WO2021107422A1 - Nonintrusive load monitoring method using energy consumption data - Google Patents

Nonintrusive load monitoring method using energy consumption data Download PDF

Info

Publication number
WO2021107422A1
WO2021107422A1 PCT/KR2020/014994 KR2020014994W WO2021107422A1 WO 2021107422 A1 WO2021107422 A1 WO 2021107422A1 KR 2020014994 W KR2020014994 W KR 2020014994W WO 2021107422 A1 WO2021107422 A1 WO 2021107422A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
data
energy usage
usage data
load monitoring
Prior art date
Application number
PCT/KR2020/014994
Other languages
French (fr)
Korean (ko)
Inventor
지영민
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2021107422A1 publication Critical patent/WO2021107422A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to an unsupervised learning-based load monitoring method of energy usage data, and more particularly, by classifying the state of past energy usage data and generating learning data necessary for artificial intelligence learning based on the classified data, It relates to a method for developing a recognition model that identifies a load by training a network, and monitoring a load based on power usage data using the developed recognition model.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a method of performing unsupervised learning-based load monitoring (NILM) using only main power usage data of an energy consumption space. .
  • NILM unsupervised learning-based load monitoring
  • an unsupervised learning-based load monitoring method of energy usage data includes the steps of: storing a multi-learning model; and inferring the current state by inputting real-time energy usage data based on the stored multi-learning model.
  • the inference step may infer a current state by identifying a load based on past energy use data.
  • an unsupervised learning-based load monitoring method of energy usage data includes: securing a data set required for neuron learning by using a cluster classification technique of energy usage data; generating training data by adjusting the training sample data set in units of clusters classified for neuron learning; And by using the generated learning data, the step of learning a multi-learning model that outputs a result of the current state as an input of real-time energy usage data; may further include.
  • the learning data may be classification identification data.
  • the learning data and the test data for learning the neurons may be classified.
  • the output unit of the neural network may be modified based on the number of identification data classified by the cluster classification technique.
  • neuron backpropagation learning may be performed.
  • an unsupervised learning-based load monitoring method of energy usage data includes: verifying the performance of the entire multi-learning model confirmed by using test data; and, as a result of the verification, separating and storing the multi-learning model having the highest classification accuracy among all the multi-learning models.
  • the verification step may verify the performance of the entire multi-learning model stored or learned at every preset period, respectively.
  • a computer-readable recording medium containing a computer program for performing an unsupervised learning-based load monitoring method of energy usage data includes the steps of: storing a multiple learning model; and inferring the current state by inputting real-time energy usage data based on the stored multiple learning model.
  • an unsupervised learning-based load monitoring system of energy usage data includes: a learning model storage for storing multiple learning models; and a processor for inferring a current state by inputting real-time energy usage data based on the stored multi-learning model.
  • an unsupervised learning-based load monitoring method of energy usage data includes the steps of: storing a multi-learning model; verifying the performance of the entire multi-learning model stored at every preset period; Separating and storing a multi-learning model having the highest classification accuracy among all multi-learning models as a result of the verification; and inferring the current state by inputting real-time data based on the separately stored multi-learning model.
  • unsupervised learning-based load monitoring can be performed using only the main power usage data of the energy consumption space, and through this, what happens in the energy consumption space can be recognized, and the recognition result can be used as an important parameter for intelligent control.
  • FIG. 1 is a flowchart provided for explaining an unsupervised learning-based load monitoring method of energy usage data according to an embodiment of the present invention
  • FIGS. 2 to 3 are diagrams provided for explaining an unsupervised learning-based load monitoring method of energy usage data according to an embodiment of the present invention
  • FIG. 4 is a diagram provided to explain an unsupervised learning-based load monitoring system of energy usage data according to an embodiment of the present invention.
  • FIGS. 2 to 3 are the present invention It is a view provided for the description of the load monitoring method according to an embodiment of the.
  • the load monitoring method may perform unsupervised learning-based load monitoring using only main power usage data of the energy consumption space to identify a load that is consuming energy in the energy consumption space.
  • this load monitoring method does not know in advance the characteristics seen in individual facilities, and utilizes clustering technology of energy consumption status based on patterns of past energy consumption data to measure energy consumption without various equipment data attached to the load. By classifying the state change according to the increase/decrease, it is possible to identify the load that is consuming energy.
  • this load monitoring method secures a basic data set necessary for learning through classification of past energy use data, and performs neural network learning based on this data set to complete a load identification recognition model. .
  • this load monitoring method utilizes a cluster classification technique of energy usage data to obtain a data set required for neuron learning ( S110 ), and a cluster unit training sample data set classified for neuron learning.
  • a learning data generation step (S120) of generating learning data by adjusting the a learning step (S130) of learning a multi-learning model that uses the generated learning data to output real-time energy usage data as input and output results of the current state (S130) ), a storage step (S140) of storing the multi-learning model, and an inference step (S150) of inferring the current state by inputting real-time energy usage data based on the stored multi-learning model.
  • the learning data is classification identification data
  • the cluster classification technique may be used to classify energy usage data by clusters as illustrated in FIG. 3 .
  • 3 illustrates a state in which energy usage data is classified into first, second, and third clusters.
  • learning data generation step ( S120 ) when the actual energy usage data and the classification identification data are secured, learning data and test data for neuron learning may be classified.
  • the output unit of the neural network may be modified based on the number of identification data classified by the cluster classification technique.
  • the number of energy samples of the corresponding cluster may be adjusted to increase.
  • the training data generation step (S120) when the number of samples of the corresponding cluster is increased to be greater than or equal to a preset value, the number of identification data classified by the cluster classification technique is adjusted so that all clusters are the same, thereby generating a sufficient number of training data. At the same time, it is possible to easily classify the training data and the test data.
  • neuron backpropagation learning may be performed by loading the stored multi-model and using real-time energy usage data and learning data.
  • this load monitoring method after the learning step (S130) or the storage step (140), using test data to verify the performance of the confirmed or stored entire multi-learning model, and the verification result, among the entire multi-learning model
  • the method may further include a separate storage step of separating and storing the multi-learning model having the highest classification accuracy.
  • the performance of the confirmed or stored entire multi-learning model is verified using test data, and classified among all the multi-learning models according to the verification result.
  • the multi-learning model with the highest accuracy it is possible to infer the current state with high accuracy based on the separately-stored multi-learning model when inferring the current state.
  • the performance of the entire multi-learning model stored or trained at each preset cycle is verified, and the current state can be inferred based on the multi-learning model with the highest classification accuracy according to the current situation. have.
  • the method of separately storing the multi-learning model with the highest classification accuracy is to assign identification classification tag information to each stored multi-learning model, and separate and store the identification classification tag information of the multi-learning model with the highest classification accuracy.
  • a method of calling a multi-learning model with the highest classification accuracy can be used when inferring the current state.
  • the current state may be inferred by identifying the load based on the past energy use data.
  • this load monitoring method does not only identify the load with energy (power) data, but can be utilized based on consumption data of various energy sources, and is also used for analysis that recognizes the state by monitoring changes in the values of various sensor data. It can be applied and used.
  • FIG. 4 is a diagram provided for explanation of an unsupervised learning-based load monitoring system (hereinafter, collectively referred to as a 'monitoring system') of energy usage data according to an embodiment of the present invention.
  • a 'monitoring system' an unsupervised learning-based load monitoring system
  • the monitoring system includes a data collection unit 110 , a processor 120 , and a learning model storage 130 .
  • the data collection unit 110 is provided to collect real-time energy usage data.
  • the processor 120 may infer a current state by inputting real-time energy usage data based on the stored multi-learning model.
  • the processor 120 utilizes a cluster classification technique of energy usage data to secure a data set required for neuron learning ( S110 ), and learn in units of clusters classified for neuron learning. Learning to train a multi-learning model that outputs a result of the current state by inputting real-time energy usage data as an input, using the generated training data, by adjusting the sample data set to generate training data (S120) Step (S130), the storage step (S140) of storing the multi-learning model in the learning model storage, and the inference step (S150) of inferring the current state by inputting real-time energy usage data based on the stored multi-learning model are sequentially performed.
  • a cluster classification technique of energy usage data to secure a data set required for neuron learning ( S110 ), and learn in units of clusters classified for neuron learning.
  • the processor 120 verifies the performance of the confirmed or stored entire multi-learning model by using the test data, and classifies among all the multi-learning models according to the verification result.
  • the processor 120 verifies the performance of the confirmed or stored entire multi-learning model by using the test data, and classifies among all the multi-learning models according to the verification result.
  • the learning model storage 130 is provided to store multiple learning models.
  • the learning model storage 120 gives identification classification tag information to each of the stored multiple learning models, and separates and stores the identification classification tag information of the multiple learning model with the highest classification accuracy, and the current state In inference, a multi-learning model with the highest classification accuracy can be called.
  • the technical idea of the present invention can also be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be any data storage device readable by the computer and capable of storing data.
  • the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
  • the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A nonintrusive load monitoring method using energy consumption data is provided. A nonintrusive load monitoring method using energy consumption data according to an embodiment of the present invention comprises the steps of: storing multiple learning models; and inferring a current state by inputting real-time energy consumption data on the basis of the stored multiple learning models. Accordingly, it is possible to perform nonintrusive load monitoring (NILM) using only the main power consumption data of an energy consumption space, and thus it is possible to recognize what is happening in the energy consumption space and use the recognition result as an important parameter for intelligent control.

Description

에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법Unsupervised learning-based load monitoring method of energy usage data
본 발명은 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법에 관한 것으로, 더욱 상세하게는 과거의 에너지 사용량 데이터의 상태를 분류하고 분류된 데이터를 기반으로 인공지능 학습에 필요한 학습 데이터를 생성하여, 뉴럴 네트워크를 학습시켜 부하를 식별하는 인식 모델을 개발하고, 개발된 인식 모델을 사용하여 전력 사용 데이터 기반 부하를 모니터링하는 방법에 관한 것이다.The present invention relates to an unsupervised learning-based load monitoring method of energy usage data, and more particularly, by classifying the state of past energy usage data and generating learning data necessary for artificial intelligence learning based on the classified data, It relates to a method for developing a recognition model that identifies a load by training a network, and monitoring a load based on power usage data using the developed recognition model.
기존의 전력 에너지 측정 기술 분야에서, 부하별로 전력 사용량 측정 수단을 마련하였으나, 이는 각각의 측정 수단을 마련해야 하기 때문에, 많은 비용이 발생한다는 문제점이 존재한다. In the conventional power energy measurement technology field, although a means for measuring the power usage for each load is provided, there is a problem that a large amount of cost is generated because each measurement means must be provided.
이를 개선하기 위해, 전력 에너지 측정 기반의 부하 식별 기술 분야에서, 유효 전력, 무효 전력, 전력 사용량의 주파수 분석, 상변화에 따른 추론등 다양한 방법을 식별을 시도하였지만, 가정, 공장, 사무실의 다양한 전력을 소비하는 장치 마다의 에너지 사용 패턴이 틀리기 때문에, 한 가지 방식으로 모두를 구분하기에는 한계가 존재하였다. In order to improve this, in the field of power energy measurement-based load identification technology, various methods such as active power, reactive power, frequency analysis of power usage, and inference according to phase change have been tried to identify, but various power Since the energy use pattern of each device consuming is different, there is a limit to classifying them all in one way.
따라서, 에너지 소비 공간의 메인 전력 사용량 데이터만을 이용하여, 부하를 식별할 수 있는 방안의 모색이 요구된다.Therefore, it is required to find a way to identify the load using only the main power usage data of the energy consumption space.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 에너지 소비 공간의 메인 전력 사용량 데이터만을 이용하여 비지도 학습 기반의 부하 모니터링(NILM)을 수행하는 방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a method of performing unsupervised learning-based load monitoring (NILM) using only main power usage data of an energy consumption space. .
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법은, 다중 학습 모델을 저장하는 단계; 및 저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 단계;를 포함한다. According to an embodiment of the present invention for achieving the above object, an unsupervised learning-based load monitoring method of energy usage data includes the steps of: storing a multi-learning model; and inferring the current state by inputting real-time energy usage data based on the stored multi-learning model.
이때, 추론 단계는, 과거 에너지 사용 데이터를 기반으로 부하를 식별하여 현재 상태를 추론할 수 있다. In this case, the inference step may infer a current state by identifying a load based on past energy use data.
또한, 본 발명의 일 실시예에 따른, 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법은, 에너지 사용량 데이터의 클러스터 분류 기법을 활용하여 뉴런 학습에 필요한 데이터 세트를 확보하는 단계; 뉴런 학습을 위해 분류된 클러스터 단위의 학습 샘플 데이터 세트를 조정하여, 학습 데이터를 생성하는 단계; 및 생성된 학습 데이터를 이용하여, 실시간 에너지 사용량 데이터를 입력으로 현재 상태의 출론 결과를 출력하는 다중 학습 모델을 학습시키는 단계;를 더 포함할 수 있다.In addition, according to an embodiment of the present invention, an unsupervised learning-based load monitoring method of energy usage data includes: securing a data set required for neuron learning by using a cluster classification technique of energy usage data; generating training data by adjusting the training sample data set in units of clusters classified for neuron learning; And by using the generated learning data, the step of learning a multi-learning model that outputs a result of the current state as an input of real-time energy usage data; may further include.
그리고 학습 데이터는, 분류 식별 데이터일 수 있다. And the learning data may be classification identification data.
또한, 학습 데이터의 생성 단계는, 실제 에너지 사용량 데이터와 분류 식별 데이터가 확보되면, 뉴런 학습을 위한 학습 데이터 및 테스트 데이터를 분류할 수 있다.In addition, in the generating of the learning data, when the actual energy usage data and the classification identification data are secured, the learning data and the test data for learning the neurons may be classified.
그리고 학습 데이터의 생성 단계는, 클러스터 분류 기법으로 분류한 식별 데이터의 수를 기반으로 뉴럴 네트워크의 출력 단위를 수정할 수 있다.And, in the step of generating the training data, the output unit of the neural network may be modified based on the number of identification data classified by the cluster classification technique.
또한, 다중 학습 모델의 학습 단계는, 저장된 다중 모델을 로드하여 실시간 에너지 사용량 데이터와 학습 데이터를 이용하여, 뉴런 역전파 학습(backpropagation learning)을 수행할 수 있다.In addition, in the learning step of the multi-learning model, by loading the stored multi-model and using real-time energy usage data and learning data, neuron backpropagation learning may be performed.
그리고 본 발명의 일 실시예에 따른, 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법은, 테스트 데이터를 활용하여 확습된 전체 다중 학습 모델의 성능을 검증하는 단계; 및 검증 결과, 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델을 분리하여 저장하는 단계;를 더 포함할 수 있다.And according to an embodiment of the present invention, an unsupervised learning-based load monitoring method of energy usage data includes: verifying the performance of the entire multi-learning model confirmed by using test data; and, as a result of the verification, separating and storing the multi-learning model having the highest classification accuracy among all the multi-learning models.
또한, 검증 단계는, 기설정된 주기마다 저장 또는 학습된 전체 다중 학습 모델의 성능을 각각 검증할 수 있다.In addition, the verification step may verify the performance of the entire multi-learning model stored or learned at every preset period, respectively.
한편, 본 발명의 다른 실시예에 따른, 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법을 수행하는 컴퓨터 프로그램이 수록된 컴퓨터로 읽을 수 있는 기록매체는, 다중 학습 모델을 저장하는 단계; 및 저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 단계;를 포함하는 방법을 수행하는 컴퓨터 프로그램이 수록된다.On the other hand, according to another embodiment of the present invention, a computer-readable recording medium containing a computer program for performing an unsupervised learning-based load monitoring method of energy usage data includes the steps of: storing a multiple learning model; and inferring the current state by inputting real-time energy usage data based on the stored multiple learning model.
또한, 본 발명의 다른 실시예에 따른, 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 시스템은 다중 학습 모델을 저장하는 학습 모델 저장소; 및 저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 프로세서;를 포함한다.In addition, according to another embodiment of the present invention, an unsupervised learning-based load monitoring system of energy usage data includes: a learning model storage for storing multiple learning models; and a processor for inferring a current state by inputting real-time energy usage data based on the stored multi-learning model.
그리고 본 발명의 다른 실시예에 따른, 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법은, 다중 학습 모델을 저장하는 단계; 기설정된 주기마다 저장된 전체 다중 학습 모델의 성능을 검증하는 단계; 검증 결과, 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델을 분리하여 저장하는 단계; 및 분리 저장된 다중 학습 모델을 기반으로 실시간 데이터를 입력하여 현재 상태를 추론하는 단계;를 포함한다. And according to another embodiment of the present invention, an unsupervised learning-based load monitoring method of energy usage data includes the steps of: storing a multi-learning model; verifying the performance of the entire multi-learning model stored at every preset period; Separating and storing a multi-learning model having the highest classification accuracy among all multi-learning models as a result of the verification; and inferring the current state by inputting real-time data based on the separately stored multi-learning model.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 에너지 소비 공간의 메인 전력 사용량 데이터만을 이용하여 비지도 학습 기반의 부하 모니터링(NILM)을 수행할 수 있으며, 이를 통하여, 에너지 소비 공간에서 일어나는 일을 인식하고, 인식 결과를 지능형 제어 시, 중요 파라미터로 이용할 수 있다. As described above, according to the embodiments of the present invention, unsupervised learning-based load monitoring (NILM) can be performed using only the main power usage data of the energy consumption space, and through this, what happens in the energy consumption space can be recognized, and the recognition result can be used as an important parameter for intelligent control.
도 1은 본 발명의 일 실시예에 따른 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법의 설명에 제공된 흐름도, 1 is a flowchart provided for explaining an unsupervised learning-based load monitoring method of energy usage data according to an embodiment of the present invention;
도 2 내지 3은 본 발명의 일 실시예에 따른 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법의 설명에 제공된 도면, 2 to 3 are diagrams provided for explaining an unsupervised learning-based load monitoring method of energy usage data according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 시스템의 설명에 제공된 도면이다.4 is a diagram provided to explain an unsupervised learning-based load monitoring system of energy usage data according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법(이하에서는 '부하 모니터링 방법'으로 총칭하기로 함)의 설명에 제공된 흐름도이고, 도 2 내지 3은 본 발명의 일 실시예에 따른 부하 모니터링 방법의 설명에 제공된 도면이다.1 is a flowchart provided to explain an unsupervised learning-based load monitoring method (hereinafter, collectively referred to as a 'load monitoring method') of energy usage data according to an embodiment of the present invention, and FIGS. 2 to 3 are the present invention It is a view provided for the description of the load monitoring method according to an embodiment of the.
본 실시예에 따른 부하 모니터링 방법은, 에너지 소비 공간의 메인 전력 사용량 데이터만을 이용하여 비지도 학습 기반의 부하 모니터링을 수행하여, 에너지 소비 공간에서의 에너지 소비 중인 부하를 식별할 수 있다.The load monitoring method according to the present embodiment may perform unsupervised learning-based load monitoring using only main power usage data of the energy consumption space to identify a load that is consuming energy in the energy consumption space.
구체적으로, 본 부하 모니터링 방법은, 개별 설비에서 보이는 특성을 미리 알고 있지 않고, 과거의 에너지 소비 데이터의 패턴을 기반으로 에너지 소비 상태의 클러스터링 기술을 활용하여 부하에 붙어 있는 다양한 설비 데이터 없이 에너지 소비의 증감에 따른 상태 변화를 분류하여 에너지 소비 중인 부하를 식별할 수 있다. Specifically, this load monitoring method does not know in advance the characteristics seen in individual facilities, and utilizes clustering technology of energy consumption status based on patterns of past energy consumption data to measure energy consumption without various equipment data attached to the load. By classifying the state change according to the increase/decrease, it is possible to identify the load that is consuming energy.
예를 들면, 본 부하 모니터링 방법은, 과거의 에너지 사용 데이터의 분류를 통하여 학습에 필요한 기초 데이터 세트를 확보하고, 이 데이터 세트를 기반으로 뉴럴 네트워크 학습을 수행하여 부하 식별 인식 모델을 완성할 수 있다. For example, this load monitoring method secures a basic data set necessary for learning through classification of past energy use data, and performs neural network learning based on this data set to complete a load identification recognition model. .
이를 위해, 본 부하 모니터링 방법은, 에너지 사용량 데이터의 클러스터 분류 기법을 활용하여 뉴런 학습에 필요한 데이터 세트를 확보하는 데이터 세트의 확보 단계(S110), 뉴런 학습을 위해 분류된 클러스터 단위의 학습 샘플 데이터 세트를 조정하여, 학습 데이터를 생성하는 학습 데이터 생성 단계(S120), 생성된 학습 데이터를 이용하여, 실시간 에너지 사용량 데이터를 입력으로 현재 상태의 출론 결과를 출력하는 다중 학습 모델을 학습시키는 학습 단계(S130), 다중 학습 모델을 저장하는 저장 단계(S140) 및 저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 추론 단계(S150)로 구성될 수 있다. To this end, this load monitoring method utilizes a cluster classification technique of energy usage data to obtain a data set required for neuron learning ( S110 ), and a cluster unit training sample data set classified for neuron learning. A learning data generation step (S120) of generating learning data by adjusting the , a learning step (S130) of learning a multi-learning model that uses the generated learning data to output real-time energy usage data as input and output results of the current state (S130) ), a storage step (S140) of storing the multi-learning model, and an inference step (S150) of inferring the current state by inputting real-time energy usage data based on the stored multi-learning model.
여기서, 학습 데이터는, 분류 식별 데이터이며, 클러스트 분류 기법은, 도 3에 예시된 바와 같이 에너지 사용량 데이터를 클러스트별로 분류하는데 이용될 수 있다. 도 3은 에너지 사용량 데이터를 제1, 제2, 제3 클러스터로 분류한 모습이 예시되고 있다. Here, the learning data is classification identification data, and the cluster classification technique may be used to classify energy usage data by clusters as illustrated in FIG. 3 . 3 illustrates a state in which energy usage data is classified into first, second, and third clusters.
한편, 학습 데이터 생성 단계(S120)에서는, 실제 에너지 사용량 데이터와 분류 식별 데이터가 확보되면, 뉴런 학습을 위한 학습 데이터 및 테스트 데이터를 분류할 수 있다. Meanwhile, in the learning data generation step ( S120 ), when the actual energy usage data and the classification identification data are secured, learning data and test data for neuron learning may be classified.
더불어, 학습 데이터 생성 단계(S120)에서는, 클러스터 분류 기법으로 분류한 식별 데이터의 수를 기반으로 뉴럴 네트워크의 출력 단위를 수정할 수 있다. In addition, in the training data generation step ( S120 ), the output unit of the neural network may be modified based on the number of identification data classified by the cluster classification technique.
구체적으로 예를 들면, 학습 데이터 생성 단계(S120)에서는, 클러스터 분류 기법으로 분류한 식별 데이터의 수가 기설정된 값 이하인 클러스터가 존재하는 경우, 해당 클러스터의 에너지 샘플의 수가 증가되도록 조정할 수 있다.Specifically, for example, in the training data generation step ( S120 ), when there is a cluster in which the number of identification data classified by the cluster classification technique is equal to or less than a predetermined value, the number of energy samples of the corresponding cluster may be adjusted to increase.
그리고 학습 데이터 생성 단계(S120)에서는, 해당 클러스터의 샘플의 수가 기설정된 값 이상이 되도록 증가시키는 경우, 클러스터 분류 기법으로 분류한 식별 데이터의 수가 클러스터별로 모두 동일하도록 조정함으로써, 충분한 수의 학습 데이터를 확보하는 동시에, 학습 데이터 및 테스트 데이터의 분류가 용이하도록 할 수 있다. And in the training data generation step (S120), when the number of samples of the corresponding cluster is increased to be greater than or equal to a preset value, the number of identification data classified by the cluster classification technique is adjusted so that all clusters are the same, thereby generating a sufficient number of training data. At the same time, it is possible to easily classify the training data and the test data.
학습 단계(S130)에서는, 저장된 다중 모델을 로드하여 실시간 에너지 사용량 데이터와 학습 데이터를 이용하여, 뉴런 역전파 학습(backpropagation learning)을 수행할 수 있다. In the learning step ( S130 ), neuron backpropagation learning may be performed by loading the stored multi-model and using real-time energy usage data and learning data.
더불어, 본 부하 모니터링 방법은, 학습 단계(S130) 또는 저장 단계(140) 이후, 테스트 데이터를 활용하여 확습된 또는 저장된 전체 다중 학습 모델의 성능을 검증하는 검증 단계 및 검증 결과, 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델을 분리하여 저장하는 분리 저장 단계를 더 포함할 수 있다. In addition, this load monitoring method, after the learning step (S130) or the storage step (140), using test data to verify the performance of the confirmed or stored entire multi-learning model, and the verification result, among the entire multi-learning model The method may further include a separate storage step of separating and storing the multi-learning model having the highest classification accuracy.
즉, 본 부하 모니터링 방법은, 학습 단계(S130) 또는 저장 단계(140) 이후, 테스트 데이터를 활용하여 확습된 또는 저장된 전체 다중 학습 모델의 성능을 검증하고, 검증 결과에 따라 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델을 분리 저장함으로써, 현재 상태 추론 시, 분리 저장된 다중 학습 모델을 기반으로 높은 정확도로 현재 상태를 추론할 수 있다. That is, in this load monitoring method, after the learning step ( S130 ) or the storage step ( 140 ), the performance of the confirmed or stored entire multi-learning model is verified using test data, and classified among all the multi-learning models according to the verification result. By separately storing the multi-learning model with the highest accuracy, it is possible to infer the current state with high accuracy based on the separately-stored multi-learning model when inferring the current state.
예를 들면, 검증 단계에서는, 기설정된 주기마다 저장 또는 학습된 전체 다중 학습 모델의 성능을 각각 검증하여, 현재 상황에 따라 분류 정확도가 가장 높은 다중 학습 모델을 기반으로, 현재 상태를 추론하도록 할 수 있다. For example, in the verification step, the performance of the entire multi-learning model stored or trained at each preset cycle is verified, and the current state can be inferred based on the multi-learning model with the highest classification accuracy according to the current situation. have.
이때, 분류 정확도가 가장 높은 다중 학습 모델을 분리 저장하는 방법은, 저장되는 각각의 다중 학습 모델에 식별 분류 태그 정보를 부여하고, 분류 정확도가 가장 높은 다중 학습 모델의 식별 분류 태그 정보를 분리 저장하여, 현재 상태 추론 시, 분류 정확도가 가장 높은 다중 학습 모델을 불러오는 방법을 이용할 수 있다. At this time, the method of separately storing the multi-learning model with the highest classification accuracy is to assign identification classification tag information to each stored multi-learning model, and separate and store the identification classification tag information of the multi-learning model with the highest classification accuracy. , a method of calling a multi-learning model with the highest classification accuracy can be used when inferring the current state.
이를 통해, 추론 단계(S150)에서는 과거 에너지 사용 데이터를 기반으로 부하를 식별하여 현재 상태를 추론할 수 있다. Through this, in the inference step ( S150 ), the current state may be inferred by identifying the load based on the past energy use data.
또한, 본 부하 모니터링 방법은, 에너지(전력) 데이터만을 부하 식별하는 것이 아니라, 다양한 에너지원의 소비 데이터를 기반으로 활용이 가능하며, 다양한 센서 데이터의 값의 변화를 모니터링하여 상태를 인식하는 분석에도 적용하여 활용할 수 있다. In addition, this load monitoring method does not only identify the load with energy (power) data, but can be utilized based on consumption data of various energy sources, and is also used for analysis that recognizes the state by monitoring changes in the values of various sensor data. It can be applied and used.
도 4는 본 발명의 일 실시예에 따른 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 시스템(이하에서는 '모니터링 시스템'으로 총칭하기로 함)의 설명에 제공된 도면이다. 4 is a diagram provided for explanation of an unsupervised learning-based load monitoring system (hereinafter, collectively referred to as a 'monitoring system') of energy usage data according to an embodiment of the present invention.
도 4를 참조하면, 본 모니터링 시스템은, 데이터 수집부(110), 프로세서(120) 및 학습 모델 저장소(130)를 포함한다.Referring to FIG. 4 , the monitoring system includes a data collection unit 110 , a processor 120 , and a learning model storage 130 .
데이터 수집부(110)는, 실시간 에너지 사용량 데이터를 수집하기 위해 마련된다. The data collection unit 110 is provided to collect real-time energy usage data.
프로세서(120)는, 저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론할 수 있다. The processor 120 may infer a current state by inputting real-time energy usage data based on the stored multi-learning model.
구체적으로 예를 들면, 프로세서(120)는, 에너지 사용량 데이터의 클러스터 분류 기법을 활용하여 뉴런 학습에 필요한 데이터 세트를 확보하는 데이터 세트의 확보 단계(S110), 뉴런 학습을 위해 분류된 클러스터 단위의 학습 샘플 데이터 세트를 조정하여, 학습 데이터를 생성하는 학습 데이터 생성 단계(S120), 생성된 학습 데이터를 이용하여, 실시간 에너지 사용량 데이터를 입력으로 현재 상태의 출론 결과를 출력하는 다중 학습 모델을 학습시키는 학습 단계(S130), 다중 학습 모델을 학습 모델 저장소에 저장하는 저장 단계(S140) 및 저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 추론 단계(S150)를 순차적으로 수행할 수 있다. Specifically, for example, the processor 120 utilizes a cluster classification technique of energy usage data to secure a data set required for neuron learning ( S110 ), and learn in units of clusters classified for neuron learning. Learning to train a multi-learning model that outputs a result of the current state by inputting real-time energy usage data as an input, using the generated training data, by adjusting the sample data set to generate training data (S120) Step (S130), the storage step (S140) of storing the multi-learning model in the learning model storage, and the inference step (S150) of inferring the current state by inputting real-time energy usage data based on the stored multi-learning model are sequentially performed. can
또한, 프로세서(120)는, 학습 단계(S130) 또는 저장 단계(140) 이후, 테스트 데이터를 활용하여 확습된 또는 저장된 전체 다중 학습 모델의 성능을 검증하고, 검증 결과에 따라 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델이 분리 저장되도록 함으로써, 현재 상태 추론 시, 분리 저장된 다중 학습 모델을 기반으로 높은 정확도로 현재 상태를 추론할 수 있다. In addition, after the learning step ( S130 ) or the storing step ( 140 ), the processor 120 verifies the performance of the confirmed or stored entire multi-learning model by using the test data, and classifies among all the multi-learning models according to the verification result. By separately storing the multi-learning model with the highest accuracy, the current state can be inferred with high accuracy based on the separately-stored multi-learning model when inferring the current state.
학습 모델 저장소(130)는, 다중 학습 모델을 저장하기 위해 마련된다. The learning model storage 130 is provided to store multiple learning models.
구체적으로 예를 들면, 학습 모델 저장소(120)는, 저장되는 각각의 다중 학습 모델에 식별 분류 태그 정보를 부여하고, 분류 정확도가 가장 높은 다중 학습 모델의 식별 분류 태그 정보를 분리 저장하여, 현재 상태 추론 시, 분류 정확도가 가장 높은 다중 학습 모델을 불러올 수 있다. Specifically, for example, the learning model storage 120 gives identification classification tag information to each of the stored multiple learning models, and separates and stores the identification classification tag information of the multiple learning model with the highest classification accuracy, and the current state In inference, a multi-learning model with the highest classification accuracy can be called.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.On the other hand, it goes without saying that the technical idea of the present invention can also be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment. In addition, the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium. The computer-readable recording medium may be any data storage device readable by the computer and capable of storing data. For example, the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like. In addition, the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims Various modifications are possible by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or prospect of the present invention.

Claims (12)

  1. 다중 학습 모델을 저장하는 단계; 및storing multiple learning models; and
    저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 단계;를 포함하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.Based on the stored multi-learning model, inputting real-time energy usage data to infer the current state; an unsupervised learning-based load monitoring method of energy usage data comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    추론 단계는, The reasoning step is
    과거 에너지 사용 데이터를 기반으로 부하를 식별하여 현재 상태를 추론하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.A load monitoring method based on unsupervised learning of energy usage data, characterized in that the current state is inferred by identifying the load based on the past energy usage data.
  3. 청구항 1에 있어서,The method according to claim 1,
    에너지 사용량 데이터의 클러스터 분류 기법을 활용하여 뉴런 학습에 필요한 데이터 세트를 확보하는 단계;obtaining a data set required for neuron learning by utilizing a cluster classification technique of energy usage data;
    뉴런 학습을 위해 분류된 클러스터 단위의 학습 샘플 데이터 세트를 조정하여, 학습 데이터를 생성하는 단계; 및 generating training data by adjusting the training sample data set in units of clusters classified for neuron learning; and
    생성된 학습 데이터를 이용하여, 실시간 에너지 사용량 데이터를 입력으로 현재 상태의 출론 결과를 출력하는 다중 학습 모델을 학습시키는 단계;를 더 포함하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.Unsupervised learning-based load monitoring method of energy usage data, characterized in that it further comprises; using the generated learning data, learning a multi-learning model that outputs a result of the current state as input to real-time energy usage data as an input .
  4. 청구항 3에 있어서,4. The method according to claim 3,
    학습 데이터는,learning data,
    분류 식별 데이터인 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.An unsupervised learning-based load monitoring method of energy usage data, characterized in that it is classification identification data.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    학습 데이터의 생성 단계는,The step of generating the training data is,
    실제 에너지 사용량 데이터와 분류 식별 데이터가 확보되면, 뉴런 학습을 위한 학습 데이터 및 테스트 데이터를 분류하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.When the actual energy usage data and classification identification data are secured, the unsupervised learning-based load monitoring method of energy usage data, characterized in that the training data and test data for neuron learning are classified.
  6. 청구항 5에 있어서,6. The method of claim 5,
    학습 데이터의 생성 단계는,The step of generating the training data is,
    클러스터 분류 기법으로 분류한 식별 데이터의 수를 기반으로 뉴럴 네트워크의 출력 단위를 수정하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.An unsupervised learning-based load monitoring method of energy usage data, characterized in that the output unit of the neural network is modified based on the number of identification data classified by the cluster classification technique.
  7. 청구항 6에 있어서,7. The method of claim 6,
    다중 학습 모델의 학습 단계는, The learning steps of a multi-learning model are:
    저장된 다중 모델을 로드하여 실시간 에너지 사용량 데이터와 학습 데이터를 이용하여, 뉴런 역전파 학습(backpropagation learning)을 수행하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.An unsupervised learning-based load monitoring method of energy usage data, characterized in that by loading multiple stored models and using real-time energy usage data and training data, neuron backpropagation learning is performed.
  8. 청구항 7에 있어서,8. The method of claim 7,
    테스트 데이터를 활용하여 확습된 또는 저장된 전체 다중 학습 모델의 성능을 검증하는 단계; 및verifying the performance of the trained or stored entire multi-learning model using the test data; and
    검증 결과, 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델을 분리하여 저장하는 단계;를 더 포함하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.As a result of the verification, separating and storing the multi-learning model having the highest classification accuracy among all the multi-learning models; the unsupervised learning-based load monitoring method of energy usage data, further comprising: a.
  9. 청구항 8에 있어서,9. The method of claim 8,
    검증 단계는,The verification step is
    기설정된 주기마다 저장 또는 학습된 전체 다중 학습 모델의 성능을 각각 검증하는 것을 특징으로 하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.An unsupervised learning-based load monitoring method of energy usage data, characterized in that each of the performance of the stored or learned multi-learning model is verified at every preset cycle.
  10. 다중 학습 모델을 저장하는 단계; 및storing multiple learning models; and
    저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 단계;를 포함하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법을 수행하는 컴퓨터 프로그램이 수록된 컴퓨터로 읽을 수 있는 기록매체.A computer-readable recording medium containing a computer program for performing an unsupervised learning-based load monitoring method of energy usage data including; inputting real-time energy usage data based on the stored multiple learning model to infer the current state.
  11. 다중 학습 모델을 저장하는 학습 모델 저장소; 및a learning model repository for storing multiple learning models; and
    저장된 다중 학습 모델을 기반으로 실시간 에너지 사용량 데이터를 입력하여 현재 상태를 추론하는 프로세서;를 포함하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 시스템.An unsupervised learning-based load monitoring system of energy usage data comprising a; processor for inferring a current state by inputting real-time energy usage data based on the stored multiple learning model.
  12. 다중 학습 모델을 저장하는 단계; storing multiple learning models;
    기설정된 주기마다 저장된 전체 다중 학습 모델의 성능을 검증하는 단계; verifying the performance of the entire multi-learning model stored at every preset period;
    검증 결과, 전체 다중 학습 모델 중 분류 정확도가 가장 높은 다중 학습 모델을 분리하여 저장하는 단계; 및Separating and storing a multi-learning model having the highest classification accuracy among all multi-learning models as a result of the verification; and
    분리 저장된 다중 학습 모델을 기반으로 실시간 데이터를 입력하여 현재 상태를 추론하는 단계;를 포함하는 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법.An unsupervised learning-based load monitoring method of energy usage data comprising a; inferring a current state by inputting real-time data based on a multi-learning model stored separately.
PCT/KR2020/014994 2019-11-28 2020-10-30 Nonintrusive load monitoring method using energy consumption data WO2021107422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190155904A KR102272573B1 (en) 2019-11-28 2019-11-28 Method for nonintrusive load monitoring of energy usage data
KR10-2019-0155904 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021107422A1 true WO2021107422A1 (en) 2021-06-03

Family

ID=76129356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014994 WO2021107422A1 (en) 2019-11-28 2020-10-30 Nonintrusive load monitoring method using energy consumption data

Country Status (2)

Country Link
KR (1) KR102272573B1 (en)
WO (1) WO2021107422A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569952A (en) * 2021-07-29 2021-10-29 华北电力大学 Non-invasive load identification method and system
CN115201615A (en) * 2022-09-15 2022-10-18 之江实验室 Non-invasive load monitoring method and device based on physical constraint neural network
EP4166951A1 (en) * 2021-10-15 2023-04-19 Starkoff Co., Ltd. Method for estimating load by energy meter including load estimation model based on neural network and energy meter using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350728B1 (en) * 2021-11-09 2022-01-14 주식회사 스타코프 Energy meter including load estimation unit based on neural network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130044765A (en) * 2011-10-24 2013-05-03 한국전력공사 Appratus and method for estimation of weekly power load to improve processing time using neural network and revision factor
KR20140147088A (en) * 2012-03-30 2014-12-29 소니 주식회사 Data processing apparatus, data processing method, and program
KR20190002171A (en) * 2017-06-29 2019-01-08 (주)큐센텍 Method and apparatus for monitoring individual power consumption of electric apparatus and learning method therefor
KR20190050682A (en) * 2017-11-03 2019-05-13 한국과학기술원 Pattern Tagging based Power Data Storing and Management System
KR20190087351A (en) * 2019-07-05 2019-07-24 엘지전자 주식회사 System, method and apparatus for machine learning

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065897A (en) * 2012-11-22 2014-05-30 삼성전자주식회사 Non-intrusive load monitoring apparatus and method
US10318874B1 (en) 2015-03-18 2019-06-11 Amazon Technologies, Inc. Selecting forecasting models for time series using state space representations
KR101864412B1 (en) 2017-12-28 2018-06-04 (주)휴톰 Data managing method, apparatus and program for machine learning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130044765A (en) * 2011-10-24 2013-05-03 한국전력공사 Appratus and method for estimation of weekly power load to improve processing time using neural network and revision factor
KR20140147088A (en) * 2012-03-30 2014-12-29 소니 주식회사 Data processing apparatus, data processing method, and program
KR20190002171A (en) * 2017-06-29 2019-01-08 (주)큐센텍 Method and apparatus for monitoring individual power consumption of electric apparatus and learning method therefor
KR20190050682A (en) * 2017-11-03 2019-05-13 한국과학기술원 Pattern Tagging based Power Data Storing and Management System
KR20190087351A (en) * 2019-07-05 2019-07-24 엘지전자 주식회사 System, method and apparatus for machine learning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569952A (en) * 2021-07-29 2021-10-29 华北电力大学 Non-invasive load identification method and system
EP4166951A1 (en) * 2021-10-15 2023-04-19 Starkoff Co., Ltd. Method for estimating load by energy meter including load estimation model based on neural network and energy meter using the same
CN115994606A (en) * 2021-10-15 2023-04-21 株式会社 明星高富 Accumulated power device including load estimation model and load estimation method thereof
CN115994606B (en) * 2021-10-15 2024-01-09 株式会社明星高富 Accumulated power device including load estimation model and load estimation method thereof
CN115201615A (en) * 2022-09-15 2022-10-18 之江实验室 Non-invasive load monitoring method and device based on physical constraint neural network
CN115201615B (en) * 2022-09-15 2022-12-20 之江实验室 Non-invasive load monitoring method and device based on physical constraint neural network

Also Published As

Publication number Publication date
KR20210066534A (en) 2021-06-07
KR102272573B1 (en) 2021-07-05

Similar Documents

Publication Publication Date Title
WO2021107422A1 (en) Nonintrusive load monitoring method using energy consumption data
WO2022034983A1 (en) Battery cell defectiveness and fire early diagnosis method and apparatus based on neural network
WO2020004867A1 (en) Machine learning method and device enabling automatic labeling
WO2022055100A1 (en) Anomaly detection method and device therefor
CN109978893A (en) Training method, device, equipment and the storage medium of image, semantic segmentation network
WO2023287064A1 (en) Method and system for constructing training database by using automatic abnormal data detection and automatic labeling technology
WO2017164478A1 (en) Method and apparatus for recognizing micro-expressions through deep learning analysis of micro-facial dynamics
CN110247910A (en) A kind of detection method of abnormal flow, system and associated component
WO2018212396A1 (en) Method, device and computer program for analyzing data
CN111586728B (en) Small sample characteristic-oriented heterogeneous wireless network fault detection and diagnosis method
WO2022145829A1 (en) Learning content recommendation system for predicting user's probability of getting correct answer by using latent factor-based collaborative filtering, and operating method thereof
WO2022114363A1 (en) Unsupervised learning-based method and apparatus for generating supervised learning model, and method and apparatus for analyzing unsupervised learning model using same
WO2017188475A1 (en) Non-contact identification method and system, for energy home appliances, using total power consumption and composite sensor
Huang et al. Attack detection and data generation for wireless cyber-physical systems based on self-training powered generative adversarial networks
WO2023128320A1 (en) System and method for verifying artificial intelligence
WO2023022406A1 (en) Learning ability evaluation method, learning ability evaluation device, and learning ability evaluation system
WO2023033194A1 (en) Knowledge distillation method and system specialized for pruning-based deep neural network lightening
CN113076963B (en) Image recognition method and device and computer readable storage medium
WO2021137395A1 (en) Problematic behavior classification system and method based on deep neural network algorithm
WO2023101113A1 (en) Battery diagnosis method and device therefor
WO2023113295A1 (en) Model update device and method
WO2024106604A1 (en) Artificial intelligence-based behavior monitoring method, program, and device
WO2021107333A1 (en) Acoustic event detection method in deep learning-based detection environment
WO2023113294A1 (en) Training data management device and method
WO2024144015A1 (en) Apparatus and method for diagnosing battery condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894812

Country of ref document: EP

Kind code of ref document: A1