehicles as input variables, , learning the artificial intelligence model through a machine learning method by setting the power allocation amount of the plurality of charging stations as an output variable so as to deliver the maximum amount of power to the plurality of electric vehicles.
  • the artificial intelligence model includes an adversarial learning neural network that receives risk hostile information as an input, and the step of learning the artificial intelligence model is, by the machine learning unit, the request of the plurality of self-driving electric vehicles. generating the risk hostile information based on energy information, the requested charging speed information, the actual energy information, and the actual charging speed information; and performing adversarial machine learning on the artificial intelligence model by the machine learning unit so that a maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the adversarial learning neural network.
  • the artificial intelligence model includes a recurrent neural network receiving the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs, and learning the artificial intelligence model comprises:
  • the method may include learning, by a machine learning unit, the artificial intelligence model so that a maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the recurrent neural network.
  • a non-transitory recording medium may be a computer-readable non-transitory recording medium on which a program for executing a method for distributing electric vehicle charging infrastructure power is recorded.
  • the charging speed in the entire charging infrastructure can be improved and the charging session fulfillment rate can be greatly increased compared to the conventional electric vehicle charging system.
  • FIG. 1 is a control block diagram of an electric vehicle charging infrastructure power distribution system according to an embodiment.
  • FIG. 2 is a diagram illustrating an electric vehicle charging infrastructure power distribution system according to an embodiment.
  • Figure 3 is a diagram showing the overall framework of risk adversarial learning (Risk Adversarial Learning) according to an embodiment.
  • FIG. 4 is a flowchart of a method of distributing power to each charging station according to an embodiment.
  • FIG. 5 is a flowchart of a method for learning an artificial intelligence model according to an embodiment.
  • FIG. 6 is a graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment.
  • FIG 7 is another graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment.
  • ' ⁇ unit' used in this specification is a unit that processes at least one function or operation, and may mean, for example, software, an FPGA, or a hardware component. Functions provided by ' ⁇ unit' may be performed separately by a plurality of components or may be integrated with other additional components. ' ⁇ unit' in this specification is not necessarily limited to software or hardware, and may be configured to be in an addressable storage medium or configured to reproduce one or more processors.
  • the identification code is used for convenience of description, and the identification code does not explain the order of each step, and each step may be performed in a different order from the specified order unless a specific order is clearly described in context. there is.
  • FIG. 1 is a control block diagram of an electric vehicle charging infrastructure power distribution system according to an embodiment.
  • an electric vehicle charging infrastructure power distribution system 1 including a plurality of charging stations 100 and a central agent system 200 may be configured.
  • the charging station 100 may include at least one electric vehicle supply equipment (EVSE) that supplies electric energy to the electric vehicle 300 .
  • EVSE electric vehicle supply equipment
  • Each charging station 100 may be distributed and disposed in several regions.
  • the charging station 100 may include a charging information collection unit 110, an autonomous driving electric vehicle classification unit 120, and a charging station control unit 130.
  • the central agent system 200 may be provided in a server managed by a distribution system operator (DSO), but the central agent system 200 does not necessarily have to be provided in the server.
  • DSO distribution system operator
  • the central agent system 200 may communicate with a plurality of charging stations 100 through wired and wireless communication through a communication module.
  • the central agent system 200 learns the artificial intelligence model 231 based on past electric vehicle charging requests, charging cases, and power distribution history when there were such charging cases, and uses the learned artificial intelligence model 231. Therefore, it is possible to determine the power allocation for each charging station based on the current information.
  • the central agent system 200 may include a central control unit 210, a machine learning unit 220, and a memory 230.
  • the charging information collection unit 110 is provided in each of the plurality of charging stations 100 and may collect charging-related information from the electric vehicle 300 that wants to charge power at the corresponding charging station 100 .
  • Charging-related information may include requested energy information and requested charging speed information transmitted from the side of the electric vehicle 300 that wants to be charged.
  • the charging-related information may be information on actual energy and actual charging speed charged by the corresponding electric vehicle 300 . That is, the charging-related information may be information about the amount of power requested by the electric vehicle 300 to be charged, the requested charging speed, the amount of power actually charged, and the actual charging speed.
  • the charging information collection unit 110 may receive the requested energy information and the requested charging speed information from the electric vehicle 300, and collect the actual energy information and actual charging speed information charged by the electric vehicle 300. .
  • the central control unit 210 may receive charging-related information from a plurality of charging information collection units 110 respectively provided in the plurality of charging stations 100 .
  • the central control unit 210 may determine the power allocation amount of each charging station 100 using the artificial intelligence model 231 based on the charging-related information collected for each charging station 100 .
  • the central control unit 210 uses the artificial intelligence model 231 based on the location information of the plurality of electric vehicles 300, the current time information, and the location information of the plurality of charging stations 100 to charge each charging station 100. ) can determine the power allocation.
  • the energy distribution unit may distribute the amount of power allocated to the plurality of charging stations 100 based on the determined power allocation amount.
  • the machine learning unit 220 may generate the artificial intelligence model 231 through a machine learning method based on a large amount of charging-related information and past power allocation information collected in the past. Meanwhile, the artificial intelligence model 231 may be stored in the memory 230 provided in the central agent system 200, but the artificial intelligence model 231 does not necessarily have to be stored in the central agent system 200, and each charging station The same artificial intelligence models 231 may be stored in the system of (100).
  • the machine learning unit 220 may be configured to learn the artificial intelligence model 231 through a machine learning method by setting the charging related information as an input variable and the power allocation of the plurality of charging stations 100 as an output variable.
  • Machine learning may mean using a model composed of multiple parameters and optimizing the parameters with given data.
  • Machine learning may include supervised learning, unsupervised learning, and reinforcement learning depending on the form of a learning problem.
  • Supervised learning is to learn the mapping between inputs and outputs, and can be applied when input and output pairs are given as data.
  • Unsupervised learning is applied when there are only inputs and no outputs, and regularities between inputs can be found.
  • machine learning is not necessarily limited to the aforementioned learning method.
  • machine learning may include risk adversarial learning.
  • Adversarial learning can be a learning method that trains neural networks on how to spot intentionally misleading data or behavior.
  • the machine learning unit 220 may learn the artificial intelligence model 231 in various ways. For example, the machine learning unit 220 features features extracted from requested energy information, requested charging speed information, actual energy information, actual charging speed information, and past power allocation history included in a plurality of past charging related information. ) can be learned with a deep learning-based learning method. In this case, a CNN (Convolutional Neural Networks) structure in which several convolutional layers are stacked may be used to learn a method of extracting features from past charging-related information and past power allocation history, but a machine learning unit may be used.
  • the learning method of (220) is not necessarily limited to a method using a CNN structure.
  • the learning method of the machine learning unit 220 may be a method through a machine learning algorithm including a recurrent neural network (RNN).
  • RNN recurrent neural network
  • the artificial intelligence model 231 may include a recurrent neural network that receives the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs.
  • a recurrent neural network is a deep learning model for learning data that changes over time, such as time-series data, and may be an artificial neural network configured by connecting networks at a reference point in time and a next point in time.
  • the machine learning unit 220 may learn the artificial intelligence model 231 so that as much power as possible is delivered to the plurality of electric vehicles 300 for a predetermined reference period through past power distribution histories stored in the recurrent neural network.
  • the charging information collection unit 110, the self-driving electric vehicle classification unit 120, the charging station control unit 130, the central control unit 210, and the machine learning unit 220 are included in the electric vehicle charging infrastructure power distribution system 1. It may include any one processor among a plurality of processors.
  • the electric vehicle charging infrastructure power distribution method according to the embodiments of the present invention described so far and the embodiments to be described in the future may be implemented in the form of a program that can be driven by a processor.
  • the program may include program commands, data files, and data structures alone or in combination.
  • the program may be designed and manufactured using machine language codes or high-level language codes.
  • the program may be specially designed to implement the above-described code correction method, or may be implemented using various functions or definitions that are known and usable to those skilled in the art in the field of computer software.
  • a program for implementing the above information display method may be recorded on a non-transitory recording medium readable by a processor. At this time, the non-transitory recording medium may be the memory 230 .
  • the memory 230 may store a program for performing the above-described operation and an operation to be described later, and the memory 230 may execute the stored program. When there are a plurality of processors and memories 230, they may be integrated into one chip or may be provided in physically separate locations.
  • the memory 230 may include a volatile memory such as static random access memory (S-RAM) or dynamic random access memory (D-lab) for temporarily storing data.
  • the memory 230 may include a ROM (Read Only Memory), an Erasable Programmable Read Only Memory (EPROM), and an Electrically Erasable Programmable Read Only Memory (EEPROM) for long-term storage of control programs and control data. It may contain non-volatile memory.
  • the processor may include various logic circuits and arithmetic circuits, process data according to programs provided from the memory 230, and generate control signals according to processing results.
  • FIG. 2 is a diagram illustrating an electric vehicle charging infrastructure power distribution system according to an embodiment.
  • the central control unit 210 provided in the central agent system 200 may be a DSO controller managed by a distribution system operator.
  • the illustrated electric vehicle charging infrastructure power distribution system 1 is applied to an electric vehicle (EV) 300 including both an electric vehicle 300 driven by a human and an electric vehicle 300 capable of fully autonomous driving without human intervention. Electric charging facilities may be included.
  • EV electric vehicle
  • Electric charging facilities may be included.
  • the DSO controller may be connected to an energy source to energize each electric vehicle supply equipment (EVSE) with a fixed power capacity.
  • EVSE electric vehicle supply equipment
  • the electric vehicle 300 may request power charging through V2X communication at an average charging speed of each time zone. At this time, each electric vehicle 300 may request a certain amount of energy and usable charging time from any one electric vehicle supply equipment.
  • Figure 3 is a diagram showing the overall framework of risk adversarial learning (Risk Adversarial Learning) according to an embodiment.
  • a framework of a Risk Adversarial Learning System for a non-autonomous electric vehicle driven by a person and a charging infrastructure for an autonomous electric vehicle can be confirmed.
  • the framework of the risk adversarial learning system is described below.
  • the electric vehicle 300 may request charging of the electric vehicle supply equipment (EVSE) (201A-201N).
  • the charging request of each electric vehicle 300 may consist of energy demand and session duration, but may be configured differently according to the required number of request parameters.
  • the EVs Charging Data 202A-202N of the electric vehicle 300 may include all types of information necessary for the charging schedule of the electric vehicle 300.
  • the charging-related information may include energy demand of the electric vehicle 300, session duration request, charging start time, charging end time, electric vehicle disconnection time, and actual delivered energy.
  • Each electric vehicle supply equipment can estimate its own compensation based on the current charging request of the electric vehicle 300 and the adversarial risk of the Centralized Risk Adversarial Agent (RAA) that analyzes the inaccurate laxity. there is.
  • RAA Centralized Risk Adversarial Agent
  • the machine learning unit 220 is not only present in the central agent system 200, but may also be provided in the electric vehicle supply equipment of each charging station 100, and each electric vehicle supply equipment is reward-based hostile risk (Reward). Based on Adversarial Risk) (203A-203N).
  • the learning agent (EVSE-LA) of each electric vehicle supply equipment can learn and discretize its own EV session scheduling policy in response to the unreasonable risk of adversarial agents. While the learning agent for each electric vehicle supply equipment has its own Markov Decision Process (MDP), the decision of each EV session schedule (e.g. schedule indicator, expected energy demand, delivery rate, and charging duration) is dependent on the risk of inaccuracies in the CBaR-Tail distribution. It can be affected by laxity. This compensation can be used for optimal scheduling decisions and charging policy decisions by the electric vehicle supply equipment. In addition, the central risk adversarial agent can use all rewards for analysis on adversarial laxity.
  • MDP Markov Decision Process
  • Each Electric Vehicle Supply Equipment may determine the EVSE Agent Charging Policy (204A-204N) according to the advice of the Central Risk Adversarial Agent (RAA). For example, if a recurrent neural network (RNN) having the same configuration is used, it is possible to collect characteristics dependent on a specific time of an uncertain operation in response to a charging request of the electric vehicle 300 . Additionally, power allocation policies can be established by determining reservations or queues, expected energy demand, energy delivery rate, and charging duration.
  • RUA Central Risk Adversarial Agent
  • the charging infrastructure power distribution system may perform characterization of charging behaviors (205).
  • the fully autonomous driving electric vehicle AV
  • EVSE electric vehicle supply system
  • the electric vehicle supply device can maximize the utilization of energy resources, so the charging schedule and power distribution to the fully autonomous electric vehicle can be rationalized.
  • non-autonomous electric vehicles driven by humans have a problem in that there is no guarantee that an accurate amount of energy and charging time are required from an electric vehicle supply device due to manual interaction of individuals.
  • a rational charging session scheduling decision for the electric vehicle 300 is related not only to the ratio of the actual charging time to the total connection time, but also to the ratio between the amount of energy delivered by the electric vehicle supply and the requested energy of the electric vehicle 300. . Therefore, estimating the inaccuracy (looseness) of the DSO controller, i.e., the central control unit 210, may be one of the methods suitable for characterizing the charging operation.
  • the laxity of each EV request is the requested energy information (Requested energy), the requested charging rate information (Demand rate), the actual energy information (Delivered energy), and the actual charging rate information. (Charging rate).
  • the central control unit 210 may calculate the requested charging time of the electric vehicle 300 based on the requested energy information and the requested charging speed information. Specifically, the central control unit 210 may calculate the requested charging time by dividing the value of the requested energy information by the value of the requested charging speed information.
  • the central control unit 210 may calculate the actual charging time of the electric vehicle 300 based on the actual energy information and the actual charging speed information. Specifically, the actual charging time may be calculated by dividing the value of the actual energy information by the value of the actual charging speed information.
  • the central control unit 210 may calculate a charging time error for each charging activity based on the actual charging time of the requested charging time. Specifically, the central control unit 210 may determine a charging time error, which is a value obtained by subtracting the actual charging time from the requested charging time, as the laxity of each EV request.
  • the machine learning unit 220 sets the charging time error as an input variable and sets the power allocation amount of the plurality of charging stations 100 as an output variable to deliver the maximum amount of power to the plurality of electric vehicles 300, thereby performing a machine learning method. Through this, the artificial intelligence model 231 can be learned.
  • the electric vehicle charging infrastructure power distribution system (1) distinguishes between fully autonomous electric vehicles and non-autonomous driving electric vehicles, and sets only the charging-related information of the non-autonomous driving electric vehicles as input variables to perform machine learning. need something
  • the self-driving electric vehicle classifying unit 120 may classify the electric vehicle 300 that has delivered charging-related information as a non-self-driving electric vehicle directly driven by a person if the charging time error is equal to or greater than the reference time error.
  • the reference time error may be a value of a charging time error that is a standard for distinguishing whether the electric vehicle 300 that has requested charging is a fully autonomous driving electric vehicle or a non-autonomous driving electric vehicle.
  • the machine learning unit 220 sets the requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of non-autonomous electric vehicles as input variables, and sets the maximum amount of power to the plurality of electric vehicles 300.
  • the artificial intelligence model 231 may be learned through a machine learning method by setting the power allocation of the plurality of charging stations 100 as an output variable to deliver.
  • the central control unit 210 generates an artificial intelligence model 231 based on location information of a plurality of non-autonomous driving electric vehicles, location information of a plurality of self-driving electric vehicles, current time information, and location information of a plurality of charging stations 100. It is possible to determine the power allocation of each charging station 100 by using.
  • the adversarial laxity analysis process 206 of the central risk adversarial agent may be an adversarial machine learning process.
  • the electric vehicle charging infrastructure power distribution system 1 may be a Risk Adversarial Multiple Learning Agent Learning System (RAMALS) in which the charging behavior of the electric vehicle 300 is learned in a data-based manner.
  • RAMALS Risk Adversarial Multiple Learning Agent Learning System
  • the artificial intelligence model 231 may include an adversarial learning neural network that receives risk adversarial information as an input.
  • the machine learning unit 220 may generate risk hostile information based on requested energy information, requested charging speed information, actual energy information, and actual charging speed information of a plurality of non-autonomous electric vehicles.
  • the machine learning unit 220 may perform adversarial machine learning on the artificial intelligence model 231 so that the maximum amount of power is delivered to the plurality of electric vehicles 300 through the past power distribution history stored in the adversarial learning neural network. there is.
  • the central control unit 210 may analyze inaccurate laxity in the charging operation of the electric vehicle 300 by using Conditional Value at Risk (CVaR). While the decision of each electric vehicle charging session is quantified in the CVaR-Tail risk distribution of laxity, a strong correlation can be established between the energy demand and supply behavior of the charging system. Thus, an inaccurate laxity can cause each electric vehicle supply equipment to meet an efficient electric vehicle charging schedule.
  • CVaR Conditional Value at Risk
  • Observed Memory 207 is a vector for each electric vehicle 300 of the electric vehicle supply equipment, and the behavior of the electric vehicles 300 in the past, compensation, past power distribution history, and recurrent neural network (RNN). can be configured. During the information acquisition period, information acquisition may be performed in the learning agent EVSE-LA of the electric vehicle supply equipment.
  • At least one component may be added or deleted corresponding to the performance of the components described above.
  • the mutual positions of the components can be changed corresponding to the performance or structure of the system.
  • FIG. 4 is a flowchart of a method of distributing power to each charging station according to an embodiment.
  • the charging information collection unit 110 provided in each of the plurality of charging stations 100 may collect charging-related information from an electric vehicle 300 that wants to charge power at the charging station 100 (1001 ). At this time, the charging information collection unit 110 may receive requested energy information and requested charging speed information from the electric vehicle 300, and may collect information on actual energy and actual charging speed information charged by the electric vehicle 300.
  • the machine learning unit 220 sets the charging related information as an input variable and sets the power allocation of the plurality of charging stations 100 as an output variable to learn the artificial intelligence model 231 through a machine learning method. can (1002). At this time, the machine learning unit 220 may learn the artificial intelligence model 231 so that the maximum amount of power is delivered to the plurality of electric vehicles 300 through the past power distribution history stored in the recurrent neural network.
  • the central control unit 210 receives charging-related information from the plurality of charging information collection units 110 and uses the artificial intelligence model 231 based on the charging-related information collected for each charging station 100 for each charging station. A power allocation amount of (100) may be determined (1003). At this time, the central control unit 210 sets the artificial intelligence model 231 based on the location information of the plurality of non-autonomous driving electric vehicles, the location information of the plurality of self-driving electric vehicles, the current time information, and the location information of the plurality of charging stations 100. ) can be used to determine the power allocation of each charging station 100.
  • the energy distribution unit may distribute the amount of power allocated to the plurality of charging stations 100 based on the determined power allocation amount (1004).
  • FIG. 5 is a flowchart of a method for learning an artificial intelligence model according to an embodiment.
  • the central control unit 210 may calculate the requested charging time of the electric vehicle 300 based on the requested energy information and the requested charging speed information (2001).
  • the central control unit 210 may calculate the actual charging time of the electric vehicle 300 based on the actual energy information and the actual charging speed information (2002).
  • the central control unit 210 may calculate a charging time error for each charging activity based on the requested charging time and the actual charging time (2003).
  • the electric vehicle classification unit may classify the electric vehicle 300 that has delivered charging-related information as a non-autonomous electric vehicle driven by a person (2004). In this case, if the charging time error is less than the reference time error, the electric vehicle classification unit may classify the electric vehicle 300 that has transmitted the charging-related information as a completely self-driving electric vehicle.
  • the machine learning unit 220 sets the requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of non-autonomous electric vehicles as input variables, and sets the maximum amount of power to the plurality of electric vehicles 300.
  • the artificial intelligence model 231 may be learned through a machine learning method by setting the power allocation of the plurality of charging stations 100 as an output variable to deliver (2005).
  • FIG. 6 is a graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment
  • FIG. 7 is another graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment.
  • the electric vehicle charging rate is improved by the performance of the proposed risk adversarial multi-agent learning system (RAMALS), that is, the electric vehicle charging infrastructure power distribution system 1 .
  • RAMALS risk adversarial multi-agent learning system
  • the proposed electric vehicle charging infrastructure power distribution system (1) will improve the electric vehicle charging rate of Caltech EVSE site by about 71.4%, 40% and 46.6%, respectively. can confirm that it can.
  • This improvement in charging speed occurs due to rational scheduling by the electric vehicle charging infrastructure power distribution system (1), and may be due to improving the charging capacity of the EVSE site with data-based scheduling that significantly reduces the idle charging time of the electric vehicle supply equipment. there is.
  • FIG. 7 a graph in which performance is compared based on the total active EV charging time of the JPL EVSE site from October 16, 2019 to December 31, 2019 can be seen.
  • the total active charging time of 52 EVSE included in the JPL EVSE site can be confirmed, and the active charging time can be improved from 8 hours to 40 hours compared to the conventional power distribution method for the JPL EVSE site can confirm.
  • the proposed electric vehicle charging infrastructure power distribution system (1) can handle the uncertain electric vehicle charging demand during scheduling of each electric vehicle supply equipment using data-informed rational decisions from prior knowledge, the proposed electric vehicle charging infrastructure It can be seen that the performance of the power distribution system 1 is higher than that of the conventional A3C-based framework and A2C-based system. Specifically, it can be confirmed that the proposed electric vehicle charging infrastructure power distribution system 1, that is, RAMALS, can significantly improve (ie, about 28.6%) the active charging time of each electric vehicle supply equipment.

Abstract

A disclosed electric vehicle charging infrastructure power distribution system according to one embodiment of the present invention may comprise: a charging information collection unit which is provided at each of a plurality of charging stations and which collects charging-related information from an electric vehicle that is to be charged with power at the charging station; a central control unit which receives the charging-related information from a plurality of charging information collection units and which determines a power assignment amount of each charging station by using an artificial intelligence model on the basis of the charging-related information collected at each charging station; and an energy distribution unit for distributing, on the basis of the determined power assignment amount, power amounts assigned to the plurality of charging stations.

Description

전기자동차 충전인프라 전력 배분을 위한 적대적 학습 시스템Adversarial Learning System for Electric Vehicle Charging Infrastructure Power Distribution -Journal of the Korea Convergence Society Korea Science
본 발명은 적대적 기계학습을 통하여 전력을 복수의 충전소에 효율적으로 배분할 수 있는 전기자동차 충전인프라 전력 배분 시스템에 관한 것이다.The present invention relates to an electric vehicle charging infrastructure power distribution system capable of efficiently distributing power to a plurality of charging stations through adversarial machine learning.
본 발명은 과학기술정보통신부의 집단연구지원(과제고유번호: 1711135177, 과제번호: 2020R1A4A1018607, 연구과제명: Meta Federated Learning 기반 이동엣지 컴퓨팅시스템 핵심구조 개발, 과제관리기관: 한국연구재단, 과제수행기관: 경희대학교 산학협력단, 연구기간: 2021.06.01.~2022.02.28.) 및 과학기술정보통신부의 정보통신방송혁신인재양성(과제고유번호: 1711139517, 과제번호: 2021-0-02068, 연구과제명: 인공지능 혁신 허브 개발, 과제관리기관: 정보통신기획평가원, 과제수행기관: 고려대학교, 연구기간: 2021.07.01.~2021.12.31.)의 일환으로 수행한 연구로부터 도출된 것이다. 한편, 본 발명의 모든 측면에서 한국 정부의 재산 이익은 없다.The present invention was supported by the group research support of the Ministry of Science and ICT (Task number: 1711135177, task number: 2020R1A4A1018607, research task name: Meta Federated Learning-based mobile edge computing system core structure development, task management institution: National Research Foundation of Korea, task performing agency : Kyunghee University Industry-University Cooperation Foundation, research period: 2021.06.01.~2022.02.28.) and Ministry of Science and ICT (Ministry of Science and ICT) Information Communication Broadcasting Innovation Talent Fostering (Task number: 1711139517, task number: 2021-0-02068, research task name : AI innovation hub development, task management institution: National Institute of Information and Communications Technology Evaluation and Planning, task executing institution: Korea University, research period: 2021.07.01. ~ 2021.12.31.) Meanwhile, there is no property interest of the Korean government in any aspect of the present invention.
일반적으로 전기자동차는 유인 전기자동차와 완전 자율주행 전기자동차의 두 가지 유형으로 분류된다. 또한, 전기자동차 충전 인프라에서 전기자동차는 무선 통신 기술을 통하여 시스템에 연결된다. 전기자동차의 충전 요구 사항과 실제 동작이 다르기 때문에 전기 자동차의 충전 동작을 포착하려면 유인 전기자동차와 완전 자율주행 전기자동차의 동작을 모두 고려하는 것이 필수적이다.In general, electric vehicles are classified into two types: manned electric vehicles and fully autonomous electric vehicles. In addition, in the electric vehicle charging infrastructure, the electric vehicle is connected to the system through wireless communication technology. Because the charging requirements and actual behavior of EVs are different, it is essential to consider the behaviors of both manned EVs and fully autonomous EVs in order to capture the charging behavior of EVs.
완전 자율주행 전기자동차는 환경을 감지하고 인간의 입력이 거의 또는 전혀 없이도 안전하게 이동할 수 있으며, 자체적으로 자율적인 결정을 내릴 수 있는 강력한 연산 능력과 대용량 데이터 저장 장치를 갖추고 있다. 따라서 완전 자율주행 전기자동차는 자체 분석 및 충전을 위해 배전 시스템 운영자(DSO: Distribution System Operator)가 선택한 전기 자동차 공급 장비(EVSE: Electric Vehicle Supply Equipment)에 대한 기동에서 EVSE에 대한 정확한 에너지 수요량을 추정하고 요청할 수 있다.Fully self-driving electric vehicles can sense their environment, move safely with little or no human input, and have powerful computing power and large data storage capable of making autonomous decisions on their own. Therefore, the fully autonomous electric vehicle estimates the exact energy demand for the EVSE at startup for the Electric Vehicle Supply Equipment (EVSE) selected by the Distribution System Operator (DSO) for self-analysis and charging. can request
한편, 유인 전기자동차는 다른 차량, 기반시설, 장치와 무선으로 교통정보 등의 정보를 통신에 인간이 개입하게 된다. 따라서, 에너지 수요를 요청하려면 인간의 상호 작용이 필하고, 유인 전기자동차는 차량 충전을 위한 정확한 에너지의 양과 충전 시간을 요구한다는 보장이 없다. 또한, 차량 충전을 위해 DSO가 선택한 EVSE에서 충전을 할지 여부는 전적으로 운전자에 달려 있다. 이로 인해 DSO의 예정된 EVSE와 실제로 충전에 이용되는 EVSE 간에 불일치가 발생할 수 있다는 문제가 있다.On the other hand, manned electric vehicles involve humans in communicating information such as traffic information wirelessly with other vehicles, infrastructure, and devices. Therefore, there is no guarantee that human interaction is required to request energy demand, and manned electric vehicles require the exact amount of energy and charging time for vehicle charging. Additionally, it is entirely up to the driver whether or not to charge at the EVSE chosen by the DSO for vehicle charging. Due to this, there is a problem that a discrepancy may occur between the planned EVSE of the DSO and the EVSE actually used for charging.
따라서, 전기자동차 충전 일정의 결정은 DSO가 가용 전력의 사용을 극대화할 수 있도록 유인 전기자동차의 충전 행위에 대해서도 합리적으로 고려하는 것이 필요하다. 즉, 모든 EVSE의 전체 전력 사용을 최대화하기 위해 EVSE에 모든 전기자동차의 충전 행위에 대한 에너지, 충전 시간, 에너지 전달 속도 및 기타 요소를 할당하고 EVSE의 전체 전력 활용을 극대화할 수 있는 전력 배분 시스템이 필요하다.Therefore, when determining the EV charging schedule, it is necessary for the DSO to reasonably consider the charging behavior of manned EVs so that the DSO can maximize the use of available power. In other words, in order to maximize the overall power use of all EVSEs, a power distribution system that can allocate energy, charging time, energy transfer rate, and other factors for the charging behavior of all EVSEs to EVSEs and maximize the overall power utilization of EVSEs is required. need.
본 발명은 각 EVSE 에너지 사용을 전체적으로 증가시켜 전체 전기 이용률을 극대화할 수 있는 전기자동차 충전인프라 전력 배분 시스템을 제공하기 위한 것이다.The present invention is to provide an electric vehicle charging infrastructure power distribution system capable of maximizing the overall electricity utilization by increasing the use of each EVSE energy as a whole.
또한, 본 발명은 인간이 운전하는 유인 전기자동차의 비합리적인 충전 세션 요청을 데이터 정보 방식으로 처리하여 불합리한 전기자동차 충전 스케줄링 문제를 보다 능동적이고 효율적으로 극복할 수 있는 전기자동차 충전인프라 전력 배분 시스템을 제공하기 위한 것이다.In addition, the present invention is to provide an electric vehicle charging infrastructure power distribution system that can more actively and efficiently overcome the irrational electric vehicle charging scheduling problem by processing an irrational charging session request of a manned electric vehicle driven by a human in a data information method. it is for
또한, 본 발명은 종래의 전기자동차 충전 시스템보다 전체적인 충전 인프라에서의 충전 속도를 개선하고, 충전 세션 이행률을 크게 증가시킬 수 있는 전기자동차 충전인프라 전력 배분 시스템을 제공하기 위한 것이다.In addition, the present invention is to provide an electric vehicle charging infrastructure power distribution system capable of improving the charging speed in the overall charging infrastructure and greatly increasing the charging session fulfillment rate compared to the conventional electric vehicle charging system.
개시된 발명의 일 측면에 따른 전기자동차 충전인프라 전력 배분 시스템 은, 복수의 충전소에 각각 마련되고 상기 충전소에서 전력을 충전하고자 하는 전기자동차로부터 충전 관련 정보를 수집하도록 구성되는 충전 정보 수집부; 복수의 상기 충전 정보 수집부로부터 상기 충전 관련 정보를 전달받고, 각각의 충전소마다 수집된 상기 충전 관련 정보를 기초로 인공지능 모델을 이용하여 각각의 충전소의 전력 할당량을 결정하도록 구성되는 중앙 제어부; 및 상기 결정된 전력 할당량을 기초로 복수의 상기 충전소에 할당된 전력량을 분배하도록 구성되는 에너지 분배부를 포함할 수 있다.An electric vehicle charging infrastructure power distribution system according to an aspect of the disclosed invention includes a charging information collection unit provided at a plurality of charging stations and configured to collect charging-related information from an electric vehicle to be charged at the charging station; A central control unit configured to receive the charging-related information from the plurality of charging information collection units and to determine a power allocation amount of each charging station by using an artificial intelligence model based on the charging-related information collected for each charging station; and an energy distribution unit configured to distribute the amount of power allocated to the plurality of charging stations based on the determined power allocation amount.
또한, 상기 충전 관련 정보를 입력 변수로 하고, 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하도록 구성되는 기계학습부를 더 포함할 수 있다.In addition, a machine learning unit configured to learn the artificial intelligence model through a machine learning method by setting the charging related information as an input variable and setting the power allocation amount of the plurality of charging stations as an output variable may be further included.
또한, 상기 충전 정보 수집부는: 상기 전기자동차로부터 요청 에너지 정보 및 요청 충전 속도 정보를 수신하고; 그리고 상기 전기자동차가 충전한 실제 에너지 정보 및 실제 충전 속도 정보를 수집하도록 구성될 수 있다.In addition, the charging information collection unit: receives requested energy information and requested charging speed information from the electric vehicle; And it can be configured to collect the actual energy information and actual charging speed information charged by the electric vehicle.
또한, 상기 중앙 제어부는: 상기 요청 에너지 정보 및 요청 충전 속도 정보를 기초로 상기 전기자동차의 요청 충전 시간을 계산하고; 상기 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 상기 전기자동차의 실제 충전 시간을 계산하고; 그리고 상기 요청 충전 시간 및 상기 실제 충전 시간을 기초로 각각의 충전 행위에 대한 충전 시간 오차를 계산하도록 구성될 수 있다.In addition, the central control unit: calculates a requested charging time of the electric vehicle based on the requested energy information and the requested charging speed information; calculating an actual charging time of the electric vehicle based on the actual energy information and the actual charging speed information; And it may be configured to calculate a charging time error for each charging activity based on the requested charging time and the actual charging time.
또한, 상기 기계학습부는, 상기 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하도록 구성될 수 있다.In addition, the machine learning unit sets the charging time error as an input variable and sets the power allocation amount of the plurality of charging stations as an output variable so as to deliver the maximum amount of electricity to the plurality of electric vehicles. It can be configured to learn an intelligence model.
또한, 상기 충전 시간 오차가 기준 시간 오차 이상이면 상기 충전 관련 정보를 전달한 전기자동차를 사람이 직접 운전하는 비자율주행 전기자동차로 분류하도록 구성되는 자율주행 전기자동차 분류부를 더 포함할 수 있다.The vehicle may further include a self-driving electric vehicle classification unit configured to classify the electric vehicle that has delivered the charging-related information as a non-self-driving electric vehicle driven directly by a human when the charging time error is greater than or equal to a reference time error.
또한, 상기 기계학습부는: 복수의 상기 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 요청 충전 시간 및 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하도록 구성될 수 있다.In addition, the machine learning unit: sets the requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of non-autonomous electric vehicles as input variables, and transmits the maximum amount of power to the plurality of electric vehicles. It may be configured to learn the artificial intelligence model through a machine learning method by setting the power allocation of the plurality of charging stations as an output variable to do so.
또한, 상기 중앙 제어부는: 복수의 상기 비자율주행 전기자동차의 위치정보, 복수의 자율주행 전기자동차의 위치정보, 현재 시간 정보 및 복수의 상기 충전소의 위치 정보를 기초로 인공지능 모델을 이용하여 각각의 충전소의 전력 할당량을 결정하도록 구성될 수 있다.In addition, the central control unit: based on the location information of the plurality of self-driving electric vehicles, the location information of the plurality of self-driving electric vehicles, the current time information, and the location information of the plurality of charging stations, each using an artificial intelligence model. It may be configured to determine the power allocation of the charging station of the.
또한, 상기 인공지능 모델은, 위험 적대적 정보를 입력으로 받는 적대적 학습(Adversarial Learning) 신경망을 포함하고, 상기 기계학습부는: 복수의 상기 비자율주행 전기자동차의 상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 기초로 상기 위험 적대적 정보를 생성하고; 그리고 상기 적대적 학습 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 적대적 기계 학습(Adversarial Machine Learning)하도록 구성될 수 있다.In addition, the artificial intelligence model includes an adversarial learning neural network that receives risk adversarial information as an input, and the machine learning unit includes: the requested energy information and the requested charging speed information of the plurality of self-driving electric vehicles. , generate the danger adversarial information based on the actual energy information and the actual charging rate information; And it may be configured to perform adversarial machine learning on the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the adversarial learning neural network.
또한, 상기 인공지능 모델은, 상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 입력으로 받는 순환 신경망(Recurrent Neural Network)을 포함하고, 상기 기계학습부는, 상기 순환 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 학습하도록 구성될 수 있다.In addition, the artificial intelligence model includes a recurrent neural network that receives the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs, and the machine learning unit includes the It may be configured to learn the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the recurrent neural network.
개시된 발명의 일 측면에 따른 전기자동차 충전인프라 전력 배분 방법은, 복수의 충전소에 각각 마련되는 충전 정보 수집부에 의해, 상기 충전소에서 전력을 충전하고자 하는 전기자동차로부터 충전 관련 정보를 수집하는 단계; 중앙 제어부에 의해, 복수의 상기 충전 정보 수집부로부터 상기 충전 관련 정보를 전달받고, 각각의 충전소마다 수집된 상기 충전 관련 정보를 기초로 인공지능 모델을 이용하여 각각의 충전소의 전력 할당량을 결정하는 단계; 및 에너지 분배부에 의해, 상기 결정된 전력 할당량을 기초로 복수의 상기 충전소에 할당된 전력량을 분배하는 단계를 포함할 수 있다.An electric vehicle charging infrastructure power distribution method according to an aspect of the disclosed invention includes the steps of collecting charging-related information from an electric vehicle to be charged at a charging station by a charging information collection unit provided at each of a plurality of charging stations; Receiving, by a central control unit, the charging-related information from a plurality of charging information collection units, and determining a power allocation of each charging station using an artificial intelligence model based on the charging-related information collected for each charging station. ; and distributing, by an energy distribution unit, an amount of power allocated to the plurality of charging stations based on the determined power allocation amount.
또한, 기계학습부에 의해, 상기 충전 관련 정보를 입력 변수로 하고, 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하는 단계를 더 포함할 수 있다.The method may further include, by a machine learning unit, learning the artificial intelligence model through a machine learning method by setting the charging related information as an input variable and setting the power allocation amount of the plurality of charging stations as an output variable. .
또한, 상기 충전 관련 정보를 수집하는 단계는, 상기 충전 정보 수집부에 의해, 상기 전기자동차로부터 요청 에너지 정보 및 요청 충전 속도 정보를 수신하는 단계; 및 상기 충전 정보 수집부에 의해, 상기 전기자동차가 충전한 실제 에너지 정보 및 실제 충전 속도 정보를 수집하는 단계를 포함할 수 있다.The collecting of the charging-related information may include receiving, by the charging information collection unit, requested energy information and requested charging speed information from the electric vehicle; and collecting actual energy information and actual charging speed information charged by the electric vehicle by the charging information collection unit.
또한, 상기 중앙 제어부에 의해, 상기 요청 에너지 정보 및 요청 충전 속도 정보를 기초로 상기 전기자동차의 요청 충전 시간을 계산하는 단계; 상기 중앙 제어부에 의해, 상기 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 상기 전기자동차의 실제 충전 시간을 계산하는 단계; 및 상기 중앙 제어부에 의해, 상기 요청 충전 시간 및 상기 실제 충전 시간을 기초로 각각의 충전 행위에 대한 충전 시간 오차를 계산하는 단계를 더 포함할 수 있다.In addition, calculating, by the central control unit, a requested charging time of the electric vehicle based on the requested energy information and the requested charging speed information; calculating, by the central control unit, an actual charging time of the electric vehicle based on the actual energy information and the actual charging speed information; and calculating, by the central controller, a charging time error for each charging activity based on the requested charging time and the actual charging time.
또한, 상기 인공지능 모델을 학습하는 단계는, 상기 기계학습부에 의해, 상기 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하는 단계를 포함할 수 있다.In addition, in the step of learning the artificial intelligence model, the machine learning unit sets the charging time error as an input variable and determines the power allocation of the plurality of charging stations to deliver the maximum amount of power to the plurality of electric vehicles. It may include setting as an output variable and learning the artificial intelligence model through a machine learning method.
또한, 자율주행 전기자동차 분류부에 의해, 상기 충전 시간 오차가 기준 시간 오차 이상이면 상기 충전 관련 정보를 전달한 전기자동차를 사람이 직접 운전하는 비자율주행 전기자동차로 분류하는 단계를 더 포함할 수 있다.The method may further include classifying, by a self-driving electric vehicle classification unit, an electric vehicle that has delivered the charging-related information as a non-self-driving electric vehicle directly driven by a person if the charging time error is greater than or equal to a reference time error. .
또한, 상기 인공지능 모델을 학습하는 단계는, 상기 기계학습부에 의해, 복수의 상기 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 요청 충전 시간 및 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하는 단계를 포함할 수 있다.In addition, in the step of learning the artificial intelligence model, the machine learning unit sets requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of self-driving electric vehicles as input variables, , learning the artificial intelligence model through a machine learning method by setting the power allocation amount of the plurality of charging stations as an output variable so as to deliver the maximum amount of power to the plurality of electric vehicles.
또한, 상기 인공지능 모델은, 위험 적대적 정보를 입력으로 받는 적대적 학습 신경망을 포함하고, 상기 인공지능 모델을 학습하는 단계는, 상기 기계학습부에 의해, 복수의 상기 비자율주행 전기자동차의 상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 기초로 상기 위험 적대적 정보를 생성하는 단계; 및 상기 기계학습부에 의해, 상기 적대적 학습 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 적대적 기계 학습하는 단계를 포함할 수 있다.In addition, the artificial intelligence model includes an adversarial learning neural network that receives risk hostile information as an input, and the step of learning the artificial intelligence model is, by the machine learning unit, the request of the plurality of self-driving electric vehicles. generating the risk hostile information based on energy information, the requested charging speed information, the actual energy information, and the actual charging speed information; and performing adversarial machine learning on the artificial intelligence model by the machine learning unit so that a maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the adversarial learning neural network.
또한, 상기 인공지능 모델은, 상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 입력으로 받는 순환 신경망을 포함하고, 상기 인공지능 모델을 학습하는 단계는, 상기 기계학습부에 의해, 상기 순환 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 학습하는 단계를 포함할 수 있다.In addition, the artificial intelligence model includes a recurrent neural network receiving the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs, and learning the artificial intelligence model comprises: The method may include learning, by a machine learning unit, the artificial intelligence model so that a maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the recurrent neural network.
개시된 발명의 일 측면에 따른 비일시적 기록매체는, 전기자동차 충전인프라 전력 배분 방법을 실행하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 비일시적 기록매체일 수 있다.A non-transitory recording medium according to an aspect of the disclosed invention may be a computer-readable non-transitory recording medium on which a program for executing a method for distributing electric vehicle charging infrastructure power is recorded.
개시된 발명의 일 측면에 따르면, 각 EVSE 에너지 사용을 전체적으로 증가시켜 전체 전기 이용률을 극대화할 수 있다.According to one aspect of the disclosed invention, it is possible to maximize overall electricity utilization by increasing the use of each EVSE energy as a whole.
또한, 본 발명의 실시예에 의하면, 인간이 운전하는 유인 전기자동차의 비합리적인 충전 세션 요청을 데이터 정보 방식으로 처리하여 불합리한 전기자동차 충전 스케줄링 문제를 보다 능동적이고 효율적으로 극복할 수 있다.In addition, according to an embodiment of the present invention, it is possible to more actively and efficiently overcome the irrational electric vehicle charging scheduling problem by processing an irrational charging session request of a manned electric vehicle driven by a human using a data information method.
또한, 본 발명의 실시예에 의하면, 종래의 전기자동차 충전 시스템보다 전체적인 충전 인프라에서의 충전 속도를 개선하고, 충전 세션 이행률을 크게 증가시킬 수 있다.In addition, according to an embodiment of the present invention, the charging speed in the entire charging infrastructure can be improved and the charging session fulfillment rate can be greatly increased compared to the conventional electric vehicle charging system.
도 1은 일 실시예에 따른 전기자동차 충전인프라 전력 배분 시스템의 제어 블록도이다.1 is a control block diagram of an electric vehicle charging infrastructure power distribution system according to an embodiment.
도 2는 일 실시예에 따른 전기자동차 충전인프라 전력 배분 시스템을 도시한 도면이다.2 is a diagram illustrating an electric vehicle charging infrastructure power distribution system according to an embodiment.
도 3은 일 실시예에 따른 위험 적대적 학습(Risk Adversarial Learning)의 전체 프레임워크를 도시한 도면이다.Figure 3 is a diagram showing the overall framework of risk adversarial learning (Risk Adversarial Learning) according to an embodiment.
도 4는 일 실시예에 따른 전력을 각 충전소에 배분하는 방법의 순서도이다.4 is a flowchart of a method of distributing power to each charging station according to an embodiment.
도 5는 일 실시예에 따른 인공지능 모델을 학습하는 방법의 순서도이다.5 is a flowchart of a method for learning an artificial intelligence model according to an embodiment.
도 6은 일 실시예에 따른 전기자동차 충전인프라 전력 배분 방법의 실험 결과를 나타낸 그래프이다.6 is a graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment.
도 7은 일 실시예에 따른 전기자동차 충전인프라 전력 배분 방법의 실험 결과를 나타낸 또다른 그래프이다.7 is another graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 개시된 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '~부'라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '~부'가 하나의 구성요소로 구현되거나, 하나의 '~부'가 복수의 구성요소들을 포함하는 것도 가능하다.Like reference numbers designate like elements throughout the specification. This specification does not describe all elements of the embodiments, and general content or overlapping content between the embodiments in the technical field to which the disclosed invention belongs is omitted. The term '~unit' used in the specification may be implemented in software or hardware, and according to embodiments, a plurality of '~units' may be implemented as one component, or one '~unit' may constitute a plurality of components. It is also possible to include elements.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, when a certain component is said to "include", this means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용되는 '~부'는 적어도 하나의 기능이나 동작을 처리하는 단위로서, 예를 들어 소프트웨어, FPGA 또는 하드웨어 구성요소를 의미할 수 있다. '~부'에서 제공하는 기능은 복수의 구성요소에 의해 분리되어 수행되거나, 다른 추가적인 구성요소와 통합될 수도 있다. 본 명세서의 '~부'는 반드시 소프트웨어 또는 하드웨어에 한정되지 않으며, 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고, 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다.'~ unit' used in this specification is a unit that processes at least one function or operation, and may mean, for example, software, an FPGA, or a hardware component. Functions provided by '~unit' may be performed separately by a plurality of components or may be integrated with other additional components. '~unit' in this specification is not necessarily limited to software or hardware, and may be configured to be in an addressable storage medium or configured to reproduce one or more processors.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
각 단계들에 있어 식별부호는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다.In each step, the identification code is used for convenience of description, and the identification code does not explain the order of each step, and each step may be performed in a different order from the specified order unless a specific order is clearly described in context. there is.
이하 첨부된 도면들을 참고하여 개시된 발명의 작용 원리 및 실시예들에 대해 설명한다.Hereinafter, the working principle and embodiments of the disclosed invention will be described with reference to the accompanying drawings.
도 1은 일 실시예에 따른 전기자동차 충전인프라 전력 배분 시스템의 제어 블록도이다.1 is a control block diagram of an electric vehicle charging infrastructure power distribution system according to an embodiment.
도 1을 참조하면, 포함하는 전기자동차 충전인프라 전력 배분 시스템(1)은 복수의 충전소(100) 및 중앙 에이전트 시스템(200)으로 구성될 수 있다.Referring to FIG. 1 , an electric vehicle charging infrastructure power distribution system 1 including a plurality of charging stations 100 and a central agent system 200 may be configured.
충전소(100)는 전기자동차(300)에 전기에너지를 공급하는 적어도 하나 이상의 전기 차량 공급 장비(EVSE: Electric Vehicle Supply Equipment)가 구비될 수 있다. 각각의 충전소(100)는 여러 지역에 분산되어 배치되어 있을 수 있다.The charging station 100 may include at least one electric vehicle supply equipment (EVSE) that supplies electric energy to the electric vehicle 300 . Each charging station 100 may be distributed and disposed in several regions.
충전소(100)는 충전 정보 수집부(110), 자율주행 전기자동차 분류부(120), 충전소 제어부(130)를 포함할 수 있다.The charging station 100 may include a charging information collection unit 110, an autonomous driving electric vehicle classification unit 120, and a charging station control unit 130.
중앙 에이전트 시스템(200)은 배전 시스템 운영자(DSO: Distribution System Operator)가 관리하는 서버에 마련될 수 있으나 반드시 중앙 에이전트 시스템(200)이 서버에 마련되어야 하는 것은 아니다.The central agent system 200 may be provided in a server managed by a distribution system operator (DSO), but the central agent system 200 does not necessarily have to be provided in the server.
한편, 중앙 에이전트 시스템(200)은 통신 모듈을 통해 복수의 충전소(100)들과 유무선의 통신이 가능할 수 있다.Meanwhile, the central agent system 200 may communicate with a plurality of charging stations 100 through wired and wireless communication through a communication module.
중앙 에이전트 시스템(200)은 과거의 전기자동차 충전 요청, 충전 사례 및 그러한 충전 사례들이 있었을 때의 전력 배분 히스토리를 기초로 인공지능 모델(231)을 학습하고, 학습된 인공지능 모델(231)을 이용하여 현재의 정보를 기준으로 충전소별 전력 할당량을 결정할 수 있다.The central agent system 200 learns the artificial intelligence model 231 based on past electric vehicle charging requests, charging cases, and power distribution history when there were such charging cases, and uses the learned artificial intelligence model 231. Therefore, it is possible to determine the power allocation for each charging station based on the current information.
중앙 에이전트 시스템(200)은 중앙 제어부(210), 기계학습부(220), 메모리(230)를 포함할 수 있다.The central agent system 200 may include a central control unit 210, a machine learning unit 220, and a memory 230.
충전 정보 수집부(110)는 복수의 충전소(100)에 각각 마련되어 해당 충전소(100)에서 전력을 충전하고자 하는 전기자동차(300)로부터 충전 관련 정보를 수집할 수 있다.The charging information collection unit 110 is provided in each of the plurality of charging stations 100 and may collect charging-related information from the electric vehicle 300 that wants to charge power at the corresponding charging station 100 .
충전 관련 정보는 충전을 원하는 전기자동차(300) 측에서 전달한 요청 에너지 정보, 요청 충전 속도 정보를 포함할 수 있다. 또한, 충전 관련 정보는 해당 전기자동차(300)가 충전한 실제 에너지 정보 및 실제 충전 속도 정보일 수 있다. 즉, 충전 관련 정보는 충전을 원하는 전기자동차(300)에서 요청한 전력량이나 요청한 충전 속도, 실제 충전된 전력량 및 실제 충전 속도 등에 관한 정보일 수 있다.Charging-related information may include requested energy information and requested charging speed information transmitted from the side of the electric vehicle 300 that wants to be charged. In addition, the charging-related information may be information on actual energy and actual charging speed charged by the corresponding electric vehicle 300 . That is, the charging-related information may be information about the amount of power requested by the electric vehicle 300 to be charged, the requested charging speed, the amount of power actually charged, and the actual charging speed.
즉, 충전 정보 수집부(110)는 요청 에너지 정보, 요청 충전 속도 정보를 전기자동차(300)로부터 수신하고, 해당 전기자동차(300)가 충전한 실제 에너지 정보 및 실제 충전 속도 정보를 수집할 수 있다.That is, the charging information collection unit 110 may receive the requested energy information and the requested charging speed information from the electric vehicle 300, and collect the actual energy information and actual charging speed information charged by the electric vehicle 300. .
중앙 제어부(210)는 복수의 충전소(100)에 각각 마련된 복수의 충전 정보 수집부(110)로부터 충전 관련 정보를 전달받을 수 있다.The central control unit 210 may receive charging-related information from a plurality of charging information collection units 110 respectively provided in the plurality of charging stations 100 .
중앙 제어부(210)는 각각의 충전소(100)마다 수집된 충전 관련 정보를 기초로 인공지능 모델(231)을 이용하여 각각의 충전소(100)의 전력 할당량을 결정할 수 있다.The central control unit 210 may determine the power allocation amount of each charging station 100 using the artificial intelligence model 231 based on the charging-related information collected for each charging station 100 .
구체적으로, 중앙 제어부(210)는 복수의 전기자동차(300)의 위치정보, 현재 시간 정보 및 복수의 충전소(100)들의 위치 정보를 기초로 인공지능 모델(231)을 이용하여 각각의 충전소(100)의 전력 할당량을 결정할 수 있다.Specifically, the central control unit 210 uses the artificial intelligence model 231 based on the location information of the plurality of electric vehicles 300, the current time information, and the location information of the plurality of charging stations 100 to charge each charging station 100. ) can determine the power allocation.
에너지 분배부는 결정된 전력 할당량을 기초로 복수의 충전소(100)에 할당된 전력량을 분배할 수 있다.The energy distribution unit may distribute the amount of power allocated to the plurality of charging stations 100 based on the determined power allocation amount.
기계학습부(220)는 과거에 수집된 대량의 충전 관련 정보와 과거의 전력 할당량 정보를 시초로 기계 학습 방식을 통해 인공지능 모델(231)을 생성할 수 있다. 한편, 인공지능 모델(231)은 중앙 에이전트 시스템(200)에 마련된 메모리(230)에 저장될 수 있으나, 인공지능 모델(231)이 반드시 중앙 에이전트 시스템(200)에 저장되어야 하는 것은 아니며, 각 충전소(100)의 시스템에 동일한 인공지능 모델(231)들이 저장되어 있을 수도 있다.The machine learning unit 220 may generate the artificial intelligence model 231 through a machine learning method based on a large amount of charging-related information and past power allocation information collected in the past. Meanwhile, the artificial intelligence model 231 may be stored in the memory 230 provided in the central agent system 200, but the artificial intelligence model 231 does not necessarily have to be stored in the central agent system 200, and each charging station The same artificial intelligence models 231 may be stored in the system of (100).
기계학습부(220)는 충전 관련 정보를 입력 변수로 하고, 복수의 충전소(100)의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 인공지능 모델(231)을 학습하도록 구성될 수 있다.The machine learning unit 220 may be configured to learn the artificial intelligence model 231 through a machine learning method by setting the charging related information as an input variable and the power allocation of the plurality of charging stations 100 as an output variable.
기계 학습이란 다수의 파라미터로 구성된 모델을 이용하며, 주어진 데이터로 파라미터를 최적화하는 것을 의미할 수 있다. 기계 학습은 학습 문제의 형태에 따라 지도 학습(supervised learning), 비지도 학습(unsupervised learning), 강화 학습(reinforcement learning)을 포함할 수 있다. 지도 학습(supervised learning)은 입력과 출력 사이의 매핑을 학습하는 것이며, 입력과 출력 쌍이 데이터로 주어지는 경우에 적용할 수 있다. 비지도 학습(unsupervised learning)은 입력만 있고 출력은 없는 경우에 적용하며, 입력 사이의 규칙성 등을 찾아낼 수 있다.Machine learning may mean using a model composed of multiple parameters and optimizing the parameters with given data. Machine learning may include supervised learning, unsupervised learning, and reinforcement learning depending on the form of a learning problem. Supervised learning is to learn the mapping between inputs and outputs, and can be applied when input and output pairs are given as data. Unsupervised learning is applied when there are only inputs and no outputs, and regularities between inputs can be found.
다만, 일 실시예에 따른 기계 학습이 반드시 전술한 학습 방식으로 한정되는 것은 아니다. 예를 들어, 기계 학습은 적대적 학습(Risk Adversarial Learning)을 포함할 수 있다. 적대적 학습은 의도적으로 오도하는 데이터 또는 행동을 발견하는 방법에 대해 신경망을 훈련시키는 학습 방법일 수 있다.However, machine learning according to an embodiment is not necessarily limited to the aforementioned learning method. For example, machine learning may include risk adversarial learning. Adversarial learning can be a learning method that trains neural networks on how to spot intentionally misleading data or behavior.
기계학습부(220)는 다양한 방식으로 인공지능 모델(231)을 학습할 수 있다. 예를 들어, 기계학습부(220)는 복수의 과거 충전 관련 정보에 포함된 요청 에너지 정보, 요청 충전 속도 정보, 실제 에너지 정보, 실제 충전 속도 정보와 과거의 전력 할당량 히스토리 등으로부터 추출되는 특징(feature)을 딥러닝 기반의 학습방법으로 학습할 수 있다. 이때, 과거 충전 관련 정보 및 과거의 전력 할당량 히스토리로부터 특징을 추출하는 방식을 학습하기 위해 여러 단계의 컨볼루션 계층(convolution layer)을 쌓은 CNN(Convolutional Neural Networks) 구조가 활용될 수 있으나, 기계학습부(220)의 학습방법이 반드시 CNN 구조를 활용하는 방법으로 한정되는 것은 아니다.The machine learning unit 220 may learn the artificial intelligence model 231 in various ways. For example, the machine learning unit 220 features features extracted from requested energy information, requested charging speed information, actual energy information, actual charging speed information, and past power allocation history included in a plurality of past charging related information. ) can be learned with a deep learning-based learning method. In this case, a CNN (Convolutional Neural Networks) structure in which several convolutional layers are stacked may be used to learn a method of extracting features from past charging-related information and past power allocation history, but a machine learning unit may be used. The learning method of (220) is not necessarily limited to a method using a CNN structure.
예를 들어, 기계학습부(220)의 학습 방식은 순환 신경망(RNN: Recurrent Neural Network) 등을 포함하는 기계학습 알고리즘을 통한 방식일 수 있다.For example, the learning method of the machine learning unit 220 may be a method through a machine learning algorithm including a recurrent neural network (RNN).
즉, 인공지능 모델(231)은, 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 입력으로 받는 순환 신경망(Recurrent Neural Network)을 포함할 수 있다. 순환 신경망은 시계열 데이터(time-series data)와 같이 시간의 흐름에 따라 변화하는 데이터를 학습하기 위한 딥 러닝 모델로서, 기준 시점과 다음 시점에 네트워크를 연결하여 구성되는 인공 신경망일 수 있다.That is, the artificial intelligence model 231 may include a recurrent neural network that receives the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs. A recurrent neural network is a deep learning model for learning data that changes over time, such as time-series data, and may be an artificial neural network configured by connecting networks at a reference point in time and a next point in time.
기계학습부(220)는 순환 신경망에 저장된 과거의 전력 분배 히스토리를 통해 일정 기준 기간동안 최대한 많은 전력량이 복수의 전기자동차(300)에 전달되게 인공지능 모델(231)을 학습할 수 있다.The machine learning unit 220 may learn the artificial intelligence model 231 so that as much power as possible is delivered to the plurality of electric vehicles 300 for a predetermined reference period through past power distribution histories stored in the recurrent neural network.
충전 정보 수집부(110), 자율주행 전기자동차 분류부(120), 충전소 제어부(130), 중앙 제어부(210) 및 기계학습부(220)는 전기자동차 충전인프라 전력 배분 시스템(1)에 포함된 복수개의 프로세서 중 어느 하나의 프로세서를 포함할 수 있다.The charging information collection unit 110, the self-driving electric vehicle classification unit 120, the charging station control unit 130, the central control unit 210, and the machine learning unit 220 are included in the electric vehicle charging infrastructure power distribution system 1. It may include any one processor among a plurality of processors.
또한, 지금까지 설명된 본 발명의 실시예 및 앞으로 설명할 실시예에 따른 전기자동차 충전인프라 전력 배분 방법은, 프로세서에 의해 구동될 수 있는 프로그램의 형태로 구현될 수 있다.In addition, the electric vehicle charging infrastructure power distribution method according to the embodiments of the present invention described so far and the embodiments to be described in the future may be implemented in the form of a program that can be driven by a processor.
여기서 프로그램은, 프로그램 명령, 데이터 파일 및 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 프로그램은 기계어 코드나 고급 언어 코드를 이용하여 설계 및 제작된 것일 수 있다. 프로그램은 상술한 부호 수정을 위한 방법을 구현하기 위하여 특별히 설계된 것일 수도 있고, 컴퓨터 소프트웨어 분야에서 통상의 기술자에게 기 공지되어 사용 가능한 각종 함수나 정의를 이용하여 구현된 것일 수도 있다. 전술한 정보 표시 방법을 구현하기 위한 프로그램은, 프로세서에 의해 판독 가능한 비일시적 기록매체에 기록될 수 있다. 이때, 비일시적 기록매체는 메모리(230)일 수 있다.Here, the program may include program commands, data files, and data structures alone or in combination. The program may be designed and manufactured using machine language codes or high-level language codes. The program may be specially designed to implement the above-described code correction method, or may be implemented using various functions or definitions that are known and usable to those skilled in the art in the field of computer software. A program for implementing the above information display method may be recorded on a non-transitory recording medium readable by a processor. At this time, the non-transitory recording medium may be the memory 230 .
메모리(230)는 전술한 동작 및 후술하는 동작을 수행하는 프로그램을 저장할 수 있으며, 메모리(230)는 저장된 프로그램을 실행시킬 수 있다. 프로세서와 메모리(230)가 복수인 경우에, 이들이 하나의 칩에 집적되는 것도 가능하고, 물리적으로 분리된 위치에 마련되는 것도 가능하다. 메모리(230)는 데이터를 일시적으로 기억하기 위한 S램(Static Random Access Memory, S-RAM), D랩(Dynamic Random Access Memory) 등의 휘발성 메모리를 포함할 수 있다. 또한, 메모리(230)는 제어 프로그램 및 제어 데이터를 장기간 저장하기 위한 롬(Read Only Memory), 이피롬(Erasable Programmable Read Only Memory: EPROM), 이이피롬(Electrically Erasable Programmable Read Only Memory: EEPROM) 등의 비휘발성 메모리를 포함할 수 있다.The memory 230 may store a program for performing the above-described operation and an operation to be described later, and the memory 230 may execute the stored program. When there are a plurality of processors and memories 230, they may be integrated into one chip or may be provided in physically separate locations. The memory 230 may include a volatile memory such as static random access memory (S-RAM) or dynamic random access memory (D-lab) for temporarily storing data. In addition, the memory 230 may include a ROM (Read Only Memory), an Erasable Programmable Read Only Memory (EPROM), and an Electrically Erasable Programmable Read Only Memory (EEPROM) for long-term storage of control programs and control data. It may contain non-volatile memory.
프로세서는 각종 논리 회로와 연산 회로를 포함할 수 있으며, 메모리(230)로부터 제공된 프로그램에 따라 데이터를 처리하고, 처리 결과에 따라 제어 신호를 생성할 수 있다.The processor may include various logic circuits and arithmetic circuits, process data according to programs provided from the memory 230, and generate control signals according to processing results.
도 2는 일 실시예에 따른 전기자동차 충전인프라 전력 배분 시스템을 도시한 도면이다.2 is a diagram illustrating an electric vehicle charging infrastructure power distribution system according to an embodiment.
도 2를 참조하면, 중앙 에이전트 시스템(200)에 마련되는 중앙 제어부(210)는 배전 시스템 운영자가 관리하는 DSO 컨트롤러(DSO Controller)일 수 있다.Referring to FIG. 2 , the central control unit 210 provided in the central agent system 200 may be a DSO controller managed by a distribution system operator.
도시된 전기자동차 충전인프라 전력 배분 시스템(1)은 사람이 운전하는 전기자동차(300)와 사람의 개입 없이 완전 자율주행이 가능한 전기자동차(300)를 모두 포함하는 전기자동차(EV)(300)에 대한 전기 충전 시설을 포함할 수 있다.The illustrated electric vehicle charging infrastructure power distribution system 1 is applied to an electric vehicle (EV) 300 including both an electric vehicle 300 driven by a human and an electric vehicle 300 capable of fully autonomous driving without human intervention. Electric charging facilities may be included.
DSO 컨트롤러는 고정된 전력 용량으로 각 전기 차량 공급 장비(EVSE)에 에너지를 공급하기 위해 에너지 소스에 연결될 수 있다.The DSO controller may be connected to an energy source to energize each electric vehicle supply equipment (EVSE) with a fixed power capacity.
전기자동차(300)는 각 시간대의 평균 충전 속도로 V2X 통신을 통해 전력 충전을 요청할 수 있다. 이때, 각 전기자동차(300)는 어느 한 전기 차량 공급 장비에 일정량의 에너지와 사용 가능한 충전 시간을 요청할 수 있다.The electric vehicle 300 may request power charging through V2X communication at an average charging speed of each time zone. At this time, each electric vehicle 300 may request a certain amount of energy and usable charging time from any one electric vehicle supply equipment.
도 3은 일 실시예에 따른 위험 적대적 학습(Risk Adversarial Learning)의 전체 프레임워크를 도시한 도면이다.Figure 3 is a diagram showing the overall framework of risk adversarial learning (Risk Adversarial Learning) according to an embodiment.
도 3을 참조하면, 사람이 직접 운전하는 비자율주행 전기자동차 및 자율주행 전기자동차의 충전 인프라를 위한 위험 적대적 학습 시스템(Risk Adversarial Learning System)의 프레임워크를 확인할 수 있다. 위험 적대적 학습 시스템의 프레임워크는 후술하는 바와 같다.Referring to FIG. 3 , a framework of a Risk Adversarial Learning System for a non-autonomous electric vehicle driven by a person and a charging infrastructure for an autonomous electric vehicle can be confirmed. The framework of the risk adversarial learning system is described below.
우선, 전기 차량 공급 장비(EVSE)에 대해서 전기자동차(300)가 충전을 요청할 수 있다(201A-201N). 각 전기자동차(300)의 충전 요청은 에너지 수요량과 세션 지속 시간으로 구성될 수 있으나, 필요한 수의 요청 매개변수에 따라 다르게 구성될 수도 있다.First, the electric vehicle 300 may request charging of the electric vehicle supply equipment (EVSE) (201A-201N). The charging request of each electric vehicle 300 may consist of energy demand and session duration, but may be configured differently according to the required number of request parameters.
전기자동차(300)의 충전 관련 정보(EVs Charging Data)(202A-202N)는 전기자동차(300)의 충전 일정에 필요한 모든 유형의 정보가 포함될 수 있다. 예를 들어, 충전 관련 정보는 전기자동차(300)의 에너지 수요, 세션 지속 시간 요청, 충전 시작 시간, 충전 종료 시간, 전기자동차 연결 해제 시간 및 실제 전달된 에너지가 포함될 수 있다.The EVs Charging Data 202A-202N of the electric vehicle 300 may include all types of information necessary for the charging schedule of the electric vehicle 300. For example, the charging-related information may include energy demand of the electric vehicle 300, session duration request, charging start time, charging end time, electric vehicle disconnection time, and actual delivered energy.
각 전기 차량 공급 장비는 부정확한 위험요소(laxity)를 분석하는 중앙 위험 적대적 에이전트(Centralized Risk Adversarial Agent; RAA)의 적대적 위험과 전기자동차(300)의 현재 충전 요청을 기반으로 자체 보상을 추정할 수 있다. Each electric vehicle supply equipment can estimate its own compensation based on the current charging request of the electric vehicle 300 and the adversarial risk of the Centralized Risk Adversarial Agent (RAA) that analyzes the inaccurate laxity. there is.
즉, 기계학습부(220)는 중앙 에이전트 시스템(200)에만 있는 것이 아니라 각 충전소(100)의 전기 차량 공급 장비에 마련될 수도 있으며, 각 전기 차량 공급 장비는 보상을 기반으로 한 적대적 위험(Reward Based on Adversarial Risk)(203A-203N)을 이용할 수 있다.That is, the machine learning unit 220 is not only present in the central agent system 200, but may also be provided in the electric vehicle supply equipment of each charging station 100, and each electric vehicle supply equipment is reward-based hostile risk (Reward). Based on Adversarial Risk) (203A-203N).
각 전기 차량 공급 장비의 학습 에이전트(EVSE-LA)는 위험 적대 에이전트의 비합리적인 위험에 대처하여 자체 EV 세션 스케줄링 정책을 학습하고 이산화할 수 있다. 각 전기 차량 공급 장비의 학습 에이전트에는 자체 MDP(Markov Decision Process)가 있는 반면 각 EV 세션 일정의 결정(예: 일정 표시기, 예상 에너지 수요, 전달 속도 및 충전 기간)은 CBaR-Tail 분포의 부정확한 위험요소(laxity)에 영향을 받을 수 있다. 이 보상은 전기 차량 공급 장비에 의한 최적의 스케줄링 결정 및 충전 정책 결정에 사용될 수 있다. 또한, 중앙 위험 적대적 에이전트는 적대적 부정확한 위험요소(laxity)에 대한 분석을 위해 모든 보상을 사용할 수 있다.The learning agent (EVSE-LA) of each electric vehicle supply equipment can learn and discretize its own EV session scheduling policy in response to the unreasonable risk of adversarial agents. While the learning agent for each electric vehicle supply equipment has its own Markov Decision Process (MDP), the decision of each EV session schedule (e.g. schedule indicator, expected energy demand, delivery rate, and charging duration) is dependent on the risk of inaccuracies in the CBaR-Tail distribution. It can be affected by laxity. This compensation can be used for optimal scheduling decisions and charging policy decisions by the electric vehicle supply equipment. In addition, the central risk adversarial agent can use all rewards for analysis on adversarial laxity.
각 전기 차량 공급 장비(EVSE)는 중앙 위험 적대적 에이전트(RAA)의 조언에 따라 EVSE 에이전트 충전 정책(EVSE Agent Charging Policy)(204A-204N)을 결정할 수 있다. 예를 들어, 동일한 구성의 RNN(Recurrent Neural Network)을 사용하면 전기자동차(300)의 충전 요청에 대한 불확실한 동작의 특정 시간에 종속적인 특징을 수집할 수 있다. 또한, 예약 또는 대기열, 예상 에너지 수요, 에너지 전달 속도 및 충전 기간을 결정하여 전력 할당 정책을 수립할 수 있다.Each Electric Vehicle Supply Equipment (EVSE) may determine the EVSE Agent Charging Policy (204A-204N) according to the advice of the Central Risk Adversarial Agent (RAA). For example, if a recurrent neural network (RNN) having the same configuration is used, it is possible to collect characteristics dependent on a specific time of an uncertain operation in response to a charging request of the electric vehicle 300 . Additionally, power allocation policies can be established by determining reservations or queues, expected energy demand, energy delivery rate, and charging duration.
일 실시예에 따른 충전인프라 전력 배분 시스템은 충전 행동의 특성화(Characterization of charging Behaviors)(205)를 할 수 있다. 전기자동차(300) 중에서도 완전 자율주행 전기자동차(AV)는 자체 분석을 통해 전기자동차 공급장치(EVSE)에 대한 정확한 에너지 양과 충전 시간을 추정하고 요청할 수 있다. 따라서, 완전 자율주행 전기자동차에 할당되는 에너지와 충전 시간은 요구되는 에너지의 양과 실제 충전된 에너지의 차이가 최소화되므로 정확한 수요를 충족할 수 있다는 특성이 있다. 또한, 요청된 충전 시간과 실제 충전 시간의 차이도 최소화될 수 있어서 전기자동차 공급장치가 에너지 자원의 활용을 극대화할 수 있으므로 완전 자율주행 전기자동차로의 충전 일정 및 전력 배분은 합리적으로 이루어질 수 있다.The charging infrastructure power distribution system according to an embodiment may perform characterization of charging behaviors (205). Among the electric vehicles 300, the fully autonomous driving electric vehicle (AV) may estimate and request an accurate amount of energy and charging time for the electric vehicle supply system (EVSE) through self-analysis. Therefore, since the difference between the amount of energy required and the actually charged energy is minimized, the energy and charging time allocated to the fully self-driving electric vehicle can meet the exact demand. In addition, since the difference between the requested charging time and the actual charging time can be minimized, the electric vehicle supply device can maximize the utilization of energy resources, so the charging schedule and power distribution to the fully autonomous electric vehicle can be rationalized.
반면, 인간이 운전하는 비자율주행 전기자동차는 개인의 수동 상호작용으로 인해 전기자동차 공급장치에 정확한 양의 에너지와 충전 시간을 요구한다는 보장이 없다는 문제가 있다.On the other hand, non-autonomous electric vehicles driven by humans have a problem in that there is no guarantee that an accurate amount of energy and charging time are required from an electric vehicle supply device due to manual interaction of individuals.
전기자동차(300)에 대한 합리적인 충전 세션 스케줄링 결정은 실제 충전 시간과 총 연결 시간의 비율뿐만 아니라 전기자동차 공급장치가 전달하는 에너지의 양과 전기자동차(300)의 요청 에너지 사이의 비율과도 관련이 있다. 따라서 DSO 컨트롤러, 즉 중앙 제어부(210)가 부정확함(느슨함)을 추정하는 것은 충전 동작의 특성화에 적합한 방법 중 하나일 수 있다.A rational charging session scheduling decision for the electric vehicle 300 is related not only to the ratio of the actual charging time to the total connection time, but also to the ratio between the amount of energy delivered by the electric vehicle supply and the requested energy of the electric vehicle 300. . Therefore, estimating the inaccuracy (looseness) of the DSO controller, i.e., the central control unit 210, may be one of the methods suitable for characterizing the charging operation.
[방정식 1][Equation 1]
Figure PCTKR2021019835-appb-img-000001
Figure PCTKR2021019835-appb-img-000001
[방정식 1]을 참조하면 전기자동차 요청의 부정확함(Laxity of each EV request)는 요청 에너지 정보(Requested energy), 요청 충전 속도 정보(Demand rate), 실제 에너지 정보(Delivered energy) 및 실제 충전 속도 정보(Charging rate)를 통해 구해질 수 있다.Referring to [Equation 1], the laxity of each EV request is the requested energy information (Requested energy), the requested charging rate information (Demand rate), the actual energy information (Delivered energy), and the actual charging rate information. (Charging rate).
중앙 제어부(210)는 요청 에너지 정보 및 요청 충전 속도 정보를 기초로 상기 전기자동차(300)의 요청 충전 시간을 계산할 수 있다. 구체적으로, 중앙 제어부(210)는 요청 에너지 정보의 값을 요청 충전 속도 정보의 값으로 나누어 요청 충전 시간을 산출할 수 있다.The central control unit 210 may calculate the requested charging time of the electric vehicle 300 based on the requested energy information and the requested charging speed information. Specifically, the central control unit 210 may calculate the requested charging time by dividing the value of the requested energy information by the value of the requested charging speed information.
중앙 제어부(210)는 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 전기자동차(300)의 실제 충전 시간을 계산할 수 있다. 구체적으로, 실제 에너지 정보의 값을 실제 충전 속도 정보의 값으로 나누어 실제 충전 시간을 산출할 수 있다.The central control unit 210 may calculate the actual charging time of the electric vehicle 300 based on the actual energy information and the actual charging speed information. Specifically, the actual charging time may be calculated by dividing the value of the actual energy information by the value of the actual charging speed information.
중앙 제어부(210)는 요청 충전 시간을 실제 충전 시간을 기초로 각각의 충전 행위에 대한 충전 시간 오차를 계산할 수 있다. 구체적으로, 중앙 제어부(210)는 요청 충전 시간에서 실제 충전 시간을 뺀 값인 충전 시간 오차를 전기자동차 요청의 부정확함(Laxity of each EV request)으로 결정할 수 있다.The central control unit 210 may calculate a charging time error for each charging activity based on the actual charging time of the requested charging time. Specifically, the central control unit 210 may determine a charging time error, which is a value obtained by subtracting the actual charging time from the requested charging time, as the laxity of each EV request.
기계학습부(220)는 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 전기자동차(300)에 전달하도록 복수의 충전소(100)의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 인공지능 모델(231)을 학습할 수 있다.The machine learning unit 220 sets the charging time error as an input variable and sets the power allocation amount of the plurality of charging stations 100 as an output variable to deliver the maximum amount of power to the plurality of electric vehicles 300, thereby performing a machine learning method. Through this, the artificial intelligence model 231 can be learned.
한편, 전술한 바와 같이 완전 자율주행 자동차에 할당되는 에너지와 충전 시간은 요구되는 에너지의 양과 실제 충전된 에너지의 차이와 요구되는 충전 시간과 실제 충전 시간의 차이가 최소화될 수 있다. 반면, 비자율주행 자동차의 경우 어느정도 에너지의 차이와 충전 시간의 차이가 발생할 수밖에 없고, 이러한 비합리적이고 예측 불가능한 충전 관련 정보들 또한 전력량 배분 과정에 반영될 필요가 있다. 정리하면, 전기자동차 충전인프라 전력 배분 시스템(1)은 완전 자율주행 전기자동차와 비자율주행 전기자동차를 구별하고, 비자율주행 전기자동차의 충전 관련 정보들만 따로 입력변수로 설정하여 기계학습을 수행하는 것이 필요하다.Meanwhile, as described above, the difference between the amount of energy required and the actual charged energy and the difference between the required charging time and the actual charging time can be minimized. On the other hand, in the case of non-autonomous vehicles, differences in energy and charging time inevitably occur to some extent, and such irrational and unpredictable charging-related information also needs to be reflected in the power distribution process. In summary, the electric vehicle charging infrastructure power distribution system (1) distinguishes between fully autonomous electric vehicles and non-autonomous driving electric vehicles, and sets only the charging-related information of the non-autonomous driving electric vehicles as input variables to perform machine learning. need something
자율주행 전기자동차 분류부(120)는 충전 시간 오차가 기준 시간 오차 이상이면 충전 관련 정보를 전달한 전기자동차(300)를 사람이 직접 운전하는 비자율주행 전기자동차로 분류할 수 있다. 기준 시간 오차는 충전을 요청한 전기자동차(300)가 완전 자율주행 전기자동차인지 비자율주행 전기자동차인지 구별하는데 기준이 되는 충전 시간 오차의 값일 수 있다.The self-driving electric vehicle classifying unit 120 may classify the electric vehicle 300 that has delivered charging-related information as a non-self-driving electric vehicle directly driven by a person if the charging time error is equal to or greater than the reference time error. The reference time error may be a value of a charging time error that is a standard for distinguishing whether the electric vehicle 300 that has requested charging is a fully autonomous driving electric vehicle or a non-autonomous driving electric vehicle.
기계학습부(220)는 복수의 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 요청 충전 시간 및 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 전기자동차(300)에 전달하도록 복수의 충전소(100)의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 인공지능 모델(231)을 학습할 수 있다.The machine learning unit 220 sets the requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of non-autonomous electric vehicles as input variables, and sets the maximum amount of power to the plurality of electric vehicles 300. The artificial intelligence model 231 may be learned through a machine learning method by setting the power allocation of the plurality of charging stations 100 as an output variable to deliver.
중앙 제어부(210)는 복수의 비자율주행 전기자동차의 위치정보, 복수의 자율주행 전기자동차의 위치정보, 현재 시간 정보 및 복수의 충전소(100)의 위치 정보를 기초로 인공지능 모델(231)을 이용하여 각각의 충전소(100)의 전력 할당량을 결정할 수 있다.The central control unit 210 generates an artificial intelligence model 231 based on location information of a plurality of non-autonomous driving electric vehicles, location information of a plurality of self-driving electric vehicles, current time information, and location information of a plurality of charging stations 100. It is possible to determine the power allocation of each charging station 100 by using.
중앙 위험 적대적 에이전트의 적대적 부정확한 위험요소(laxity)분석 과정(206)은 적대적 기계학습 과정일 수 있다. 전기자동차 충전인프라 전력 배분 시스템(1)은 전기자동차(300)의 충전 행위가 데이터 기반 방식으로 학습되는 위험 적대적 다중 에이전트 학습 시스템(Risk Adversarial Multiple Learning Agent Learning System; RAMALS)일 수 있다.The adversarial laxity analysis process 206 of the central risk adversarial agent may be an adversarial machine learning process. The electric vehicle charging infrastructure power distribution system 1 may be a Risk Adversarial Multiple Learning Agent Learning System (RAMALS) in which the charging behavior of the electric vehicle 300 is learned in a data-based manner.
즉, 인공지능 모델(231)은, 위험 적대적 정보를 입력으로 받는 적대적 학습(Adversarial Learning) 신경망을 포함할 수 있다.That is, the artificial intelligence model 231 may include an adversarial learning neural network that receives risk adversarial information as an input.
기계학습부(220)는 복수의 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 위험 적대적 정보를 생성할 수 있다.The machine learning unit 220 may generate risk hostile information based on requested energy information, requested charging speed information, actual energy information, and actual charging speed information of a plurality of non-autonomous electric vehicles.
기계학습부(220)는 적대적 학습 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 전기자동차(300)에 전달되게 인공지능 모델(231)을 적대적 기계 학습(Adversarial Machine Learning)할 수 있다.The machine learning unit 220 may perform adversarial machine learning on the artificial intelligence model 231 so that the maximum amount of power is delivered to the plurality of electric vehicles 300 through the past power distribution history stored in the adversarial learning neural network. there is.
중앙 제어부(210)는 전기자동차(300)의 충전 동작에 CVaR(Conditional Value at Risk)을 사용하여 부정확한 위험요소(laxity)를 분석할 수 있다. 각 전기자동차 충전 세션의 결정은 부정확한 위험요소(laxity)의 CVaR-Tail위험 분포에서 정량화 되는 동안, 충전 시스템의 에너지 수요 공급 동작 간에 강한 상관 관계가 설정될 수 있다. 따라서 부정확한 위험요소(laxity)는 각 전기 차량 공급 장비가 효율적인 전기자동차 충전 일정을 맞추도록 할 수 있다.The central control unit 210 may analyze inaccurate laxity in the charging operation of the electric vehicle 300 by using Conditional Value at Risk (CVaR). While the decision of each electric vehicle charging session is quantified in the CVaR-Tail risk distribution of laxity, a strong correlation can be established between the energy demand and supply behavior of the charging system. Thus, an inaccurate laxity can cause each electric vehicle supply equipment to meet an efficient electric vehicle charging schedule.
관찰 메모리(Observed Memory)(207)는 전기 차량 공급 장비의 각 전기자동차(300)에 대한 벡터로서, 과거의 전기자동차(300)들의 행동, 보상, 과거의 전력 분배 히스토리 및 순환 신경망(RNN)으로 구성될 수 있다. 정보 획득 기간 동안 전기 차량 공급 장비의 학습 에이전트(EVSE-LA)에서 정보 획득이 수행될 수 있다. Observed Memory 207 is a vector for each electric vehicle 300 of the electric vehicle supply equipment, and the behavior of the electric vehicles 300 in the past, compensation, past power distribution history, and recurrent neural network (RNN). can be configured. During the information acquisition period, information acquisition may be performed in the learning agent EVSE-LA of the electric vehicle supply equipment.
이상에서 설명된 구성요소들의 성능에 대응하여 적어도 하나의 구성요소가 추가되거나 삭제될 수 있다. 또한, 구성요소들의 상호 위치는 시스템의 성능 또는 구조에 대응하여 변경될 수 있다는 것은 당해 기술 분야에서 통상의 지식을 가진 자에게 용이하게 이해될 것이다.At least one component may be added or deleted corresponding to the performance of the components described above. In addition, it will be easily understood by those skilled in the art that the mutual positions of the components can be changed corresponding to the performance or structure of the system.
도 4는 일 실시예에 따른 전력을 각 충전소에 배분하는 방법의 순서도이다.4 is a flowchart of a method of distributing power to each charging station according to an embodiment.
도 4를 참조하면, 복수의 충전소(100)에 각각 마련되는 충전 정보 수집부(110)는 충전소(100)에서 전력을 충전하고자 하는 전기자동차(300)로부터 충전 관련 정보를 수집할 수 있다(1001). 이때, 충전 정보 수집부(110)는 전기자동차(300)로부터 요청 에너지 정보 및 요청 충전 속도 정보를 수신하고, 전기자동차(300)가 충전한 실제 에너지 정보 및 실제 충전 속도 정보를 수집할 수 있다.Referring to FIG. 4 , the charging information collection unit 110 provided in each of the plurality of charging stations 100 may collect charging-related information from an electric vehicle 300 that wants to charge power at the charging station 100 (1001 ). At this time, the charging information collection unit 110 may receive requested energy information and requested charging speed information from the electric vehicle 300, and may collect information on actual energy and actual charging speed information charged by the electric vehicle 300.
기계학습부(220)에 의해, 상기 충전 관련 정보를 입력 변수로 하고, 복수의 상기 충전소(100)의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델(231)을 학습할 수 있다(1002). 이때, 기계학습부(220)는 순환 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 전기자동차(300)에 전달되게 인공지능 모델(231)을 학습할 수 있다.The machine learning unit 220 sets the charging related information as an input variable and sets the power allocation of the plurality of charging stations 100 as an output variable to learn the artificial intelligence model 231 through a machine learning method. can (1002). At this time, the machine learning unit 220 may learn the artificial intelligence model 231 so that the maximum amount of power is delivered to the plurality of electric vehicles 300 through the past power distribution history stored in the recurrent neural network.
중앙 제어부(210)는 복수의 충전 정보 수집부(110)로부터 충전 관련 정보를 전달받고, 각각의 충전소(100)마다 수집된 충전 관련 정보를 기초로 인공지능 모델(231)을 이용하여 각각의 충전소(100)의 전력 할당량을 결정할 수 있다(1003). 이때, 중앙 제어부(210)는 복수의 비자율주행 전기자동차의 위치정보, 복수의 자율주행 전기자동차의 위치정보, 현재 시간 정보 및 복수의 충전소(100)의 위치 정보를 기초로 인공지능 모델(231)을 이용하여 각각의 충전소(100)의 전력 할당량을 결정할 수 있다.The central control unit 210 receives charging-related information from the plurality of charging information collection units 110 and uses the artificial intelligence model 231 based on the charging-related information collected for each charging station 100 for each charging station. A power allocation amount of (100) may be determined (1003). At this time, the central control unit 210 sets the artificial intelligence model 231 based on the location information of the plurality of non-autonomous driving electric vehicles, the location information of the plurality of self-driving electric vehicles, the current time information, and the location information of the plurality of charging stations 100. ) can be used to determine the power allocation of each charging station 100.
에너지 분배부는 결정된 전력 할당량을 기초로 복수의 충전소(100)에 할당된 전력량을 분배할 수 있다(1004).The energy distribution unit may distribute the amount of power allocated to the plurality of charging stations 100 based on the determined power allocation amount (1004).
도 5는 일 실시예에 따른 인공지능 모델을 학습하는 방법의 순서도이다.5 is a flowchart of a method for learning an artificial intelligence model according to an embodiment.
도 5를 참조하면, 중앙 제어부(210)는 요청 에너지 정보 및 요청 충전 속도 정보를 기초로 전기자동차(300)의 요청 충전 시간을 계산할 수 있다(2001).Referring to FIG. 5 , the central control unit 210 may calculate the requested charging time of the electric vehicle 300 based on the requested energy information and the requested charging speed information (2001).
중앙 제어부(210)는 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 전기자동차(300)의 실제 충전 시간을 계산할 수 있다(2002).The central control unit 210 may calculate the actual charging time of the electric vehicle 300 based on the actual energy information and the actual charging speed information (2002).
중앙 제어부(210)는 요청 충전 시간 및 실제 충전 시간을 기초로 각각의 충전 행위에 대한 충전 시간 오차를 계산할 수 있다(2003).The central control unit 210 may calculate a charging time error for each charging activity based on the requested charging time and the actual charging time (2003).
전기자동차 분류부는 충전 시간 오차가 기준 시간 오차 이상이면 충전 관련 정보를 전달한 전기자동차(300)를 사람이 직접 운전하는 비자율주행 전기자동차로 분류할 수 있다(2004). 이때, 전기자동차 분류부는 충전 시간 오차가 기준 시간 오차 미만이면 충전 관련 정보를 전달한 전기자동차(300)를 완전 자율주행 전기자동차로 분류할 수 있다.If the charging time error is greater than or equal to the reference time error, the electric vehicle classification unit may classify the electric vehicle 300 that has delivered charging-related information as a non-autonomous electric vehicle driven by a person (2004). In this case, if the charging time error is less than the reference time error, the electric vehicle classification unit may classify the electric vehicle 300 that has transmitted the charging-related information as a completely self-driving electric vehicle.
기계학습부(220)는 복수의 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 요청 충전 시간 및 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 전기자동차(300)에 전달하도록 복수의 충전소(100)의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 인공지능 모델(231)을 학습할 수 있다(2005).The machine learning unit 220 sets the requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of non-autonomous electric vehicles as input variables, and sets the maximum amount of power to the plurality of electric vehicles 300. The artificial intelligence model 231 may be learned through a machine learning method by setting the power allocation of the plurality of charging stations 100 as an output variable to deliver (2005).
본 발명의 실시예에 따른 전기자동차 충전인프라 전력 배분 방법의 성능을 검증하기 위하여, 전력 배분 시뮬레이션 실험을 진행하였다.In order to verify the performance of the electric vehicle charging infrastructure power distribution method according to an embodiment of the present invention, a power distribution simulation experiment was conducted.
도 6은 일 실시예에 따른 전기자동차 충전인프라 전력 배분 방법의 실험 결과를 나타낸 그래프이며, 도 7은 일 실시예에 따른 전기자동차 충전인프라 전력 배분 방법의 실험 결과를 나타낸 또다른 그래프이다.6 is a graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment, and FIG. 7 is another graph showing experimental results of an electric vehicle charging infrastructure power distribution method according to an embodiment.
도 6을 참조하면, 제안된 위험 적대적 다중 에이전트 학습 시스템(RAMALS), 즉 전기자동차 충전인프라 전력 배분 시스템(1)의 성능에 의한 전기차 충전율 개선을 확인할 수 있다.Referring to FIG. 6 , it can be confirmed that the electric vehicle charging rate is improved by the performance of the proposed risk adversarial multi-agent learning system (RAMALS), that is, the electric vehicle charging infrastructure power distribution system 1 .
제안된 전기자동차 충전인프라 전력 배분 시스템(1)은 종래의 A3C 기반 프레임워크, A2C 기반 모델 및 ACN 데이터와 비교하여 Caltech EVSE 사이트의 전기자동차 충전속도를 각각 약 71.4%, 40% 및 46.6% 향상시킬 수 있다는 것을 확인할 수 있다.Compared with the conventional A3C-based framework, A2C-based model and ACN data, the proposed electric vehicle charging infrastructure power distribution system (1) will improve the electric vehicle charging rate of Caltech EVSE site by about 71.4%, 40% and 46.6%, respectively. can confirm that it can.
이러한 충전 속도의 개선은 전기자동차 충전인프라 전력 배분 시스템(1)에 의한 합리적인 스케줄링으로 인해 발생하며, 전기 차량 공급 장비의 유휴 충전 시간을 크게 줄이는 데이터 기반 스케줄링으로 EVSE 사이트의 충전 용량을 개선하기 때문일 수 있다.This improvement in charging speed occurs due to rational scheduling by the electric vehicle charging infrastructure power distribution system (1), and may be due to improving the charging capacity of the EVSE site with data-based scheduling that significantly reduces the idle charging time of the electric vehicle supply equipment. there is.
도 7을 참조하면, 2019년 10월 16일부터 2019년 12월 31일까지 JPL EVSE 사이트의 총 활성 EV 충전 시간을 기준으로 성능이 비교된 그래프를 확인할 수 있다.Referring to FIG. 7 , a graph in which performance is compared based on the total active EV charging time of the JPL EVSE site from October 16, 2019 to December 31, 2019 can be seen.
구체적으로, 해당 그래프를 참조하면 JPL EVSE 사이트에 포함된 52 EVSE의 총 활성 충전 시간을 확인할 수 있으며, 활성 충전 시간이 JPL EVSE 사이트에 대해 종래 전력 배분 방식보다 8시간에서 40시간으로 개선될 수 있음을 확인할 수 있다.Specifically, referring to the graph, it can be seen that the total active charging time of 52 EVSE included in the JPL EVSE site can be confirmed, and the active charging time can be improved from 8 hours to 40 hours compared to the conventional power distribution method for the JPL EVSE site can confirm.
전기자동차 충전인프라 전력 배분 시스템(1)이 사전 지식에서 데이터 정보에 입각한 합리적인 결정을 사용하여 각 전기 차량 공급 장비의 스케줄링 중에 불확실한 전기자동차 충전 수요를 처리할 수 있기 때문에, 제안된 전기자동차 충전인프라 전력 배분 시스템(1)의 성능은 종래의 A3C 기반 프레임워크 및 A2C 기반 체계의 성능보다 높은 것을 확인할 수 있다. 구체적으로, 제안된 전기자동차 충전인프라 전력 배분 시스템(1), 즉 RAMALS는 각 전기 차량 공급 장비의 활성 충전 시간을 크게 향상(즉, 약 28.6%)할 수 있다는 것을 확인할 수 있다.Since the electric vehicle charging infrastructure power distribution system (1) can handle the uncertain electric vehicle charging demand during scheduling of each electric vehicle supply equipment using data-informed rational decisions from prior knowledge, the proposed electric vehicle charging infrastructure It can be seen that the performance of the power distribution system 1 is higher than that of the conventional A3C-based framework and A2C-based system. Specifically, it can be confirmed that the proposed electric vehicle charging infrastructure power distribution system 1, that is, RAMALS, can significantly improve (ie, about 28.6%) the active charging time of each electric vehicle supply equipment.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.As above, the disclosed embodiments have been described with reference to the accompanying drawings. Those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a form different from the disclosed embodiments without changing the technical spirit or essential features of the present invention. The disclosed embodiments are illustrative and should not be construed as limiting.

Claims (20)

  1. 복수의 충전소에 각각 마련되고 상기 충전소에서 전력을 충전하고자 하는 전기자동차로부터 충전 관련 정보를 수집하도록 구성되는 충전 정보 수집부;a charging information collection unit provided at each of a plurality of charging stations and configured to collect charging-related information from an electric vehicle to be charged at the charging station;
    복수의 상기 충전 정보 수집부로부터 상기 충전 관련 정보를 전달받고, 각각의 충전소마다 수집된 상기 충전 관련 정보를 기초로 인공지능 모델을 이용하여 각각의 충전소의 전력 할당량을 결정하도록 구성되는 중앙 제어부; 및A central control unit configured to receive the charging-related information from the plurality of charging information collection units and to determine a power allocation amount of each charging station by using an artificial intelligence model based on the charging-related information collected for each charging station; and
    상기 결정된 전력 할당량을 기초로 복수의 상기 충전소에 할당된 전력량을 분배하도록 구성되는 에너지 분배부를 포함하는 전기자동차 충전인프라 전력 배분 시스템.An electric vehicle charging infrastructure power distribution system comprising an energy distribution unit configured to distribute the amount of power allocated to the plurality of charging stations based on the determined power allocation amount.
  2. 제1항에 있어서,According to claim 1,
    상기 충전 관련 정보를 입력 변수로 하고, 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하도록 구성되는 기계학습부를 더 포함하는 전기자동차 충전인프라 전력 배분 시스템.The electric vehicle charging infrastructure power distribution system further comprising a machine learning unit configured to learn the artificial intelligence model through a machine learning method by setting the charging related information as an input variable and setting the power allocation amount of the plurality of charging stations as an output variable. .
  3. 제2항에 있어서,According to claim 2,
    상기 충전 정보 수집부는:The charging information collection unit:
    상기 전기자동차로부터 요청 에너지 정보 및 요청 충전 속도 정보를 수신하고; 그리고Receiving requested energy information and requested charging speed information from the electric vehicle; and
    상기 전기자동차가 충전한 실제 에너지 정보 및 실제 충전 속도 정보를 수집하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.An electric vehicle charging infrastructure power distribution system configured to collect actual energy information and actual charging speed information charged by the electric vehicle.
  4. 제3항에 있어서,According to claim 3,
    상기 중앙 제어부는:The central control unit:
    상기 요청 에너지 정보 및 요청 충전 속도 정보를 기초로 상기 전기자동차의 요청 충전 시간을 계산하고;calculating a requested charging time of the electric vehicle based on the requested energy information and the requested charging speed information;
    상기 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 상기 전기자동차의 실제 충전 시간을 계산하고; 그리고calculating an actual charging time of the electric vehicle based on the actual energy information and the actual charging speed information; and
    상기 요청 충전 시간 및 상기 실제 충전 시간을 기초로 각각의 충전 행위에 대한 충전 시간 오차를 계산하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.An electric vehicle charging infrastructure power distribution system configured to calculate a charging time error for each charging activity based on the requested charging time and the actual charging time.
  5. 제4항에 있어서,According to claim 4,
    상기 기계학습부는,The machine learning unit,
    상기 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.Configured to learn the artificial intelligence model through a machine learning method by setting the charging time error as an input variable and setting the power allocation amount of the plurality of charging stations as an output variable to deliver the maximum amount of power to the plurality of electric vehicles , electric vehicle charging infrastructure power distribution system.
  6. 제4항에 있어서,According to claim 4,
    상기 충전 시간 오차가 기준 시간 오차 이상이면 상기 충전 관련 정보를 전달한 전기자동차를 사람이 직접 운전하는 비자율주행 전기자동차로 분류하도록 구성되는 자율주행 전기자동차 분류부를 더 포함하는 전기자동차 충전인프라 전력 배분 시스템.An electric vehicle charging infrastructure power distribution system further comprising an autonomous driving electric vehicle classification unit configured to classify an electric vehicle that has delivered the charging-related information as a non-autonomous driving electric vehicle directly driven by a person if the charging time error is greater than or equal to a reference time error. .
  7. 제6항에 있어서,According to claim 6,
    상기 기계학습부는:The machine learning unit:
    복수의 상기 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 요청 충전 시간 및 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.The power of the plurality of charging stations is set so that the requested energy information, the requested charging speed information, the requested charging time, and the charging time error of the plurality of self-driving electric vehicles are set as input variables, and the maximum amount of power is delivered to the plurality of electric vehicles. An electric vehicle charging infrastructure power distribution system configured to learn the artificial intelligence model through a machine learning method by setting a quota as an output variable.
  8. 제7항에 있어서,According to claim 7,
    상기 중앙 제어부는:The central control unit:
    복수의 상기 비자율주행 전기자동차의 위치정보, 복수의 자율주행 전기자동차의 위치정보, 현재 시간 정보 및 복수의 상기 충전소의 위치 정보를 기초로 인공지능 모델을 이용하여 각각의 충전소의 전력 할당량을 결정하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.Determining the power allocation of each charging station using an artificial intelligence model based on the location information of the plurality of self-driving electric vehicles, the location information of the plurality of self-driving electric vehicles, the current time information, and the location information of the plurality of charging stations. An electric vehicle charging infrastructure power distribution system configured to do so.
  9. 제8항에 있어서,According to claim 8,
    상기 인공지능 모델은,The artificial intelligence model,
    위험 적대적 정보를 입력으로 받는 적대적 학습(Adversarial Learning) 신경망을 포함하고,Including an adversarial learning neural network that receives risk adversarial information as an input,
    상기 기계학습부는:The machine learning unit:
    복수의 상기 비자율주행 전기자동차의 상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 기초로 상기 위험 적대적 정보를 생성하고; 그리고generating the risk hostile information based on the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information of the plurality of non-autonomous electric vehicles; and
    상기 적대적 학습 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 적대적 기계 학습(Adversarial Machine Learning)하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.An electric vehicle charging infrastructure power distribution system configured to perform adversarial machine learning on the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through the past power distribution history stored in the adversarial learning neural network.
  10. 제3항에 있어서,According to claim 3,
    상기 인공지능 모델은,The artificial intelligence model,
    상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 입력으로 받는 순환 신경망(Recurrent Neural Network)을 포함하고,A recurrent neural network receiving the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs,
    상기 기계학습부는,The machine learning unit,
    상기 순환 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 학습하도록 구성되는, 전기자동차 충전인프라 전력 배분 시스템.The electric vehicle charging infrastructure power distribution system configured to learn the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through the past power distribution history stored in the recurrent neural network.
  11. 복수의 충전소에 각각 마련되는 충전 정보 수집부에 의해, 상기 충전소에서 전력을 충전하고자 하는 전기자동차로부터 충전 관련 정보를 수집하는 단계;Collecting charging-related information from an electric vehicle to be charged at the charging station by a charging information collection unit provided at each of the plurality of charging stations;
    중앙 제어부에 의해, 복수의 상기 충전 정보 수집부로부터 상기 충전 관련 정보를 전달받고, 각각의 충전소마다 수집된 상기 충전 관련 정보를 기초로 인공지능 모델을 이용하여 각각의 충전소의 전력 할당량을 결정하는 단계; 및Receiving, by a central control unit, the charging-related information from a plurality of charging information collection units, and determining a power allocation of each charging station using an artificial intelligence model based on the charging-related information collected for each charging station. ; and
    에너지 분배부에 의해, 상기 결정된 전력 할당량을 기초로 복수의 상기 충전소에 할당된 전력량을 분배하는 단계를 포함하는 전기자동차 충전인프라 전력 배분 방법.and distributing, by an energy distributor, an amount of power allocated to the plurality of charging stations based on the determined power allocation amount.
  12. 제11항에 있어서,According to claim 11,
    기계학습부에 의해, 상기 충전 관련 정보를 입력 변수로 하고, 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하는 단계를 더 포함하는 전기자동차 충전인프라 전력 배분 방법.The electric vehicle charging infrastructure further comprising learning the artificial intelligence model through a machine learning method by a machine learning unit by setting the charging related information as an input variable and setting the power allocation of the plurality of charging stations as an output variable. Power distribution method.
  13. 제12항에 있어서,According to claim 12,
    상기 충전 관련 정보를 수집하는 단계는,The step of collecting the charging-related information,
    상기 충전 정보 수집부에 의해, 상기 전기자동차로부터 요청 에너지 정보 및 요청 충전 속도 정보를 수신하는 단계; 및receiving requested energy information and requested charging speed information from the electric vehicle by the charging information collection unit; and
    상기 충전 정보 수집부에 의해, 상기 전기자동차가 충전한 실제 에너지 정보 및 실제 충전 속도 정보를 수집하는 단계를 포함하는, 전기자동차 충전인프라 전력 배분 방법.The electric vehicle charging infrastructure power distribution method comprising the step of collecting actual energy information and actual charging speed information charged by the electric vehicle by the charging information collection unit.
  14. 제13항에 있어서,According to claim 13,
    상기 중앙 제어부에 의해, 상기 요청 에너지 정보 및 요청 충전 속도 정보를 기초로 상기 전기자동차의 요청 충전 시간을 계산하는 단계;calculating, by the central control unit, a requested charging time of the electric vehicle based on the requested energy information and the requested charging speed information;
    상기 중앙 제어부에 의해, 상기 실제 에너지 정보 및 실제 충전 속도 정보를 기초로 상기 전기자동차의 실제 충전 시간을 계산하는 단계; 및calculating, by the central control unit, an actual charging time of the electric vehicle based on the actual energy information and the actual charging speed information; and
    상기 중앙 제어부에 의해, 상기 요청 충전 시간 및 상기 실제 충전 시간을 기초로 각각의 충전 행위에 대한 충전 시간 오차를 계산하는 단계를 더 포함하는 전기자동차 충전인프라 전력 배분 방법.The electric vehicle charging infrastructure power distribution method further comprising calculating, by the central control unit, a charging time error for each charging activity based on the requested charging time and the actual charging time.
  15. 제14항에 있어서,According to claim 14,
    상기 인공지능 모델을 학습하는 단계는,The step of learning the artificial intelligence model,
    상기 기계학습부에 의해, 상기 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하는 단계를 포함하는, 전기자동차 충전인프라 전력 배분 방법.The machine learning unit sets the charging time error as an input variable and sets the power allocation amount of the plurality of charging stations as an output variable so as to deliver the maximum amount of electricity to the plurality of electric vehicles. An electric vehicle charging infrastructure power distribution method comprising the step of learning an intelligent model.
  16. 제14항에 있어서,According to claim 14,
    자율주행 전기자동차 분류부에 의해, 상기 충전 시간 오차가 기준 시간 오차 이상이면 상기 충전 관련 정보를 전달한 전기자동차를 사람이 직접 운전하는 비자율주행 전기자동차로 분류하는 단계를 더 포함하는 전기자동차 충전인프라 전력 배분 방법.Classifying, by a self-driving electric vehicle classification unit, an electric vehicle that has delivered the charging-related information as a non-autonomous driving electric vehicle directly driven by a person if the charging time error is greater than or equal to a reference time error; Power distribution method.
  17. 제16항에 있어서,According to claim 16,
    상기 인공지능 모델을 학습하는 단계는,The step of learning the artificial intelligence model,
    상기 기계학습부에 의해, 복수의 상기 비자율주행 전기자동차의 요청 에너지 정보, 요청 충전 속도 정보, 요청 충전 시간 및 충전 시간 오차를 입력 변수로 설정하고, 최대의 전력량을 복수의 상기 전기자동차에 전달하도록 복수의 상기 충전소의 전력 할당량을 출력 변수로 설정하여 기계 학습 방식을 통해 상기 인공지능 모델을 학습하는 단계를 포함하는, 전기자동차 충전인프라 전력 배분 방법.The machine learning unit sets requested energy information, requested charging speed information, requested charging time, and charging time error of the plurality of self-driving electric vehicles as input variables, and transmits the maximum amount of power to the plurality of electric vehicles. And setting the power allocation of the plurality of charging stations as an output variable to learn the artificial intelligence model through a machine learning method.
  18. 제17항에 있어서,According to claim 17,
    상기 인공지능 모델은,The artificial intelligence model,
    위험 적대적 정보를 입력으로 받는 적대적 학습 신경망을 포함하고,It includes an adversarial learning neural network that receives risk adversarial information as an input,
    상기 인공지능 모델을 학습하는 단계는,The step of learning the artificial intelligence model,
    상기 기계학습부에 의해, 복수의 상기 비자율주행 전기자동차의 상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 기초로 상기 위험 적대적 정보를 생성하는 단계; 및generating, by the machine learning unit, the risk hostile information based on the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information of the plurality of self-driving electric vehicles; and
    상기 기계학습부에 의해, 상기 적대적 학습 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 적대적 기계 학습하는 단계를 포함하는, 전기자동차 충전인프라 전력 배분 방법.and adversarial machine learning of the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through the past power distribution history stored in the adversarial learning neural network, by the machine learning unit. Power distribution method.
  19. 제13항에 있어서,According to claim 13,
    상기 인공지능 모델은,The artificial intelligence model,
    상기 요청 에너지 정보, 상기 요청 충전 속도 정보, 상기 실제 에너지 정보 및 상기 실제 충전 속도 정보를 입력으로 받는 순환 신경망을 포함하고,A recurrent neural network receiving the requested energy information, the requested charging speed information, the actual energy information, and the actual charging speed information as inputs;
    상기 인공지능 모델을 학습하는 단계는,The step of learning the artificial intelligence model,
    상기 기계학습부에 의해, 상기 순환 신경망에 저장된 과거의 전력 분배 히스토리를 통해 최대의 전력량을 복수의 상기 전기자동차에 전달되게 상기 인공지능 모델을 학습하는 단계를 포함하는, 전기자동차 충전인프라 전력 배분 방법.Learning, by the machine learning unit, the artificial intelligence model so that the maximum amount of power is delivered to the plurality of electric vehicles through past power distribution histories stored in the recurrent neural network, an electric vehicle charging infrastructure power distribution method comprising: .
  20. 제11항의 전기자동차 충전인프라 전력 배분 방법을 실행하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 비일시적 기록매체.A computer-readable non-transitory recording medium on which a program for executing the electric vehicle charging infrastructure power distribution method of claim 11 is recorded.
PCT/KR2021/019835 2021-12-21 2021-12-24 Adversarial learning system for electric vehicle charging infrastructure power distribution WO2023120784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0183908 2021-12-21
KR1020210183908A KR20230094608A (en) 2021-12-21 2021-12-21 Adversarial learning system for electric vehicle charging infrastructure power distribution

Publications (1)

Publication Number Publication Date
WO2023120784A1 true WO2023120784A1 (en) 2023-06-29

Family

ID=86903086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019835 WO2023120784A1 (en) 2021-12-21 2021-12-24 Adversarial learning system for electric vehicle charging infrastructure power distribution

Country Status (2)

Country Link
KR (1) KR20230094608A (en)
WO (1) WO2023120784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116691418A (en) * 2023-08-08 2023-09-05 江苏充动科技有限公司 Charging method capable of automatically distributing control power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102051347B1 (en) * 2018-07-25 2020-01-08 가천대학교 산학협력단 Efficient Recommendation and Classification Method And Device of Electric Vehicle Charging Station Based on Operating Index
US20200076223A1 (en) * 2017-05-22 2020-03-05 Semiconductor Energy Laboratory Co., Ltd. Charging control system and charging control device
KR20200100311A (en) * 2019-02-18 2020-08-26 서강대학교산학협력단 System and Method for Monitoring Electric Energy of an Electric Vehicle Charging Station
KR102235943B1 (en) * 2020-09-07 2021-04-02 김상욱 Ev charging station system
KR20210090763A (en) * 2020-01-10 2021-07-21 최용길 Large capacity multiple charging apparatus for electric vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200076223A1 (en) * 2017-05-22 2020-03-05 Semiconductor Energy Laboratory Co., Ltd. Charging control system and charging control device
KR102051347B1 (en) * 2018-07-25 2020-01-08 가천대학교 산학협력단 Efficient Recommendation and Classification Method And Device of Electric Vehicle Charging Station Based on Operating Index
KR20200100311A (en) * 2019-02-18 2020-08-26 서강대학교산학협력단 System and Method for Monitoring Electric Energy of an Electric Vehicle Charging Station
KR20210090763A (en) * 2020-01-10 2021-07-21 최용길 Large capacity multiple charging apparatus for electric vehicles
KR102235943B1 (en) * 2020-09-07 2021-04-02 김상욱 Ev charging station system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116691418A (en) * 2023-08-08 2023-09-05 江苏充动科技有限公司 Charging method capable of automatically distributing control power
CN116691418B (en) * 2023-08-08 2023-10-24 江苏充动科技有限公司 Charging method capable of automatically distributing control power

Also Published As

Publication number Publication date
KR20230094608A (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN112874369B (en) Charging and energy supply optimization method and device of charging management system
KR101813523B1 (en) Charging Power Distribution Systems For Electric Vehicle
He et al. Charging an electric vehicle-sharing fleet
CN102437601B (en) Autonomous charging system of cloud robot and method thereof
CN112134802A (en) Edge computing power resource scheduling method and system based on terminal triggering
CN112611386B (en) Transformer substation intelligent inspection method based on optimal route planning
WO2023120784A1 (en) Adversarial learning system for electric vehicle charging infrastructure power distribution
CN110782050A (en) Shared vehicle operation and maintenance method and device, computer equipment and readable storage medium
WO2022114331A1 (en) Electric bus battery state analysis service system
KR20210016172A (en) Shared battery system and method for controlling battery thereof and mobility sharing service system including the same
WO2020204262A1 (en) Method and server for managing distributed resource utilization, and microgrid power transaction system comprising same
US20210323431A1 (en) Electrical vehicle power grid management system and method
CN112016820B (en) Patrol robot scheduling method, system and device and computer equipment
CN111428629A (en) Substation operation monitoring method, state determination method and unmanned aerial vehicle inspection system
CN111882251A (en) Battery service management method, battery service management platform and electronic equipment
WO2022080605A1 (en) Multi-robot control system and method
CN114971135A (en) Intelligent charging station power equipment management system based on 5G Internet of things and scheduling method
WO2023022318A1 (en) Electric vehicle charging schedule management system and method thereof
WO2023018226A1 (en) Power management device and method using predicted power peak guideline
WO2020184826A1 (en) Method and system for providing charging and replacement information of energy source storage means for driver of electric powered vehicle, service providing method and system for electric powered vehicle charging station, and service method for supplying replaceable energy source storage means for electric powered vehicle
CN115169605A (en) Monitoring method and system for primary equipment of transformer substation
WO2023204323A1 (en) System and method for automatically generating charging schedule
KR102036041B1 (en) Power acquisition monitoring system
CN114764659A (en) Site selection method and system for power conversion station, electronic equipment and storage medium
WO2023113248A1 (en) Power operation method performed by power operation device which operates energy storage system based on power conversion system for linking heterogeneous batteries, and power operation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969148

Country of ref document: EP

Kind code of ref document: A1