WO2022114331A1 - Electric bus battery state analysis service system - Google Patents

Electric bus battery state analysis service system Download PDF

Info

Publication number
WO2022114331A1
WO2022114331A1 PCT/KR2020/017301 KR2020017301W WO2022114331A1 WO 2022114331 A1 WO2022114331 A1 WO 2022114331A1 KR 2020017301 W KR2020017301 W KR 2020017301W WO 2022114331 A1 WO2022114331 A1 WO 2022114331A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
battery
electric bus
state
service server
Prior art date
Application number
PCT/KR2020/017301
Other languages
French (fr)
Korean (ko)
Inventor
박동민
Original Assignee
주식회사 커넥토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 커넥토 filed Critical 주식회사 커넥토
Publication of WO2022114331A1 publication Critical patent/WO2022114331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/143Busses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/302Temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/304Acceleration sensors
    • B60Y2400/3044Vibration sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery state analysis service system of an electric bus, and more particularly, to a technology for collecting and analyzing the battery state of an electric bus.
  • the electric bus is an eco-friendly bus that replaces the existing fossil fuel bus, and has recently been widely spread at home and abroad.
  • the driving battery mounted on the electric bus was initially designed to be 100kW, but recently the capacity has been greatly increased to the level of 300kW.
  • it is essential to charge the battery after or during operation of the electric bus.
  • the control system for the existing electric bus collects information on the current location of the electric bus and the state of charge (SOC) of the electric bus and provides it to the operator so that the electric bus can be charged smoothly.
  • SOC state of charge
  • SOH state of health
  • telematics refers to a service that combines a vehicle and wireless communication to receive various information while the vehicle is running. Recently, telematics is becoming more sophisticated, with the advent of a connected car that exchanges information through wireless communication between the vehicle and the vehicle.
  • control system for an electric bus can be seen as nothing more than a simple battery management level.
  • a platform for data collection must be installed in the vehicle, so it is difficult to build such a system in an existing electric bus.
  • the battery state analysis service system of an electric bus can acquire battery data and operation data without installing a service platform in the electric bus and analyze the state of the battery through this It aims to provide
  • Another object of the present invention is to provide a battery condition analysis service system for an electric bus for optimizing the operation or charging of an electric bus so that the performance of the battery is optimally managed beyond simply collecting and analyzing battery data.
  • the above object is to obtain and store the operation data of the electric bus and the state data of the battery mounted in the electric bus periodically through communication with the vehicle control unit of the electric bus in the battery state analysis service system of the electric bus.
  • data logger a user terminal for periodically receiving and transmitting the driving data and the battery status data to a service server through communication with the data logger;
  • a charger for charging the battery wherein the charger acquires charging data and state data of the battery during charging and transmits it to the service server; and the service server receiving the driving data and the state data from the user terminal and the charger, and analyzing and predicting the state of the battery of the bus based on the received data;
  • the service server may classify the collected data by vehicle type , battery model, and route, and estimate and calculate data regarding the degree of deterioration and failure probability of the battery.
  • the user terminal may include a user menu for registering and inputting information of the electric bus corresponding to the data logger, battery information, driver information, and route information.
  • the data logger includes a temperature sensor, a humidity sensor and a vibration sensor therein; Sensor data of the temperature sensor, the humidity sensor, and the vibration sensor may be transmitted to the user terminal.
  • the driving data includes route information, driver information, load information, power consumption, indoor/outdoor temperature, air conditioning information, location information, speed, and time of the electric bus;
  • the state data of the battery may include at least three of temperature, voltage, current, SOC, and resistance of the battery.
  • the service server may estimate and calculate data regarding a failure probability of the battery based on the SOC value and the resistance value of the battery in a DC load state.
  • the user terminal transmits its location information together with the driving data and the status data to the service server;
  • the service server may recover by estimating the lost data based on the data immediately before the loss and the current data.
  • the battery state analysis service system of the electric bus can acquire battery data and operation data without installing a service platform in the electric bus and analyze the state of the battery through this.
  • FIG. 1 is a schematic diagram of a battery condition analysis service system of an electric bus according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a service server 100 according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining operation and charging control optimization of the service server 100 according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a data acquisition process of a battery state analysis service system of an electric bus according to an embodiment of the present invention.
  • the battery state analysis service system of an electric bus includes a battery BMS 10 , a vehicle control unit 20 , a data logger 30 , a user terminal 40 , and a charger. 50 , and a service server 100 .
  • the BMS (10) Battery Management System
  • the BMS is a module for monitoring and managing the state of the battery connected to the battery device mounted on the electric bus, and is a vehicle control unit ( 20) is forwarded.
  • the vehicle control unit 20 is for overall controlling the operation of the vehicle, and controls the driving of the inverter, the driving motor, etc. according to an input such as an accelerator pedal, a brake pedal, or a shift lever of the vehicle.
  • the vehicle control unit 20 receives the battery state data from the BMS 10 and provides the battery charge state and the like to a display unit such as a display.
  • the vehicle control unit 20 includes a communication module for transmitting and receiving data to and from the outside, and is interoperable with the data logger 30 or the user terminal 40 through the communication module.
  • the communication module is CAN, Ethernet, Internet, LTE, 5G, Wi-Fi, Bluetooth, NFC (Near Field Communication), Zigbee, IR (Infrared Ray), RF ( It can be implemented with various communication modules such as radio frequency).
  • the vehicle control unit 20 includes battery state data (eg, battery available power, current, voltage, resistance or battery SOC value) and electric bus operation data (eg, temperature, speed, distance, load information, power consumption, air conditioning information, location information, and time) are transmitted to the data logger 30 .
  • battery state data eg, battery available power, current, voltage, resistance or battery SOC value
  • electric bus operation data eg, temperature, speed, distance, load information, power consumption, air conditioning information, location information, and time
  • the data logger 30 is for acquiring and storing the driving data of the electric bus and the state data of the battery through communication with the vehicle control unit 20 , and transmitting the data to the user terminal 40 , and storing the data therein It includes a memory for, a communication module for communication with the outside, and a microcontroller for control.
  • the communication module of the data logger 30 is various, such as CAN, Ethernet, Wi-Fi, Bluetooth, NFC (Near Field Communication), Zigbee, IR (Infrared Ray), RF (Radio Frequency), etc. It can be implemented with a wireless communication module and a wired communication module.
  • the data logger 30 may include a temperature sensor, a humidity sensor, and a vibration sensor therein, and the driving data and battery state data received by receiving the sensed temperature, humidity, and vibration data from the vehicle control unit 20 . and may be transmitted to the user terminal 40 together. Meanwhile, the data logger 30 may be implemented to directly communicate with the BMS 10 in addition to the vehicle control unit 20 .
  • the data logger 30 is plugged into an input/output port (eg, USB) of a vehicle or placed or installed near a battery device, and can be easily installed or removed by a user.
  • an input/output port eg, USB
  • the user terminal 40 is for periodically receiving operation data of the electric bus and the state data of the battery through communication with the data logger 30 and transmitting it to the service server 100
  • a mobile terminal such as a smartphone or tablet PC may include, and a user application for receiving a service according to an embodiment of the present invention may be installed.
  • a user application for receiving a service according to an embodiment of the present invention may transmit data received from the data logger 30 to the service server 100 and display the analysis data received from the service server 100 .
  • the user application may include a user menu for registering and inputting data logger 30, electric bus information, battery information, route information, driver information, and the like.
  • the information of the electric bus includes a vehicle model, a year model, and the like
  • the battery information includes a manufacturer and model number of the battery.
  • Information on the electric bus and battery information can be entered by the administrator.
  • the user application installed in the user terminal 40 may be designed differently by being divided into a driver, a manager, a charger, and the like, and in this case, each input menu and display item may be different.
  • the user terminal 40 transmits, to the service server 100 , information input or registered through the input menu of the user application and its own location information, in addition to the operation data of the electric bus and the state data of the battery received from the data logger 30 .
  • the user application may be installed in the user terminal 40 of the driver, manager and charger of the electric bus.
  • the user application displays a screen for registering the electric bus and the data logger 30, and the user
  • the identification information eg, barcode, NFC, etc.
  • the user application recognizes the surrounding data logger 30 through data communication (eg, NFC, Bluetooth) and displays the screen is displayed, the user can confirm this and select and register the data logger 30 .
  • the registered electric bus, data logger 30, and user information are transmitted to the service server 100 .
  • the user application periodically receives the driving data and the battery status data from the data logger 30 with successful communication connection, and transmits them to the service server 100 .
  • the charger 50 is a device for charging the battery of the electric bus, and when the battery is charged, the charging data and the battery state data of the battery of the electric bus are obtained and transmitted to the service server 100 .
  • the charger 50 receives a control command related to the battery charging method of the electric bus from the service server 100 or the user terminal 40 when charging the battery of the electric bus, and responds to the control command of the electric bus Battery charging can be performed.
  • the service server 100 receives the operation data of the electric bus and the state data of the battery from the user terminal 40 and the charger 50, and analyzes and predicts the state of the battery of the electric bus based on the received data.
  • What the service server 100 uses as basic data for data analysis is the driving data received from the user terminal 40 and battery state data, the charging related data of the battery of the electric bus collected from the charger 50, and the like, and the driving data includes route information, driver information, load information, power consumption, indoor/outdoor temperature, air conditioning information, location information, speed, and time of the electric bus, and battery state data includes battery temperature, voltage, current, SOC, and It may include at least three of the resistors.
  • the service server 100 may classify the collected data by vehicle type, battery model, and route, and estimate and calculate data regarding the degree of deterioration and failure probability of the battery based on the classified data.
  • FIGS. 2 and 3 are schematic diagrams of a service server 100 according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram for explaining operation and charging control optimization of the service server 100 according to an embodiment of the present invention.
  • the service server 100 includes a data pre-processing unit 110 , a deterioration/failure rate prediction model unit 120 , and a driving/charging optimization unit 130 .
  • the data preprocessor 110 performs preprocessing of driving data, battery state data, and charging data received from the user terminal 40 and the charger 50 .
  • the deterioration/failure rate prediction model unit 120 is for predicting the deterioration and failure rate of the battery, and as a prediction of future values rather than the current deterioration and failure rate of the battery, for example, the operating time of the electric bus. It can be set as 1 hour, 3 hours, 5 hours, 10 hours, etc.
  • the deterioration/failure rate prediction model unit 120 receives battery state data, driving data, and charging data as inputs through artificial neural network-based machine learning to predict and output the deterioration rate and failure rate of the battery after a predetermined time, In this embodiment, as an example, the deterioration/failure rate prediction model unit 120 predicts the deterioration rate and failure rate after 1 hour. The deterioration/failure rate prediction model unit 120 learns how the deterioration rate and failure rate change according to changes in the input variable, from the past data of the corresponding battery, and updates the variables through learning.
  • the deterioration/failure rate prediction model unit 120 includes an input layer 121 including a plurality of input nodes, a hidden layer 123 including a plurality of hidden nodes, and one output node. It has an output layer 125 .
  • the input layer 121 includes a number corresponding to the number of input data, such as battery state data, driving data, charging data, electric bus information, battery information, etc. obtained through the user terminal 40 and the charger 50 . It consists of input nodes.
  • the hidden layer 123 receives data from the input node, calculates a weighted sum by applying a weight between the input node and the hidden node, applies a predetermined transfer function to this value, and outputs the result to the output layer 125 .
  • the range of the result value output from the hidden node is a value between -1 and 1, and the weight learning of the hidden layer 123 can be learned through the Levenberg-Marquardt method, which is one of the backpropagation methods.
  • the output layer 125 receives the result value of the hidden layer 123, applies a weight between the hidden node and the output node to calculate a weighted sum, and applies a predetermined transition function to this value to determine the degree of deterioration and failure rate of the battery after a predetermined time. It contains two output nodes that output .
  • the same transition function used in the hidden layer 123 may be used as the transition function used in the output layer 125.
  • the result values output from the output node are the failure rate and deterioration value, and the weight learning of the output layer 125 is One of the backpropagation methods is the Levenberg-Marquardt method.
  • the driving/charging optimization unit 130 is for calculating and outputting a driving/charging control value for optimizing a predicted value related to a future battery state or a failure rate, and may be a value that recommends a driving speed, a charging interval, and the like.
  • the operation/charge optimization unit 130 uses a cost function related to the difference between the deterioration degree value output from the deterioration degree/failure rate prediction model unit 120 and the target deterioration degree value to be controlled for optimal battery management.
  • the cost function relating to the difference between the deterioration value input to the driving/charging optimization unit 130 and the target deterioration value to be controlled may use a mean squared error (MSE).
  • MSE mean squared error
  • the driving/charging optimization unit 130 updates the weights of the plurality of optimization nodes to determine the driving control and charging control values using the gradient descent method based on the calculated cost function value. Specifically, the weight of the optimization node is continuously updated in a direction in which the cost is reduced by partial differentiation of the cost with the weight value of the optimization node.
  • Each of the plurality of optimization nodes applies the updated weight of their own node to a predetermined transition function to update and output the value of the control signal.
  • the driving control and charging control values output by the driving/charging optimization unit 130 are transmitted to the user terminal 40 .
  • it may be pushed to the application of the user terminal 40 of the driver or charger of the corresponding electric bus and displayed on the screen, the driver or charger may check this and drive or charge according to the recommendations to improve the performance of the battery to keep it at its best.
  • the data pre-processing unit 110 may be implemented by a data processing algorithm and a calculation algorithm.
  • the service server 100 may estimate and calculate data regarding the failure probability of the battery based on the SOC value and the resistance value of the battery in a DC load state.
  • the present applicant has found that there is a correlation between the SOC value and the resistance value in the DC load state depending on the degree of battery deterioration and failure. Accordingly, the service server 100 according to the present invention may calculate the failure rate by inputting the SOC value and the resistance value of the battery in the DC load state.
  • FIG. 4 is a flowchart illustrating a data acquisition process of a battery state analysis service system of an electric bus according to an embodiment of the present invention.
  • the user executes a user application installed in the user terminal 40 to perform membership registration and/or login ( S10 ).
  • the user is the driver of the electric bus as an example.
  • the log-in information is automatically transmitted to the service server 100, and the service server 100 performs authentication to feed back information corresponding to the user (S13).
  • the user may register the electric bus and data logger 30 that he or she drives by using the input menu of the user application.
  • a barcode or QR code to identify the electric bus is attached next to the driver's seat, and the user applicator recognizes it through an image.
  • the data logger 30 selecting a scan item of the user application, searching for a peripheral device connectable through Bluetooth or NFC, etc. (S15), and displaying a peripheral device such as the data logger 30 that responded (S17) , the user can click and register the data logger 30 installed on his/her own bus among the displayed data loggers 30 (S19).
  • the information input, selected, or registered in the user application in this way is transmitted to the service server 100 and stored in the service server 100 (S20).
  • the user application of the user terminal 40 requests periodic data transmission to the registered data logger 30 ( S21 ), and the data logger 30 sends periodic driving data and battery state data to the vehicle control unit 20 . to request transmission (S23).
  • the vehicle control unit 20 periodically transmits the battery state data and its driving data received from the BMS 10 to the data logger 30 (S25), and the data logger 30 is stored in the internal memory.
  • the data is stored and the data is periodically transmitted to the service server 100 (S27).
  • the data logger 30 may have a separate built-in temperature sensor, humidity sensor, and vibration sensor, and may also transmit its own sensing data to the user terminal 40 together. Whenever the user terminal 40 receives data from the data logger 30, it transmits it to the service server 100 (S29).
  • the user terminal 40 may transmit its own data, for example, location data, to the service server 100 in addition to the data received from the data logger 30 .
  • the service server 100 stores the received data, analyzes the deterioration/failure rate of the battery based thereon (S30), outputs charging and operation control values, and transmits the result to the user terminal 40 (S31) .
  • the user terminal 40 displays the analysis result on the screen (S33), and the user may perform driving and charging control based thereon.
  • the user terminal 40 transmits its own location information to the service server 100 together with the driving data and the status data received from the data logger 30, and the service server ( 100) may recover by estimating the lost data based on the data immediately before the loss and the current data when some of the driving data and the state data are lost. For example, when data is not received from the data logger 30 for a certain period of time due to a communication failure and the data is received all at once after a certain period of time, the service server 100 performs batch processing with the location data of the user terminal 40 received during the period. It is possible to restore the data of the data logger 30 received by mapping the location data to the battery state data or the driving data based on the time data.
  • the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the components may operate by selectively combining one or more.
  • all the components may be implemented as one independent hardware, some or all of the components are selectively combined to perform some or all of the functions of the combined hardware in one or a plurality of hardware program modules It may be implemented as a computer program having Codes and code segments constituting the computer program can be easily inferred by those skilled in the art of the present invention.
  • Such a computer program is stored in a computer readable storage medium (Computer Readable Media), read and executed by the computer, thereby implementing the embodiment of the present invention.
  • the storage medium of the computer program may include a magnetic recording medium, an optical recording medium, and the like.

Abstract

The present invention relates to an electric bus battery state analysis service system comprising: a data logger for periodically acquiring and storing operation data of an electric bus and state data of a battery mounted in the electric bus through communication with a vehicle control unit of the electric bus; a user terminal for periodically receiving the operation data and the state data of the battery through communication with the data logger and transmitting same to a service server; a charger for charging the battery, wherein during charging, the charger acquires state data and charging data of the battery and transmits same to the service server; and the service server for receiving the operation data and the state data from the user terminal and the charger, and analyzing and predicting the state of the battery of the bus on the basis of the received data, wherein the service server classifies the collected data for each vehicle type, each battery model, and each route, so as to estimate and calculate data of a deterioration degree and failure probability of the battery. Accordingly, battery data and operation data can be acquired without installation of a platform for service in an electric bus, the state of a battery can be analyzed through the acquired data, and data for optimization of charging or an operation of the electric bus can be generated for management of the battery at the best performance.

Description

전기 버스의 배터리 상태 분석 서비스 시스템Battery condition analysis service system of electric bus
본 발명은 전기 버스의 배터리 상태 분석 서비스 시스템에 관한 것으로, 보다 구체적으로는 전기 버스의 배터리 상태를 수집하고 분석하는 기술에 관한 것이다.The present invention relates to a battery state analysis service system of an electric bus, and more particularly, to a technology for collecting and analyzing the battery state of an electric bus.
전기버스는 기존 화석연료 버스를 대체하는 친환경 버스로서 최근 국내외에 널리 확산되고 있다. 전기버스에 탑재되는 구동 배터리는 초기 100kW급으로 설계되었으나 최근에는 300kW 수준으로 용량이 크게 늘어났다. 하지만 하루에 수차례 7-8분 간격으로 정규 노선을 운행하는 노선버스로 활용되기 위해서는 전기버스 운행 종료 이후 또는 운행 중에 배터리 충전이 필수적으로 수반되어야 한다. The electric bus is an eco-friendly bus that replaces the existing fossil fuel bus, and has recently been widely spread at home and abroad. The driving battery mounted on the electric bus was initially designed to be 100kW, but recently the capacity has been greatly increased to the level of 300kW. However, in order to be used as a route bus that operates regular routes several times a day at intervals of 7-8 minutes, it is essential to charge the battery after or during operation of the electric bus.
기존 전기버스에 대한 관제 시스템은 전기버스의 현위치, 전기버스의 SOC(State Of Charge)에 대한 정보를 수집하여 운영자에게 제공함으로써 전기버스의 충전이 원활하게 이뤄지도록 한다. 또한, 배터리 팩의 충방전 횟수를 기초로 SOH(State of Health)를 예측하고, 이를 운영자에 제공하여 배터리 팩의 수명을 관리하고 있다. The control system for the existing electric bus collects information on the current location of the electric bus and the state of charge (SOC) of the electric bus and provides it to the operator so that the electric bus can be charged smoothly. In addition, a state of health (SOH) is predicted based on the number of times of charging and discharging of the battery pack, and the lifespan of the battery pack is managed by providing it to an operator.
한편, 텔레매틱스는 자동차와 무선 통신을 결합하여 차량 운행 중 각종 정보를 제공받을 수 있도록 하는 서비스를 지칭한다. 최근 자동차와 자동차간의 무선 통신을 통한 정보를 주고받는 커넥티드 카(connected car)가 등장하는 등 텔레매틱스가 더욱 고도화되고 있다.Meanwhile, telematics refers to a service that combines a vehicle and wireless communication to receive various information while the vehicle is running. Recently, telematics is becoming more sophisticated, with the advent of a connected car that exchanges information through wireless communication between the vehicle and the vehicle.
일반 차량의 텔레매틱스와 비교할 때 전기버스에 관한 관제 시스템은 단순 배터리 관리 수준에 지나지 않는 것으로 볼 수 있다. 또한, 이러한 전기버스에 관제 시스템을 구축하기 위해서는 차량에 데이터 수집을 위한 플랫폼이 설치되어야 하므로, 기존의 전기버스에 이러한 시스템을 구축하기는 어려운 상황이다. Compared to the telematics of a general vehicle, the control system for an electric bus can be seen as nothing more than a simple battery management level. In addition, in order to build a control system in such an electric bus, a platform for data collection must be installed in the vehicle, so it is difficult to build such a system in an existing electric bus.
전술한 바와 같은 문제점을 해결하기 위하여, 본 발명에서는 전기버스에 서비스를 위한 플랫폼을 설치하지 않고도 배터리 데이터 및 운행 데이터를 획득하고 이를 통해 배터리의 상태를 분석할 수 있는 전기 버스의 배터리 상태 분석 서비스 시스템을 제공하는데 목적이 있다.In order to solve the above-described problems, in the present invention, the battery state analysis service system of an electric bus can acquire battery data and operation data without installing a service platform in the electric bus and analyze the state of the battery through this It aims to provide
또한, 단순히 배터리 데이터를 수집하고 분석하는 것을 넘어서 배터리의 성능이 최선으로 관리되도록 전기 버스의 운행이나 충전의 최적화를 위한 전기 버스의 배터리 상태 분석 서비스 시스템을 제공하는데 목적이 있다.Another object of the present invention is to provide a battery condition analysis service system for an electric bus for optimizing the operation or charging of an electric bus so that the performance of the battery is optimally managed beyond simply collecting and analyzing battery data.
상기 목적은 에 전기 버스의 배터리 상태 분석 서비스 시스템에 있어서, 전기 버스의 차량제어유닛과의 통신을 통해 주기적으로 상기 전기 버스의 운행 데이터 및 상기 전기버스에 장착된 배터리의 상태 데이터를 획득 및 저장하는 데이터 로거; 상기 데이터 로거와의 통신을 통해 상기 운행 데이터 및 상기 배터리의 상태 데이터를 주기적으로 수신하고 서비스 서버로 송신하는 사용자 단말기; 상기 배터리를 충전하기 위한 충전기로서, 충전시 상기 배터리의 충전 데이터 및 상태 데이터를 획득하여 상기 서비스 서버로 송신하는 상기 충전기; 및 상기 사용자 단말기 및 상기 충전기로부터 상기 운행 데이터 및 상기 상태 데이터를 수신하고, 수신된 데이터에 기초하여 상기 버스의 배터리의 상태를 분석 및 예측하는 상기 서비스 서버를 포함하고; 상기 서비스 서버는, 수집한 데이터를 차종별, 배터리 모델별, 및 노선별로 분류하여, 상기 배터리의 열화도 및 고장 확률에 관한 데이터를 추정하여 산출할 수 있다. The above object is to obtain and store the operation data of the electric bus and the state data of the battery mounted in the electric bus periodically through communication with the vehicle control unit of the electric bus in the battery state analysis service system of the electric bus. data logger; a user terminal for periodically receiving and transmitting the driving data and the battery status data to a service server through communication with the data logger; A charger for charging the battery, wherein the charger acquires charging data and state data of the battery during charging and transmits it to the service server; and the service server receiving the driving data and the state data from the user terminal and the charger, and analyzing and predicting the state of the battery of the bus based on the received data; The service server may classify the collected data by vehicle type , battery model, and route, and estimate and calculate data regarding the degree of deterioration and failure probability of the battery.
또한, 상기 사용자 단말기는 상기 데이터 로거에 대응하는 상기 전기 버스의 정보, 배터리 정보, 운전자 정보, 노선정보를 등록 및 입력하기 위한 사용자 메뉴를 포함할 수 있다. In addition, the user terminal may include a user menu for registering and inputting information of the electric bus corresponding to the data logger, battery information, driver information, and route information.
그리고, 상기 데이터 로거는 내부에 온도 센서, 습도 센서 및 진동 센서를 포함하고; 상기 사용자 단말기로 상기 온도 센서, 상기 습도 센서 및 상기 진동 센서의 센서 데이터를 송신할 수 있다. And, the data logger includes a temperature sensor, a humidity sensor and a vibration sensor therein; Sensor data of the temperature sensor, the humidity sensor, and the vibration sensor may be transmitted to the user terminal.
더 나아가, 상기 운행 데이터는 상기 전기 버스의 노선 정보, 운전자 정보, 부하 정보, 소비전력, 실내외 온도, 공조 정보, 위치 정보, 속도, 및 시간을 포함하고; 상기 배터리의 상태 데이터는 상기 배터리의 온도, 전압, 전류, SOC, 및 저항 중 적어도 3개를 포함할 수 있다.Further, the driving data includes route information, driver information, load information, power consumption, indoor/outdoor temperature, air conditioning information, location information, speed, and time of the electric bus; The state data of the battery may include at least three of temperature, voltage, current, SOC, and resistance of the battery.
그리고, 상기 서비스 서버는 DC 부하상태에서의 상기 배터리의 상기 SOC 값 및 상기 저항값에 기초하여 상기 배터리의 고장 확률에 관한 데이터를 추정하여 산출할 수 있다. In addition, the service server may estimate and calculate data regarding a failure probability of the battery based on the SOC value and the resistance value of the battery in a DC load state.
아울러, 상기 사용자 단말기는 자신의 위치 정보를 상기 운행 데이터 및 상기 상태 데이터와 함께 상기 서비스 서버로 전송하고; 상기 서비스 서버는 상기 운행 데이터 및 상기 상태 데이터 중에서 일부가 손실된 경우, 손실 직전의 데이터와 현재의 데이터에 기초하여 손실된 데이터를 추정하여 복구할 수 있다.In addition, the user terminal transmits its location information together with the driving data and the status data to the service server; When a part of the driving data and the state data is lost, the service server may recover by estimating the lost data based on the data immediately before the loss and the current data.
상기한 바와 같이, 본 발명에 의한 전기 버스의 배터리 상태 분석 서비스 시스템은 전기버스에 서비스를 위한 플랫폼을 설치하지 않고도 배터리 데이터 및 운행 데이터를 획득하고 이를 통해 배터리의 상태를 분석할 수 있다.As described above, the battery state analysis service system of the electric bus according to the present invention can acquire battery data and operation data without installing a service platform in the electric bus and analyze the state of the battery through this.
또한, 단순히 배터리 데이터를 수집하고 분석하는 것을 넘어 배터리의 성능이 최선으로 관리되도록 전기 버스의 운행이나 충전의 최적화를 위한 데이터를 생성할 수 있다.In addition, beyond simply collecting and analyzing battery data, it is possible to generate data for optimizing the operation or charging of electric buses so that the performance of the battery is optimally managed.
도 1은 본 발명의 일 실시예에 따른 전기 버스의 배터리 상태 분석 서비스 시스템의 개략도이다. 1 is a schematic diagram of a battery condition analysis service system of an electric bus according to an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 따른 서비스 서버(100)의 개략도이다.2 is a schematic diagram of a service server 100 according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 서비스 서버(100)의 운행 및 충전 제어 최적화를 설명하기 위한 개략도이다.3 is a schematic diagram for explaining operation and charging control optimization of the service server 100 according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 전기 버스의 배터리 상태 분석 서비스 시스템의 데이터 획득 과정을 설명하기 위한 흐름도이다.4 is a flowchart illustrating a data acquisition process of a battery state analysis service system of an electric bus according to an embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 구체적인 실시예들에 대해 설명하기로 한다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 전기 버스의 배터리 상태 분석 서비스 시스템의 개략도이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 전기 버스의 배터리 상태 분석 서비스 시스템은 배터리의 BMS(10), 차량제어유닛(20), 데이터 로거(30), 사용자 단말기(40), 충전기(50), 및 서비스 서버(100)를 포함한다.1 is a schematic diagram of a battery condition analysis service system of an electric bus according to an embodiment of the present invention; Referring to FIG. 1 , the battery state analysis service system of an electric bus according to an embodiment of the present invention includes a battery BMS 10 , a vehicle control unit 20 , a data logger 30 , a user terminal 40 , and a charger. 50 , and a service server 100 .
BMS(10)(Battery Management System)는 전기 버스에 장착된 배터리장치에 연결되어 배터리의 상태를 모니터링하고 관리하기 위한 모듈로서, 배터리 가용 파워, 전류, 전압, 저항 또는 배터리 SOC 값을 차량제어유닛(20)에 전달한다. The BMS (10) (Battery Management System) is a module for monitoring and managing the state of the battery connected to the battery device mounted on the electric bus, and is a vehicle control unit ( 20) is forwarded.
차량제어유닛(20)은 차량의 동작을 전반적으로 제어하기 위한 것으로, 차량의 가속페달, 브레이크 페달, 또는 변속 레버 등의 입력에 따라 인버터, 구동모터 등의 구동을 제어한다. 또한, 차량제어유닛(20)은 BMS(10)로부터 배터리 상태 데이터를 수신하고 배터리 충전 상태 등을 디스플레이 등의 표시 유닛에 제공한다. 차량제어유닛(20)은 외부와의 데이터 송수신을 위한 통신 모듈을 포함하며, 통신 모듈을 통해 데이터 로거(30) 또는 사용자 단말기(40)와 연동 가능하다. 여기서, 통신 모듈은 CAN, Ethernet, 인터넷(Internet), LTE, 5G, 와이파이(Wi-Fi), 블루투스(Bluetooth), NFC(Near Field Communication), 지그비(Zigbee), IR(Infrared Ray), RF(Radio Frequency) 등 다양한 방식의 통신모듈로 구현 가능하다. 차량제어유닛(20)은 데이터 로거(30)의 데이터 요청에 대응하여 배터리의 상태 데이터(예, 배터리 가용 파워, 전류, 전압, 저항 또는 배터리 SOC 값)와 전기 버스의 운행 데이터(예, 온도, 속도, 거리, 부하 정보, 소비전력, 공조 정보, 위치 정보, 및 시간)를 데이터 로거(30)로 전송한다. The vehicle control unit 20 is for overall controlling the operation of the vehicle, and controls the driving of the inverter, the driving motor, etc. according to an input such as an accelerator pedal, a brake pedal, or a shift lever of the vehicle. In addition, the vehicle control unit 20 receives the battery state data from the BMS 10 and provides the battery charge state and the like to a display unit such as a display. The vehicle control unit 20 includes a communication module for transmitting and receiving data to and from the outside, and is interoperable with the data logger 30 or the user terminal 40 through the communication module. Here, the communication module is CAN, Ethernet, Internet, LTE, 5G, Wi-Fi, Bluetooth, NFC (Near Field Communication), Zigbee, IR (Infrared Ray), RF ( It can be implemented with various communication modules such as radio frequency). In response to a data request from the data logger 30, the vehicle control unit 20 includes battery state data (eg, battery available power, current, voltage, resistance or battery SOC value) and electric bus operation data (eg, temperature, speed, distance, load information, power consumption, air conditioning information, location information, and time) are transmitted to the data logger 30 .
데이터 로거(30)는 차량제어유닛(20)과의 통신을 통해 전기 버스의 운행 데이터 및 배터리의 상태 데이터를 획득 및 저장하고 사용자 단말기(40)로 해당 데이터를 전송하기 위한 것으로, 내부에 데이터 저장을 위한 메모리, 외부와의 통신을 위한 통신 모듈, 및 제어를 위한 마이크로 컨트롤러를 포함한다. 데이터 로거(30)의 통신모듈은 CAN, Ethernet, 와이파이(Wi-Fi), 블루투스(Bluetooth), NFC(Near Field Communication), 지그비(Zigbee), IR(Infrared Ray), RF(Radio Frequency) 등 다양한 방식의 무선통신모듈과 유선통신모듈로 구현 가능하다. 한편, 데이터 로거(30)는 내부에 온도 센서, 습도 센서 및 진동 센서를 포함할 수 있으며, 센싱한 온도, 습도, 및 진동 데이터를 차량제어유닛(20)으로부터 전송받은 운행 데이터 및 배터리의 상태 데이터와 함께 사용자 단말기(40)로 송신할 수 있다. 한편, 데이터 로거(30)는 차량제어유닛(20) 이외에 BMS(10)와 직접 통신할 수 있도록 구현될 수도 있다. 데이터 로거(30)는 차량의 입출력 포트(예, USB)에 꽂혀지거나 배터리장치 근처체 놓여지거나 설치되어, 사용자에 의해 용이하게 설치되거나 제거될 수 있다. The data logger 30 is for acquiring and storing the driving data of the electric bus and the state data of the battery through communication with the vehicle control unit 20 , and transmitting the data to the user terminal 40 , and storing the data therein It includes a memory for, a communication module for communication with the outside, and a microcontroller for control. The communication module of the data logger 30 is various, such as CAN, Ethernet, Wi-Fi, Bluetooth, NFC (Near Field Communication), Zigbee, IR (Infrared Ray), RF (Radio Frequency), etc. It can be implemented with a wireless communication module and a wired communication module. On the other hand, the data logger 30 may include a temperature sensor, a humidity sensor, and a vibration sensor therein, and the driving data and battery state data received by receiving the sensed temperature, humidity, and vibration data from the vehicle control unit 20 . and may be transmitted to the user terminal 40 together. Meanwhile, the data logger 30 may be implemented to directly communicate with the BMS 10 in addition to the vehicle control unit 20 . The data logger 30 is plugged into an input/output port (eg, USB) of a vehicle or placed or installed near a battery device, and can be easily installed or removed by a user.
사용자 단말기(40)는 데이터 로거(30)와의 통신을 통해 전기 버스의 운행 데이터 및 배터리의 상태 데이터를 주기적으로 수신하고 서비스 서버(100)로 송신하기 위한 것으로, 스마트폰이나 태블릿 PC와 같은 모바일 단말기를 포함할 수 있으며, 본 발명의 일 실시예에 따른 서비스를 제공받기 위한 사용자 어플리케이션이 설치될 수 있다. 본 발명의 일 실시예에 따른 서비스를 제공받기 위한 사용자 어플리케이션은 데이터 로거(30)로부터 수신된 데이터를 서비스 서버(100)로 전송하고, 서비스 서버(100)로부터 전송받은 분석 데이터를 디스플레이할 수 있다. 또한, 사용자 어플리케이션은 데이터 로거(30), 전기 버스의 정보, 배터리 정보, 노선정보, 운전자 정보 등을 등록 및 입력하기 위한 사용자 메뉴를 포함할 수 있다. 여기서, 전기 버스의 정보는 차종, 년식 등을 포함하고, 배터리 정보는 배터리의 제조사 및 모델번호를 포함한다. 전기 버스의 정보 및 배터리 정보는 관리자에 의해 입력될 수 있다. 사용자 단말기(40)에 설치되는 사용자 어플리케이션은 운전자, 관리자, 충전자 등으로 구분되어 달리 설계될 수 있으며, 이 경우, 각각의 입력메뉴 및 표시 항목이 상이할 수 있다. The user terminal 40 is for periodically receiving operation data of the electric bus and the state data of the battery through communication with the data logger 30 and transmitting it to the service server 100 , and a mobile terminal such as a smartphone or tablet PC may include, and a user application for receiving a service according to an embodiment of the present invention may be installed. A user application for receiving a service according to an embodiment of the present invention may transmit data received from the data logger 30 to the service server 100 and display the analysis data received from the service server 100 . . In addition, the user application may include a user menu for registering and inputting data logger 30, electric bus information, battery information, route information, driver information, and the like. Here, the information of the electric bus includes a vehicle model, a year model, and the like, and the battery information includes a manufacturer and model number of the battery. Information on the electric bus and battery information can be entered by the administrator. The user application installed in the user terminal 40 may be designed differently by being divided into a driver, a manager, a charger, and the like, and in this case, each input menu and display item may be different.
사용자 단말기(40)는 데이터 로거(30)로부터 수신한 전기 버스의 운행 데이터 및 배터리의 상태 데이터 이외에, 사용자 어플리케이션의 입력 메뉴를 통해 입력 또는 등록한 정보와 자신의 위치정보를 서비스 서버(100)로 전송할 수 있다. 사용자 어플리케이션은 전기 버스의 운전자, 관리자 및 충전자의 사용자 단말기(40)에 설치될 수 있다. 예를 들어, 운전자의 경우 전기 버스의 운행 시 사용자 단말기(40)에서 사용자 어플리케이션을 실행시켜 해당 앱에 로그인하면, 사용자 어플리케이션은 전기 버스와 데이터 로거(30) 등록을 위한 화면을 표시하고, 사용자는 전기 버스의 식별정보(예, 바코드, NFC 등)를 영상촬영이나 근접 통신을 통해 인식하여 등록하고, 사용자 어플리케이션이 데이터 통신(예, NFC, 블루투스)을 통해 주변 데이터 로거(30)를 인식하여 화면에 표시하면, 사용자는 이를 확인하고 데이터 로거(30)를 선택 및 등록할 수 있다. 등록된 전기 버스, 데이터 로거(30), 및 사용자 정보(운전자)는 서비스 서버(100)로 전송된다. 한편, 사용자 어플리케이션은 통신 연결이 성공한 데이터 로거(30)로부터 주기적으로 운행 데이터와 배터리의 상태 데이터를 수신하고 이를 서비스 서버(100)로 전송한다.The user terminal 40 transmits, to the service server 100 , information input or registered through the input menu of the user application and its own location information, in addition to the operation data of the electric bus and the state data of the battery received from the data logger 30 . can The user application may be installed in the user terminal 40 of the driver, manager and charger of the electric bus. For example, when a driver runs a user application on the user terminal 40 while driving an electric bus and logs into the app, the user application displays a screen for registering the electric bus and the data logger 30, and the user The identification information (eg, barcode, NFC, etc.) of the electric bus is recognized and registered through image shooting or proximity communication, and the user application recognizes the surrounding data logger 30 through data communication (eg, NFC, Bluetooth) and displays the screen is displayed, the user can confirm this and select and register the data logger 30 . The registered electric bus, data logger 30, and user information (driver) are transmitted to the service server 100 . On the other hand, the user application periodically receives the driving data and the battery status data from the data logger 30 with successful communication connection, and transmits them to the service server 100 .
충전기(50)는 전기 버스의 배터리를 충전하기 위한 장치로서, 배터리 충전 시 전기 버스의 배터리의 충전 데이터 및 배터리 상태 데이터를 획득하여 서비스 서버(100)로 전송한다. 또한, 충전기(50)는 전기 버스의 배터리 충전 시, 서비스 서버(100) 또는 사용자 단말기(40)로부터 상기 전기 버스의 배터리 충전방식에 관한 제어명령을 수신하고, 제어명령에 대응하여 상기 전기 버스의 배터리 충전을 수행할 수 있다. The charger 50 is a device for charging the battery of the electric bus, and when the battery is charged, the charging data and the battery state data of the battery of the electric bus are obtained and transmitted to the service server 100 . In addition, the charger 50 receives a control command related to the battery charging method of the electric bus from the service server 100 or the user terminal 40 when charging the battery of the electric bus, and responds to the control command of the electric bus Battery charging can be performed.
서비스 서버(100)는 사용자 단말기(40) 및 충전기(50)로부터 전기 버스의 운행 데이터 및 배터리의 상태 데이터를 수신하고, 수신된 데이터에 기초하여 전기 버스의 배터리의 상태를 분석 및 예측하기 위한 것으로, 적어도 하나의 메모리와 프로세서, 및 통신 모듈을 포함한 컴퓨팅 장치에 의해 구현될 수 있다. 서비스 서버(100)가 데이터 분석의 기초 데이터로 삼는 것은 사용자 단말기(40)로부터 수신한 운행 데이터와 배터리의 상태 데이터, 충전기(50)로부터 수집한 전기버스의 배터리의 충전 관련 데이터 등으로서, 운행 데이터는 전기 버스의 노선 정보, 운전자 정보, 부하 정보, 소비전력, 실내외 온도, 공조 정보, 위치 정보, 속도, 및 시간 등을 포함하고, 배터리의 상태 데이터는 배터리의 온도, 전압, 전류, SOC, 및 저항 중 적어도 3개를 포함할 수 있다.The service server 100 receives the operation data of the electric bus and the state data of the battery from the user terminal 40 and the charger 50, and analyzes and predicts the state of the battery of the electric bus based on the received data. , may be implemented by a computing device including at least one memory and a processor, and a communication module. What the service server 100 uses as basic data for data analysis is the driving data received from the user terminal 40 and battery state data, the charging related data of the battery of the electric bus collected from the charger 50, and the like, and the driving data includes route information, driver information, load information, power consumption, indoor/outdoor temperature, air conditioning information, location information, speed, and time of the electric bus, and battery state data includes battery temperature, voltage, current, SOC, and It may include at least three of the resistors.
서비스 서버(100)는, 수집한 데이터를 차종별, 배터리 모델별, 및 노선별로 분류하고, 분류된 데이터에 기초하여 배터리의 열화도 및 고장 확률에 관한 데이터를 추정하여 산출할 수 있다. The service server 100 may classify the collected data by vehicle type, battery model, and route, and estimate and calculate data regarding the degree of deterioration and failure probability of the battery based on the classified data.
이하, 도 2 및 3을 참조하여 서비스 서버(100)의 구체적인 분석 방법에 대해서 설명하기로 한다. 도 2는 본 발명의 일 실시예에 따른 서비스 서버(100)의 개략도이고, 도 3은 본 발명의 일 실시예에 따른 서비스 서버(100)의 운행 및 충전 제어 최적화를 설명하기 위한 개략도이다.Hereinafter, a detailed analysis method of the service server 100 will be described with reference to FIGS. 2 and 3 . 2 is a schematic diagram of a service server 100 according to an embodiment of the present invention, and FIG. 3 is a schematic diagram for explaining operation and charging control optimization of the service server 100 according to an embodiment of the present invention.
도 2를 참조하면, 서비스 서버(100)는 데이터 전처리부(110) 및 열화도/고장률 예측 모델부(120), 및 운행/충전 최적화부(130)를 포함한다. Referring to FIG. 2 , the service server 100 includes a data pre-processing unit 110 , a deterioration/failure rate prediction model unit 120 , and a driving/charging optimization unit 130 .
데이터 전처리부(110)는 사용자 단말기(40) 및 충전기(50)로부터 수신한 운행 데이터, 배터리의 상태 데이터, 및 충전 데이터의 전처리를 수행한다. The data preprocessor 110 performs preprocessing of driving data, battery state data, and charging data received from the user terminal 40 and the charger 50 .
열화도/고장률 예측 모델부(120)는 배터리의 열화도 및 고장률을 예측하기 위한 것으로, 현재의 배터리의 열화도 및 고장률이 아닌 미래의 값의 예측으로서, 예를 들어, 전기 버스의 운행 시간을 기준으로 향후 1시간, 3시간, 5시간, 10시간 등으로 설정할 수 있다.The deterioration/failure rate prediction model unit 120 is for predicting the deterioration and failure rate of the battery, and as a prediction of future values rather than the current deterioration and failure rate of the battery, for example, the operating time of the electric bus. It can be set as 1 hour, 3 hours, 5 hours, 10 hours, etc.
열화도/고장률 예측 모델부(120)는 인공신경망기반의 기계학습을 통해 배터리 상태 데이터, 운행 데이터 및 충전 데이터를 입력으로 하여 소정 시간 이후의 배터리의 열화도 및 고장률을 예측하여 출력하기 위한 것으로, 본 실시예에서는 열화도/고장률 예측 모델부(120)가 1시간 뒤의 열화도 및 고장률을 예측하는 것을 일 예로 한다. 열화도/고장률 예측 모델부(120)는 입력변수의 변화에 따라 열화도 및 고장률이 어떻게 변화하는지 해당 배터리의 과거의 데이터를 통해서 학습하고, 학습을 통해 변수들을 갱신한다.The deterioration/failure rate prediction model unit 120 receives battery state data, driving data, and charging data as inputs through artificial neural network-based machine learning to predict and output the deterioration rate and failure rate of the battery after a predetermined time, In this embodiment, as an example, the deterioration/failure rate prediction model unit 120 predicts the deterioration rate and failure rate after 1 hour. The deterioration/failure rate prediction model unit 120 learns how the deterioration rate and failure rate change according to changes in the input variable, from the past data of the corresponding battery, and updates the variables through learning.
도 3을 참조하면, 열화도/고장률 예측 모델부(120)는 복수의 입력노드를 포함하는 입력층(121), 복수의 은닉노드를 포함하는 은닉층(123), 및 하나의 출력노드를 포함하는 출력층(125)을 갖는다. 입력층(121)은 사용자 단말기(40)와 충전기(50)를 통해 획득한 배터리 상태 데이터, 운행 데이터, 충전 데이터, 전기 버스의 정보, 배터리 정보 등, 각각의 입력 데이터의 수에 대응하는 개수의 입력노드로 구성된다. Referring to FIG. 3 , the deterioration/failure rate prediction model unit 120 includes an input layer 121 including a plurality of input nodes, a hidden layer 123 including a plurality of hidden nodes, and one output node. It has an output layer 125 . The input layer 121 includes a number corresponding to the number of input data, such as battery state data, driving data, charging data, electric bus information, battery information, etc. obtained through the user terminal 40 and the charger 50 . It consists of input nodes.
은닉층(123)은 입력노드부터 데이터를 받아 입력노드와 은닉노드 간의 가중치(weight)를 적용하여 가중합을 계산하고 이 값에 소정의 전이함수를 적용하여 결과값을 출력층(125)으로 출력한다. 은닉노드에서 출력하는 결과값의 범위는 -1~1 사이의 값으로, 은닉층(123)의 가중치 학습은 역전파법중에 하나인 Levenberg-Marquardt 방법을 통해 학습할 수 있다.The hidden layer 123 receives data from the input node, calculates a weighted sum by applying a weight between the input node and the hidden node, applies a predetermined transfer function to this value, and outputs the result to the output layer 125 . The range of the result value output from the hidden node is a value between -1 and 1, and the weight learning of the hidden layer 123 can be learned through the Levenberg-Marquardt method, which is one of the backpropagation methods.
출력층(125)은 은닉층(123)의 결과값에 전달받아 은닉노드와 출력노드 간의 가중치를 적용하여 가중합을 계산하고 이 값에 소정의 전이함수를 적용하여 소정 시간 이후의 배터리의 열화도 및 고장률을 출력하는 두 개의 출력노드를 포함한다. 여기서, 출력층(125)에서 사용하는 전이함수는 은닉층(123)에서 사용하는 동일한 전이함수가 사용될 수 있다.출력노드에서 출력하는 결과값은 고장률과 열화도 값으로, 출력층(125)의 가중치 학습은 역전파법중에 하나인 Levenberg-Marquardt 방법을 통해 학습할 수 있다.The output layer 125 receives the result value of the hidden layer 123, applies a weight between the hidden node and the output node to calculate a weighted sum, and applies a predetermined transition function to this value to determine the degree of deterioration and failure rate of the battery after a predetermined time. It contains two output nodes that output . Here, the same transition function used in the hidden layer 123 may be used as the transition function used in the output layer 125. The result values output from the output node are the failure rate and deterioration value, and the weight learning of the output layer 125 is One of the backpropagation methods is the Levenberg-Marquardt method.
운행/충전 최적화부(130)는 미래의 배터리 상태나 고장률에 관한 예측값을 최적화하기 위한 운행/충전 제어 값을 산출하여 출력하기 위한 것으로, 운행 속도, 충전 간격 등을 권고하는 값일 수 있다. 운행/충전 최적화부(130)는 열화도/고장률 예측 모델부(120)에서 출력한 열화도값과 제어하고자 하는 목표 열화도 값과의 차이값에 관한 코스트함수를 이용하여 최적의 배터리 관리를 위한 운행 제어 및 충전 제어신호를 결정하여 출력하기 위한 일종의 신경망으로, 도 3에 도시된 바와 같이, 복수의 운행제어(예, 속도 등), 충전 제어(예, 충전 방식, 시간 등)을 출력하는 복수의 최적화 노드를 포함하는 SP층(Series Parallel Layer)(133)을 구비한다. 이때, 운행/충전 최적화부(130)에 입력되는 열화도 값과 제어하고자 하는 목표 열화도 값과의 차이값에 관한 코스트함수는 MSE(Mean Squared Error)를 이용할 수 있다. 운행/충전 최적화부(130)는 이때 산출한 코스트 함수 값을 기준으로 경사하강법을 이용하여 운행 제어 및 충전 제어 값을 결정하기 위해 복수의 최적화노드의 가중치를 업데이트한다. 구체적으로, 코스트를 최적화노드의 가중치 값으로 편미분하여 코스트가 줄어드는 방향으로 최적화 노드의 가중치를 계속 업데이트 한다. 복수의 최적화노드는 각각 업데이트된 자신의 노드의 가중치를 소정의 전이함수에 적용하여 제어신호의 값을 업데이트하여 출력한다.The driving/charging optimization unit 130 is for calculating and outputting a driving/charging control value for optimizing a predicted value related to a future battery state or a failure rate, and may be a value that recommends a driving speed, a charging interval, and the like. The operation/charge optimization unit 130 uses a cost function related to the difference between the deterioration degree value output from the deterioration degree/failure rate prediction model unit 120 and the target deterioration degree value to be controlled for optimal battery management. As a kind of neural network for determining and outputting driving control and charging control signals, as shown in FIG. 3 , a plurality of outputting driving control (eg, speed, etc.) and charging control (eg, charging method, time, etc.) and an SP layer (Series Parallel Layer) 133 including an optimization node of In this case, the cost function relating to the difference between the deterioration value input to the driving/charging optimization unit 130 and the target deterioration value to be controlled may use a mean squared error (MSE). The driving/charging optimization unit 130 updates the weights of the plurality of optimization nodes to determine the driving control and charging control values using the gradient descent method based on the calculated cost function value. Specifically, the weight of the optimization node is continuously updated in a direction in which the cost is reduced by partial differentiation of the cost with the weight value of the optimization node. Each of the plurality of optimization nodes applies the updated weight of their own node to a predetermined transition function to update and output the value of the control signal.
운행/충전 최적화부(130)에서 출력한 운행 제어 및 충전 제어 값은 사용자 단말기(40)로 전송된다. 예를 들어, 해당 전기 버스의 운전자 또는 충전자의 사용자 단말기(40)의 어플리케이션으로 푸쉬되어 화면에 표시될 수 있고, 운전자나 충전자는 이를 확인하고 해당 권고사항대로 운전이나 충전을 수행하여 배터리의 성능을 최상으로 유지할 수 있게 한다.The driving control and charging control values output by the driving/charging optimization unit 130 are transmitted to the user terminal 40 . For example, it may be pushed to the application of the user terminal 40 of the driver or charger of the corresponding electric bus and displayed on the screen, the driver or charger may check this and drive or charge according to the recommendations to improve the performance of the battery to keep it at its best.
여기서, 데이터 전처리부(110) 및 열화도/고장률 예측 모델부(120), 및 운행/충전 최적화부(130)는 데이터 처리 알고리즘 및 계산 알고리즘에 의해 구현 가능하다.Here, the data pre-processing unit 110 , the deterioration/failure rate prediction model unit 120 , and the operation/charging optimization unit 130 may be implemented by a data processing algorithm and a calculation algorithm.
한편, 서비스 서버(100)는 DC 부하상태에서의 배터리의 상기 SOC 값 및 저항값에 기초하여 배터리의 고장 확률에 관한 데이터를 추정하여 산출할 수 있다. 본 출원인은 DC 부하상태에서 SOC값과 저항값이 배터리 열화도 및 고장여부에 따른 상관관계가 존재하는 것을 알게 되었다. 이에 따라, 본 발명에 따른 서비스 서버(100)는 DC 부하상태에서의 배터리의 SOC값과 저항값을 입력으로 하여 고장률을 산출할 수 있다. Meanwhile, the service server 100 may estimate and calculate data regarding the failure probability of the battery based on the SOC value and the resistance value of the battery in a DC load state. The present applicant has found that there is a correlation between the SOC value and the resistance value in the DC load state depending on the degree of battery deterioration and failure. Accordingly, the service server 100 according to the present invention may calculate the failure rate by inputting the SOC value and the resistance value of the battery in the DC load state.
도 4는 본 발명의 일 실시예에 따른 전기 버스의 배터리 상태 분석 서비스 시스템의 데이터 획득 과정을 설명하기 위한 흐름도이다. 도 4를 참조하면, 사용자가 사용자 단말기(40)에 설치된 사용자 어플리케이션을 실행하여 회원가입 및/로그인을 진행한다(S10). 여기서, 사용자는 전기 버스의 운전자인 것을 일 예로 한다. 운전자가 자신의 단말기에 설치된 사용자 어플리케이션을 실행하면 자동으로 로그인 정보를 서비스 서버(100)로 전송하고, 서비스 서버(100)에서 인증을 수행하여 사용자에 대응하는 정보를 피드백한다(S13). 사용자는 사용자 어플리케이션의 입력 메뉴를 이용하여 자신이 운전하는 전기 버스와 데이터 로거(30)를 등록할 수 있다. 예를 들어, 전기 버스의 경우, 운전석 옆에 전기 버스를 식별하기 위한 바코드나 QR 코드를 부착하고 사용자 어플리케이셔에서 영상을 통해 이를 인식하는 방식으로 전기 버스의 식별정보를 인식하여 입력할 수 있다. 데이터 로거(30)의 경우, 사용자 어플리케이션의 스캔 항목을 선택하여 블루투스나 NFC 등을 통해 연결 가능한 주변 기기를 검색하고(S15), 응답한 데이터 로거(30) 등의 주변 기기를 표시하면(S17), 사용자가 표시된 데이터 로거(30) 중에서 자신의 버스에 설치된 데이터 로거(30)를 클릭하여 이를 등록할 수 있다(S19). 이렇게 사용자 어플리케이션에 입력, 선택 또는 등록된 정보는 서비스 서버(100)로 전송되고, 서비스 서버(100)에 저장된다(S20).4 is a flowchart illustrating a data acquisition process of a battery state analysis service system of an electric bus according to an embodiment of the present invention. Referring to FIG. 4 , the user executes a user application installed in the user terminal 40 to perform membership registration and/or login ( S10 ). Here, it is assumed that the user is the driver of the electric bus as an example. When the driver executes the user application installed in his/her terminal, the log-in information is automatically transmitted to the service server 100, and the service server 100 performs authentication to feed back information corresponding to the user (S13). The user may register the electric bus and data logger 30 that he or she drives by using the input menu of the user application. For example, in the case of an electric bus, a barcode or QR code to identify the electric bus is attached next to the driver's seat, and the user applicator recognizes it through an image. . In the case of the data logger 30, selecting a scan item of the user application, searching for a peripheral device connectable through Bluetooth or NFC, etc. (S15), and displaying a peripheral device such as the data logger 30 that responded (S17) , the user can click and register the data logger 30 installed on his/her own bus among the displayed data loggers 30 (S19). The information input, selected, or registered in the user application in this way is transmitted to the service server 100 and stored in the service server 100 (S20).
사용자 단말기(40)의 사용자 어플리케이션은 등록된 데이터 로거(30)에 주기적인 데이터 송신을 요청하고(S21), 데이터 로거(30)는 차량제어유닛(20)에 주기적인 운행 데이터 및 배터리의 상태 데이터의 송신을 요청한다(S23). 이에 따라, 차량제어유닛(20)은 BMS(10)로부터 수신한 배터리의 상태 데이터와 자신의 운행 데이터를 주기적으로 데이터 로거(30)로 전송하다(S25), 데이터 로거(30)는 내부 메모리에 데이터를 저장하고 서비스 서버(100)로 해당 데이터를 주기적으로 송신한다(S27). 전술한 바와 같이, 데이터 로거(30)는 별도의 온도 센서, 습도 센서 및 진동 센서를 내장할 수 있으며, 자신의 센싱 데이터도 함께 사용자 단말기(40)로 전송할 수 있다. 사용자 단말기(40)는 데이터 로거(30)로부터 데이터를 수신할 때마다 서비스 서버(100)로 전송한다(S29). 이때, 사용자 단말기(40)는 데이터 로거(30)로부터 수신한 데이터 이외에 자신의 데이터 예컨대, 위치 데이터를 함께 서비스 서버(100)로 송신할 수 있다. 서비스 서버(100)는 수신한 데이터를 저장하고 이에 기초하여 배터리의 열화도/고장률을 분석하고(S30), 충전 및 운행 제어 값을 출력하여 그 결과를 사용자 단말기(40)로 송신한다(S31). 사용자 단말기(40)는 분석 결과를 화면에 표시하고(S33), 사용자는 이에 기초하여 운행 및 충전 제어를 수행할 수 있다.The user application of the user terminal 40 requests periodic data transmission to the registered data logger 30 ( S21 ), and the data logger 30 sends periodic driving data and battery state data to the vehicle control unit 20 . to request transmission (S23). Accordingly, the vehicle control unit 20 periodically transmits the battery state data and its driving data received from the BMS 10 to the data logger 30 (S25), and the data logger 30 is stored in the internal memory. The data is stored and the data is periodically transmitted to the service server 100 (S27). As described above, the data logger 30 may have a separate built-in temperature sensor, humidity sensor, and vibration sensor, and may also transmit its own sensing data to the user terminal 40 together. Whenever the user terminal 40 receives data from the data logger 30, it transmits it to the service server 100 (S29). In this case, the user terminal 40 may transmit its own data, for example, location data, to the service server 100 in addition to the data received from the data logger 30 . The service server 100 stores the received data, analyzes the deterioration/failure rate of the battery based thereon (S30), outputs charging and operation control values, and transmits the result to the user terminal 40 (S31) . The user terminal 40 displays the analysis result on the screen (S33), and the user may perform driving and charging control based thereon.
한편, 본 발명의 다른 실시에에 따르면, 사용자 단말기(40)는 자신의 위치 정보를 데이터 로거(30)로부터 수신한 운행 데이터 및 상기 상태 데이터와 함께 서비스 서버(100)로 전송하고, 서비스 서버(100)는 운행 데이터 및 상태 데이터 중에서 일부가 손실된 경우, 손실 직전의 데이터와 현재의 데이터에 기초하여 손실된 데이터를 추정하여 복구할 수 있다. 예컨대, 통신 장애로 인해서 데이터 로거(30)로부터 일정 시간 동안 데이터가 미수신되어 일정 시간 이후 한꺼번에 데이터를 수신받은 경우, 서비스 서버(100)는 그 동안 수신했던 사용자 단말기(40)의 위치 데이터와 일괄적으로 수신받은 데이터 로거(30)의 데이터를 시간 데이터에 기초하여 위치 데이터를 배터리 상태 데이터나 운행 데이터에 매핑하여 복구할 할 수 있다.Meanwhile, according to another embodiment of the present invention, the user terminal 40 transmits its own location information to the service server 100 together with the driving data and the status data received from the data logger 30, and the service server ( 100) may recover by estimating the lost data based on the data immediately before the loss and the current data when some of the driving data and the state data are lost. For example, when data is not received from the data logger 30 for a certain period of time due to a communication failure and the data is received all at once after a certain period of time, the service server 100 performs batch processing with the location data of the user terminal 40 received during the period. It is possible to restore the data of the data logger 30 received by mapping the location data to the battery state data or the driving data based on the time data.
여기서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체 등이 포함될 수 있다.Here, even if all the components constituting the embodiment of the present invention are described as being combined or operated in combination, the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the components may operate by selectively combining one or more. In addition, although all the components may be implemented as one independent hardware, some or all of the components are selectively combined to perform some or all of the functions of the combined hardware in one or a plurality of hardware program modules It may be implemented as a computer program having Codes and code segments constituting the computer program can be easily inferred by those skilled in the art of the present invention. Such a computer program is stored in a computer readable storage medium (Computer Readable Media), read and executed by the computer, thereby implementing the embodiment of the present invention. The storage medium of the computer program may include a magnetic recording medium, an optical recording medium, and the like.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, terms such as "comprises", "comprises" or "have" described above mean that the corresponding component may be inherent, unless otherwise specified, excluding other components. Rather, it should be construed as being able to further include other components. All terms, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs, unless otherwise defined. Terms commonly used, such as those defined in the dictionary, should be interpreted as being consistent with the contextual meaning of the related art, and are not interpreted in an ideal or excessively formal meaning unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (6)

  1. 전기 버스의 배터리 상태 분석 서비스 시스템에 있어서,In the battery condition analysis service system of the electric bus,
    전기 버스의 차량제어유닛과의 통신을 통해 주기적으로 상기 전기 버스의 운행 데이터 및 상기 전기버스에 장착된 배터리의 상태 데이터를 획득 및 저장하는 데이터 로거;a data logger that periodically acquires and stores operation data of the electric bus and state data of a battery mounted in the electric bus through communication with a vehicle control unit of the electric bus;
    상기 데이터 로거와의 통신을 통해 상기 운행 데이터 및 상기 배터리의 상태 데이터를 주기적으로 수신하고 서비스 서버로 송신하는 사용자 단말기;a user terminal for periodically receiving the driving data and the battery status data through communication with the data logger and transmitting it to a service server;
    상기 배터리를 충전하기 위한 충전기로서, 충전시 상기 배터리의 충전 데이터 및 상태 데이터를 획득하여 상기 서비스 서버로 송신하는 상기 충전기; 및A charger for charging the battery, wherein the charger acquires charging data and state data of the battery during charging and transmits it to the service server; and
    상기 사용자 단말기 및 상기 충전기로부터 상기 운행 데이터 및 상기 상태 데이터를 수신하고, 수신된 데이터에 기초하여 상기 버스의 배터리의 상태를 분석 및 예측하는 상기 서비스 서버를 포함하고;and the service server receiving the driving data and the state data from the user terminal and the charger, and analyzing and predicting the state of the battery of the bus based on the received data;
    상기 서비스 서버는, 수집한 데이터를 차종별, 배터리 모델별, 및 노선별로 분류하여, 상기 배터리의 열화도 및 고장 확률에 관한 데이터를 추정하여 산출하는 것을 특징으로 하는 전기 버스의 배터리 상태 분석 서비스 시스템.The service server classifies the collected data by vehicle type , battery model, and route, and estimates and calculates data regarding the degree of deterioration and failure probability of the battery.
  2. 제1항에 있어서, According to claim 1,
    상기 사용자 단말기는 상기 데이터 로거에 대응하는 상기 전기 버스의 정보, 배터리 정보, 운전자 정보, 노선정보를 등록 및 입력하기 위한 사용자 메뉴를 포함하는 것을 특징으로 하는 전기 버스의 배터리 상태 분석 서비스 시스템.and the user terminal includes a user menu for registering and inputting information, battery information, driver information, and route information of the electric bus corresponding to the data logger.
  3. 제1항에 있어서,According to claim 1,
    상기 데이터 로거는 내부에 온도 센서, 습도 센서 및 진동 센서를 포함하고;the data logger includes a temperature sensor, a humidity sensor and a vibration sensor therein;
    상기 사용자 단말기로 상기 온도 센서, 상기 습도 센서 및 상기 진동 센서의 센서 데이터를 송신하는 것을 특징으로 하는 전기 버스의 배터리 상태 분석 서비스 시스템.The battery state analysis service system of the electric bus, characterized in that for transmitting the sensor data of the temperature sensor, the humidity sensor and the vibration sensor to the user terminal.
  4. 제2항 또는 제3항에 있어서, 4. The method of claim 2 or 3,
    상기 운행 데이터는 상기 전기 버스의 노선 정보, 운전자 정보, 부하 정보, 소비전력, 실내외 온도, 공조 정보, 위치 정보, 속도, 및 시간을 포함하고;the driving data includes route information, driver information, load information, power consumption, indoor/outdoor temperature, air conditioning information, location information, speed, and time of the electric bus;
    상기 배터리의 상태 데이터는 상기 배터리의 온도, 전압, 전류, SOC, 및 저항 중 적어도 3개를 포함하는 것을 특징으로 하는 배터리 상태 정보 제공 시스템.The battery state information providing system, characterized in that the battery state data includes at least three of a temperature, voltage, current, SOC, and resistance of the battery.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 서비스 서버는 DC 부하상태에서의 상기 배터리의 상기 SOC 값 및 상기 저항값에 기초하여 상기 배터리의 고장 확률에 관한 데이터를 추정하여 산출하는 것을 특징으로 하는 배터리 상태 정보 제공 시스템.The service server is a battery state information providing system, characterized in that based on the SOC value and the resistance value of the battery in a DC load state to estimate and calculate the data on the failure probability of the battery.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 사용자 단말기는 자신의 위치 정보를 상기 운행 데이터 및 상기 상태 데이터와 함께 상기 서비스 서버로 전송하고;the user terminal transmits its location information together with the driving data and the status data to the service server;
    상기 서비스 서버는 상기 운행 데이터 및 상기 상태 데이터 중에서 일부가 손실된 경우, 손실 직전의 데이터와 현재의 데이터에 기초하여 손실된 데이터를 추정하여 복구하는 것을 특징으로 하는 배터리 상태 정보 제공 시스템.The service server, when a part of the driving data and the state data is lost, based on the data immediately before the loss and the current data, the battery state information providing system, characterized in that the recovery by estimating the lost data.
PCT/KR2020/017301 2020-11-27 2020-11-30 Electric bus battery state analysis service system WO2022114331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0162999 2020-11-27
KR1020200162999A KR20220075123A (en) 2020-11-27 2020-11-27 Analysis Service System for Battery Condition of Electric Bus

Publications (1)

Publication Number Publication Date
WO2022114331A1 true WO2022114331A1 (en) 2022-06-02

Family

ID=81755082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017301 WO2022114331A1 (en) 2020-11-27 2020-11-30 Electric bus battery state analysis service system

Country Status (2)

Country Link
KR (1) KR20220075123A (en)
WO (1) WO2022114331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115214410A (en) * 2022-06-24 2022-10-21 安徽大学江淮学院 Electric automobile electric energy online intelligent monitoring guide system based on big data analysis
CN117669713A (en) * 2024-01-31 2024-03-08 宁德时代新能源科技股份有限公司 Battery information processing method, device, electronic equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522516B1 (en) 2022-11-04 2023-04-18 서울버스(주) System and method for managing and charging battery of electric bus efficiently

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130022294A (en) * 2011-08-25 2013-03-06 엘지이노텍 주식회사 Vehicle management apparatus and method thereof
KR101475061B1 (en) * 2013-07-03 2014-12-22 한국항공대학교산학협력단 Battery management method in battery exchange station
KR20160085070A (en) * 2015-01-07 2016-07-15 삼성전자주식회사 Device and apparatus to estimate state of batter pakc including the plurality of battery cells
KR20160144762A (en) * 2015-06-09 2016-12-19 (주) 비엠지 Remote controlling system for battery
US20200070682A1 (en) * 2016-12-21 2020-03-05 Volvo Truck Corporation A battery management system and a method for controlling a battery management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130022294A (en) * 2011-08-25 2013-03-06 엘지이노텍 주식회사 Vehicle management apparatus and method thereof
KR101475061B1 (en) * 2013-07-03 2014-12-22 한국항공대학교산학협력단 Battery management method in battery exchange station
KR20160085070A (en) * 2015-01-07 2016-07-15 삼성전자주식회사 Device and apparatus to estimate state of batter pakc including the plurality of battery cells
KR20160144762A (en) * 2015-06-09 2016-12-19 (주) 비엠지 Remote controlling system for battery
US20200070682A1 (en) * 2016-12-21 2020-03-05 Volvo Truck Corporation A battery management system and a method for controlling a battery management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115214410A (en) * 2022-06-24 2022-10-21 安徽大学江淮学院 Electric automobile electric energy online intelligent monitoring guide system based on big data analysis
CN115214410B (en) * 2022-06-24 2023-03-10 安徽大学江淮学院 Electric automobile electric energy online intelligent monitoring guide system based on big data analysis
CN117669713A (en) * 2024-01-31 2024-03-08 宁德时代新能源科技股份有限公司 Battery information processing method, device, electronic equipment and storage medium

Also Published As

Publication number Publication date
KR20220075123A (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022114331A1 (en) Electric bus battery state analysis service system
CN111369329B (en) Electric vehicle battery management system based on block chain, leasing method and operation and maintenance method
EP2987112B1 (en) Generating and implementing thermodynamic models of a structure
KR102627949B1 (en) System for Managing Performance of Battery using Electric Vehicle Charging Station and Method thereof
JP2020145186A (en) System, method, and storage media for applying machine learning model to optimize battery pack performance
US20210181256A1 (en) Estimation system, estimation device, estimation method, program, and storage medium
CN104676836B (en) Method for determining operation mode of multi-split air-conditioning system
CN102377179B (en) Information processor and information processing method
CN102024999A (en) Electric car running power management system
KR20210041724A (en) Apparatus and method for predicting failure of electric car charger
US9693120B2 (en) System and method for transmitting measurement signals in spatially extensive supply networks
WO2015199457A1 (en) Method and apparatus for detecting building information
WO2020184454A1 (en) Air-conditioning control system and air-conditioning control method
KR20240010078A (en) System for Managing Performance of Battery using Electric Vehicle Charging Station and Method thereof
WO2023185601A1 (en) Method and device for determining state of health information of battery, and battery system
EP1653307A1 (en) System, method and program product for house automation
CN107872776A (en) For the method, apparatus of Indoor Video, electronic equipment and storage medium
WO2021107422A1 (en) Nonintrusive load monitoring method using energy consumption data
CN117317408A (en) Battery and heat optimization management method based on big data and artificial intelligence
WO2013165156A1 (en) Method and system for controlling air-conditioning to increase user satisfaction and energy efficiency
US20240005648A1 (en) Selective knowledge distillation
CN117369302A (en) Intelligent home system based on model predictive control
US20210327165A1 (en) Vehicle malfunction prediction system, monitoring device, vehicle malfunction prediction method, and vehicle malfunction prediction program
WO2023120784A1 (en) Adversarial learning system for electric vehicle charging infrastructure power distribution
WO2023018226A1 (en) Power management device and method using predicted power peak guideline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963725

Country of ref document: EP

Kind code of ref document: A1