WO2023120735A1 - ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン - Google Patents

ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン Download PDF

Info

Publication number
WO2023120735A1
WO2023120735A1 PCT/JP2022/047860 JP2022047860W WO2023120735A1 WO 2023120735 A1 WO2023120735 A1 WO 2023120735A1 JP 2022047860 W JP2022047860 W JP 2022047860W WO 2023120735 A1 WO2023120735 A1 WO 2023120735A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polarizing element
wire grid
less
light
Prior art date
Application number
PCT/JP2022/047860
Other languages
English (en)
French (fr)
Inventor
浩司 佐々木
大地 中西
裕 中澤
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022205908A external-priority patent/JP2023095826A/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2023120735A1 publication Critical patent/WO2023120735A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Definitions

  • the present invention provides a wire grid polarizing element that has excellent polarizing properties, does not cause deterioration in heat dissipation and manufacturing costs, and has excellent transmittance for obliquely incident light and incident light with a wide range of incident angles. and a method for manufacturing a wire grid polarizing element, a projection display device excellent in polarization characteristics and heat resistance, a vehicle equipped with the projection display device, and a photocurable acrylic resin for imprinting.
  • a vehicle head-up display device As one type of projection display device, in recent years, many vehicle head-up display devices have been developed that display images on a transflective plate (hereinafter collectively referred to as a "display surface") such as a vehicle windshield or a combiner. It is A vehicle head-up display device is, for example, a video display device that is arranged on a dashboard of a vehicle, projects video light onto a windshield, and displays driving information as a virtual image. The driver can visually recognize the virtual image at the same time as the scenery through the windshield. has the advantage of being less
  • a head-up display device since the head-up display device described above emits the display image from below toward the windshield surface (upper), sunlight enters in the direction opposite to the emission direction of the display image and enters the display element. something happened.
  • a head-up display device is often provided with a reflector for reflecting and enlarging a display image for the purpose of miniaturization and enlargement of a display image. In such a case, sunlight incident on the head-up display device is condensed in the vicinity of the display element, and the heat may cause deterioration or failure of the display element.
  • Patent Literature 1 discloses a head-up display device in which a reflective polarizing element (wire grid polarizing plate) is provided between a reflector and a display element.
  • a polarizing element for example, a polarizing element made of a birefringent resin or a wire in which a plurality of conductors (thin metal wires) extend parallel to each other on a transparent substrate.
  • a grid-type polarizing element, a polarizing element made of a cholesteric phase liquid crystal, and the like are included.
  • wire grid type polarizing elements with excellent polarization characteristics are often used.
  • a wire grid type polarizing element a wire grid is formed in which conductor wires made of metal or the like are arranged in a grid pattern at a specific pitch.
  • the wire grid type polarizing element can be used as a polarizing element that produces a single polarized light, and can reflect and reuse light that does not pass through, which is desirable from the viewpoint of effective use of light.
  • the polarizing element here includes a polarizing element that can be used as a polarizing beam splitter that splits incident light into S-polarized light and P-polarized light.
  • Patent Document 2 discloses a resin substrate having lattice-shaped convex portions, a dielectric layer provided so as to cover the lattice-shaped convex portions of the resin substrate, and a dielectric
  • a wire grid polarizer is disclosed comprising metal wires disposed on a layer.
  • Patent Document 3 a base material made of resin or the like and provided with a concavo-convex structure extending in a specific direction on the surface, and a conductor provided so as to be unevenly distributed on one side surface of the convex part of the concavo-convex structure and a wire grid polarizer is disclosed.
  • the pitch which is the interval between two adjacent protrusions, and the height of the protrusions are adjusted in a cross-sectional view in the direction perpendicular to the extending direction of the uneven structure.
  • Patent Document 4 discloses a projection type image display device using a reflective liquid crystal display element and a reflective wire grid polarizing plate as a polarizing beam splitter.
  • the reflective wire grid polarizing plate is arranged at an angle of about 45° with respect to the optical axis of the light emitted from the light source. Emitted light from the light source is separated into first polarized light (reflected light) and second polarized light (transmitted light) by entering the reflective wire grid at an oblique incident angle of about 45°.
  • the first polarized light reflected by the reflective wire grid polarizer is modulated and reflected by the reflective liquid crystal display element to become the second polarized light, and the second polarized light is transmitted through the reflective wire grid polarizer. and projected.
  • Patent Document 5 discloses a vehicle headlamp using a reflective wire grid polarizing plate as a polarizing beam splitter.
  • the reflective wire grid polarizing plate is also arranged at an angle of about 45° with respect to the optical axis of the light emitted from the light source.
  • the emitted light from the light source enters the reflective wire grid at an oblique incident angle of about 45°, and is separated into the first polarized light (reflected light) and the second polarized light (transmitted light).
  • the reflective wire grid polarizing plate When the reflective wire grid polarizing plate is arranged at an angle of about 45° with respect to the light emitted from the light source, such as the projection type image display device described in Patent Document 4 and the vehicle headlight described in Patent Document 5. , the incident light is not only incident on the reflective wire grid polarizer at a single angle of incidence of 45°, but also at angles of incidence on the order of 45° ⁇ 15°.
  • Patent Document 6 discloses a wire-grid polarization beam splitter in which a plurality of grids made entirely of silver or aluminum protrude from a substrate.
  • Patent Document 7 discloses a wire grid polarizer having a light transmissive substrate, a base layer, and thin metal wires.
  • the light-transmissive substrate has a plurality of ridges formed on the surface in parallel with each other at a predetermined pitch.
  • the base layer is made of a metal oxide present at least on the top of the ridges, and the fine metal wires are made of a metal layer on the surface of the base layer and at least on the ridges of the ridges.
  • the temperature environment generally required for devices used in vehicles is -40 to 105°C, but in summer, such as the head-up display mounted on the dashboard of a vehicle, it is used in a high-temperature environment.
  • high heat resistance and heat dissipation are required.
  • the wire grid polarizing plates described in Patent Documents 1 to 3 are required to be further improved in terms of heat resistance and heat dissipation.
  • the wire grid polarizing plate described in Patent Document 5 is required to have high heat resistance and heat dissipation properties against the heat from the light source.
  • a projection display device such as a head-up display device
  • the reflective wire grid polarization element is used as a polarization beam splitter to separate the first polarized light (S polarized light) and the second polarized light (P polarized light)
  • Both the reflectance for one polarized light and the transmittance for the second polarized light are required to be high.
  • the product (Tp ⁇ Rs) of the reflection axis reflectance (Rs) of the first polarized light (S polarized light) and the transmission axis transmittance (Tp) of the second polarized light (P polarized light) is the polarization separation characteristic
  • the higher the value of this Tp ⁇ Rs the better.
  • the handling of polarized light in the polarizing beam splitter differs. It may be.
  • the incident angle of the incident light to the polarizing beam splitter is not only a single angle of 45°, but spreads over a range of about 45° ⁇ 15° around 45°. incident on the beam splitter.
  • the polarizing beam splitter is required to exhibit good polarization splitting characteristics for obliquely incident light regardless of the incident angle of the incident light (hereinafter referred to as obliquely incident light). be done.
  • the entire convex portion of the grid is composed of a conductor, or as described in Patent Document 3, a conductor (reflective film) unevenly distributed on one side of the convex portion of the wire grid. ) is provided.
  • Patent Document 7 describes that the coverage of the side surface of the ridge with the metal layer (reflective film) is preferably 50% or more, 70% or more, and particularly preferably 100%.
  • the area of the metal layer covering the side surface of the ridge is increased, a lower S-polarized reflectance can be realized for the light incident from the back side of the wire grid polarizer, and the surface It is described that S-polarized light incident from the side can be efficiently reflected, and that the wire grid polarizer exhibits high polarization separation ability.
  • the present invention has been made in view of such circumstances, and provides a wire grid polarizing element that is excellent in heat dissipation and has excellent transparency and polarization separation characteristics for obliquely incident light with a wide range of incident angles, and the polarizing element. , a projection display device and a vehicle provided with the polarizing element, and a photocurable acrylic resin for imprinting.
  • the substrate of the wire grid polarizing element is formed of a transparent inorganic material, and the grid structure provided on the substrate is integrally formed of a transparent organic material.
  • the wire grid polarizing element can have a hybrid structure composed of an organic material and an inorganic material.
  • the heat dissipation of the wire grid polarizing element can be significantly improved.
  • the grid structure a grid structure is used in which a base portion provided along the surface of the substrate and a plurality of ridges protruding from the base portion are integrally formed.
  • the grid structure can be formed by a technique such as nanoimprinting, so the manufacturing cost of the grid structure can be reduced and mass production is possible as compared with the case of using photolithography technique or etching technique.
  • the range and form of coverage of the ridges with the functional film can be suitably selected. adjust. That is, the tip of the ridge and the upper side of one or both side surfaces are covered with the functional film, while the lower side of the ridge and the surface of the base are not covered with the functional film. to open.
  • the functional film has a rounded shape that bulges in the width direction of the protruding portion so as to cover the tip of the protruding portion and the upper side of the side surface.
  • the ridges are adjusted so that the maximum width (W MAX ) of the grid, which is the sum of the ridges and the functional film covering the ridges, is equal to or greater than the width (W B ) of the bottom of the ridges. and adjust the shape and size of the functional membrane.
  • W MAX maximum width
  • W B width of the bottom of the ridges.
  • the range in which the functional film covers the side surface of the ridge is limited to a specific range on the upper side of the side surface (for example, a range of 25% or more and 80% or less of the height (H) of the ridge). is preferred.
  • the transmittance (Tp) of the second polarized light (P polarized light) in the wire grid polarizing element It is possible to suppress the decrease depending on the angle. Therefore, the product (Tp ⁇ Rs) of the reflection axis reflectance (Rs) of the first polarized light (S-polarized light) and the transmission axis transmittance (Tp) of the second polarized light (P-polarized light) in the wire grid polarizer is , can be maintained at a high value. Therefore, when the wire grid polarizing element is used as, for example, a polarizing beam splitter, it is possible to obtain sufficient transmittance and polarization separation characteristics even for obliquely incident light with a large incident angle and a wide range.
  • a substrate made of an inorganic material; a grid structure made of an organic material and integrally formed with a base provided on the substrate and a plurality of ridges protruding from the base; a functional film made of a metal material and covering a part of the ridge; with The protruding portion has a tapered shape in which the width becomes narrower as the distance from the base portion increases,
  • the functional film covers the tip of the ridge and the upper side of at least one side surface, and does not cover the lower sides of both side surfaces of the ridge and the base portion,
  • the coverage ratio (Rc) of the side surface of the ridge portion with the functional film is the height of the portion of the side surface of the ridge portion covered with the functional film ( Hx), the coverage (Rc) is 30% or more and 70% or less
  • the organic material is a cured product of a photocurable acrylic resin for imprints containing a photopolymerizable component,
  • the photopolymerization component is a cured product of a
  • the viscosity of the photocurable acrylic resin for imprints at 25°C may be 35 mPa ⁇ s or less.
  • the photopolymerization component further includes a resin (C),
  • the resin (C) is an acrylate monomer having a viscosity of 10 mPa s or less at 25°C,
  • a total content of the resin (B) and the resin (C) may be 50% by mass or more and 70% by mass or less with respect to the entire photopolymerizable component.
  • the resin (C) may be a monofunctional acrylate monomer.
  • the resin (C) may be isobornyl acrylate.
  • the photopolymerization component further includes a resin (D),
  • the resin (D) is a trifunctional or higher acrylate monomer, You may make it the content rate of the said resin (D) with respect to the whole photopolymerization component more than 0 mass % and 20 mass % or less.
  • the resin (D) may be one or more selected from the group consisting of trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, and polyfunctional polyester acrylate.
  • the resin (B) is a bifunctional acrylate monomer in which an acryloyl group is bonded to each end of a straight chain structure composed of a hydrocarbon group, or a linear structure having an ether bond, and an acryloyl group is bonded to each of both ends.
  • the resin (B) is a bifunctional acrylate monomer represented by the following chemical formula (I), where n may be an integer of 1 or more and 9 or less.
  • n may be an integer of 6 or more and 9 or less.
  • n may be 6 or 9.
  • the YI value of the cured product may be 3 or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 30° C. is 1.6 ⁇ 10 9 Pa or more,
  • the storage elastic modulus of the cured product at 120° C. may be 3.9 ⁇ 10 8 Pa or more.
  • the cured product After holding the cured product of the photocurable acrylic resin for imprints at 120° C. for 500 hours, The cured product has an average transmittance of 91% or more for light in a wavelength range of 430 nm or more and 680 nm or less, The cured product may have an average transmittance of 90% or more for light in the wavelength region of 430 nm or more and 510 nm or less.
  • the photocurable acrylic resin for imprinting may further contain a photopolymerization initiator for polymerizing the photopolymerizable component.
  • the surface of the functional film covering the ridges is rounded and bulges in the width direction of the ridges
  • the maximum width (W MAX ) of the functional film covering the ridge is the portion not covered by the functional film at a position 20% above the height of the ridge from the bottom of the ridge. It may be equal to or greater than the width (W B ) of the protruding portion.
  • the cross-sectional shape of the entire protruding structure composed of the protruding streak and the functional film is such that the protruding structure is positioned at a position immediately below the lower end of the functional film covering the protruding streak in the width direction of the protruding structure. It may also have a narrowed constriction.
  • the height (H) of the ridge may be 160 nm or more.
  • the thickness (Dt) of the functional film covering the tip of the protruding portion may be 5 nm or more.
  • the thickness (Ds) of the functional film covering the side surface of the ridge may be 10 nm or more and 30 nm or less.
  • the thickness (TB) of the base portion may be 1 nm or more.
  • the cross-sectional shape of the ridges in the cross section orthogonal to the reflection axis direction of the wire grid polarizing element may be trapezoidal, triangular, bell-shaped, or elliptical in which the width becomes narrower with increasing distance from the base.
  • a protective film may be further provided so as to cover at least the surface of the functional film.
  • the protective film may include a water-repellent coating or an oil-repellent coating.
  • the functional film may further have a dielectric film.
  • the difference between the transmission axis transmittance (Tp(+)) of incident light with an incident angle of + ⁇ and the transmission axis transmittance (Tp( ⁇ )) of incident light with an incident angle of ⁇ with respect to the wire grid polarizing element may be within 3%.
  • the functional film may be a reflective film that reflects incident light.
  • the wire grid polarizing element may be a polarizing beam splitter that splits obliquely incident light into first polarized light and second polarized light.
  • a grid structure material made of an organic material on a substrate made of an inorganic material a step of forming a grid structure in which a base portion provided on the substrate and a plurality of ridges projecting from the base portion are integrally formed by performing nanoimprinting on the grid structure material; a step of forming a functional film that covers a portion of the ridge using a metal material; including In the step of forming the grid structure, forming the protruding portion having a tapered shape in which the width becomes narrower as the distance from the base portion increases, In the step of forming the functional film, The functional film covers the tip and the upper side of at least one side surface of the protruding portion and does not cover the lower side of both side surfaces of the protruding portion and the base portion, The coverage ratio (Rc) of the side surface of the ridge is the ratio of the height (Hx) of the portion of the side surface of the ridge covered with the functional film
  • the organic material is a cured product of a photocurable acrylic resin for imprints containing a photopolymerizable component
  • the photopolymerization component is a resin (A); a resin (B); including
  • the resin (A) is (octahydro-4,7-methano-1H-indenediyl)bis(methylene)diacrylate
  • the resin (B) is a bifunctional acrylate monomer having a viscosity of 10 mPa s or less at 25°C,
  • the content of the resin (A) with respect to the entire photopolymerization component is 20% by mass or more and 40% by mass or less
  • Provided is a method for producing a wire grid polarizing element, wherein the total content of the resin (A) and the resin (B) is 70% by mass or less with respect to the entire photopolymerizable component.
  • film formation may be alternately performed from a plurality of directions on the ridges by sputtering or vapor deposition.
  • a light source a polarizing beam splitter arranged so that the incident light from the light source is incident at an incident angle within a predetermined range including 45° and splitting the incident light into a first polarized light and a second polarized light; arranged so that the first polarized light reflected by the polarizing beam splitter or the second polarized light transmitted through the polarizing beam splitter is incident, and the incident first polarized light or the second polarized light
  • a reflective liquid crystal display element that reflects and modulates the a lens arranged so that the first polarized light or the second polarized light reflected and modulated by the reflective liquid crystal display element is incident through the polarizing beam splitter; with A projection display apparatus is provided, wherein the polarizing beam splitter is composed of the wire grid polarizing element.
  • the incident angle in the predetermined range may be 30° or more and 60° or less.
  • a heat dissipation member may be provided around the wire grid polarizing element.
  • another aspect of the present invention provides a vehicle including the projection display device.
  • a photocurable acrylic resin for imprinting which is used in the wire grid polarizing element and contains a photopolymerizable component
  • the photopolymerization component is a resin (A); a resin (B); including
  • the resin (A) is (octahydro-4,7-methano-1H-indenediyl)bis(methylene)diacrylate
  • the resin (B) is a bifunctional acrylate monomer having a viscosity of 10 mPa s or less at 25°C,
  • the content of the resin (A) with respect to the entire photopolymerization component is 20% by mass or more and 40% by mass or less
  • a photocurable acrylic resin for imprints is provided, wherein the total content of the resin (A) and the resin (B) is 70% by mass or less with respect to the entire photopolymerizable component.
  • the present invention it is possible to provide a wire grid polarizing element that is excellent in heat dissipation and has excellent polarization separation characteristics for obliquely incident light with a wide range of incident angles.
  • FIG. 1 is a cross-sectional view schematically showing a wire grid polarizing element according to one embodiment of the present invention
  • FIG. It is a top view which shows typically the wire-grid polarizing element which concerns on the same embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a specific example of a tapered shape of the protruded streaks of the grid structure according to the same embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a specific example of the shape of recesses of the grid structure according to the embodiment; It is a sectional view showing typically the wire grid polarizing element concerning the embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a specific example of the shape of the reflective film according to the same embodiment;
  • FIG. 4 is a cross-sectional view schematically showing a polarizing element covered with a protective film according to the embodiment
  • FIG. 10 is a cross-sectional view schematically showing a modified example of the polarizing element covered with a protective film according to the same embodiment.
  • FIG. 3 is a perspective view schematically showing a polarizing element provided with a heat radiating member according to the same embodiment; It is the photograph which shows the actual grid structure and reflective film which concern on the same embodiment.
  • It is process drawing which shows the manufacturing method of the conventional wire grid polarizing element.
  • It is process drawing which shows the manufacturing method of the master recording which concerns on the same embodiment.
  • FIG. 2 is a schematic diagram showing a head-up display device as an example of the projection display device according to the embodiment
  • FIG. 3 is a schematic diagram showing a first specific example of the projection display device according to the same embodiment
  • FIG. 5 is a schematic diagram showing a second specific example of the projection display device according to the same embodiment
  • FIG. 10 is a schematic diagram showing a third specific example of the projection display device according to the same embodiment
  • FIG. 5 is a diagram for explaining a polarizing element according to Conventional Example 1
  • FIG. 10 is a diagram for explaining a polarizing element according to Conventional Example 2
  • FIG. 10 is a diagram for explaining a polarizing element according to Conventional Example 3
  • FIG. 4 is a diagram for explaining a polarizing element according to Example 1;
  • FIG. 5 is a diagram for explaining the results of comparison between Example 1 and Conventional Example 2;
  • FIG. 10 is a diagram for explaining a polarizing element according to Example 2;
  • FIG. 11 is a diagram for explaining a polarizing element according to Example 3;
  • FIG. 11 is a diagram for explaining a polarizing element according to Example 4;
  • FIG. 11 is a diagram for explaining a polarizing element according to Example 5;
  • FIG. 11 is a diagram for explaining a polarizing element according to Example 6;
  • FIG. 11 is a diagram for explaining a polarizing element according to Example 7;
  • FIG. 11 is a diagram for explaining a polarizing element according to Example 8;
  • FIG. 12 is a diagram for explaining the results of comparison between Example 9 and Conventional Example 4;
  • FIG. 12 is a diagram for explaining the results of comparison between Example 9 and Conventional Example 4; It is a graph which shows the relationship between a wavelength and relative luminous efficiency.
  • FIG. 1 is a cross-sectional view schematically showing a wire grid polarizing element 1 according to this embodiment.
  • FIG. 2 is a plan view schematically showing the wire grid polarization element 1 according to this embodiment.
  • the wire grid polarizing element 1 is a reflective polarizing element and a wire grid polarizing element.
  • the wire grid polarizing element 1 may be, for example, a plate-like wire grid polarizing plate.
  • a wire grid polarizing plate is a wire grid polarizing plate having a plate shape.
  • the wire grid polarizing plate may have, for example, a flat plate shape or a curved plate shape. That is, the surface of the wire grid polarizing element 1 (the surface on which light is incident) may be flat or curved.
  • the wire grid polarizing element 1 according to the present embodiment is a flat wire grid polarizing plate will be described, but the wire grid polarizing element of the present invention is not limited to such an example. etc., it can have any shape.
  • the wire grid polarizing element of the present invention may be used, for example, as a polarizer that transmits only light vibrating in a specific direction, or may be used as a first polarized light (S polarized light). It may also be used as a polarizing beam splitter to split into a second polarization (P-polarization).
  • S polarized light first polarized light
  • P-polarization second polarization
  • An example in which the wire grid polarization element 1 according to this embodiment is used as a polarization beam splitter will be mainly described below.
  • a wire grid polarizer 1 (hereinafter sometimes referred to as "polarizer 1") includes a transparent substrate 10, a transparent grid structure 20, and an opaque function. a film (eg, a reflective film 30).
  • the term “transparent” means that the transmittance of light with a wavelength ⁇ belonging to the band of use (for example, the visible light band, the infrared light band, or the visible and infrared light bands) is It means high, for example, it means that the transmittance of the light is 70% or more.
  • the wavelength band of visible light is, for example, 360 nm or more and 830 nm or less.
  • the wavelength band of infrared light (infrared rays) is larger than the wavelength band of visible light, and is, for example, 830 nm or more.
  • the wavelength ⁇ of the use band in the polarizing element 1 according to the present embodiment is preferably, for example, 400 nm or more and 800 nm or less, and 420 nm or more and 680 nm. The following are more preferable. Since the polarizing element 1 according to the present embodiment is made of a material transparent to light in the working band, the polarization characteristics of the polarizing element 1, light transmittance, and the like are not adversely affected.
  • the substrate 10 is made of a transparent inorganic material such as glass.
  • the substrate 10 is a flat substrate having a predetermined thickness TS.
  • the grid structure 20 is made of a transparent organic material, for example, an organic resin material such as an ultraviolet curable resin or a thermosetting resin with excellent heat resistance.
  • the grid structure 20 has an uneven structure for realizing the polarizing function of the polarizing element 1 .
  • the grid structure 20 has a base portion 21 provided along the surface of the substrate 10 and a plurality of ridges 22 protruding from the base portion 21 in a grid pattern.
  • the base portion 21 and the plurality of ridges 22 of the grid structure 20 are integrally formed using the same organic material.
  • the base portion 21 is a thin film having a predetermined thickness TB, and is laminated over the entire main surface of the substrate 10 (the XY plane shown in FIGS. 1 and 2).
  • the thickness TB of the base portion 21 is preferably substantially the same thickness over the entire main surface of the substrate 10, but may not be exactly the same thickness. may fluctuate with some error.
  • TB may vary by about ⁇ 3 ⁇ m with respect to the reference thickness of 6 ⁇ m. In this manner, the thickness TB of the base portion 21 is determined by allowing for molding errors when the base portion 21 is molded by imprinting or the like.
  • the plurality of ridges 22 are arranged on the base portion 21 at equal intervals with a predetermined pitch P in the X direction.
  • the pitch P is the formation interval of the plurality of ridges 22 arranged in the X direction of the polarizing element 1 .
  • the plurality of ridges 22 are arranged in a grid pattern so as to extend in parallel to each other in the Y direction.
  • a predetermined gap is formed between two ridges 22 adjacent to each other in the X direction. This gap serves as an entrance path for incident light.
  • Each protruding portion 22 is a wall-like protruding portion protruding so as to protrude in a predetermined direction (the Y direction shown in FIGS. 1 and 2).
  • the height (H) in the Z direction and the width (W T , W B ) in the X direction of the multiple ridges 22 are substantially the same.
  • the longitudinal direction (Y direction) of the ridges 22 is the direction of the reflection axis of the polarizer 1
  • the width direction (X direction) of the ridges 22 is the direction of the transmission axis of the polarizer 1 .
  • a functional film is a film for imparting a predetermined function to the grid structure 20 of the polarizing element 1 .
  • the functional film is made of, for example, an opaque metal material, and is provided so as to partially cover the ridges 22 of the grid structure 20 .
  • the functional film may be, for example, a reflective film 30 having a function of reflecting incident light incident on the polarizing element 1, or an absorption film (not shown) having a function of absorbing the incident light. or a film having other functions.
  • the functional film is the reflective film 30 will be described, but the functional film of the present invention is not limited to the reflective film 30 .
  • the reflective film 30 is, for example, a thin film made of a metal material (metal, metal oxide, etc.) such as aluminum or silver.
  • the reflective film 30 is formed to cover at least the top of the ridge 22 .
  • the reflective film 30 may be composed of a metal film that functions as fine metal wires of a wire grid.
  • the reflective film 30 has a function of reflecting incident light entering the grid structure 20 .
  • the ridges 22 of the grid structure 20 and the reflective film 30 constitute the grid of the wire grid polarizing element 1 .
  • the pitch P in the X direction of the plurality of ridges 22 in the grid structure 20 is a pitch smaller than the wavelength ⁇ of the incident light (for example, visible light) (for example, 1/2). below).
  • the polarizing element 1 reflects most of the light (S-polarized light) of the electric field vector component vibrating in the direction (reflection axis direction: Y direction) parallel to the reflecting film 30 (conductor wire) extending in the Y direction.
  • the light (P-polarized light) of the electric field vector component oscillating in the direction (transmission axis direction: X direction) perpendicular to the reflective film 30 (conductor wire) can be almost transmitted.
  • the wire grid polarizing element 1 includes the grid structure 20 having a fine uneven structure and the functional film (for example, In combination with the reflective film 30), a polarizing function is realized.
  • the substrate 10 of the wire grid polarizing element 1 is made of an inorganic material such as glass having excellent heat resistance
  • the grid structure 20 is made of an organic resin material having heat resistance.
  • the wire grid polarizing element 1 according to this embodiment is a hybrid polarizing element that combines organic and inorganic materials. Therefore, heat can be efficiently released to the substrate 10 from the grid structure 20 having a small thermal resistance R [m 2 ⁇ K/W], so that heat dissipation is excellent.
  • the hybrid-type wire grid polarizing element 1 according to the present embodiment has excellent heat resistance and heat dissipation compared to conventional film-type polarizing elements (heat resistance: about 100 ° C.) made only of organic materials. , for example, has heat resistance in a high temperature environment up to about 200°C. Therefore, it is possible to maintain a good heat dissipation effect while realizing excellent polarization characteristics.
  • the wire grid polarizer 1 may include a protective film 40 (see FIGS. 7 and 8) that covers the surface of the grid structure 20 .
  • the protective film 40 is made of an inorganic material, for example a dielectric material such as SiO2 .
  • the protective film 40 may be laminated on the entire surface of the wire grid polarization element 1 so as to cover all the surfaces of the base portion 21, the ridges 22 and the reflective film 30 of the grid structure 20 (see FIG. 7). .).
  • the grid structure 20 in which the base portion 21 and the ridge portion 22 are integrally configured can be manufactured using a printing technique such as nanoimprinting. can be realized. Therefore, the cost and labor required for manufacturing the grid structure 20 can be reduced compared to the case of manufacturing using photolithography technology or etching technology. Therefore, the hybrid polarizing element 1 according to the present embodiment has the advantage that the manufacturing cost can be significantly reduced and the unit price of the wire grid polarizing element 1 can be reduced compared to the conventional polarizing element made of only inorganic materials.
  • the grid composed of the ridges 22 of the grid structure 20 and the reflective film 30 has a special tree shape as shown in FIG. 1 (details will be described later). )have.
  • for example, 30 to 60°
  • the second polarized light transmitted through the polarizing element 1 ( P-polarized light) transmittance that is, transmission axis transmittance Tp
  • Tp transmission axis transmittance
  • the product (Tp ⁇ Rs) of the reflectance (that is, the reflection axis reflectance Rs) of the first polarized light (S polarized light) reflected by the wire grid polarizer 1 and the transmission axis transmittance Tp is, for example, 70%.
  • the polarizing element 1 according to the present embodiment has excellent polarization separation characteristics represented by Tp ⁇ Rs, and polarizes obliquely incident light into S-polarized light (reflected light) and P-polarized light (transmitted light). can be preferably separated. Therefore, the polarizing element 1 according to the present embodiment can obtain sufficient transmittance and polarization separation characteristics even for obliquely incident light with a large incident angle ⁇ and in a wide range.
  • the wire grid polarizing element 1 according to the present embodiment has excellent heat resistance and heat dissipation, can reduce manufacturing costs, and has transparency and polarization separation for obliquely incident light with a wide range of large incident angles ⁇ . Excellent characteristics. Therefore, the wire grid polarizing element 1 according to this embodiment can be suitably applied as various parts of various products.
  • the polarizing element 1 can be applied to a polarizing beam splitter installed in a smart display.
  • the polarizing element 1 can be applied to a head-up display (HUD), such as a polarizing element that takes measures against heat from sunlight, a polarizing element that takes measures against heat from an LED light source, a polarizing reflecting mirror, and the like.
  • HUD head-up display
  • the polarizing element 1 can also be applied to a polarizing beam splitter installed in a headlight such as a variable light distribution headlamp (ADB).
  • ADB variable light distribution headlamp
  • the polarizing element 1 can also be applied to a lens-integrated retardation element, a lens-integrated polarizing element, etc. installed in various devices for augmented reality (AR) or virtual reality (VR).
  • AR augmented reality
  • VR virtual reality
  • the wire grid polarizer 1 includes a transparent substrate 10. As shown in FIG. 1, the substrate 10 is made of an inorganic material that is transparent and has a certain degree of strength.
  • the material of the substrate 10 is preferably an inorganic material such as various types of glass, quartz, crystal, sapphire, etc., from the viewpoint of obtaining better heat dissipation and heat resistance, and has a thermal conductivity of 1.0 W/m. • An inorganic material with K or more is more preferable, and an inorganic material with 8.0 W/m ⁇ K or more is even more preferable.
  • the shape of the substrate 10 is not particularly limited, and can be appropriately selected according to the performance required of the polarizing element 1 and the like. For example, it can be configured to have a plate shape or a curved surface. Moreover, from the viewpoint of not affecting the polarization characteristics of the polarizing element 1, the surface of the substrate 10 can be made flat. Further, the thickness TS of the substrate 10 is also not particularly limited, and can be in the range of 0.02 to 10.0 mm, for example.
  • the polarizing element 1 includes a grid structure 20 having the base portion 21 and the grid-shaped ridges 22 on the substrate 10 .
  • the grid structure 20 can obtain desired polarization characteristics by providing a reflective film 30 described later on the ridges 22 .
  • the polarizing element 1 When light enters the polarizing element 1 from the surface side where the grid structure 20 is formed, part of the incident light is reflected by the reflective film 30 .
  • the grid structure 20 has a base portion 21 as shown in FIG.
  • the base portion 21 is a thin film provided along the surface of the substrate 10 and is a portion for supporting the ridge portion 22 .
  • the base portion 21 is inevitably formed when the concavo-convex structure (ridge portion 22) of the grid structure 20 is formed by nanoimprinting or the like.
  • the base portion 21 and the ridge portion 22 are integrally formed of the same material.
  • the grid structure 20 has the base portion 21 , the strength of the ridges 22 can be increased compared to the case where the ridges 22 are formed directly on the substrate 10 . Therefore, the durability of the grid structure 20 can be enhanced.
  • the base portion 21 is in close contact with the substrate 10 over the entire surface, the peeling resistance of the grid structure 20 can be enhanced.
  • the thickness TB of the base portion 21 is not particularly limited, it is preferably 1 nm or more, more preferably 10 nm or more, from the viewpoints of more reliable support of the ridges 22 and easy imprint molding. It is more preferable to have From the viewpoint of ensuring good heat dissipation, the thickness TB of the base portion 21 is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the base portion 21 and the plurality of ridges 22 of the grid structure 20 are formed directly on the substrate 10, so the thickness TB of the base portion 21 is reduced. be able to.
  • the thickness TB of the base portion 21 is reduced so that the temperature difference ⁇ T [° C.] between the front surface and the back surface of the base portion 21 is reduced. is preferred to be small.
  • the thickness TB of the base portion 21 is preferably 0.15 mm or less.
  • the heat of the grid structure 20 made of an organic material can be quickly transferred to the substrate 10 made of an inorganic material, and the heat can be efficiently released from the substrate 10 to the outside of the polarizing element 1, resulting in a temperature difference ⁇ T. can be, for example, 32° C. or lower.
  • the thickness TB of the base portion 21 is more preferably 0.09 mm or less, so that the temperature difference ⁇ T can be made 20° C. or less, for example.
  • the thickness TB of the base portion 21 is more preferably 0.045 mm or less, so that the temperature difference ⁇ T can be made 10° C. or less, for example.
  • the thickness TB of the base portion 21 is 0.02 mm or less, whereby the temperature difference ⁇ T can be made 5° C. or less, for example.
  • the grid structure 20 has a plurality of ridges 22 protruding from the base 21, as shown in FIGS.
  • the ridges 22 extend along the reflection axis direction (Y direction) of the polarizing element 1 according to this embodiment.
  • a plurality of ridges 22 are arranged at a predetermined pitch in the X direction and are arranged at predetermined intervals from each other to form a grid-like concave-convex structure.
  • the pitch P of the ridges 22 in the transmission axis direction (X direction) is It must be shorter than the wavelength of light in the band. The reason for this is to obtain the polarizing action mentioned above. More specifically, the pitch P of the ridges 22 is preferably 50 to 300 nm, more preferably 100 to 200 nm, from the viewpoint of achieving both ease of manufacture of the ridges 22 and polarization characteristics. It is preferably between 100 and 150 nm, particularly preferably between 100 and 150 nm.
  • the width W B of the bottom portion of the ridge portion 22 in the longitudinal section (XZ section) is not particularly limited. It is preferably about 10 to 150 nm, more preferably about 10 to 100 nm. Further, the width W T of the top portion of the ridge 22 is not particularly limited, but from the viewpoint of compatibility between manufacturing easiness and polarization characteristics, it is preferably about 5 to 60 nm, more preferably about 10 to 30 nm. more preferred.
  • the width WB of the bottom portion and the width WT of the top portion of the ridge portion 22 can be measured by observation with a scanning electron microscope or a transmission electron microscope. For example, using a scanning electron microscope or a transmission electron microscope, a cross section (XZ cross section) perpendicular to the absorption axis direction or the reflection axis direction of the polarizing element 1 is observed, and any four ridge portions 22 are observed. Measure the width of the ridge 22 at a height position above 20% of the height H of the ridge 22 from the bottom of the ridge 22, and take the arithmetic average of these values as the width WB of the bottom of the ridge 22. be able to.
  • the width of the projected streak portion 22 at a height position 20% below the height H of the projected streak portion 22 from the tip 22a of the projected streak portion 22 at any of the four locations is measured. can be taken as the width W T of the top of the ridge 22 .
  • the height H of the ridges 22 in the longitudinal section (XZ section) is not particularly limited, but from the viewpoint of both ease of manufacture and polarization characteristics, it is about 50 to 350 nm. It is preferably about 100 to 300 nm, more preferably about 100 to 300 nm.
  • the height H of the ridges 22 can be measured by observation with a scanning electron microscope or a transmission electron microscope.
  • the shape of the ridges 22 of the grid structure 20 is preferably tapered in order to obtain good polarization splitting characteristics for obliquely incident light.
  • the tapered shape is a shape in which the width W of the ridge 22 (the width in the X direction in the XZ cross section) gradually narrows as the distance from the base 21 increases, in other words, the bottom of the ridge 22
  • the width W of the ridge portion 22 is gradually narrowed from the top to the top. Therefore, when the protruding portion 22 has a tapered shape, the width W T of the top portion of the protruding portion 22 is smaller than the width W B of the bottom portion of the protruding portion 22 (W T ⁇ W B ).
  • FIG. 3 shows a specific example of the tapered shape of the protruding portion 22 according to this embodiment.
  • the width W becomes narrower as the distance from the base portion 21 increases. It may be of various shapes such as oval or rounded wedge.
  • the cross-sectional shape of 22D is wedge-shaped with rounded tops and bottoms.
  • the tapered shape of the ridges 22 makes it easy to form the reflective film 30 that partially covers the tips 22a and the side surfaces 22b of the ridges 22, thereby imparting polarization characteristics to the polarizing element 1. Since the tapered shape can also be formed by nanoimprinting, it is also advantageous in terms of ease of manufacture.
  • the refractive index of the grid structure 20 gradually changes because the protruding portion 22 has a tapered shape such as a tapered shape. Therefore, similar to the moth-eye structure, the physical refractive index change of the grid structure 20 provides the effect of preventing reflection of incident light. Therefore, the effect that the reflectance on the surface of the protruding portion 22 of the grid structure 20 can be reduced and the transmittance of the grid structure 20 can be improved can also be expected.
  • FIG. 4 shows a specific example of the shape of the recess 24 formed between the protruding streaks 22, 22 adjacent to each other.
  • the recessed portion 24 is a groove extending in the longitudinal direction (Y direction) of the protruding portion 22 .
  • the cross-sectional shape of the concave portion 24 in the vertical cross section may have various shapes as long as the width becomes narrower toward the bottom of the concave portion 24 .
  • the cross-sectional shape of the recess 24A shown in FIG. 4 is trapezoidal (tapered), the cross-sectional shape of the recess 24B is triangular (V-shaped), and the cross-sectional shape of the recess 24C is substantially rectangular with a flat bottom.
  • the cross-sectional shape of the recess 24D is U-shaped with a rounded bottom.
  • an optimum shape can be appropriately selected in consideration of productivity such as releasability at the time of nanoimprint formation.
  • the material constituting the grid structure 20 is not particularly limited as long as it is a transparent organic material, and a known organic material can be used.
  • a transparent organic material for example, it is preferable to use various thermosetting resins, various ultraviolet curable resins, and the like as the material of the grid structure 20 in terms of ensuring transparency and being excellent in manufacturability.
  • a material different from that of the substrate 10 for the material constituting the grid structure 20 in terms of ease of manufacture and manufacturing cost.
  • the materials of the grid structure 20 and the substrate 10 are different, the refractive indices of both will be different. Therefore, if the refractive index of the entire polarizing element 1 is affected, a refractive index adjusting layer may be appropriately provided between the grid structure 20 and the substrate 10 .
  • a curable resin such as an epoxy polymerizable compound, an acrylic polymerizable compound, or the like can be used as a material for forming the grid structure 20 .
  • Epoxy polymerizable compounds are monomers, oligomers, or prepolymers having one or more epoxy groups in the molecule.
  • Examples of epoxy polymerizable compounds include various bisphenol-type epoxy resins (bisphenol A-type, F-type, etc.), novolac-type epoxy resins, various modified epoxy resins such as rubber and urethane, naphthalene-type epoxy resins, biphenyl-type epoxy resins, and phenol novolak-type epoxy resins.
  • An acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule.
  • monomers are further classified into monofunctional monomers having one acrylic group in the molecule, bifunctional monomers having two acrylic groups in the molecule, and polyfunctional monomers having three or more acrylic groups in the molecule. .
  • Examples of the "monofunctional monomer” include carboxylic acids (acrylic acid, etc.), hydroxys (2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate), alkyl or alicyclic monomers (isobutyl acrylate , t-butyl acrylate, isooctyl acrylate, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate), other functional monomers (2-methoxyethyl acrylate, methoxyethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl Acrylates, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, N,N-dimethylaminoethyl acrylate, N,N-dimethylaminopropylacrylamide, N,N
  • bifunctional monomers include tri(propylene glycol) diacrylate, trimethylolpropane-diallyl ether, urethane diacrylate and the like.
  • Multifunctional monomers include, for example, trimethylolpropane triacrylate, dipentaerythritol penta and hexaacrylate, ditrimethylolpropane tetraacrylate, and the like.
  • acrylic polymerizable compounds listed above examples include acrylic morpholine, glycerol acrylate, polyether acrylate, N-vinylformamide, N-vinylcaprolactam, ethoxydiethylene glycol acrylate, methoxytriethylene glycol acrylate, polyethylene glycol acrylate, EO-modified trimethylolpropane triacrylate, EO-modified bisphenol A diacrylate, aliphatic urethane oligomers, polyester oligomers, and the like.
  • examples of the curing initiator for the above-described curable resin include a heat curing initiator, a photocuring initiator, and the like.
  • the curing initiator may be one that is cured by heat, energy rays other than light (for example, electron beams), or the like.
  • the curing initiator is a thermosetting initiator
  • the curable resin is a thermosetting resin
  • the curing initiator is a photo-setting initiator
  • the curable resin is a photo-setting resin.
  • an ultraviolet curing initiator is a kind of photocuring initiator.
  • UV curing initiators include, for example, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one etc. Therefore, the curable resin is preferably an ultraviolet curable resin. Moreover, from the viewpoint of transparency, the curable resin is more preferably an ultraviolet curable acrylic resin.
  • the method for forming the grid structure 20 is not particularly limited as long as it is a method capable of forming the base portion 21 and the ridge portion 22 described above.
  • an unevenness forming method using photolithography, imprinting, or the like can be used.
  • imprinting is used to form the base portion 21 and the ridge portions 22 of the grid structure 20 from the standpoint of being able to form the concave-convex pattern easily in a short period of time and to reliably form the base portion 21 . is preferred.
  • a material for forming the grid structure 20 (grid structure material) is applied on the substrate 10, and then unevenness is formed.
  • the original plate on which is formed is pressed against the grid structure material, and in this state, the grid structure material can be cured by irradiating ultraviolet rays or applying heat. Thereby, the grid structure 20 having the base portion 21 and the ridge portion 22 can be formed.
  • the polarizing element 1 includes a reflective film 30 formed on the ridges 22 of the grid structure 20, as shown in FIGS.
  • the reflective film 30 is formed so as to partially cover the tips 22a and side surfaces 22b of the ridges 22 of the grid structure 20. As shown in FIG. Then, as shown in FIG. 1 , the reflective film 30 is formed to extend along the longitudinal direction (Y direction) of the ridges 22 of the grid structure 20 . As a result, the reflective film 30 can reflect light having an electric field component in a direction (reflection axis direction: Y direction) parallel to the longitudinal direction of the ridges 22 among the light incident on the polarizing element 1 .
  • the material that constitutes the reflective film 30 is not particularly limited as long as it is a material that reflects light in the used band.
  • Examples thereof include metal elements such as Al, Ag, Cu, Mo, Cr, Ti, Ni, W, Fe, Si, Ge, and Te, and metal materials such as alloys containing one or more of these elements.
  • the reflective film 30 may be a single-layer film made of the above metals, or may be a multi-layer film made of a plurality of metal films.
  • the reflective film 30 may include other layers such as dielectric films as necessary, as long as it has a reflective function.
  • a dielectric film is a thin film made of a dielectric. General materials such as SiO 2 , Al 2 O 3 , MgF 2 and TiO 2 can be used as materials for the dielectric film.
  • the refractive index of the dielectric film is preferably greater than 1.0 and equal to or less than 2.5. Since the optical properties of the reflective film 30 are also affected by the surrounding refractive index, the polarization properties may be controlled by the material of the dielectric film.
  • the reflective film 30 covers the tip 22a of the ridge 22 of the grid structure 20 and the upper part of at least one side surface 22b, Moreover, it is formed so as not to cover the lower side of both side surfaces 22b of the protruding portion 22 and the base portion 21 .
  • the reflective film 30 covers the upper side of both side surfaces 22b of the protruding portion 22, but covers the upper portion of only one side surface 22b of the protruding portion 22. good too.
  • the state in which the reflective film 30 covers the tip 22a and the upper side of at least one of the side surfaces 22b of the ridges 22 of the grid structure 20 means, for example, as shown in FIGS. Both the tip 22a of the ridge portion 22 and the upper side of the side surface 22b connecting the tip 22a of the ridge portion 22 and the base portion 21 are continuously covered with the reflective film 30, while the side surface 22b and the base portion 21 are not covered with the reflective film 30 and are exposed. In this state, the reflective film 30 does not cover the entire side surface 22b of the protruding portion 22 (all side surfaces 22b from the tip 22a of the protruding portion 22 to the base portion 21).
  • the surface of the reflective film 30 covering the tip 22a of the ridge 22 and the upper side of at least one side surface 22b is rounded. It has a curved shape (for example, a vertically elongated substantially elliptical shape), and bulges in the width direction (X direction) of the protruding portion 22 . In this way, the surface of the reflective film 30 has a rounded, smoothly curved shape, and does not have sharp corners or steps.
  • the maximum width W MAX of the reflective film 30 covering the top of the ridge 22 is equal to or greater than the width WB of the bottom of the ridge 22 . Further, W MAX is preferably greater than WB .
  • the maximum width W MAX of the reflective film 30 covering the ridge 22 is the largest horizontal width of the outermost surfaces on both sides of the reflective film 30 in the width direction (X direction) of the ridge 22.
  • Horizontal width As shown in FIGS. 1 and 5, the horizontal width (width in the X direction) of the outermost surfaces on both sides of the reflective film 30 covering the ridge 22 corresponds to the height position of the reflective film 30 (width in the Z direction). height), the maximum of these horizontal widths is the maximum width W MAX .
  • the maximum width W MAX is the maximum value of the total width of the thickness Ds ⁇ 2 on both sides of the reflective film 30 and the horizontal width W of the ridge 22 .
  • W MAX corresponds to the effective grid width of the reflective film 30 .
  • the width W B of the bottom portion of the ridge portion 22 is 20% above the height H of the ridge portion 22 from the bottom of the ridge portion 22 (upper surface of the base portion 21). It is the horizontal width (width in the X direction) of the protruding portion 22 at the height position (height in the Z direction). That is, the width W B of the bottom portion of the ridge portion 22 is the horizontal width of the ridge portion 22 at a height of 0.2 ⁇ H above the upper surface of the base portion 21 .
  • the width W T of the top portion of the ridge portion 22 is the height position (Z is the horizontal width (width in the X direction) of the protruding portion 22 in the height in the X direction). That is, the width W T of the top portion of the protruding portion 22 is 0.8 ⁇ H above the upper surface of the base portion 21 (that is, 0.2 ⁇ H below the tip 22a of the protruding portion 22). height position)).
  • the convex structure formed by combining the ridges 22 and the reflective film 30 is referred to as a "grid", and the height of the convex structure (that is, the grid) formed by combining the ridges 22 and the reflective film 30 is is sometimes referred to as "grid height”.
  • the maximum width W MAX of the reflective film 30 covering the ridges 22 may be referred to as the “grid maximum width W MAX ", and the width W B of the bottom of the ridges 22 may be referred to as the "grid bottom width WB ". be.
  • the width W T of the top portion of the protruding portion 22 may be referred to as the “protrusive portion top width W T ”, and the width at the central position in the height direction of the protruding portion 22 may be referred to as the “protruding portion central width”. be.
  • the width W B of the bottom portion of the ridge portion 22 the horizontal width of the ridge portion 22 at a height position 20% above the lowest portion (bottom portion) of the ridge portion 22 is used.
  • the width W T of the top portion of the ridge portion 22 the horizontal width of the ridge portion 22 at a height position 20% lower than the tip 22a of the ridge portion 22 is used.
  • the reason for this is that the width of the lowermost portion of the ridge portion 22 on the upper surface of the base portion 21 and the width of the tip 22a of the ridge portion 22 vary greatly depending on the manufacturing conditions of the grid structure 20, and these widths must be precisely adjusted. This is because it is difficult to measure
  • the tapered ridges 22 and the reflective film 30 that covers only the upper portions of the tips 22a and the side surfaces 22b of the ridges 22 are formed. It is The lower side of the side surface 22b of the ridge 22 is not covered with the reflective film 30 and is open.
  • the cross-sectional shape of the ridges 22 covered with the curved reflective film 30 (that is, the cross-sectional shape of the grid) has the following special cross-sectional shape. That is, as shown in FIGS. 1 and 5, etc., the horizontal width (for example, grid maximum width W MAX ) of the portion on the upper side of the ridge portion 22 where the reflective film 30 exists is large, and the portion covered with the reflective film 30 is large.
  • the horizontal width (for example, the width W B of the exposed bottom portion of the exposed ridge 22) from the center to the bottom side of the ridge 22 exposed is small.
  • the cross-sectional shape of the entire convex structure (that is, the “grid”) composed of the ridges 22 and the reflective film 30 is constricted inward at a position directly below the lower end of the curved reflective film 30 . , has a narrowed width in the X direction.
  • the special cross-sectional shape of such a grid can be likened to the shape of a tree. Specifically, the leaf portion of the tree that spreads round and wide corresponds to the portion of the reflective film 30 that covers the top of the ridge portion 22 , and the trunk portion of the tree is the convex portion that is not covered with the reflective film 30 .
  • the special cross-sectional shape of the grid composed of the ridges 22 of the grid structure 20 and the reflective film 30 as described above is referred to as a "special tree shape”.
  • the grid of the grid structure 20 of the polarizing element 1 has a special tree shape as described above.
  • the effective grid width WA is the width of the reflective film 30 in the direction perpendicular to the obliquely incident light.
  • the gap width WG is the width of the gap between the reflective films 30, 30 of two adjacent grids in the direction perpendicular to the obliquely incident light.
  • the effective grid width WA As the effective grid width WA increases, obliquely incident light is more likely to be reflected by the reflective film 30 and less likely to reach the transparent ridges 22 and base 21 . Therefore, the transmittance of obliquely incident light in the polarizing element 1 is lowered.
  • the larger the gap width WG the easier it is for the oblique incident light to pass through between the two adjacent reflecting films 30 and reach the transparent ridge 22 and base 21 . Therefore, the transmittance for obliquely incident light can be increased.
  • the grid of the polarizing element 1 since the grid of the polarizing element 1 according to this embodiment has the above-mentioned special tree shape, the gap width WG with respect to the obliquely incident light is increased, and the obliquely incident light passes through the round gaps between the reflecting films 30, 30. , to easily reach and pass through the transparent grid structure 20 . Therefore, since the transmission axis transmittance Tp of the obliquely incident light is high, the transmittance of the obliquely incident light and the polarization separation characteristic (Tp ⁇ Rs characteristic) are very excellent.
  • the function of reflecting obliquely incident light by the reflective film 30 and the function of transmitting obliquely incident light by the grid structure 20 can be achieved in a well-balanced manner, and the polarization splitting characteristics for obliquely incident light can be further improved.
  • the reflective film 30 As a method of forming the reflective film 30 so that the reflective film 30 covers the tips 22a and part of the side surfaces 22b of the ridges 22 of the grid structure 20, as shown in FIG. It is preferable to form the reflective film 30 by performing sputtering or vapor deposition alternately from an oblique direction (film formation incident angle ⁇ ) with respect to the ridges 22 . Thereby, the reflective film 30 can be formed so as to cover the upper portions of the tip 22a and the side surfaces 22b of the protruding portion 22. As shown in FIG.
  • the film formation incident angle ⁇ for forming the reflective film 30 by sputtering or vapor deposition is not particularly limited, but can be, for example, about 5 to 70° with respect to the surface of the substrate 10 .
  • the reflective film 30 made of a metal material is formed by sputtering or vapor deposition. This makes it possible to easily change the film formation conditions, material, and film thickness of the reflective film 30 . Moreover, even when the reflective film 30 is composed of a multilayer film, it can be easily dealt with. Therefore, by combining metals, semiconductors, and dielectrics, it is possible to design a film that utilizes the interference effect, and there is no need to consider the composition of materials that can be etched when forming the reflective film 30 by etching as in the conventional technology. .
  • the reflective film 30 is formed after the grid structure 20 is formed, there is no need for equipment such as a vacuum dry etching device, and gas and abatement devices suitable for complicated processes and etching materials can be used. There is no need for any safety equipment. Therefore, running costs such as equipment investment and maintenance can be reduced, and cost merits can also be obtained.
  • the thickness Dt of the reflective film 30 covering the tip 22a of the ridge 22 shown in FIG. 5 and the thickness Ds of the reflective film 30 covering the side surface 22b of the ridge 22 are not particularly limited. It can be changed as appropriate according to the shape of the ridges 22 of 20 and the performance required of the reflective film 30 .
  • the thicknesses Dt and Ds of the reflective film 30 are preferably 2 to 200 nm, more preferably 5 to 150 nm, and even more preferably 10 to 100 nm. It is preferably 15 to 80 nm, and particularly preferably 15 to 80 nm.
  • the thickness Ds of the reflective film 30 is the thickness of the thickest portion of the reflective film 30 covering the side surface 22b of the ridge 22, as shown in FIG.
  • the shape of the reflective film 30 is not particularly limited as long as it is a shape capable of forming the special tree shape described above. can be selected as appropriate.
  • FIG. 6 is a cross-sectional view schematically showing a specific example of the shape of the reflective film 30.
  • the reflective film 30 may have various shapes as long as the reflective film 30 is curved so as to wrap around the top of the ridge 22 (upper side of the tip 22a and the side surface 22b).
  • the reflective film 30A shown in FIG. 6 covers the apexes of the ridges 22A, 22B, and 22C having various cross-sectional shapes so as to envelop the tops of the ridges 22A, 22B, and 22C. It has an oval shape.
  • the reflective film 30B has a curved shape that wraps and covers the top of the substantially wedge-shaped ridge 22D.
  • the reflective film 30C has a curved shape that wraps around the top of the trapezoidal projection 22A.
  • the coverage Rc of one side surface 22b of the protruding portion 22 and the coverage Rc of the other side surface 22b of the ridge portion 22 by the reflective films 30B and 30C are substantially the same.
  • the reflective film 30D covers the apex of the substantially wedge-shaped ridge 22D so as to wrap around it, but is unevenly distributed on one side surface 22b of the ridge 22 (the left side surface 22b shown in FIG. 6). . Specifically, the reflective film 30D covers a wide range of the left side surface 22b of the ridge 22, and the coverage Rc is about 80%. On the other hand, the reflective film 30D covers only a narrow upper portion of the right side surface 22b, and its coverage Rc is about 25%. In this manner, the coverage Rc of the reflecting film 30D may differ between the one side surface 22b and the other side surface 22b of the protruding portion 22. FIG.
  • the coverage Rc is preferably 25% or more and 80% or less.
  • the coverage Rc is the height (Hx) of the portion of the side surface 22b of the protruding portion 22 covered with the reflective film 30 with respect to the height (H) of the protruding portion 22 shown in FIGS. is the ratio of The coverage Rc is represented by the following formula (1).
  • Rc [%] (Hx/H) x 100 (1)
  • H Height in the Z direction of the ridge 22
  • Hx Height in the Z direction of the portion of the side surface 22b of the ridge 22 covered with the reflective film 30
  • the openness ratio Rr is the height (H ⁇ Hx).
  • the open rate Rr is represented by the following formula (2).
  • Rr 100 - Rc. Therefore, when the coverage Rc of the side surface 22b of the ridge portion 22 by the reflective film 30 is 25% or more and 80% or less, the opening ratio Rr of the side surface 22b of the ridge portion 22 by the reflective film 30 is 20% or more. , 75% or less.
  • the coverage Rc of the side surface 22b of the ridge 22 by the reflective film 30 is 25% or more and 80% or less (that is, the openness Rr is 20% or more and 75% or less). % or less).
  • the reflective film 30 is formed so as to cover the tip 22a and the upper side of both side surfaces 22b of the protruding portion 22 and leave the lower side of the side surface 22b open without covering.
  • the coverage Rc is preferably 25% or more and 80% or less, more preferably 30% or more and 70% or less, and even more preferably 40% or more and 50% or less.
  • the polarizing element 1 can exhibit sufficient transparency even for obliquely incident light with a large incident angle ⁇ (for example, 45 to 60°).
  • for example, 45 to 60°
  • the P-polarized light (transmitted light) transmitted through the polarizing element 1 is ) can be maintained at a high value.
  • the reflecting action of the reflecting film 30 described above can be exhibited more reliably without depending on the incident angle ⁇ . Therefore, regardless of the incident angle ⁇ of the obliquely incident light, it is possible to ensure high transmittance of transmitted light and improve the polarization splitting characteristics.
  • the reflective film 30 is formed so as to cover only the tips 22a of the ridges 22 of the grid structure 20, or the reflective film 30 is formed to cover only the tips 22a of the ridges 22 and the entire side surface 22b on one side.
  • the transmittance Tp varies greatly depending on the incident angle ⁇ of the oblique incident light. It is considered that sufficient permeability cannot be obtained.
  • the reflective film 30 covers all of the tips 22a and both side surfaces 22b of the ridges 22 of the grid structure 20 (when the coverage Rc is 100%)
  • the oblique incident light As the angle of incidence ⁇ increases, the transmittance decreases significantly.
  • the reflective film 30 can be used as the reflective film 30 as in the polarizing element 1 according to the present embodiment. It is preferable to cover the tip 22a of 22 and a portion of at least one side surface 22b (upper side of the side surface 22b).
  • the coverage Rc of the side surface 22b of the protruded portion 22 with the reflective film 30 is 25% or more. , 80% or less (see FIG. 27, for example).
  • the transmission axis transmittance Tp of the P-polarized light passing through the polarizing element 1 is lowered, and the transmittance Tp varies depending on the incident angle ⁇ .
  • the value of xRs is also not obtained. For this reason, it is not possible to obtain sufficient transmittance of transmitted light and polarization separation characteristics represented by Tp ⁇ Rs for obliquely incident light with a large incident angle ⁇ .
  • the coverage Rc is more than 80% (see, for example, FIG. 20)
  • the oblique incident light As the incident angle .theta. increases (for example, 45 to 60.degree.), the transmission axis transmittance Tp decreases, so that the transmittance Tp varies greatly depending on the incident angle .theta.
  • the coverage Rc of the side surface 22b of the ridge portion 22 by the reflective film 30 is 25% or more and 80% or less (see FIG. 27, for example).
  • the transmission axis transmittance Tp of the second polarized light (P-polarized light) passing through the polarizing element 1 is set to 75°. % or higher.
  • Tp ⁇ Rs can be made 70% or more.
  • the polarizing element 1 can preferably separate the obliquely incident light into the first polarized light (S-polarized light) and the second polarized light (P-polarized light).
  • the coverage Rc is more preferably 30% or more and 70% or less (that is, the open rate Rr is 30% or more and 70% or less).
  • a high transmittance Tp of 80% or more can be obtained, and a high Tp ⁇ Rs of 72% or more can be obtained under the oblique incidence condition.
  • the coverage Rc is 30% or more and 60% or less (that is, the open rate Rr is 40% or more and 70% or less).
  • a high transmittance Tp of 83% or more can be obtained, and a high Tp ⁇ Rs of 75% or more can be obtained under the oblique incidence condition.
  • the coverage Rc is 40% or more and 50% or less (that is, the open rate Rr is 50% or more and 60% or less).
  • the open rate Rr is 50% or more and 60% or less.
  • the reflection axis reflectance Rs it is preferable that the coverage Rc is 20% or more. As a result, a high reflectance Rs of 85% or more can be obtained under the above oblique incidence condition.
  • a sufficient contrast CR can be obtained if the coverage Rc is 20% or more. The higher the coverage Rc, the higher the contrast CR obtained.
  • Tp ⁇ Rs ⁇ 2.7.
  • Tp ⁇ Rs an index representing the polarization splitting characteristics of the wire grid polarizing element 1 according to this embodiment
  • Tp ⁇ Rs [%] represents the product of transmission axis transmittance (Tp) and reflection axis reflectance (Rs) in percentage. This Tp ⁇ Rs is an index representing the polarization separation characteristics of the wire grid polarization element 1 .
  • Tp x Rs [%] (Tp [%]/100) x (Rs [%]/100) x 100
  • the transmission axis transmittance (Tp) is the transmittance of the second polarized light (P polarized light) having an electric field component parallel to the transmission axis (X direction) of the polarizing element 1.
  • the reflection axis reflectance (Rs) is the reflectance of the first polarized light (S polarized light) having an electric field component parallel to the reflection axis (Y direction) of the polarizer 1 .
  • the polarizing element 1 When the wire grid polarizing element 1 according to the present embodiment is used as a polarizing beam splitter to separate incident light into S-polarized light and P-polarized light (see FIGS. 15 to 17), the polarizing element 1 is used to separate the incident light from the light source. It is arranged at a predetermined angle (for example, 45°) with respect to the light. For example, when incident light from a light source is incident on the polarizing element 1 at an incident angle ⁇ of about 45°, the incident light is converted by the polarizing element 1 into first polarized light (S polarized light: reflected light) and second polarized light. polarized light (P-polarized light: transmitted light).
  • S polarized light first polarized light
  • P-polarized light transmitted light
  • S-polarized light is light having an electric field component in a direction parallel to the longitudinal direction of the ridges 22 of the grid structure 20 (reflection axis direction shown in FIG. 2: Y direction) in the incident light.
  • P-polarized light is light having an electric field component in a direction parallel to the width direction of the ridges 22 of the grid structure 20 (transmission axis direction shown in FIG. 2: X direction) in the incident light.
  • the S-polarized light in the reflection axis direction mainly becomes reflected light reflected by the reflective film 30 of the polarizing element 1 .
  • the reflectance [%] of S-polarized light at this time is the reflection axis reflectance (Rs).
  • the reflection axis reflectance (Rs) represents the ratio of S-polarized light reflected by the polarizing element 1 to the S-polarized light incident on the polarizing element 1 .
  • the reflection axis transmittance (Rp) represents the ratio of S-polarized light that passes through the polarizing element 1 to the S-polarized light incident on the polarizing element 1 .
  • the P-polarized light in the transmission axis direction mainly becomes transmitted light that passes through the transparent grid structure 20 and the substrate 10 of the polarizing element 1 .
  • the transmittance [%] of the P-polarized light at this time is the transmission axis transmittance (Tp).
  • the transmission axis transmittance (Tp) represents the ratio of P-polarized light that is transmitted through the polarizing element 1 to the P-polarized light incident on the polarizing element 1 .
  • the transmission axis reflectance (Ts) represents the ratio of the P-polarized light reflected by the polarizing element 1 to the P-polarized light incident on the polarizing element 1 .
  • a higher transmission axis transmittance Tp means that P-polarized light in the transmission axis direction can be efficiently transmitted.
  • the higher the reflection axis reflectance Rs the more efficiently the S-polarized light in the reflection axis direction can be reflected. Therefore, the higher the Tp ⁇ Rs value, which is the product of Tp and Rs, the higher the transmittance of P-polarized light (transmitted light) and the reflectivity of S-polarized light (reflected light), and the polarization separation characteristics as a polarizing beam splitter. be superior to
  • Tp ⁇ Rs Light with a wavelength in a predetermined range (eg, 430 to 680 nm) is incident on the polarizing element 1 according to the present embodiment from an oblique direction at a predetermined incident angle ⁇ (eg, 45°), and P-polarized light (transmitted light) Consider the case of separating into S-polarized light (reflected light). Under such oblique incidence conditions, Tp ⁇ Rs is preferably 70% or more from the viewpoint of good polarization splitting characteristics of the polarizing element 1 .
  • a predetermined range eg, 430 to 680 nm
  • Tp ⁇ Rs When Tp ⁇ Rs is less than 70%, the display device to which the polarizing element is applied has poor light utilization efficiency, insufficient brightness of the displayed image, and poor visibility. On the other hand, if Tp ⁇ Rs is 70% or more, it is possible to increase the efficiency of light utilization in the display device to which the polarizing element 1 is applied, ensure sufficient brightness of the displayed image, and improve visibility.
  • Tp ⁇ Rs is more preferably 72% or more, even more preferably 75% or more, and particularly preferably 80% or more. As a result, it is possible to further improve the utilization efficiency of light and the brightness and visibility of the displayed image as described above.
  • the height H of the ridges 22 of the grid structure 20 is preferably 160 nm or more, more preferably 180 nm or more, and particularly preferably 220 nm or more (see FIG. 24).
  • the transmittance if the height H of the ridges 22 is 160 nm or more, the transmission axis transmittance Tp of obliquely incident light is 80% or more, and a high transmittance is obtained. Furthermore, if H is 180 nm or more, Tp of 85% or more can be obtained, which is more preferable. In addition, if H is 220 nm or more, Tp of 87% or more can be obtained, which is particularly preferable.
  • Tp ⁇ Rs characteristics required for a polarizing beam splitter if the height H of the ridges 22 is 160 nm or more, an excellent Tp ⁇ Rs of 70% or more can be obtained. Furthermore, if H is 180 nm or more, Tp ⁇ Rs of 75% or more can be obtained, which is more preferable. In addition, if H is 220 nm or more, Tp ⁇ Rs of 77% or more can be obtained, which is particularly preferable.
  • the height H of the ridges 22 should be 100 nm or more. can get. Furthermore, if H is 180 nm or more, an excellent CR of 250 or more can be obtained, which is more preferable. In addition, if H is 220 nm or more, an excellent CR of 500 or more can be obtained, which is particularly preferred.
  • the height H of the ridges 22 is larger. .
  • the reason for this is considered as follows. That is, when the film formation incident angle ⁇ (see FIG. 5) is the same when the reflective film 30 is formed on the ridges 22 by sputtering, vapor deposition, or the like, the height H of the ridges 22 decreases as the height H increases. , the coverage Rc of the reflective film 30 increases. As the coverage Rc increases, the range of the ridges 22 covered by the reflective film 30 increases, making it difficult for P-polarized light to pass through the grid structure 20, and the transmittance Tp decreases. Therefore, under the condition that the film formation incident angle ⁇ is the same, it is preferable to decrease the coverage Rc and increase the transmittance Tp by increasing the height H of the ridges 22. .
  • the reflection film 30 covering the tips 22a of the ridges 22 of the grid structure 20 is The thickness Dt (tip thickness Dt of the reflective film 30: see FIG. 5) is preferably 5 nm or more, more preferably 15 nm or more (for example, see FIG. 25).
  • both the reflection axis reflectance Rs and the transmission axis transmittance Tp of obliquely incident light are 85% or more, and high transmittance is obtained. Furthermore, considering the Tp characteristics and the Tp ⁇ Rs characteristics required for a polarization beam splitter, Dt is more preferably 15 nm or more.
  • the thickness Ds of the reflective film 30 covering the side surfaces 22b of the ridges 22 of the grid structure 20 is preferably 10 nm or more and 30 nm or less. , 12.5 nm or more and 25 nm or less, and particularly preferably 15 nm or more and 25 nm or less (see FIG. 26, for example).
  • the transmittance if the side thickness Ds of the reflective film 30 is 10 nm or more and 30 nm or less, the transmission axis transmittance Tp of the obliquely incident light becomes 80% or more, and a high transmittance is obtained. . Furthermore, if Ds is 12.5 nm or more and 25 nm or less, Tp of 85% or more can be obtained, which is more preferable.
  • the reflectance if the side thickness Ds of the reflective film 30 is 10 nm or more, the reflection axis reflectance Rs of obliquely incident light is 80% or more, and a high reflectance is obtained. Furthermore, if Ds is 12.5 nm or more, Rs of 85% or more can be obtained, which is more preferable.
  • Tp ⁇ Rs characteristics required for a polarizing beam splitter if the side thickness Ds of the reflective film 30 is 12.5 nm or more and 30 nm or less, an excellent Tp ⁇ Rs of 70% or more can be obtained. be done. Furthermore, if Ds is 15 nm or more and 25 nm or less, Tp ⁇ Rs of 76% or more can be obtained, which is more preferable.
  • the side thickness Ds of the reflective film 30 should be 10 nm or more. A CR is obtained. Furthermore, if the Ds is 15 nm or more, a CR of 100 or more can be obtained, which is more preferable.
  • the reflective film 30 covering the protruding portion 22 is unevenly distributed on one side of the protruding portion 22 so that the shape is left-right asymmetrical in the width direction (X direction) of the protruding portion 22 .
  • the side thickness Ds and the coverage ratio Rc of the reflective film 30 are changed between one side surface 22b and the other side surface 22b of the ridge portion 22, so that the reflective film 30 is formed on the surface of the ridge portion 22. It may be unevenly distributed on one side surface 22b. That is, the reflective film 30 may cover one side surface 22b of the protruding portion 22 thickly and widely, and may cover the other side surface 22b thinly and narrowly.
  • the transmission axis transmittance Tp(+) of the incident light with the incident angle + ⁇ (+30° to +60°) to the polarizing element 1 and the incident angle is within 3% of the transmission axis transmittance Tp(-) of incident light at - ⁇ (-30° to -60°).
  • the incident angle being + ⁇ means that obliquely incident light is incident on the ridge 22 from a direction inclined to one side in the X direction (the width direction of the ridge 22).
  • the incident angle is ⁇ means that the obliquely incident light is incident on the convex portion 22 from a direction inclined to the other side of the X direction (see FIG. 29, for example).
  • the difference between Tp(+) and Tp(-) is preferably within 3%.
  • high transmission axis transmittance Tp, excellent Tp ⁇ Rs characteristics, and high contrast CR of transmitted light can be obtained.
  • the transmission axis transmittance Tp of obliquely incident light with incident angles ⁇ of +45° and ⁇ 45° is 85% or more. , a high transmittance is obtained.
  • the reflection axis reflectance Rs of the obliquely incident light with the incident angles ⁇ of +45° and ⁇ 45° is 85% or more, and the reflection is high. rate is obtained.
  • Tp ⁇ Rs characteristics required for a polarizing beam splitter (PBS) even when the reflective film 30 is unevenly distributed on one side, Tp ⁇ Rs for obliquely incident light with an incident angle ⁇ of 45° is 75%. As described above, excellent Tp ⁇ Rs characteristics are obtained.
  • an excellent contrast CR can be obtained even when the reflective film 30 is unevenly distributed on one side.
  • the thickness Ds of the thinner one should be 5 nm or more (its coverage Rc is preferably 22% or more), and it is more preferable that the thickness Ds of the thinner reflective film 30 is 10 nm or more (its coverage Rc is 33% or more).
  • the polarizing element 1 according to this embodiment can further include components other than the substrate 10, the grid structure 20, and the reflective film 30 described above.
  • the polarizing element 1 preferably further includes a protective film 40 formed to cover at least the surface of the reflective film 30 .
  • the protective film 40 more preferably covers the entire surface of the grid structure 20 . That is, it is more preferable that the protective film 40 is formed so as to cover all of the surface of the base portion 21 and the side surfaces 22b of the ridges 22 of the grid structure 20 and the surface of the reflective film 30 .
  • the protective film 40 further includes a water-repellent coating or an oil-repellent coating.
  • the antifouling property and waterproof property of the polarizing element 1 can be further enhanced.
  • the material constituting the protective film 40 is not particularly limited as long as it can improve the scratch resistance, antifouling property, and waterproofness of the polarizing element 1 .
  • Examples of the material forming the protective film 40 include films made of dielectric materials, and more specifically inorganic oxides, silane-based water-repellent materials, and the like.
  • examples of inorganic oxides include Si oxides and Hf oxides.
  • the silane-based water-repellent material may contain a fluorine-containing silane compound such as perfluorodecyltriethoxysilane (FDTS), or may contain a non-fluorine-containing silane compound such as octadecyltrichlorosilane (OTS). There may be.
  • an inorganic oxide in the protective film 40, the scratch resistance of the polarizing element can be further enhanced, and by including a fluorine-based water-repellent material, the antifouling and waterproofing properties of the polarizing element can be enhanced. can be done.
  • the protective film 40 may be formed so as to cover at least the surface of the reflective film 30, but as shown in FIG. is more preferred.
  • the protective film 40 may cover the end surface of the grid structure 20 (the end surface of the base portion 21) as shown in the upper diagram of FIG. 2, the protective film 40 does not have to cover the end surface of the grid structure 20 (the end surface of the base portion 21).
  • the protective film 40 may be formed so as to cover the entire polarizing element 1 including the surface of the substrate 10 in addition to the surfaces of the grid structure 20 and the reflective film 30. can.
  • the polarizing element 1 is preferably provided with a heat dissipation member 50 so as to surround the substrate 10 as shown in FIG.
  • the heat radiating member 50 can more efficiently radiate the heat transferred from the substrate 10 .
  • the heat dissipation member 50 is not particularly limited as long as it is a member having a high heat dissipation effect.
  • the heat dissipation member 50 may be, for example, a radiator, heat sink, heat spreader, die pad, heat pipe, metal cover, housing, or the like.
  • FIG. 10A is an SEM image of the grid structure 20 before being coated with the reflective film 30, viewed obliquely.
  • 10B is an SEM image showing a cross section of the ridges 22 of the grid structure 20 before being covered with the reflective film 30.
  • FIG. 10C is an SEM image showing a cross section of the ridges 22 of the grid structure 20 covered with the reflective film 30.
  • the grid structure 20 has a base portion 21 provided along the surface of the substrate 10 and a ridge portion 22 projecting from the base portion 21 .
  • the plurality of ridges 22 are arranged at substantially equal pitches P.
  • Each ridge portion 22 has a tapered shape in which the width becomes narrower as the distance from the base portion 21 increases.
  • the width W T of the top portion of the protruding portion 22 is narrower than the width W B of the bottom portion of the protruding portion 22 .
  • the pitch P is sufficiently larger than the width W B of the bottom portion of the protruding portion 22 .
  • the height H of the ridges 22 is greater than the pitch P. In the example of FIG.
  • a reflective film 30 is formed so as to cover the tip 22a and both side surfaces 22b of the protruding portion 22. As shown in FIG. The outer surface of the reflective film 30 is rounded and curved, and bulges in the width direction of the ridge 22 .
  • FIG. 11A to 11D are process diagrams showing a method for manufacturing the wire grid polarizing element 1 according to this embodiment.
  • the polarizing element 1 is a hybrid wire grid polarizing element 1 made of an inorganic material (substrate 10) and an organic material (grid structure 20). A method for manufacturing the hybrid wire grid polarizing element 1 will be described below.
  • the method for manufacturing the wire grid polarizing element 1 includes a grid structure material forming step (S10), a nanoimprinting step (S12), a grid structure forming step (S14), and a reflective film forming step (S16).
  • Grid structure material forming step (S10) First, in S10, a grid structure material 23 made of a transparent organic material (eg, ultraviolet curable resin or thermosetting resin) is laminated by coating or the like on a substrate 10 made of a transparent inorganic material (eg, glass). do.
  • a transparent organic material eg, ultraviolet curable resin or thermosetting resin
  • the inorganic material for the substrate 10 various materials described above can be used.
  • the organic material of the grid structure 20 various materials described above can be used.
  • the film thickness of the grid structure material 23 may be appropriately adjusted according to the dimensions of the base portion 21 and the ridges 22 of the grid structure 20 formed by nanoimprinting in S20.
  • the grid structure 20 is a fine concave-convex structure in which a base portion 21 provided on the substrate 10 and a plurality of ridges 22 protruding from the base portion 21 are integrally formed.
  • the fine relief structure is a structure having fine protrusions and recesses on the order of several nanometers to several tens of nanometers, for example.
  • the fine unevenness of the master 60 is transferred to the surface of the grid structure material 23 (S12).
  • an uneven pattern composed of the base portion 21 , the ridge portion 22 and the recess portions 24 is formed on the grid structure material 23 .
  • the grid structure material 23 to which the uneven pattern has been transferred is cured by irradiating the grid structure material 23 with energy rays along with the transfer of the uneven pattern. is formed (S14).
  • the ultraviolet curable resin to which the concave-convex pattern has been transferred is irradiated with ultraviolet rays to the grid structure material 23 using the ultraviolet irradiation device 66. may be cured.
  • a heating device 68 such as a heater is used to heat the grid structure material 23, thereby curing the thermosetting resin onto which the uneven pattern has been transferred.
  • the ridges 22 of the grid structure 20 having a tapered shape whose width becomes narrower with distance from the base portion 21 are formed.
  • 11 has a trapezoidal (tapered) shape, it may have various other tapered shapes as shown in FIG.
  • the master 60 in the nanoimprinting step S12, since the ridges 22 having a tapered shape are imprinted, the master 60 can be easily peeled off from the grid structure material 23. Excellent. Also, the protruding streaks 22 of the grid structure 20 can be accurately formed into a desired shape without losing their shape.
  • Reflective film forming step (S16) the reflective film 30 that partially covers the ridges 22 of the grid structure 20 is formed using a metal material such as Al or Ag.
  • the reflective film 30 is an example of a functional film that imparts a predetermined function to the polarizing element 1 .
  • the reflective film 30 is a metal thin film (grid of fine metal wires) for reflecting incident light incident on the grid structure 20 of the polarizing element 1 .
  • the reflective film 30 is formed as follows. That is, the reflective film 30 covers the top end 22a and at least one of the side surfaces 22b of the ridge portion 22 and does not cover the lower side surfaces 22b of the ridge portion 22 and the base portion 21. A reflective film 30 is formed. Further, the reflective film 30 is formed so that the surface of the reflective film 30 covering the ridges 22 is rounded and bulges in the width direction of the ridges 22 . In addition, the maximum width W MAX (grid maximum width W MAX ) of the reflective film 30 covering the ridges 22 should be equal to or greater than the width WB of the bottom of the ridges (grid bottom width W B ). , forming the reflective film 30 .
  • a method for forming such a reflective film 30 for example, as shown in FIG. 5, sputtering or vapor deposition can be used.
  • a metal material is alternately sputtered or vapor-deposited from oblique directions with respect to the ridges 22 of the grid structure 20 to form the reflective film 30 .
  • the reflective film 30 having a desired shape can be suitably formed so as to cover the apex of the ridge 22 in a round shape.
  • the ridges 22 of the grid structure 20 and the reflective film 30 have the above-described special tree shape.
  • the protective film 40 is preferably formed so as to cover the entire surfaces of the grid structure 20 and the reflective film 30 .
  • a material for the protective film 40 various materials described above can be used.
  • the method for manufacturing the polarizing element 1 according to this embodiment has been described above. Through the above-described steps, the polarizing element 1 having excellent polarizing properties and heat dissipation properties can be manufactured without increasing the manufacturing cost of the polarizing element 1 or making the manufacturing process complicated.
  • a metal film 80 is formed on the substrate 10 in order to produce a convex grid shape (S20).
  • a reflective film made of a material that reflects light in the used band for example, a metal film 80 of aluminum or the like is formed on the substrate 10 made of an inorganic material such as glass by sputtering or vapor deposition.
  • the resist mask 70 is patterned on the metal film 80 (S22). After that, by etching the metal film 80 using a vacuum dry etching device or the like, a convex shape made of the metal film 80 is formed (S24). For example, at this time, if the etching selectivity between the resist mask 70 and the metal film 80 cannot be obtained, an oxide film such as SiO 2 is further formed on the metal film 80 by sputtering or the like, and then a photolithographic technique is used to form a film thereon. A resist mask 70 is formed.
  • a protective film 40 made of a SiO2 film or the like is formed by CVD or the like, and a water-repellent/oil-repellent coating process is performed as necessary (S28). ).
  • the manufacturing method of the polarizing element 1 according to the present embodiment forms the grid structure 20 using an imprinting technique such as nanoimprinting. ), manufacturing costs, manufacturing time, and equipment investment can be greatly reduced.
  • nanoimprinting is applied to the grid structure material 23 (S12 in FIG. 11), but the nanoimprinting conditions are not particularly limited.
  • a replica master or an original master
  • the grid structure material 23 is subjected to UV irradiation, heating, or the like to form an uneven pattern. Curing the grid structure material 23 in the imprinted state. After that, the master 60 is released from the cured grid structure material 23 . Thereby, the grid structure 20 in which the base portion 21 and the ridge portion 22 are formed can be molded by transfer.
  • the master 60 used in the nanoimprinting step S12 (FIG. 11) in the method for manufacturing the polarizing element 1 according to this embodiment can be produced by photolithography, for example, as shown in FIG. 13A and 13B are process diagrams showing a method of manufacturing the master 60 according to this embodiment.
  • a resist mask 70 is formed on the master metal film 62 (S32).
  • the master disk metal film 62 is etched using the resist mask 70, and grooves 65 corresponding to the ridges 22 of the grid structure 20 are formed in the etched master disk metal film 62 (S34). .
  • the master 60 is obtained by peeling the resist mask 70 from the master metal film 62 (S36).
  • the master 60 has a fine relief structure including a plurality of projections 63 and grooves 65 formed on a master substrate 61 .
  • the fine ruggedness structure on the surface of the master 60 has an inverted shape of the fine ruggedness structure on the surface of the grid structure 20 of the polarizing element 1 .
  • the grooves 65 of the master plate 60 have a reversed shape of the ridges 22 of the grid structure 20, and the ridges 63 of the master 60 have a reversed shape of the recesses 24 between the ridges 22, 22 of the grid structure 20.
  • the manufacturing method according to the present embodiment may include a step (S38) of forming a release film coat 64 on the surface of the fine uneven structure of the master 60, if necessary.
  • a step (S38) of forming a release film coat 64 on the surface of the fine uneven structure of the master 60 if necessary.
  • the projection display device includes the wire grid polarization element 1 according to this embodiment described above.
  • the polarizing element 1 By including the polarizing element 1 in the projection display apparatus according to the present embodiment, it is possible to realize excellent polarization characteristics, heat resistance, heat dissipation, and the like of the polarizing element 1 .
  • a projection display device projects light toward an object and irradiates the projected light (projection light) onto a display surface (projection surface) of the object to create a virtual image such as an image or video.
  • a device that displays Types of projection display devices include, for example, a head-up display device (HUD), a projector device, and the like.
  • FIG. 14 is a schematic diagram showing an example of the head-up display device 100 according to this embodiment.
  • the head-up display device 100 includes the wire grid polarization element 1 according to this embodiment described above.
  • the polarizing element 1 By including the polarizing element 1 in the head-up display device 100, it is possible to improve polarization characteristics, heat resistance, and heat dissipation.
  • a head-up display incorporating a conventional polarizing element is inferior in heat dissipation, so it is considered that heat resistance is not sufficient in consideration of long-term use and future high brightness and enlarged display.
  • the head-up display device 100 includes a light source 2, a display element 3 that emits a display image, a reflector 4 that reflects the display image onto a display surface 5, and a cover provided at an opening of a housing 7. a part 6;
  • the arrangement of the polarizing element 1 is not particularly limited.
  • the polarizing element 1 can be placed between the display element 3 and the reflector 4, as shown in FIG.
  • the head-up display device 100 may be a vehicle head-up display device provided in a vehicle.
  • a vehicle head-up display device displays an image on a transflective plate (corresponding to a “display surface 5”) such as a windshield of a vehicle or a combiner.
  • a vehicle head-up display device is, for example, a video display device that is arranged on a dashboard of a vehicle, projects video light onto a windshield (display surface 5), and displays driving information as a virtual image.
  • the head-up display device 100 is configured to emit a display image from below toward the windshield surface (display surface 5). Therefore, the sunlight may enter the display element 3 in a direction opposite to the emission direction of the display image.
  • the head-up display device 100 according to this embodiment is provided with a reflector 4 for reflecting and enlarging a display image for the purpose of miniaturization and enlargement of the display image.
  • sunlight incident on the reflector from the outside is condensed in the vicinity of the display element, and the heat may cause deterioration or failure of the display element.
  • the hybrid polarizing element 1 having excellent heat dissipation and heat resistance is provided for the purpose of preventing sunlight from entering the display element 3. It is This polarizing element 1 can stably exhibit a polarizing function even at a high temperature of about 200° C., for example. Therefore, for example, even in a high-temperature environment such as inside a car in summer, the sunlight entering the reflector 4 from the outside can be blocked by the polarizing element 1 and prevented from reaching the display element 3. 3 deterioration and failure can be suppressed.
  • components of the head-up display device 100 shown in FIG. 14 are examples of basic components, and the components of the projection display device are not limited to the example of FIG. Other components can be appropriately provided according to performance and the like.
  • the polarizing element 1 allows the display image emitted from the display element 3 to pass therethrough while directing sunlight to the display element 3. Injection can be suppressed. Therefore, the heat resistance and durability of the head-up display device 100 can be further enhanced.
  • the arrangement of the wire grid polarization element in the projection display device is not limited to the example of the arrangement of the polarization element 1 in the head-up display device 100 shown in FIG. It can be selected and changed as appropriate.
  • the polarizing element 1 can be placed between the display element 3 and the light source 2 .
  • the polarizing element 1 can be incorporated into the reflector 4 .
  • a heat dissipation member 50 may be provided around the polarizing element 1 installed in the head-up display device 100 .
  • the heat dissipation member 50 can further improve the heat dissipation of the polarizing element 1, so that the polarization characteristics and heat resistance of the polarizing element 1 can be further improved.
  • FIG. 15 to 17 a projection display apparatus using the reflective wire grid polarization element 1 according to this embodiment as the polarization beam splitter 230 will be described with reference to FIGS. 15 to 17.
  • FIG. 15 to 17 matters common to three specific examples of the projection display apparatuses 200A, 200B, and 200C (hereinafter collectively referred to as the "projection display apparatus 200") shown in FIGS. explain. After that, each specific example shown in FIGS. 15 to 17 will be individually described.
  • the projection display device 200 includes a light source 210, a PS converter 220, a polarizing beam splitter 230, a reflective liquid crystal display element 240, and a lens 250.
  • a retardation compensator (not shown) may be installed between the polarizing beam splitter 230 and the reflective liquid crystal display element 240 .
  • the light source 210 may be a point light source having one light emitting portion, or may be a light source having a plurality of light emitting portions such as LEDs. Also, the light emitted from the light source 210 may be parallel light or diffuse light. Therefore, the light from the light source 210 is incident on the polarizing beam splitter 230 (reflective wire grid polarizer) at an incident angle ⁇ within a predetermined range (for example, a range of 45° ⁇ 15°) centered on 45°. may be incident.
  • a predetermined range for example, a range of 45° ⁇ 15°
  • the PS converter 220 is a polarization conversion element for converting light from the light source 210 into specific polarized light (for example, P polarized light or S polarized light).
  • the PS converter 220 may convert the light from the light source 210 into P-polarized light or S-polarized light.
  • the polarizing beam splitter 230 is composed of a reflective wire grid polarizing plate.
  • a reflective wire grid polarizer is an example of the wire grid polarizer 1 according to this embodiment.
  • the polarizing beam splitter 230 is arranged so that the light from the light source 210 is incident at an incident angle ⁇ within a predetermined range including 45°.
  • the incident angle ⁇ in this predetermined range is, for example, the above-mentioned 45° ⁇ 15°, that is, 30° or more and 60° or less.
  • the polarizing beam splitter 230 is arranged such that the incident light from the light source 210 is incident on the polarizing beam splitter 230 mainly at an incident angle ⁇ of 45°. is arranged at an angle of 45° to the Further, the polarizing beam splitter 230 is attached to the reflective liquid crystal display element 240 so that the incident light from the reflective liquid crystal display element 240 is incident on the polarizing beam splitter 230 mainly at an incident angle ⁇ of 45°. It is arranged with an inclination of 45°.
  • the polarizing beam splitter 230 splits incident light into a first polarized light (S polarized light) and a second polarized light (P polarized light).
  • the polarizing beam splitter 230 may separate the S-polarized light from the P-polarized light by reflecting the first polarized light (S-polarized light) and transmitting the second polarized light (P-polarized light) of the incident light.
  • the polarizing beam splitter 230 separates the S-polarized light from the P-polarized light by reflecting the second polarized light (P-polarized light) of the incident light and transmitting the first polarized light (S-polarized light).
  • the surface of the polarizing beam splitter 230 receives light including the polarized light to be reflected.
  • a polarizing beam splitter 230 is positioned to be incident. For example, as shown in FIG. 15, when the polarization beam splitter 230 reflects the S-polarized light incident from the PS converter 220, the surface of the polarization beam splitter 230 may be directed toward the PS converter 220 side from which the S-polarized light is emitted. .
  • FIG. 15 shows that the uneven surface on the side of the polarizing element 1 on which the grid structure 20 is formed
  • the surface of the polarizing beam splitter 230 is a reflective liquid crystal display element emitting S-polarized light. You should turn to the 240 side
  • the reflective liquid crystal display element 240 is a display element that reflects incident light and emits light representing a display image. As shown in FIGS. 15 and 17, the reflective liquid crystal display element 240 is arranged so that the first polarized light (S-polarized light) reflected by the polarization beam splitter 230 is incident on the surface of the reflective liquid crystal display element 240 . may Alternatively, as shown in FIG. 16, the reflective liquid crystal display element 240 is arranged so that the second polarized light (P-polarized light) transmitted through the polarization beam splitter 230 is incident on the surface of the reflective liquid crystal display element 240. good too.
  • the reflective liquid crystal display element 240 reflects and modulates the incident first polarized light (S polarized light) to produce a second polarized light (P polarized light) representing a display image. is emitted.
  • the present invention is not limited to such an example, and as shown in FIG. 16, the reflective liquid crystal display element 240 reflects and modulates the incident second polarized light (P polarized light) to convert the incident second polarized light (P polarized light) into the first polarized light representing the display image. (S-polarized light) may be emitted.
  • the lens 250 magnifies the light representing the display image emitted from the reflective liquid crystal display element 240 and outputs it to the outside.
  • a lens 250 is arranged so that light representing a display image emitted from the reflective liquid crystal display element 240 is incident through the polarizing beam splitter 230 .
  • the second polarized light (P polarized light) reflected and modulated by the reflective liquid crystal display element 240 is transmitted through the polarized beam splitter 230 and is incident on the lens 250.
  • the lens 250 may be arranged.
  • the first polarized light (S-polarized light) reflected and modulated by the reflective liquid crystal display element 240 is reflected by the polarization beam splitter 230 and is incident on the lens 250. may be placed.
  • the wire grid polarization element 1 according to this embodiment described above is used as the polarization beam splitter 230 . Therefore, the polarizing beam splitter 230 provides reflectivity for S-polarized light, transmissiveness for P-polarized light, and Tp ⁇ It has an excellent Rs characteristic and is excellent in the characteristic of separating obliquely incident light into P-polarized light and S-polarized light.
  • the projection display apparatus 200A includes a light source 210, a PS converter 220, a polarizing beam splitter 230, a reflective liquid crystal display element 240, and a lens 250. Prepare.
  • the light emitted from the light source 210 is unpolarized, and the light contains the P-polarized component and the S-polarized component in equal proportions. Therefore, if only one polarized light is selected and extracted by the polarizing beam splitter 230 composed of the polarizing element 1, the amount of light is reduced to about half. Therefore, the PS converter 220 converts the light emitted from the light source 210 into either the first polarized light (S polarized light) or the second polarized light (P polarized light). As a result, the reduction in the amount of polarized light extracted by the polarizing beam splitter 230 can be suppressed, and the light utilization efficiency can be improved. For example, the PS converter 220 shown in FIG. 15 converts the light from the light source 210 into the first polarized light (S polarized light).
  • the light converted into S-polarized light by the PS converter 220 is incident on the polarizing beam splitter 230 arranged at an oblique angle of about 45°.
  • the polarizing beam splitter 230 reflects the first polarized light (S polarized light) and emits it toward the reflective liquid crystal display element 240 at an emission angle of 45°.
  • the reflective liquid crystal display element 240 modulates and reflects the first polarized light (S polarized light) to generate a second polarized light (P polarized light) representing a display image, and converts the second polarized light (P polarized light) into polarized light. It is emitted toward the beam splitter 230 .
  • the second polarized light (P polarized light) is transmitted through the polarizing beam splitter 230, magnified by the lens 250, and projected onto a display surface (not shown) to display a display image.
  • the projection display apparatus 200A having the above configuration includes, as the polarization beam splitter 230, a reflective wire grid polarizing plate composed of the wire grid polarizing element 1 according to this embodiment.
  • the polarization separation characteristics of the polarization beam splitter 230 can be improved with respect to incident light from an oblique direction and incident light with a wide incident angle ⁇ , and heat dissipation and heat resistance of the polarization beam splitter 230 and the projection display device 200A can be improved. can do.
  • a projection display device (not shown) equipped with a conventional polarizing element as a polarizing beam splitter is inferior in heat dissipation of the polarizing element. For this reason, it is considered that the heat resistance is not sufficient from the viewpoint of long-term use, high brightness, and magnified display.
  • the incident angle ⁇ of the light incident on the polarization beam splitter is not limited to 45°, but can be any angle within a predetermined range centered on 45° (for example, about 45° ⁇ 15°).
  • the polarizing beam splitter converts the obliquely incident light into S-polarized light and P-polarized light regardless of the incident angle ⁇ .
  • a performance capable of suitably separating polarized light is required.
  • the polarization splitting characteristics for the obliquely incident light are poor, so the light utilization efficiency deteriorates, and the image quality of the displayed image is adversely affected by uneven luminance.
  • the polarizing beam splitter 230 of the projection display apparatus 200A according to the first specific example of the present embodiment is excellent in polarization splitting characteristics for obliquely incident light with a large and wide range of incident angles ⁇ as described above. Therefore, in the projection display apparatus 200A, it is possible to improve the light utilization efficiency, reduce luminance unevenness, and improve the image quality of the displayed image.
  • the projection display device is not limited to the example of the projection display device 200A shown in FIG. 15.
  • the projection display device 200B shown in FIG. The components and arrangement of the projection display device can be changed as appropriate.
  • the projection display apparatus 200B includes a light source 210, a PS converter 220, a polarizing beam splitter 230, a reflective liquid crystal display element 240, and a lens 250. Prepare.
  • the PS converter 220 converts the light from the light source 210 into second polarized light (P polarized light).
  • the light converted into P-polarized light by the PS converter 220 is transmitted through the polarizing beam splitter 230 arranged at an angle of about 45° and is incident on the reflective liquid crystal display element 240 .
  • the reflective liquid crystal display element 240 modulates and reflects the second polarized light (P polarized light) to generate a first polarized light (S polarized light) representing a display image, and converts the first polarized light (S polarized light) into polarized light. It is emitted toward the beam splitter 230 .
  • Polarizing beam splitter 230 reflects the first polarized light (S-polarized light) and emits it toward lens 25 at an exit angle of 45°.
  • the first polarized light (S polarized light) is magnified by the lens 250 and projected onto a display surface (not shown) to display a display image.
  • the projection display device 200B having the above configuration is excellent in polarization separation characteristics with respect to obliquely incident light, can improve the efficiency of light utilization, and can reduce luminance unevenness. can be reduced to improve the quality of the displayed image.
  • a projection display apparatus 200C includes a light source 210, a polarizing beam splitter 230, a reflective liquid crystal display element 240, a lens 250, and a light absorber. 260, but does not include the PS converter 220 described above.
  • the non-polarized light emitted from the light source 210 is directly incident on the polarizing beam splitter 230 arranged at an oblique angle of about 45°.
  • the polarizing beam splitter 230 reflects the first polarized (S-polarized) component of the unpolarized light and emits it toward the reflective liquid crystal display element 240 at an emission angle of 45°.
  • the second polarized (P-polarized) component is transmitted through the polarization beam splitter 230 and incident on the light absorber 260 . Since most of the components of this second polarized light (P polarized light) are absorbed by the light absorber 260, unnecessary second polarized light (P polarized light) is incident on other optical systems in the projection display apparatus 200C. It is possible to suppress
  • the reflective liquid crystal display element 240 modulates and reflects the component of the first polarized light (S polarized light) incident from the polarizing beam splitter 230 to generate the second polarized light (P polarized light) representing the display image.
  • a second polarized light (P polarized light) is emitted toward the polarizing beam splitter 230 .
  • the second polarized light (P polarized light) is transmitted through the polarizing beam splitter 230, magnified by the lens 250, and projected onto a display surface (not shown) to display a display image.
  • the light absorber 260 absorbs the second polarized (P-polarized) component of the non-polarized light emitted from the light source 210. and is not used to display the display image. As a result, the amount of light in the displayed image is reduced by about half.
  • the cost and installation space required for the PS converter 220 can be reduced, and the number of parts of the projection display device 200C can be reduced, there is an advantage that the cost of the projection display device 200C can be reduced and the size of the projection display device 200C can be reduced. .
  • FIGS. 2 A specific example of the projection display apparatus 200 using the reflective wire grid polarization element 1 according to the present embodiment as the polarization beam splitter 230 has been described above. Note that the projection display device is not limited to the specific example of the projection display device 200 shown in FIGS. Other components may be provided as appropriate.
  • a vehicle (not shown) according to this embodiment includes a projection display device having the wire grid polarization element 1 according to this embodiment described above.
  • the vehicle can be equipped with a projection display device, it can be any vehicle such as a passenger car, a light car, a bus, a truck, a racing car, a construction vehicle, or any other large vehicle.
  • various vehicles such as motorcycles, trains, linear motor cars, and rides for attractions may be used.
  • the vehicle according to the present embodiment can project and display a display image on a display surface provided in the vehicle (for example, the display surface 5 shown in FIG. 14) by the polarizing element 1 and the projection display device.
  • the display surface is preferably a transflective plate such as a vehicle windshield, side glass, rear glass, or combiner.
  • the display surface is not limited to this example, and may be the surface of various parts, members, in-vehicle equipment, etc. provided in the vehicle as long as it is the surface of an object on which a display image can be projected.
  • the projection display device provided in the vehicle according to the present embodiment is, for example, the head-up display device 100 shown in FIG. 14, or the projection display device 200 having the polarizing beam splitter 130 shown in FIGS. .
  • the projection display device is not limited to such an example, and any device capable of projecting or displaying an image can be used as a projector mounted on a vehicle, a car navigation device, a terminal device having an image display function, or any other type of image display device. It may be a device.
  • the above-described hybrid wire grid polarizing element 1 is provided in the head-up display device 100 . Since this polarizing element 1 has a hybrid structure with high thermal conductivity, it is excellent in heat dissipation and heat resistance. Therefore, the polarizing element 1 can block the sunlight entering the head-up display device 100 from the outside and prevent it from reaching the display element 3 , so that the display element 3 can be prevented from malfunctioning or being damaged. Furthermore, since the polarizing element 1 is excellent in heat dissipation and heat resistance, damage to the polarizing element 1 itself can be prevented.
  • the polarizing element 1 used as the polarizing beam splitter 230 can block sunlight from the outside, so that the reflective liquid crystal display element 240 and other parts can be prevented from malfunctioning or being damaged. Furthermore, damage to the polarizing element 1 itself, which is excellent in heat dissipation and heat resistance, can be prevented.
  • the projection display device provided in the vehicle according to the present embodiment, excellent polarization characteristics (sunlight blocking performance, polarization separation characteristics, etc.) can be obtained by the polarizing element 1, and the projection display device has excellent characteristics. Heat resistance and durability can also be achieved.
  • the vehicle is not particularly limited as long as it is equipped with the above-described projection display device and polarizing element, and other conditions can be appropriately set and changed according to the performance required of the vehicle.
  • Imprint molding for an uncured resin layer composed of an uncured resin composition is widely used as a technique for manufacturing resin optical members having a fine concavo-convex structure.
  • imprint molding the fine uneven shape of the master is pressed against the uncured resin layer formed on the substrate, the uncured resin layer is cured in this state, and the fine uneven shape is formed on the substrate by peeling off the master. can do.
  • the master In imprint molding, if the thickness (layer thickness) of the uncured resin layer when the master is pressed against it is uneven, the master is peeled off from the cured resin layer (hereinafter referred to as "cured resin layer").
  • the peeling force applied at the time becomes non-uniform in the plane of the cured resin layer.
  • part of the cured resin layer may be peeled off from the substrate.
  • the cured resin layer peeled off from the substrate remains on the master, making it impossible to use the master repeatedly.
  • the fine unevenness transferred to the cured resin layer may be deformed, and the optical characteristics resulting from the fine unevenness structure may deteriorate.
  • the viscosity of the uncured resin composition Techniques for lowering have been developed (for example, described in Japanese Patent Application Laid-Open No. 2018-125559 and Japanese Patent No. 4824068).
  • an object of the present embodiment is to provide a photocurable acrylic resin for imprints in which the uncured resin composition has a low viscosity and the cured resin composition has excellent heat resistance.
  • the photocurable acrylic resin for imprints according to this embodiment is an uncured resin composition.
  • the photocurable acrylic resin for imprints according to this embodiment is composed of a photopolymerization component and a photopolymerization initiator.
  • the photopolymerizable component according to this embodiment is one type of the acrylic polymerizable compound described above.
  • the photopolymerization initiator according to the present embodiment is a substance for polymerizing a photopolymerization component, and corresponds to the photocuring initiator described above.
  • the photopolymerizable component according to the present embodiment contains at least resin (A) and resin (B).
  • the photopolymerizable component according to the present embodiment may contain either one or both of the resin (C) and the resin (D).
  • the photopolymerizable component according to the present embodiment may be composed only of the resin (A) and the resin (B), or may be composed only of the resin (A), the resin (B) and the resin (C). Alternatively, it may be composed only of resin (A), resin (B) and resin (D), or composed only of resin (A), resin (B), resin (C) and resin (D). good too.
  • Resins (A) to (D) are described below.
  • Resin (A) is (octahydro-4,7-methano-1H-indenediyl)bis(methylene)diacrylate. That is, resin (A) is a bifunctional acrylate monomer represented by the following chemical formula (II).
  • resin (A) for example, "KAYARAD R-684" available from Nippon Kayaku Co., Ltd. can be used. /
  • the resin (A) has a viscosity of 100 mPa ⁇ s or more and 250 mPa ⁇ s or less at 25°C.
  • the viscosity is the viscosity of the liquid using a rotational viscometer and vibration viscometer conforming to JIS Z8803. Viscosity is measured, for example, in a Brookfield viscometer manufactured by Eiko Seiki Co., Ltd. using a cone plate.
  • the resin (B) is a bifunctional acrylate monomer having a viscosity of 10 mPa ⁇ s or less at 25°C.
  • Resin (B) is preferably a bifunctional acrylate monomer having a viscosity of 3 mPa ⁇ s or more at 25°C.
  • Resin (B) is a structurally flexible bifunctional acrylate monomer.
  • being structurally flexible means having a structure that allows easy molecular movement, easy bending, and easy expansion and contraction when heated.
  • the resin (B) is a bifunctional acrylate monomer in which an acryloyl group is bonded to both ends of a linear structure composed of a hydrocarbon group, or a linear structure having an ether bond and an acryloyl group to each end. It may also be a bifunctional acrylate monomer.
  • the hydrocarbon group is, for example, one or more selected from the group consisting of an alkyl group, an alkylene group, and an alkynyl group.
  • the bifunctional acrylate monomer in which an acryloyl group is bonded to each end of a straight chain structure composed of a hydrocarbon group may be, for example, a bifunctional acrylate monomer represented by the following chemical formula (I).
  • n is preferably an integer of 1 or more and 9 or less, more preferably 6 or more and 9 or less, still more preferably 6 or 9.
  • n 6 in the above chemical formula (I), that is, when resin (B) is 1,6-hexanediol diacrylate, resin (B) has a viscosity of 6.5 mPa s at 25°C. .
  • n 9 in the above chemical formula (I), that is, when the resin (B) is 1,9-nonanediol diacrylate, the resin (B) has a viscosity of 8 mPa ⁇ s at 25°C. .
  • a bifunctional acrylate monomer in which an acryloyl group is bonded to each end of a linear structure having an ether bond may be, for example, dipropylene glycol diacrylate (DPGDA).
  • DPGDA dipropylene glycol diacrylate
  • the resin (C) is preferably an acrylate monomer having a viscosity of 10 mPa ⁇ s or less at 25°C.
  • Resin (C) is preferably an acrylate monomer having a viscosity of 1 mPa ⁇ s or more at 25°C.
  • the resin (C) is preferably a structurally rigid acrylate monomer.
  • being structurally rigid means having a structure in which molecular movement is difficult, bending is difficult, and expansion and contraction is difficult when heated.
  • the resin (C) is, for example, an acrylate monomer having one or both of a cyclic structure consisting of a single bond and a cyclic structure consisting of a single bond and multiple bonds (e.g., benzene ring). may Although the number of acryloyl groups in resin (C) is not particularly limited, resin (C) is, for example, a monofunctional acrylate monomer.
  • the resin (C) may be, for example, isobornyl acrylate.
  • the resin (C) When the resin (C) is isobornyl acrylate, the resin (C) has a viscosity of 9.5 mPa ⁇ s at 25°C.
  • the resin (D) is preferably a trifunctional or higher acrylate monomer.
  • Resin (D) is preferably a hexafunctional or less acrylate monomer.
  • the resin (D) is preferably a tri- or more and hexa- or less acrylate monomer.
  • Resin (D) may be, for example, one or more selected from the group consisting of trimethylolpropane triacrylate (TMPTA), dipentaerythritol hexaacrylate (DPHA), and polyfunctional polyester acrylates.
  • TMPTA trimethylolpropane triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • polyfunctional polyester acrylate for example, "M-9050" manufactured by Toagosei Co., Ltd. can be used.
  • the resin (D) When the resin (D) is trimethylolpropane triacrylate (TMPTA), the resin (D) has a viscosity of 70 mPa ⁇ s or more and 80 mPa ⁇ s or less at 25°C. When the resin (D) is dipentaerythritol hexaacrylate (DPHA), the resin (D) has a viscosity of 5000 mPa ⁇ s or more and 10000 mPa ⁇ s or less. When the resin (D) is "M-9050", the resin (D) has a viscosity of 6000 mPa ⁇ s or more and 14000 mPa ⁇ s or less.
  • TMPTA trimethylolpropane triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • M-9050 When the resin (D) is "M-9050", the resin (D) has a viscosity of 6000 mPa ⁇ s or more and 14000
  • the content of the resin (A) is 20% by mass or more and 40% by mass or less with respect to the entire photopolymerization component.
  • the total content of the resin (A) and the resin (B) is preferably 50% by mass or more, more preferably 60% by mass or more, relative to the entire photopolymerizable component.
  • the total content of the resin (A) and the resin (B) is 70% by mass or less with respect to the entire photopolymerization component.
  • the total content of the resin (A) and the resin (B) is preferably 50% by mass or more and 70% by mass or less, more preferably 60% by mass or more and 70% by mass or less with respect to the entire photopolymerization component. is.
  • the total content of the resin (B) and the resin (C) with respect to the entire photopolymerization component is preferably 40% by mass or more, more preferably 50% by mass or more, and 59% by mass or more. It is even more preferable to have The total content of the resin (B) and the resin (C) with respect to the entire photopolymerizable component is preferably 70% by mass or less.
  • the total content of the resin (B) and the resin (C) with respect to the entire photopolymerization component may be 40% by mass or more and 70% by mass or less, preferably 50% by mass or more and 70% by mass or less. Yes, more preferably 59% by mass or more and 70% by mass or less.
  • the content of the resin (D) is preferably more than 0% by mass, more preferably more than 1% by mass, with respect to the entire photopolymerization component.
  • the content of the resin (D) is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the entire photopolymerization component.
  • the content of the resin (D) with respect to the entire photopolymerization component may be more than 0% by mass and 20% by mass or less, preferably more than 1% by mass and 20% by mass or less, more preferably 1 It is more than mass % and 10 mass % or less.
  • the photopolymerization initiator according to this embodiment is, for example, an acylphosphine oxide photopolymerization initiator or an alkylphenone photopolymerization initiator.
  • a photopolymerization initiator for example, IGM Resins B.I. V. "Irgacure 819" manufactured by the company can be used.
  • the content of the photopolymerization initiator is preferably 0.5% by mass or more, and preferably 1% by mass or more, when the content of the entire photopolymerization component is 100% by mass. is more preferable.
  • the content of the photopolymerization initiator is preferably 3% by mass or less when the content of the entire photopolymerizable components is 100% by mass.
  • the content of the photopolymerization initiator is preferably 0.5% by mass or more and 3% by mass or less when the content of the entire photopolymerization component is 100% by mass. , 1% by mass or more and 3% by mass or less.
  • the viscosity of the photocurable acrylic resin for imprinting at 25° C. is 5 mPa ⁇ s or more due to the relationship between the content ratios of resin (A), resin (B), resin (C), and resin (D) shown in . It is preferable that The viscosity of the photocurable acrylic resin for imprints at 25° C. may be 35 mPa ⁇ s or less, preferably 25 mPa ⁇ s or less, and more preferably 20 mPa ⁇ s or less.
  • the viscosity of the photocurable acrylic resin for imprints at 25° C. may be 5 mPa ⁇ s or more and 35 mPa ⁇ s or less, preferably 5 mPa ⁇ s or more and 25 mPa ⁇ s or less, and more preferably 5 mPa ⁇ s. s or more and 20 mPa ⁇ s or less.
  • YI value of cured product of photocurable acrylic resin for imprint >
  • the YI (Yellow Index) value of a cured product obtained by irradiating the photocurable acrylic resin for imprints according to the present embodiment with light (for example, ultraviolet rays) will be described.
  • the YI value is calculated based on JIS K 7373:2006 "Plastics-Determination of yellowness index and change of yellowness index”.
  • the YI value is calculated, for example, from the results of measurement using an ultraviolet-visible-near-infrared spectrophotometer V-770 manufactured by JASCO Corporation.
  • the transmittance of the cured product to light in the wavelength region of 380 nm to 800 nm at 0° incidence is measured using a UV-visible-near-infrared spectrophotometer V-770 using a D65 light source.
  • Hue calculation is then performed by software on the measurement results, and X, Y, and Z of the XYZ color system are calculated.
  • the YI value of the cured product is preferably 0 or more.
  • the YI value of the cured product may be 3 or less, preferably 2.5 or less, more preferably 2.5 or less. is 2 or less.
  • the YI value of the cured product may be 0 or more and 3 or less, preferably 0 or more and 2.5. or less, more preferably 0 or more and 2 or less.
  • Average transmittance of cured product of photocurable acrylic resin for imprint > Next, the average light transmittance of the cured product of the photocurable acrylic resin for imprints according to the present embodiment will be described.
  • the average transmittance is calculated by measuring the transmittance every 1 nm in the wavelength range of 430 nm or more and 680 nm or less and simply averaging the obtained 251 measurement data.
  • the transmittance is measured using, for example, an ultraviolet-visible-near-infrared spectrophotometer V-770 manufactured by JASCO Corporation.
  • the cured product of the photocurable acrylic resin for imprints according to the present embodiment After the cured product of the photocurable acrylic resin for imprints according to the present embodiment is held at 120° C. for 500 hours, the cured product has an average transmittance of 91% or more for light in the wavelength region of 430 nm or more and 680 nm or less. , preferably 92% or more. After the cured product of the photocurable acrylic resin for imprints is held at 120° C. for 500 hours, the cured product may have an average transmittance of 94% or less for light in the wavelength range of 430 nm or more and 680 nm or less. . After the cured product of the photocurable acrylic resin for imprints is held at 120° C. for 500 hours, the average transmittance of the cured product to light in the wavelength region of 430 nm or more and 680 nm or less is 91% or more and 94% or less. It may be, preferably 92% or more and 94% or less.
  • the difference in the average transmittance of the cured product of the photocurable acrylic resin for imprints according to the present embodiment for light in the wavelength region of 430 nm or more and 680 nm or less before and after the cured product is held at 120° C. for 500 hours may be 0.0% or more.
  • the difference in the average transmittance of the cured product of the photocurable acrylic resin for imprints for light in the wavelength region of 430 nm or more and 680 nm or less before and after the cured product is held at 120°C for 500 hours may be 0.5% or less, preferably 0.3% or less, and more preferably 0.2% or less.
  • the difference in the average transmittance of the cured product of the photocurable acrylic resin for imprints for light in the wavelength region of 430 nm or more and 680 nm or less before and after the cured product is held at 120°C for 500 hours may be 0.0% or more and 0.5% or less, preferably 0.0% or more and 0.3% or less, more preferably 0 0% or more and 0.2% or less.
  • the cured product of the photocurable acrylic resin for imprints according to the present embodiment After the cured product of the photocurable acrylic resin for imprints according to the present embodiment is held at 120° C. for 500 hours, the cured product has an average transmittance of 90% or more for light in the wavelength region of 430 nm or more and 510 nm or less. , preferably 91% or more. After the cured product of the photocurable acrylic resin for imprints is held at 120° C. for 500 hours, the cured product may have an average transmittance of 94% or less for light in the wavelength region of 430 nm or more and 510 nm or less. . After the cured product of the photocurable acrylic resin for imprints is held at 120° C. for 500 hours, the average transmittance of the cured product to light in the wavelength region of 430 nm or more and 510 nm or less is 90% or more and 94% or less. It may be, preferably 91% or more and 94% or less.
  • the difference in the average transmittance of the cured product of the photocurable acrylic resin for imprints according to the present embodiment for light in the wavelength region of 430 nm or more and 510 nm or less before and after the cured product is held at 120° C. for 500 hours may be 0.0% or more.
  • the difference in the average transmittance of the cured product of the photocurable acrylic resin for imprints for light in the wavelength region of 430 nm or more and 510 nm or less before and after the cured product is held at 120 ° C.
  • the difference in the average transmittance of the cured product of the photocurable acrylic resin for imprints for light in the wavelength region of 430 nm or more and 510 nm or less before and after the cured product is held at 120 ° C. for 500 hours may be 0.0% or more and 1.2% or less, preferably 0.0% or more and 0.7% or less, more preferably 0 0% or more and 0.5% or less.
  • Storage modulus is the component of energy generated by external forces and strains that is stored inside a body. That is, the storage modulus indicates hardness of the cured product. The higher the storage modulus, the harder the cured product.
  • the storage modulus can be measured using, for example, DMA7100 manufactured by Hitachi High-Tech. For example, the cured product sheet is cut into 20 mm length ⁇ 3 mm width, in tension mode, at a constant frequency (1 Hz), the temperature is raised at 5 ° C./min, and the storage elastic modulus at 25 ° C. to 300 ° C. can be measured.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints according to the present embodiment at 30° C. may be 1.6 ⁇ 10 9 Pa or more, preferably 2.0 ⁇ 10 9 Pa. 2.2 ⁇ 10 9 Pa or more, preferably 2.2 ⁇ 10 9 Pa or more.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 30° C. may be 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 30° C. may be 1.6 ⁇ 10 9 Pa or more and 2.5 ⁇ 10 9 Pa or less, preferably 2.0. ⁇ 10 9 Pa or more and 2.5 ⁇ 10 9 Pa or less, more preferably 2.2 ⁇ 10 9 Pa or more and 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints according to the present embodiment at 120° C. may be 3.9 ⁇ 10 8 Pa or more, preferably 6.0 ⁇ 10 8 Pa. 7.0 ⁇ 10 8 Pa or more, preferably 7.0 ⁇ 10 8 Pa or more.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 120° C. may be 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 120° C. may be 3.9 ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less, preferably 6.0. ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less, more preferably 7.0 ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints according to the present embodiment at 130° C. may be 3.1 ⁇ 10 8 Pa or more, preferably 5.5 ⁇ 10 8 Pa. 7.0 ⁇ 10 8 Pa or more, preferably 7.0 ⁇ 10 8 Pa or more.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 130° C. may be 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 130° C. may be 3.1 ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less, preferably 5.5. ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less, more preferably 7.0 ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints according to the present embodiment at 140° C. may be 2.6 ⁇ 10 8 Pa or more, preferably 5.0 ⁇ 10 8 Pa. or more, more preferably 6.0 ⁇ 10 8 Pa or more.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 140° C. may be 2.5 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 140° C. may be 2.6 ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less, preferably 5.0. ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less, more preferably 6.0 ⁇ 10 8 Pa or more and 2.5 ⁇ 10 9 Pa or less.
  • the change rate of the storage elastic modulus of the cured product at 120 ° C. with respect to the storage elastic modulus of the cured product at 30 ° C. is 17% or more. , preferably 30% or more, more preferably 40% or more.
  • the rate of change of the storage elastic modulus of the cured product at 120° C. with respect to the storage elastic modulus of the cured product at 30° C. 120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) is 100% or less.
  • the change rate of the storage elastic modulus of the cured product at 120 ° C. with respect to the storage elastic modulus of the cured product at 30 ° C. (120 ° C. storage elastic modulus / 30 ° C. storage elastic modulus ⁇ 100%) is 17% or more, 100 % or less, preferably 30% or more and 100% or less, more preferably 40% or more and 100% or less.
  • the change rate of the storage elastic modulus of the cured product at 130°C with respect to the storage elastic modulus of the cured product at 30°C is 14% or more. preferably 27% or more, more preferably 33% or more.
  • the rate of change in the storage elastic modulus of the cured product at 130° C. with respect to the storage elastic modulus of the cured product at 30° C. (130° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) is 100% or less.
  • the change rate of the storage elastic modulus of the cured product at 130 ° C. with respect to the storage elastic modulus of the cured product at 30 ° C. (130 ° C. storage elastic modulus / 30 ° C. storage elastic modulus ⁇ 100%) is 14% or more, 100 % or less, preferably 27% or more and 100% or less, more preferably 33% or more and 100% or less.
  • the change rate of the storage elastic modulus of the cured product at 140°C with respect to the storage elastic modulus of the cured product at 30°C is 11% or more. preferably 25% or more, more preferably 30% or more.
  • the rate of change in the storage elastic modulus of the cured product at 140° C. with respect to the storage elastic modulus of the cured product at 30° C. (140° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) is 100% or less.
  • the change rate of the storage elastic modulus of the cured product at 140 ° C. with respect to the storage elastic modulus of the cured product at 30 ° C. is 11% or more, 100 % or less, preferably 25% or more and 100% or less, more preferably 30% or more and 100% or less.
  • glass transition temperature Tg of cured product of photocurable acrylic resin for imprint > Next, the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints will be described.
  • the glass transition temperature Tg can be measured using DMA7100 manufactured by Hitachi High-Tech Co., Ltd., for example. For example, cut the cured product sheet to 20 mm long ⁇ 3 mm wide, in tension mode, at a constant frequency (1 Hz), raise the temperature at 5 ° C./min, and lose tangent tan ⁇ at 25 ° C. to 300 ° C. It can be measured by checking the maximum value.
  • the cured product of the photocurable acrylic resin for imprints according to the present embodiment may have a glass transition temperature Tg of 115° C. or higher, preferably 140° C. or higher, and more preferably 170° C. or higher. .
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints may be 185° C. or lower.
  • the cured product of the photocurable acrylic resin for imprints may have a glass transition temperature Tg of 115°C or higher and 185°C or lower, preferably 140°C or higher and 185°C or lower, and more preferably 170°C. above and below 185°C.
  • the photocurable acrylic resin for imprints according to this embodiment contains the resin (A). Thereby, the photocurable acrylic resin for imprints according to the present embodiment can improve the heat resistance of the cured product of the photocurable acrylic resin for imprints.
  • the photocurable acrylic resin for imprinting according to this embodiment contains a resin (B) having a viscosity of 10 mPa ⁇ s or less at 25°C. Thereby, the viscosity of the photocurable acrylic resin for imprints according to the present embodiment can be lowered.
  • the resin (B) is a bifunctional acrylate monomer in which an acryloyl group is bonded to each end of a linear structure composed of a hydrocarbon group, or a linear structure having an ether bond and an acryloyl group to each end. It is preferably a conjugated difunctional acrylate monomer. Thereby, the viscosity of the photocurable acrylic resin for imprints can be made lower.
  • the resin (B) is a bifunctional acrylate monomer represented by the above chemical formula (I), and in the chemical formula (I), n is preferably an integer of 1 or more and 9 or less. Thereby, the viscosity of the photocurable acrylic resin for imprints can be further lowered.
  • the resin (B) is a bifunctional acrylate monomer represented by the above chemical formula (I), and in the chemical formula (I), n is preferably an integer of 6 or more and 9 or less. Thereby, the viscosity of the photocurable acrylic resin for imprints can be further lowered.
  • the resin (B) is a bifunctional acrylate monomer represented by the above chemical formula (I), and n is preferably an integer of 6 or 9 in the chemical formula (I).
  • the photocurable acrylic resin for imprints according to the present embodiment preferably further contains a resin (C) having a viscosity of 10 mPa ⁇ s or less at 25°C. Thereby, the viscosity of the photocurable acrylic resin for imprints according to the present embodiment can be further reduced.
  • the resin (C) is preferably an acrylate monomer that has a viscosity of 10 mPa ⁇ s or less at 25° C. and is structurally rigid. As a result, the viscosity of the photocurable acrylic resin for imprints according to the present embodiment can be further lowered, and the heat resistance of the cured product of the photocurable acrylic resin for imprints can be further improved.
  • the resin (C) is preferably a monofunctional acrylate monomer.
  • the reaction at the terminal of the polymer can be terminated. Therefore, it is possible to suppress deterioration from the terminal groups of the cured product (polymer) of the photocurable acrylic resin for imprints.
  • the resin (C) is preferably isobornyl acrylate. As a result, the viscosity of the photocurable acrylic resin for imprints according to the present embodiment can be further lowered, and the heat resistance of the cured product of the photocurable acrylic resin for imprints can be further improved.
  • the photocurable acrylic resin for imprints according to the present embodiment preferably further contains a resin (D) that is a trifunctional or higher acrylate monomer.
  • a resin (D) that is a trifunctional or higher acrylate monomer.
  • the photocurable acrylic resin for imprints according to the present embodiment can increase the crosslink density at the time of curing, and can further improve the heat resistance of the cured product of the photocurable acrylic resin for imprints.
  • the decrease in storage elastic modulus at high temperatures can be suppressed.
  • the resin (D) is preferably one or more selected from the group consisting of trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, and polyfunctional polyester acrylate. This makes it possible to further improve the heat resistance of the cured product of the photocurable acrylic resin for imprints.
  • the content of the resin (A) is 20% by mass or more and 40% by mass or less with respect to the total photopolymerizable components.
  • the total content of the resin (A) and the resin (B) is 70% by mass or less with respect to the total polymerization components.
  • the master plate 60 is pressed against the photocurable acrylic resin for imprinting (organic material) in the nanoimprint step S12 (FIG. 11).
  • the thickness (layer thickness) of the layer of the photocurable acrylic resin for imprinting can be made uniform.
  • the peeling force applied when peeling the master 60 from the cured photocurable acrylic resin layer for imprinting can be made uniform in the plane. Therefore, it is possible to avoid a situation in which the layer of the cured photocurable acrylic resin for imprinting is peeled off from the substrate 10 .
  • the layer of the cured photocurable acrylic resin for imprints from remaining on the master 60, and the master 60 can be used repeatedly.
  • the peeling force can be made uniform in the plane, when the master 60 is peeled off, the fine uneven shape transferred to the cured photocurable acrylic resin layer for imprinting is deformed. It is possible to avoid the situation. Therefore, it is possible to suppress deterioration in optical properties due to the fine irregularities of the cured product of the photocurable acrylic resin for imprints. Therefore, when the grid structure 20 is manufactured from the cured product of the photocurable acrylic resin for imprinting, it is possible to suppress deterioration of the polarization characteristics of the grid structure 20 .
  • the photo-curable acrylic resin for imprinting since the photo-curable acrylic resin for imprinting according to the present embodiment has a low viscosity, when the master 60 is pressed against the photo-curable acrylic resin for imprinting in the nanoimprint step S12, the It is possible to improve the conformability of the photocurable acrylic resin for imprinting to the fine irregularities. Therefore, in the nanoimprinting step S12, it is possible to evenly transfer the fine concave-convex shape of the master 60 to the layer of the photocurable acrylic resin for imprinting.
  • the photocurable acrylic resin for imprinting according to the present embodiment has a low viscosity, it is possible to suppress air bubbles from entering the photocurable acrylic resin for imprinting in the nanoimprinting step S12. As a result, it is possible to avoid a situation in which a part of the fine irregularities is interrupted by air bubbles in the cured product of the photocurable acrylic resin for imprints. Therefore, when the grid structure 20 is manufactured from the cured product of the photocurable acrylic resin for imprinting, disconnection of the ridges 22 of the grid structure 20 can be suppressed.
  • the cured product of the photocurable acrylic resin for imprints according to this embodiment has excellent heat resistance. Therefore, when an optical material (for example, the grid structure 20 of the wire grid polarizing element 1) is produced from the cured product of the photocurable acrylic resin for imprinting, the optical material is further subjected to heat treatment such as vapor deposition. Even in this case, deterioration of the optical properties of the optical material can be suppressed.
  • an optical material for example, the grid structure 20 of the wire grid polarizing element 1
  • heat treatment such as vapor deposition. Even in this case, deterioration of the optical properties of the optical material can be suppressed.
  • the cured product of the photocurable acrylic resin for imprints according to the present embodiment has excellent heat resistance.
  • the YI value of the object is 3 or less. Therefore, by producing an optical material from a cured product of a photocurable acrylic resin for imprinting, yellowing of the optical material can be suppressed even when the optical material is further subjected to heat treatment such as vapor deposition. and maintain transparency.
  • the cured product of the photocurable acrylic resin for imprints according to the present embodiment has excellent heat resistance.
  • the average transmittance of the cured product to light in the wavelength region of 680 nm or less is 91% or more. Therefore, by manufacturing an optical material using a cured product of a photocurable acrylic resin for imprinting, even if the optical material is subjected to heat treatment such as vapor deposition, the optical material does not react to light in the above wavelength range. A high average transmittance can be maintained.
  • the cured product of the photocurable acrylic resin for imprints according to the present embodiment has excellent heat resistance.
  • the average transmittance of the cured product to light in the wavelength region of 510 nm or less is 90% or more. Therefore, by manufacturing an optical material using a cured product of a photocurable acrylic resin for imprinting, even if the optical material is subjected to heat treatment such as vapor deposition, the optical material does not react to light in the above wavelength range. A high average transmittance can be maintained.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 30° C. is preferably 1.6 ⁇ 10 9 Pa or more.
  • the storage elastic modulus of the cured product at 120° C. is 3.9 ⁇ 10 8 Pa or more. Therefore, by manufacturing an optical material using a cured product of a photocurable acrylic resin for imprinting, deformation of the optical material can be further suppressed even when the optical material is further subjected to heat treatment such as vapor deposition. can be done. Therefore, it is possible to further suppress the deterioration of the optical properties of the optical material.
  • the reflective film 30 is deposited on the grid structure 20 when manufacturing the wire grid polarizing element 1 .
  • the grid structure 20 is heated during the vapor deposition of the reflective film 30 .
  • the heat resistance of the grid structure 20 is low, there is a problem that the grid structure 20 is deformed during vapor deposition of the reflective film 30 and the polarization characteristics are deteriorated.
  • the cured product of the photocurable acrylic resin for imprints has excellent heat resistance. Therefore, by manufacturing the grid structure 20 with the cured product of the photocurable acrylic resin for imprinting, yellowing of the grid structure 20 and deformation of the grid structure 20 are prevented even when the reflective film 30 is vapor-deposited. In addition, the average transmittance of the grid structure 20 for light in the wavelength region of 430 nm or more and 680 nm or less and light in the wavelength region of 430 nm or more and 510 nm or less can be maintained high. Therefore, it is possible to further suppress deterioration of the polarization characteristics of the grid structure 20 .
  • the viscosity of the photopolymerizable component of the photocurable acrylic resin for imprints at 25°C is preferably 35 mPa ⁇ s or less.
  • the thickness of the layer of the photocurable acrylic resin for imprinting when the master 60 is pressed against the photocurable acrylic resin for imprinting can be made more uniform.
  • the followability of the photocurable acrylic resin for imprints to the fine irregularities can be further improved, and it is possible to further suppress the inclusion of air bubbles in the photocurable acrylic resin for imprints.
  • the total content of the resin (B) and the resin (C) with respect to the entire photopolymerizable component is 50% by mass or more and 70% by mass. % or less is preferable.
  • the viscosity of the photocurable acrylic resin for imprints according to the present embodiment can be further reduced.
  • the photocurable acrylic resin for imprinting is photopolymerized at 25°C.
  • the viscosity of the component can be 25 mPa ⁇ s or less.
  • the content of the resin (D) with respect to the entire photopolymerizable component is more than 0% by mass and 20% by mass or less. preferable.
  • the heat resistance of the photocurable acrylic resin for imprints according to the present embodiment can be further improved.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 120° C. can be 6.2 ⁇ 10 8 Pa or more
  • the storage elastic modulus of the photocurable acrylic resin for imprints at 130° C. can be 6.2 ⁇ 10 8 Pa or more.
  • the storage elastic modulus of the cured product can be 5.5 ⁇ 10 8 Pa or more, and the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 140° C. is 5.0 ⁇ 10 8 Pa. It can be as above.
  • the change rate of the storage elastic modulus of the cured product at 120 ° C. with respect to the storage elastic modulus of the cured product at 30 ° C. can be 30% or more, and the storage elastic modulus of the cured product at 30 ° C. is 130
  • the change rate of the storage elastic modulus of the cured product at ° C. can be 27% or more, and the change rate of the storage elastic modulus of the cured product at 140 ° C. with respect to the storage elastic modulus of the cured product at 30 ° C. is 23%.
  • the glass transition temperature of the cured product of the photocurable acrylic resin for imprints can be 125° C. or higher.
  • a polarizing element 1 according to Conventional Example 1 includes a substrate 10 made of glass and a grid structure 20 made of an ultraviolet curable resin (acrylic resin).
  • the grid structure 20 has a base portion 21 provided along the surface of the substrate 10 and a plurality of ridges 22 projecting from the base portion 21 in a grid pattern.
  • the cross-sectional shape of the ridge portion 22 is rectangular and not tapered.
  • the reflective film 30 that covers the ridges 22 is an Al film. The reflective film 30 is formed so as to cover the entire tip 22 a and one side surface 22 b of the protruding portion 22 and part of the base portion 21 .
  • the reflective film 30 does not cover the other side surface 22b of the ridge portion 22 at all.
  • the reflective film 30 of the conventional example 1 is unevenly formed only on one side of the ridge portion 22, and the other side of the ridge portion 22 is not covered with the reflective film 30 and is open. ing.
  • each part of the model of the polarizing element 1 according to Conventional Example 1 is as follows.
  • Rr 0% (one side), 100% (other side) ⁇ : 0° to +60° ⁇ : 430-680nm
  • the model of the polarizing element 1 according to Conventional Example 1 manufactured as described above is simulated by changing the incident angle ⁇ , and the transmission axis transmittance (Tp), the reflection axis reflectance (Rs), and the polarized beam Tp ⁇ Rs required for the splitter (PBS) was calculated.
  • the incident angle ⁇ was set to 0° to +60°.
  • the wavelength ⁇ of the incident light is varied in the range of 430 to 680 nm, and the average value of multiple values of Tp and Rs calculated for the incident light of each wavelength ⁇ is used. board.
  • the relationships between Tp, Rs, Tp ⁇ Rs calculated as described above and ⁇ are shown in the graphs of FIGS. 18(b) to (d).
  • the reflective film 30 is unevenly distributed on one side of the ridge 22, and the coverage Rc of the one side is 100%. Therefore, as the incident angle ⁇ increases, Rs increases gradually, but Tp decreases significantly, so Tp ⁇ Rs also decreases significantly. For example, in the range of ⁇ >45°, Tp decreased to 76% or less and Tp ⁇ Rs decreased to 68% or less. Therefore, when the polarizing element 1 according to Conventional Example 1 is used as a polarizing beam splitter, the polarization splitting characteristics (Tp ⁇ Rs characteristics) are poor, especially for obliquely incident light with a large incident angle ⁇ of 45° or more. It can be seen that there is a problem that the Tp ⁇ Rs characteristics required for the beam splitter cannot be obtained.
  • a model of the polarizing element 1 according to Conventional Example 2 was produced.
  • the model of Conventional Example 2 is similar to the model of Conventional Example 1 described above.
  • each part of the model of the polarizing element 1 according to Conventional Example 2 are as follows.
  • Rr 0% (one side), 100% (other side) ⁇ : 0° to +60°, 0° to -60° ⁇ : 430-680nm
  • the model of the polarizing element 1 according to Conventional Example 2 manufactured as described above is simulated by changing the incident angle ⁇ , and the transmission axis transmittance (Tp), the reflection axis reflectance (Rs), and the polarized beam Tp ⁇ Rs required for the splitter (PBS) was calculated.
  • Tp, Rs, and Tp ⁇ Rs were calculated when the incident angle ⁇ was in the + direction and in the ⁇ direction.
  • the wavelength ⁇ of the incident light was changed in the range of 430 to 680 nm, and the average value of a plurality of Tp and Rs values calculated for the incident light of each wavelength was used. .
  • the relationships between Tp, Rs, Tp ⁇ Rs calculated as described above and ⁇ are shown in graphs of FIGS. 19(b) to (d).
  • a polarizing element 1 according to Conventional Example 3 includes a substrate 10 made of glass and a grid structure 20 made of an ultraviolet curable resin (acrylic resin).
  • the grid structure 20 has a base portion 21 provided along the surface of the substrate 10 and a plurality of ridges 22 projecting from the base portion 21 in a grid pattern.
  • the cross-sectional shape of the ridge portion 22 is rectangular and not tapered.
  • the reflective film 30 that covers the ridges 22 is an Al film.
  • the reflective film 30 is formed so as to cover most (about 85%) of the tip 22a and the side surfaces 22b on both sides of the protruding portion 22 .
  • the reflective film 30 of Conventional Example 3 covers most of the tip 22a and both side surfaces 22b of the protruding portion 22.
  • the reflecting film 30 of Conventional Example 3 has a rectangular shape and has two angular corner portions at both left and right ends of the top portion of the reflecting film 30. It is different from the rounded bulging shape like 30.
  • the model of the polarizing element 1 according to Conventional Example 3 manufactured as described above is simulated by changing the incident angle ⁇ in the same manner as in Conventional Example 1, and Tp, Rs, and Tp ⁇ Rs are calculated. bottom.
  • the incident angle ⁇ was set to 0° to +60°.
  • the relationships between Tp, Rs, Tp ⁇ Rs calculated in this way and ⁇ are shown in the graphs of FIGS. 20(b) to (d).
  • the polarizing element 1 according to Conventional Example 3 is used as a polarizing beam splitter, the polarization splitting characteristics (Tp ⁇ Rs characteristics) are poor, especially for obliquely incident light with a large incident angle ⁇ of 45° or more. It can be seen that there is a problem that the Tp ⁇ Rs characteristics required for the beam splitter cannot be obtained.
  • a polarizing element 1 according to Example 1 includes a substrate 10 made of glass and a grid structure 20 made of ultraviolet curable resin (acrylic resin).
  • the grid structure 20 has a base portion 21 provided along the surface of the substrate 10 and a plurality of ridges 22 projecting from the base portion 21 in a grid pattern.
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the reflective film 30 that covers the ridges 22 of Example 1 is an Al film.
  • the reflective film 30 is formed so as to cover the tip 22a of the ridge portion 22 and the upper portions of both side surfaces 22b. However, the reflective film 30 does not cover the lower side of both side surfaces 22 b of the protruding portion 22 and the base portion 21 .
  • the coverage Rc of both side surfaces 22b of the ridge 22 with the reflective film 30 is 40%.
  • the reflective film 30 of Example 1 roundly covers the apex (upper side of the tip 22a and the side surface 22b) of the ridge 22.
  • the surface of the reflective film 30 has a substantially elliptical shape that bulges outward and bulges in the width direction (X direction) of the ridge 22 .
  • the grid according to Example 1 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape.
  • the maximum width W MAX of the special tree-shaped grid (the width of the grid at the portion where the reflective film 30 bulges the most) is the width W B of the bottom of the ridge 22 (20% above the bottom of the ridge 22). width of the protruding streak portion 22 at the height position).
  • each part of the model of the polarizing element 1 according to Example 1 are as follows.
  • W B 46 nm
  • WMAX 55nm
  • Hx 99 nm
  • Dt 35 nm (maximum value)
  • Ds 22.5 nm (maximum value)
  • RC 40%
  • Rr 60% ⁇ : 0° to +60° ⁇ : 430-680nm
  • the model of the polarizing element 1 according to Example 1 manufactured as described above was simulated by changing the incident angle ⁇ , and the transmission axis transmittance (Tp), the transmission axis reflectance (Ts), and the reflection axis transmission (Rp), reflection axis reflectance (Rs), and Tp ⁇ Rs required for a polarizing beam splitter (PBS) were calculated respectively.
  • the incident angle ⁇ was set to 0° to +60°.
  • the values of Tp, Rs, Ts, and Rp a plurality of Tp, Ts, Rp, An average value of Rs values was used.
  • Tp, Rs, Ts, Rp, CR, Tp ⁇ Rs calculated as described above and ⁇ is shown in the table of FIG. 21(b) and the graphs of FIGS. show.
  • Graphs of FIGS. 22(a) to 22(c) show the relationship between Tp, Rs, Tp ⁇ Rs calculated as described above and ⁇ .
  • the grid of Example 1 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape.
  • the grid having the special tree structure of Example 1 is excellent in transmissivity and polarization splitting characteristics for obliquely incident light with a large and wide range of incident angles ⁇ .
  • Example 1 regardless of the wavelength ⁇ , Tp is 80% or more and Rs is 90% or more, indicating that high Tp and Rs can be obtained. As a result, the Tp ⁇ Rs was also 72% or more, indicating that excellent Tp ⁇ Rs characteristics can be obtained. Also, it can be seen that an excellent contrast CR of 100 or more can be obtained regardless of the wavelength ⁇ . Therefore, it can be seen that Example 1 provides better polarization characteristics for obliquely incident light compared to Conventional Examples 1 and 2 described above.
  • Example 1 a very high Tp value of 78% or more is ensured over a wide range of incident angles ⁇ from 0° to 60°.
  • a high Tp ⁇ Rs of 73% or more can be secured for oblique incident light with an incident angle ⁇ in a large and wide range (30° to 60°), and excellent polarization separation characteristics (Tp ⁇ Rs characteristics) can be achieved.
  • Tp ⁇ Rs characteristics excellent polarization separation characteristics
  • Example 1 provides a high reflectance with no significant difference compared to Conventional Examples 1 and 2.
  • Example 1 is superior to Conventional Examples 1 and 2, and the highest Tp ⁇ Rs properties are obtained.
  • Example 1 can obtain better characteristics than Conventional Examples 1 and 2, and can handle obliquely incident light with a large and wide range of incident angles ⁇ .
  • the Tp ⁇ Rs characteristics are superior to those of Conventional Examples 1 and 2.
  • the Tp ⁇ Rs characteristics are well-balanced with respect to obliquely incident light with an incident angle ⁇ in the range of 45° ⁇ 15°. Therefore, when an image is projected using the polarizing element 1 according to Example 1 as a polarizing beam splitter, the brightness balance of the displayed image is good from the observer's point of view, and the image quality is also good. .
  • the polarizing element 1 according to Example 1 when used as a polarizing beam splitter, for obliquely incident light with a large and wide range of incident angles ⁇ from 30° to 60°, particularly obliquely incident light with an angle of 45°, Therefore, it can be seen that the P-polarized light transmittance (transmittance Tp) and the polarization separation characteristic (Tp ⁇ Rs characteristic) are remarkably excellent. Therefore, it can be said that the polarization splitting characteristics required of a polarization beam splitter can be sufficiently satisfied with respect to obliquely incident light.
  • Example 2 As shown in FIG. 23(a), a model of the polarizing element 1 according to Example 2 was produced.
  • the model of Example 2 differs from the model of Example 1 described above in the shape of the ridges 22 and the manner of covering with the reflective film 30 .
  • the cross-sectional shape of the ridge portion 22 of Example 2 is triangular and tapered toward the tip 22a of the ridge portion 22 .
  • the reflective film 30 that covers the ridges 22 of Example 2 is an Al film.
  • the reflective film 30 is formed so as to cover the tip 22a of the ridge portion 22 and the upper portions of both side surfaces 22b. However, the reflective film 30 does not cover the lower side of both side surfaces 22 b of the protruding portion 22 and the base portion 21 .
  • the coverage Rc of both side surfaces 22b of the ridge 22 with the reflective film 30 is 45%.
  • the reflective film 30 of Example 2 roundly covers the apex of the ridge 22 (upper side of the tip 22a and the side surface 22b).
  • the surface of the reflective film 30 has a substantially elliptical shape that bulges outward and bulges in the width direction (X direction) of the ridge 22 .
  • the grid according to the second embodiment has the above-described special tree shape, as in the first embodiment.
  • each part of the model of the polarizing element 1 according to Example 2 are as follows.
  • the model of the polarizing element 1 according to Example 2 manufactured as described above is simulated by changing the incident angle ⁇ , and the transmission axis transmittance (Tp), the reflection axis reflectance (Rs), and the polarized beam Tp ⁇ Rs required for the splitter (PBS) was calculated.
  • Tp transmission axis transmittance
  • Rs reflection axis reflectance
  • PBS polarized beam
  • Tp and Rs the wavelength ⁇ of the incident light was changed in the range of 430 to 680 nm, and the average value of a plurality of Tp and Rs values calculated for the incident light of each wavelength was used. .
  • the relationships between Tp, Rs, Tp ⁇ Rs calculated as described above and ⁇ are shown in graphs of FIGS. 23(b) to (d).
  • the grid of Example 2 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, similar to Example 1. Therefore, it is excellent in transmittance and polarization separation characteristics for obliquely incident light with an incident angle ⁇ in a large and wide range.
  • Example 2 a high Tp value of 74% or more is ensured over a wide range of incident angles ⁇ from 0° to 45°.
  • Tp x Rs characteristics excellent polarization separation characteristics
  • Example 1 As in Example 2 described above, even when the shape of the ridges 22 of the grid structure 20 is different from that in Example 1, better transmittance and polarization separation characteristics can be obtained than in Conventional Examples 1 to 3. I understand. However, when the incident angle ⁇ is 60°, Example 1 is superior to Example 2 in Tp and Tp ⁇ Rs characteristics.
  • Example 3 Next, a third embodiment of the present invention will be described with reference to FIG. In Example 3, the relationship between the height H of the ridges 22 and the polarization characteristics of the polarizing element 1 was verified.
  • Example 3 As shown in FIG. 24(a), a model of the polarizing element 1 according to Example 3 was produced.
  • the model of Example 3 is similar to the model of Example 1 above.
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 3 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, as in Example 1.
  • each part of the model of the polarizing element 1 according to Example 3 are as follows.
  • W B 46 nm
  • WMAX 55nm
  • Hx 45-99 nm
  • Dt 35 nm (maximum value)
  • Ds 22.5 nm (maximum value)
  • RC 45%
  • Rr 55% ⁇ : +45° ⁇ : 430-680nm
  • the model of the polarizing element 1 according to Example 3 manufactured as described above was simulated by changing the height H of the protruding portion 22, and Tp, Rs, and Tp ⁇ Rs were calculated.
  • the incident angle ⁇ was +45°.
  • the wavelength ⁇ of the incident light is varied in the range of 430 to 680 nm, and the average value of multiple values of Tp and Rs calculated for the incident light of each wavelength ⁇ is used. board.
  • the transmitted light contrast CR was also calculated by dividing Tp by Ts.
  • the height H of the ridges 22 should be 160 nm or more. , more preferably 180 nm or more, and particularly preferably 220 nm or more.
  • Tp As shown in FIG. 24(b), if H is 160 nm or more, Tp is 80% or more, and high transmittance can be obtained, which is preferable. Furthermore, if H is 180 nm or more, Tp of 85% or more can be obtained, which is more preferable. In addition, if H is 220 nm or more, Tp of 87% or more can be obtained, which is particularly preferable.
  • Tp ⁇ Rs characteristics as shown in FIG. 24(d), if H is 160 nm or more, an excellent Tp ⁇ Rs of 70% or more can be obtained, which is preferable. Furthermore, if H is 180 nm or more, Tp ⁇ Rs of 75% or more can be obtained, which is more preferable. In addition, if H is 220 nm or more, Tp ⁇ Rs of 77% or more can be obtained, which is particularly preferable.
  • H is 100 nm or more, thereby obtaining a CR of 40 or more. If H is 160 nm or more, an excellent CR of 150 or more can be obtained, which is preferable. Furthermore, if H is 180 nm or more, an excellent CR of 250 or more can be obtained, which is more preferable. In addition, if H is 220 nm or more, an excellent CR of 500 or more can be obtained, which is particularly preferred.
  • Example 4 Next, a fourth embodiment of the present invention will be described with reference to FIG. In Example 4, the relationship between the thickness Dt of the reflective film 30 covering the tips 22a of the ridges 22 (tip thickness Dt of the reflective film 30) and the polarization characteristics of the polarizing element 1 was verified.
  • Example 4 As shown in FIG. 25(a), a model of the polarizing element 1 according to Example 4 was produced.
  • the model of Example 4 is similar to the model of Example 1 above.
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 4 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, as in Example 1.
  • each part of the model of the polarizing element 1 according to Example 4 are as follows.
  • W B 46 nm
  • WMAX 55nm
  • Hx 99nm
  • RC 45%
  • Rr 55% ⁇ : +45° ⁇ : 430-680nm
  • the tip thickness Dt of the reflective film 30 should be 5 nm or more. , and more preferably 15 nm or more.
  • Tp as shown in FIG. 25(b), if Dt is 5 nm or more, Tp is 85% or more and high transmittance can be obtained, which is preferable.
  • Rs as shown in FIG. 25(c), if Dt is 5 nm or more, Rs is 85% or more and a high reflectance can be obtained, which is preferable.
  • Tp ⁇ Rs characteristics as shown in FIG. 25(d), if Dt is 15 nm or more, an excellent Tp ⁇ Rs of 78% or more can be obtained, which is more preferable.
  • the contrast CR As shown in FIG. 25(e), if Dt is 5 nm or more, an excellent CR of 100 or more can be obtained, which is preferable. Furthermore, if Dt is 15 nm or more, an excellent CR of 250 or more can be obtained, which is more preferable.
  • Example 5 Next, a fifth embodiment of the present invention will be described with reference to FIG. In Example 5, the relationship between the thickness Ds of the reflective film 30 covering the side surface 22b of the ridge portion 22 (side surface thickness Ds of the reflective film 30) and the polarization characteristics of the polarizing element 1 was verified.
  • Example 5 a model of the polarizing element 1 according to Example 5 was produced.
  • the model of Example 5 is similar to the model of Example 1 above.
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 5 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, as in Example 1.
  • each part of the model of the polarizing element 1 according to Example 5 are as follows.
  • W B 46 nm
  • MAX 20 ⁇ 80nm
  • RC 45%
  • Rr 55% ⁇ : +45° ⁇ : 430-680nm
  • the side thickness Ds of the reflective film 30 should be 10 nm or more. , 30 nm or less, more preferably 12.5 nm or more and 25 nm or less, and particularly preferably 15 nm or more and 25 nm or less.
  • Tp as shown in FIG. 26(b), if Ds is 10 nm or more and 30 nm or less, Tp is 80% or more, and high transmittance can be obtained, which is preferable. Furthermore, when Ds is 12.5 nm or more and 25 nm or less, Tp is 85% or more, and higher transmittance can be obtained, which is more preferable. Furthermore, when Ds is 15 nm or more and 20 nm or less, Tp is 87% or more, and a higher transmittance can be obtained, which is particularly preferable.
  • Rs as shown in FIG. 26(c), if Ds is 10 nm or more, Rs is 80% or more, and high reflectance can be obtained, which is preferable. Furthermore, when Ds is 12.5 nm or more, Rs is 85% or more, and a higher reflectance can be obtained, which is more preferable. Furthermore, when Ds is 15 nm or more, Rs is 87% or more, and a higher reflectance can be obtained, which is particularly preferable.
  • Tp ⁇ Rs characteristics as shown in FIG. 26(d), if Ds is 12.5 nm or more and 30 nm or less, an excellent Tp ⁇ Rs of 70% or more can be obtained, which is preferable. Furthermore, when Ds is 15 nm or more and 25 nm or less, an excellent Tp ⁇ Rs of 76% or more can be obtained, which is more preferable.
  • Ds may be 10 nm or more, but if Ds is 12.5 nm or more, an excellent CR of 50 or more can be obtained, which is preferable. Furthermore, if Ds is 15 nm or more, an excellent CR of 100 or more can be obtained, which is more preferable.
  • Example 6 Next, a sixth embodiment of the present invention will be described with reference to FIG. In Example 6, the relationship between the coverage Rc of the side surface 22b of the projection 22 with the reflecting film 30 and the polarization characteristics of the polarizing element 1 was verified.
  • Example 6 As shown in FIG. 27(a), a model of the polarizing element 1 according to Example 6 was produced.
  • the model of Example 6 is similar to the model of Example 1 above.
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 6 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, as in Example 1.
  • the coverage Rc is 25% or more and 80% or less. is preferably 30% or more and 70% or less, more preferably 30% or more and 60% or less, and particularly preferably 40% or more and 50% or less. .
  • Tp as shown in FIG. 27(b), if Rc is 25% or more and 80% or less, Tp is 75% or more and high transmittance can be obtained, which is preferable. Furthermore, when Rc is 30% or more and 70% or less, Tp is 80% or more, and higher transmittance can be obtained, which is more preferable. Furthermore, when Rc is 40% or more and 50% or less, Tp is 85% or more, and a higher transmittance can be obtained, which is particularly preferable.
  • Tp ⁇ Rs characteristics As shown in FIG. 27(d), when Rc is 25% or more and 80% or less, Tp ⁇ Rs is 70% or more, and excellent Tp ⁇ Rs characteristics are obtained. preferred because Furthermore, when Rc is 30% or more and 70% or less, Tp ⁇ Rs is 72% or more, and when Rc is 30% or more and 60% or less, Tp ⁇ Rs is 75% or more, which is more excellent. Tp ⁇ Rs characteristics are obtained, which is more preferable. Furthermore, when Rc is 40% or more and 50% or less, Tp ⁇ Rs is 77% or more, and more excellent Tp ⁇ Rs characteristics can be obtained, which is particularly preferable.
  • Rc should be 20% or more, but if Rc is 30% or more, an excellent CR of 100 or more can be obtained, which is preferable. Furthermore, if the Rc is 40% or more, an excellent CR of 200 or more can be obtained, which is more preferable.
  • Example 7 a seventh embodiment of the present invention will be described with reference to FIG. In Example 7, the relationship between the thickness Ds of the reflective film 30 covering the side surface 22b of the ridge portion 22 (the side surface thickness Ds of the reflective film 30), the incident angle ⁇ , and the polarization characteristics of the polarizing element 1 was verified. .
  • Example 7 a model of the polarizing element 1 according to Example 7 was produced.
  • the model of Example 7 is similar to the model of Example 1 above.
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 7 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, as in Example 1.
  • each part of the model of the polarizing element 1 according to Example 7 are as follows.
  • W B 46 nm WMAX : 45nm, 55nm, 60nm H: 220 nm Hx: 99 nm
  • RC 45%
  • Rr 55% ⁇ : 0 to +60° ⁇ : 430-680nm
  • the model of the polarizing element 1 according to Example 7 manufactured as described above is simulated by changing the side thickness Ds of the reflective film 30 and the incident angle ⁇ , and Tp, Rs, and Tp ⁇ Rs are calculated respectively. bottom.
  • the incident angle ⁇ was changed in steps of 15° in the range of 0 to +60°.
  • the relationships between Tp, Rs, Tp ⁇ Rs calculated as described above and Dt are shown in graphs of FIGS. 28(b) to (d).
  • the polarizing element 1 has good polarizing characteristics (Tp, Rs, Tp ⁇ Rs). In particular, it can be seen that extremely excellent polarization characteristics are exhibited for obliquely incident light with an incident angle ⁇ of +45°.
  • Tp As shown in FIG. 28(b), even if Ds varies in the range of 17.5 to 25 nm, if ⁇ is in the range of +30° to +60°, Tp is 75°. % or more, and a high transmittance can be obtained, which is preferable. Furthermore, when ⁇ is +45°, Tp is 85% or more, and the highest transmittance can be obtained, which is more preferable.
  • Rs As shown in FIG. 28(c), Rs is 85% or more in a wide range of incident angles ⁇ from 0° to +60°, and high reflectance is obtained, which is preferable.
  • Tp ⁇ Rs characteristics As shown in FIG. 28(d), even if Ds changes in the range of 17.5 to 25 nm, Tp ⁇ Rs becomes 70% or more, and excellent Tp ⁇ Rs characteristics are obtained, which is preferable. Furthermore, when ⁇ is +45°, Tp ⁇ Rs becomes 76% or more, and the best Tp ⁇ Rs characteristics can be obtained, which is more preferable. Also, the Tp ⁇ Rs characteristics are well balanced with respect to obliquely incident light with an incident angle ⁇ in the range of 45° ⁇ 15°. Therefore, when an image is projected using the polarizing element 1 according to Example 7 as a polarizing beam splitter, the brightness balance of the displayed image is good from the observer's point of view, and the image quality is also good. .
  • Example 8 Next, an eighth embodiment of the present invention will be described with reference to FIG. In Example 8, the relationship between the maldistribution ratio when the reflective film 30 covering the protruding portion 22 is maldistributed on one side and the polarization characteristics of the polarizing element 1 was verified.
  • Example 8 As shown in FIG. 29(a), a model of the polarizing element 1 according to Example 8 was produced.
  • the model of Example 8 is the same as the model of Example 1 above, except that the reflective film 30 is unevenly distributed on one side of the ridge 22 .
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 8 (the structure in which the ridges 22 and the reflective film 30 are combined) has the above-described special tree shape, as in Example 1.
  • FIG. 29(a) a model of the polarizing element 1 according to Example 8 was produced.
  • the model of Example 8 is the same as the model of Example 1 above, except that the reflective film 30 is unevenly distributed on one side of the ridge 22 .
  • the cross-sectional shape of the ridge portion 22 is trapezoidal and tapered toward the tip 22a of the ridge portion 22 .
  • the grid of Example 8 (the structure in which the ridges 22 and
  • Example 8 regarding the left side surface 22b of the ridge 22, the side thickness Ds (left side) of the reflective film 30 covering the side surface 22b was fixed at 22.5 nm, and the coverage height Hx (left side) was fixed at 22.5 nm. was fixed at 99 nm and the coverage Rc (left) was fixed at 45%.
  • the side thickness Ds (right side) of the reflective film 30 covering the right side surface 22b of the ridge 22 was changed stepwise within the range of 0 to 22.5 nm.
  • the height Hx (right side) of the coverage range of the right side surface 22b is changed stepwise in the range of 0 to 99 nm, and the coverage rate Rc (right side ) was changed stepwise in the range of 0 to 45%.
  • the grid maximum width W MAX varied stepwise within the range of 32.5 to 55 nm.
  • each part of the model of the polarizing element 1 according to Example 8 are as follows.
  • Dt 35 nm (maximum value) Ds (left side): 22.5 nm (maximum value) Ds (right): 0 nm, 5 nm, 10 nm, 22.5 nm (maximum)
  • the model of the polarizing element 1 according to Example 8 manufactured as described above is simulated by changing Ds (right side) and Rc (right side) for the left side surface 22b of the reflective film 30, Tp, Rs, Tp ⁇ Rs and CR were calculated respectively.
  • the incident angle ⁇ was changed in steps of 15° in the range of 0 to +60°.
  • the relationships between Tp, Rs, Tp ⁇ Rs, CR calculated as described above and Dt are shown in graphs of FIGS. 29(b) to (e).
  • the polarizing element 1 exhibits good polarization characteristics (Tp, Rs , Tp ⁇ Rs, CR).
  • Tp As shown in FIG. However, both Tp(+) and Tp(-) were 85% or more, and high transmittance was obtained on both sides of the grid. In this case, the difference between Tp(+) and Tp(-) is 3% or less, and it is confirmed that there is no significant difference between Tp(+) and Tp(-) depending on the direction of oblique incident light. was done.
  • Tp ⁇ Rs was 75% or more, and excellent Tp ⁇ Rs characteristics were obtained.
  • contrast CR as shown in FIG. , an excellent CR was obtained. Furthermore, it is preferable that the Ds (right side) is 5 nm or more and the coverage (left side) is 22% or more, thereby obtaining an excellent CR of 100 or more. In addition, it is more preferable that the Ds (right side) is 10 nm or more and the coverage (left side) is 33% or more, resulting in a better CR of 150 or more.
  • the model of the polarizing element 1 according to Example 9 has a special tree shape, like the model of Example 1 described above (see FIG. 21, etc.).
  • the grid of the polarizing element 1 according to Example 9 covers the base portion 21, the ridges 22 having a trapezoidal cross section, and the tops of the ridges 22 (tops of the tips 22a and the side surfaces 22b). and a reflective film 30 .
  • the model of the polarizing element 1 according to Example 9 differs from the model of Example 1 described above in the coverage Rc of both side surfaces 22b of the ridge portion 22 by the reflective film 30.
  • the coverage Rc of 9 is 45%.
  • the reflective film 30 of Example 9 has a shape that wraps around the apex of the ridge 22 .
  • the surface of the reflective film 30 according to the ninth embodiment has a substantially elliptical shape that bulges outward and bulges in the width direction (X direction) of the ridge 22 .
  • the surface of the reflective film 30 of the ninth embodiment has a round and smoothly curved surface shape, and does not have sharp corners or steps.
  • the reflective film 30 of Example 9 is hereinafter referred to as a round reflective film.
  • the model of the polarizing element 1 according to Conventional Example 4 differs from the model of Example 9 in the shape of the reflective film 30 .
  • the reflective film 30 of Conventional Example 4 has a rectangular shape, and has two angular corners at both left and right ends of the top of the reflective film 30.
  • the reflective film 30 of the above-described reflective film 30 is rounded. It is different from the swollen shape (round reflective film).
  • the reflective film 30 of Comparative Example 4 is referred to as a rectangular reflective film.
  • the model of the polarizing element 1 of Conventional Example 4 corresponds to the wire grid polarizer disclosed in Patent Document 7 mentioned above.
  • Example 4 differs from Example 9 in the shape of the reflective film 30, but other requirements are the same as those of Example 9.
  • Example 9 in the range of 0° ⁇ ⁇ ⁇ 45°, Tp and Tp ⁇ Rs rather increased as ⁇ increased, and high values of Tp and Tp ⁇ Rs could be maintained.
  • Example 9 in the range of 45° ⁇ 60°, even if ⁇ increases, the degree of decrease in Tp and Tp ⁇ Rs is significantly suppressed compared to Conventional Example 4, and Tp and a high value of Tp ⁇ Rs can be maintained.
  • Example 9 can obtain Tp and Tp ⁇ Rs that are 5% or more higher than those of Conventional Example 4.
  • Example 9 can obtain Tp and Tp ⁇ Rs that are 7% or more higher than those of Conventional Example 4.
  • FIG. thus, in Example 9, in a large and wide range of incident angles ⁇ (30° to 60°, particularly 45° to 60°), remarkably excellent transmittance (transmittance Tp) and Tp ⁇ Rs characteristics is obtained.
  • Example 9 provides a high reflectance with no significant difference compared to Conventional Example 4.
  • the 9th embodiment has a large and wide range of incident angles ⁇ from 30° to 60° compared to the conventional example 4, especially 45°. It can be seen that the P-polarized light transmittance (transmittance Tp) and the polarization splitting characteristic (Tp ⁇ Rs characteristic) are remarkably excellent with respect to obliquely incident light of 100°. Therefore, it can be said that the polarization splitting characteristics required of a polarization beam splitter can be sufficiently satisfied with respect to obliquely incident light.
  • the ninth embodiment having the round reflective film 30 has a lower dependence on the incident angle ⁇ of the oblique incident light than the conventional example 4 having the rectangular reflective film 30 .
  • the transmittance of incident light in the wire grid polarizer 1 is basically determined by the ratio (W G /W A ) of the effective grid width W A to the gap width W G .
  • the grid width WA is the width of one reflective film 30 in the direction perpendicular to the direction of travel of incident light
  • the gap width WG is the width of two adjacent reflective films 30 in the direction perpendicular to the direction of travel of incident light. It is the width of the gap between the two reflective films 30 .
  • Example 9 in which the reflective film 30 is round, the effective grid width WA when viewed obliquely is smaller than in Conventional Example 4 in which the reflective film 30 is square.
  • the apparent gap width WG increases. Therefore, when oblique incident light is incident on the polarizing element 1, the transmittance Tp of the ninth embodiment is higher than the transmittance Tp of the fourth conventional example. As a result, the Tp ⁇ Rs characteristics of Example 9 are superior to those of Conventional Example 4.
  • the transmittances Tp and Tp ⁇ Rs of Example 9 are each about 5% higher than those of Conventional Example 4. It can be seen that the transmittances Tp and Tp ⁇ Rs of Example 9 are each about 7% higher than those of Conventional Example 4 (see FIGS. 30(b) and 30(d)).
  • the ninth embodiment having the round reflective film 30 has a lower dependence on the incident angle ⁇ of the oblique incident light than the conventional example 4 having the rectangular reflective film 30, and the It can be said to be excellent in transparency and polarization separation characteristics (Tp ⁇ Rs characteristics) as a polarization beam splitter.
  • the substrate 10 is made of an inorganic material such as glass that has excellent heat resistance. Furthermore, the base portion 21 and the plurality of ridges 22 of the grid structure 20 directly provided on the substrate 10 are integrally formed of a heat-resistant organic material.
  • the wire grid polarizing element 1 according to this embodiment is a hybrid polarizing element that combines organic and inorganic materials. Therefore, the thermal resistance R [m 2 ⁇ K/W] of the entire polarizing element 1 is small, and heat can be efficiently released from the grid structure 20 to the substrate 10, so it is considered to be excellent in heat dissipation.
  • the conventional film-type wire grid polarizing element is mainly made of organic materials, so it has low heat resistance (about 100°C). Moreover, since the total thickness of the organic material layer composed of the substrate (base film), double-sided tape (OCA), and grid structure is increased, the thermal resistance R of the organic material layer is also considered to be increased.
  • the hybrid-type wire grid polarizing element 1 according to the present embodiment has excellent heat resistance and heat dissipation compared to conventional film-type polarizing elements (heat resistance: about 100 ° C.) made of organic materials. For example, it has heat resistance in a high temperature environment up to about 200°C. Therefore, it is considered that the hybrid wire grid polarizing element 1 according to the present embodiment can exhibit excellent heat dissipation characteristics while realizing excellent polarization characteristics.
  • Table 1 shows the types of general substrate materials and their thermal conductivity ⁇ [W/m ⁇ K].
  • Table 2 shows the thickness of each layer made of organic material (PMMA) and the thickness of organic material (PMMA) for the hybrid type wire grid polarizing element 1 according to the example of the present invention and the film type wire grid polarizing element according to the conventional example. ) (total thickness D ALL ) and thermal resistance R [m 2 ⁇ K/W].
  • the base portion 21 and the ridges 22 constituting the grid structure 20 are made of an organic material
  • the substrate 10 is made of an inorganic material. be.
  • the substrate, the base portion forming the grid structure, and the double-sided tape for bonding the base portion and the substrate are all made of organic materials.
  • PMMA Poly Methyl Methylate
  • the total thickness D ALL of the PMMA material of the hybrid polarizing element 1 according to the example is 0.0302 [mm].
  • the total thickness D ALL of the PMMA material of the film-type polarizing element according to the conventional example is 0.2552 [mm], which is significantly larger than the D ALL of the example.
  • the thermal conductivity ⁇ of PMMA is 0.21 [W/m ⁇ K].
  • the thermal resistance R of the conventional film-type polarizing element is 0.001215 [m 2 ⁇ K/W].
  • the hybrid-type polarizing element 1 according to the embodiment of the present invention, the value of the thermal resistance R of the grid structure 20 made of PMMA material can be reduced to about It can be reduced to 1/8.4. Therefore, according to the hybrid polarizing element 1 according to the embodiment of the present invention, the heat of the grid structure 20 made of an organic material (for example, PMMA) is transferred from an inorganic material that is superior in heat resistance and heat dissipation to an organic material. Through the substrate 10, the heat can be efficiently released to the outside and the heat can be dissipated. Therefore, the hybrid-type polarizing element 1 according to the embodiment of the present invention has extremely excellent heat resistance and heat dissipation compared to the conventional example.
  • an organic material for example, PMMA
  • the grid structure 20 provided directly on the substrate 10
  • FIG. 32 is a graph showing the relationship between the wavelength of light and the relative luminosity in bright and dark places.
  • Visibility K (spectral luminous efficiency) is a numerical value representing the strength of the human eye's perception of the brightness of each wavelength of light.
  • the visibility K represents the luminous flux [lm] perceived per 1 W of radiant flux of light (electromagnetic waves).
  • the unit of radiant flux is [W]
  • the unit of luminous flux (photometric quantity) is [lm]
  • the unit of visibility K is [lm/W].
  • Visibility K varies depending on the wavelength of light (electromagnetic waves), and is highest when the wavelength of light is 555 nm.
  • the visibility K at this time is 683 [lm/W] at maximum, and this 683 [lm/W] is called the maximum visibility Km .
  • the relative luminous efficiency V is a numerical value between 0 and 1.0, and there is no unit for the relative luminous efficiency V.
  • the brightness perceived by the human eye varies greatly depending on the wavelength of light. It is said that the human eye most strongly perceives light with a wavelength of about 555 nm in a bright place, and most strongly perceives light with a wavelength of about 507 nm in a dark place. Projectors are used in various situations, such as in bright and dark places. Therefore, in both bright and dark places, the light emitted by the projector that the human eye perceives as bright is light with a wavelength of around 528 nm. Therefore, Table 3 shows the results of calculation of the output power Pw [W] of the light source of the projector when light with a wavelength of about 528 nm is emitted from the projector with a brightness (luminous flux) of 5000 [lm].
  • the human eye most strongly senses light with a wavelength of around 555 nm in bright light. That is, in the curve of the bright-light standard spectral luminous efficiency shown in the graph of FIG. 32, the wavelength at which the maximum luminous efficiency Km is obtained is around 555 nm.
  • the maximum visual sensitivity K m at a wavelength of 555 nm is 683 [lm/W]
  • the visual sensitivity K at a wavelength of 528 nm is 573.7 [lm/W] (683 [lm/W] ⁇ 0.84 ⁇ 573.7 [lm/W]). Therefore, when 5000 [lm] of light is emitted from the projector, the output power Pw of the light source of the projector (electromagnetic flux emitted from the light source) is 8.7 [W] (5000 [lm]/573.7 [lm/W] ⁇ 8.7 [W]).
  • the output power Pw of the light source of the projector is 8.7 [W]
  • the light with a wavelength of 528 nm is polarized into a rectangular plate with a length (Y direction) of 10 [mm] x a width (X direction) of 20 [mm].
  • Temperature difference ⁇ T [K] Thermal resistance R [m 2 K/W] x Output power per unit area Pw' [W/m 2 ]
  • Examples 1 to 10 of the present invention a hybrid wire grid polarizing element 1 made of an inorganic material (substrate 10) and an organic material (grid structure 20) was used.
  • the conventional example uses a film-type wire grid polarizing element made of an organic material.
  • the conventional example shows an example of the configuration of the thinnest film-type wire grid polarizing element considering the thickness of films and double-sided tapes (OCA) that are generally distributed. Therefore, it seems difficult to make the total thickness D ALL thinner than the conventional example shown in Table 4 in a film-type wire grid polarizing element configured by laminating a plurality of films or double-sided tapes.
  • the grid structures 20 made of an organic material (PMMA) are directly formed on the substrate 10 made of an inorganic material. Therefore, in Examples 1 to 10, as shown in Table 4, the thickness TB of the base portion 21 ( ⁇ the total thickness D ALL of the PMMA material) can be made significantly thinner than in the conventional example.
  • the temperature difference ⁇ T between the front and back surfaces was 52.9°C, exceeding 50°C.
  • the ambient temperature of the wire grid polarizing element and the like installed inside the projector is 50° C. or higher.
  • the ambient temperature of the wire grid polarizer and the like may approach 100°C. Therefore, in the case of the conventional film-type wire grid polarizer, the surface temperature of the grid structure may locally exceed 150° C., and there is a problem in the durability of the wire grid polarizer.
  • the base portion 21 and the plurality of ridges 22 of the grid structure 20 are directly formed on the substrate 10 made of an inorganic material. It is the structure that forms.
  • the thickness TB of the base portion 21 ( ⁇ the total thickness D ALL of the PMMA material) can be significantly reduced compared to the conventional example, so that the temperature difference ⁇ T can be greatly reduced.
  • the heat of the base portion 21 of the grid structure 20 can be radiated to the outside through the substrate 10 made of an inorganic material. Proven.
  • the temperature difference ⁇ T can be suppressed to 32° C. or less. It can be seen that the temperature difference ⁇ T can be reduced by about 40% or more compared to 9°C.
  • the heat of the grid structure 20 can be quickly transferred to the substrate 10 and efficiently released from the substrate 10 to the outside, thereby dissipating heat. Proven.
  • the temperature difference ⁇ T can be suppressed to 20° C. or less by setting the thickness TB of the base portion 21 to 0.09 [mm] or less. It can be seen that the temperature difference ⁇ T can be reduced by about 65% or more compared to °C.
  • the thickness TB of the base portion 21 By setting the thickness TB of the base portion 21 to 0.09 [mm] or less, the heat of the grid structure 20 can be quickly transferred to the substrate 10, and the heat can be released from the substrate 10 to the outside more efficiently. Therefore, it was demonstrated that the reliability of the heat dissipation of the wire grid polarizing element 1 can be further improved.
  • the thickness TB of the base portion 21 is 0.045 [mm] or less.
  • the temperature difference ⁇ T can be suppressed to 10°C or less. % or more can reduce the temperature difference ⁇ T. Therefore, it can be seen that the thickness TB of the base portion 21 is more preferably 0.045 [mm] or less from the viewpoint of improving the reliability of heat dissipation.
  • the thickness TB of the base portion 21 is more preferably 0.045 [mm] or less from the viewpoint of improving the reliability of heat dissipation.
  • the thickness TB of the base portion 21 is more preferably 0.045 [mm] or less from the viewpoint of improving the reliability of heat dissipation.
  • the thickness TB of the base portion 21 is 0.002 [mm] or less.
  • the thickness TB of the base portion 21 is preferably 0.09 [mm] or less, and preferably 0.045 [mm] or less. It was demonstrated that it is more preferable to be 0.02 [mm] or less, and particularly preferable to be 0.02 [mm] or less.
  • PMMA was used as the material of the grid structure 20 in the above embodiment, it is not limited to such an example, and various organic materials other than PMMA may be used as the material of the grid structure of the present invention. .
  • Examples 31 to 38 and Comparative Examples 1 to 9 were prepared as photocurable acrylic resins for imprints.
  • Viscosity was measured using a cone plate in a Brookfield viscometer manufactured by Eiko Seiki Co., Ltd.
  • the cured products of the photocurable acrylic resins for imprints according to Examples 31 to 38 and Comparative Examples 1 to 9 were held at 120°C for 500 hours (heat treatment), and then the YI values were measured.
  • the YI value was calculated based on the results of measurement using an ultraviolet-visible-near-infrared spectrophotometer V-770 manufactured by JASCO Corporation.
  • the measurement conditions for calculating the YI value and the method for calculating the YI value were the same as in the above embodiment.
  • the average transmittance of the cured product to light in the region and the average transmittance of the cured product to light in the wavelength region of 430 nm or more and 510 nm or less were measured. Further, after the cured products of the photocurable acrylic resins for imprints according to Examples 3 to 38 and Comparative Examples 1 to 9 were held at 120° C.
  • the average transmittance of the cured product and the average transmittance of the cured product with respect to light in the wavelength region of 430 nm or more and 510 nm or less were measured.
  • the average transmittance was calculated by measuring the transmittance every 1 nm in the wavelength range of 430 nm or more and 680 nm or less, and simply averaging the obtained 251 measurement data.
  • the average transmittance was measured using an ultraviolet-visible-near-infrared spectrophotometer V-770 manufactured by JASCO Corporation.
  • Storage modulus at 30°C, storage modulus at 120°C, storage modulus at 130°C, and storage modulus at 140°C of the cured products of the photocurable acrylic resins for imprints according to Examples 31 to 38 and Comparative Examples 1 to 9 was measured.
  • the storage modulus was measured using DMA7100 manufactured by Hitachi High-Tech Corporation.
  • the cured photocurable acrylic resin sheets for imprints according to Examples 31 to 38 and Comparative Examples 1 to 9 were cut into pieces of 20 mm long and 3 mm wide. The temperature was raised at a rate of 5°C/min, and the storage modulus was measured from 25°C to 300°C.
  • the glass transition temperatures Tg of the cured products of the photocurable acrylic resins for imprints according to Examples 31 to 38 and Comparative Examples 1 to 9 were measured.
  • the glass transition temperature Tg was measured using DMA7100 manufactured by Hitachi High-Tech Corporation.
  • the cured photocurable acrylic resin sheets for imprints according to Examples 31 to 38 and Comparative Examples 1 to 9 were cut into pieces of 20 mm long and 3 mm wide. It was measured by increasing the temperature at 5°C/min and confirming the maximum loss tangent tan ⁇ between 25°C and 300°C.
  • compositions and viscosities of the photocurable acrylic resins for imprints of Examples 31 to 34 are shown in Table 5 below.
  • the YI value, average transmittance, storage modulus, and glass transition temperature Tg of the cured products of the photocurable acrylic resins for imprints according to Examples 31 to 34 are shown in Table 6 below.
  • compositions and viscosities of the photocurable acrylic resins for imprints of Examples 35 to 38 are shown in Table 7 below.
  • the YI value, average transmittance, storage modulus, and glass transition temperature Tg of the cured photocurable acrylic resins for imprints according to Examples 35 to 38 are shown in Table 8 below.
  • compositions and viscosities of the photocurable acrylic resins for imprints of Comparative Examples 1 to 3 are shown in Table 9 below.
  • the YI value, average transmittance, storage modulus, and glass transition temperature Tg of the cured photocurable acrylic resin for imprints according to Comparative Examples 1 to 3 are shown in Table 10 below.
  • compositions and viscosities of the photocurable acrylic resins for imprints of Comparative Examples 4 to 6 are shown in Table 11 below.
  • the YI value, average transmittance, storage modulus, and glass transition temperature Tg of the cured photocurable acrylic resin for imprints according to Comparative Examples 4 to 6 are shown in Table 12 below.
  • compositions and viscosities of the photocurable acrylic resins for imprints of Comparative Examples 7 to 9 are shown in Table 13 below.
  • the YI value, average transmittance, storage modulus, and glass transition temperature Tg of the cured photocurable acrylic resin for imprints according to Comparative Examples 7 to 9 are shown in Table 14 below.
  • the unit of content in Tables 5, 7, 9, 11 and 13 is % by mass. Also, the viscosities in Tables 5, 7, 9, 11 and 13 are viscosities [mPa ⁇ s] at 25°C.
  • Example 31 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • resin (A) "KAYARAD R-684" manufactured by Nippon Kayaku Co., Ltd. was used. 1,6-hexanediol diacrylate (HDDA) was used as the resin (B).
  • Isobornyl acrylate (IBOA) was used as the resin (C).
  • isobornyl acrylate “IBOA-B” manufactured by Daicel Allnex Co., Ltd. was used. Dipentaerythritol hexaacrylate (DPHA) was used as the resin (D).
  • the content of resin (A) in the entire photopolymerization component was 30% by mass
  • the content of resin (B) was 20% by mass
  • the content of resin (C) was 30% by mass
  • the content of the resin (D) was set to 20% by mass. That is, in Example 31, the total content of resin (A) and resin (B) in the entire photopolymerization component was 50% by mass, and the total content of resin (B) and resin (C) was 50% by mass. bottom.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Example 31 was 34.4 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 31 was 2.4. From the above results, it was confirmed that even if the cured product of Example 31 was subjected to heat treatment, a low YI value could be maintained.
  • the cured product of the photocurable acrylic resin for imprints of Example 31 had an average transmittance of 92.2% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 91.9%.
  • the cured product of the photocurable acrylic resin for imprints of Example 31 had an average transmittance of 91.7% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.7%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , -0.5%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 1.2%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 31 was 1.6 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 31 was 6.5 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 31 was 5.7 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 31 was 5.0 ⁇ 10 8 Pa.
  • the rate of change in the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 31 was 41.6%. rice field.
  • the change rate of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 31 was 36.4%. rice field.
  • the change rate of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 31 was 31.8%. rice field. From the above results, it was confirmed that the cured product of Example 31 had a high storage modulus of 1.6 ⁇ 10 9 Pa before heat treatment. Moreover, it was confirmed that even if the cured product of Example 31 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 31 was 142.6°C. From the above results, it was confirmed that the cured product of Example 31 had a high glass transition temperature Tg.
  • Example 32 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (B), resin (C), resin (D), and photopolymerization initiator are the same as in Example 31.
  • the content of resin (A) was 40% by mass
  • the content of resin (B) was 30% by mass
  • the content of resin (C) was 29% by mass
  • the content of resin (C) was 29% by mass.
  • the content of (D) was set to 1% by mass.
  • Example 32 the total content of resin (A) and resin (B) in the entire photopolymerization component was 70% by mass, and the total content of resin (B) and resin (C) was 59%. bottom.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. In other words, Example 32 differs from Example 31 only in the contents of the resins (A) to (D).
  • the viscosity of the photocurable acrylic resin for imprints of Example 32 was 17.4 mPa ⁇ s.
  • the photocurable acrylic resin for imprints of Example 32 has a higher total content of the resin (B) and the resin (C), and the resin ( The content of D) is low.
  • the viscosity of the photocurable acrylic resin for imprints of Example 32 is presumed to be lower than the viscosity of the photocurable acrylic resin for imprints of Example 31.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 32 was 1.9. From the above results, it was confirmed that even if the cured product of Example 32 was subjected to heat treatment, a low YI value could be maintained.
  • the photocurable acrylic resin for imprints of Example 32 has a higher total content of resin (A) and resin (B) than the photocurable acrylic resin for imprints of Example 31. From this, it is inferred that the YI value of the cured product of the photocurable acrylic resin for imprints of Example 32 was lower than the YI value of the cured product of the photocurable acrylic resin for imprints of Example 31.
  • the cured product of the photocurable acrylic resin for imprints of Example 32 had an average transmittance of 91.5% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 91.1%.
  • the cured product of the photocurable acrylic resin for imprints of Example 32 had an average transmittance of 91.4% for light in the wavelength range of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.5%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , -0.1%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 0.6%.
  • the photocurable acrylic resin for imprints of Example 32 has a higher total content of resin (A) and resin (B) than the photocurable acrylic resin for imprints of Example 31.
  • the difference ⁇ A in the average transmittance of the cured product of the photocurable acrylic resin for imprints of Example 32 is greater than the difference ⁇ A in the average transmittance of the cured product of the photocurable acrylic resin for imprints of Example 31. is also assumed to be smaller.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 32 was 2.0 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 32 was 6.2 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 32 was 5.6 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 32 was 5.0 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 32 was 30.9%. rice field.
  • the change rate of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 32 was 27.6%. rice field.
  • the change rate of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 32 was 25.0%. rice field. From the above results, it was confirmed that the cured product of Example 32 had a high storage modulus of 2.0 ⁇ 10 9 Pa before heat treatment. Further, it was confirmed that even if the cured product of Example 32 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 32 was 174.2°C. From the above results, it was confirmed that the cured product of Example 32 had a high glass transition temperature Tg.
  • Example 33 As shown in Table 5, Example 33 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (B), resin (C), resin (D), and photopolymerization initiator are the same as in Example 31.
  • the content of resin (A) was 20% by mass
  • the content of resin (B) was 40% by mass
  • the content of resin (C) was 30% by mass
  • the content of resin (C) was 30% by mass.
  • the content of (D) was set to 10% by mass.
  • Example 33 the total content of resin (A) and resin (B) in the entire photopolymerization component was 60% by mass, and the total content of resin (B) and resin (C) was 70% by mass. bottom.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. In other words, Example 33 differs from Example 31 only in the contents of the resins (A) to (D).
  • the viscosity of the photocurable acrylic resin for imprints of Example 33 was 19.13 mPa ⁇ s.
  • the photocurable acrylic resin for imprints of Example 33 has a higher total content of the resin (B) and the resin (C) than the photocurable acrylic resin for imprints of Example 31, and the resin ( The content of D) is low.
  • the viscosity of the photocurable acrylic resin for imprints of Example 33 is presumed to be lower than the viscosity of the photocurable acrylic resin for imprints of Example 31.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 33 was 1.5. From the above results, it was confirmed that even if the cured product of Example 33 was subjected to heat treatment, a low YI value could be maintained.
  • the photocurable acrylic resin for imprints of Example 33 has a higher total content of resin (A) and resin (B) than the photocurable acrylic resin for imprints of Example 31. As a result, the YI value of the cured product of the photocurable acrylic resin for imprints of Example 33 is presumed to be lower than the YI value of the cured product of the photocurable acrylic resin for imprints of Example 31.
  • the cured product of the photocurable acrylic resin for imprints of Example 33 had an average transmittance of 92.5% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before heat treatment was 91.7%.
  • the cured product of the photocurable acrylic resin for imprints of Example 33 had an average transmittance of 92.4% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 91.8%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , -0.1%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was +0.1%.
  • the photocurable acrylic resin for imprints of Example 33 has a higher total content of resin (A) and resin (B) than the photocurable acrylic resin for imprints of Example 31.
  • the difference ⁇ A in the average transmittance of the cured product of the photocurable acrylic resin for imprints of Example 33 is greater than the difference ⁇ A in the average transmittance of the cured product of the photocurable acrylic resin for imprints of Example 31. is also assumed to be smaller.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 33 was 2.1 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 33 was 7.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 33 was 5.9 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 33 was 5.0 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 33 was 33.4%. rice field.
  • the change rate of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 33 was 27.8%. rice field.
  • the change rate of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 33 was 23.5%. rice field. From the above results, it was confirmed that the cured product of Example 33 had a high storage modulus of 2.1 ⁇ 10 9 Pa before heat treatment. Moreover, it was confirmed that even if the cured product of Example 33 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 33 was 126.1°C. From the above results, it was confirmed that the cured product of Example 33 had a high glass transition temperature Tg.
  • Example 34 As shown in Table 5, Example 34 contains only resin (A), resin (B), and resin (C) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (B), resin (C), and photopolymerization initiator are the same as in Example 31.
  • the content of resin (A) was 40% by mass
  • the content of resin (B) was 30% by mass
  • the content of resin (C) was 30% by mass in the entire photopolymerizable components. That is, in Example 34, the total content of resin (A) and resin (B) in the entire photopolymerization component was 70% by mass, and the total content of resin (B) and resin (C) was 60%. bottom.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. In other words, Example 34 does not contain resin (D), unlike Examples 31-33.
  • the viscosity of the photocurable acrylic resin for imprints of Example 34 was 15.07 mPa ⁇ s.
  • the photocurable acrylic resin for imprints of Example 34 does not contain the resin (D) as compared with the photocurable acrylic resins for imprints of Examples 31-33.
  • the viscosity of the photo-curable acrylic resin for imprints of Example 34 is presumed to be lower than the viscosity of the photo-curable acrylic resins for imprints of Examples 31-33.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 34 was 1.3. From the above results, it was confirmed that even if the cured product of Example 34 was subjected to heat treatment, a low YI value could be maintained.
  • the photocurable acrylic resin for imprints of Example 34 has a higher total content of resin (A) and resin (B) than the photocurable acrylic resin for imprints of Example 31. As a result, the YI value of the cured product of the photocurable acrylic resin for imprints of Example 34 is presumed to be lower than the YI value of the cured product of the photocurable acrylic resin for imprints of Example 31.
  • the cured product of the photocurable acrylic resin for imprints of Example 34 had an average transmittance of 91.4% for light in the wavelength range of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before heat treatment was 90.5%.
  • the cured product of the photocurable acrylic resin for imprints of Example 34 had an average transmittance of 91.8% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less after the treatment was 91.2%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , +0.3%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was +0.7%.
  • the photocurable acrylic resin for imprints of Example 34 has a higher total content of resin (A) and resin (B) than the photocurable acrylic resin for imprints of Example 31.
  • the difference ⁇ A in the average transmittance of the cured product of the photocurable acrylic resin for imprints of Example 34 is greater than the difference ⁇ A in the average transmittance of the cured product of the photocurable acrylic resin for imprints of Example 31. is also assumed to be smaller.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 34 was 2.2 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 34 was 3.9 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 34 was 3.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 34 was 2.6 ⁇ 10 8 Pa.
  • the change rate of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 34 was 17.8%. rice field.
  • the change rate of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 34 was 14.0%.
  • the change rate of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 34 (storage elastic modulus at 140°C/storage elastic modulus at 30°C x 100%) was 11.9%. rice field.
  • the cured product of Example 34 had a high storage modulus of 2.2 ⁇ 10 9 Pa before heat treatment. Moreover, it was confirmed that even if the cured product of Example 34 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the photocurable acrylic resin for imprints of Example 34 does not contain the resin (D), unlike the photocurable acrylic resin for imprints of Example 32.
  • the change rate of the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints of Example 34 was lower than the change rate of the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints of Example 32. is also assumed to be smaller.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 34 was 115.5°C. From the above results, it was confirmed that the cured product of Example 34 had a high glass transition temperature Tg. Further, the photocurable acrylic resin for imprints of Example 34 does not contain the resin (D) as compared with the photocurable acrylic resin for imprints of Example 32. As a result, the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 34 was lower than the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 32. guessed.
  • Example 35 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (B), resin (C), resin (D), and photopolymerization initiator are the same as in Example 31.
  • the content of resin (A) was 30% by mass
  • the content of resin (B) was 30% by mass
  • the content of resin (C) was 30% by mass
  • the content of (D) was set to 10% by mass.
  • Example 35 the total content of the resin (A) and the resin (B) in the entire photopolymerization component was 60% by mass, and the total content of the resin (B) and the resin (C) was 60%. bottom.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. That is, Example 35 differs from Example 31 only in the content of resin (B) and resin (D).
  • the viscosity of the photocurable acrylic resin for imprints of Example 35 was 18.97 mPa ⁇ s.
  • the photocurable acrylic resin for imprints of Example 35 has a higher total content of the resin (B) and the resin (C) than the photocurable acrylic resin for imprints of Example 31, and the resin ( The content of D) is low.
  • the viscosity of the photocurable acrylic resin for imprints of Example 35 is presumed to be lower than that of the photocurable acrylic resin for imprints of Example 31.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 35 was 1.2. From the above results, it was confirmed that even if the cured product of Example 35 was subjected to heat treatment, a low YI value could be maintained.
  • the cured product of the photocurable acrylic resin for imprints of Example 35 had an average transmittance of 91.5% for light in the wavelength range of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 90.6%.
  • the cured product of the photocurable acrylic resin for imprints of Example 35 had an average transmittance of 91.7% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less after the treatment was 91.2%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , +0.2%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was +0.6%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 35 was 2.0 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 35 was 8.6 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 35 was 7.8 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 35 was 7.2 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 35 was 43.3%. rice field.
  • the change rate of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 35 was 39.5%. rice field.
  • the change rate of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 35 was 36.3%. rice field. From the above results, it was confirmed that the cured product of Example 35 had a high storage modulus of 2.0 ⁇ 10 9 Pa before heat treatment. Moreover, it was confirmed that even if the cured product of Example 35 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 35 was 181.3°C. From the above results, it was confirmed that the cured product of Example 35 had a high glass transition temperature Tg.
  • Example 36 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (B), resin (C), and photopolymerization initiator are the same as in Example 35.
  • M-9050 manufactured by Toagosei Co., Ltd. was used as the resin (D).
  • the contents of resin (A), resin (B), resin (C), and resin (D) in the entire photopolymerizable component are the same as in Example 35.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. That is, Example 36 differs from Example 35 only in the resin (D).
  • the viscosity of the photocurable acrylic resin for imprints of Example 36 was 23.02 mPa ⁇ s.
  • the viscosity of resin (D) of example 36 is higher than that of resin (D) of example 35. From this, it is inferred that the viscosity of the photocurable acrylic resin for imprints of Example 36 was higher than the viscosity of the photocurable acrylic resin for imprints of Example 35.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 36 was 0.8. From the above results, it was confirmed that even if the cured product of Example 36 was subjected to heat treatment, a low YI value could be maintained. In addition, since there is almost no difference in the YI value of the cured product of Example 35 and the cured product of Example 36, even if the resin (D) is a different substance, the cured product of the photocurable acrylic resin for imprinting is , a low YI value can be maintained.
  • the cured product of the photocurable acrylic resin for imprints of Example 36 had an average transmittance of 92.2% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 92.0%.
  • the cured product of the photocurable acrylic resin for imprints of Example 36 had an average transmittance of 92.6% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 92.2%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , +0.4%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was +0.2%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 36 was 2.2 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 36 was 8.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 36 was 7.3 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 36 was 6.7 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 36 was 37.1%. rice field.
  • the change rate of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 36 was 33.6%. rice field.
  • the change rate of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 36 was 30.8%. rice field. From the above results, it was confirmed that the cured product of Example 36 had a high storage modulus of 2.2 ⁇ 10 9 Pa before heat treatment. Further, it was confirmed that even if the cured product of Example 36 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 36 was 179°C. From the above results, it was confirmed that the cured product of Example 36 had a high glass transition temperature Tg. In addition, since there is almost no difference in the glass transition temperature Tg of the cured product of Example 35 and the cured product of Example 36, even if the resin (D) is a different substance, curing of the photocurable acrylic resin for imprinting The material was found to have a high glass transition temperature Tg.
  • Example 37 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (B), resin (C), and photopolymerization initiator are the same as in Example 35.
  • trimethylolpropane triacrylate (TMPTA) was used as resin (D).
  • the contents of resin (A), resin (B), resin (C), and resin (D) in the entire photopolymerizable component are the same as in Example 35.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. That is, Example 37 differs from Example 35 only in the resin (D).
  • the viscosity of the photocurable acrylic resin for imprints of Example 37 was 15.43 mPa ⁇ s.
  • the viscosity of resin (D) of example 37 is lower than that of resin (D) of example 35.
  • the viscosity of the photocurable acrylic resin for imprints of Example 37 is presumed to be lower than that of the photocurable acrylic resin for imprints of Example 35.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 37 was 0.9. From the above results, it was confirmed that even if the cured product of Example 37 was subjected to heat treatment, a low YI value could be maintained. In addition, since there is almost no difference in the YI value of the cured product of Example 35 and the cured product of Example 37, even if the resin (D) is a different substance, the cured product of the photocurable acrylic resin for imprinting is , a low YI value can be maintained.
  • the cured product of the photocurable acrylic resin for imprints of Example 37 had an average transmittance of 92.2% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 92.0%.
  • the cured product of the photocurable acrylic resin for imprints of Example 37 had an average transmittance of 92.6% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 92.2%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , +0.3%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was +0.1%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 37 was 2.1 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 37 was 7.8 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 37 was 7.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 37 was 6.3 ⁇ 10 8 Pa.
  • the change rate of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 37 was 37.9%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 37 was 34.2%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 37 was 30.4%. rice field. From the above results, it was confirmed that the cured product of Example 37 had a high storage modulus of 2.1 ⁇ 10 9 Pa before heat treatment. Further, it was confirmed that even if the cured product of Example 37 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 37 was 170°C. From the above results, it was confirmed that the cured product of Example 37 had a high glass transition temperature Tg. In addition, since there is almost no difference in the glass transition temperature Tg of the cured product of Example 35 and the cured product of Example 37, even if the resin (D) is a different substance, curing of the photocurable acrylic resin for imprinting The material was found to have a high glass transition temperature Tg.
  • Example 38 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), resin (C), resin (D), and photopolymerization initiator are the same as in Example 35.
  • 1,9-nonanediol diacrylate (NDDA) was used as the resin (B).
  • the contents of resin (A), resin (B), resin (C), and resin (D) in the entire photopolymerizable component are the same as in Example 35.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass. That is, Example 38 differs from Example 35 only in the resin (B).
  • the viscosity of the photocurable acrylic resin for imprints of Example 38 was 20.01 mPa ⁇ s.
  • the viscosity of resin (B) of Example 38 is higher than that of resin (B) of Example 35.
  • the viscosity of the photocurable acrylic resin for imprints of Example 38 is presumed to be higher than the viscosity of the photocurable acrylic resin for imprints of Example 35.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Example 38 was 1.0. From the above results, it was confirmed that even if the cured product of Example 38 was subjected to heat treatment, a low YI value could be maintained. In addition, since there is almost no difference in the YI value of the cured product of Example 35 and the cured product of Example 38, even if the resin (B) is a different substance, the cured product of the photocurable acrylic resin for imprinting is , a low YI value can be maintained.
  • the cured product of the photocurable acrylic resin for imprints of Example 38 had an average transmittance of 92.3% for light in the wavelength range of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 92.0%.
  • the cured product of the photocurable acrylic resin for imprints of Example 38 had an average transmittance of 92.4% for light in the wavelength range of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 91.9%.
  • the difference in average transmittance ⁇ A for light in the wavelength range of 430 nm or more and 680 nm or less before and after heat treatment is , +0.2%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 0.1%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Example 38 was 1.9 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Example 38 was 7.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Example 38 was 6.4 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Example 38 was 5.8 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Example 38 was 37.4%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Example 38 was 33.5%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Example 38 was 30.3%. rice field. From the above results, it was confirmed that the cured product of Example 38 had a high storage modulus of 1.9 ⁇ 10 9 Pa before heat treatment. Moreover, it was confirmed that even if the cured product of Example 38 was subjected to heat treatment, the decrease in storage elastic modulus was suppressed.
  • the glass transition temperature Tg of the cured product of the photocurable acrylic resin for imprints of Example 38 was 180.6°C. From the above results, it was confirmed that the cured product of Example 38 had a high glass transition temperature Tg. In addition, since there is almost no difference in the glass transition temperature Tg of the cured product of Example 35 and the cured product of Example 38, even if the resin (D) is a different substance, curing of the photocurable acrylic resin for imprinting The material was found to have a high glass transition temperature Tg.
  • the storage elastic modulus of the cured product of the photocurable acrylic resin for imprints at 30°C was 1.6 ⁇ 10 9 Pa or more, and the storage modulus of the cured product at 120°C The elastic modulus was confirmed to be 3.9 ⁇ 10 8 Pa or more.
  • Comparative Example 1 contains only resin (C), resin (D), and a bifunctional acrylate monomer as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (C) and the photoinitiator are the same as in Example 31.
  • dipentaerythritol hexaacrylate (DPHA) and "M-9050" manufactured by Toagosei Co., Ltd. were used as the resin (D).
  • DPHA dipentaerythritol hexaacrylate
  • M-9050 manufactured by Toagosei Co., Ltd.
  • "KAYARAD R-604" manufactured by Nippon Kayaku Co., Ltd. was used as a bifunctional acrylate monomer.
  • "KAYARAD R-604" has a viscosity of 200 mPa ⁇ s or more and 400 mPa ⁇ s or less at 25°C.
  • the content of "KAYARAD R-604" in the entire photopolymerization component was 20% by mass
  • the content of resin (C) was 20% by mass
  • the content of resin (D) was 60% by mass. %.
  • the content of dipentaerythritol hexaacrylate as resin (D) was set to 20% by mass
  • the content of M-9050 as resin (D) was set to 40% by mass. That is, in Comparative Example 1, the total content of acrylate monomers having a viscosity of 10 mPa ⁇ s or less at 25° C.
  • the total content of the resin (D) in the entire photopolymerization component was 60% by mass.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 1 was 717.5 mPa ⁇ s. From the above results, the photocurable acrylic resin for imprints of Comparative Example 1 has a total content of acrylate monomers of 10 mPa ⁇ s or less at 25° C. of less than 50% by mass, and contains resin (D). It was confirmed that the viscosity becomes high when the ratio exceeds 20% by mass.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 was 6.6. From the above results, it was confirmed that when the cured product of Comparative Example 1 was heat-treated, the YI value increased. Therefore, it was found that simply increasing the content of the resin (D) would increase the YI value after the heat treatment of the cured product.
  • the cured photocurable acrylic resin for imprints of Comparative Example 1 had an average transmittance of 91.5% for light in the wavelength range of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 90.6%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 had an average transmittance of 90.4% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 87.7%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -1.1%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 2.9%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 was 2.2 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 was 1.3 ⁇ 10 9 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 was 1.3 ⁇ 10 9 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 was 1.2 ⁇ 10 9 Pa.
  • the rate of change of the storage elastic modulus at 120° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 1 (120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 58.7%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 1 (storage elastic modulus at 130°C/storage elastic modulus at 30°C x 100%) was 56.6%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 1 was 54.6%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 1 had a glass transition temperature Tg of 115°C.
  • Comparative Example 2 contains only "KAYARAD R-604", resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • resin (B), resin (C), resin (D), and photopolymerization initiator are the same as in Example 3.
  • the content of "KAYARAD R-604" in the entire photopolymerization component was 40% by mass
  • the content of resin (B) was 10% by mass
  • the content of resin (C) was 30% by mass. %
  • the content of the resin (D) was 20% by mass.
  • Comparative Example 2 the total content of acrylate monomers (resin (B)+resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C. in the entire photopolymerizable component was 40% by mass.
  • the total content of bifunctional acrylate monomers (“KAYARAD R-604” + resin (B)) was 50% by mass.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 2 was 26.25 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 was 4.6. From the above results, it was confirmed that when the cured product of Comparative Example 2 was heat-treated, the YI value increased. Therefore, it was found that if the resin (A) was not included, the YI value after the heat treatment of the cured product would increase.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 had an average transmittance of 92.4% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 92.2%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 had an average transmittance of 91.5% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 89.6%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.9%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 2.7%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 was 2.5 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 was 9.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 was 8.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 was 7.1 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 2 was 36.5%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 2 was 32.2%. rice field.
  • the rate of change of the storage elastic modulus at 140° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 2 (140° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 28.5%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 2 had a glass transition temperature Tg of 168.3°C.
  • Comparative Example 3 contains only "KAYARAD R-604", resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the photopolymerization component and the photopolymerization initiator are the same as in Comparative Example 2.
  • the content of "KAYARAD R-604" in the entire photopolymerization component was 40% by mass
  • the content of resin (B) was 10% by mass
  • the content of resin (C) was 40% by mass.
  • the content of the resin (D) was set to 10% by mass. That is, Comparative Example 3 differs from Comparative Example 2 only in the content of resin (C) and resin (D).
  • Comparative Example 3 the total content of acrylate monomers (resin (B)+resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C. in the entire photopolymerizable component was 50% by mass. In Comparative Example 3, the total content of bifunctional acrylate monomers (KAYARAD R-604+Resin (B)) was 50% by mass. In Comparative Example 3, the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 3 was 39.6 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 was 3.9. From the above results, it was confirmed that when the cured product of Comparative Example 3 was heat-treated, the YI value increased. Therefore, it was found that if the resin (A) was not included, the YI value after the heat treatment of the cured product would increase.
  • the cured photocurable acrylic resin for imprints of Comparative Example 3 had an average transmittance of 92.7% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 92.5%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 had an average transmittance of 91.9% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.3%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.8%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 2.3%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 was 2.0 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 was 3.3 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 was 2.6 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 was 2.1 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 3 (120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 16.7%. rice field.
  • the rate of change of the storage elastic modulus at 130° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 3 (130° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 13.3%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 3 was 11.0%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 3 had a glass transition temperature Tg of 113.6°C.
  • Comparative Example 4 contains only resin (A), resin (B), resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the photopolymerization component and the photopolymerization initiator are the same as in Example 31.
  • the content of the resin (A) was 40% by mass
  • the content of the resin (B) was 40% by mass
  • the content of the resin (C) was 10% by mass
  • the resin The content of (D) was set to 10% by mass.
  • Comparative Example 4 the total content of acrylate monomers (resin (B)+resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C. in the entire photopolymerizable component was 50% by mass. In Comparative Example 4, the total content of bifunctional acrylate monomers (resin (A) + resin (B)) was 80% by mass. In Comparative Example 4, the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 4 was 35 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 was 3.6. From the above results, it was confirmed that when the cured product of Comparative Example 4 was subjected to heat treatment, the YI value increased. Therefore, even if the content of the resin (A) with respect to the entire photopolymerization component is 20% by mass or more and 40% by mass or less, the total amount of the resin (A) and the resin (B) with respect to the entire photopolymerization component It has been found that if the content exceeds 70% by mass, the YI value of the cured product after heat treatment increases.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 had an average transmittance of 91.5% for light in the wavelength range of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 90.4%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 had an average transmittance of 91.2% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment.
  • the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 89.7%. From the above results, even if the content of the resin (A) with respect to the entire photopolymerization component is 20% by mass or more and 40% by mass or less, the resin (A) and the resin (B) with respect to the entire photopolymerization component When the total content of is more than 70% by mass, it has been confirmed that the average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less after heat treatment of the cured product becomes low. rice field.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.3%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 0.6%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 was 2.3 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 was 1.0 ⁇ 10 9 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 was 9.1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 was 8.3 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 4 (120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 44.2%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 4 (storage elastic modulus at 130°C/storage elastic modulus at 30°C x 100%) was 39.5%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 4 (storage elastic modulus at 140°C/storage elastic modulus at 30°C x 100%) was 36.3%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 4 had a glass transition temperature Tg of 128°C.
  • Comparative Example 5 contains only "KAYARAD R-604", resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (C), resin (D), and photopolymerization initiator are the same as in Example 36.
  • the content of "KAYARAD R-604" in the entire photopolymerization component was 50% by mass
  • the content of resin (C) was 30% by mass
  • the content of resin (D) was 20% by mass. bottom. That is, in Comparative Example 5, the total content of acrylate monomers (resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C.
  • the total content of bifunctional acrylate monomers (“KAYARAD R-604”) was 50% by mass.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 5 was 192.5 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 was 3.5. From the above results, it was confirmed that when the cured product of Comparative Example 5 was heat-treated, the YI value increased. Therefore, it was found that if the resin (A) was not included, the YI value after the heat treatment of the cured product would increase.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 had an average transmittance of 92.1% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 91.8%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 had an average transmittance of 91.4% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.0%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.7%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 1.8%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 was 1.8 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 was 5.2 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 was 4.5 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 was 3.9 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 5 was 28.5%. rice field.
  • the rate of change of the storage elastic modulus at 130° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 5 was 24.7%. rice field.
  • the rate of change of the storage elastic modulus at 140° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 5 (140° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 21.2%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 5 had a glass transition temperature Tg of 169.6°C.
  • Comparative Example 6 contains only "KAYARAD R-604", resin (C), and resin (D) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (C), resin (D), and photoinitiator are the same as in Example 31.
  • the content of "KAYARAD R-604" in the entire photopolymerization component was 70% by mass
  • the content of resin (C) was 20% by mass
  • the content of resin (D) was 10% by mass. bottom. That is, in Comparative Example 6, the total content of acrylate monomers (resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C.
  • the total content of bifunctional acrylate monomers (“KAYARAD R-604”) was 70% by mass.
  • the content of the photopolymerization initiator was set to 1% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 6 was 245 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 was 3.1. From the above results, it was confirmed that when the cured product of Comparative Example 6 was heat-treated, the YI value increased. Therefore, it was found that if the resin (A) was not included, the YI value after the heat treatment of the cured product would increase.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 had an average transmittance of 91.8% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 90.6%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 had an average transmittance of 91.6% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.4%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.1%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 0.2%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 was 2.4 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 was 7.5 ⁇ 10 8 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 was 6.4 ⁇ 10 8 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 was 5.6 ⁇ 10 8 Pa.
  • the rate of change of the storage elastic modulus at 120° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 6 (120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 31.6%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 6 (storage elastic modulus at 130°C/storage elastic modulus at 30°C x 100%) was 27.1%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 6 was 23.5%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 6 had a glass transition temperature Tg of 164.1°C.
  • Comparative Example 7 contains only resin (A) and resin (C) as photopolymerization components, and IGM Resins B.I. V. including "Irgacure TPO" manufactured by In Comparative Example 7, benzyl acrylate was used as the resin (C). Benzyl acrylate "V#160” manufactured by Osaka Organic Chemical Industry Co., Ltd. was used as benzyl acrylate. Benzyl acrylate has a viscosity of 2.2 mPa ⁇ s at 25°C. In Comparative Example 7, the content of resin (A) was set to 25% by mass and the content of resin (C) was set to 75% by mass in the entire photopolymerizable components.
  • Comparative Example 7 the total content of acrylate monomers (resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C. in the entire photopolymerizable component was 75% by mass. In Comparative Example 7, the total content of bifunctional acrylate monomers (resin (A)) was 25% by mass. In Comparative Example 7, the content of the photopolymerization initiator was set to 3% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 7 was 4.2 mPa ⁇ s.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 had an average transmittance of 91.4% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less before heat treatment was 91.2%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 had an average transmittance of 91.1% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.5%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.3%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 0.7%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 was 7.3 ⁇ 10 8 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 was 1.2 ⁇ 10 7 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 was 1.3 ⁇ 10 7 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 was 1.4 ⁇ 10 7 Pa.
  • the rate of change of the storage elastic modulus at 120° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 7 (120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 1.7%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 7 (storage elastic modulus at 130°C/storage elastic modulus at 30°C x 100%) was 1.8%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 7 was 1.9%. rice field. From the above results, it was confirmed that the cured product of Comparative Example 7 had a low storage elastic modulus of 7.3 ⁇ 10 8 Pa before heat treatment. Moreover, it was confirmed that when the cured product of Comparative Example 7 was subjected to heat treatment, the storage elastic modulus was remarkably lowered. Therefore, it was confirmed that the storage elastic modulus significantly decreased when the resin (B) was not contained.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 7 had a glass transition temperature Tg of 35.4°C. From the above results, it was confirmed that the glass transition temperature Tg of the cured product of Comparative Example 7 was remarkably low because the resin (B) was not contained.
  • Comparative Example 8 contains only resin (A) and resin (C) as photopolymerization components, and further contains a photopolymerization initiator.
  • the resin (A), the resin (C), and the photopolymerization initiator are the same as in Comparative Example 7. That is, Comparative Example 8 differs from Comparative Example 7 only in the content of resin (A) and resin (C).
  • the content of resin (A) was set to 40% by mass and the content of resin (C) was set to 60% by mass in the entire photopolymerization component.
  • Comparative Example 8 the total content of acrylate monomers (resin (C)) having a viscosity of 10 mPa ⁇ s or less at 25° C. in the entire photopolymerizable component was 60% by mass. In Comparative Example 8, the total content of bifunctional acrylate monomers (resin (A)) was 40% by mass. In Comparative Example 8, the content of the photopolymerization initiator was set to 3% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 8 was 6.6 mPa ⁇ s.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 had an average transmittance of 91.6% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before heat treatment was 91.3%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 had an average transmittance of 91.2% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 90.6%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -0.4%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 0.7%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 was 2.1 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 was 3.0 ⁇ 10 7 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 was 3.1 ⁇ 10 7 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 was 3.2 ⁇ 10 7 Pa.
  • the rate of change of the storage elastic modulus at 120°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 8 was 1.4%. rice field.
  • the rate of change of the storage elastic modulus at 130°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 8 was 1.5%. rice field.
  • the rate of change of the storage elastic modulus at 140° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 8 (140° C. storage elastic modulus/30° C.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 8 had a glass transition temperature Tg of 46°C. From the above results, it was confirmed that the glass transition temperature Tg of the cured product of Comparative Example 8 was remarkably low because the resin (B) was not contained.
  • Comparative Example 9 contains only resin (B), resin (D), and a monofunctional monomer as photopolymerization components, and IGM Resins B.I. V. including "Irgacure TPO" manufactured by In Comparative Example 9, 1,9-nonanediol diacrylate (NDDA) was used as the resin (B). Moreover, trimethylolpropane triacrylate (TMPTA) was used as the resin (D). N-vinyl-2-pyrrolidone was used as a monofunctional monomer. N-vinyl-2-pyrrolidone has a viscosity of 1.7 mPa ⁇ s at 25°C.
  • Comparative Example 9 the content of resin (B) was 33% by mass, the content of resin (D) was 33% by mass, and the content of N-vinyl-2-pyrrolidone was 32% by mass in the entire photopolymerization component. and That is, in Comparative Example 9, the total content of acrylate monomers (resin (B) + monofunctional monomers) having a viscosity of 10 mPa ⁇ s or less at 25°C in the entire photopolymerizable component was 65% by mass. In Comparative Example 9, the total content of bifunctional acrylate monomers (resin (B)) was 33% by mass. In Comparative Example 9, the content of the photopolymerization initiator was set to 2% by mass when the content of the entire photopolymerization component was set to 100% by mass.
  • the viscosity of the photocurable acrylic resin for imprints of Comparative Example 9 was 7.9 mPa ⁇ s.
  • the YI value of the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 was 5.8. From the above results, it was confirmed that when the cured product of Comparative Example 9 was heat-treated, the YI value increased. Therefore, it was found that if the resin (A) was not included, the YI value after the heat treatment of the cured product would increase.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 had an average transmittance of 92.0% for light in the wavelength region of 430 nm or more and 680 nm or less before heat treatment. and the average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before heat treatment was 91.7%.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 had an average transmittance of 90.5% for light in the wavelength region of 430 nm or more and 680 nm or less after the heat treatment. The average transmittance for light in the wavelength range of 430 nm or more and 510 nm or less after the treatment was 87.8%.
  • the difference ⁇ A in the average transmittance for light in the wavelength range of 430 nm or more and 680 nm or less before and after the heat treatment is , -1.5%.
  • the difference ⁇ A in average transmittance for light in the wavelength region of 430 nm or more and 510 nm or less before and after the heat treatment was ⁇ 3.9%.
  • the storage elastic modulus at 30° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 was 2.4 ⁇ 10 9 Pa.
  • the storage elastic modulus at 120° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 was 1.5 ⁇ 10 9 Pa.
  • the storage elastic modulus at 130° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 was 1.4 ⁇ 10 9 Pa.
  • the storage elastic modulus at 140° C. of the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 was 1.3 ⁇ 10 9 Pa.
  • the rate of change of the storage elastic modulus at 120° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 9 (120° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 61.0%. rice field.
  • the rate of change of the storage elastic modulus at 130° C. with respect to the storage elastic modulus at 30° C. of the cured product of Comparative Example 9 (130° C. storage elastic modulus/30° C. storage elastic modulus ⁇ 100%) was 57.3%. rice field.
  • the rate of change of the storage elastic modulus at 140°C with respect to the storage elastic modulus at 30°C of the cured product of Comparative Example 9 was 52.8%. rice field.
  • the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 had a glass transition temperature Tg of 180.1°C.
  • Tables 15 and 16 below show the evaluation of heat resistance and viscosity of Examples 31 to 38 and Comparative Examples 1 to 9 in two stages.
  • the heat resistance evaluation the heat resistance was evaluated based on the optical properties after the heat treatment and the shape after the heat treatment.
  • the optical properties after the heat treatment if the YI value after the heat treatment of the cured product of the photocurable acrylic resin for imprinting at 120° C. for 500 hours is 3 or less, the evaluation is given as “ ⁇ ”. When it was more than 3, it was set as evaluation "x".
  • nanoimprint molding is performed on the substrate using the master plate and a photocurable acrylic resin for imprinting to form a fine relief structure on the substrate, and the cured product is held at 120°C for 500 hours.
  • the cross section of the cured product was observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the viscosity was evaluated based on the conformability of the uncured photocurable acrylic resin for imprinting to the master plate and the appearance.
  • a master with a known fine uneven structure (cross-sectional structure) was prepared, and nanoimprinting was performed on the substrate using the master and the photocurable acrylic resin for imprinting. After molding, the cross-section of the fine relief structure on the substrate was observed with a transmission electron microscope. As a result, when the fine uneven structure formed on the substrate was similar to the fine uneven structure of the master, the followability was evaluated as " ⁇ ", and the fine uneven structure on the substrate was found to be the fine uneven structure of the master.
  • the cured products of the photocurable acrylic resins for imprints of Examples 31 to 38 were evaluated as " ⁇ " in terms of the optical properties after heat treatment and the shape after heat treatment.
  • the photocurable acrylic resins for imprints of Examples 31 to 38 were evaluated as “good” also in terms of followability to the master plate and appearance. From the above evaluation, it was confirmed that the photocurable acrylic resins for imprints of Examples 31 to 38 had both heat resistance and low viscosity.
  • Comparative Examples 2 to 4 As shown in Table 16, the cured products of the photocurable acrylic resins for imprints of Comparative Examples 2 to 4 were evaluated as "x" in optical properties after heat treatment. From the above evaluation, it was confirmed that Comparative Examples 2 to 4 had low heat resistance although they had low viscosity.
  • Comparative Example 1 had low heat resistance and high viscosity.
  • Comparative Examples 7 and 8 As shown in Table 16, the cured products of the photocurable acrylic resin for imprints of Comparative Examples 7 and 8 were evaluated as "x" in terms of shape after heat treatment. From the above evaluation, it was confirmed that Comparative Examples 7 and 8 had low heat resistance although they had low viscosity.
  • Comparative Example 9 As shown in Table 16, the cured product of the photocurable acrylic resin for imprints of Comparative Example 9 was evaluated as "x" in optical properties after heat treatment. From the above evaluation, it was confirmed that Comparative Example 9 had low heat resistance although it had low viscosity.
  • a polarizing element that has good polarizing properties, does not cause deterioration in heat dissipation and manufacturing costs, and has excellent transmittance for light with a wide range of incident angles, and a method for manufacturing the polarizing element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】放熱性に優れるとともに、広範囲な入射角度の斜入射光に対する透過性及び偏光分離特性に優れたワイヤグリッド偏光素子を提供する。 【解決手段】ワイヤグリッド偏光素子1は、無機材料からなる基板10と、有機材料からなり、基板10上に設けられるベース部21と複数の凸条部22とが一体形成されたグリッド構造体20と、金属材料からなり、凸条部22の一部を被覆する機能膜30と、を備える。凸条部22は、ベース部21から離れるにつれて幅が狭くなる先細り形状を有する。機能膜30は、凸条部22の頂部を覆い包み、かつ、凸条部22の底部側及びベース部21を被覆していない。機能膜30による凸条部22の側面の被覆率(Rc)は、30%以上、70%以下である。前記有機材料は、光重合成分を含むインプリント用光硬化性アクリルレジンの硬化物である。

Description

ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン
 本発明は、良好な偏光特性を有し、放熱性や製造時のコストの悪化を招くことがなく、斜めからの入射光及び広範囲な入射角度の入射光に対する透過性に優れたワイヤグリッド偏光素子及びワイヤグリッド偏光素子の製造方法、並びに、偏光特性及び耐熱性に優れた投影表示装置及び該投影表示装置を備えた車両、並びに、インプリント用光硬化性アクリルレジンに関するものである。
 投影表示装置の1つとして、近年、車両のフロントガラスやコンバイナ等の半透過板(以下、総称して「表示面」という。)に、映像を表示する、車両用ヘッドアップディスプレイ装置が多く開発されている。車両用ヘッドアップディスプレイ装置は、例えば、車両のダッシュボードに配設され、映像光をフロントガラスに投影し、運転情報を虚像として表示する映像表示装置である。運転者は、虚像を、フロントガラスを通した風景と同時に視認することができるため、フロントガラスの範囲外に設置される従来の液晶ディスプレイ等の表示装置と比較して、運転者の視線の移動が少ないという利点がある。
 ただし、上述したヘッドアップディスプレイ装置は、表示画像を下方からフロントガラス面(上方)へ向けて出射するものであるため、表示画像の出射方向と逆向きに太陽光が入り込み、表示素子へ入射することがあった。ヘッドアップディスプレイ装置では、小型化の要求や表示画像の拡大を目的として、表示画像を反射、拡大するための反射器が設けられている場合が多い。このような場合には、ヘッドアップディスプレイ装置に入射した太陽光が表示素子近傍で集光することになり、熱によって表示素子の劣化や故障を引き起こすおそれがあった。
 そのため、表示素子への太陽光の入射を防ぐことを目的として、ヘッドアップディスプレイ装置中に、反射型偏光素子を設ける技術が開発されている。例えば、特許文献1には、反射器と表示素子との間に、反射型偏光素子(ワイヤグリッド偏光板)を設けたヘッドアップディスプレイ装置が開示されている。
 ここで、上述したようなヘッドアップディスプレイ装置に設けられる偏光素子としては、例えば、複屈折性樹脂からなる偏光素子や、透明基板上に複数の導電体(金属細線)が平行に延在したワイヤグリッド型偏光素子、コレステリック相液晶からなる偏光素子等が挙げられる。これらの中でも、偏光特性に優れるワイヤグリッド型偏光素子が多く用いられている。ワイヤグリッド型偏光素子では、金属等で構成された導電体線が特定のピッチで格子状に配列されたワイヤグリッドが形成されている。該ワイヤグリッドの配列ピッチを、入射光(例えば、可視光)の波長に比べて小さいピッチ(例えば、2分の1以下)とすることで、導電体線に対して平行に振動する電場ベクトル成分の光をほとんど反射させ、導電体線に対して垂直な電場ベクトル成分の光をほとんど透過させることができる。この結果、ワイヤグリッド型偏光素子は、単一偏光を作り出す偏光素子として使用でき、透過しない光を反射させて再利用することができるため、光の有効利用の観点からも望ましい。なお、ここでいう偏光素子とは、入射光をS偏光とP偏光に分離する偏光ビームスプリッタとして使用可能な偏光素子を含む。
 このようなワイヤグリッド型偏光素子として、例えば特許文献2には、格子状凸部を有する樹脂基材と、樹脂基材の格子状凸部を覆うように設けられた誘電体層と、誘電体層上に設けられた金属ワイヤと、を備えたワイヤグリッド偏光板が開示されている。
 また、特許文献3には、樹脂等からなり、表面に特定方向に延在する凹凸構造が設けられた基材と、凹凸構造の凸部の一方の側面に偏在するように設けられた導電体とを有するワイヤグリッド偏光板が開示されている。当該ワイヤグリッド偏光板では、凹凸構造の延在方向に対して垂直方向の断面視において、隣接する2つの凸部の間隔であるピッチ及び凸部の高さが調整されている。
 さらに、特許文献4には、反射型液晶表示素子と、反射型ワイヤグリッド偏光板を偏光ビームスプリッタとして用いた投射型映像表示装置が開示されている。当該特許文献4に記載の反射型液晶表示素子を用いた投射型映像表示装置では、光源からの出射光の光軸に対し反射型ワイヤグリッド偏光板が斜め45°程度に配置される。光源からの出射光は、反射型ワイヤグリッドに対して斜め45°程度の入射角度で入光することで、第1の偏光(反射光)と第2の偏光(透過光)に分離される。次いで、反射型ワイヤグリッド偏光板で反射された第1の偏光は、反射型液晶表示素子により変調及び反射されて、第2の偏光となり、当該第2の偏光が反射型ワイヤグリッド偏光板を透過して、投影表示される。
 また、特許文献5には、反射型ワイヤグリッド偏光板を偏光ビームスプリッタとして用いた車両用前照灯が開示されている。特許文献5に記載の車両用前照灯でも、光源からの出射光の光軸に対し反射型ワイヤグリッド偏光板が斜め45°程度に配置されている。光源からの出射光が反射型ワイヤグリッドに斜め45°程度の入射角度で入光することで、第1の偏光(反射光)と第2の偏光(透過光)に分離される。
 上記の特許文献4に記載の投射型映像表示装置及び特許文献5に記載の車両用前照灯など、光源からの出射光に対し反射型ワイヤグリッド偏光板が斜め45°程度に配置される場合、入射光は、反射型ワイヤグリッド偏光板に対して45°という単一の入射角度で入射するだけでなく、45°±15°程度の範囲の入射角度で入射する。
 また、特許文献6には、全体が銀又はアルミニウムからなる複数のグリッドが基板上に突出形成されたワイヤグリッド偏光ビームスプリッタが開示されている。
 また、特許文献7には、光透過性基板と、下地層と、金属細線とを有するワイヤグリッド型偏光子が開示されている。この特許文献7のワイヤグリッド型偏光子において、光透過性基板は、表面に複数の凸条が互いに平行にかつ所定のピッチで形成されている。下地層は、凸条の少なくとも頂部に存在する金属酸化物からなり、金属細線は、下地層の表面上でかつ凸条の少なくとも頂部に存在する金属層からなる。
特開2018-72507号公報 特開2008-83657号公報 特開2017-173832号公報 特開2004-184889号公報 特開2019-50134号公報 特表2003-508813号公報 国際公開第2010/005059号
 ところで、一般的に車両で使用される機器に求められる温度環境は-40~105℃であるが、特に夏場の車内のダッシュボードに搭載されたヘッドアップディスプレイ等のように、高温環境下で使用されることを考えた場合、高い耐熱性及び放熱性が必要となる。この点、特許文献1~3に記載のワイヤグリッド偏光板では、耐熱性及び放熱性の面でさらなる改善の要求があった。また、特許文献5に記載の車両用前照灯で夜道を明るく照らすためには、車両用前照灯の高輝度化が必須である。このため、特許文献5に記載のワイヤグリッド偏光板には、光源からの熱に対する高い耐熱性及び放熱性が要求される。
 さらに、従来のワイヤグリッド偏光素子は、その表面の凹凸形状が、一般的にフォトリソグラフィ技術やエッチング技術によって形成されることから、製造コストの高騰や大量生産に向かないという課題もあった。
 そして、ヘッドアップディスプレイ装置等の投影表示装置において、反射型ワイヤグリッド偏光素子を偏光ビームスプリッタとして用いて、第1の偏光(S偏光)と第2の偏光(P偏光)に分離する場合、第1の偏光の反射率及び第2の偏光の透過率の双方が高いことが求められる。ここで、第1の偏光(S偏光)の反射軸反射率(Rs)と、第2の偏光(P偏光)の透過軸透過率(Tp)との積(Tp×Rs)を、偏光分離特性の指標として用いる場合、このTp×Rsの値が高い方が好ましい。ただし、偏光ビームスプリッタが適用される投影表示装置の種類によって、偏光ビームスプリッタにおける偏光の扱いが異なり、第1の偏光(S偏光)が透過光となり、第2の偏光(P偏光)は反射光となる場合もある。
 また、偏光ビームスプリッタに対する入射光の入射角度は、45°という単一の角度だけでなく、45°を中心とした45°±15°程度の範囲に広がっており、幅広い入射角度の光が偏光ビームスプリッタに入射される。このため、斜め方向から入射される入射光(以下、斜入射光という。)の入射角度に依存せずに、斜入射光に対して良好な偏光分離特性を発揮できることも、偏光ビームスプリッタに求められる。
 しかしながら、従来の反射型ワイヤグリッド偏光素子の構造の場合、斜入射光の入射角度が大きくなるにつれ、第2の偏光(P偏光)の透過軸透過率(Tp)が低下してしまい、斜入射光に対する偏光分離特性が低下するという問題があった。例えば、特許文献6に記載のようにグリッドの凸部全体を導電体で構成する場合や、特許文献3に記載のようにワイヤグリッドの凸部の一方の側面全体に偏在する導電体(反射膜)を設ける場合を考える。これらの場合、斜入射光の入射角度が大きくなるにつれ、第2の偏光(P偏光)の透過軸透過率(Tp)が低下し、上記Tp×Rsが低下してしまう。このため、光の利用効率が悪化し、輝度ムラなどの画質低下が問題となっていた。したがって、特許文献3、6等に記載の従来の反射型ワイヤグリッド偏光素子の構造では、大きくかつ広範囲の入射角度の斜入射光に対する偏光分離特性に改善の余地があった。
 また、特許文献7には、金属層(反射膜)による凸条の側面の被覆率が、50%以上、70%以上であることが好ましく、100%であることが特に好ましいことが記載されている。さらに、特許文献7には、当該凸条の側面を被覆する金属層の面積が広くなると、ワイヤグリッド型偏光子の裏面側から入射する光に対してさらに低いS偏光反射率を実現でき、表面側から入射するS偏光を効率よく反射でき、ワイヤグリッド型偏光子が高い偏光分離能を発揮することが記載されている。
 しかしながら、特許文献7に記載のようにワイヤグリッドの凸条の側面を被覆している金属層の面積が広い場合、斜入射光の入射角度が大きいとき、特に45~60°であるときに、第2の偏光(P偏光)の透過軸透過率(Tp)が大幅に低下し、上記Tp×Rsも大幅に低下してしまう。このため、光の利用効率が悪化し、輝度ムラなどの画質低下が問題となっていた。したがって、特許文献7に記載のワイヤグリッド型偏光子の構造でも、大きくかつ広範囲の入射角度の斜入射光に対する偏光分離特性に改善の余地があった。
 上記のように、大きくかつ広範囲の入射角度の斜入射光に対して、優れた偏光分離特性を有することが望まれているところ、従来の反射型ワイヤグリッド偏光素子では、広い範囲の入射角度、特に、45°以上の大きな入射角度の光に対して十分な透過性を確保できておらず、斜入射光に対する透過性と偏光分離特性にさらなる改良が望まれていた。
 そこで、本発明は、かかる事情に鑑みてなされたものであって、放熱性に優れるとともに、広範囲な入射角度の斜入射光に対する透過性及び偏光分離特性に優れたワイヤグリッド偏光素子、当該偏光素子の製造方法、並びに、当該偏光素子を備えた投影表示装置及び車両、並びに、インプリント用光硬化性アクリルレジンを提供することを目的とする。
 本発明者は、上記の課題を解決するべく鋭意研究を重ねた結果、以下の知見を見出した。まず、ワイヤグリッド偏光素子の基板を透明な無機材料で形成するとともに、当該基板上に設けられるグリッド構造体を透明な有機材料で一体形成する。これによって、ワイヤグリッド偏光素子を有機材料と無機材料からなるハイブリッド型の構造にすることができる。この結果、ワイヤグリッド偏光素子の放熱性を大幅に改善することができる。
 さらに、上記グリッド構造体として、基板の表面に沿って設けられるベース部と、当該ベース部から突出する複数の凸条部とが一体形成されたグリッド構造体を用いる。これにより、当該グリッド構造体は、ナノインプリント等の技術によって形成可能であるため、フォトリソグラフィ技術やエッチング技術を用いる場合に比べて、グリッド構造体の製造コストを低減でき、大量生産も可能となる。
 さらに、グリッド構造体の凸条部上に、光を反射する反射膜、もしくは光を吸収する吸収膜などの機能膜を設ける際、当該機能膜による凸条部の被覆範囲と被覆形態を好適に調整する。即ち、凸条部の先端及び片側又は両側の側面の上部側を、機能膜で包み込むように被覆し、一方、凸条部の側面の下部側やベース部の表面を、機能膜で被覆せずに、開放する。そして、機能膜は、丸みを帯びて、凸条部の幅方向に膨出するような形状で、凸条部の先端及び側面の上部側を覆い包むようにする。さらに、凸条部と、当該凸条部を覆い包む機能膜とを合わせたグリッドの最大幅(WMAX)が、凸条部の底部の幅(W)以上になるように、凸条部と機能膜の形状及び大きさを調整する。さらに、機能膜が凸条部の側面を被覆する範囲を、当該側面の上部側の特定範囲(例えば、凸条部の高さ(H)の25%以上、80%以下の範囲)に限定することが好ましい。
 これにより、大きく広い範囲の入射角度の斜入射光がワイヤグリッド偏光素子に入射される場合であっても、ワイヤグリッド偏光素子における第2の偏光(P偏光)の透過率(Tp)が、入射角度に依存して低下することを抑制できる。したがって、ワイヤグリッド偏光素子における第1の偏光(S偏光)の反射軸反射率(Rs)と、第2の偏光(P偏光)の透過軸透過率(Tp)との積(Tp×Rs)を、高い値に維持することができる。よって、ワイヤグリッド偏光素子を例えば偏光ビームスプリッタとして用いた場合に、入射角度が大きくかつ広い範囲の斜入射光に対しても、十分な透過性及び偏光分離特性を得ることができる。
 本発明者は、上記の知見に基づき、以下の発明に想到した。
 上記課題を解決するため、本発明のある観点によれば、
 無機材料からなる基板と、
 有機材料からなり、前記基板上に設けられるベース部と、前記ベース部から突出する複数の凸条部とが一体形成されたグリッド構造体と、
 金属材料からなり、前記凸条部の一部を被覆する機能膜と、
を備え、
 前記凸条部は、前記ベース部から離れるにつれて幅が狭くなる先細り形状を有し、
 前記機能膜は、前記凸条部の先端及び少なくとも一方の側面の上部側を覆い包み、かつ、前記凸条部の両側面の下部側及び前記ベース部を被覆しておらず、
 前記機能膜による前記凸条部の側面の被覆率(Rc)が、前記凸条部の高さ(H)に対する、前記凸条部の側面のうち前記機能膜により被覆された部分の高さ(Hx)の割合であるとき、前記被覆率(Rc)は、30%以上、70%以下であり、
 前記有機材料は、光重合成分を含むインプリント用光硬化性アクリルレジンの硬化物であり、
 前記光重合成分は、
 樹脂(A)と、
 樹脂(B)と、
を含み、
 前記樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートであり、
 前記樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーであり、
 前記光重合成分全体に対する、前記樹脂(A)の含有率が、20質量%以上、40質量%以下であり、
 前記光重合成分全体に対する、前記樹脂(A)および前記樹脂(B)の合計の含有率が、70質量%以下である、
ワイヤグリッド偏光素子が提供される。
 25℃における前記インプリント用光硬化性アクリルレジンの粘度は、35mPa・s以下であるようにしてもよい。
 前記光重合成分は、樹脂(C)をさらに含み、
 前記樹脂(C)は、25℃において10mPa・s以下の粘度を有するアクリレートモノマーであり、
 前記光重合成分全体に対する、前記樹脂(B)および前記樹脂(C)の合計の含有率が、50質量%以上、70質量%以下であるようにしてもよい。
 前記樹脂(C)は、単官能のアクリレートモノマーであるようにしてもよい。
 前記樹脂(C)は、イソボルニルアクリレートであるようにしてもよい。
 前記光重合成分は、樹脂(D)をさらに含み、
 前記樹脂(D)は、3官能以上のアクリレートモノマーであり、
 前記光重合成分全体に対する、前記樹脂(D)の含有率が、0質量%超、20質量%以下であるようにしてもよい。
 前記樹脂(D)は、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、および、多官能のポリエステルアクリレートからなる群より選択される1つまたは複数であるようにしてもよい。
 前記樹脂(B)は、炭化水素基で構成された直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマー、または、エーテル結合を有する直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマーであるようにしてもよい。
 前記樹脂(B)は、下記化学式(I)で表される2官能のアクリレートモノマーであり、前記化学式(I)において、nは、1以上、9以下の整数であるようにしてもよい。
CH=CHCOO(CHOOCCH=CH   …(I)
 前記化学式(I)において、nは、6以上、9以下の整数であるようにしてもよい。
 前記化学式(I)において、nは、6または9であるようにしてもよい。
 前記インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、
 当該硬化物のYI値は、3以下であるようにしてもよい。
 30℃における、前記インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、1.6×10Pa以上であり、
 120℃における、当該硬化物の貯蔵弾性率は、3.9×10Pa以上であるようにしてもよい。
 前記インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、
 430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、91%以上であり、
 430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、90%以上であるようにしてもよい。
 前記インプリント用光硬化性アクリルレジンは、前記光重合成分を重合させるための光重合開始剤をさらに含むようにしてもよい。
 前記凸条部を覆い包む前記機能膜の表面は、丸みを有して前記凸条部の幅方向に膨出しており、
 前記凸条部を覆い包む前記機能膜の最大幅(WMAX)は、前記凸条部の底部から前記凸条部の高さの20%上部の位置において前記機能膜により被覆されていない部分の前記凸条部の幅(W)以上であるようにしてもよい。
 前記凸条部と前記機能膜とから構成される凸構造体全体の断面形状は、前記凸条部を覆い包む前記機能膜の下端部の直下の位置に、前記凸構造体全体の幅方向の幅が狭くなったくびれ部を有するようにしてもよい。
 前記ワイヤグリッド偏光素子に対する入射角度が45°である入射光の透過軸透過率(Tp)と反射軸反射率(Rs)との積(Tp×Rs)は、70%以上であるようにしてもよい。
 前記凸条部の高さ(H)は、160nm以上であるようにしてもよい。
 前記凸条部の先端を覆う前記機能膜の厚さ(Dt)は、5nm以上であるようにしてもよい。
 前記凸条部の側面を覆う前記機能膜の厚さ(Ds)は、10nm以上、30nm以下であるようにしてもよい。
 前記ベース部の厚さ(TB)が、1nm以上であるようにしてもよい。
 前記ワイヤグリッド偏光素子の反射軸方向に直交する断面における前記凸条部の断面形状が、前記ベース部から離れるにつれて幅が狭くなる台形、三角形、釣鐘型又は楕円形であるようにしてもよい。
 少なくとも前記機能膜の表面を覆うように形成された保護膜を、さらに備えるようにしてもよい。
 前記保護膜は、撥水性コーティング又は撥油性コーティングを含むようにしてもよい。
 前記機能膜が、誘電体膜をさらに有するようにしてもよい。
 θが30°以上、60°以下である場合、
 前記ワイヤグリッド偏光素子に対する入射角度が+θである入射光の透過軸透過率(Tp(+))と、入射角度が-θである入射光の透過軸透過率(Tp(-))との差が、3%以内であるようにしてもよい。
 前記機能膜は、入射光を反射する反射膜であるようにしてもよい。
 前記ワイヤグリッド偏光素子は、斜入射光を第1の偏光と第2の偏光に分離する偏光ビームスプリッタであるようにしてもよい。
 上記課題を解決するため、本発明の別の観点によれば、
 無機材料からなる基板上に、有機材料からなるグリッド構造体材料を形成する工程と、
 前記グリッド構造体材料にナノインプリントを施すことによって、前記基板上に設けられるベース部と、前記ベース部から突出する複数の凸条部とが一体形成されたグリッド構造体を形成する工程と、
 金属材料を用いて前記凸条部の一部を被覆する機能膜を形成する工程と、
を含み、
 前記グリッド構造体を形成する工程では、前記ベース部から離れるにつれて幅が狭くなる先細り形状を有する前記凸条部を形成し、
 前記機能膜を形成する工程では、
 前記機能膜が、前記凸条部の先端及び少なくとも一方の側面の上部側を覆い包み、かつ、前記凸条部の両側面の下部側及び前記ベース部を被覆せず、前記機能膜による前記凸条部の側面の被覆率(Rc)が、前記凸条部の高さ(H)に対する、前記凸条部の側面のうち前記機能膜により被覆された部分の高さ(Hx)の割合であるとき、前記被覆率(Rc)が30%以上、70%以下であるように、前記機能膜を形成し、
 前記有機材料は、光重合成分を含むインプリント用光硬化性アクリルレジンの硬化物であり、
 前記光重合成分は、
 樹脂(A)と、
 樹脂(B)と、
を含み、
 前記樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートであり、
 前記樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーであり、
 前記光重合成分全体に対する、前記樹脂(A)の含有率が、20質量%以上、40質量%以下であり、
 前記光重合成分全体に対する、前記樹脂(A)および前記樹脂(B)の合計の含有率が、70質量%以下である、ワイヤグリッド偏光素子の製造方法が提供される。
 前記機能膜を形成する工程では、スパッタリング又は蒸着法によって、前記凸条部に対して複数の方向から交互に成膜を行うようにしてもよい。
 上記課題を解決するため、本発明の別の観点によれば、
 光源と、
 前記光源からの入射光が45°を含む所定範囲の入射角度で入射するように配置され、前記入射光を第1の偏光と第2の偏光とに分離する偏光ビームスプリッタと、
 前記偏光ビームスプリッタで反射した前記第1の偏光、又は、前記偏光ビームスプリッタを透過した前記第2の偏光が入射されるように配置され、入射された前記第1の偏光又は前記第2の偏光を反射及び変調する反射型液晶表示素子と、
 前記反射型液晶表示素子で反射及び変調された前記第1の偏光又は前記第2の偏光が、前記偏光ビームスプリッタを通じて入射されるように配置されたレンズと、
を備え、
 前記偏光ビームスプリッタは、前記ワイヤグリッド偏光素子で構成される、投影表示装置が提供される。
 前記所定範囲の入射角度は、30°以上、60°以下であるようにしてもよい。
 前記ワイヤグリッド偏光素子の周囲に、放熱部材が設けられているようにしてもよい。
 上記課題を解決するため、本発明の別の観点によれば、前記投影表示装置を備える、車両が提供される。
 上記課題を解決するため、本発明の別の観点によれば、
 前記ワイヤグリッド偏光素子に用いられ、光重合成分を含むインプリント用光硬化性アクリルレジンであって、
 前記光重合成分は、
 樹脂(A)と、
 樹脂(B)と、
を含み、
 前記樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートであり、
 前記樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーであり、
 前記光重合成分全体に対する、前記樹脂(A)の含有率が、20質量%以上、40質量%以下であり、
 前記光重合成分全体に対する、前記樹脂(A)および前記樹脂(B)の合計の含有率が、70質量%以下である、インプリント用光硬化性アクリルレジンが提供される。
 本発明によれば、放熱性に優れるとともに、広範囲な入射角度の斜入射光に対して優れた偏光分離特性を有するワイヤグリッド偏光素子を提供できる。
本発明の一実施形態に係るワイヤグリッド偏光素子を模式的に示す断面図である。 同実施形態に係るワイヤグリッド偏光素子を模式的に示す平面図である。 同実施形態に係るグリッド構造体の凸条部の先細り形状の具体例を模式的に示す断面図である。 同実施形態に係るグリッド構造体の凹部の形状の具体例を模式的に示す断面図である。 同実施形態に係るワイヤグリッド偏光素子を模式的に示す断面図である。 同実施形態に係る反射膜の形状の具体例を模式的に示す断面図である。 同実施形態に係る保護膜で覆われた偏光素子を模式的に示す断面図である。 同実施形態に係る保護膜で覆われた偏光素子の変更例を模式的に示す断面図である。 同実施形態に係る放熱部材を備えた偏光素子を模式的に示す斜視図である。 同実施形態に係る実際のグリッド構造体と反射膜を示す写真である。 同実施形態に係るワイヤグリッド偏光素子の製造方法を示す工程図である。 従来のワイヤグリッド偏光素子の製造方法を示す工程図である。 同実施形態に係る原盤の製造方法を示す工程図である。 同実施形態に係る投影表示装置の一例であるヘッドアップディスプレイ装置を示す模式図である。 同実施形態に係る投影表示装置の第1具体例を示す模式図である。 同実施形態に係る投影表示装置の第2具体例を示す模式図である。 同実施形態に係る投影表示装置の第3具体例を示す模式図である。 従来例1に係る偏光素子について説明するための図である。 従来例2に係る偏光素子について説明するための図である。 従来例3に係る偏光素子について説明するための図である。 実施例1に係る偏光素子について説明するための図である。 実施例1と従来例2の比較結果について説明するための図である。 実施例2に係る偏光素子について説明するための図である。 実施例3に係る偏光素子について説明するための図である。 実施例4に係る偏光素子について説明するための図である。 実施例5に係る偏光素子について説明するための図である。 実施例6に係る偏光素子について説明するための図である。 実施例7に係る偏光素子について説明するための図である。 実施例8に係る偏光素子について説明するための図である。 実施例9と従来例4の比較結果について説明するための図である。 実施例9と従来例4の比較結果について説明するための図である。 波長と比視感度との関係を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。なお、説明の便宜のため、以下の各図中で開示した各部材の状態は、実際とは異なる縮尺及び形状で模式的に表されているものもある。
<1.ワイヤグリッド偏光素子の概要>
 まず、図1及び図2等を参照して、本発明の一実施形態に係るワイヤグリッド偏光素子1の概要について説明する。図1は、本実施形態に係るワイヤグリッド偏光素子1を模式的に示す断面図である。図2は、本実施形態に係るワイヤグリッド偏光素子1を模式的に示す平面図である。
 本実施形態に係るワイヤグリッド偏光素子1は、反射型の偏光素子であり、かつワイヤグリッド型の偏光素子である。ワイヤグリッド偏光素子1は、例えば、板状のワイヤグリッド偏光板であってよい。ワイヤグリッド偏光板は、板形状を有するワイヤグリッド型の偏光板である。ワイヤグリッド偏光板は、例えば、平板状であってもよいし、湾曲した板状であってもよい。つまり、ワイヤグリッド偏光素子1の表面(光が入射する面)は、平面であってもよいし、曲面であってもよい。以下では、本実施形態に係るワイヤグリッド偏光素子1が、平板状のワイヤグリッド偏光板である例について説明するが、本発明のワイヤグリッド偏光素子は、かかる例に限定されず、その用途及び機能等に応じて、任意の形状を有することができる。
 なお、本発明のワイヤグリッド偏光素子は、例えば、特定の一つの方向に振動する光だけを透過させる偏光子として用いられてもよいし、あるいは、入射光を第1の偏光(S偏光)と第2の偏光(P偏光)に分離する偏光ビームスプリッタとして用いられてもよい。以下では、本実施形態に係るワイヤグリッド偏光素子1が、偏光ビームスプリッタとして用いられる例について主に説明する。
 図1及び図2に示すように、ワイヤグリッド偏光素子1(以下、「偏光素子1」と略称する場合もある。)は、透明な基板10と、透明なグリッド構造体20と、不透明な機能膜(例えば反射膜30)とを備える。
 なお、本明細書において「透明」とは、使用帯域(例えば、可視光の帯域、赤外光の帯域、又は、可視光及び赤外光の帯域など)に属する波長λの光の透過率が高いことを意味し、例えば、当該光の透過率が70%以上であることを意味する。可視光の波長帯域は、例えば、360nm以上、830nm以下である。赤外光(赤外線)の波長帯域は、可視光の波長帯域よりも大きく、例えば、830nm以上である。表示画像として投影される可視光の好適な波長範囲の観点から、本実施形態に係る偏光素子1における使用帯域の波長λは、例えば、400nm以上、800nm以下であることが好ましく、420nm以上、680nm以下であることがより好ましい。本実施形態に係る偏光素子1は、使用帯域の光に対して透明な材料で形成されているため、偏光素子1の偏光特性や、光の透過性等に悪影響を与えることがない。
 基板10は、ガラス等の透明な無機材料からなる。基板10は、所定の厚さTSを有する平板状の基板である。
 グリッド構造体20は、透明な有機材料、例えば、耐熱性に優れた紫外線硬化性樹脂又は熱硬化性樹脂などの有機樹脂材料からなる。グリッド構造体20は、偏光素子1の偏光機能を実現するための凹凸構造を有する。具体的には、グリッド構造体20は、基板10の表面に沿って設けられるベース部21と、ベース部21から格子状に突出する複数の凸条部22とを有する。グリッド構造体20のベース部21と複数の凸条部22は、同一の有機材料を用いて、一体形成されている。
 ベース部21は、所定の厚さTBを有する薄膜であり、基板10の主面(図1及び図2に示すXY平面)上の全体に亘って積層される。ベース部21の厚さTBは、基板10の主面全体に亘って実質的に同一な厚さであることが好ましいが、正確に同一な厚さでなくてもよく、TBの基準の厚さに対してある程度の誤差で変動してもよい。例えば、TBは、基準の厚さ6μmに対して、±3μm程度で変動してもよい。このように、インプリント等によりベース部21を成形するときの成形誤差を許容して、ベース部21の厚さTBが決定される。
 複数の凸条部22は、ベース部21上に、X方向に所定のピッチPで等間隔に配列される。なお、ピッチPは、偏光素子1のX方向に配列される複数の凸条部22の形成間隔である。複数の凸条部22は、相互に平行にY方向に延びるように格子状に配置される。X方向に相互に隣接する2つの凸条部22の間には、所定の隙間が形成されている。この隙間は、入射光の進入経路となる。各々の凸条部22は、所定方向(図1及び図2に示すY方向)に細長く延びるように突出形成された壁状の凸部である。複数の凸条部22のZ方向の高さ(H)及びX方向の幅(W、W)は、相互に実質的に同一である。凸条部22の長手方向(Y方向)が、偏光素子1の反射軸の方向であり、凸条部22の幅方向(X方向)が、偏光素子1の透過軸の方向である。
 機能膜は、偏光素子1のグリッド構造体20に対して、所定の機能を付与するための膜である。機能膜は、例えば、不透明な金属材料からなり、グリッド構造体20の凸条部22の一部を覆うように設けられる。機能膜は、例えば、偏光素子1に入射される入射光を反射する機能を有する反射膜30であってもよいし、又は、当該入射光を吸収する機能を有する吸収膜(図示せず。)であってもよいし、その他の機能を有する膜であってもよい。本実施形態では、機能膜が反射膜30である例について説明するが、本発明の機能膜は、反射膜30の例に限定されない。
 反射膜30は、例えば、アルミニウム又は銀などの金属材料(金属又は金属酸化物など)からなる薄膜である。反射膜30は、凸条部22の少なくとも頂部を覆うように形成される。反射膜30は、ワイヤグリッドの金属細線として機能する金属膜で構成されてもよい。反射膜30は、グリッド構造体20に入射する入射光を反射する機能を有する。
 グリッド構造体20の凸条部22と反射膜30は、ワイヤグリッド偏光素子1のグリッドを構成する。グリッド構造体20における複数の凸条部22のX方向のピッチP(即ち、グリッドの配列ピッチ)は、入射光(例えば、可視光)の波長λと比べて小さいピッチ(例えば、2分の1以下)に設定される。これにより、偏光素子1は、Y方向に延びる反射膜30(導電体線)に対して平行な方向(反射軸方向:Y方向)に振動する電場ベクトル成分の光(S偏光)をほとんど反射させ、反射膜30(導電体線)に対して垂直な方向(透過軸方向:X方向)に振動する電場ベクトル成分の光(P偏光)をほとんど透過させることができる。
 以上のように、本実施形態に係るワイヤグリッド偏光素子1は、微細凹凸構造を有するグリッド構造体20と、グリッド構造体20の凸条部22に対して選択的に付加される機能膜(例えば反射膜30)との組合せにより、偏光機能を実現する。そして、ワイヤグリッド偏光素子1の基板10は、耐熱性に非常に優れたガラス等の無機材料からなり、グリッド構造体20は、耐熱性を有する有機樹脂材料からなる。このように、本実施形態に係るワイヤグリッド偏光素子1は、有機材料と無機材料とを組み合わせたハイブリッド型の偏光素子である。したがって、熱抵抗R[m・K/W]が小さいグリッド構造体20から基板10へ効率的に熱を逃がすことができるので、放熱性に優れる。したがって、本実施形態に係るハイブリッド型のワイヤグリッド偏光素子1は、有機材料のみからなる従来のフィルムタイプの偏光素子(耐熱性:100℃程度)と比べて、耐熱性及び放熱性に優れており、例えば200℃程度までの高温環境下における耐熱性を有する。よって、優れた偏光特性を実現しつつ、良好な放熱効果を維持できる。
 さらに、本実施形態に係るワイヤグリッド偏光素子1は、グリッド構造体20の表面を覆う保護膜40(図7、図8参照。)を備えてもよい。保護膜40は、無機材料、例えば、SiOなどの誘電体材料からなる。この保護膜40は、グリッド構造体20のベース部21、凸条部22及び反射膜30の全ての表面を覆うように、ワイヤグリッド偏光素子1の表面全体に積層されてもよい(図7参照。)。かかる保護膜40を設けることにより、偏光素子1の熱抵抗Rをより低減できるという有利な効果が得られるので、優れた偏光特性を実現しつつ、より良好な放熱効果を維持できる。
 また、上述したように、ベース部21と凸条部22とが一体構成されたグリッド構造体20は、ナノインプリント等の印刷技術を用いて製造することができので、シンプルな製造プロセスで微細凹凸構造を実現できる。したがって、フォトリソグラフィ技術やエッチング技術を用いて製造する場合と比べて、グリッド構造体20の製造に要するコストや手間を低減できる。よって、本実施形態に係るハイブリッド型の偏光素子1は、従来の無機材料のみからなる偏光素子と比べて、製造コストを大幅に削減でき、ワイヤグリッド偏光素子1の製品単価を安価にできるという利点がある。
 一方、従来のフィルムタイプの有機偏光板は、有機材料を多く用いており、基板(ベースフィルム)や両面テープ(OCA:Optically Clear Adhesive)、グリッド構造体の厚さが大きくなるので、本実施形態に係るハイブリッド型の偏光素子1と比べて、放熱性や耐熱性が劣ると考えられる。
 また、本実施形態に係るワイヤグリッド偏光素子1は、グリッド構造体20の凸条部22と反射膜30とからなるグリッドが、図1等に示すような特殊な樹木形状(詳細は後述する。)を有している。これにより、偏光素子1に対して、幅広い範囲の大きな入射角度θ(例えば30~60°)で、斜め方向から光が入射する場合であっても、偏光素子1を透過する第2の偏光(P偏光)の透過率(即ち、透過軸透過率Tp)が、斜入射光の入射角度θに依存して低下することを抑制できる。したがって、ワイヤグリッド偏光素子1で反射する第1の偏光(S偏光)の反射率(即ち、反射軸反射率Rs)と、透過軸透過率Tpとの積(Tp×Rs)を、例えば70%以上の高い値に維持できる。したがって、本実施形態に係る偏光素子1は、当該Tp×Rsで表される偏光分離特性に優れており、斜入射光を偏光して、S偏光(反射光)とP偏光(透過光)とに好適に分離できる。よって、本実施形態に係る偏光素子1は、入射角度θが大きくかつ広い範囲の斜入射光に対しても、十分な透過性及び偏光分離特性を得ることができる。
 以上のように、本実施形態に係るワイヤグリッド偏光素子1は、耐熱性及び放熱性に優れ、製造コストも低減でき、かつ、幅広い範囲の大きな入射角度θの斜入射光に対する透過性及び偏光分離特性にも優れる。よって、本実施形態に係るワイヤグリッド偏光素子1は、多様な製品の多様な部品として好適に適用できる。例えば、偏光素子1は、スマートディスプレイに設置される偏光ビームスプリッタなどに適用できる。また、偏光素子1は、ヘッドアップディスプレイ(HUD)に設置される、太陽光からの熱に対策した偏光素子、LED光源からの熱に対策した偏光素子、偏光反射ミラーなどに適用できる。さらに偏光素子1は、配光可変ヘッドランプ(ADB)などのヘッドライトに設置される偏光ビームスプリッタなどにも適用できる。また、偏光素子1は、拡張現実(AR)又は仮想現実(VR)用の各種装置に設置されるレンズ一体型位相差素子、レンズ一体型偏光素子などにも適用できる。
<2.ワイヤグリッド偏光素子の構成要素>
 次に、図1及び図2等を参照して、本実施形態に係るワイヤグリッド偏光素子1の構成要素について詳細に説明する。
 <2.1.基板>
 図1に示すように、本実施形態に係るワイヤグリッド偏光素子1は、透明な基板10を備える。基板10は、透明であり、ある程度の強度を有する無機材料からなる。
 基板10の材料としては、より優れた放熱性及び耐熱性が得られる観点から、例えば、各種ガラス、石英、水晶、サファイア等の無機材料であることが好ましく、熱伝導率が1.0W/m・K以上である無機材料がより好ましく、8.0W/m・K以上である無機材料がさらに好ましい。
 また、基板10の形状は、特に限定されず、偏光素子1に要求される性能等に応じて適宜選択することができる。例えば、板状や曲面を有するように構成することができる。また、偏光素子1の偏光特性に影響を与えない観点からは、基板10の表面を平坦面とすることができる。さらに、基板10の厚さTSについても、特に限定されず、例えば0.02~10.0mmの範囲とすることができる。
 <2.2.グリッド構造体>
 図1及び図2に示すように、本実施形態に係る偏光素子1は、基板10上に、上記ベース部21及び格子状の凸条部22を有するグリッド構造体20を備える。グリッド構造体20は、凸条部22上に、後述する反射膜30が設けられることによって、所望の偏光特性を得ることができる。
 偏光素子1に対してグリッド構造体20が形成された表面側から光が入射するとき、反射膜30により入射光の一部が反射される。反射膜30に入射した光のうち凸条部22の長手方向(即ち、凸条部22の延在方向=反射軸方向:Y方向)に直交する方向(即ち、凸条部22の幅方向=透過軸方向:X方向)に電界成分をもつ光は、高い透過率で偏光素子1を透過する。一方、反射膜30に入射した光のうち凸条部22の長手方向(即ち、凸条部22の延在方向=反射軸方向:Y方向)に平行な方向に電界成分をもつ光は、その大部分が反射膜30で反射される。そのため、本実施形態では、反射膜30により部分的に被覆されたグリッド構造体20を備えることで、単一偏光を作り出すことができる。なお、基板10の裏面側から入射した光に対しても、同様の偏光効果が得られる。
 グリッド構造体20は、図1に示すように、ベース部21を有する。ベース部21は、基板10の表面に沿って設けられる薄膜であり、凸条部22を支持するための部分である。グリッド構造体20の凹凸構造(凸条部22)をナノインプリント等によって形成した場合に、ベース部21は必然的に形成される。ベース部21と凸条部22は、同一材料で一体形成されている。また、グリッド構造体20がベース部21を有することによって、凸条部22が基板10上に直に形成される場合と比べて、凸条部22の強度を高くできる。このため、グリッド構造体20の耐久性を高めることができる。さらに、ベース部21が面全体で基板10と密着しているため、グリッド構造体20の耐剥離性を高めることができる。
 なお、ベース部21の厚さTBは、特に限定されないが、凸条部22をより確実に支持できる観点や、インプリント成形を容易に行う観点から、1nm以上であることが好ましく、10nm以上であることがより好ましい。また、良好な放熱性を確保する観点からは、ベース部21の厚さTBは、50μm以下であることが好ましく、30μm以下であることがより好ましい。
 また、本実施形態に係る偏光素子1によれば、基板10上に直接、グリッド構造体20のベース部21と複数の凸条部22を形成するため、ベース部21の厚さTBを薄くすることができる。ここで、グリッド構造体20から基板10への放熱性を向上するためには、ベース部21の厚さTBを薄くすることによって、ベース部21の表面と裏面の間の温度差ΔT[℃]を小さくすることが好ましい。なお、温度差ΔTは、ベース部21の最表面(複数の凸条部22の付根部)の温度T1[℃]と、ベース部21と基板10との界面におけるベース部21の温度T2[℃]との間の温度差である(ΔT=T1-T2)。
 したがって、ベース部21の厚さTBは、0.15mm以下であることが好ましい。これにより、有機材料からなるグリッド構造体20の熱を、無機材料からなる基板10に素早く伝え、基板10から偏光素子1の外部に効率的に逃がして、放熱することができるので、温度差ΔTを例えば32℃以下にすることができる。さらに、ベース部21の厚さTBは、0.09mm以下であることがより好ましく、これにより、温度差ΔTを例えば20℃以下にすることができる。さらに、ベース部21の厚さTBは、0.045mm以下であることがより好ましく、これにより、温度差ΔTを例えば10℃以下にすることができる。さらに、ベース部21の厚さTBは、0.02mm以下であることが特に好ましく、これにより、温度差ΔTを例えば5℃以下にすることができる。このように、ベース部21の厚さTBを薄くすることにより、グリッド構造体20から基板10を介した外部への放熱性を向上できるので、偏光素子1の放熱性および耐熱性を向上することができる。
 さらに、グリッド構造体20は、図1及び図2に示すように、ベース部21から突出した複数の凸条部22を有する。凸条部22は、本実施形態に係る偏光素子1の反射軸方向(Y方向)を長手方向として延在している。複数の凸条部22がX方向に所定のピッチで配列され、かつ、相互に所定の間隔を空けて配列されることで、格子状の凹凸構造が形成されている。
 ここで、図1に示すように、偏光素子1の反射軸方向(Y方向)に直交する縦断面(XZ断面)において、凸条部22の透過軸方向(X方向)のピッチPが、使用帯域の光の波長よりも短いことを要する。この理由は、上述した偏光作用を得るためである。より具体的には、凸条部22のピッチPは、凸条部22の製造容易性と偏光特性との両立の観点から、50~300nmであることが好ましく、100~200nmであることがより好ましく、100~150nmであることが特に好ましい。
 また、図1及び図2に示すように、上記縦断面(XZ断面)における凸条部22の底部の幅Wは、特に限定されないが、製造容易性と偏光特性との両立の観点から、10~150nm程度であることが好ましく、10~100nm程度であることがより好ましい。また、凸条部22の頂部の幅Wは、特に限定されないが、製造容易性と偏光特性との両立の観点から、5~60nm程度であることが好ましく、10~30nm程度であることがより好ましい。
 なお、凸条部22の底部の幅W及び頂部の幅Wは、走査型電子顕微鏡又は透過型電子顕微鏡で観察することにより測定することができる。例えば、走査型電子顕微鏡又は透過型電子顕微鏡を用いて偏光素子1の吸収軸方向又は反射軸方向に直交する断面(XZ断面)を観察し、任意の4箇所の凸条部22について、凸条部22の底部から凸条部22の高さHの20%上部の高さ位置における凸条部22の幅を測定し、それらの算術平均値を凸条部22の底部の幅Wとすることができる。また、当該任意の4箇所の凸条部22について、凸条部22の先端22aから凸条部22の高さHの20%下部の高さ位置における凸条部22の幅を測定し、それらの算術平均値を凸条部22の頂部の幅Wとすることができる。
 また、図1に示すように、上記縦断面(XZ断面)における凸条部22の高さHは、特に限定されないが、製造容易性と偏光特性との両立の観点から、50~350nm程度であることが好ましく、100~300nm程度であることがより好ましい。なお、凸条部22の高さHは、走査型電子顕微鏡又は透過型電子顕微鏡で観察することにより測定することができる。例えば、走査型電子顕微鏡又は透過型電子顕微鏡を用いて偏光素子1の吸収軸方向又は反射軸方向に直交する断面を観察し、任意の4箇所における凸条部22について、凸条部22の幅方向の中心位置における凸条部22の高さを測定し、それらの算術平均値を凸条部22の高さHとすることができる。
 グリッド構造体20の凸条部22の形状は、斜入射光に対する良好な偏光分離特性を得るため、先細り形状であることが好ましい。ここで、先細り形状とは、ベース部21から離れるにつれて凸条部22の幅W(XZ断面におけるX方向の幅)が徐々に狭くなるような形状であり、換言すると、凸条部22の底部から頂部に向かうにつれて凸条部22の幅Wが徐々に狭くなるような形状である。したがって、凸条部22が先細り形状を有する場合、凸条部22の頂部の幅Wは、凸条部22の底部の幅Wより小さくなる(W<W)。
 図3は、本実施形態に係る凸条部22の先細り形状の具体例を示す。図3に示すように、上記縦断面(XZ断面)における凸条部22の断面形状は、上記の先細り形状であれば、ベース部21から離れるにつれて幅Wが狭くなる台形、三角形、釣鐘型、楕円形、又は、丸みを帯びた楔型など、多様な形状であってよい。例えば、図3に示す凸条部22Aの断面形状は台形(テーパ形状)であり、凸条部22Bの断面形状は三角形であり、凸条部22Cの断面形状は釣鐘型であり、凸条部22Dの断面形状は、頂部と底部が丸みを帯びた楔型である。このように、凸条部22が先細り形状を有することで、凸条部22の先端22a及び側面22bの一部を覆う反射膜30を形成しやすく、偏光素子1に偏光特性を付与できるとともに、当該先細り形状はナノインプリントによっても形成可能であるため、製造容易性の点でも有利である。
 また、凸条部22がテーパ形状などの先細り形状を有することにより、グリッド構造体20の屈折率が徐々に変化する。したがって、モスアイ構造と同様に、グリッド構造体20の物理的な屈折率の変化による入射光の反射防止効果が得られる。よって、グリッド構造体20の凸条部22の表面における反射率を低減でき、グリッド構造体20の透過性を向上できるという効果も期待できる。
 また、図4は、相互に隣接する凸条部22、22間に形成された凹部24の形状の具体例を示す。凹部24は、凸条部22の長手方向(Y方向)に延びる溝である。図4に示すように、上記縦断面(XZ断面)における凹部24の断面形状は、凹部24の底に向かうにつれ幅が狭くなる形状であれば、多様な形状であってよい。例えば、図4に示す凹部24Aの断面形状は台形(テーパ形状)であり、凹部24Bの断面形状は三角形(V字型)であり、凹部24Cの断面形状は、底部が平坦な略矩形状であり、凹部24Dの断面形状は、底部が丸みを帯びたU字型である。これらの凹部24の形状としては、ナノインプリント形成時の離型性など生産性を考慮して、適宜最適な形状を選択することができる。
 また、グリッド構造体20を構成する材料は、透明な有機材料であれば特に限定されず、公知の有機材料を用いることができる。例えば、透明性を確保でき、製造容易性に優れる点からは、各種の熱硬化性樹脂、各種の紫外線硬化性樹脂等を、グリッド構造体20の材料として用いることが好ましい。
 さらに、製造容易性の点や製造コストの点からは、グリッド構造体20を構成する材料は、基板10と異なる材料を用いることが好ましい。加えて、グリッド構造体20と基板10の材料が異なる場合、両者の屈折率が異なることになる。このため、偏光素子1全体の屈折率に影響がある場合は適宜、グリッド構造体20と基板10の間に屈折率調整層を設けてもよい。
 例えば、グリッド構造体20を構成する材料として、エポキシ重合性化合物、アクリル重合性化合物等の硬化性樹脂を用いることができる。エポキシ重合性化合物は、分子内に1つ又は2つ以上のエポキシ基を有するモノマー、オリゴマー、又はプレポリマーである。エポキシ重合性化合物としては、各種ビスフェノール型エポキシ樹脂(ビスフェノールA型、F型等)、ノボラック型エポキシ樹脂、ゴム、ウレタン等の各種変性エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、これらのプレポリマー等が挙げられる。
 アクリル重合性化合物は、分子内に1つ又は2つ以上のアクリル基を有するモノマー、オリゴマー、又はプレポリマーである。ここで、モノマーは、さらに分子内にアクリル基を1つ有する単官能モノマー、分子内にアクリル基を2つ有する二官能モノマー、分子内にアクリル基を3つ以上有する多官能モノマーに分類される。
 「単官能モノマー」としては、例えば、カルボン酸類(アクリル酸等)、ヒドロキシ類(2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート)、アルキル又は脂環類のモノマー(イソブチルアクリレート、t-ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート)、その他機能性モノマー(2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアクリルアミド、アクリロイルモルホリン、N-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミド、2-(パーフルオロオクチル)エチルアクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピルアクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル-アクリレート、2-(パーフルオロデシル)エチル-アクリレート、2-(パーフルオロ-3-メチルブチル)エチルアクリレート)、2,4,6-トリブロモフェノールアクリレート、2,4,6-トリブロモフェノールメタクリレート、2-(2,4,6-トリブロモフェノキシ)エチルアクリレート)、2-エチルヘキシルアクリレート等が挙げられる。
 「二官能モノマー」としては、例えば、トリ(プロピレングリコール)ジアクリレート、トリメチロールプロパン-ジアリルエーテル、ウレタンジアクリレートなどが挙げられる。
 「多官能モノマー」としては、例えば、トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタ及びヘキサアクリレート、ジトリメチロールプロパンテトラアクリレートなどが挙げられる。
 上記で列挙したアクリル重合性化合物以外の例としては、アクリルモルフォリン、グリセロールアクリレート、ポリエーテル系アクリレート、N-ビニルホルムアミド、N-ビニルカプロラクタム、エトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレート、ポリエチレングリコールアクリレート、EO変性トリメチロールプロパントリアクリレート、EO変性ビスフェノールAジアクリレート、脂肪族ウレタンオリゴマー、ポリエステルオリゴマー等が挙げられる。
 また、上述した硬化性樹脂の硬化開始剤としては、例えば、熱硬化開始剤、光硬化開始剤等が挙げられる。硬化開始剤は、熱、光以外の何らかのエネルギー線(例えば電子線)等によって硬化するものであってもよい。硬化開始剤が熱硬化開始剤である場合、硬化性樹脂は熱硬化性樹脂であり、硬化開始剤が光硬化開始剤であり場合、硬化性樹脂は光硬化性樹脂である。
 これらの中でも、硬化開始剤として、紫外線硬化開始剤を用いることが好ましい。紫外線硬化開始剤は、光硬化開始剤の一種である。紫外線硬化開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンなどが挙げられる。したがって、硬化性樹脂は、紫外線硬化性樹脂であることが好ましい。また、透明性の観点から、硬化性樹脂は、紫外線硬化性アクリル樹脂であることがより好ましい。
 なお、グリッド構造体20を形成する方法は、上述したベース部21及び凸条部22を形成できる方法であれば特に限定されない。例えば、フォトリソグラフィ、又はインプリントなどによる凹凸形成方法を用いることができる。これらの中でも、短時間且つ容易に凹凸パターンを形成でき、さらに、ベース部21を確実に形成できる観点からは、インプリントによって、グリッド構造体20のベース部21及び凸条部22を形成することが好ましい。
 ナノインプリントによって、グリッド構造体20のベース部21及び凸条部22を形成する場合、例えば、基板10上に、グリッド構造体20を形成するための材料(グリッド構造体材料)を塗布した後、凹凸が形成された原盤をグリッド構造体材料に押し当て、その状態で紫外線の照射や熱の付与を行い、グリッド構造体材料を硬化させることができる。これによって、ベース部21及び凸条部22を有するグリッド構造体20を形成できる。
 <2.3.反射膜(機能膜)>
 本実施形態に係る偏光素子1は、図1及び図2に示すように、グリッド構造体20の凸条部22上に形成された反射膜30を備える。
 図1に示すように、反射膜30は、グリッド構造体20の凸条部22の先端22a及び側面22bの一部を覆い包むように形成される。そして、図1に示すように、反射膜30は、グリッド構造体20の凸条部22の長手方向(Y方向)に沿って延びるように形成される。これにより、反射膜30は、偏光素子1に入射した光のうち凸条部22の長手方向に平行な方向(反射軸方向:Y方向)に電界成分をもつ光を反射することができる。
 反射膜30を構成する材料は、使用帯域の光に対して反射性を有する材料であれば特に限定されない。例えば、Al、Ag、Cu、Mo、Cr、Ti、Ni、W、Fe、Si、Ge、Te等の金属元素単体や、これら元素の1種以上を含む合金等の金属材料が挙げられる。
 なお、反射膜30は、上記金属からなる単層膜でもあってもよいし、複数の金属膜からなる複層膜であってもよい。また、反射膜30は、反射機能を有していれば、必要に応じて、誘電体膜等の他の層を含むことも可能である。誘電体膜は誘電体からなる薄膜である。誘電体膜の材料は、SiO、Al、MgF、TiO等の一般的な材料を用いることができる。また、誘電体膜の屈折率は、1.0より大きく2.5以下とすることが好ましい。なお、反射膜30の光学特性は、周囲の屈折率によっても影響を受けるため、誘電体膜の材料により偏光特性を制御してもよい。
 <2.4.凸条部と反射膜の特殊形状>
 ここで、本実施形態に係る偏光素子1における、グリッド構造体20の凸条部22と反射膜30の特殊な形状について詳述する。
 本実施形態に係る偏光素子1では、図1及び図5に示すように、反射膜30は、グリッド構造体20の凸条部22の先端22a及び少なくとも一方の側面22bの上部側を覆い包み、かつ、凸条部22の両側面22bの下部側及びベース部21を被覆しないように形成されている。なお、図1及び図5の例では、反射膜30は、凸条部22の両方の側面22bの上部側を覆っているが、凸条部22の一方の側面22bのみの上部側を覆ってもよい。
 ここで、「反射膜30が、グリッド構造体20の凸条部22の先端22a及び少なくとも一方の側面22bの上部側を覆い包む状態」とは、例えば図1及び図5に示すように、「凸条部22の先端22a」、及び、「凸条部22の先端22aとベース部21とをつなぐ側面22bの上部側」の双方を、反射膜30により連続的に被覆しつつ、「当該側面22bの下部側」及び「ベース部21」を反射膜30により被覆せずに露出させる状態である。この状態では、反射膜30は、凸条部22の側面22bの全部(凸条部22の先端22aからベース部21までのすべての側面22b)を覆ってはいない。
 さらに、凸条部22の先端22a及び少なくとも一方の側面22bの上部側(以下、「凸条部22の頂部」と称する場合もある。)を覆い包む反射膜30の表面は、丸みを有して湾曲した形状(例えば、縦長の略楕円状)を有し、凸条部22の幅方向(X方向)に膨出している。このように、反射膜30の表面は、丸く滑らかに湾曲した曲面形状となっており、角張ったコーナー部や段差部を有していない。このように凸条部22の頂部を覆い包む反射膜30の最大幅WMAXは、凸条部22の底部の幅W以上である。さらに、WMAXは、Wよりも大きいことが好ましい。
 ここで、凸条部22を覆い包む反射膜30の最大幅WMAXは、凸条部22の幅方向(X方向)における反射膜30の両側の最外表面の水平幅のうち、最大となる水平幅である。図1及び図5等に示すように、凸条部22を覆い包む反射膜30の両側の最外表面の水平幅(X方向の幅)は、当該反射膜30の高さ位置(Z方向の高さ)によって異なるが、これら水平幅のうちの最大値が、最大幅WMAXである。換言すると、最大幅WMAXは、反射膜30の両側の厚みDs×2と、凸条部22の水平幅Wとの合計幅の最大値である。例えば、グリッド構造体20に対して正面方向(Z方向)から光が入射する場合(入射角度θ=0°の場合)、WMAXは、反射膜30の実効的なグリッド幅に相当する。
 凸条部22の底部の幅Wは、図1及び図3に示すように、凸条部22の最下部(ベース部21の上面)から凸条部22の高さHの20%上部の高さ位置(Z方向の高さ)における凸条部22の水平幅(X方向の幅)である。つまり、凸条部22の底部の幅Wは、ベース部21の上面から上方に0.2×Hの高さの位置における、凸条部22の水平幅である。
 また、凸条部22の頂部の幅Wは、図1及び図3に示すように、凸条部22の先端22aから凸条部22の高さHの20%下部の高さ位置(Z方向の高さ)における凸条部22の水平幅(X方向の幅)である。つまり、凸条部22の頂部の幅Wは、ベース部21の上面から上方に0.8×Hの高さの位置(即ち、凸条部22の先端22aから下方に0.2×Hの高さの位置)における、凸条部22の水平幅である。
 なお、以下の説明では、凸条部22と反射膜30を合わせた凸構造体を「グリッド」と称し、凸条部22と反射膜30を合わせた凸構造体(即ち、グリッド)の高さを「グリッド高さ」と称する場合もある。また、凸条部22を覆い包む反射膜30の最大幅WMAXを「グリッド最大幅WMAX」と称し、凸条部22の底部の幅Wを「グリッド底部幅W」と称する場合もある。また、凸条部22の頂部の幅Wを「凸条部頂部幅W」と称し、凸条部22の高さ方向の中央位置の幅を「凸条部中央幅」と称する場合もある。
 このように、本実施形態では、凸条部22の底部の幅Wとして、凸条部22の最下部(底部)から20%上部の高さ位置における凸条部22の水平幅を用い、凸条部22の頂部の幅Wとして、凸条部22の先端22aから20%下部の高さ位置における凸条部22の水平幅を用いる。この理由は、ベース部21の上面における凸条部22の最下部の幅や、凸条部22の先端22aの幅は、グリッド構造体20の製造条件等により大きくばらつくので、これらの幅を緻密に測定することが困難だからである。
 以上説明したように、本実施形態に係るグリッド構造体20では、先細り形状の凸条部22と、当該凸条部22の先端22a及び側面22bの上部側のみを覆い包む反射膜30とが形成されている。そして、凸条部22の側面22bの下部側は反射膜30で被覆されておらず、開放されている。
 この結果、湾曲した反射膜30で覆い包まれた凸条部22の断面形状(つまり、グリッドの断面形状)は、次のような特殊な断面形状を有する。即ち、図1及び図5等に示すように、反射膜30が存在する凸条部22の上部側の部分の水平幅(例えば、グリッド最大幅WMAX)が大きく、反射膜30で覆われておらず露出した凸条部22の中央部から底部側にかけての部分の水平幅(例えば、露出した凸条部22の底部の幅W)が小さくなっている。そして、凸条部22と反射膜30とで構成される凸構造体全体(即ち、「グリッド」)の断面形状は、湾曲した反射膜30の下端部の直下の位置で、内側にくびれており、X方向の幅が狭くなったくびれ部を有する。このようなグリッドの特殊な断面形状は、樹木の形状に例えることができる。具体的には、丸く大きく広がった樹木の葉の部分が、凸条部22の頂部を覆い包む反射膜30の部分に相当し、当該樹木の幹の部分が、反射膜30で覆われていない凸条部22の下部側部分に相当し、当該樹木が生えている大地の部分がベース部21に相当する。そこで、以下の説明では、上記のようなグリッド構造体20の凸条部22と反射膜30とで構成されるグリッドの特殊な断面形状を、「特殊な樹木形状」と称する。
 本実施形態に係る偏光素子1のグリッド構造体20のグリッドは、上記のような特殊な樹木形状を有する。これにより、例えば、後述する図31に示すように、偏光素子1に対して斜め方向から入射光が入射した場合、実効的なグリッド幅Wが小さくなり、ギャップ幅Wが大きくなる。ここで、実効的なグリッド幅Wは、斜入射光に対して垂直な方向の反射膜30の幅である。ギャップ幅Wは、相隣接する2つのグリッドの反射膜30、30間の隙間であって、斜入射光に対して垂直な方向の隙間の幅である。実効的なグリッド幅Wが大きいほど、斜入射光は、反射膜30で反射されやすく、透明な凸条部22やベース部21に到達しにくい。したがって、偏光素子1において斜入射光の透過率は低下する。一方、ギャップ幅Wが大きいほど、斜入射光は、相隣接する2つの反射膜30、30の間をすり抜けて、透明な凸条部22やベース部21に到達しやすい。よって、斜入射光に対する透過率を上昇させることができる。
 ゆえに、本実施形態に係る偏光素子1のグリッドは、上記の特殊な樹木形状を有するので、斜入射光に対するギャップ幅Wが大きくなり、斜入射光が丸い反射膜30、30の隙間をすり抜けて、透明なグリッド構造体20に到達して、透過しやすい。したがって、斜入射光の透過軸透過率Tpが高いので、斜入射光に対する透過性と、偏光分離特性(Tp×Rs特性)が非常に優れる。さらに、反射膜30による斜入射光の反射機能と、グリッド構造体20による斜入射光の透過機能とをバランスよく実現でき、斜入射光に対する偏光分離特性をより一層向上できる。
 <2.5.反射膜の形成方法と具体例>
 ここで、図5を参照して、反射膜30を形成する方法について説明する。
 反射膜30がグリッド構造体20の凸条部22の先端22a及び両側面22bの一部を覆うように、反射膜30を形成する方法としては、図5に示すように、グリッド構造体20の凸条部22に対して斜め方向(成膜入射角度φ)から交互にスパッタリング又は蒸着を行うことで、反射膜30を形成することが好ましい。これによって、反射膜30を凸条部22の先端22a及び両側面22bの上部側を覆い包むように形成することができる。なお、スパッタリング又は蒸着により反射膜30を形成するための成膜入射角度φは、特に限定されないが、例えば、基板10の表面に対して5~70°程度とすることができる。
 このように、本実施形態では、透明材料からなるグリッド構造体20を形成した後に、金属材料からなる反射膜30をスパッタリング又は蒸着法により形成する。これにより、反射膜30の成膜条件や材料、膜厚を、容易に変更することができる。また、反射膜30が多層膜からなる場合にも、容易に対応することができる。このため、金属や半導体、誘電体を組み合わせることで干渉効果を利用した膜設計が可能となり、従来技術のようにエッチングによる反射膜30を形成する際、エッチングできる材料構成などを考慮する必要がない。それにより、グリッド構造体20に平行な偏光波の反射率を調整することや、グリッドに対して垂直な方向の偏光の透過率(透過量)を調整することも容易になる。加えて、グリッド構造体20を形成した後で、反射膜30を成膜することより、真空Dryエッチング装置等の設備も必要なく、複雑なプロセスやエッチング材料に合わせたガスや除害装置などの安全装置などを揃える必要もない。よって、設備投資や保守などのランニングコストを削減でき、コストメリットも得ることができる。
 なお、図5に示す凸条部22の先端22aを覆う反射膜30の厚さDtや、凸条部22の側面22bを覆う反射膜30の厚さDsは、特に限定されず、グリッド構造体20の凸条部22の形状や、反射膜30に要求される性能等に応じて適宜変更できる。例えば、より優れた反射性能を得る観点から、反射膜30の厚さDt、Dsを、2~200nmとすることが好ましく、5~150nmとすることがより好ましく、10~100nmとすることがさらに好ましく、15~80nmとすることが特に好ましい。なお、反射膜30の厚さDsは、図5に示すように、凸条部22の側面22bを覆う反射膜30のうち最も厚い部分の厚さである。
 また、反射膜30の形状は、上述した特殊な樹木形状を形成可能な形状であれば、特に限定されず、反射膜30を形成するための装置の条件や、反射膜30に要求される性能に応じて適宜選択できる。
 図6は、反射膜30の形状の具体例を模式的に示す断面図である。図6に示すように、反射膜30は、凸条部22の頂部(先端22a及び側面22bの上部側)を包み込むように湾曲した形状であれば、種々の形状を有してよい。
 例えば、図6に示す反射膜30Aは、各種の断面形状の凸条部22A、22B、22Cの頂部を、丸く包み込むように被覆しており、凸条部22の幅方向に大きく膨出した略楕円形を有する。また、反射膜30Bは、略楔状の凸条部22Dの頂部を包み込むように覆う湾曲形状を有する。また、反射膜30Cは、台形状の凸条部22Aの頂部を包み込むように覆う湾曲形状を有する。これら反射膜30B、30Cによる凸条部22の一方の側面22bの被覆率Rcと、他方の側面22bの被覆率Rcは、概ね同一である。
 また、反射膜30Dは、略楔状の凸条部22Dの頂部を包み込むように覆っているが、凸条部22の一方の側面22b(図6に示す左側の側面22b)側に偏在している。具体的には、反射膜30Dは、凸条部22の左側の側面22bの広い範囲を被覆しており、その被覆率Rcは80%程度である。一方、反射膜30Dは、右側の側面22bのうち上部側の狭い範囲しか被覆しておらず、その被覆率Rcは25%程度である。このように、凸条部22の一方の側面22bと他方の側面22bとの間で、反射膜30Dによる被覆率Rcが相違してもよい。
 <2.6.反射膜による凸条部の被覆率Rcの好適な範囲>
 次に、本実施形態に係る反射膜30による凸条部22の側面22bの被覆率Rcの好適な範囲について説明する。
 被覆率Rcは、25%以上、80%以下であることが好ましい。ここで、被覆率Rcは、図1及び図5に示す凸条部22の高さ(H)に対する、凸条部22の側面22bのうち反射膜30により被覆された部分の高さ(Hx)の割合である。被覆率Rcは、以下の式(1)で表される。
 Rc[%]=(Hx/H)×100   ・・・(1)
 H :凸条部22のZ方向の高さ
 Hx:凸条部22の側面22bのうち反射膜30により被覆された部分のZ方向の高さ
 また、開放率Rrは、図1及び図5に示す凸条部22の高さ(H)に対する、凸条部22の側面22bのうち反射膜30により被覆されていない部分の高さ(H-Hx)の割合である。開放率Rrは、以下の式(2)で表される。
 Rr[%]=((H-Hx)/H)×100   ・・・(2)
 以上の定義からすると、Rr=100-Rcである。よって、反射膜30による凸条部22の側面22bの被覆率Rcが、25%以上、80%以下である場合、反射膜30による凸条部22の側面22bの開放率Rrは、20%以上、75%以下になる。
 以上のように、本実施形態に係る偏光素子1では、反射膜30による凸条部22の側面22bの被覆率Rcが25%以上、80%以下(つまり、開放率Rrが20%以上、75%以下)であることが好ましい。詳細には、本実施形態では、反射膜30が、凸条部22の先端22a及び両側面22bの上部側を被覆し、両側面22bの下部側を被覆せずに開放するように形成される。そして、被覆率Rcは、25%以上、80%以下であることが好ましく、30%以上、70%以下であることがより好ましく、40%以上、50%以下であることがより一層好ましい。
 かかる構成により、本実施形態に係る偏光素子1は、大きな入射角度θ(例えば45~60°)の斜入射光に対しても、十分な透過性を発揮することができる。例えば、偏光素子1により斜入射光をS偏光(反射光)とP偏光(透過光)に分離するとき、斜入射光の入射角度θに関わらず、偏光素子1を透過するP偏光(透過光)の透過率Tpを高い値に維持することができる。また、被覆率Rcを25%以上、80%以下にすることにより、透過軸反射率(Ts)に対する透過軸透過率(Tp)の比であるコントラスト(CR=Tp/Ts)を良好なレベルで維持しつつ、入射角度θに依存することなく、上述した反射膜30による反射作用をより確実に発揮できる。したがって、斜入射光の入射角度θに関わらず、透過光の高い透過性を確保し、偏光分離特性を向上することができる。
 これに対し、比較例として、反射膜30が、グリッド構造体20の凸条部22の先端22aのみを覆うように形成される場合や、凸条部22の先端22a及び片側の側面22bの全体を覆うように形成される場合(例えば図18参照。)には、斜入射光の入射角度θに依存して透過率Tpのバラツキが大きくなり、大きな入射角度θの斜入射光に対しても十分な透過性を得ることができないと考えられる。また、比較例として、反射膜30が、グリッド構造体20の凸条部22の先端22a及び両側面22bの全てを覆う場合(被覆率Rcが100%である場合)には、斜入射光の入射角度θが大きくなると、透過性が大幅に低下する。
 よって、斜入射光の入射角度θに依存せずに、透過光の透過性や偏光分離特性を向上する観点からは、本実施形態に係る偏光素子1のように、反射膜30により凸条部22の先端22a及び少なくとも一方の側面22bの一部(側面22bの上部側)を被覆することが好ましい。
 さらに、偏光ビームスプリッタ(PBS)として要求されるTp×Rs特性の観点から、本実施形態に係る偏光素子1において、反射膜30による凸条部22の側面22bの被覆率Rcが、25%以上、80%以下であることが好ましい(例えば図27参照。)。
 被覆率Rcが25%未満である場合には、偏光素子1を透過するP偏光の透過軸透過率Tpが低下し、入射角度θに依存して透過率Tpにバラツキが生じ、十分に高いTp×Rsの値も得られない。このため、大きな入射角度θの斜入射光に対して、透過光の十分な透過性と、Tp×Rsで表される偏光分離特性を得ることができない。一方、被覆率Rcが80%超である場合(例えば図20参照。)には、グリッド構造体20の凸条部22の先端22a及び両側面22bの全てを覆う場合と同様に、斜入射光の入射角度θが大きくなるほど(例えば45~60°)、透過軸透過率Tpが低下するため、入射角度θに依存して透過率Tpにバラツキが大きくなってしまう。
 したがって、反射膜30による凸条部22の側面22bの被覆率Rcは、25%以上、80%以下であることが好ましい(例えば図27参照。)。これにより、偏光素子1に対して、例えば45°の入射角度θで斜め方向から光が入射する場合に、偏光素子1を透過する第2の偏光(P偏光)の透過軸透過率Tpを75%以上にすることができる。この結果、Tp×Rsを70%以上にすることができる。よって、大きな入射角度θで広い範囲の斜入射光が入射する場合でも、偏光素子1の透過軸方向の第2の偏光(P偏光)の透過性を高めて、偏光素子1の偏光分離特性を向上でき、偏光素子1により斜入射光を第1の偏光(S偏光)と第2の偏光(P偏光)とに好適に分離できる。
 同様の観点から、被覆率Rcは、30%以上、70%以下(つまり、開放率Rrは30%以上、70%以下)であることがより好ましい。これにより、上記の斜入射条件の場合で、80%以上の高い透過率Tpが得られ、72%以上の高いTp×Rsを得ることができる。また、被覆率Rcは、30%以上、60%以下(つまり、開放率Rrは40%以上、70%以下)であることがより好ましい。これにより、上記の斜入射条件の場合で、83%以上の高い透過率Tpが得られ、75%以上の高いTp×Rsを得ることができる。さらに、被覆率Rcは、40%以上、50%以下(つまり、開放率Rrは50%以上、60%以下)であることが、より一層好ましい。これにより、上記の斜入射条件の場合で、85%以上の非常に高い透過率Tpが得られ、77%以上の非常に高いTp×Rsを得ることができる。
 また、反射軸反射率Rsに関しては、被覆率Rcが20%以上であることが好ましい。これにより、上記の斜入射条件の場合で、85%以上の高い反射率Rsが得られる。
 また、透過光のコントラストCR(CR=Tp/Ts)に関しては、被覆率Rcが20%以上であれば、十分なコントラストCRが得られる。被覆率Rcが高いほど、高いコントラストCRが得られる。
 <2.7.Tp×Rsの好適な範囲>
 次に、本実施形態に係るワイヤグリッド偏光素子1の偏光分離特性を表す指標である「Tp×Rs」の好適な範囲について説明する。
 Tp×Rs[%]は、透過軸透過率(Tp)と反射軸反射率(Rs)との積を百分率で表したものである。このTp×Rsは、ワイヤグリッド偏光素子1の偏光分離特性を表す指標となる。
 Tp×Rs[%]=(Tp[%]/100)×(Rs[%]/100)×100
 なお、上述したように、透過軸透過率(Tp)は、偏光素子1の透過軸(X方向)に平行な電界成分を有する第2の偏光(P偏光)の透過率である。反射軸反射率(Rs)は、偏光素子1の反射軸(Y方向)に平行な電界成分を有する第1の偏光(S偏光)の反射率である。
 本実施形態に係るワイヤグリッド偏光素子1を偏光ビームスプリッタとして使用して、入射光をS偏光とP偏光に分離する場合(図15~図17参照。)、偏光素子1は、光源からの入射光に対して所定の角度(例えば45°)だけ傾斜して配置される。例えば、光源からの入射光が偏光素子1に対して斜め45°程度の入射角度θで入射すると、当該入射光は、偏光素子1により第1の偏光(S偏光:反射光)と第2の偏光(P偏光:透過光)とに分離される。S偏光は、入射光のうち、グリッド構造体20の凸条部22の長手方向(図2に示す反射軸方向:Y方向)に対して平行な方向の電界成分を有する光である。一方、P偏光は、入射光のうち、グリッド構造体20の凸条部22の幅方向(図2に示す透過軸方向:X方向)に対して平行な方向の電界成分を有する光である。
 反射軸方向のS偏光は主に、偏光素子1の反射膜30により反射する反射光となる。このときのS偏光の反射率[%]が、反射軸反射率(Rs)である。反射軸反射率(Rs)は、偏光素子1に入射するS偏光のうち、偏光素子1で反射するS偏光の割合を表す。なお、反射軸透過率(Rp)は、偏光素子1に入射するS偏光のうち、偏光素子1を透過するS偏光の割合を表す。
 一方、透過軸方向のP偏光は主に、偏光素子1の透明なグリッド構造体20及び基板10を透過する透過光となる。このときのP偏光の透過率[%]が、透過軸透過率(Tp)である。透過軸透過率(Tp)は、偏光素子1に入射するP偏光のうち、偏光素子1を透過するP偏光の割合を表す。なお、透過軸反射率(Ts)は、偏光素子1に入射するP偏光のうち、偏光素子1で反射するP偏光の割合を表す。
 したがって、透過軸透過率Tpが高い方が、透過軸方向のP偏光を効率的に透過できることを意味する。また、反射軸反射率Rsが高い方が、反射軸方向のS偏光を効率的に反射できることを意味する。よって、TpとRsの積であるTp×Rs値が高い方が、P偏光(透過光)の透過性及びS偏光(反射光)の反射性の双方が高く、偏光ビームスプリッタとしての偏光分離特性に優れることになる。
 ここで、本実施形態に係るTp×Rsの値の好適な範囲について説明する。本実施形態に係る偏光素子1に対して、所定の入射角度θ(例えば45°)で斜め方向から、所定範囲の波長(例えば430~680nm)の光を入射し、P偏光(透過光)とS偏光(反射光)に分離する場合を考える。このような斜入射条件の場合、偏光素子1の良好な偏光分離特性の観点からは、Tp×Rsは、70%以上であることが好ましい。
 Tp×Rsが70%未満であると、偏光素子が適用される表示デバイスにおいて、光の利用効率が悪く、表示画像の明るさが不足し、視認性が劣る。これに対し、Tp×Rsが70%以上であれば、偏光素子1が適用される表示デバイスにおいて光の利用効率を高めて、表示画像の十分な明るさを確保でき、視認性を向上できる。
 さらに、Tp×Rsが、72%以上であることがより好ましく、75%以上であることがより一層好ましく、80%以上であることが特に好ましい。これにより、上記のような光の利用効率と、表示画像の明るさと視認性をさらに向上できる。
 <2.8.凸条部の高さHの好適な範囲>
 本実施形態に係る偏光素子1に対して、比較的大きい入射角度θ(例えば45°)で入射光が入射される場合、グリッド構造体20の凸条部22の高さH(図1、図3等参照)は、160nm以上であることが好ましく、180nm以上であることがより好ましく、220nm以上であることが特に好ましい(図24参照。)。これにより、高い透過軸透過率Tpと、優れたTp×Rs特性と、透過光の高いコントラストCRが得られる。
 具体的には、透過率に関しては、凸条部22の高さHが160nm以上であれば、斜入射光の透過軸透過率Tpが80%以上になり、高い透過率が得られる。さらに、Hが180nm以上であれば、85%以上のTpが得られるので、より好ましい。加えて、Hが220nm以上であれば、87%以上のTpが得られるので、特に好ましい。
 また、偏光ビームスプリッタ(PBS)として要求されるTp×Rs特性に関しては、凸条部22の高さHが160nm以上であれば、70%以上の優れたTp×Rsが得られる。さらに、Hが180nm以上であれば、75%以上のTp×Rsが得られるので、より好ましい。加えて、Hが220nm以上であれば、77%以上のTp×Rsが得られるので、特に好ましい。
 また、透過光のコントラストCR(CR=Tp/Ts)に関しては、凸条部22の高さHは100nm以上であればよいが、Hが160nm以上であれば、150以上の優れたコントラストCRが得られる。さらに、Hが180nm以上であれば、250以上の優れたCRが得られるので、より好ましい。加えて、Hが220nm以上であれば、500以上の優れたCRが得られるので、特に好ましい。
 以上のように、偏光素子1の各種の特性(Tp、Tp×Rs、CR)、特にTpを良好にするためには、凸条部22の高さHは、より大きい方が好ましいことが分かる。この理由は、次のとおりであると考えられる。即ち、スパッタリング又は蒸着等により凸条部22上に反射膜30を成膜するときの成膜入射角度φ(図5参照。)が同一である場合、凸条部22の高さHが低くなるほど、反射膜30による被覆率Rcが大きくなる。被覆率Rcが大きくなると、反射膜30により被覆される凸条部22の範囲が広くなるため、P偏光がグリッド構造体20を透過しにくくなり、透過率Tpが低下する。したがって、成膜入射角度φが同一であるという条件下では、凸条部22の高さHをより大きくすることによって、被覆率Rcを小さくして、透過率Tpを上昇させることが好ましいといえる。
 <2.9.機能膜(反射膜)の先端厚さDtの好適な範囲>
 本実施形態に係る偏光素子1に対して、比較的大きい入射角度θ(例えば45°)で入射光が入射される場合、グリッド構造体20の凸条部22の先端22aを覆う反射膜30の厚さDt(反射膜30の先端厚さDt:図5参照。)は、5nm以上であることが好ましく、15nm以上であることがより好ましい(例えば図25参照。)。
 反射膜30の先端厚さDtが5nm以上であれば、斜入射光の反射軸反射率Rs及び透過軸透過率Tpの双方が85%以上になり、高い透過率が得られる。さらに、Tp特性、及び偏光ビームスプリッタとして求められるTp×Rs特性を考慮した場合、Dtは15nm以上であることがより好ましい。
 <2.10.機能膜(反射膜)の側面厚さDsの好適な範囲>
 また、グリッド構造体20の凸条部22の側面22bを覆う反射膜30の厚さDs(反射膜30の側面厚さDs:図5参照。)は、10nm以上、30nm以下であることが好ましく、12.5nm以上、25nm以下であることがより好ましく、15nm以上、25nm以下であることが特に好ましい(例えば図26参照。)。これにより、高い透過軸透過率Tpと、優れたTp×Rs特性と、透過光の高いコントラストCRが得られる。
 具体的には、透過率に関しては、反射膜30の側面厚さDsが10nm以上、30nm以下であれば、斜入射光の透過軸透過率Tpが80%以上になり、高い透過率が得られる。さらに、Dsが12.5nm以上、25nm以下であれば、85%以上のTpが得られるので、より好ましい。
 また、反射率に関しては、反射膜30の側面厚さDsが10nm以上であれば、斜入射光の反射軸反射率Rsが80%以上になり、高い反射率が得られる。さらに、Dsが12.5nm以上であれば、85%以上のRsが得られるので、より好ましい。
 また、偏光ビームスプリッタ(PBS)として要求されるTp×Rs特性に関しては、反射膜30の側面厚さDsが12.5nm以上、30nm以下であれば、70%以上の優れたTp×Rsが得られる。さらに、Dsが15nm以上、25nm以下であれば、76%以上のTp×Rsが得られるので、より好ましい。
 また、透過光のコントラストCR(CR=Tp/Ts)に関しては、反射膜30の側面厚さDsは10nm以上であればよいが、Dsが12.5nm以上であれば、50以上の優れたコントラストCRが得られる。さらに、Dsが15nm以上であれば、100以上のCRが得られるので、より好ましい。
 <2.11.反射膜の偏在>
 また、本実施形態に係る偏光素子1では、凸条部22を覆う反射膜30を、凸条部22の片側に偏在させて、凸条部22の幅方向(X方向)に左右非対称な形状にしてもよい(例えば図29参照。)。具体的には、凸条部22の一方の側面22bと他方の側面22bとの間で、反射膜30の側面厚さDsや被覆率Rcなどを変えて、反射膜30を凸条部22の一方の側面22bに偏在させてもよい。つまり、反射膜30は、凸条部22の一方の側面22bを厚く、広く被覆し、他方の側面22bを薄く、狭く被覆するようにしてもよい。
 このように反射膜30を凸条部22の片側に偏在させる場合、偏光素子1に対する入射角度が+θ(+30°~+60°)である入射光の透過軸透過率Tp(+)と、入射角度が-θ(-30°~-60°)である入射光の透過軸透過率Tp(-)との差が、3%以内であることが好ましい。そして、当該Tp(+)とTp(-)との差が3%以内となるように、凸条部22の一方の側面22bと他方の側面22bをそれぞれ被覆する反射膜30の厚さDsや被覆率Rcを調整して、反射膜30を凸条部22の片側に適切に偏在させることが好ましい。
 なお、入射角度が+θであるとは、凸条部22に対してX方向(凸条部22の幅方向)の一側に傾斜した方向から斜入射光を入射することを意味する。一方、入射角度が-θであるとは、凸条部22に対してX方向の他側に傾斜した方向から斜入射光を入射することを意味する(例えば図29参照。)。
 以上のように、反射膜30を凸条部22の片側に偏在させる場合、Tp(+)とTp(-)との差を3%以内にすることが好ましい。これにより、反射膜30を凸条部22の片側に偏在させる場合であっても、高い透過軸透過率Tpと、優れたTp×Rs特性と、透過光の高いコントラストCRが得られる。
 具体的には、透過率に関しては、反射膜30を片側に偏在させる場合であっても、入射角度θが+45°及び-45°の斜入射光の透過軸透過率Tpが85%以上になり、高い透過率が得られる。
 また、反射率に関しては、反射膜30を片側に偏在させる場合であっても、入射角度θが+45°及び-45°の斜入射光の反射軸反射率Rsが85%以上になり、高い反射率が得られる。
 また、偏光ビームスプリッタ(PBS)として要求されるTp×Rs特性に関しては、反射膜30を片側に偏在させる場合であっても、入射角度θが45°の斜入射光のTp×Rsが75%以上となり、優れたTp×Rs特性が得られる。
 また、透過光のコントラストCR(CR=Tp/Ts)に関しては、反射膜30を片側に偏在させる場合であっても、優れたコントラストCRが得られる。さらに、コントラストを向上させる観点からは、凸条部22の一方の側面22bと他方の側面22bをそれぞれ覆う反射膜30の厚さDsのうち、薄い方の厚さDsが5nm以上(その被覆率Rcが22%以上)であることが好ましく、当該薄い方の反射膜30の厚さDsが10nm以上(その被覆率Rcが33%以上)であることがより好ましい。
 <2.12.その他の構成要素>
 本実施形態に係る偏光素子1は、上述した基板10、グリッド構造体20及び反射膜30以外の構成要素を、さらに備えることもできる。
 例えば、図7に示すように、偏光素子1は、少なくとも反射膜30の表面を覆うように形成された保護膜40をさらに備えることが好ましい。詳細には、図7に示すように、保護膜40は、グリッド構造体20の表面全体を覆うことがより好ましい。すなわち、保護膜40は、グリッド構造体20の凸条部22の側面22b及びベース部21の表面と、反射膜30の表面とを全て覆うように形成されることがより好ましい。かかる保護膜40を形成することで、偏光素子1の耐擦傷性や防汚性、防水性をより高めることができる。
 また、保護膜40は、さらに、撥水性コーティング又は撥油性コーティングを含むことがより好ましい。これにより、偏光素子1の防汚性及び防水性をより高めることができる。
 保護膜40を構成する材料は、偏光素子1の耐擦傷性や防汚性、防水性を高めることができるものであれば、特に限定されない。保護膜40を構成する材料としては、例えば、誘電材料からなる膜が挙げられ、より具体的には、無機酸化物、シラン系撥水材料等が挙げられる。無機酸化物としては、Si酸化物、Hf酸化物等が挙げられる。シラン系撥水材料は、パーフルオロデシルトリエトキシシラン(FDTS)等のフッ素系シラン化合物を含有するものであってもよく、オクタデシルトリクロロシラン(OTS)等の非フッ素系シラン化合物を含有するものであってもよい。
 これらの材料の中でも、無機酸化物及びフッ素系撥水材料の少なくとも一方を含むことがより好ましい。保護膜40が、無機酸化物を含むことで、偏光素子の耐疵付き性をより高めることができ、フッ素系撥水材料を含むことで、偏光素子の防汚性及び防水性をより高めることができる。
 なお、保護膜40は、少なくとも反射膜30の表面を覆うように形成されればよいが、図7に示すように、グリッド構造体20及び反射膜30の表面全体を覆うように形成されることがより好ましい。この場合、例えば、図7の上側の図に示すように、保護膜40は、グリッド構造体20の端面(ベース部21の端面)を覆ってもよいし、あるいは、図7の下側の図に示すように、保護膜40は、グリッド構造体20の端面(ベース部21の端面)を覆わなくてもよい。また、図8に示すように、保護膜40は、グリッド構造体20及び反射膜30の表面に加えて、基板10の表面も含めて、偏光素子1の全体を覆うように形成されることもできる。このように、グリッド構造体20又は偏光素子1の最外表面を無機酸化物からなる保護膜40で覆うことにより、偏光素子1全体の熱抵抗Rをさらに低減できるので、偏光素子1の放熱性がさらに向上する。
 さらに、本実施形態に係る偏光素子1は、図9に示すように、基板10の周囲を取り囲むように、放熱部材50が設けられることが好ましい。この放熱部材50により、基板10から伝達される熱を、より効率的に放出することができる。ここで、放熱部材50は、放熱効果が高い部材であれば、特に限定されない。放熱部材50は、例えば、放熱器、ヒートシンク、ヒートスプレッダ、ダイパッド、ヒートパイプ、金属カバー又は筐体等であってよい。
 <2.13.実際のグリッド構造体の画像>
 次に、図10を参照して、本実施形態に係る偏光素子1を実際に作製し、走査型電子顕微鏡(SEM)を用いて拡大撮影した例について説明する。図10Aは、反射膜30により被覆される前のグリッド構造体20を、斜め方向から見たSEM画像である。図10Bは、反射膜30により被覆される前のグリッド構造体20の凸条部22の断面を示すSEM画像である。図10Cは、反射膜30により被覆されたグリッド構造体20の凸条部22の断面を示すSEM画像である。
 図10A及び図10Bに示すように、グリッド構造体20には、基板10の表面に沿って設けられたベース部21と、ベース部21から突出した凸条部22が形成されている。複数の凸条部22は、ほぼ等しいピッチPで配列されている。各々の凸条部22は、ベース部21から離れるにつれて幅が細くなる先細り形状を有している。凸条部22の頂部の幅Wは、凸条部22の底部の幅Wよりも狭い。ピッチPは、凸条部22の底部の幅Wよりも十分に大きい。凸条部22の高さHは、ピッチPよりも大きい。図10の例では、P=140nm、W=10nm、W=30nm、H=220nmである。また、図10Cに示すように、凸条部22の先端22a及び両側面22bを覆い包むように反射膜30が形成されている。反射膜30の外側表面は、丸みを有して湾曲しており、凸条部22の幅方向に膨出している。
<3.偏光素子の製造方法>
 次に、図11を参照して、本実施形態に係るワイヤグリッド偏光素子1の製造方法について説明する。図11は、本実施形態に係るワイヤグリッド偏光素子1の製造方法を示す工程図である。
 上述したように、本実施形態に係る偏光素子1は、無機材料(基板10)と有機材料(グリッド構造体20)とからなるハイブリッド型のワイヤグリッド偏光素子1である。以下では、当該ハイブリッド型のワイヤグリッド偏光素子1の製造方法について説明する。
 図11に示すように、本実施形態に係るワイヤグリッド偏光素子1の製造方法は、グリッド構造体材料形成工程(S10)と、ナノインプリント工程(S12)と、グリッド構造体形成工程(S14)と、反射膜形成工程(S16)とを含む。
 グリッド構造体材料形成工程(S10)
 まず、S10では、透明な無機材料(例えばガラス)からなる基板10上に、透明な有機材料(例えば、紫外線硬化性樹脂又は熱硬化性樹脂)からなるグリッド構造体材料23を、塗布等により積層する。なお、基板10の無機材料としては、上述した各種の材料を用いることができる。また、グリッド構造体20の有機材料としては、上述した各種の材料を用いることができる。さらに、グリッド構造体材料23の膜厚は、S20のナノインプリントによって形成されるグリッド構造体20のベース部21及び凸条部22の寸法に応じて適宜調整すればよい。
 ナノインプリント工程(S12)及びグリッド構造体形成工程(S14)
 次いで、S12にて、グリッド構造体材料23にナノインプリントを施すことによって、S14にて、基板10上にグリッド構造体20を形成する。グリッド構造体20は、基板10上に設けられるベース部21と、ベース部21から突出する複数の凸条部22とが一体形成された微細凹凸構造体である。微細凹凸構造体は、例えば数nm~数十nmオーダーの微細な凸部と凹部を有する構造体である。
 S12のナノインプリント工程では、当該グリッド構造体20の微細凹凸形状の反転形状が形成された原盤60を用いて、グリッド構造体材料23の表面に当該原盤60の微細凹凸形状を転写する(S12)。これにより、グリッド構造体材料23に、上記ベース部21、凸条部22及び凹部24からなる凹凸パターンが形成される。さらに、ナノインプリント工程では、上記凹凸パターンの転写とともに、グリッド構造体材料23に対して、エネルギー線を照射することによって、凹凸パターンが転写されたグリッド構造体材料23を硬化させて、グリッド構造体20を形成する(S14)。例えば、グリッド構造体材料23が紫外線硬化性樹脂からなる場合は、紫外線照射装置66を用いて、グリッド構造体材料23に対して紫外線を照射することによって、凹凸パターンが転写された紫外線硬化性樹脂を硬化させてもよい。あるいは、グリッド構造体材料23が熱硬化性樹脂からなる場合は、ヒーター等の加熱装置68を用いて、グリッド構造体材料23を加熱することによって、凹凸パターンが転写された熱硬化性樹脂を硬化させてもよい
 上記の工程S12及びS14では、グリッド構造体20の凸条部22として、ベース部21から離れるにつれて幅が狭くなる先細り形状を有する凸条部22を形成する。図11の例の凸条部22は、台形状(テーパ形状)であるが、図3に示したように他の各種の先細り形状であってもよい。
 このように、本実施形態では、ナノインプリント工程S12にて、先細り形状を有する凸条部22をインプリントするため、原盤60をグリッド構造体材料23から容易に剥離することができ、型抜け性に優れる。また、グリッド構造体20の凸条部22を、型崩れさせることなく、所望形状に正確に成形できる。
 反射膜形成工程(S16)
 次いで、S16では、Al、Agなどの金属材料を用いて、グリッド構造体20の凸条部22の一部を被覆する反射膜30を形成する。反射膜30は、偏光素子1に所定の機能を付与する機能膜の一例である。反射膜30は、偏光素子1のグリッド構造体20に入射される入射光を反射するための金属薄膜(金属細線のグリッド)である。
 この反射膜形成工程S16では、次のように反射膜30を形成する。即ち、反射膜30が、凸条部22の先端22a及び少なくとも一方の側面22bの上部側を覆い包み、かつ、凸条部22の両側面22bの下部側及びベース部21を被覆しないように、反射膜30を形成する。さらに、凸条部22を覆い包む反射膜30の表面が、丸みを有して凸条部22の幅方向に膨出するように、反射膜30を形成する。加えて、凸条部22を覆い包む反射膜30の最大幅WMAX(グリッド最大幅WMAX)が、前述の凸条部の底部の幅W(グリッド底部幅W)以上になるように、反射膜30を形成する。
 このような反射膜30の形成方法としては、例えば、図5に示したように、スパッタリング又は蒸着法を用いることができる。グリッド構造体20の凸条部22に対して斜めの方向から交互に、金属材料をスパッタリング又は蒸着して、反射膜30を成膜する。これにより、凸条部22の頂部を丸く覆い包むように、所望形状の反射膜30を好適に形成することができる。
 このようにして反射膜30を形成することにより、グリッド構造体20の凸条部22と反射膜30は、上述した特殊な樹木形状を有するようになる。これにより、前述したように、比較的大きくかつ広い範囲の入射角度θ(例えば30~60°)で、光が偏光素子1に斜め方向から入射する場合であっても、当該斜入射光に含まれるP偏光の透過軸透過率Tpを高い値に維持でき、P偏光(透過光)の透過性を確保できる。よって、Tp×Rsの値を高い値(例えば70%以上)に維持できるので、斜入射光に対する偏光素子1の偏光分離特性を向上できる。
 なお、本実施形態に係る偏光素子1の製造方法は、図11に示す反射膜形成工程S16の後に、必要に応じて、偏光素子1の表面を被覆する保護膜40を形成する工程(保護膜形成工程)を含んでもよい。保護膜40は、グリッド構造体20及び反射膜30の表面全体を覆うように形成することが好ましい。保護膜40の材料としては、上述した各種の材料を用いることができる。
 以上、本実施形態に係る偏光素子1の製造方法について説明した。上述した工程を経ることによって、偏光素子1の製造コストの高騰や製造の煩雑さを招くことなく、偏光特性及び放熱性に優れた偏光素子1を製造できる。
 ここで、本実施形態に係る製造方法と比較するために、図12を参照して、従来のワイヤグリッド偏光素子の製造方法について簡単に説明する。
 図12に示すように、従来のワイヤグリッド偏光素子の製造方法では、まず、凸グリッド形状を作製するために、基板10上に金属膜80を成膜する(S20)。このS20では、ガラス等の無機材料からなる基板10に、使用帯域の光を反射する材料等からなる反射膜、例えばアルミニウム等の金属膜80をスパッタ又は蒸着などを使用して成膜する。
 次いで、フォトリソグラフィ技術を用い、金属膜80上にレジストマスク70をパターニングする(S22)。その後、真空ドライエッチング装置等によって、金属膜80にエッチングを施すことで、金属膜80からなる凸形状を形成する(S24)。例えばこの時に、レジストマスク70と金属膜80とのエッチング選択比が取れない場合には、金属膜80上にSiO等の酸化膜をスパッタなどでさらに成膜し、この上にフォトリソグラフィ技術によってレジストマスク70を形成する。その後、レジストマスク70を金属膜80から剥離した後(S26)、SiO膜等からなる保護膜40を、CVD等によって成膜し、必要に応じて撥水・撥油コート処理も行う(S28)。
 なお、上記従来の製造方法の工程S20~S28では、基本的な構成の反射型ワイヤグリッド偏光素子を作製するプロセスを示したが、金属膜80が多層膜である場合を考えると、さらに複雑なプロセスを要する。そのため、図12のS20~S28に示すようなプロセスで作製される従来のワイヤグリッド偏光素子は、製造コストが高額になり、製造に要する時間も大きくなることが推測される。また、偏光素子を量産する場合は、光の波長よりも小さい微細凸形状を形成するために、精度の良い高額なエッチング装置やフォトリソグラフィ装置を、生産量に合わせ複数台準備することが必要となり、設備投資もより高額になることが予測される。
 これに対し、本実施形態に係る偏光素子1の製造方法(図11参照。)は、ナノインプリントなどのインプリント技術を用いて、グリッド構造体20を成形するので、上記従来の製造方法(図12参照。)と比べて、製造コストや製造時間、設備投資を大幅に低減することができる。
 本実施形態に係る偏光素子1の製造方法では、グリッド構造体材料23にナノインプリントを施す(図11のS12)が、ナノインプリントの条件は、特に限定されない。例えば、図11のS12に示すように、原盤60としてレプリカ原盤(本型原盤でも良い)を用い、ナノインプリントを行いつつ、グリッド構造体材料23に対してUV照射又は加熱等を行い、凹凸パターンがインプリントされた状態でグリッド構造体材料23を硬化させる。その後、硬化したグリッド構造体材料23から原盤60を離型する。これにより、ベース部21及び凸条部22が形成されたグリッド構造体20を、転写により成形することができる。
 なお、本実施形態に係る偏光素子1の製造方法におけるナノインプリント工程S12(図11)で用いる原盤60は、例えば、図13に示すように、フォトリソグラフィ技術によって作製することができる。図13は、本実施形態に係る原盤60の製造方法を示す工程図である。
 図13に示すように、まず、原盤用基材61上に、原盤用金属膜62を成膜した後(S30)、原盤用金属膜62上にレジストマスク70を形成する(S32)。次いで、レジストマスク70を用いて原盤用金属膜62をエッチングし、当該エッチングされた原盤用金属膜62に、上記グリッド構造体20の凸条部22に対応する凹溝65を形成する(S34)。
 その後、原盤用金属膜62からレジストマスク70を剥離することによって、原盤60が得られる(S36)。原盤60は、原盤用基材61上に成形された複数の凸部63及び凹溝65からなる微細凹凸構造を有する。原盤60の表面の微細凹凸構造は、上記偏光素子1のグリッド構造体20の表面の微細凹凸構造の反転形状を有する。原盤60の凹溝65は、グリッド構造体20の凸条部22の反転形状を有し、原盤60の凸部63は、グリッド構造体20の凸条部22、22間の凹部24の反転形状を有する。
 さらに、本実施形態に係る製造方法は、必要に応じて、原盤60の微細凹凸構造の表面に、離型膜コート64を形成する工程(S38)を含んでもよい。原盤60の表面に離型膜コート64を設けることにより、上記図11に示したナノインプリント工程(S12)でグリッド構造体材料23にナノインプリントを施した後に、原盤60をグリッド構造体材料23から容易に剥離することができ、離型性をさらに向上できる。
<4.投影表示装置>
 次に、図14を参照して、本実施形態に係るワイヤグリッド偏光素子1が適用される投影表示装置について説明する。
 本実施形態に係る投影表示装置は、上述した本実施形態に係るワイヤグリッド偏光素子1を備える。本実施形態に係る投影表示装置が偏光素子1を備えることによって、優れた偏光特性と、偏光素子1の耐熱性及び放熱性などを実現できる。
 ここで、投影表示装置は、対象物に向けて光を投影し、当該投影した光(投影光)を、対象物の被表示面(投影面)に照射することで、画像や映像等の虚像を表示させる装置である。投影表示装置の種類としては、例えば、ヘッドアップディスプレイ装置(HUD)、プロジェクタ装置等が挙げられる。
 <4.1.ヘッドアップディスプレイ装置>
 ます、図14を参照して、本実施形態に係るワイヤグリッド偏光素子1を備えたヘッドアップディスプレイ装置100について説明する。図14は、本実施形態に係るヘッドアップディスプレイ装置100の一例を示す模式図である。
 図14に示すように、本実施形態に係るヘッドアップディスプレイ装置100は、上述した本実施形態に係るワイヤグリッド偏光素子1を備える。ヘッドアップディスプレイ装置100が偏光素子1を備えることによって、偏光特性、耐熱性及び放熱性を向上させることができる。従来の偏光素子を組み込んだヘッドアップディスプレイは、放熱性に劣るため、長期間の使用や、今後の高輝度化・拡大表示に対応することを考えると、耐熱性が十分でないと考えられる。
 図14に示すように、ヘッドアップディスプレイ装置100は、光源2と、表示画像を出射する表示素子3と、表示画像を表示面5へ反射させる反射器4と、ハウジング7の開口に設けられるカバー部6と、を備える。ヘッドアップディスプレイ装置100において、偏光素子1の配置は、特に限定されない。例えば、図14に示すように、偏光素子1を、表示素子3と反射器4との間に配置することができる。
 ここで、ヘッドアップディスプレイ装置100は、車両に設けられる車両用ヘッドアップディスプレイ装置であってもよい。車両用ヘッドアップディスプレイ装置は、車両のフロントガラスやコンバイナ等の半透過板(「表示面5」に相当する。)に、映像を表示する。車両用ヘッドアップディスプレイ装置は、例えば、車両のダッシュボードに配設され、映像光をフロントガラス(表示面5)に投影し、運転情報を虚像として表示する映像表示装置である。
 ヘッドアップディスプレイ装置100は、表示画像を下方からフロントガラス面(表示面5)に向けて出射する構成である。このため、表示画像の出射方向と逆向きに太陽光が入り込み、表示素子3へ入射することがある。本実施形態に係るヘッドアップディスプレイ装置100では、小型化の要求や表示画像の拡大を目的として、表示画像を反射及び拡大するための反射器4が設けられている。このような場合、従来のヘッドアップディスプレイ装置では、外部から反射器に入射した太陽光が表示素子の近傍で集光することになり、熱によって表示素子の劣化や故障を引き起こすおそれがあった。
 これに対し、本実施形態に係るヘッドアップディスプレイ装置100では、表示素子3への太陽光の入射を防ぐことを目的として、上述したとおり放熱性及び耐熱性に優れるハイブリッド型の偏光素子1が設けられている。この偏光素子1は、例えば200℃程度の高温であっても安定的に偏光機能を発揮できる。したがって、例えば、夏場の車内などの高温環境下であっても、外部から反射器4に入射した太陽光を偏光素子1により遮蔽して、表示素子3に到達することを防止できるので、表示素子3の劣化や故障を抑制できる。
 なお、図14に示したヘッドアップディスプレイ装置100の構成要素は、基本的な構成要素の例であり、投影表示装置の構成要素は、図14の例に限定されるものではなく、要求される性能等に応じて、適宜他の構成要素を備えることができる。
 また、偏光素子1を、表示素子3の前に配置されるプレ偏光板として用いることによって、偏光素子1は、表示素子3から出射された表示画像を透過させつつ、太陽光が表示素子3へ入射するのを抑制できる。したがって、ヘッドアップディスプレイ装置100の耐熱性及び耐久性をより高めることができる。
 加えて、投影表示装置におけるワイヤグリッド偏光素子の配置は、図14に示すヘッドアップディスプレイ装置100における偏光素子1の配置の例に限定されず、投影表示装置の構成や、要求される性能などに応じて、適宜選択及び変更することができる。例えば、図示はしていないが、偏光素子1を、表示素子3と光源2との間に配置することができる。また、図示はしていないが、偏光素子1を、反射器4の中に組み込むこともできる。さらに、図14に示すヘッドアップディスプレイ装置100に設けられたカバー部6を、偏光素子1で構成することもできる。
 また、図示はしないが、ヘッドアップディスプレイ装置100内に設置される偏光素子1の周囲に放熱部材50(図9参照。)を設けてもよい。この放熱部材50により、偏光素子1の放熱性をさらに向上させることができるので、偏光素子1の偏光特性及び耐熱性をさらに向上させることができる。
 <4.2.偏光ビームスプリッタを備える投影表示装置>
 次に、図15~図17を参照して、本実施形態に係る反射型ワイヤグリッド偏光素子1を偏光ビームスプリッタ230として用いた投影表示装置について説明する。以下では、まず、図15~図17に示す投影表示装置200A、200B、200C(以下、「投影表示装置200」と総称する場合もある。)の3つの具体例に共通する事項について包括的に説明する。その後に、図15~図17に示す各具体例について個別に説明する。
 図15~図17に示すように、投影表示装置200は、光源210と、PSコンバータ220と、偏光ビームスプリッタ230と、反射型液晶表示素子240と、レンズ250とを備える。なお、偏光ビームスプリッタ230と反射型液晶表示素子240との間に、位相差補償板(図示せず。)を設置してもよい。
 光源210は、1つの発光部を有する点光源であってもよいし、LEDなどの複数の発光部を有する光源であってもよい。また、光源210から出射される光は、平行光であってもよいし、拡散光であってもよい。したがって、光源210の光は、例えば、45°を中心とした所定範囲(例えば、45°±15°の範囲)の入射角度θで、偏光ビームスプリッタ230(反射型ワイヤグリッド偏光板)に対して入射される場合がある。
 PSコンバータ220は、光源210からの光を特定の偏光(例えば、P偏光又はS偏光)に変換するための偏光変換素子である。PSコンバータ220は、光源210からの光をP偏光に変換してもよいし、S偏光に変換してもよい。
 偏光ビームスプリッタ230は、反射型ワイヤグリッド偏光板で構成される。反射型ワイヤグリッド偏光板は、本実施形態に係るワイヤグリッド偏光素子1の一例である。偏光ビームスプリッタ230は、光源210からの光が45°を含む所定範囲の入射角度θで入射するように配置される。この所定範囲の入射角度θは、例えば、上述した45°±15°、即ち、30°以上、60°以下である。
 例えば、図15~図17では、光源210からの入射光が偏光ビームスプリッタ230に対して主に45°の入射角度θで入射されるように、偏光ビームスプリッタ230は、当該入射光の入射方向に対して45°傾斜して配置されている。また、反射型液晶表示素子240からの入射光が偏光ビームスプリッタ230に対して主に45°の入射角度θで入射されるように、偏光ビームスプリッタ230は、反射型液晶表示素子240に対して45°傾斜して配置されている。
 偏光ビームスプリッタ230は、入射光を第1の偏光(S偏光)と第2の偏光(P偏光)とに分離する。例えば、偏光ビームスプリッタ230は、入射光のうち第1の偏光(S偏光)を反射させ、第2の偏光(P偏光)を透過させることにより、S偏光とP偏光を分離してもよい。これとは逆に、偏光ビームスプリッタ230は、入射光のうち第2の偏光(P偏光)を反射させ、第1の偏光(S偏光)を透過させることにより、S偏光とP偏光を分離してもよい。
 偏光ビームスプリッタ230により所望の偏光を反射させる場合、偏光ビームスプリッタ230の表面(即ち、偏光素子1のグリッド構造体20が形成された側の凹凸面)に、当該反射対象の偏光を含む光が入射されるように、偏光ビームスプリッタ230が配置される。例えば、図15に示すように、偏光ビームスプリッタ230により、PSコンバータ220から入射されるS偏光を反射する場合、偏光ビームスプリッタ230の表面を、S偏光を出射するPSコンバータ220側に向ければよい。一方、図16に示すように、偏光ビームスプリッタ230により、反射型液晶表示素子240から入射されるS偏光を反射する場合、偏光ビームスプリッタ230の表面を、S偏光を出射する反射型液晶表示素子240側に向ければよい
 反射型液晶表示素子240は、入射光を反射させて、表示画像を表す光を出射する表示素子である。図15及び図17に示すように、偏光ビームスプリッタ230で反射した第1の偏光(S偏光)が反射型液晶表示素子240の表面に入射されるように、反射型液晶表示素子240が配置されてもよい。あるいは、図16に示すように、偏光ビームスプリッタ230を透過した第2の偏光(P偏光)が反射型液晶表示素子240の表面に入射されるように、反射型液晶表示素子240が配置されてもよい。
 また、反射型液晶表示素子240は、図15及び図17に示すように、入射された第1の偏光(S偏光)を反射及び変調して、表示画像を表す第2の偏光(P偏光)を出射する。しかし、かかる例に限定されず、図16に示すように、反射型液晶表示素子240は、入射された第2の偏光(P偏光)を反射及び変調して、表示画像を表す第1の偏光(S偏光)を出射するようにしてもよい。
 レンズ250は、反射型液晶表示素子240から出射された表示画像を表す光を拡大して、外部に出力する。反射型液晶表示素子240から出射された表示画像を表す光が、偏光ビームスプリッタ230を通じて入射されるように、レンズ250が配置される。例えば、図15及び図17に示すように、反射型液晶表示素子240で反射及び変調された第2の偏光(P偏光)が、偏光ビームスプリッタ230を透過してレンズ250に入射されるように、レンズ250が配置されてもよい。あるいは、図16に示すように、反射型液晶表示素子240で反射及び変調された第1の偏光(S偏光)が、偏光ビームスプリッタ230で反射してレンズ250に入射されるように、レンズ250が配置されてもよい。
 以上のように、本実施形態に係る投影表示装置200では、偏光ビームスプリッタ230として、前述した本実施形態に係るワイヤグリッド偏光素子1を用いている。したがって、偏光ビームスプリッタ230は、比較的大きくかつ広い範囲の入射角度θ(例えば、30~60°)の斜入射光に対して、S偏光の反射性と、P偏光の透過性と、Tp×Rs特性に優れており、斜入射光をP偏光とS偏光に分離する特性に優れる。
 次に、図15~図17に示す投影表示装置200A、200B、200Cの各具体例について個別に説明する。
 図15に示すように、本実施形態の第1具体例に係る投影表示装置200Aは、光源210と、PSコンバータ220と、偏光ビームスプリッタ230と、反射型液晶表示素子240と、レンズ250とを備える。
 光源210から出射される光は、非偏光であり、当該光は、P偏光成分とS偏光成分を同じ割合で含む。このため、偏光素子1からなる偏光ビームスプリッタ230により、一方の偏光のみを選択して抽出すると、光量が約半分に減少してしまう。そこで、PSコンバータ220により、光源210から出射される光を、第1の偏光(S偏光)又は第2の偏光(P偏光)のいずれかに変換する。これにより、偏光ビームスプリッタ230で抽出される偏光の光量の減少を抑制して、光利用効率を向上することができる。例えば、図15に示すPSコンバータ220は、光源210からの光を、第1の偏光(S偏光)に変換する。
 PSコンバータ220によりS偏光に変換された光は、斜め45°程度に傾斜配置された偏光ビームスプリッタ230に入射される。偏光ビームスプリッタ230は、第1の偏光(S偏光)を反射し、45°の出射角度で反射型液晶表示素子240に向けて出射する。反射型液晶表示素子240は、第1の偏光(S偏光)を変調及び反射して、表示画像を表す第2の偏光(P偏光)を生成し、当該第2の偏光(P偏光)を偏光ビームスプリッタ230に向けて出射する。当該第2の偏光(P偏光)は、偏光ビームスプリッタ230を透過して、レンズ250により拡大された後に、不図示の表示面に投影されて、表示画像が表示される。
 以上の構成を有する投影表示装置200Aは、偏光ビームスプリッタ230として、本実施形態に係るワイヤグリッド偏光素子1からなる反射型ワイヤグリッド偏光板を備える。これによって、斜めからの入射光及び広い入射角度θの入射光に対して、偏光ビームスプリッタ230の偏光分離特性を向上できるとともに、偏光ビームスプリッタ230及び投影表示装置200Aの放熱性と耐熱性を向上することができる。
 これに対し、偏光ビームスプリッタとして従来の偏光素子を備える投影表示装置(図示せず。)は、偏光素子の放熱性に劣る。このため、長期間の使用や高輝度化、拡大表示に対応する観点からは、耐熱性が十分でないと考えられる。また、偏光ビームスプリッタに入射する光の入射角度θは、45°だけでなく、45°を中心とした所定範囲(例えば45°±15°程度)内のあらゆる角度となる。このように、大きくかつ広い範囲の入射角度θの斜入射光が偏光ビームスプリッタに入射される場合であっても、偏光ビームスプリッタは、入射角度θに関わらず、斜入射光をS偏光とP偏光に好適に分離可能な性能が求められる。しかし、従来の偏光素子を用いた偏光ビームスプリッタでは、上記斜入射光に対する偏光分離特性が悪いため、光の利用効率が悪化するとともに、輝度ムラなどの表示画像の画質への悪影響が問題となっていた。
 この点、本実施形態の第1具体例に係る投影表示装置200Aの偏光ビームスプリッタ230は、上記のように大きくかつ広い範囲の入射角度θの斜入射光に対する偏光分離特性に優れている。したがって、投影表示装置200Aにおいて光の利用効率を向上できるとともに、輝度ムラなどを低減して、表示画像の画質を向上することができる。
 また、投影表示装置は、上記図15に示した投影表示装置200Aの例に限定されず、例えば、図16に示す投影表示装置200B、又は、図17に示す投影表示装置200Cなどのように、投影表示装置の構成要素や配置を適宜変更可能である。
 図16に示すように、本実施形態の第2具体例に係る投影表示装置200Bは、光源210と、PSコンバータ220と、偏光ビームスプリッタ230と、反射型液晶表示素子240と、レンズ250とを備える。
 投影表示装置200Bにおいて、PSコンバータ220は、光源210からの光を、第2の偏光(P偏光)に変換する。PSコンバータ220によりP偏光に変換された光は、斜め45°程度に傾斜配置された偏光ビームスプリッタ230を透過して、反射型液晶表示素子240に入射される。反射型液晶表示素子240は、第2の偏光(P偏光)を変調及び反射して、表示画像を表す第1の偏光(S偏光)を生成し、当該第1の偏光(S偏光)を偏光ビームスプリッタ230に向けて出射する。偏光ビームスプリッタ230は、第1の偏光(S偏光)を反射し、45°の出射角度でレンズ25に向けて出射する。当該第1の偏光(S偏光)は、レンズ250により拡大された後に、不図示の表示面に投影されて、表示画像が表示される。
 以上の構成を有する投影表示装置200Bは、上述した投影表示装置200A(図15参照。)と同様に、斜入射光に対する偏光分離特性に優れ、光の利用効率を向上できるとともに、輝度ムラなどを低減して、表示画像の画質を向上することができる。
 また、図17に示すように、本実施形態の第3具体例に係る投影表示装置200Cは、光源210と、偏光ビームスプリッタ230と、反射型液晶表示素子240と、レンズ250と、光吸収体260とを備えているが、上記のPSコンバータ220を備えていない。
 投影表示装置200Cでは、光源210から出射される非偏光の光は、斜め45°程度に傾斜配置された偏光ビームスプリッタ230に直接的に入射される。偏光ビームスプリッタ230は、非偏光の光のうち、第1の偏光(S偏光)の成分を反射し、45°の出射角度で反射型液晶表示素子240に向けて出射する。一方、偏光ビームスプリッタ230に入射される非偏光の光のうち、第2の偏光(P偏光)の成分は、偏光ビームスプリッタ230を透過して、光吸収体260に入射される。この第2の偏光(P偏光)の成分のほとんどは、光吸収体260に吸収されるので、投影表示装置200C内の他の光学系に、不要な第2の偏光(P偏光)が入射されてしまうことを抑制できる。
 反射型液晶表示素子240は、偏光ビームスプリッタ230から入射された第1の偏光(S偏光)の成分を変調及び反射して、表示画像を表す第2の偏光(P偏光)を生成し、当該第2の偏光(P偏光)を偏光ビームスプリッタ230に向けて出射する。当該第2の偏光(P偏光)は、偏光ビームスプリッタ230を透過して、レンズ250により拡大された後に、不図示の表示面に投影されて、表示画像が表示される。
 以上の構成を有する投影表示装置200Cでは、PSコンバータ220を設置しないため、光源210から出射される非偏光の光のうち、第2の偏光(P偏光)の成分を、光吸収体260で吸収し、表示画像の表示に利用しない。このため、表示画像の光量が約半分に低減されてしまう。しかし、PSコンバータ220に要するコストと設置スペースを削減でき、投影表示装置200Cの部品点数を削減できるので、投影表示装置200Cのコストを低減できるとともに、投影表示装置200Cを小型化できるという利点がある。
 以上、本実施形態に係る反射型ワイヤグリッド偏光素子1を偏光ビームスプリッタ230として用いた投影表示装置200の具体例について説明した。なお、投影表示装置は、図15~図17に示した投影表示装置200の具体例に限定されず、要求される性能等に応じて、投影表示装置の構成要素や配置を適宜変更したり、他の構成要素を適宜設けたりしてもよい。
<5.車両>
 次に、本実施形態に係る映像表示装置を備えた車両について説明する。
 本実施形態に係る車両(図示せず。)は、上述した本実施形態に係るワイヤグリッド偏光素子1を有する投影表示装置を備える。なお、車両は、投影表示装置を設置可能な車両であれば、例えば、普通乗用車、軽自動車、バス、トラック、レーシングカー、建設工事用車両、その他の大型車両などの各種の自動車であってもよいし、これら以外にも、自動二輪車、電車、リニアモーターカー、アトラクション用乗り物など、各種の乗り物であってもよい。
 本実施形態に係る車両は、上記偏光素子1及び投影表示装置によって、車両に設けられる表示面(例えば図14に示した表示面5)に表示画像を投影表示できる。表示面は、例えば、車両のフロントガラス、サイドガラス、リアガラス又はコンバイナ等の半透過板であることが好ましい。しかし、表示面は、かかる例に限定されず、表示画像を投影可能な対象物の表面であれば、車両に設けられる各種の部品、部材、車載機器などの表面であってもよい。
 本実施形態に係る車両に設けられる投影表示装置は、例えば、図14に示したヘッドアップディスプレイ装置100、又は、図15~図17に示した偏光ビームスプリッタ130を有する投影表示装置200などである。しかし、かかる例に限定されず、投影表示装置は、画像を投影又は表示可能な装置であれば、車両に搭載されるプロジェクタ、カーナビゲーション装置、画像表示機能を有する端末装置など、各種の画像表示装置であってもよい。
 上述したように、ヘッドアップディスプレイ装置100では、図14に示したように、太陽光が、車両の外部からフロントガラス(表示面5)を透過してヘッドアップディスプレイ装置100内に入り込む場合がある。この太陽光の熱などによって、表示素子3の劣化や故障を引き起こすおそれがある。このため、表示素子3への太陽光の入射を防ぐことを目的として、ヘッドアップディスプレイ装置100中に、上述したハイブリッド型のワイヤグリッド偏光素子1が設けられている。この偏光素子1は、熱伝導率が高いハイブリッド構造を有しているので、放熱性及び耐熱性に優れている。したがって、偏光素子1により、外部からヘッドアップディスプレイ装置100内に入射した太陽光を遮蔽して、表示素子3に到達することを防止できるので、表示素子3の故障や破損を防止できる。さらに、偏光素子1は、放熱性や耐熱性に優れるため、偏光素子1自身の破損も防止できる。
 同様に、図15~図17に示す投影表示装置200が車両に設置される場合でも、偏光ビームスプリッタ230として用いられる偏光素子1は、外部からの太陽光を遮断できるので、反射型液晶表示素子240などの他の部品の故障や破損を防止できる。さらに、放熱性や耐熱性に優れる偏光素子1自身の破損も防止できる。
 以上のように本実施形態に係る車両に設けられる投影表示装置は、偏光素子1により優れた偏光特性(太陽光の遮断性能や、偏光分離特性など)が得られるとともに、投影表示装置の優れた耐熱性及び耐久性も実現できる。
 なお、車両は、上述した投影表示装置および偏光素子を備えるものであれば、特に限定されず、その他の条件は、車両に要求される性能に応じて適宜設定及び変更することが可能である。
<6.グリッド構造体を構成する有機材料(インプリント用光硬化性アクリルレジン)>
 次に、本実施形態に係るグリッド構造体20を構成する有機材料(インプリント用光硬化性アクリルレジン)について説明する。
 微細凹凸構造を有する樹脂製の光学部材を製造する技術として、未硬化の樹脂組成物で構成された未硬化樹脂層に対するインプリント成形が広く利用されている。インプリント成形では、基板上に形成された未硬化樹脂層に原盤の微細凹凸形状を押し当て、その状態で未硬化樹脂層を硬化させ、原盤を剥離することで基板上に微細凹凸形状を成形することができる。
 インプリント成形において、原盤を押し当てた際の未硬化樹脂層の厚み(層厚)が不均一であると、硬化後の樹脂層(以下、「硬化樹脂層」という。)から原盤を剥離する際に印加される剥離力が、硬化樹脂層の面内で不均一となる。そうすると、硬化樹脂層の一部が基板から剥離してしまうおそれがある。また、基板から剥離してしまった硬化樹脂層が原盤に残ってしまい、原盤を繰り返し利用できなくなってしまう。さらに、原盤を剥離する際に、硬化樹脂層に転写された微細凹凸形状が変形し、微細凹凸構造に起因する光学特性が低下してしまうおそれがある。
 また、インプリント成形において、原盤を押し当てた際に、微細凹凸形状への未硬化の樹脂組成物の追従性が低いと、未硬化樹脂層において、原盤の微細凹凸形状が転写されない部分が生じてしまう。
 そこで、原盤を押し当てた際の未硬化樹脂層の層厚を均一にし、また、微細凹凸形状への未硬化の樹脂組成物の追従性を向上させるために、未硬化の樹脂組成物の粘度を低くする技術が開発されている(例えば、特開2018-125559号公報、特許第4824068号公報に記載されている)。
 未硬化の樹脂組成物の粘度を低くするために、樹脂組成物中の単官能モノマーおよび低粘度の2官能モノマーの含有率を増加させることが考えられる。
 しかし、単官能モノマーおよび低粘度の2官能モノマーの含有率を増加させると、硬化後の樹脂層の耐熱性が低下してしまうという問題がある。
 そこで、本実施形態では、未硬化の樹脂組成物の粘度を低くし、かつ、硬化後の樹脂組成物の耐熱性に優れたインプリント用光硬化性アクリルレジンを提供することを目的とする。
 本実施形態に係るインプリント用光硬化性アクリルレジンは、未硬化の樹脂組成物である。本実施形態に係るインプリント用光硬化性アクリルレジンは、光重合成分と、光重合開始剤とで構成される。本実施形態に係る光重合成分は、上記アクリル重合性化合物の一種である。また、本実施形態に係る光重合開始剤は、光重合成分を重合させるための物質であり、上記光硬化開始剤に相当する。
<6.1.光重合成分の組成>
 次に、本実施形態に係るインプリント用光硬化性アクリルレジンの光重合成分の組成について説明する。本実施形態に係る光重合成分は、樹脂(A)および樹脂(B)を少なくとも含む。また、本実施形態に係る光重合成分は、樹脂(A)および樹脂(B)に加えて、樹脂(C)および樹脂(D)のうちのいずれか一方または両方を含んでもよい。また、本実施形態に係る光重合成分は、樹脂(A)および樹脂(B)のみで構成されてもよいし、樹脂(A)、樹脂(B)および樹脂(C)のみで構成されてもよいし、樹脂(A)、樹脂(B)および樹脂(D)のみで構成されてもよいし、樹脂(A)、樹脂(B)、樹脂(C)および樹脂(D)のみで構成されてもよい。以下、樹脂(A)~(D)について説明する。
 樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートである。つまり、樹脂(A)は、下記化学式(II)で示される2官能のアクリレートモノマーである。樹脂(A)としては、例えば、日本化薬株式会社から「KAYARAD R-684」を用いることができる。
Figure JPOXMLDOC01-appb-C000001
/
 樹脂(A)は、25℃において100mPa・s以上、250mPa・s以下の粘度を有する。なお、粘度は、JIS Z8803に準拠した回転粘度計及び振動粘度計を用いた液体の粘度である。粘度は、例えば、英弘精機株式会社製のBrookfield粘度計において、コーンプレートを用いて測定される。
 樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーである。樹脂(B)は、25℃において3mPa・s以上の粘度を有する2官能のアクリレートモノマーであることが好ましい。また、樹脂(B)は、構造的に柔軟である2官能のアクリレートモノマーである。ここで、構造的に柔軟であるとは、加熱された際に分子運動が容易であり、湾曲が容易であり、かつ、伸縮が容易である構造を有することを意味する。樹脂(B)は、炭化水素基で構成された直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマー、または、エーテル結合を有する直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマーであってもよい。ここで、炭化水素基は、例えば、アルキル基、アルキレン基、および、アルキニル基からなる群より選択される1つまたは複数である。
 炭化水素基で構成された直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマーは、例えば、下記化学式(I)で表される2官能のアクリレートモノマーであってもよい。化学式(I)において、nは、1以上、9以下の整数であることが好ましく、より好ましくは、6以上、9以下の整数であり、さらに好ましくは、6または9である。
CH=CHCOO(CHOOCCH=CH   …(I)
 上記化学式(I)においてnが6である場合、つまり、樹脂(B)が1,6-ヘキサンジオールジアクリレートである場合、樹脂(B)は、25℃において6.5mPa・sの粘度を有する。また、上記化学式(I)においてnが9である場合、つまり、樹脂(B)が1,9-ノナンジオールジアクリレートである場合、樹脂(B)は、25℃において8mPa・sの粘度を有する。
 エーテル結合を有する直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマーは、例えば、ジプロピレングリコールジアクリレート(DPGDA)であってもよい。
 樹脂(C)は、25℃において10mPa・s以下の粘度を有するアクリレートモノマーであることが好ましい。樹脂(C)は、25℃において1mPa・s以上の粘度を有するアクリレートモノマーであることが好ましい。また、樹脂(C)は、構造的に剛直であるアクリレートモノマーであることが好ましい。ここで、構造的に剛直であるとは、加熱された際に分子運動が困難であり、湾曲が困難であり、かつ、伸縮が困難である構造を有することを意味する。樹脂(C)は、例えば、単結合のみからなる環状構造、および、単結合および多重結合からなる環状構造(例えば、ベンゼン環)のうちのいずれか一方または両方の環状構造を有するアクリレートモノマーであってもよい。なお、樹脂(C)のアクリロイル基の数は、特に限定されないが、樹脂(C)は、例えば、単官能のアクリレートモノマーである。
 樹脂(C)は、例えば、イソボルニルアクリレートであってもよい。
 樹脂(C)がイソボルニルアクリレートである場合、樹脂(C)は、25℃において9.5mPa・sの粘度を有する。
 樹脂(D)は、3官能以上のアクリレートモノマーであることが好ましい。樹脂(D)は、6官能以下のアクリレートモノマーであることが好ましい。樹脂(D)は、3官能以上の6官能以下のアクリレートモノマーであることが好ましい。樹脂(D)は、例えば、トリメチロールプロパントリアクリレート(TMPTA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、および、多官能のポリエステルアクリレートからなる群より選択される1つまたは複数であってもよい。多官能のポリエステルアクリレートとしては、例えば、東亞合成株式会社製の「M-9050」を用いることができる。
 樹脂(D)が、トリメチロールプロパントリアクリレート(TMPTA)である場合、樹脂(D)は、25℃において70mPa・s以上、80mPa・s以下の粘度を有する。樹脂(D)が、ジペンタエリスリトールヘキサアクリレート(DPHA)である場合、樹脂(D)は、5000mPa・s以上、10000mPa・s以下の粘度を有する。樹脂(D)が、「M-9050」である場合、樹脂(D)は、6000mPa・s以上、14000mPa・s以下の粘度を有する。
<6.2.光重合成分全体における各樹脂の含有率>
 次に、本実施形態に係る光重合成分全体における各樹脂の含有率について説明する。本実施形態において、光重合成分全体に対する、樹脂(A)の含有率は、20質量%以上、40質量%以下である。また、光重合成分全体に対する、樹脂(A)および樹脂(B)の合計の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましい。光重合成分全体に対する、樹脂(A)および樹脂(B)の合計の含有率は、70質量%以下である。光重合成分全体に対する、樹脂(A)および樹脂(B)の合計の含有率は、好ましくは、50質量%以上、70質量%以下であり、より好ましくは、60質量%以上、70質量%以下である。
 また、光重合成分全体に対する、樹脂(B)および樹脂(C)の合計の含有率は、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、59質量%以上であることがさらに好ましい。光重合成分全体に対する、樹脂(B)および樹脂(C)の合計の含有率は、70質量%以下であることが好ましい。光重合成分全体に対する、樹脂(B)および樹脂(C)の合計の含有率は、40質量%以上、70質量%以下であってもよく、好ましくは、50質量%以上、70質量%以下であり、さらに好ましくは、59質量%以上、70質量%以下である。
 また、光重合成分全体に対する、樹脂(D)の含有率は、0質量%超であることが好ましく、1質量%超であることがより好ましい。光重合成分全体に対する、樹脂(D)の含有率は、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。光重合成分全体に対する、樹脂(D)の含有率は、0質量%超、20質量%以下であってもよく、好ましくは、1質量%超、20質量%以下であり、さらに好ましくは、1質量%超、10質量%以下である。
<6.3.光重合開始剤>
 次に、本実施形態に係る光重合開始剤について説明する。本実施形態に係る光重合開始剤は、例えば、アシルフォスフィンオキサイド系光重合開始剤またはアルキルフェノン系光重合開始剤である。光重合開始剤としては、例えば、IGM Resins B.V.製の「Irgacure819」を用いることができる。
 インプリント用光硬化性アクリルレジンにおいて、光重合成分全体の含有率を100質量%とした場合、光重合開始剤の含有率は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。インプリント用光硬化性アクリルレジンにおいて、光重合成分全体の含有率を100質量%とした場合、光重合開始剤の含有率は、3質量%以下であることが好ましい。インプリント用光硬化性アクリルレジンにおいて、光重合成分全体の含有率を100質量%とした場合、光重合開始剤の含有率は、0.5質量%以上、3質量%以下であることが好ましく、1質量%以上、3質量%以下であることがより好ましい。
<6.4.インプリント用光硬化性アクリルレジンの粘度>
 次に、本実施形態に係るインプリント用光硬化性アクリルレジンの粘度について説明する。上記6.2.で示した樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)の含有率の関係により、25℃におけるインプリント用光硬化性アクリルレジンの粘度は、5mPa・s以上となることが好ましい。25℃におけるインプリント用光硬化性アクリルレジンの粘度は、35mPa・s以下となってもよく、好ましくは、25mPa・s以下となり、さらに好ましくは、20mPa・s以下となる。25℃におけるインプリント用光硬化性アクリルレジンの粘度は、5mPa・s以上、35mPa・s以下となってもよく、好ましくは、5mPa・s以上、25mPa・s以下となり、さらに好ましくは、5mPa・s以上、20mPa・s以下となる。
<6.5.インプリント用光硬化性アクリルレジンの硬化物のYI値>
 次に、本実施形態に係るインプリント用光硬化性アクリルレジンに光(例えば、紫外線)を照射することで得られる硬化物のYI(Yellow Index)値について説明する。YI値は、JIS K 7373:2006「プラスチック-黄色度及び黄変度の求め方(Plastics- Determination of yellowness index and change of yellowness index)」に基づいて算出される。YI値は、例えば、日本分光株式会社製の紫外可視近赤外分光光度計V-770を用いた測定結果から算出される。具体的には、紫外可視近赤外分光光度計V-770において、D65光源を用い、0°入射時の380nm~800nmの波長領域の光に対する硬化物の透過率を測定する。そして、測定結果に対し、ソフトウエアにより色相計算が実行され、XYZ表色系のX、Y、Zが算出される。算出されたXYZ表色系のX、Y、Zを、JIS K 7373:2006に示された下記式(3)に代入することで、YI値が算出される。
YI=100×(1.2985X-1.1335Z)/Y   …(3)
 本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、当該硬化物のYI値は、0以上であることが好ましい。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、当該硬化物のYI値は、3以下であってもよく、好ましくは、2.5以下であり、さらに好ましくは、2以下である。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、当該硬化物のYI値は、0以上、3以下であってもよく、好ましくは、0以上、2.5以下であり、さらに好ましくは、0以上、2以下である。
<6.6.インプリント用光硬化性アクリルレジンの硬化物の平均透過率>
 次に、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物の光に対する平均透過率について説明する。平均透過率は、430nm以上、680nm以下の波長領域において1nmごとに透過率を測定し、得られた251個の測定データを単純平均することで算出される。透過率は、例えば、日本分光株式会社製の紫外可視近赤外分光光度計V-770を用いて測定される。
 本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、91%以上であってもよく、好ましくは、92%以上である。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、94%以下であってもよい。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、91%以上、94%以下であってもよく、好ましくは、92%以上、94%以下である。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する前後における、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率の差(|保持前の平均透過率-保持後の平均透過率|)は、0.0%以上であってもよい。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する前後における、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率の差(|保持前の平均透過率-保持後の平均透過率|)は、0.5%以下であってもよく、好ましくは、0.3%以下であり、より好ましくは、0.2%以下である。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する前後における、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率の差(|保持前の平均透過率-保持後の平均透過率|)は、0.0%以上、0.5%以下であってもよく、好ましくは、0.0%以上、0.3%以下であり、より好ましくは、0.0%以上、0.2%以下である。
 本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、90%以上であってもよく、好ましくは、91%以上である。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、94%以下であってもよい。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、90%以上、94%以下であってもよく、好ましくは、91%以上、94%以下である。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する前後における、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率の差(|保持前の平均透過率-保持後の平均透過率|)は、0.0%以上であってもよい。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する前後における、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率の差(|保持前の平均透過率-保持後の平均透過率|)は、1.2%以下であってもよく、好ましくは、0.7%以下であり、より好ましくは、0.5%以下である。インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する前後における、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率の差(|保持前の平均透過率-保持後の平均透過率|)は、0.0%以上、1.2%以下であってもよく、好ましくは、0.0%以上、0.7%以下であり、より好ましくは、0.0%以上、0.5%以下である。
<6.7.インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率>
 次に、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率について説明する。貯蔵弾性率とは、外力とひずみにより生じたエネルギーのうち物体の内部に保存される成分である。つまり、貯蔵弾性率は、硬化物の硬さを示す。貯蔵弾性率が大きいほど、硬化物は硬い。貯蔵弾性率は、例えば、株式会社日立ハイテク製、DMA7100を用いて測定することができる。例えば、硬化物のシートを縦20mm×横3mmに切断し、引張モードで、一定の周波数(1Hz)で、温度を5℃/分で昇温させ、25℃~300℃での貯蔵弾性率を測定することができる。
 30℃における、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、1.6×10Pa以上であってもよく、好ましくは、2.0×10Pa以上であり、さらに好ましくは、2.2×10Pa以上である。30℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、2.5×10Pa以下であってもよい。30℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、1.6×10Pa以上、2.5×10Pa以下であってもよく、好ましくは、2.0×10Pa以上、2.5×10Pa以下であり、さらに好ましくは、2.2×10Pa以上、2.5×10Pa以下である。
 120℃における、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、3.9×10Pa以上であってもよく、好ましくは、6.0×10Pa以上であり、さらに好ましくは、7.0×10Pa以上である。120℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、2.5×10Pa以下であってもよい。120℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、3.9×10Pa以上、2.5×10Pa以下であってもよく、好ましくは、6.0×10Pa以上、2.5×10Pa以下であり、さらに好ましくは、7.0×10Pa以上、2.5×10Pa以下である。
 130℃における、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、3.1×10Pa以上であってもよく、好ましくは、5.5×10Pa以上であり、さらに好ましくは、7.0×10Pa以上である。130℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、2.5×10Pa以下であってもよい。130℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、3.1×10Pa以上、2.5×10Pa以下であってもよく、好ましくは、5.5×10Pa以上、2.5×10Pa以下であり、さらに好ましくは、7.0×10Pa以上、2.5×10Pa以下である。
 140℃における、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、2.6×10Pa以上であってもよく、好ましくは、5.0×10Pa以上であり、さらに好ましくは、6.0×10Pa以上である。140℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、2.5×10Pa以下であってもよい。140℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、2.6×10Pa以上、2.5×10Pa以下であってもよく、好ましくは、5.0×10Pa以上、2.5×10Pa以下であり、さらに好ましくは、6.0×10Pa以上、2.5×10Pa以下である。
 また、30℃における当該硬化物の貯蔵弾性率に対する、120℃における当該硬化物の貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、17%以上であってもよく、好ましくは、30%以上であり、より好ましくは、40%以上である。30℃における当該硬化物の貯蔵弾性率に対する、120℃における当該硬化物の貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、100%以下であってもよい。30℃における当該硬化物の貯蔵弾性率に対する、120℃における当該硬化物の貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、17%以上、100%以下であってもよく、好ましくは、30%以上、100%以下であり、より好ましくは、40%以上、100%以下である。
 30℃における当該硬化物の貯蔵弾性率に対する、130℃における当該硬化物の貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、14%以上であってもよく、好ましくは、27%以上であり、より好ましくは、33%以上である。30℃における当該硬化物の貯蔵弾性率に対する、130℃における当該硬化物の貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、100%以下であってもよい。30℃における当該硬化物の貯蔵弾性率に対する、130℃における当該硬化物の貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、14%以上、100%以下であってもよく、好ましくは、27%以上、100%以下であり、より好ましくは、33%以上、100%以下である。
 30℃における当該硬化物の貯蔵弾性率に対する、140℃における当該硬化物の貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、11%以上であってもよく、好ましくは、25%以上であり、より好ましくは、30%以上である。30℃における当該硬化物の貯蔵弾性率に対する、140℃における当該硬化物の貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、100%以下であってもよい。30℃における当該硬化物の貯蔵弾性率に対する、140℃における当該硬化物の貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、11%以上、100%以下であってもよく、好ましくは、25%以上、100%以下であり、より好ましくは、30%以上、100%以下である。
<6.8.インプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tg>
 次に、インプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgについて説明する。ガラス転移温度Tgは、例えば、株式会社日立ハイテク製、DMA7100を用いて測定することができる。例えば、硬化物のシートを縦20mm×横3mmに切断し、引張モードで、一定の周波数(1Hz)で、温度を5℃/分で昇温させ、25℃~300℃での損失正接tanδの最大値を確認することで測定することができる。
 本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、115℃以上であってもよく、好ましくは、140℃以上であり、さらに好ましくは、170℃以上である。インプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、185℃以下であってもよい。インプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、115℃以上、185℃以下であってもよく、好ましくは、140℃以上、185℃以下であり、さらに好ましくは、170℃以上、185℃以下である。
<6.9.インプリント用光硬化性アクリルレジンの効果>
 上記したように、本実施形態に係るインプリント用光硬化性アクリルレジンは、樹脂(A)を含む。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンは、インプリント用光硬化性アクリルレジンの硬化物の耐熱性を向上することができる。
 本実施形態に係るインプリント用光硬化性アクリルレジンは、25℃において10mPa・s以下の粘度を有する樹脂(B)を含む。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンの粘度を低くすることができる。また、樹脂(B)は、炭化水素基で構成された直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマー、または、エーテル結合を有する直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマーであることが好ましい。これにより、インプリント用光硬化性アクリルレジンの粘度をより低くすることができる。また、樹脂(B)は、上記化学式(I)で表される2官能のアクリレートモノマーであり、化学式(I)において、nが、1以上、9以下の整数であることが好ましい。これにより、インプリント用光硬化性アクリルレジンの粘度をさらに低くすることができる。また、樹脂(B)は、上記化学式(I)で表される2官能のアクリレートモノマーであり、化学式(I)において、nが、6以上、9以下の整数であることが好ましい。これにより、インプリント用光硬化性アクリルレジンの粘度をさらに低くすることができる。また、樹脂(B)は、上記化学式(I)で表される2官能のアクリレートモノマーであり、化学式(I)において、nが、6または9の整数であることが好ましい。これにより、インプリント用光硬化性アクリルレジンの粘度をさらに低くすることができる。
 本実施形態に係るインプリント用光硬化性アクリルレジンは、25℃において10mPa・s以下の粘度を有する樹脂(C)をさらに含むことが好ましい。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンの粘度をさらに低くすることができる。また、本実施形態において、樹脂(C)は、25℃において10mPa・s以下の粘度を有し、かつ、構造的に剛直であるアクリレートモノマーであることが好ましい。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンの粘度をより低くし、かつ、インプリント用光硬化性アクリルレジンの硬化物の耐熱性をより向上することができる。また、樹脂(C)は、単官能のアクリレートモノマーであることが好ましい。これにより、インプリント用光硬化性アクリルレジンの重合反応(硬化反応)において、ポリマーの末端における反応を終息させることができる。したがって、インプリント用光硬化性アクリルレジンの硬化物(ポリマー)の末端基からの劣化を抑制することが可能となる。また、樹脂(C)は、イソボルニルアクリレートであることが好ましい。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンの粘度をより低くし、かつ、インプリント用光硬化性アクリルレジンの硬化物の耐熱性をより向上することができる。
 本実施形態に係るインプリント用光硬化性アクリルレジンは、3官能以上のアクリレートモノマーである樹脂(D)をさらに含むことが好ましい。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンは、硬化時の架橋密度を上げることができ、インプリント用光硬化性アクリルレジンの硬化物の耐熱性をより向上することができ、かつ、高温時の貯蔵弾性率の低下を抑えることができる。また、樹脂(D)は、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、および、多官能のポリエステルアクリレートからなる群より選択される1つまたは複数であることが好ましい。これにより、インプリント用光硬化性アクリルレジンの硬化物の耐熱性をさらに向上することが可能となる。
 また、上記したように、本実施形態に係るインプリント用光硬化性アクリルレジンにおいて、光重合成分全体に対する、樹脂(A)の含有率は、20質量%以上、40質量%以下であり、光重合成分全体に対する、樹脂(A)および樹脂(B)の合計の含有率は、70質量%以下である。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンは、低粘度および硬化物の耐熱性の向上を両立することができる。
 本実施形態に係るインプリント用光硬化性アクリルレジンが低粘度であることにより、上記ナノインプリント工程S12(図11)において、インプリント用光硬化性アクリルレジン(有機材料)に原盤60を押し当てた際のインプリント用光硬化性アクリルレジンの層の厚み(層厚)を均一にすることができる。これにより、硬化されたインプリント用光硬化性アクリルレジンの層から原盤60を剥離する際に印加される剥離力を面内において均一にすることが可能となる。したがって、硬化されたインプリント用光硬化性アクリルレジンの層が基板10から剥離してしまう事態を回避することができる。このため、硬化されたインプリント用光硬化性アクリルレジンの層の原盤60への残留を抑制することができ、原盤60を繰り返し利用することが可能となる。また、上記剥離力を面内において均一にすることができるため、原盤60を剥離する際に、硬化されたインプリント用光硬化性アクリルレジンの層に転写された微細凹凸形状が変形してしまう事態を回避することが可能となる。このため、インプリント用光硬化性アクリルレジンの硬化物の微細凹凸形状に起因する光学特性の低下を抑制することができる。したがって、インプリント用光硬化性アクリルレジンの硬化物でグリッド構造体20を製造した場合に、グリッド構造体20が有する偏光特性の低下を抑制することが可能となる。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンが低粘度であることにより、上記ナノインプリント工程S12において、インプリント用光硬化性アクリルレジンに原盤60を押し当てた際の、原盤60の微細凹凸形状へのインプリント用光硬化性アクリルレジンの追従性を向上させることができる。したがって、上記ナノインプリント工程S12において、インプリント用光硬化性アクリルレジンの層に対し、原盤60の微細凹凸形状を満遍なく転写することが可能となる。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンが低粘度であることにより、上記ナノインプリント工程S12において、インプリント用光硬化性アクリルレジンへの気泡の混入を抑制することができる。これにより、インプリント用光硬化性アクリルレジンの硬化物において、微細凹凸形状の一部が気泡によって途切れてしまう事態を回避することが可能となる。したがって、インプリント用光硬化性アクリルレジンの硬化物でグリッド構造体20を製造した場合に、グリッド構造体20の凸条部22の断線を抑制することができる。
 本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物は、耐熱性に優れる。したがって、インプリント用光硬化性アクリルレジンの硬化物で光学材料(例えば、上記ワイヤグリッド偏光素子1のグリッド構造体20)を製造した場合、光学材料に対し、さらに蒸着等の加熱処理を行った場合であっても、光学材料が有する光学特性の低下を抑制することができる。
 例えば、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物は、耐熱性に優れるため、インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、当該硬化物のYI値は、3以下となる。したがって、インプリント用光硬化性アクリルレジンの硬化物で光学材料を製造することにより、光学材料に対しさらに蒸着等の加熱処理を行った場合であっても、光学材料の黄変を抑制することができ、透明性を維持できる。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物は、耐熱性に優れるため、インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、91%以上である。したがって、インプリント用光硬化性アクリルレジンの硬化物で光学材料を製造することにより、光学材料に対しさらに蒸着等の加熱処理を行った場合であっても、上記波長領域の光に対する光学材料の平均透過率を高く維持することができる。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物は、耐熱性に優れるため、インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、90%以上である。したがって、インプリント用光硬化性アクリルレジンの硬化物で光学材料を製造することにより、光学材料に対しさらに蒸着等の加熱処理を行った場合であっても、上記波長領域の光に対する光学材料の平均透過率を高く維持することができる。
 また、30℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、1.6×10Pa以上であることが好ましい。これにより、上記ナノインプリント工程S12(図11)において、原盤60を剥離する際に、硬化されたインプリント用光硬化性アクリルレジンの層に転写された微細凹凸形状が変形してしまう事態をより回避することが可能となる。このため、インプリント用光硬化性アクリルレジンの硬化物の微細凹凸形状に起因する光学特性の低下をさらに抑制することができる。したがって、インプリント用光硬化性アクリルレジンの硬化物でグリッド構造体20を製造した場合に、グリッド構造体20が有する偏光特性の低下をより抑制することが可能となる。
 また、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物は、耐熱性に優れるため、120℃における、当該硬化物の貯蔵弾性率は、3.9×10Pa以上である。したがって、インプリント用光硬化性アクリルレジンの硬化物で光学材料を製造することにより、光学材料に対しさらに蒸着等の加熱処理を行った場合であっても、光学材料の変形をさらに抑制することができる。このため、光学材料が有する光学特性の低下をより抑制することが可能となる。
 また、上記したように、ワイヤグリッド偏光素子1を製造する際、グリッド構造体20に、反射膜30を蒸着する。この反射膜30の蒸着の際にグリッド構造体20が加熱される。ここで、グリッド構造体20の耐熱性が低いと、反射膜30の蒸着の際に、グリッド構造体20が変形し、偏光特性が低下するという問題がある。
 しかし、本実施形態に係るインプリント用光硬化性アクリルレジンの硬化物は、耐熱性に優れる。したがって、インプリント用光硬化性アクリルレジンの硬化物でグリッド構造体20を製造することにより、反射膜30を蒸着しても、グリッド構造体20の黄変、および、グリッド構造体20の変形を抑制することができ、また、430nm以上、680nm以下の波長領域の光、および、430nm以上、510nm以下の波長領域の光に対するグリッド構造体20の平均透過率を高く維持することができる。このため、グリッド構造体20が有する偏光特性の低下をさらに抑制することが可能となる。
 また、上記したように、25℃におけるインプリント用光硬化性アクリルレジン光重合成分の粘度は、35mPa・s以下であることが好ましい。これにより、上記ナノインプリント工程S12において、インプリント用光硬化性アクリルレジンに原盤60を押し当てた際のインプリント用光硬化性アクリルレジンの層の厚みをより均一にすることができ、原盤60の微細凹凸形状へのインプリント用光硬化性アクリルレジンの追従性をより向上させることができ、インプリント用光硬化性アクリルレジンへの気泡の混入をさらに抑制することが可能となる。
 また、上記したように、本実施形態に係るインプリント用光硬化性アクリルレジンにおいて、光重合成分全体に対する、樹脂(B)および樹脂(C)の合計の含有率は、50質量%以上、70質量%以下であることが好ましい。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンの粘度をさらに低くすることができる。例えば、光重合成分全体に対する、樹脂(B)および樹脂(C)の合計の含有率を59質量%以上、70質量%以下とすることにより、25℃におけるインプリント用光硬化性アクリルレジン光重合成分の粘度を25mPa・s以下とすることができる。
 また、上記したように、本実施形態に係るインプリント用光硬化性アクリルレジンにおいて、光重合成分全体に対する、樹脂(D)の含有率は、0質量%超、20質量%以下であることが好ましい。これにより、本実施形態に係るインプリント用光硬化性アクリルレジンの耐熱性をさらに向上することができる。例えば、120℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率を、6.2×10Pa以上とすることができ、130℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率を、5.5×10Pa以上とすることができ、140℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率を、5.0×10Pa以上とすることができる。また、30℃における当該硬化物の貯蔵弾性率に対する、120℃における当該硬化物の貯蔵弾性率の変化率を30%以上とすることができ、30℃における当該硬化物の貯蔵弾性率に対する、130℃における当該硬化物の貯蔵弾性率の変化率を27%以上とすることができ、30℃における当該硬化物の貯蔵弾性率に対する、140℃における当該硬化物の貯蔵弾性率の変化率を23%以上とすることができる。また、インプリント用光硬化性アクリルレジンの硬化物のガラス転移温度を125℃以上にすることができる。
<6.10.他の成分>
 インプリント用光硬化性アクリルレジンには、上記6.9.に示した効果を損なわない範囲で、他の成分(添加剤)が含まれていてもよい。他の成分は、例えば、酸化防止剤、蛍光体、可塑剤、紫外線吸収剤、消泡剤、揺変剤、重合禁止剤、離型剤、金属酸化物の粒子等である。
 次に、本発明の実施例について説明する。ただし、以下に説明する実施例は、上述した本実施形態に係る偏光素子1の構成や効果等を説明するために例示される具体例であり、本発明が、以下の実施例に限定されるものではない。
 <1.斜入射光に対する透過性及び偏光分離特性の検証結果>
 本発明の実施例として、上述した本実施形態に係るワイヤグリッド偏光素子1のモデルを作製し、その各種の特性をシミュレーションすることで、ワイヤグリッド偏光素子1を評価した。また、本発明の実施例と比較するために、従来例に係るワイヤグリッド偏光素子のモデルも作成し、同様にシミュレーション及び評価した。なお、以下では、説明の便宜上、実施例及び従来例ともに、偏光素子の構成要素(基板10、グリッド構造体20、ベース部21、凸条部22、反射膜30など)を表す参照符号や、これら構成要素の各種の寸法を表す記号については、同一の参照符号と記号を付している。
 なお、以下の説明で用いる偏光素子1の各種寸法等を表す記号を説明すると、次のとおりである。
 P  :凸条部22のピッチ
 WT  :凸条部22の頂部の幅(凸条部頂部幅)
 WM  :凸条部22の高さ方向の中央位置の幅(凸条部中央幅)
 WB  :凸条部22の底部の幅(グリッド底部幅)
 WMAX:凸条部22を覆い包む反射膜30の最大幅(グリッド最大幅)
 H  :凸条部22の高さ
 Hx :凸条部22の側面22bのうち反射膜30により被覆された部分の高さ
 Dt :凸条部22の先端22aを覆う反射膜30の厚さ(反射膜30の先端厚さ)
 Ds :凸条部22の側面22bを覆う反射膜30の厚さ(反射膜30の側面厚さ)
 Rc :反射膜30による凸条部22の側面22bの被覆率
 Rr :反射膜30による凸条部22の側面22bの開放率
 θ  :入射光の入射角度
 λ  :入射光の波長
 (従来例1)
 まず、図18を参照して、従来例1について説明する。
 図18(a)に示すように、従来例1に係る偏光素子1のモデルを作製した。従来例1に係る偏光素子1は、ガラス製の基板10と、紫外線硬化性樹脂(アクリル系樹脂)製のグリッド構造体20とを備える。グリッド構造体20は、基板10の表面に沿って設けられたベース部21と、該ベース部21から格子状に突出形成された複数の凸条部22とを有する。凸条部22の断面形状は、矩形状であり、先細り形状ではない。凸条部22を覆う反射膜30は、Al膜である。反射膜30は、凸条部22の先端22a及び一方の側面22bの全体と、ベース部21の一部とを覆うように形成されている。ただし、反射膜30は、凸条部22の他方の側面22bを全く覆っていない。このように、従来例1の反射膜30は、凸条部22の一側にのみ偏在して形成されており、凸条部22の他側は反射膜30で覆われておらず、開放されている。
 従来例1に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :32.5nm
 WB  :32.5nm
 WMAX:55nm
 H  :220nm
 Hx :220nm(一側)、0nm(他側)
 Dt :35nm
 Ds :22.5nm(最大値)
 Rc :100%(一側)、0%(他側)
 Rr :0%(一側)、100%(他側)
 θ  :0°~+60°
 λ  :430~680nm
 その後、上記のように作製した従来例1に係る偏光素子1のモデルについて、入射角度θを変更してシミュレーションを行い、透過軸透過率(Tp)、反射軸反射率(Rs)、及び偏光ビームスプリッタ(PBS)として要求されるTp×Rsをそれぞれ算出した。入射角度θは、0°~+60°とした。なお、Tp、Rsの値としては、入射光の波長λを430~680nmの範囲で変化させ、それぞれの波長λの入射光に対して算出された複数のTp、Rsの値の平均値を用いた。上記のようにして算出されたTp、Rs、Tp×Rsと、θとの関係を、図18(b)~(d)のグラフに示す。
 図18に示すように、従来例1では、反射膜30が凸条部22の一側に偏在し、当該一側の被覆率Rcが100%である。このため、入射角度θが大きくなるほど、Rsが徐々に上昇する反面、Tpが顕著に低下するため、Tp×Rsも顕著に低下した。例えば、θ>45°の範囲では、Tpは76%以下に低下し、Tp×Rsは68%以下に低下した。従って、従来例1に係る偏光素子1を偏光ビームスプリッタとして使用する場合、特に、45°以上の大きな入射角度θの斜入射光に対して、偏光分離特性(Tp×Rs特性)が悪く、偏光ビームスプリッタで要求されるTp×Rs特性が得られないという問題があることが分かる。
 (従来例2)
 次に、図19を参照して、従来例2について説明する。
 図19(a)に示すように、従来例2に係る偏光素子1のモデルを作製した。従来例2のモデルは、上記の従来例1のモデルと同様である。ただし、従来例2では、入射角度θとして、凸条部22の一側に対して斜め方向から入射される+方向の入射角度(θ=0°~+60°)と、凸条部22の他側に対して斜め方向から入射される-方向の入射角度(θ=0°~-60°)の2方向を用いた。
 従来例2に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :32.5nm
 WB  :32.5nm
 WMAX:55nm
 H  :220nm
 Hx :220nm(一側)、0nm(他側)
 Dt :35nm
 Ds :22.5nm(最大値)
 Rc :100%(一側)、0%(他側)
 Rr :0%(一側)、100%(他側)
 θ  :0°~+60°、0°~-60°
 λ  :430~680nm
 その後、上記のように作製した従来例2に係る偏光素子1のモデルについて、入射角度θを変更してシミュレーションを行い、透過軸透過率(Tp)、反射軸反射率(Rs)、及び偏光ビームスプリッタ(PBS)として要求されるTp×Rsをそれぞれ算出した。この際、入射角度θが+方向である場合と、-方向である場合のそれぞれについて、Tp、Rs、Tp×Rsを算出した。なお、Tp、Rsの値としては、入射光の波長λを430~680nmの範囲で変化させ、それぞれの波長の入射光に対して算出された複数のTp、Rsの値の平均値を用いた。上記のようにして算出されたTp、Rs、Tp×Rsと、θとの関係を、図19(b)~(d)のグラフに示す。
 図19に示すように、従来例2では、上記従来例1と同様に、反射膜30が凸条部22の一側に偏在し、当該一側の被覆率Rcが100%である。この結果、図19(b)に示すように、従来例2では、上記従来例1と同様に、+方向からの斜入射光の入射に関し、入射角度θが大きくなるほど、Tp(+)が顕著に低下した。さらに、従来例2では、-方向からの斜入射光の入射に関しても、マイナスの入射角度θの絶対値が大きくなるほど、Tp(-)が低下しているが、Tp(-)の低下度合いは、Tp(+)の低下度合いより小さいことが確認できる。
 具体的には、従来例2では、θの絶対値が30°~60°の範囲において、Tp(+)とTp(-)との差分は、5%以上であり、Tp×Rs(+)とTp×Rs(-)との差分は、4%以上である。この結果から、従来例2では、斜入射光の入射方向が+方向であるか、-方向であるかによって、偏光素子1の偏光特性に左右非対称性が存在することが確認された。
 以上の従来例2のように、斜入射光の入射方向の相違(例えば、+45°と-45°の相違)によるTpの差が大きくなると、観察者は、表示画像の明るさの違いを認識できてしまい、また、映像状態としても不適切となるという問題があることが分かる。また、従来例2に係る偏光素子1を偏光ビームスプリッタとして使用する場合、特に、45°以上の大きな入射角度θの斜入射光に対して、偏光分離特性(Tp×Rs特性)が悪く、偏光ビームスプリッタで要求されるTp×Rs特性が得られないという問題もあることが分かる。
 (従来例3)
 次に、図20を参照して、従来例3について説明する。
 図20(a)に示すように、従来例3に係る偏光素子1のモデルを作製した。従来例3に係る偏光素子1は、ガラス製の基板10と、紫外線硬化性樹脂(アクリル系樹脂)製のグリッド構造体20とを備える。グリッド構造体20は、基板10の表面に沿って設けられたベース部21と、該ベース部21から格子状に突出形成された複数の凸条部22とを有する。凸条部22の断面形状は、矩形状であり、先細り形状ではない。凸条部22を覆う反射膜30は、Al膜である。反射膜30は、凸条部22の先端22a及び両側の側面22bの大部分(約85%)を覆うように形成されている。このように、従来例3の反射膜30は、凸条部22の先端22a及び両側面22bの大部分を被覆している。また、従来例3の反射膜30は、角型であり、反射膜30の頂部の左右両端に角張った2つのコーナー部を有しており、上述した本実施形態に係る偏光素子1の反射膜30のような丸みを帯びた膨出形状とは相違する。
 従来例3に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :140nm
 WT  :35nm
 WB  :35nm
 WMAX:65nm
 H  :230nm
 Hx :196nm
 Dt :30nm
 Ds :15nm(最大値)
 Rc :85%
 Rr :15%
 θ  :0°~+60°
 λ  :430~680nm
 その後、上記のように作製した従来例3に係る偏光素子1のモデルについて、上記の従来例1と同様に、入射角度θを変更してシミュレーションを行い、Tp、Rs、Tp×Rsをそれぞれ算出した。入射角度θは、0°~+60°とした。このようにして算出されたTp、Rs、Tp×Rsと、θとの関係を、図20(b)~(d)のグラフに示す。
 図20に示すように、従来例3では、上記従来例1と比べて被覆態様が異なるが、反射膜30が凸条部22の両方の側面22bの大部分を被覆し、その被覆率Rcが85%と大きい。このため、従来例3では、上記従来例1と同様に、入射角度θが大きくなるほど、Rsが徐々に上昇する反面、Tpが顕著に低下するため、Tp×Rsも顕著に低下した。例えば、θ>45°の範囲では、Tpは73%以下に低下し、Tp×Rsは65%以下に低下した。従って、従来例3に係る偏光素子1を偏光ビームスプリッタとして使用する場合、特に、45°以上の大きな入射角度θの斜入射光に対して、偏光分離特性(Tp×Rs特性)が悪く、偏光ビームスプリッタで要求されるTp×Rs特性が得られないという問題があることが分かる。
 (実施例1)
 次に、図21及び図22を参照して、本発明の実施例1について説明する。
 図21(a)に示すように、実施例1に係る偏光素子1のモデルを作製した。実施例1に係る偏光素子1は、ガラス製の基板10と、紫外線硬化性樹脂(アクリル系樹脂)製のグリッド構造体20とを備える。グリッド構造体20は、基板10の表面に沿って設けられたベース部21と、該ベース部21から格子状に突出形成された複数の凸条部22とを有する。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。
 実施例1の凸条部22を覆う反射膜30は、Al膜である。反射膜30は、凸条部22の先端22a及び両方の側面22bの上部側を覆うように形成されている。ただし、反射膜30は、凸条部22の両方の側面22bの下部側と、ベース部21を覆っていない。反射膜30による凸条部22の両方の側面22bの被覆率Rcは40%である。このように、実施例1の反射膜30は、凸条部22の頂部(先端22a及び側面22bの上部側)を、丸く覆い包んでいる。当該反射膜30の表面は、外側に膨らむような丸みを有する略楕円状であり、凸条部22の幅方向(X方向)に膨出している。
 この結果、実施例1に係るグリッド(凸条部22と反射膜30を合わせた構造体)は、上述した特殊な樹木形状を有している。当該特殊な樹木形状のグリッド最大幅WMAX(反射膜30が最も膨出した部分におけるグリッドの幅)は、凸条部22の底部の幅W(凸条部22の底部から20%上部の高さ位置における凸条部22の幅)以上である。
 実施例1に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:55nm
 H  :220nm
 Hx :99nm
 Dt :35nm(最大値)
 Ds :22.5nm(最大値)
 Rc :40%
 Rr :60%
 θ  :0°~+60°
 λ  :430~680nm
 その後、上記のように作製した実施例1に係る偏光素子1のモデルについて、入射角度θを変更してシミュレーションを行い、透過軸透過率(Tp)、透過軸反射率(Ts)、反射軸透過率(Rp)、反射軸反射率(Rs)、及び偏光ビームスプリッタ(PBS)として要求されるTp×Rsをそれぞれ算出した。入射角度θは、0°~+60°とした。なお、Tp、Rs、Ts、Rpの値としては、入射光の波長λを430~680nmの範囲で変化させ、それぞれの波長λの入射光に対して算出された複数のTp、Ts、Rp、Rsの値の平均値を用いた。また、透過軸透過率(Tp)を透過軸反射率(Ts)で除算することにより、透過光のコントラスト(CR)も算出した(CR=Tp/Ts)。
 上記のようにして算出されたTp、Rs、Ts、Rp、CR、Tp×Rsと、λとの関係を、図21(b)の表と、図21(c)~(d)のグラフに示す。また、上記のようにして算出されたTp、Rs、Tp×Rsと、θとの関係を、図22(a)~(c)のグラフに示す。
 なお、図21(b)の表では、入射光の複数の波長帯域(430~510nm、520~590nm、600~680nm)と、当該入射光の波長帯域全体(430~680nm)とに分けて、それぞれの特性値(Tp、Rs、Ts、Rp、CR、Tp×Rs)の平均値を示してある。図21(c)~(d)のグラフと、図22(a)~(c)のグラフでは、当該入射光の波長帯域全体(430~680nm)における各特性値(Tp、Rs、Ts、Rp、CR、Tp×Rs)の平均値を示してある。また、図22(a)~(c)のグラフでは、実施例1と比較するために、上述した従来例2の特性値(Tp(+)、Tp(-)、Rs(+)、Rs(-)、Tp×Rs(+)、Tp×Rs(-))も示してある。
 図21(a)に示すように、実施例1の偏光素子1のモデルでは、反射膜30が凸条部22の頂部を覆い、凸条部22の底部を開放しており、被覆率Rcは40%である。このため、実施例1のグリッド(凸条部22と反射膜30を合わせた構造体)は、上述した特殊な樹木形状を有している。かかる実施例1の特殊な樹木構造を有するグリッドは、大きくかつ幅広い範囲の入射角度θの斜入射光に対して、透過性と偏光分離特性に優れる。
 したがって、図21に示すように、実施例1では、波長λに関わらず、Tpが80%以上、及びRsが90%以上であり、高いTp及びRsが得られることが分かる。この結果、Tp×Rsも72%以上となり、優れたTp×Rs特性が得られることが分かる。また、コントラストCRも、波長λに関わらず、100以上の優れたコントラストが得られることが分かる。したがって、実施例1は、斜入射光に対して、上述した従来例1、2と比較して良好な偏光特性が得られることが分かる。
 さらに、図22に示すように、実施例1では、入射角度θが0°~60°の広い範囲において、78%以上の非常に高い値のTpを確保している。この結果、大きくかつ広い範囲(30°~60°)の入射角度θの斜入射光に対して、73%以上の高いTp×Rsを確保でき、優れた偏光分離特性(Tp×Rs特性)を有することが分かる。特に、θ=45°の場合は、Tpは、87%と非常に高い値であり、Tp×Rsの値も、78%と非常に高い値である。よって、実施例1の偏光素子1は、45°及びその周辺の入射角度θの斜入射光に対して、顕著に優れた透過性及び偏光分離特性を発揮できることが分かる。
 さらに、図22に示す実施例1と従来例2との比較結果から分かるように、従来例2では、入射角度θが大きくなるにつれ、Tp、及びTp×Rsが低下しており、特に、θ>45°の範囲では、Tp、及びTp×Rsが急激に低下している。これに対し、実施例1では、θが大きくなっても、Tp及びTp×Rsの低下は抑制されており、高い値を維持できている。特に、θ=45°の場合には、実施例1は、従来例2の+方向の入射の場合よりも、6%以上も高いTpとTp×Rsを得ることができ、従来例2の-方向の入射の場合よりも、10%以上も高いTpとTp×Rsを得ることができる。このように、実施例1では、θ=45°の場合に、最も高い透過性(透過率Tp)とTp×Rs特性が得られる。
 また、反射軸反射率Rsに関しては、実施例1は、従来例1、2と比較して、有意差のない高反射率が得られる。
 また、偏光ビームスプリッタ(PBS)として要求されるTp×Rs特性に関しては、実施例1は、従来例1、2よりも優れており、入射角度θ=45°の場合に、最も高いTp×Rs特性が得られる。また、入射角度θ=30°~60°の範囲においても、実施例1は、従来例1、2よりも良好な特性を得ることができ、大きくかつ幅広い範囲の入射角度θの斜入射光に対して、従来例1、2より、Tp×Rs特性が優れている。さらに、実施例1では、45°±15°の範囲の入射角度θの斜入射光に対して、Tp×Rs特性のバランスが良い。このため、実施例1に係る偏光素子1を偏光ビームスプリッタとして用いて、画像を投影した場合、観察者から見て、表示画像の明るさのバランスが良好であり、映像状態としても良好になる。
 このように、実施例1に係る偏光素子1を偏光ビームスプリッタとして使用する場合、30°~60°の大きくかつ広い範囲の入射角度θの斜入射光、特に、45°の斜入射光に対して、P偏光の透過性(透過率Tp)と偏光分離特性(Tp×Rs特性)が顕著に優れていることが分かる。よって、斜入射光に対して、偏光ビームスプリッタで要求される偏光分離特性を十分に満足できるといえる。
 また、透過光のコントラストCR(CR=Tp/Ts)に関しては、実施例1では、100以上の優れたコントラストCRが得られることが分かる。
 (実施例2)
 次に、図23を参照して、本発明の実施例2について説明する。
 図23(a)に示すように、実施例2に係る偏光素子1のモデルを作製した。実施例2のモデルは、上記の実施例1のモデルと比べて、凸条部22の形状と、反射膜30による被覆態様とが相違する。実施例2の凸条部22の断面形状は、三角形であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。
 実施例2の凸条部22を覆う反射膜30は、Al膜である。反射膜30は、凸条部22の先端22a及び両方の側面22bの上部側を覆うように形成されている。ただし、反射膜30は、凸条部22の両方の側面22bの下部側と、ベース部21を覆っていない。反射膜30による凸条部22の両方の側面22bの被覆率Rcは45%である。このように、実施例2の反射膜30は、凸条部22の頂部(先端22a及び側面22bの上部側)を、丸く覆い包んでいる。当該反射膜30の表面は、外側に膨らむような丸みを有する略楕円状であり、凸条部22の幅方向(X方向)に膨出している。このように、実施例2に係るグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。
 実施例2に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :140nm
 WT  :10nm
 WB  :40nm
 WMAX:41nm
 H  :230nm
 Hx :103.5nm
 Dt :50nm(最大値)
 Ds :17nm(最大値)
 Rc :45%
 Rr :55%
 θ  :0°~+60°
 λ  :430~680nm
 その後、上記のように作製した実施例2に係る偏光素子1のモデルについて、入射角度θを変更してシミュレーションを行い、透過軸透過率(Tp)、反射軸反射率(Rs)、及び偏光ビームスプリッタ(PBS)として要求されるTp×Rsをそれぞれ算出した。なお、Tp、Rsの値としては、入射光の波長λを430~680nmの範囲で変化させ、それぞれの波長の入射光に対して算出された複数のTp、Rsの値の平均値を用いた。上記のようにして算出されたTp、Rs、Tp×Rsと、θとの関係を、図23(b)~(d)のグラフに示す。
 図23(a)に示すように、実施例2のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有しているので、大きくかつ幅広い範囲の入射角度θの斜入射光に対して、透過性と偏光分離特性に優れる。
 したがって、図23に示すように、実施例2では、入射角度θが0°~45°の広い範囲において、74%以上の高い値のTpを確保している。特に、θ=30°、45°である場合に、88%以上の高いTpを確保でき、74%以上の高いTp×Rsを確保でき、優れた偏光分離特性(Tp×Rs特性)を有することが分かる。よって、実施例2の偏光素子1は、30°~45°の入射角度θの斜入射光に対して、顕著に優れた透過性及び偏光分離特性を発揮できることが分かる。
 以上説明した実施例2のように、グリッド構造体20の凸条部22の形状が実施例1と異なる場合でも、従来例1~3と比べて、良好な透過性と偏光分離特性が得られることが分かる。ただし、入射角度θが60°である場合には、実施例2よりも実施例1の方が、Tp及びTp×Rs特性に優れる。
 (実施例3)
 次に、図24を参照して、本発明の実施例3について説明する。実施例3では、凸条部22の高さHと、偏光素子1の偏光特性との関係について検証した。
 図24(a)に示すように、実施例3に係る偏光素子1のモデルを作製した。実施例3のモデルは、上記の実施例1のモデルと同様である。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。実施例3のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。実施例3では、被覆率Rcを45%に維持しつつ、凸条部22の高さHを、100~220nmの範囲で段階的に変更した。
 実施例3に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:55nm
 H  :100~220nm
 Hx :45~99nm
 Dt :35nm(最大値)
 Ds :22.5nm(最大値)
 Rc :45%
 Rr :55%
 θ  :+45°
 λ  :430~680nm
 その後、上記のように作製した実施例3に係る偏光素子1のモデルについて、凸条部22の高さHを変更してシミュレーションを行い、Tp、Rs、Tp×Rsをそれぞれ算出した。入射角度θは、+45°とした。なお、Tp、Rsの値としては、入射光の波長λを430~680nmの範囲で変化させ、それぞれの波長λの入射光に対して算出された複数のTp、Rsの値の平均値を用いた。また、TpをTsで除算することにより、透過光のコントラストCRも算出した。
 上記のようにして算出されたTp、Rs、Tp×Rs、CRと、Hとの関係を、図24(b)~(e)のグラフに示す。
 図24に示すように、45°の斜入射光に対する偏光素子1の各種の特性(Tp、Tp×Rs、CR)を良好にするためには、凸条部22の高さHは、160nm以上であることが好ましく、180nm以上であることがより好ましく、220nm以上であることが特に好ましいことが分かる。
 具体的には、Tpに関しては、図24(b)に示すように、Hが160nm以上であれば、Tpが80%以上になり、高い透過率が得られるので、好ましい。さらに、Hが180nm以上であれば、85%以上のTpが得られるので、より好ましい。加えて、Hが220nm以上であれば、87%以上のTpが得られるので、特に好ましい。
 また、Tp×Rs特性に関しては、図24(d)に示すように、Hが160nm以上であれば、70%以上の優れたTp×Rsが得られるので、好ましい。さらに、Hが180nm以上であれば、75%以上のTp×Rsが得られるので、より好ましい。加えて、Hが220nm以上であれば、77%以上のTp×Rsが得られるので、特に好ましい。
 また、コントラストCRに関しては、図24(e)に示すように、Hが100nm以上であればよく、これにより、40以上のCRが得られる。Hが160nm以上であれば、150以上の優れたCRが得られるので、好ましい。さらに、Hが180nm以上であれば、250以上の優れたCRが得られるので、より好ましい。加えて、Hが220nm以上であれば、500以上の優れたCRが得られるので、特に好ましい。
 (実施例4)
 次に、図25を参照して、本発明の実施例4について説明する。実施例4では、凸条部22の先端22aを覆う反射膜30の厚さDt(反射膜30の先端厚さDt)と、偏光素子1の偏光特性との関係について検証した。
 図25(a)に示すように、実施例4に係る偏光素子1のモデルを作製した。実施例4のモデルは、上記の実施例1のモデルと同様である。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。実施例4のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。実施例4では、反射膜30の先端厚さDtを、5~35nmの範囲で段階的に変更した。
 実施例4に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:55nm
 H  :220nm
 Hx :99nm
 Dt :5~35nm(最大値)
 Ds :22.5nm(最大値)
 Rc :45%
 Rr :55%
 θ  :+45°
 λ  :430~680nm
 その後、上記のように作製した実施例4に係る偏光素子1のモデルについて、反射膜30の先端厚さDtを変更してシミュレーションを行い、Tp、Rs、Tp×Rs、CRをそれぞれ算出した。入射角度θは、+45°とした。上記のようにして算出されたTp、Rs、Tp×Rs、CRと、Dtとの関係を、図25(b)~(e)のグラフに示す。
 図25に示すように、45°の斜入射光に対する偏光素子1の各種の特性(Tp、Tp×Rs、CR)を良好にするためには、反射膜30の先端厚さDtは、5nm以上であることが好ましく、15nm以上であることがより好ましいことが分かる。
 具体的には、Tpに関しては、図25(b)に示すように、Dtが5nm以上であれば、Tpが85%以上になり、高い透過率が得られるので、好ましい。また、Rsに関しては、図25(c)に示すように、Dtが5nm以上であれば、Rsが85%以上になり、高い反射率が得られるので、好ましい。
 また、Tp×Rs特性に関しては、図25(d)に示すように、Dtが15nm以上であれば、78%以上の優れたTp×Rsが得られるので、より好ましい。
 また、コントラストCRに関しては、図25(e)に示すように、Dtが5nm以上であれば、100以上の優れたCRが得られるので、好ましい。さらに、Dtが15nm以上であれば、250以上の優れたCRが得られるので、より好ましい。
 (実施例5)
 次に、図26を参照して、本発明の実施例5について説明する。実施例5では、凸条部22の側面22bを覆う反射膜30の厚さDs(反射膜30の側面厚さDs)と、偏光素子1の偏光特性との関係について検証した。
 図26(a)に示すように、実施例5に係る偏光素子1のモデルを作製した。実施例5のモデルは、上記の実施例1のモデルと同様である。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。実施例5のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。実施例5では、反射膜30の側面厚さDsを、5~35nmの範囲で段階的に変更した。
 実施例5に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:20~80nm
 H  :220nm
 Hx :99nm
 Dt :35nm(最大値)
 Ds :5~35nm(最大値)
 Rc :45%
 Rr :55%
 θ  :+45°
 λ  :430~680nm
 その後、上記のように作製した実施例5に係る偏光素子1のモデルについて、反射膜30の側面厚さDsを変更してシミュレーションを行い、Tp、Rs、Tp×Rs、CRをそれぞれ算出した。入射角度θは、+45°とした。上記のようにして算出されたTp、Rs、Tp×Rs、CRと、Dtとの関係を、図26(b)~(e)のグラフに示す。
 図26に示すように、45°の斜入射光に対する偏光素子1の各種の特性(Tp、Tp×Rs、CR)を良好にするためには、反射膜30の側面厚さDsは、10nm以上、30nm以下であることが好ましく、12.5nm以上、25nm以下であることがより好ましく、15nm以上、25nm以下であることが特に好ましいことが分かる。
 具体的には、Tpに関しては、図26(b)に示すように、Dsが10nm以上、30nm以下であれば、Tpが80%以上になり、高い透過率が得られるので、好ましい。さらに、Dsが12.5nm以上、25nm以下であれば、Tpが85%以上になり、より高い透過率が得られるので、より好ましい。さらに、Dsが15nm以上、20nm以下であれば、Tpが87%以上になり、より高い透過率が得られるので、特に好ましい。
 また、Rsに関しては、図26(c)に示すように、Dsが10nm以上であれば、Rsが80%以上になり、高い反射率が得られるので、好ましい。さらに、Dsが12.5nm以上であれば、Rsが85%以上になり、より高い反射率が得られるので、より好ましい。さらに、Dsが15nm以上であれば、Rsが87%以上になり、より高い反射率が得られるので、特に好ましい。
 また、Tp×Rs特性に関しては、図26(d)に示すように、Dsが12.5nm以上、30nm以下であれば、70%以上の優れたTp×Rsが得られるので、好ましい。さらに、Dsが15nm以上、25nm以下であれば、76%以上の優れたTp×Rsが得られるので、より好ましい。
 また、コントラストCRに関しては、図26(e)に示すように、Dsは10nm以上であればよいが、Dsが12.5nm以上であれば、50以上の優れたCRが得られるので、好ましい。さらに、Dsが15nm以上であれば、100以上の優れたCRが得られるので、より好ましい。
 (実施例6)
 次に、図27を参照して、本発明の実施例6について説明する。実施例6では、反射膜30による凸条部22の側面22bの被覆率Rcと、偏光素子1の偏光特性との関係について検証した。
 図27(a)に示すように、実施例6に係る偏光素子1のモデルを作製した。実施例6のモデルは、上記の実施例1のモデルと同様である。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。実施例6のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。実施例6では、反射膜30により凸条部22の側面22bを被覆する範囲の高さHxを変更することにより、その被覆率Rcを、20~90%の範囲で段階的に変更した。
 実施例6に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:55nm
 H  :220nm
 Hx :44~198nm
 Dt :35nm(最大値)
 Ds :22.5nm(最大値)
 Rc :20~90%
 Rr :80~10%
 θ  :+45°
 λ  :430~680nm
 その後、上記のように作製した実施例6に係る偏光素子1のモデルについて、被覆率Rcを変更してシミュレーションを行い、Tp、Rs、Tp×Rs、CRをそれぞれ算出した。入射角度θは、+45°とした。上記のようにして算出されたTp、Rs、Tp×Rs、CRと、Dtとの関係を、図27(b)~(e)のグラフに示す。
 図27に示すように、45°の斜入射光に対する偏光素子1の各種の特性(Tp、Tp×Rs、CR)を良好にするためには、被覆率Rcは、25%以上、80%以下であることが好ましく、30%以上、70%以下であることがより好ましく、30%以上、60%以下であることがより好ましく、40%以上、50%以下であることが特に好ましいことが分かる。
 具体的には、Tpに関しては、図27(b)に示すように、Rcが25%以上、80%以下であれば、Tpが75%以上になり、高い透過率が得られるので、好ましい。さらに、Rcが30%以上、70%以下であれば、Tpが80%以上になり、より高い透過率が得られるので、より好ましい。さらに、Rcが40%以上、50%以下であれば、Tpが85%以上になり、より高い透過率が得られるので、特に好ましい。
 また、Rsに関しては、図27(c)に示すように、Rcが20%以上であれば、Rsが85%以上になり、高い反射率が得られるので、好ましい。
 また、Tp×Rs特性に関しては、図27(d)に示すように、Rcが25%以上、80%以下であれば、Tp×Rsが70%以上になり、優れたTp×Rs特性が得られるので、好ましい。さらに、Rcが30%以上、70%以下であれば、Tp×Rsが72%以上になり、Rcが30%以上、60%以下であれば、Tp×Rsが75%以上になり、より優れたTp×Rs特性が得られるので、より好ましい。さらに、Rcが40%以上、50%以下であれば、Tp×Rsが77%以上になり、より優れたTp×Rs特性が得られるので、特に好ましい。
 また、コントラストCRに関しては、図27(e)に示すように、Rcは20%以上であればよいが、Rcが30%以上であれば、100以上の優れたCRが得られるので、好ましい。さらに、Rcが40%以上であれば、200以上の優れたCRが得られるので、より好ましい。
 (実施例7)
 次に、図28を参照して、本発明の実施例7について説明する。実施例7では、凸条部22の側面22bを覆う反射膜30の厚さDs(反射膜30の側面厚さDs)と、入射角度θと、偏光素子1の偏光特性との関係について検証した。
 図28(a)に示すように、実施例7に係る偏光素子1のモデルを作製した。実施例7のモデルは、上記の実施例1のモデルと同様である。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。実施例7のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。実施例7では、反射膜30の側面厚さDsを、17.5~25nmの範囲で段階的に変更しつつ、入射角度θを0~60°の範囲で段階的に変更した。
 実施例7に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:45nm、55nm、60nm
 H  :220nm
 Hx :99nm
 Dt :35nm(最大値)
 Ds :17.5nm、22.5nm、25nm(最大値)
 Rc :45%
 Rr :55%
 θ  :0~+60°
 λ  :430~680nm
 その後、上記のように作製した実施例7に係る偏光素子1のモデルについて、反射膜30の側面厚さDsと入射角度θを変更してシミュレーションを行い、Tp、Rs、Tp×Rsをそれぞれ算出した。入射角度θは、0~+60°の範囲で15°ごとに段階的に変更した。上記のようにして算出されたTp、Rs、Tp×Rsと、Dtとの関係を、図28(b)~(d)のグラフに示す。
 図28に示すように、反射膜30の側面厚さDsを、17.5~25nmの範囲で段階的に変化させた場合でも、0°~+60°の幅広い入射角度θの斜入射光に対して、偏光素子1は、良好な偏光特性(Tp、Rs、Tp×Rs)を有することが分かる。特に、+45°の入射角度θの斜入射光に対して、非常に優れた偏光特性を発揮することが分かる。
 具体的には、Tpに関しては、図28(b)に示すように、Dsが17.5~25nmの範囲で変化しても、θが+30°~+60°の範囲であれば、Tpが75%以上になり、高い透過率が得られるので、好ましい。さらに、θが+45°であれば、Tpが85%以上になり、最も高い透過率が得られるので、より好ましい。
 また、Rsに関しては、図28(c)に示すように、0°~+60°の幅広い入射角度θの範囲で、Rsが85%以上になり、高い反射率が得られるので、好ましい。
 また、Tp×Rs特性に関しては、図28(d)に示すように、Dsが17.5~25nmの範囲で変化しても、θが+30°~+60°の範囲であれば、Tp×Rsが70%以上になり、優れたTp×Rs特性が得られるので、好ましい。さらに、θが+45°であれば、Tp×Rsが76%以上になり、最も優れたTp×Rs特性が得られるので、より好ましい。また、45°±15°の範囲の入射角度θの斜入射光に対して、Tp×Rs特性のバランスが良い。このため、実施例7に係る偏光素子1を偏光ビームスプリッタとして用いて、画像を投影した場合、観察者から見て、表示画像の明るさのバランスが良好であり、映像状態としても良好になる。
 (実施例8)
 次に、図29を参照して、本発明の実施例8について説明する。実施例8では、凸条部22を覆う反射膜30を片側に偏在させたときの偏在比率と、偏光素子1の偏光特性との関係について検証した。
 図29(a)に示すように、実施例8に係る偏光素子1のモデルを作製した。実施例8のモデルは、反射膜30を凸条部22の片側に偏在させる点を除いては、上記の実施例1のモデルと同様である。凸条部22の断面形状は、台形状であり、凸条部22の先端22aに向かうほど細くなる先細り形状である。実施例8のグリッド(凸条部22と反射膜30を合わせた構造体)は、実施例1と同様に、上述した特殊な樹木形状を有している。
 実施例8では、凸条部22の左側の側面22bに関し、当該側面22bを覆う反射膜30の側面厚さDs(左側)を、22.5nmに固定し、被覆範囲の高さHx(左側)を、99nmに固定し、被覆率Rc(左側)を、45%に固定した。一方、凸条部22の右側の側面22bを覆う反射膜30の側面厚さDs(右側)を、0~22.5nmの範囲で段階的に変更した。これに合わせて、凸条部22の右側の側面22bに関し、当該右側の側面22bの被覆範囲の高さHx(右側)を、0~99nmの範囲で段階的に変更し、被覆率Rc(右側)を、0~45%の範囲で段階的に変更した。この結果、グリッド最大幅WMAXは、32.5~55nmの範囲で段階的に変化した。
 また、実施例8では、入射角度θとして、凸条部22の左側に対して斜め方向から入射される+方向の入射角度(θ=0°~+60°)と、凸条部22の右側に対して斜め方向から入射される-方向の入射角度(θ=0°~-60°)の2方向を用いた。
 実施例8に係る偏光素子1のモデルの各部の寸法及び形状は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:32.5nm、37.5nm、47.5nm、55nm
 H  :220nm
 Hx(左側):99nm
 Hx(右側):0~99nm
 Dt :35nm(最大値)
 Ds(左側):22.5nm(最大値)
 Ds(右側):0nm、5nm、10nm、22.5nm(最大値)
 Rc(左側) :45%
 Rc(右側) :0%、22%、33%、45%、
 Rr(左側) :55%
 Rc(右側) :100%、78%、67%、55%
 θ(左側)  :0~+60°
 θ(右側)  :0~-60°
 λ  :430~680nm
 その後、上記のように作製した実施例8に係る偏光素子1のモデルについて、反射膜30の左側の側面22bに関するDs(右側)、Rc(右側)を変更してシミュレーションを行い、Tp、Rs、Tp×Rs、CRをそれぞれ算出した。入射角度θは、0~+60°の範囲で15°ごとに段階的に変更した。上記のようにして算出されたTp、Rs、Tp×Rs、CRと、Dtとの関係を、図29(b)~(e)のグラフに示す。
 図29に示すように、反射膜30を凸条部22の片側に偏在させた場合、即ち、グリッドが左右非対称である場合であっても、偏光素子1は、良好な偏光特性(Tp、Rs、Tp×Rs、CR)を有することが分かる。
 具体的には、Tpに関しては、図29(b)に示すように、反射膜30が偏在したグリッドに対して、+方向又は-方向のいずれの方向から斜入射光を入射させた場合であっても、Tp(+)及びTp(-)の双方とも、85%以上になり、グリッドの両側で高い透過率が得られた。この場合、Tp(+)とTp(-)の差は、3%以下であり、斜入射光の入射方向により、Tp(+)とTp(-)の間に有意差が生じないことが確認された。
 また、Rsに関しても、図29(c)に示すように、反射膜30が偏在したグリッドに対して、+方向又は-方向のいずれの方向から斜入射光を入射させた場合であっても、Rs(+)及びRs(-)の双方とも、85%以上になり、グリッドの両側で高い反射率が得られた。
 また、Tp×Rs特性に関しても、図29(d)に示すように、反射膜30が偏在したグリッドに対して、+方向又は-方向のいずれの方向から斜入射光を入射させた場合であっても、Tp×Rsが75%以上になり、優れたTp×Rs特性が得られた。
 また、コントラストCRに関しても、図29(e)に示すように、反射膜30が偏在したグリッドに対して、+方向又は-方向のいずれの方向から斜入射光を入射させた場合であっても、優れたCRが得られた。さらに、Ds(右側)が5nm以上であり、被覆率(左側)が22%以上であることが好ましく、これにより、100以上の優れたCRが得られた。加えて、Ds(右側)が10nm以上であり、被覆率(左側)が33%以上であることがより好ましく、これにより、150以上のより優れたCRが得られた。
 (反射膜の形状の検証結果:実施例9、従来例4)
 次に、図30及び図31を参照して、本発明の実施例9(反射膜30が丸型)と従来例4(反射膜30が角型)とを比較し、凸条部22を覆う反射膜30の形状と、偏光素子1の偏光特性との関係を検証した結果について説明する。
 図30及び図31に示すように、実施例9に係る偏光素子1のモデルと、従来例4に係る偏光素子1のモデルを作製した。
 実施例9に係る偏光素子1のモデルは、上述した実施例1のモデルと同様に、特殊な樹木形状を有している(図21等を参照。)。実施例9に係る偏光素子1のグリッドは、ベース部21と、台形状の断面形状を有する凸条部22と、当該凸条部22の頂部(先端22a及び側面22bの上部側)を被覆する反射膜30とを有している。ただし、実施例9に係る偏光素子1のモデルは、上述した実施例1のモデルと比べて、反射膜30による凸条部22の両方の側面22bの被覆率Rcが相違しており、実施例9の被覆率Rcは45%である。実施例9の反射膜30は、凸条部22の頂部を丸く覆い包む形状を有する。実施例9の反射膜30の表面は、外側に膨らむような丸みを有する略楕円状であり、凸条部22の幅方向(X方向)に膨出している。かかる実施例9の反射膜30の表面は、丸く滑らかに湾曲した曲面形状となっており、角張ったコーナー部や段差部を有していない。以下では、実施例9の反射膜30を、丸型の反射膜と称する。
 一方、従来例4に係る偏光素子1のモデルは、実施例9のモデルと比べて、反射膜30の形状が相違する。従来例4の反射膜30は、角型形状であり、反射膜30の頂部の左右両端に角張った2つのコーナー部を有しており、上記の実施例9の反射膜30のような丸みを帯びた膨出形状(丸型の反射膜)とは相違する。以下では、比較例4の反射膜30を、角型の反射膜と称する。なお、この従来例4の偏光素子1のモデルは、上述した特許文献7に開示されたワイヤグリッド型偏光子に相当する。
 このように、従来例4は、実施例9と比べて、反射膜30の形状が相違するが、それ以外の要件については、実施例9と同一である。
 実施例9と従来例4の偏光素子1のモデルで共通する各部の寸法は、次のとおりである。
 P  :144nm
 WT  :19nm
 WM  :32.5nm
 WB  :46nm
 WMAX:55nm
 H  :220nm
 Hx :99nm
 Dt :35nm(最大値)
 Ds :22.5nm(最大値)
 Rc :45%
 Rr :55%
 θ  :0°~+60°
 λ  :430~680nm
 上記のように作製した実施例9と従来例4に係る偏光素子1のモデルについて、入射角度θを変更してシミュレーションを行い、Tp、Rs、及びTp×Rsをそれぞれ算出した。入射角度θは、0°~+60°とした。
 上記のようにして算出されたTp、Rs、Tp×Rsと、θとの関係を、図30(b)~(d)のグラフに示す。
 図30に示すように、実施例9では、入射角度θが0°~60°の広い範囲において、78%以上の非常に高い値のTpを確保している。この結果、大きくかつ広い範囲(30°~60°)の入射角度θの斜入射光に対して、73%以上の高いTp×Rsを確保でき、優れた偏光分離特性(Tp×Rs特性)を有することが分かる。特に、θ=45°の場合は、Tpは、87%と非常に高い値であり、Tp×Rsの値も、78%と非常に高い値である。よって、実施例9の偏光素子1は、45°及びその周辺の入射角度θの斜入射光に対して、顕著に優れた透過性及び偏光分離特性を発揮できることが分かる。
 さらに、図30に示す実施例9と従来例4との比較結果から分かるように、従来例4では、θ>30°の範囲では、入射角度θが大きくなるにつれ、Tp、及びTp×Rsが低下しており、特に、θ>45°の範囲では、Tp、及びTp×Rsが急激に低下している。
 これに対し、実施例9では、0°≦θ≦45°の範囲では、θが大きくなるにつれ、Tp及びTp×Rsはむしろ上昇しており、Tp及びTp×Rsの高い値を維持できている。さらに、実施例9では、45°<θ≦60°の範囲では、θが大きくなっても、Tp及びTp×Rsの低下の度合いは、従来例4と比べて大幅に抑制されており、Tp及びTp×Rsの高い値を維持できている。特に、θ=45°の場合には、実施例9は、従来例4の場合よりも、5%以上も高いTpとTp×Rsを得ることができる。また、θ=60°の場合には、実施例9は、従来例4の場合よりも、7%以上も高いTpとTp×Rsを得ることができる。このように、実施例9では、大きくかつ幅広い入射角度θの範囲(30°~60°、特に、45°~60°)において、顕著に優れた透過性(透過率Tp)とTp×Rs特性が得られる。
 また、Rsに関しては、実施例9は、従来例4と比較して、有意差のない高反射率が得られる。
 また、偏光ビームスプリッタ(PBS)として要求されるTp×Rs特性に関しては、実施例9は、従来例4よりも優れており、入射角度θ=45°の場合に、最も高いTp×Rs特性が得られる。また、入射角度θ=30°~60°の範囲においても、実施例9は、従来例4よりも良好な特性を得ることができ、大きくかつ幅広い範囲の入射角度θの斜入射光に対して、従来例4より、Tp×Rs特性が優れている。さらに、実施例9では、45°±15°の範囲の入射角度θの斜入射光に対して、Tp×Rs特性のバランスが良い。このため、実施例9に係る偏光素子1を偏光ビームスプリッタとして用いて、画像を投影した場合、観察者から見て、表示画像の明るさのバランスが良好であり、映像状態としても良好になる。
 このように、偏光素子1を偏光ビームスプリッタとして使用する場合、実施例9は、従来例4と比べて、30°~60°の大きくかつ広い範囲の入射角度θの斜入射光、特に、45°の斜入射光に対して、P偏光の透過性(透過率Tp)と偏光分離特性(Tp×Rs特性)が顕著に優れていることが分かる。よって、斜入射光に対して、偏光ビームスプリッタで要求される偏光分離特性を十分に満足できるといえる。
 以上のように、丸型の反射膜30を有する実施例9は、角型の反射膜30を有する従来例4と比べて、斜入射光の入射角度θに対する依存性が低く、斜入射光の透過性と、偏光ビームスプリッタとしての偏光分離特性(Tp×Rs特性)に優れる。この理由について、図31を参照して以下に説明する。
 図31に示すように、ワイヤグリッド偏光素子1における入射光の透過率は、基本的には、実効的なグリッド幅Wとギャップ幅Wとの比(W/W)によって決まる。グリッド幅Wは、入射光の進行方向に対して垂直な方向における1つの反射膜30の幅であり、ギャップ幅Wは、入射光の進行方向に対して垂直な方向における相隣接する2つの反射膜30の隙間の幅である。グリッド構造体20の1ピッチに占める反射膜30の幅(金属グリッド部の幅)が小さいほど、当該小さい幅の反射膜30で反射する入射光が減るので、入射光の透過率は大きくなる。
 ここで、図31に示すように、入射光が偏光素子1の斜め方向から入射する場合(即ち、θ>0°の場合)を考える。この場合、反射膜30が丸型である実施例9では、反射膜30が角型である従来例4と比べて、斜め方向から見た実効的なグリッド幅Wが小さくなり、斜め方向から見たギャップ幅Wが大きくなる。したがって、偏光素子1に対して斜入射光が入射する場合、実施例9の透過率Tpは、従来例4の透過率Tpよりも高くなる。この結果、実施例9のTp×Rs特性は、従来例4よりも優れることになる。例えば、斜入射光の入射角度θが45°である場合、実施例9の透過率TpとTp×Rsはそれぞれ、従来例4よりも約5%高くなり、θが60°である場合、実施例9の透過率TpとTp×Rsはそれぞれ、従来例4よりも約7%高くなることが分かる(図30(b)(d)参照)。
 以上の理由から、丸型の反射膜30を有する実施例9は、角型の反射膜30を有する従来例4と比べて、斜入射光の入射角度θに対する依存性が低く、斜入射光の透過性と、偏光ビームスプリッタとしての偏光分離特性(Tp×Rs特性)に優れるといえる。
 <2.放熱性の検証結果>
 次に、本発明の実施例に係る無機材料と有機材料からなるハイブリッド型のワイヤグリッド偏光素子1と、従来例に係る有機材料からなるフィルムタイプのワイヤグリッド偏光素子とを比較し、偏光素子1の放熱性を検証した結果について説明する。
 上述したように、上記の本実施形態に係るワイヤグリッド偏光素子1によれば、基板10は、耐熱性に非常に優れたガラス等の無機材料からなる。さらに、基板10上に直接設けられるグリッド構造体20のベース部21と複数の凸条部22が、耐熱性を有する有機材料で一体形成されている。このように、本実施形態に係るワイヤグリッド偏光素子1は、有機材料と無機材料とを組み合わせたハイブリッド型の偏光素子である。したがって、偏光素子1全体の熱抵抗R[m・K/W]が小さく、グリッド構造体20から基板10へ効率的に熱を逃がすことができるので、放熱性に優れると考えられる。
 一方、従来例のフィルムタイプのワイヤグリッド偏光素子は、主に有機材料からなるため、耐熱性(100℃程度)が低い。また、基板(ベースフィルム)や両面テープ(OCA)、及びグリッド構造体からなる有機材料層の総厚が大きくなるので、その有機材料層の熱抵抗Rも大きくなってしまうと考えられる。
 したがって、本実施形態に係るハイブリッド型のワイヤグリッド偏光素子1は、有機材料からなる従来のフィルムタイプの偏光素子(耐熱性:100℃程度)と比べて、耐熱性及び放熱性に優れており、例えば200℃程度までの高温環境下における耐熱性を有する。よって、本実施形態に係るハイブリッド型のワイヤグリッド偏光素子1は、優れた偏光特性を実現しつつ、良好な放熱特性を発揮できると考えられる。
 そこで、本発明のハイブリッド型のワイヤグリッド偏光素子の実施例と、従来例のフィルムタイプのワイヤグリッド偏光素子を実際に作製し、それらの熱抵抗Rや放熱性を検証した。
 表1に、一般的な基材材料の種類と、熱伝導率λ[W/m・K]を示す。表2に、本発明の実施例に係るハイブリッド型のワイヤグリッド偏光素子1と、従来例に係るフィルムタイプのワイヤグリッド偏光素子について、有機材料(PMMA)からなる各層の厚さや、有機材料(PMMA)からなる複数層全体の厚さ(総厚DALL)、熱抵抗R[m・K/W]を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示すように実施例に係るハイブリッド型の偏光素子1では、グリッド構造体20を構成するベース部21及び凸条部22が有機材料で形成されており、基板10は無機材料で形成される。一方、従来例に係るフィルムタイプの偏光素子では、基板と、グリッド構造体を構成するベース部と、当該ベース部と基板を接着するための両面テープの全てが、有機材料で形成される。ここで、有機材料としては、PMMA(Poly Methyl Methacrylate)を用いた。この結果、実施例に係るハイブリッド型の偏光素子1のPMMA材の総厚DALLは、0.0302[mm]となる。一方、従来例に係るフィルムタイプの偏光素子のPMMA材の総厚DALLは、0.2552[mm]となり、実施例のDALLと比べて大幅に大きい。
 表1に示すように、PMMAの熱伝導率λは、0.21[W/m・K]である。熱抵抗R[m・K/W]は、「材料の厚みDALL[mm]」を「熱伝導率λ[W/m・K]」で除算して得られる(R=(DALL/1000)/λ)。よって、実施例に係るハイブリッド型の偏光素子1のグリッド構造体20の熱抵抗Rは、0.000144[m・K/W]となる。一方、従来例に係るフィルムタイプの偏光素子の熱抵抗Rは、0.001215[m・K/W]となる。
 したがって、本発明の実施例に係るハイブリッド型の偏光素子1を用いることにより、従来例に係るフィルムタイプの偏光素子と比べて、PMMA材からなるグリッド構造体20の熱抵抗Rの値を、約1/8.4にまで低減することができる。よって、本発明の実施例に係るハイブリッド型の偏光素子1によれば、有機材料(例えばPMMA)からなるグリッド構造体20の熱を、有機材料よりも耐熱性と放熱性に優れた無機材料からなる基板10を介して、外部に効率的に逃がして、放熱することができる。ゆえに、本発明の実施例に係るハイブリッド型の偏光素子1は、従来例と比べて、非常に優れた耐熱性と放熱性を有する。
 また、偏光素子1がプロジェクタなどの投影表示装置に搭載され、例えば5000[lm(ルーメン)]程度の光が偏光素子1に照射される場合において、基板10上に直接設けられるグリッド構造体20のベース部21の厚さTBと、ベース部21の表裏面間の温度差ΔTとの関係を検証した。この検証結果について以下に説明する。なお、温度差ΔTは、ベース部21の最表面(複数の凸条部22の付根部)の温度T1と、ベース部21と基板10との界面におけるベース部21の温度T2との間の温度差である(ΔT=T1-T2)。
 図32は、明所と暗所における光の波長と比視感度との関係を示すグラフである。視感度K(spectral luminous efficasy)は、人間の目が光の各波長の明るさを感じる強さを数値で表したものである。つまり、視感度Kは、光(電磁波)の放射束1W当たりに感じる光束[lm]を表したものである。放射束の単位は[W]であり、光束(測光量)の単位は[lm]であり、視感度Kの単位は[lm/W]である。視感度Kは、光(電磁波)の波長によって変化し、光の波長が555nmであるときに視感度が最も高くなる。このときの視感度Kは、最大で683[lm/W]であり、この683[lm/W]を最大視感度Kという。また、比視感度Vは、ある波長の視感度Kを、最大視感度K(=683[lm/W])に対する比で表したものである(V=K/K)。比視感度Vは、0~1.0の数値であり、比視感度Vの単位はない。
 図32に示すように、人間の目が感じる明るさ(視感度K、比視感度V)は、光の波長によって大きく異なる。明所では、人間の目は、波長555nm付近の光を最も強く感じ、暗所では、波長507nm付近の光を最も強く感じるとされている。プロジェクタは、明るい場所や暗い場所など様々な場面で利用されるため、明所と暗所のどちらの場面においても、人間の目が明るく感じるプロジェクタの光は、波長528nm付近の光である。そこで、プロジェクタから波長528nm付近の光を、5000[lm]の明るさ(光束)で照射した際の、プロジェクタの光源の出力パワーPw[W]を計算した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 上述したとおり、明所では人間の目は波長555nm付近の光を最も強く感じる。つまり、図32のグラフに示す明所標準比視感度の曲線では、最大視感度Kとなる波長は、555nm付近である。波長555nmでの視感度Kは、最大視感度K=683[lm/W]である。図32のグラフから、波長528nmでは、比視感度Vは0.84である。波長555nmでの最大視感度Kが683[lm/W]である場合、波長528nmでの視感度Kは、573.7[lm/W]である(683[lm/W]×0.84≒573.7[lm/W])。したがって、プロジェクタから5000[lm]の光を照射した場合、プロジェクタの光源の出力パワーPw(光源から照射される電磁束)は、8.7[W]となる(5000[lm]/573.7[lm/W]≒8.7[W])。
 プロジェクタの光源の出力パワーPwを当該8.7[W]とし、波長528nmの光を、縦(Y方向):10[mm]×横(X方向):20[mm]の矩形板状の偏光素子1に照射した場合を考える。この場合、偏光素子1の表面の面積をA[m]としたとき、偏光素子1の表面における単位面積当たりの出力パワーPw’は、Pw’[W/m]=Pw[W]/A[m]となる。この場合に、ベース部21の最表面の温度T1と、ベース部21と基板10との界面の温度T2との間の温度差ΔTが、ベース部21の厚さTBによって、どのように変化するかを評価した。この際、ベース部21の厚さTBを0.010~0.255[mm]の範囲で変化させた。かかるベース部21の厚さTBと温度差ΔTとの関係を表4に示す。なお、偏光素子1のグリッド構造体20の材質として、PMMAを用いた。PMMAの熱伝導率λは、0.21[W/m・K]であった。また、温度差ΔTの計算式は、次のとおりである。
 温度差ΔT[K]=熱抵抗R[m・K/W]×単位面積当たりの出力パワーPw’[W/m
 ここで、温度差ΔTは相対温度であるので、温度差ΔT[K]=温度差ΔT[℃]である。よって、ΔTの単位については、1[K]=1[℃]となる。
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、本発明の実施例1~10では、無機材料(基板10)と有機材料(グリッド構造体20)とからなるハイブリッド型のワイヤグリッド偏光素子1を用いた。一方、従来例は、有機材料からなるフィルムタイプのワイヤグリッド偏光素子を用いた。
 なお、表4に示す従来例のベース部の厚さTB(=0.255mm)は、フィルムタイプのワイヤグリッド偏光素子における「PMMA材としての総厚DALL(表2を参照。)」を意味している。従来例は、一般的に流通しているフィルムや両面テープ(OCA)の厚みから考えて、最も薄いフィルムタイプのワイヤグリッド偏光素子の構成例を示している。したがって、複数枚のフィルムや両面テープを貼り合わせて構成されるフィルムタイプのワイヤグリッド偏光素子では、表4に示す従来例よりも、総厚DALLを薄くすることは困難であると思われる。これに対し、実施例1~10のハイブリッド型のワイヤグリッド偏光素子1では、無機材料からなる基板10上に、有機材料(PMMA)からなるグリッド構造体20を直接形成する構造である。したがって、実施例1~10では、表4に示すように、ベース部21の厚さTB(≒PMMA材としての総厚DALL)を従来例よりも大幅に薄くすることができる。
 表4から分かるように、従来例のフィルムタイプのワイヤグリッド偏光素子では、ベース部の厚さTB(=PMMA材としての総厚DALL)が0.255[mm]と厚いので、ベース部の表裏間の温度差ΔTは、52.9℃となり、50℃をオーバーする結果となった。また、プロジェクタの内部空間は密閉されているため、当該プロジェクタの内部に設置されたワイヤグリッド偏光素子等の周辺温度は、50℃以上になる。さらに、プロジェクタが高輝度モデルである場合は、ワイヤグリッド偏光素子等の周辺温度は、100℃近くになる場合もある。したがって、従来例のフィルムタイプのワイヤグリッド偏光素子の場合、グリッド構造体の表面温度は、局所的に150℃を超える可能性もあり、ワイヤグリッド偏光素子の耐久性に問題があった。
 これに対し、本発明の実施例1~10に係るハイブリット側のワイヤグリッド偏光素子1では、無機材料からなる基板10上に直接、グリッド構造体20のベース部21と複数の凸条部22を形成する構造である。これにより、実施例1~10は、従来例と比べて、ベース部21の厚さTB(≒PMMA材としての総厚DALL)を、大幅に薄くすることができるので、温度差ΔTを大幅に低減できていることが分かる。この結果、実施例1~10では、グリッド構造体20のベース部21の熱を、無機材料からなる基板10を介して外部に放熱できるので、偏光素子1の放熱性と耐久性に優れることが実証された。
 ここで、実施例1~10では、ベース部21の厚さTBを0.15[mm]以下とすることにより、温度差ΔTを32℃以下に抑制でき、従来例の温度差ΔT=52.9℃と比べて、約40%以上も温度差ΔTを低減できていることが分かる。これにより、ベース部21の厚さTBを0.15[mm]以下とすることで、グリッド構造体20の熱を基板10に素早く伝え、基板10から外部に効率的に逃がして、放熱できることが実証された。
 さらに、実施例3~10では、ベース部21の厚さTBを0.09[mm]以下とすることにより、温度差ΔTを20℃以下に抑制でき、従来例の温度差ΔT=52.9℃と比べて、約65%以上も温度差ΔTを低減できていることが分かる。これにより、ベース部21の厚さTBを0.09[mm]以下とすることで、グリッド構造体20の熱を基板10により素早く伝え、基板10から外部により効率的に逃がして、放熱できる。よって、ワイヤグリッド偏光素子1の放熱性の信頼性をより向上できることが実証された。
 特に、ベース部21の厚さTBを0.045[mm]以下にすることにより、温度差ΔTを10℃以下に抑制でき、従来例の温度差ΔT=52.9℃と比べて、約80%以上も温度差ΔTを低減できる。よって、放熱性の信頼性を向上させる観点から、ベース部21の厚さTBは0.045[mm]以下であることが、より好ましいことが分かる。加えて、ベース部21の厚さTBを0.02[mm]以下にすることにより、温度差ΔTを5℃以下に抑制でき、従来例の温度差ΔT=52.9℃と比べて、約90%以上も温度差ΔTを低減できる。よって、放熱性の信頼性を向上させる観点から、ベース部21の厚さTBは0.002[mm]以下であることが、より一層好ましいことが分かる。
 このように、偏光素子1の放熱性と耐久性を向上させるためには、ベース部21の厚さTBは、0.09[mm]以下であることが好ましく、0.045[mm]以下であることがより好ましく、0.02[mm]以下であることが特に好ましいことが実証された。
 なお、上記の実施例では、グリッド構造体20の材料としてPMMAを用いたが、かかる例に限定されず、本発明のグリッド構造体の材料として、PMMA以外の各種の有機材料を用いてもよい。
 <3.有機材料(インプリント用光硬化性アクリルレジン)の組成の検証結果>
 インプリント用光硬化性アクリルレジンとして、実施例31~38、および、比較例1~9を作成した。
 実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの粘度を測定した。粘度は、英弘精機株式会社製のBrookfield粘度計において、コーンプレートを用いて測定した。
 実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した(加熱処理)後のYI値を測定した。YI値は、日本分光株式会社製の紫外可視近赤外分光光度計V-770を用いた測定結果に基づいて算出した。YI値を算出する際の測定条件およびYI値の算出方法は、上記実施形態と同様とした。
 実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物に対し、加熱処理(120℃で500時間保持)を施す前の430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率、および、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率を測定した。また、実施例3~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率、および、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率を測定した。平均透過率は、430nm以上、680nm以下の波長領域において1nmごとに透過率を測定し、得られた251個の測定データを単純平均することで算出した。平均透過率は、日本分光株式会社製の紫外可視近赤外分光光度計V-770を用いて測定した。
 実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率、120℃における貯蔵弾性率、130℃における貯蔵弾性率、140℃における貯蔵弾性率を測定した。貯蔵弾性率は、株式会社日立ハイテク製、DMA7100を用いて測定した。実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物のシートを縦20mm×横3mmに切断し、引張モードで、一定の周波数(1Hz)で、温度を5℃/分で昇温させ、25℃~300℃での貯蔵弾性率を測定した。
 実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgを測定した。ガラス転移温度Tgは、株式会社日立ハイテク製、DMA7100を用いて測定した。実施例31~38、および、比較例1~9に係るインプリント用光硬化性アクリルレジンの硬化物のシートを縦20mm×横3mmに切断し、引張モードで、一定の周波数(1Hz)で、温度を5℃/分で昇温させ、25℃~300℃での損失正接tanδの最大値を確認することで測定した。
 実施例31~34のインプリント用光硬化性アクリルレジンの組成および粘度は、下記表5に示される。実施例31~34に係るインプリント用光硬化性アクリルレジンの硬化物のYI値、平均透過率、貯蔵弾性率、および、ガラス転移温度Tgは、下記表6に示される。
 実施例35~38のインプリント用光硬化性アクリルレジンの組成および粘度は、下記表7に示される。実施例35~38に係るインプリント用光硬化性アクリルレジンの硬化物のYI値、平均透過率、貯蔵弾性率、および、ガラス転移温度Tgは、下記表8に示される。
 比較例1~3のインプリント用光硬化性アクリルレジンの組成および粘度は、下記表9に示される。比較例1~3に係るインプリント用光硬化性アクリルレジンの硬化物のYI値、平均透過率、貯蔵弾性率、および、ガラス転移温度Tgは、下記表10に示される。
 比較例4~6のインプリント用光硬化性アクリルレジンの組成および粘度は、下記表11に示される。比較例4~6に係るインプリント用光硬化性アクリルレジンの硬化物のYI値、平均透過率、貯蔵弾性率、および、ガラス転移温度Tgは、下記表12に示される。
 比較例7~9のインプリント用光硬化性アクリルレジンの組成および粘度は、下記表13に示される。比較例7~9に係るインプリント用光硬化性アクリルレジンの硬化物のYI値、平均透過率、貯蔵弾性率、および、ガラス転移温度Tgは、下記表14に示される。
 なお、表5、表7、表9、表11、表13中の含有率の単位は、質量%である。また、表5、表7、表9、表11、表13中の粘度は、25℃の際の粘度[mPa・s]である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
[実施例31]
 表5に示すように、実施例31は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)として、日本化薬株式会社製の「KAYARAD R-684」を用いた。樹脂(B)として、1,6-ヘキサンジオールジアクリレート(HDDA)を用いた。樹脂(C)として、イソボルニルアクリレート(IBOA)を用いた。イソボルニルアクリレートは、ダイセル・オルネクス株式会社製の「IBOA-B」を用いた。樹脂(D)として、ジペンタエリスリトールヘキサアクリレート(DPHA)を用いた。光重合開始剤として、IGM Resins B.V.製の「Irgacure819」を用いた。また、実施例31では、光重合成分全体における樹脂(A)の含有率を30質量%とし、樹脂(B)の含有率を20質量%とし、樹脂(C)の含有率を30質量%とし、樹脂(D)の含有率を20質量%とした。つまり、実施例31では、光重合成分全体における樹脂(A)および樹脂(B)の合計の含有率を50質量%とし、樹脂(B)および樹脂(C)の合計の含有率を50%とした。また、実施例31では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表5に示すように、実施例31のインプリント用光硬化性アクリルレジンの粘度は、34.4mPa・sであった。
 表6に示すように、実施例31のインプリント用光硬化性アクリルレジンの硬化物のYI値は、2.4であった。以上の結果から、実施例31の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。
 表6に示すように、実施例31のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.2%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.9%であった。また、実施例31のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.7%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.7%であった。
 実施例31の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.5%となった。実施例31の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-1.2%となった。以上の結果から、実施例31の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。
 表6に示すように、実施例31のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、1.6×10Paであった。実施例31のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、6.5×10Paであった。実施例31のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、5.7×10Paであった。実施例31のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、5.0×10Paであった。
 実施例31の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、41.6%となった。実施例31の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、36.4%となった。実施例31の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、31.8%となった。以上の結果から、実施例31の硬化物は、加熱処理を施す前において、1.6×10Paという高い貯蔵弾性率を有することが確認された。また、実施例31の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。
 表6に示すように、実施例31のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、142.6℃であった。以上の結果から、実施例31の硬化物は、高いガラス転移温度Tgを有することが確認された。
[実施例32]
 表5に示すように、実施例32は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(B)、樹脂(C)、樹脂(D)、および、光重合開始剤は、実施例31と同一である。実施例32では、光重合成分全体における樹脂(A)の含有率を40質量%とし、樹脂(B)の含有率を30質量%とし、樹脂(C)の含有率を29質量%とし、樹脂(D)の含有率を1質量%とした。つまり、実施例32では、光重合成分全体における樹脂(A)および樹脂(B)の合計の含有率を70質量%とし、樹脂(B)および樹脂(C)の合計の含有率を59%とした。また、実施例32では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例32は、樹脂(A)~樹脂(D)の含有率のみが実施例31と異なる。
 表5に示すように、実施例32のインプリント用光硬化性アクリルレジンの粘度は、17.4mPa・sであった。実施例32のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(B)および樹脂(C)の合計の含有率が高く、樹脂(D)の含有率が低い。これにより、実施例32のインプリント用光硬化性アクリルレジンの粘度は、実施例31のインプリント用光硬化性アクリルレジンの粘度よりも低くなったと推察される。
 表6に示すように、実施例32のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.9であった。以上の結果から、実施例32の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。実施例32のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(A)および樹脂(B)の合計の含有率が高い。これにより、実施例32のインプリント用光硬化性アクリルレジンの硬化物のYI値は、実施例31のインプリント用光硬化性アクリルレジンの硬化物のYI値よりも低くなったと推察される。
 表6に示すように、実施例32のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.5%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.1%であった。また、実施例32のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.4%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.5%であった。
 実施例32の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.1%となった。実施例32の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-0.6%となった。以上の結果から、実施例32の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。実施例32のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(A)および樹脂(B)の合計の含有率が高い。これにより、実施例32のインプリント用光硬化性アクリルレジンの硬化物の平均透過率の差ΔAは、実施例31のインプリント用光硬化性アクリルレジンの硬化物の平均透過率の差ΔAよりも小さくなったと推察される。
 表6に示すように、実施例32のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.0×10Paであった。実施例32のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、6.2×10Paであった。実施例32のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、5.6×10Paであった。実施例32のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、5.0×10Paであった。
 実施例32の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、30.9%となった。実施例32の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、27.6%となった。実施例32の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、25.0%となった。以上の結果から、実施例32の硬化物は、加熱処理を施す前において、2.0×10Paという高い貯蔵弾性率を有することが確認された。また、実施例32の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。
 表6に示すように、実施例32のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、174.2℃であった。以上の結果から、実施例32の硬化物は、高いガラス転移温度Tgを有することが確認された。
[実施例33]
 表5に示すように、実施例33は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(B)、樹脂(C)、樹脂(D)、および、光重合開始剤は、実施例31と同一である。実施例33では、光重合成分全体における樹脂(A)の含有率を20質量%とし、樹脂(B)の含有率を40質量%とし、樹脂(C)の含有率を30質量%とし、樹脂(D)の含有率を10質量%とした。つまり、実施例33では、光重合成分全体における樹脂(A)および樹脂(B)の合計の含有率を60質量%とし、樹脂(B)および樹脂(C)の合計の含有率を70%とした。また、実施例33では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例33は、樹脂(A)~樹脂(D)の含有率のみが実施例31と異なる。
 表5に示すように、実施例33のインプリント用光硬化性アクリルレジンの粘度は、19.13mPa・sであった。実施例33のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(B)および樹脂(C)の合計の含有率が高く、樹脂(D)の含有率が低い。これにより、実施例33のインプリント用光硬化性アクリルレジンの粘度は、実施例31のインプリント用光硬化性アクリルレジンの粘度よりも低くなったと推察される。
 表6に示すように、実施例33のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.5であった。以上の結果から、実施例33の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。実施例33のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(A)および樹脂(B)の合計の含有率が高い。これにより、実施例33のインプリント用光硬化性アクリルレジンの硬化物のYI値は、実施例31のインプリント用光硬化性アクリルレジンの硬化物のYI値よりも低くなったと推察される。
 表6に示すように、実施例33のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.5%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.7%であった。また、実施例33のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.4%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.8%であった。
 実施例33の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.1%となった。実施例33の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、+0.1%となった。以上の結果から、実施例33の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。実施例33のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(A)および樹脂(B)の合計の含有率が高い。これにより、実施例33のインプリント用光硬化性アクリルレジンの硬化物の平均透過率の差ΔAは、実施例31のインプリント用光硬化性アクリルレジンの硬化物の平均透過率の差ΔAよりも小さくなったと推察される。
 表6に示すように、実施例33のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.1×10Paであった。実施例33のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、7.1×10Paであった。実施例33のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、5.9×10Paであった。実施例33のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、5.0×10Paであった。
 実施例33の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、33.4%となった。実施例33の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、27.8%となった。実施例33の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、23.5%となった。以上の結果から、実施例33の硬化物は、加熱処理を施す前において、2.1×10Paという高い貯蔵弾性率を有することが確認された。また、実施例33の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。
 表6に示すように、実施例33のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、126.1℃であった。以上の結果から、実施例33の硬化物は、高いガラス転移温度Tgを有することが確認された。
[実施例34]
 表5に示すように、実施例34は、光重合成分として、樹脂(A)、樹脂(B)、および、樹脂(C)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(B)、樹脂(C)、および、光重合開始剤は、実施例31と同一である。実施例34では、光重合成分全体における樹脂(A)の含有率を40質量%とし、樹脂(B)の含有率を30質量%とし、樹脂(C)の含有率を30質量%とした。つまり、実施例34では、光重合成分全体における樹脂(A)および樹脂(B)の合計の含有率を70質量%とし、樹脂(B)および樹脂(C)の合計の含有率を60%とした。また、実施例34では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例34は、実施例31~33とは異なり、樹脂(D)を含まない。
 表5に示すように、実施例34のインプリント用光硬化性アクリルレジンの粘度は、15.07mPa・sであった。実施例34のインプリント用光硬化性アクリルレジンは、実施例31~33のインプリント用光硬化性アクリルレジンと比較して、樹脂(D)を含まない。これにより、実施例34のインプリント用光硬化性アクリルレジンの粘度は、実施例31~33のインプリント用光硬化性アクリルレジンの粘度よりも低くなったと推察される。
 表6に示すように、実施例34のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.3であった。以上の結果から、実施例34の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。実施例34のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(A)および樹脂(B)の合計の含有率が高い。これにより、実施例34のインプリント用光硬化性アクリルレジンの硬化物のYI値は、実施例31のインプリント用光硬化性アクリルレジンの硬化物のYI値よりも低くなったと推察される。
 表6に示すように、実施例34のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.4%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.5%であった。また、実施例34のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.8%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.2%であった。
 実施例34の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、+0.3%となった。実施例34の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、+0.7%となった。以上の結果から、実施例34の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。実施例34のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(A)および樹脂(B)の合計の含有率が高い。これにより、実施例34のインプリント用光硬化性アクリルレジンの硬化物の平均透過率の差ΔAは、実施例31のインプリント用光硬化性アクリルレジンの硬化物の平均透過率の差ΔAよりも小さくなったと推察される。
 表6に示すように、実施例34のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.2×10Paであった。実施例34のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、3.9×10Paであった。実施例34のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、3.1×10Paであった。実施例34のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、2.6×10Paであった。
 実施例34の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、17.8%となった。実施例34の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、14.0%となった。実施例34の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、11.9%となった。以上の結果から、実施例34の硬化物は、加熱処理を施す前において、2.2×10Paという高い貯蔵弾性率を有することが確認された。また、実施例34の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。なお、実施例34のインプリント用光硬化性アクリルレジンは、実施例32のインプリント用光硬化性アクリルレジンと比較して、樹脂(D)を含まない。これにより、実施例34のインプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率の変化率は、実施例32のインプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率の変化率よりも小さくなったと推察される。
 表6に示すように、実施例34のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、115.5℃であった。以上の結果から、実施例34の硬化物は、高いガラス転移温度Tgを有することが確認された。また、実施例34のインプリント用光硬化性アクリルレジンは、実施例32のインプリント用光硬化性アクリルレジンと比較して、樹脂(D)を含まない。これにより、実施例34のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、実施例32のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgよりも低くなったと推察される。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
[実施例35]
 表7に示すように、実施例35は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(B)、樹脂(C)、樹脂(D)、および、光重合開始剤は、実施例31と同一である。実施例35では、光重合成分全体における樹脂(A)の含有率を30質量%とし、樹脂(B)の含有率を30質量%とし、樹脂(C)の含有率を30質量%とし、樹脂(D)の含有率を10質量%とした。つまり、実施例35では、光重合成分全体における樹脂(A)および樹脂(B)の合計の含有率を60質量%とし、樹脂(B)および樹脂(C)の合計の含有率を60%とした。また、実施例35では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例35は、樹脂(B)および樹脂(D)の含有率のみが実施例31と異なる。
 表7に示すように、実施例35のインプリント用光硬化性アクリルレジンの粘度は、18.97mPa・sであった。実施例35のインプリント用光硬化性アクリルレジンは、実施例31のインプリント用光硬化性アクリルレジンと比較して、樹脂(B)および樹脂(C)の合計の含有率が高く、樹脂(D)の含有率が低い。これにより、実施例35のインプリント用光硬化性アクリルレジンの粘度は、実施例31のインプリント用光硬化性アクリルレジンの粘度よりも低くなったと推察される。
 表8に示すように、実施例35のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.2であった。以上の結果から、実施例35の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。
 表8に示すように、実施例35のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.5%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.6%であった。また、実施例35のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.7%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.2%であった。
 実施例35の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、+0.2%となった。実施例35の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、+0.6%となった。以上の結果から、実施例35の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。
 表8に示すように、実施例35のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.0×10Paであった。実施例35のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、8.6×10Paであった。実施例35のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、7.8×10Paであった。実施例35のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、7.2×10Paであった。
 実施例35の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、43.3%となった。実施例35の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、39.5%となった。実施例35の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、36.3%となった。以上の結果から、実施例35の硬化物は、加熱処理を施す前において、2.0×10Paという高い貯蔵弾性率を有することが確認された。また、実施例35の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。
 表8に示すように、実施例35のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、181.3℃であった。以上の結果から、実施例35の硬化物は、高いガラス転移温度Tgを有することが確認された。
[実施例36]
 表7に示すように、実施例36は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(B)、樹脂(C)、および、光重合開始剤は、実施例35と同一である。実施例36において、樹脂(D)として、東亞合成株式会社製のM-9050を用いた。実施例36において、光重合成分全体における樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)の含有率は、実施例35と同一である。また、実施例36では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例36は、樹脂(D)のみが実施例35と異なる。
 表7に示すように、実施例36のインプリント用光硬化性アクリルレジンの粘度は、23.02mPa・sであった。実施例36の樹脂(D)の粘度は、実施例35の樹脂(D)の粘度よりも高い。これにより、実施例36のインプリント用光硬化性アクリルレジンの粘度は、実施例35のインプリント用光硬化性アクリルレジンの粘度よりも高くなったと推察される。
 表8に示すように、実施例36のインプリント用光硬化性アクリルレジンの硬化物のYI値は、0.8であった。以上の結果から、実施例36の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。また、実施例35の硬化物および実施例36の硬化物のYI値にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、低いYI値を維持できることが分かった。
 表8に示すように、実施例36のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.2%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.0%であった。また、実施例36のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.6%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.2%であった。実施例35の硬化物および実施例36の硬化物の平均透過率にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高い平均透過率を維持できることが分かった。
 実施例36の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、+0.4%となった。実施例36の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、+0.2%となった。以上の結果から、実施例36の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。また、実施例35の硬化物および実施例36の硬化物の平均透過率の差ΔAにほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、加熱処理を施しても、平均透過率がほとんど低下しないことが分かった。
 表8に示すように、実施例36のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.2×10Paであった。実施例36のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、8.1×10Paであった。実施例36のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、7.3×10Paであった。実施例36のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、6.7×10Paであった。実施例35の硬化物および実施例36の硬化物の貯蔵弾性率にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高い貯蔵弾性率を有することが分かった。
 実施例36の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、37.1%となった。実施例36の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、33.6%となった。実施例36の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、30.8%となった。以上の結果から、実施例36の硬化物は、加熱処理を施す前において、2.2×10Paという高い貯蔵弾性率を有することが確認された。また、実施例36の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。また、実施例35の硬化物および実施例36の硬化物の貯蔵弾性率の変化率にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが分かった。
 表8に示すように、実施例36のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、179℃であった。以上の結果から、実施例36の硬化物は、高いガラス転移温度Tgを有することが確認された。また、実施例35の硬化物および実施例36の硬化物のガラス転移温度Tgにほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高いガラス転移温度Tgを有することが分かった。
[実施例37]
 表7に示すように、実施例37は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(B)、樹脂(C)、および、光重合開始剤は、実施例35と同一である。実施例37において、樹脂(D)として、トリメチロールプロパントリアクリレート(TMPTA)を用いた。実施例37において、光重合成分全体における樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)の含有率は、実施例35と同一である。また、実施例37では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例37は、樹脂(D)のみが実施例35と異なる。
 表7に示すように、実施例37のインプリント用光硬化性アクリルレジンの粘度は、15.43mPa・sであった。実施例37の樹脂(D)の粘度は、実施例35の樹脂(D)の粘度よりも低い。これにより、実施例37のインプリント用光硬化性アクリルレジンの粘度は、実施例35のインプリント用光硬化性アクリルレジンの粘度よりも低くなったと推察される。
 表8に示すように、実施例37のインプリント用光硬化性アクリルレジンの硬化物のYI値は、0.9であった。以上の結果から、実施例37の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。また、実施例35の硬化物および実施例37の硬化物のYI値にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、低いYI値を維持できることが分かった。
 表8に示すように、実施例37のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.2%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.0%であった。また、実施例37のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.6%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.2%であった。実施例35の硬化物および実施例37の硬化物の平均透過率にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高い平均透過率を維持できることが分かった。
 実施例37の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、+0.3%となった。実施例37の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、+0.1%となった。以上の結果から、実施例37の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。また、実施例35の硬化物および実施例37の硬化物の平均透過率の差ΔAにほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、加熱処理を施しても、平均透過率がほとんど低下しないことが分かった。
 表8に示すように、実施例37のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.1×10Paであった。実施例37のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、7.8×10Paであった。実施例37のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、7.1×10Paであった。実施例37のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、6.3×10Paであった。実施例35の硬化物および実施例37の硬化物の貯蔵弾性率にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高い貯蔵弾性率を有することが分かった。
 実施例37の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、37.9%となった。実施例37の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、34.2%となった。実施例37の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、30.4%となった。以上の結果から、実施例37の硬化物は、加熱処理を施す前において、2.1×10Paという高い貯蔵弾性率を有することが確認された。また、実施例37の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。また、実施例35の硬化物および実施例37の硬化物の貯蔵弾性率の変化率にほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが分かった。
 表8に示すように、実施例37のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、170℃であった。以上の結果から、実施例37の硬化物は、高いガラス転移温度Tgを有することが確認された。また、実施例35の硬化物および実施例37の硬化物のガラス転移温度Tgにほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高いガラス転移温度Tgを有することが分かった。
[実施例38]
 表7に示すように、実施例38は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(A)、樹脂(C)、樹脂(D)、および、光重合開始剤は、実施例35と同一である。実施例38において、樹脂(B)として、1,9-ノナンジオールジアクリレート(NDDA)を用いた。実施例38において、光重合成分全体における樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)の含有率は、実施例35と同一である。また、実施例38では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。つまり、実施例38は、樹脂(B)のみが実施例35と異なる。
 表7に示すように、実施例38のインプリント用光硬化性アクリルレジンの粘度は、20.01mPa・sであった。実施例38の樹脂(B)の粘度は、実施例35の樹脂(B)の粘度よりも高い。これにより、実施例38のインプリント用光硬化性アクリルレジンの粘度は、実施例35のインプリント用光硬化性アクリルレジンの粘度よりも高くなったと推察される。
 表8に示すように、実施例38のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.0であった。以上の結果から、実施例38の硬化物に対し、加熱処理を施しても、低いYI値を維持できることが確認された。また、実施例35の硬化物および実施例38の硬化物のYI値にほとんど差がないことから、樹脂(B)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、低いYI値を維持できることが分かった。
 表8に示すように、実施例38のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.3%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.0%であった。また、実施例38のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.4%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.9%であった。実施例35の硬化物および実施例38の硬化物の平均透過率にほとんど差がないことから、樹脂(B)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高い平均透過率を維持できることが分かった。
 実施例38の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、+0.2%となった。実施例38の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-0.1%となった。以上の結果から、実施例38の硬化物に対し、加熱処理を施しても、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率は、ほとんど低下しないことが確認された。また、実施例35の硬化物および実施例38の硬化物の平均透過率の差ΔAにほとんど差がないことから、樹脂(B)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、加熱処理を施しても、平均透過率がほとんど低下しないことが分かった。
 表8に示すように、実施例38のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、1.9×10Paであった。実施例38のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、7.1×10Paであった。実施例38のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、6.4×10Paであった。実施例38のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、5.8×10Paであった。実施例35の硬化物および実施例38の硬化物の貯蔵弾性率にほとんど差がないことから、樹脂(B)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高い貯蔵弾性率を有することが分かった。
 実施例38の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、37.4%となった。実施例38の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、33.5%となった。実施例38の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、30.3%となった。以上の結果から、実施例38の硬化物は、加熱処理を施す前において、1.9×10Paという高い貯蔵弾性率を有することが確認された。また、実施例38の硬化物に対し、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが確認された。また、実施例35の硬化物および実施例38の硬化物の貯蔵弾性率の変化率にほとんど差がないことから、樹脂(B)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、加熱処理を施しても、貯蔵弾性率の低下が抑制されることが分かった。
 表8に示すように、実施例38のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、180.6℃であった。以上の結果から、実施例38の硬化物は、高いガラス転移温度Tgを有することが確認された。また、実施例35の硬化物および実施例38の硬化物のガラス転移温度Tgにほとんど差がないことから、樹脂(D)が異なる物質であっても、インプリント用光硬化性アクリルレジンの硬化物は、高いガラス転移温度Tgを有することが分かった。
 以上の結果から、実施例31~38において、25℃におけるインプリント用光硬化性アクリルレジンの粘度は、35mPa・s以下であることが確認された。また、実施例31~38において、インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後の当該硬化物のYI値は、3以下であることが確認された。実施例31~38において、インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後の、430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、91%以上であり、430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、90%以上であることが確認された。また、実施例31~38において、30℃における、インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、1.6×10Pa以上であり、120℃における、当該硬化物の貯蔵弾性率は、3.9×10Pa以上であることが確認された。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
[比較例1]
 表9に示すように、比較例1は、光重合成分として、樹脂(C)、樹脂(D)、および、2官能のアクリレートモノマーのみを含み、さらに光重合開始剤を含む。比較例1において、樹脂(C)および光重合開始剤は、実施例31と同一である。比較例1では、樹脂(D)として、ジペンタエリスリトールヘキサアクリレート(DPHA)および東亞合成株式会社製の「M-9050」を用いた。2官能のアクリレートモノマーとして、日本化薬株式会社製の「KAYARAD R-604」を用いた。「KAYARAD R-604」は、25℃において200mPa・s以上、400mPa・s以下の粘度を有する。また、比較例1では、光重合成分全体における「KAYARAD R-604」の含有率を20質量%とし、樹脂(C)の含有率を20質量%とし、樹脂(D)の含有率を60質量%とした。また、比較例1において、樹脂(D)であるジペンタエリスリトールヘキサアクリレートの含有率を20質量%とし、樹脂(D)であるM-9050の含有率を40質量%とした。つまり、比較例1では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計の含有率は、20質量%である。比較例1では、光重合成分全体における樹脂(D)の合計の含有率は、60質量%である。また、比較例1では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表9に示すように、比較例1のインプリント用光硬化性アクリルレジンの粘度は、717.5mPa・sであった。以上の結果から、比較例1のインプリント用光硬化性アクリルレジンは、25℃において10mPa・s以下のアクリレートモノマーの合計の含有率が50質量%未満であり、かつ、樹脂(D)の含有率が20質量%超であることにより、粘度が高くなってしまうことが確認された。
 表10に示すように、比較例1のインプリント用光硬化性アクリルレジンの硬化物のYI値は、6.6であった。以上の結果から、比較例1の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、樹脂(D)の含有率を高くしただけでは、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表10に示すように、比較例1のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.5%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.6%であった。また、比較例1のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、90.4%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、87.7%であった。
 比較例1の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-1.1%となった。比較例1の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-2.9%となった。以上の結果から、比較例1の硬化物に対し、加熱処理を施した場合に、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率が、著しく低下することが確認された。
 表10に示すように、比較例1のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.2×10Paであった。比較例1のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、1.3×10Paであった。比較例1のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、1.3×10Paであった。比較例1のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、1.2×10Paであった。
 比較例1の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、58.7%となった。比較例1の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、56.6%となった。比較例1の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、54.6%となった。
 表10に示すように、比較例1のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、115℃であった。
[比較例2]
 表9に示すように、比較例2は、光重合成分として、「KAYARAD R-604」、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。比較例2において、樹脂(B)、樹脂(C)、樹脂(D)、および、光重合開始剤は、実施例3と同一である。また、比較例2では、光重合成分全体における「KAYARAD R-604」の含有率を40質量%とし、樹脂(B)の含有率を10質量%とし、樹脂(C)の含有率を30質量%とし、樹脂(D)の含有率を20質量%とした。つまり、比較例2では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(B)+樹脂(C))の含有率は、40質量%である。比較例2では、2官能のアクリレートモノマーの合計(「KAYARAD R-604」+樹脂(B))の含有率は、50質量%である。また、比較例2では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表9に示すように、比較例2のインプリント用光硬化性アクリルレジンの粘度は、26.25mPa・sであった。
 表10に示すように、比較例2のインプリント用光硬化性アクリルレジンの硬化物のYI値は、4.6であった。以上の結果から、比較例2の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、樹脂(A)を含まないと、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表10に示すように、比較例2のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.4%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.2%であった。また、比較例2のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.5%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、89.6%であった。
 比較例2の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.9%となった。比較例2の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-2.7%となった。以上の結果から、比較例2の硬化物に対し、加熱処理を施した場合に、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率が、著しく低下することが確認された。
 表10に示すように、比較例2のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.5×10Paであった。比較例2のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、9.1×10Paであった。比較例2のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、8.1×10Paであった。比較例2のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、7.1×10Paであった。
 比較例2の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、36.5%となった。比較例2の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、32.2%となった。比較例2の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、28.5%となった。
 表10に示すように、比較例2のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、168.3℃であった。
[比較例3]
 表9に示すように、比較例3は、光重合成分として、「KAYARAD R-604」、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。比較例3において、光重合成分および光重合開始剤は、比較例2と同一である。比較例3では、光重合成分全体における「KAYARAD R-604」の含有率を40質量%とし、樹脂(B)の含有率を10質量%とし、樹脂(C)の含有率を40質量%とし、樹脂(D)の含有率を10質量%とした。つまり、比較例3では、比較例2と樹脂(C)および樹脂(D)の含有率のみが異なる。比較例3では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(B)+樹脂(C))の含有率は、50質量%である。比較例3では、2官能のアクリレートモノマーの合計(KAYARAD R-604+樹脂(B))の含有率は、50質量%である。また、比較例3では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表9に示すように、比較例3のインプリント用光硬化性アクリルレジンの粘度は、39.6mPa・sであった。
 表10に示すように、比較例3のインプリント用光硬化性アクリルレジンの硬化物のYI値は、3.9であった。以上の結果から、比較例3の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、樹脂(A)を含まないと、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表10に示すように、比較例3のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.7%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、92.5%であった。また、比較例3のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.9%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.3%であった。
 比較例3の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.8%となった。比較例3の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-2.3%となった。以上の結果から、比較例3の硬化物に対し、加熱処理を施した場合に、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率が、著しく低下することが確認された。
 表10に示すように、比較例3のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.0×10Paであった。比較例3のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、3.3×10Paであった。比較例3のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、2.6×10Paであった。比較例3のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、2.1×10Paであった。
 比較例3の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、16.7%となった。比較例3の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、13.3%となった。比較例3の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、11.0%となった。
 表10に示すように、比較例3のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、113.6℃であった。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
[比較例4]
 表11に示すように、比較例4は、光重合成分として、樹脂(A)、樹脂(B)、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。比較例4において、光重合成分および光重合開始剤は、実施例31と同一である。比較例4では、光重合成分全体における樹脂(A)の含有率を40質量%とし、樹脂(B)の含有率を40質量%とし、樹脂(C)の含有率を10質量%とし、樹脂(D)の含有率を10質量%とした。比較例4では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(B)+樹脂(C))の含有率は、50質量%である。比較例4では、2官能のアクリレートモノマーの合計(樹脂(A)+樹脂(B))の含有率は、80質量%である。また、比較例4では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表11に示すように、比較例4のインプリント用光硬化性アクリルレジンの粘度は、35mPa・sであった。
 表12に示すように、比較例4のインプリント用光硬化性アクリルレジンの硬化物のYI値は、3.6であった。以上の結果から、比較例4の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、光重合成分全体に対する、樹脂(A)の含有率が、20質量%以上、40質量%以下であったとしても、光重合成分全体に対する、樹脂(A)および樹脂(B)の合計の含有率が、70質量%超であると、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表12に示すように、比較例4のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.5%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.4%であった。また、比較例4のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.2%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、89.7%であった。以上の結果から、光重合成分全体に対する、樹脂(A)の含有率が、20質量%以上、40質量%以下であったとしても、光重合成分全体に対する、樹脂(A)および樹脂(B)の合計の含有率が、70質量%超であると、硬化物に対して加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率が低くなってしまうことが確認された。
 比較例4の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.3%となった。比較例4の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-0.6%となった。
 表12に示すように、比較例4のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.3×10Paであった。比較例4のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、1.0×10Paであった。比較例4のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、9.1×10Paであった。比較例4のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、8.3×10Paであった。
 比較例4の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、44.2%となった。比較例4の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、39.5%となった。比較例4の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、36.3%となった。
 表12に示すように、比較例4のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、128℃であった。
[比較例5]
 表11に示すように、比較例5は、光重合成分として、「KAYARAD R-604」、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。樹脂(C)、樹脂(D)、および、光重合開始剤は、実施例36と同一である。比較例5では、光重合成分全体における「KAYARAD R-604」の含有率を50質量%とし、樹脂(C)の含有率を30質量%とし、樹脂(D)の含有率を20質量%とした。つまり、比較例5では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(C))の含有率は、30質量%である。比較例5では、2官能のアクリレートモノマーの合計(「KAYARAD R-604」)の含有率は、50質量%である。また、比較例5では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表11に示すように、比較例5のインプリント用光硬化性アクリルレジンの粘度は、192.5mPa・sであった。
 表12に示すように、比較例5のインプリント用光硬化性アクリルレジンの硬化物のYI値は、3.5であった。以上の結果から、比較例5の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、樹脂(A)を含まないと、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表12に示すように、比較例5のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.1%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.8%であった。また、比較例5のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.4%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.0%であった。
 比較例5の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.7%となった。比較例5の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-1.8%となった。以上の結果から、比較例5の硬化物に対し、樹脂(A)を含まないと、加熱処理を施した場合に、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率が、著しく低下することが確認された。
 表12に示すように、比較例5のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、1.8×10Paであった。比較例5のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、5.2×10Paであった。比較例5のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、4.5×10Paであった。比較例5のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、3.9×10Paであった。
 比較例5の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、28.5%となった。比較例5の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、24.7%となった。比較例5の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、21.2%となった。
 表12に示すように、比較例5のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、169.6℃であった。
[比較例6]
 表11に示すように、比較例6は、光重合成分として、「KAYARAD R-604」、樹脂(C)、および、樹脂(D)のみを含み、さらに光重合開始剤を含む。比較例6において、樹脂(C)、樹脂(D)、および、光開始剤は、実施例31と同一である。比較例6では、光重合成分全体における「KAYARAD R-604」の含有率を70質量%とし、樹脂(C)の含有率を20質量%とし、樹脂(D)の含有率を10質量%とした。つまり、比較例6では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(C))の含有率は、20質量%である。比較例6では、2官能のアクリレートモノマーの合計(「KAYARAD R-604」)の含有率は、70質量%である。また、比較例6では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を1質量%とした。
 表11に示すように、比較例6のインプリント用光硬化性アクリルレジンの粘度は、245mPa・sであった。
 表12に示すように、比較例6のインプリント用光硬化性アクリルレジンの硬化物のYI値は、3.1であった。以上の結果から、比較例6の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、樹脂(A)を含まないと、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表12に示すように、比較例6のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.8%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.6%であった。また、比較例6のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.6%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.4%であった。
 比較例6の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.1%となった。比較例6の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-0.2%となった。
 表12に示すように、比較例6のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.4×10Paであった。比較例6のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、7.5×10Paであった。比較例6のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、6.4×10Paであった。比較例6のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、5.6×10Paであった。
 比較例6の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、31.6%となった。比較例6の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、27.1%となった。比較例6の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、23.5%となった。
 表12に示すように、比較例6のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、164.1℃であった。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
[比較例7]
 表13に示すように、比較例7は、光重合成分として、樹脂(A)、および、樹脂(C)のみを含み、光重合開始剤として、IGM Resins B.V.製の「IrgacureTPO」を含む。比較例7では、樹脂(C)として、ベンジルアクリレートを用いた。ベンジルアクリレートは、大阪有機化学工業株式会社製のベンジルアクリレート「V#160」を用いた。ベンジルアクリレートは、25℃において2.2mPa・sの粘度を有する。比較例7では、光重合成分全体における樹脂(A)の含有率を25質量%とし、樹脂(C)の含有率を75質量%とした。つまり、比較例7では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(C))の含有率は、75質量%である。比較例7では、2官能のアクリレートモノマーの合計(樹脂(A))の含有率は、25質量%である。また、比較例7では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を3質量%とした。
 表13に示すように、比較例7のインプリント用光硬化性アクリルレジンの粘度は、4.2mPa・sであった。
 表14に示すように、比較例7のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.44であった。
 表14に示すように、比較例7のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.4%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.2%であった。また、比較例7のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.1%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.5%であった。
 比較例7の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.3%となった。比較例7の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-0.7%となった。
 表14に示すように、比較例7のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、7.3×10Paであった。比較例7のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、1.2×10Paであった。比較例7のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、1.3×10Paであった。比較例7のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、1.4×10Paであった。
 比較例7の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、1.7%となった。比較例7の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、1.8%となった。比較例7の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、1.9%となった。以上の結果から、比較例7の硬化物は、加熱処理を施す前において、7.3×10Paという低い貯蔵弾性率を有することが確認された。また、比較例7の硬化物に対し、加熱処理を施すと、貯蔵弾性率が著しく低下することが確認された。したがって、樹脂(B)が含まれていないと貯蔵弾性率が大幅に低下することが確認された。
 表14に示すように、比較例7のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、35.4℃であった。以上の結果から、樹脂(B)が含まれていないため、比較例7の硬化物のガラス転移温度Tgは、著しく低いことが確認された。
[比較例8]
 表13に示すように、比較例8は、光重合成分として、樹脂(A)、および、樹脂(C)のみを含み、さらに光重合開始剤を含む。比較例8において、樹脂(A)、樹脂(C)、および、光重合開始剤は、比較例7と同一である。つまり、比較例8は、比較例7と、樹脂(A)および樹脂(C)の含有率のみが異なる。比較例8では、光重合成分全体における樹脂(A)の含有率を40質量%とし、樹脂(C)の含有率を60質量%とした。つまり、比較例8では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(C))の含有率は、60質量%である。比較例8では、2官能のアクリレートモノマーの合計(樹脂(A))の含有率は、40質量%である。また、比較例8では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を3質量%とした。
 表13に示すように、比較例8のインプリント用光硬化性アクリルレジンの粘度は、6.6mPa・sであった。
 表14に示すように、比較例8のインプリント用光硬化性アクリルレジンの硬化物のYI値は、1.42であった。
 表14に示すように、比較例8のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.6%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.3%であった。また、比較例8のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、91.2%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、90.6%であった。
 比較例8の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-0.4%となった。比較例8の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-0.7%となった。
 表14に示すように、比較例8のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.1×10Paであった。比較例8のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、3.0×10Paであった。比較例8のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、3.1×10Paであった。比較例8のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、3.2×10Paであった。
 比較例8の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、1.4%となった。比較例8の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、1.5%となった。比較例8の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、1.5%となった。以上の結果から、比較例8の硬化物は、加熱処理を施す前において、2.1×10Paという高い貯蔵弾性率を有することが確認された。しかし、比較例8の硬化物に対し、加熱処理を施すと、貯蔵弾性率が著しく低下することが確認された。したがって、樹脂(B)が含まれていないと貯蔵弾性率が大幅に低下することが確認された。
 表14に示すように、比較例8のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、46℃であった。以上の結果から、樹脂(B)が含まれていないため、比較例8の硬化物のガラス転移温度Tgは、著しく低いことが確認された。
[比較例9]
 表13に示すように、比較例9は、光重合成分として、樹脂(B)、樹脂(D)、および、単官能モノマーのみを含み、光重合開始剤として、IGM Resins B.V.製の「IrgacureTPO」を含む。比較例9では、樹脂(B)として、1,9-ノナンジオールジアクリレート(NDDA)を用いた。また、樹脂(D)として、トリメチロールプロパントリアクリレート(TMPTA)を用いた。単官能モノマーとして、N-ビニル-2-ピロリドンを用いた。N-ビニル-2-ピロリドンは、25℃において1.7mPa・sの粘度を有する。比較例9では、光重合成分全体における樹脂(B)の含有率を33質量%とし、樹脂(D)の含有率を33質量%とし、N-ビニル-2-ピロリドンの含有率を32質量%とした。つまり、比較例9では、光重合成分全体における、25℃において10mPa・s以下のアクリレートモノマーの合計(樹脂(B)+単官能モノマー)の含有率は、65質量%である。比較例9では、2官能のアクリレートモノマーの合計(樹脂(B))の含有率は、33質量%である。また、比較例9では、光重合成分全体の含有率を100質量%とした場合の光重合開始剤の含有率を2質量%とした。
 表13に示すように、比較例9のインプリント用光硬化性アクリルレジンの粘度は、7.9mPa・sであった。
 表14に示すように、比較例9のインプリント用光硬化性アクリルレジンの硬化物のYI値は、5.8であった。以上の結果から、比較例9の硬化物に対し、加熱処理を施した場合、YI値が高くなってしまうことが確認された。したがって、樹脂(A)を含まないと、硬化物に対して加熱処理を施した後のYI値が高くなってしまうことが分かった。
 表14に示すように、比較例9のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施す前の430nm以上、680nm以下の波長領域の光に対する平均透過率は、92.0%であり、加熱処理を施す前の430nm以上、510nm以下の波長領域の光に対する平均透過率は、91.7%であった。また、比較例9のインプリント用光硬化性アクリルレジンの硬化物における、加熱処理を施した後の430nm以上、680nm以下の波長領域の光に対する平均透過率は、90.5%であり、加熱処理を施した後の430nm以上、510nm以下の波長領域の光に対する平均透過率は、87.8%であった。
 比較例9の硬化物において、加熱処理を施す前後における、430nm以上、680nm以下の波長領域の光に対する平均透過率の差ΔA(加熱処理前の平均透過率-加熱処理後の平均透過率)は、-1.5%となった。比較例9の硬化物において、加熱処理を施す前後における、430nm以上、510nm以下の波長領域の光に対する平均透過率の差ΔAは、-3.9%となった。以上の結果から、比較例9の硬化物に対し、加熱処理を施した場合に、430nm以上、680nm以下の波長領域の光に対する平均透過率、および、430nm以上、510nm以下の波長領域の光に対する平均透過率が、著しく低下することが確認された。
 表14に示すように、比較例9のインプリント用光硬化性アクリルレジンの硬化物の30℃における貯蔵弾性率は、2.4×10Paであった。比較例9のインプリント用光硬化性アクリルレジンの硬化物の120℃における貯蔵弾性率は、1.5×10Paであった。比較例9のインプリント用光硬化性アクリルレジンの硬化物の130℃における貯蔵弾性率は、1.4×10Paであった。比較例9のインプリント用光硬化性アクリルレジンの硬化物の140℃における貯蔵弾性率は、1.3×10Paであった。
 比較例9の硬化物の、30℃における貯蔵弾性率に対する120℃における貯蔵弾性率の変化率(120℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、61.0%となった。比較例9の硬化物の、30℃における貯蔵弾性率に対する130℃における貯蔵弾性率の変化率(130℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、57.3%となった。比較例9の硬化物の、30℃における貯蔵弾性率に対する140℃における貯蔵弾性率の変化率(140℃の貯蔵弾性率/30℃の貯蔵弾性率×100%)は、52.8%となった。
 表14に示すように、比較例9のインプリント用光硬化性アクリルレジンの硬化物のガラス転移温度Tgは、180.1℃であった。
[実施例と比較例の評価]
 下記表15および表16において、上記実施例31~38および比較例1~9の耐熱性および粘度の評価を2段階で示す。耐熱性の評価については、加熱処理後の光学特性、および、加熱処理後の形状で耐熱性を評価した。加熱処理後の光学特性については、インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持する加熱処理を行った後のYI値が3以下である場合、評価「○」とし、3超である場合、評価「×」とした。加熱処理後の形状については、原盤とインプリント用光硬化性アクリルレジンを用いて、基板上にナノインプリント成形を行い、基板上に微細凹凸構造を形成させ、その硬化物を120℃で500時間保持する加熱処理を行った後において、透過型電子顕微鏡(TEM)で当該硬化物の断面観察をした。その結果、加熱処理前と比較し形状変化がない場合、評価「○」とし、加熱処理前と比較し形状変化がある場合、評価「×」とした。
 粘度については、未硬化のインプリント用光硬化性アクリルレジンの原盤への追従性、および、外観で評価した。インプリント用光硬化性アクリルレジンの原盤への追従性については、微細凹凸構造(断面構造)が既知の原盤を用意し、原盤とインプリント用光硬化性アクリルレジンを用いて、基板上にナノインプリント成形を行った後、基板上の微細凹凸構造を透過型電子顕微鏡で断面観察した。その結果、基板上に成形された微細凹凸構造が原盤の微細凹凸構造に類似していた場合、追従性が高く評価「○」とし、基板上の微細凹凸構造が原盤の微細凹凸構造と明らかに異なる場合(原盤の微細凹凸構造に対し基板上の微細凹凸構造のパターンの寸法が極端に小さいなど)、追従性が悪く評価「×」とした。外観については、原盤とインプリント用光硬化性アクリルレジンを用いて、基板上にナノインプリント成形を行った後、微細凹凸構造が形成された基板を暗室にて蛍光灯透過と蛍光灯反射で観察を行った。その結果、基板上で微細凹凸構造のパターンの崩れがなく、また、基板上の樹脂剥がれがなく、基板全体が一様になっているものを評価「○」とし、基板上で部分的に微細凹凸構造のパターンが崩れ、また、基板上の樹脂剥がれがあるなど基板全体でムラがあるものを評価「×」とした。
Figure JPOXMLDOC01-appb-T000016
 表15に示すように、実施例31~38のインプリント用光硬化性アクリルレジンの硬化物は、加熱処理後の光学特性、および、加熱処理後の形状において、評価「○」であった。また、実施例31~38のインプリント用光硬化性アクリルレジンは、原盤への追従性、および、外観においても、評価「○」であった。以上の評価から、実施例31~38のインプリント用光硬化性アクリルレジンは、耐熱性および低粘度を兼ね備えていることが確認された。
 一方、表16に示すように、比較例1のインプリント用光硬化性アクリルレジンの硬化物は、加熱処理後の光学特性において、評価「×」であった。また、比較例1のインプリント用光硬化性アクリルレジンは、原盤への追従性、および、外観においても、評価「×」であった。以上の評価から比較例1は、耐熱性が低く、粘度が高いことが確認された。
 表16に示すように、比較例2~4のインプリント用光硬化性アクリルレジンの硬化物は、加熱処理後の光学特性において、評価「×」であった。以上の評価から比較例2~4は、低粘度ではあるものの、耐熱性が低いことが確認された。
 表16に示すように、比較例5、6のインプリント用光硬化性アクリルレジンの硬化物は、加熱処理後の光学特性において、評価「×」であった。また、比較例5、6のインプリント用光硬化性アクリルレジンは、原盤への追従性、および、外観においても、評価「×」であった。以上の評価から比較例1は、耐熱性が低く、粘度が高いことが確認された。
 表16に示すように、比較例7、8のインプリント用光硬化性アクリルレジンの硬化物は、加熱処理後の形状において、評価「×」であった。以上の評価から比較例7、8は、低粘度ではあるものの、耐熱性が低いことが確認された。
 表16に示すように、比較例9のインプリント用光硬化性アクリルレジンの硬化物は、加熱処理後の光学特性において、評価「×」であった。以上の評価から比較例9は、低粘度ではあるものの、耐熱性が低いことが確認された。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本実施形態によれば、良好な偏光特性を有し、放熱性や製造時のコストの悪化を招くことがなく、広範囲な入射角度の光に対する透過性に優れた偏光素子及び偏光素子の製造方法を提供することが可能となる。また、本実施形態によれば、偏光特性及び耐熱性に優れた投影表示装置及び該投影表示装置を備えた車両を提供することが可能となる。また、本実施形態によれば、未硬化の樹脂組成物の粘度を低くし、かつ、硬化後の樹脂組成物の耐熱性に優れたインプリント用光硬化性アクリルレジンを提供することが可能となる。
 1  ワイヤグリッド偏光素子
 2  光源
 3  表示素子
 4  反射器
 5  表示面
 6  カバー部
 10 基板
 20 グリッド構造体
 21 ベース部
 22 凸条部
 23 グリッド構造体材料
 24 凹部
 30 反射膜
 40 保護膜
 50 放熱部材
 60 原盤
 61 原盤用基材
 62 原盤用金属膜
 63 凸部
 64 離型膜コート
 65 凹溝
 70 レジストマスク
 80 金属膜
 100 ヘッドアップディスプレイ装置
 200 投影表示装置
 210 光源
 220 PSコンバータ
 230 偏光ビームスプリッタ
 240 反射型液晶表示素子
 250 レンズ
 260 光吸収体
 TS 基板の厚さ
 TB ベース部の厚さ
 P  凸条部のピッチ
 H  凸条部の高さ
 Hx 反射膜が凸条部の側面を覆う高さ範囲
 Ds  反射膜の側面厚さ
 Dt  反射膜の先端厚さ
 WMAX  凸条部を覆い包む反射膜の最大幅(グリッド最大幅)
 W  凸条部の底部の幅(グリッド底部幅)
 W  凸条部の頂部の幅(凸条部頂部幅)
 W  実効的なグリッド幅
 W  ギャップ幅

Claims (36)

  1.  無機材料からなる基板と、
     有機材料からなり、前記基板上に設けられるベース部と、前記ベース部から突出する複数の凸条部とが一体形成されたグリッド構造体と、
     金属材料からなり、前記凸条部の一部を被覆する機能膜と、
    を備え、
     前記凸条部は、前記ベース部から離れるにつれて幅が狭くなる先細り形状を有し、
     前記機能膜は、前記凸条部の先端及び少なくとも一方の側面の上部側を覆い包み、かつ、前記凸条部の両側面の下部側及び前記ベース部を被覆しておらず、
     前記機能膜による前記凸条部の側面の被覆率(Rc)が、前記凸条部の高さ(H)に対する、前記凸条部の側面のうち前記機能膜により被覆された部分の高さ(Hx)の割合であるとき、前記被覆率(Rc)は、30%以上、70%以下であり、
     前記有機材料は、光重合成分を含むインプリント用光硬化性アクリルレジンの硬化物であり、
     前記光重合成分は、
     樹脂(A)と、
     樹脂(B)と、
    を含み、
     前記樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートであり、
     前記樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーであり、
     前記光重合成分全体に対する、前記樹脂(A)の含有率が、20質量%以上、40質量%以下であり、
     前記光重合成分全体に対する、前記樹脂(A)および前記樹脂(B)の合計の含有率が、70質量%以下である、ワイヤグリッド偏光素子。
  2.  25℃における前記インプリント用光硬化性アクリルレジンの粘度は、35mPa・s以下である、請求項1に記載のワイヤグリッド偏光素子。
  3.  前記光重合成分は、樹脂(C)をさらに含み、
     前記樹脂(C)は、25℃において10mPa・s以下の粘度を有するアクリレートモノマーであり、
     前記光重合成分全体に対する、前記樹脂(B)および前記樹脂(C)の合計の含有率が、50質量%以上、70質量%以下である、請求項1に記載のワイヤグリッド偏光素子。
  4.  前記樹脂(C)は、単官能のアクリレートモノマーである、請求項3に記載のワイヤグリッド偏光素子。
  5.  前記樹脂(C)は、イソボルニルアクリレートである、請求項4に記載のワイヤグリッド偏光素子。
  6.  前記光重合成分は、樹脂(D)をさらに含み、
     前記樹脂(D)は、3官能以上のアクリレートモノマーであり、
     前記光重合成分全体に対する、前記樹脂(D)の含有率が、0質量%超、20質量%以下である、請求項1に記載のワイヤグリッド偏光素子。
  7.  前記樹脂(D)は、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、および、多官能のポリエステルアクリレートからなる群より選択される1つまたは複数である、請求項6に記載のワイヤグリッド偏光素子。
  8.  前記樹脂(B)は、炭化水素基で構成された直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマー、または、エーテル結合を有する直鎖構造の両端それぞれにアクリロイル基が結合された2官能のアクリレートモノマーである、請求項1に記載のワイヤグリッド偏光素子。
  9.  前記樹脂(B)は、下記化学式(I)で表される2官能のアクリレートモノマーであり、前記化学式(I)において、nは、1以上、9以下の整数である、請求項8に記載のワイヤグリッド偏光素子。
    CH=CHCOO(CHOOCCH=CH   …(I)
  10.  前記化学式(I)において、nは、6以上、9以下の整数である、請求項9に記載のワイヤグリッド偏光素子。
  11.  前記化学式(I)において、nは、6または9である、請求項10に記載のワイヤグリッド偏光素子。
  12.  前記インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、
     当該硬化物のYI値は、3以下である、請求項1に記載のワイヤグリッド偏光素子。
  13.  30℃における、前記インプリント用光硬化性アクリルレジンの硬化物の貯蔵弾性率は、1.6×10Pa以上であり、
     120℃における、当該硬化物の貯蔵弾性率は、3.9×10Pa以上である、請求項1に記載のワイヤグリッド偏光素子。
  14.  前記インプリント用光硬化性アクリルレジンの硬化物を120℃で500時間保持した後において、
     430nm以上、680nm以下の波長領域の光に対する当該硬化物の平均透過率は、91%以上であり、
     430nm以上、510nm以下の波長領域の光に対する当該硬化物の平均透過率は、90%以上である、請求項1に記載のワイヤグリッド偏光素子。
  15.  前記インプリント用光硬化性アクリルレジンは、前記光重合成分を重合させるための光重合開始剤をさらに含む、請求項1に記載のワイヤグリッド偏光素子。
  16.  前記凸条部を覆い包む前記機能膜の表面は、丸みを有して前記凸条部の幅方向に膨出しており、
     前記凸条部を覆い包む前記機能膜の最大幅(WMAX)は、前記凸条部の底部から前記凸条部の高さの20%上部の位置において前記機能膜により被覆されていない部分の前記凸条部の幅(W)以上である、請求項1に記載のワイヤグリッド偏光素子。
  17.  前記凸条部と前記機能膜とから構成される凸構造体全体の断面形状は、前記凸条部を覆い包む前記機能膜の下端部の直下の位置に、前記凸構造体全体の幅方向の幅が狭くなったくびれ部を有する、請求項1に記載のワイヤグリッド偏光素子。
  18.  前記ワイヤグリッド偏光素子に対する入射角度が45°である入射光の透過軸透過率(Tp)と反射軸反射率(Rs)との積(Tp×Rs)は、70%以上である、請求項1に記載のワイヤグリッド偏光素子。
  19.  前記凸条部の高さ(H)は、160nm以上である、請求項1に記載のワイヤグリッド偏光素子。
  20.  前記凸条部の先端を覆う前記機能膜の厚さ(Dt)は、5nm以上である、請求項1に記載のワイヤグリッド偏光素子。
  21.  前記凸条部の側面を覆う前記機能膜の厚さ(Ds)は、10nm以上、30nm以下である、請求項1に記載のワイヤグリッド偏光素子。
  22.  前記ベース部の厚さ(TB)が、1nm以上である、請求項1に記載のワイヤグリッド偏光素子。
  23.  前記ワイヤグリッド偏光素子の反射軸方向に直交する断面における前記凸条部の断面形状が、前記ベース部から離れるにつれて幅が狭くなる台形、三角形、釣鐘型又は楕円形である、請求項1に記載のワイヤグリッド偏光素子。
  24.  少なくとも前記機能膜の表面を覆うように形成された保護膜を、さらに備える、請求項1に記載のワイヤグリッド偏光素子。
  25.  前記保護膜は、撥水性コーティング又は撥油性コーティングを含む、請求項24に記載のワイヤグリッド偏光素子。
  26.  前記機能膜が、誘電体膜をさらに有する、請求項1に記載のワイヤグリッド偏光素子。
  27.  θが30°以上、60°以下である場合、
     前記ワイヤグリッド偏光素子に対する入射角度が+θである入射光の透過軸透過率(Tp(+))と、入射角度が-θである入射光の透過軸透過率(Tp(-))との差が、3%以内である、請求項1に記載のワイヤグリッド偏光素子。
  28.  前記機能膜は、入射光を反射する反射膜である、請求項1に記載のワイヤグリッド偏光素子。
  29.  前記ワイヤグリッド偏光素子は、斜入射光を第1の偏光と第2の偏光に分離する偏光ビームスプリッタである、請求項1に記載のワイヤグリッド偏光素子。
  30.  無機材料からなる基板上に、有機材料からなるグリッド構造体材料を形成する工程と、
     前記グリッド構造体材料にナノインプリントを施すことによって、前記基板上に設けられるベース部と、前記ベース部から突出する複数の凸条部とが一体形成されたグリッド構造体を形成する工程と、
     金属材料を用いて前記凸条部の一部を被覆する機能膜を形成する工程と、
    を含み、
     前記グリッド構造体を形成する工程では、前記ベース部から離れるにつれて幅が狭くなる先細り形状を有する前記凸条部を形成し、
     前記機能膜を形成する工程では、
     前記機能膜が、前記凸条部の先端及び少なくとも一方の側面の上部側を覆い包み、かつ、前記凸条部の両側面の下部側及び前記ベース部を被覆せず、前記機能膜による前記凸条部の側面の被覆率(Rc)が、前記凸条部の高さ(H)に対する、前記凸条部の側面のうち前記機能膜により被覆された部分の高さ(Hx)の割合であるとき、前記被覆率(Rc)が30%以上、70%以下であるように、前記機能膜を形成し、
     前記有機材料は、光重合成分を含むインプリント用光硬化性アクリルレジンの硬化物であり、
     前記光重合成分は、
     樹脂(A)と、
     樹脂(B)と、
    を含み、
     前記樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートであり、
     前記樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーであり、
     前記光重合成分全体に対する、前記樹脂(A)の含有率が、20質量%以上、40質量%以下であり、
     前記光重合成分全体に対する、前記樹脂(A)および前記樹脂(B)の合計の含有率が、70質量%以下である、
    ワイヤグリッド偏光素子の製造方法。
  31.  前記機能膜を形成する工程では、スパッタリング又は蒸着法によって、前記凸条部に対して複数の方向から交互に成膜を行う、請求項30に記載のワイヤグリッド偏光素子の製造方法。
  32.  光源と、
     前記光源からの入射光が45°を含む所定範囲の入射角度で入射するように配置され、前記入射光を第1の偏光と第2の偏光とに分離する偏光ビームスプリッタと、
     前記偏光ビームスプリッタで反射した前記第1の偏光、又は、前記偏光ビームスプリッタを透過した前記第2の偏光が入射されるように配置され、入射された前記第1の偏光又は前記第2の偏光を反射及び変調する反射型液晶表示素子と、
     前記反射型液晶表示素子で反射及び変調された前記第1の偏光又は前記第2の偏光が、前記偏光ビームスプリッタを通じて入射されるように配置されたレンズと、
    を備え、
     前記偏光ビームスプリッタは、請求項1~29のいずれか1項に記載のワイヤグリッド偏光素子で構成される、投影表示装置。
  33.  前記所定範囲の入射角度は、30°以上、60°以下である、請求項32に記載の投影表示装置。
  34.  前記ワイヤグリッド偏光素子の周囲に、放熱部材が設けられている、請求項32に記載の投影表示装置。
  35.  請求項32に記載の投影表示装置を備える、車両。
  36.  請求項1~29のいずれか一項に記載のワイヤグリッド偏光素子に用いられ、光重合成分を含むインプリント用光硬化性アクリルレジンであって、
     前記光重合成分は、
     樹脂(A)と、
     樹脂(B)と、
    を含み、
     前記樹脂(A)は、(オクタヒドロ-4,7-メタノ-1H-インデンジイル)ビス(メチレン)ジアクリレートであり、
     前記樹脂(B)は、25℃において10mPa・s以下の粘度を有する2官能のアクリレートモノマーであり、
     前記光重合成分全体に対する、前記樹脂(A)の含有率が、20質量%以上、40質量%以下であり、
     前記光重合成分全体に対する、前記樹脂(A)および前記樹脂(B)の合計の含有率が、70質量%以下である、インプリント用光硬化性アクリルレジン。
PCT/JP2022/047860 2021-12-24 2022-12-26 ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン WO2023120735A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021211458 2021-12-24
JP2021-211458 2021-12-24
JP2022-205905 2022-12-22
JP2022-205906 2022-12-22
JP2022-205908 2022-12-22
JP2022205908A JP2023095826A (ja) 2021-12-24 2022-12-22 ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置及び車両
JP2022205906A JP2023095825A (ja) 2021-12-24 2022-12-22 ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン
JP2022205905 2022-12-22

Publications (1)

Publication Number Publication Date
WO2023120735A1 true WO2023120735A1 (ja) 2023-06-29

Family

ID=86902915

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/047860 WO2023120735A1 (ja) 2021-12-24 2022-12-26 ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン
PCT/JP2022/047861 WO2023120736A1 (ja) 2021-12-24 2022-12-26 ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置及び車両

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047861 WO2023120736A1 (ja) 2021-12-24 2022-12-26 ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置及び車両

Country Status (1)

Country Link
WO (2) WO2023120735A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330728A (ja) * 2000-05-22 2001-11-30 Jasco Corp ワイヤーグリット型偏光子及びその製造方法
JP2006003447A (ja) * 2004-06-15 2006-01-05 Sony Corp 偏光分離素子及びその製造方法
JP2008256883A (ja) * 2007-04-04 2008-10-23 Toray Ind Inc 反射型偏光板及びそれを用いた液晶表示装置
WO2009123290A1 (ja) * 2008-04-03 2009-10-08 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
WO2010005059A1 (ja) * 2008-07-10 2010-01-14 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
JP2010117646A (ja) * 2008-11-14 2010-05-27 Sony Corp 機能性グリッド構造体及びその製造方法
JP2011128512A (ja) * 2009-12-21 2011-06-30 Sony Corp 光学体およびその製造方法
WO2011132649A1 (ja) * 2010-04-19 2011-10-27 旭硝子株式会社 ワイヤグリッド型偏光子の製造方法および液晶表示装置
JP2015007763A (ja) * 2013-05-27 2015-01-15 旭化成イーマテリアルズ株式会社 映像表示システム及び映像表示装置の設定方法
JP2015528581A (ja) * 2012-08-10 2015-09-28 テマセク ポリテクニックTemasek Polytechnic 光回折格子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330728A (ja) * 2000-05-22 2001-11-30 Jasco Corp ワイヤーグリット型偏光子及びその製造方法
JP2006003447A (ja) * 2004-06-15 2006-01-05 Sony Corp 偏光分離素子及びその製造方法
JP2008256883A (ja) * 2007-04-04 2008-10-23 Toray Ind Inc 反射型偏光板及びそれを用いた液晶表示装置
WO2009123290A1 (ja) * 2008-04-03 2009-10-08 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
WO2010005059A1 (ja) * 2008-07-10 2010-01-14 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
JP2010117646A (ja) * 2008-11-14 2010-05-27 Sony Corp 機能性グリッド構造体及びその製造方法
JP2011128512A (ja) * 2009-12-21 2011-06-30 Sony Corp 光学体およびその製造方法
WO2011132649A1 (ja) * 2010-04-19 2011-10-27 旭硝子株式会社 ワイヤグリッド型偏光子の製造方法および液晶表示装置
JP2015528581A (ja) * 2012-08-10 2015-09-28 テマセク ポリテクニックTemasek Polytechnic 光回折格子
JP2015007763A (ja) * 2013-05-27 2015-01-15 旭化成イーマテリアルズ株式会社 映像表示システム及び映像表示装置の設定方法

Also Published As

Publication number Publication date
WO2023120736A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
KR102556583B1 (ko) 광학체, 광학 필름 첩착체 및 광학체의 제조 방법
JP5365626B2 (ja) ワイヤグリッド型偏光子の製造方法
US8896920B2 (en) Reflective polarizer including grids with nanoparticles and resin material
KR102566582B1 (ko) 광학체, 필름 첩부체 및 광학체의 제조 방법
JP2017142360A (ja) 光波長変換シート、バックライト装置、画像表示装置、および光波長変換シートの製造方法
WO2010126110A1 (ja) ワイヤグリッド型偏光子およびその製造方法
JP2020531908A (ja) 回折導光板および回折導光板の製造方法
WO2023120735A1 (ja) ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置、車両及びインプリント用光硬化性アクリルレジン
JP2023095826A (ja) ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置及び車両
JP7203187B2 (ja) ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置及び車両
US8174765B2 (en) Molded product
KR102482178B1 (ko) 흑색 구조체, 및 그것을 구비한 자발광 화상 표시 장치
WO2022145422A1 (ja) ワイヤグリッド偏光素子、ワイヤグリッド偏光素子の製造方法、投影表示装置及び車両
JP6967909B2 (ja) 光学部材、偏光部材および塗布溶液
JPWO2019244713A1 (ja) コロイド構造体、コロイド多重構造体、及びコロイド構造体の製造方法
WO2019004406A1 (ja) 回折光学素子及びその製造方法、回折光学素子形成用のアクリル系樹脂組成物、並びに照明装置
CN116669979A (zh) 线栅偏振元件、线栅偏振元件的制造方法、投影显示装置及车辆
JP7240357B2 (ja) 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置
WO2020262616A1 (ja) 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置
JP2014071442A (ja) 光学素子、用紙及び光学素子製造方法
JP6400930B2 (ja) 超格子六方配列型光学用基材及び発光素子
JP2010122663A (ja) 光学シート及びそれを用いたバックライトユニット
US8173329B2 (en) Molded product and method for manufacturing same
JP2019179712A (ja) 導光板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911436

Country of ref document: EP

Kind code of ref document: A1