WO2023120356A1 - 硬化性オルガノポリシロキサン組成物およびそれを含む粘着剤組成物 - Google Patents

硬化性オルガノポリシロキサン組成物およびそれを含む粘着剤組成物 Download PDF

Info

Publication number
WO2023120356A1
WO2023120356A1 PCT/JP2022/046170 JP2022046170W WO2023120356A1 WO 2023120356 A1 WO2023120356 A1 WO 2023120356A1 JP 2022046170 W JP2022046170 W JP 2022046170W WO 2023120356 A1 WO2023120356 A1 WO 2023120356A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organopolysiloxane
component
units
siloxane
Prior art date
Application number
PCT/JP2022/046170
Other languages
English (en)
French (fr)
Inventor
優来 横内
智浩 飯村
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to CN202280077773.2A priority Critical patent/CN118302500A/zh
Priority to KR1020247024421A priority patent/KR20240127414A/ko
Priority to JP2023569365A priority patent/JPWO2023120356A1/ja
Publication of WO2023120356A1 publication Critical patent/WO2023120356A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention is based on a siloxane component (which may be a copolymer or mixture) containing (meth)acrylic functional groups and other aliphatically unsaturated carbon-carbon bond-containing groups, and has a relatively strong initial adhesive strength through a heat curing reaction. and by performing a photocuring reaction after the heat curing reaction, the adhesive strength of the adhesive to the substrate changes before and after the photocuring reaction.
  • a siloxane component which may be a copolymer or mixture
  • the adhesive strength of the adhesive to the substrate changes before and after the photocuring reaction.
  • Organopolysiloxane pressure-sensitive adhesive compositions are superior in electrical insulation, heat resistance, cold resistance, adhesion to various adherends, and, if necessary, transparency, compared to acrylic or rubber-based pressure-sensitive adhesive compositions. It is widely used in the manufacture of semiconductor wafers, electronic and electrical devices such as smartphones and tablet PCs, and display devices such as displays. In particular, in recent years, in the processing of semiconductor wafers and the assembly process of electronic/electrical devices and displays, members and protective films are temporarily fixed with relatively weak adhesive strength, and members temporarily fixed with adhesives are used as the process progresses. In order to advance the process by peeling off, there is a demand for a composition that forms a slightly adhesive adhesive compared to conventional organopolysiloxane adhesive compositions.
  • an adhesive sheet has been used in which an adhesive is applied to a base material made of a film in the dicing/pickup/mounting steps after the step of grinding the back surface.
  • adhesive strength is required and situations where easy peelability is required. That is, among these steps, in the step of grinding the back surface of the semiconductor wafer, the adhesive sheet is required to be sufficiently adhered to the semiconductor wafer without being peeled off in order to protect the patterned surface of the semiconductor wafer.
  • after grinding it is required to be able to be easily peeled off from the semiconductor wafer.
  • the adhesive sheet is required to have low adhesiveness.
  • Patent Document 4 contains an organopolysiloxane compound containing a (meth)acrylic functional group, contains a platinum-based catalyst and a photoinitiator, is capable of curing reaction by photopolymerization reaction and addition reaction, and has heat resistance, An organopolysiloxane composition excellent in discoloration resistance and low tackiness and a sealant comprising a cured product thereof have been proposed.
  • Patent Documents 5 and 6 A curable organopolysiloxane composition has been proposed (Patent Documents 5 and 6).
  • the composition is formed by forming a semi-cured pressure-sensitive adhesive layer through a heat curing reaction, and then performing a photo-curing reaction to completely cure the pressure-sensitive adhesive layer before and after the photo-curing reaction. Although the force is significantly reduced, the initial adhesive strength is not necessarily high, leaving room for further improvement.
  • JP 2012-012545 A Japanese Patent Application Laid-Open No. 2012-136678 JP 2013-166877 A Japanese Patent Application Laid-Open No. 2013-203794 Japanese patent application No. 2021-34958 (unpublished at the time of filing) Japanese patent application No. 2021-34959 (unpublished at the time of filing)
  • the present invention has been made to solve the above problems, and provides a curable organo adhesive layer that has a relatively strong initial adhesive strength and can be peeled off from a substrate very easily in subsequent steps. It is an object of the present invention to provide a polysiloxane composition, an organopolysiloxane pressure-sensitive adhesive composition comprising the same, and a method of using the organopolysiloxane pressure-sensitive adhesive composition.
  • the present inventors arrived at the present invention as a result of earnestly studying the above problems. That is, the object of the present invention is to provide a silicon atom-bonded functional group containing a specific acrylic group or methacrylic group, and at least one aliphatic unsaturated carbon-carbon bond such as an alkenyl group, which is the main ingredient.
  • a siloxane component containing atomic bonding functional groups and having a resinous organopolysiloxane structure and a linear siloxane structure (which may be a resin-linear structure-containing organopolysiloxane block copolymer or a mixture of different organosiloxanes), tackifier
  • a curable organopolysiloxane composition and an organopolysiloxane pressure-sensitive adhesive composition containing a siloxane component not containing a carbon-carbon multiple bond in the molecule and a photoradical polymerization initiator.
  • the curable organopolysiloxane composition according to the present invention has both heat-curability and photo-curability, and the pressure-sensitive adhesive layer, which is a semi-cured product obtained by curing the composition by a heat-curing reaction, has a thickness of 30 gf/25 mm.
  • the pressure-sensitive adhesive layer according to the present invention has a necessary and sufficient adhesive strength after heat curing, and is then photocured by irradiating with high energy rays to reduce the adhesive strength and make it easy to peel. is feasible.
  • both heat curability and photocurability are provided, the semi-cured product after heat curing has a relatively strong initial adhesive strength of 30 g/25 mm or more, and the cured product after photocuring reaction is It is possible to provide a curable organopolysiloxane composition, an organopolysiloxane pressure-sensitive adhesive containing the same, and a method for using the same, which have the property of being extremely easily releasable from a substrate.
  • the curable organopolysiloxane composition according to the present invention has a viscosity that allows coating, is excellent in curability, has good adhesion to the substrate by the curing reaction, and is a cured product that is excellent in transparency. (in particular, a cured product film) can be provided.
  • a silicone-based pressure-sensitive adhesive layer/adhesion layer whose adhesive strength changes before and after the photocuring reaction, and can be used as a protective member in a wide range of applications and devices or devices equipped with them. It is possible to provide a method of manufacture and a method of protection comprising:
  • the curable organopolysiloxane composition according to the present invention is (A) an organosiloxane component (( A1) resin-linear structure-containing organopolysiloxane block copolymers and (A2/A3) organosiloxane mixtures), (B) a siloxane component that does not contain a carbon-carbon multiple bond in the molecule (C) contains a photoradical polymerization initiator, preferably further, (D) a specific MQ-type organopolysiloxane resin containing an alkenyl group, (E) an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in the molecule; (F) It may contain a hydrosilylation reaction catalyst, a curing retarder, an organic solvent and other optional components.
  • (meth)acrylic group means “acrylic group or methacrylic group”.
  • Component (A) is the main ingredient of the present composition, and is a silicon atom-bonded functional group containing a (meth)acrylic group and a silicon atom containing at least one aliphatic unsaturated carbon-carbon bond such as an alkenyl group. It is a siloxane component containing a bonding functional group and having a resinous organopolysiloxane structure and a linear siloxane structure in the same component.
  • the silicon atom-bonded functional group containing the (meth)acrylic group must be bonded to the resinous organopolysiloxane structure. may be within the siloxane component, or may be within other siloxane components.
  • the component (A) may be a co-modified resin-linear structure-containing organopolysiloxane block copolymer having these functional groups in the same molecule, and may be a resinous organopolysiloxane block copolymer containing a (meth)acrylic group. It may be an organosiloxane mixture comprising polysiloxanes and further comprising linear or resinous organopolysiloxanes having other functional groups.
  • the (A) component is one or more (meth)acrylic group-containing organosiloxane components selected from the following components (A1) to (A3). That is, the (A1) component is a resin-linear structure-containing organopolysiloxane block copolymer, and the (A2) component is (A2-1) a resinous organopolysiloxane containing a (meth)acrylic group and an alkenyl group, (A2-2) is a mixture with a linear organopolysiloxane having two alkenyl groups in the molecule, and component (A3) is (A3-1) a resinous organopolysiloxane containing (meth)acrylic groups and (A3-2) an alkenyl-containing resinous organopolysiloxane, and (A3-3) a linear organopolysiloxane having two alkenyl groups in the molecule.
  • the (A1) component is a resin-linear structure-containing organo
  • the linear organopolysiloxane having two alkenyl groups in the molecule may be a linear organopolysiloxane having alkenyl groups only at both ends of the molecular chain, It functions as an intermolecular chain extender during the curing reaction.
  • Components (A2-1), (A3-1), and (A3-2) are MQ-type resinous organopolysiloxanes described later, and monoorganosiloxy units are used within a range that does not impair their technical effects.
  • T units diorganosiloxy units (D units) and a small amount of hydroxyl groups (silanol groups), hydrolyzable groups such as alkoxy groups may be included, and these hydrolyzable groups are added to a silylating agent such as trimethylsilane.
  • a silylating agent such as trimethylsilane. It may be a resinous organopolysiloxane in which the content of hydroxyl groups or hydrolyzable groups is reduced by hydrolysis treatment with.
  • Such component (A) as a whole is characterized by containing a silicon-bonded functional group (R A ) containing an acryl or methacryl group and an alkenyl group.
  • the silicon atom-bonded functional group (R A ) is a functional group that exhibits photocurability by irradiation with high-energy rays in the presence of a photoradical polymerization initiator
  • the alkenyl group is a functional group that exhibits photocurability in the presence of a hydrosilylation reaction catalyst.
  • the adhesive layer made of the semi-cured material after the heat-curing reaction is When used in combination with the component (B) described later, it has high initial adhesive strength, and by irradiating the semi-cured product with high energy rays, the adhesive strength is greatly reduced and easy peelability can be realized. can.
  • the component (A) as a whole has a linear organopolysiloxane structure, a resinous organopolysiloxane structure containing (meth)acrylic groups, and a resinous organopolysiloxane structure containing an alkenyl group, heating A semi-cured product obtained by curing exhibits appropriate hardness and flexibility, and can be suitably used as an adhesive.
  • each of the components (A1) to (A3) that can be used as the above component (A) is selected as a main component from a block copolymer in which the above structural factors and functional groups are aggregated in the same molecule, or each The difference is whether a mixture of siloxane raw materials with characteristics is selected as the main component, and the technical effects of the present invention are achieved by using the main component with these characteristics as the component (A).
  • each R 1 is independently a hydrogen atom, a methyl group, or a phenyl group, and is preferably a hydrogen atom or a methyl group to form an acryl group or methacryl group moiety.
  • Z is a divalent organic group that may contain a heteroatom and is bonded to the silicon atom that constitutes the main chain of the polysiloxane *, and may contain an oxygen atom, a nitrogen atom, or a sulfur atom. can be a base.
  • Z is an alkylene group having 2 to 22 carbon atoms
  • Z 2 is * -[(CH 2 ) 2 O] m (CH 2 ) n - (m is a number ranging from 0 to 3, n is 3 to number in the range of 10) is a divalent organic group ⁇ It is preferably a group selected from
  • the silicon-bonded functional group (R A ) has the general formula (1-1): is represented by In the formula, each R 1 independently represents a hydrogen atom, a methyl group or a phenyl group, preferably a hydrogen atom or a methyl group.
  • Each R 2 independently represents an alkyl group or an aryl group, and is industrially preferably an alkyl group having 1 to 20 carbon atoms or a phenyl group, particularly preferably a methyl group.
  • Z 1 represents -O(CH 2 ) m - (m is a number ranging from 0 to 3), m is preferably 1 or 2.
  • Z 2 is a divalent organic group represented by —(CH 2 ) n — (where n is a number in the range of 3 to 10) bonded to a silicon atom constituting the main chain of polysiloxane *, and n is 2 to 6 is practically preferred.
  • the silicon-bonded functional group (R A ) represented by the general formula (1-1) includes a silicon-bonded functional group containing at least one alkenyl group, a silicon-bonded hydrogen atom and (meta- ) reacting a hydrosilane compound having an acrylic functional group (e.g., 3-(1,1,3,3-tetramethyldisiloxanyl)propyl methacrylate) in the presence of a hydrosilylation reaction catalyst to form a molecule can be introduced into The same reaction may and preferably be carried out in the presence of a polymerization inhibitor such as dibutylhydroxytoluene (BHT).
  • a polymerization inhibitor such as dibutylhydroxytoluene (BHT).
  • the alkenyl group in component (A) is preferably an alkenyl group having 2 to 20 carbon atoms, examples of which include vinyl, allyl, butyl and hexenyl groups. Or a hexenyl group is preferably exemplified.
  • Component (A1) is R A R B (3-a) SiO 1/2 (R A is a silicon atom-bonded functional group containing an acrylic group or a methacrylic group, and R B is a monovalent organic group excluding R A and a is a number in the range of 1 to 3), a siloxane unit (M RA unit), R B' 3 SiO 1/2 (R B' is a monovalent organic group excluding RA , At least one of B ' is an alkenyl group) and a siloxane unit (Q unit) represented by SiO 4/2 , and a resinous organo having an acrylic or methacrylic group.
  • R A is a silicon atom-bonded functional group containing an acrylic group or a methacrylic group
  • R B is a monovalent organic group excluding R A and a is a number in the range of 1 to 3
  • M RA unit siloxane unit
  • R B' 3 SiO 1/2 R B' is a monovalent organic group excluding RA
  • siloxane block X and a chain organosiloxane block Y having a siloxane unit represented by ⁇ R C 2 SiO 2/2 ⁇ ⁇ (where R C is a monovalent organic group and ⁇ is a number of 2 or more). and a resin-linear structure-containing organopolysiloxane block copolymer having at least two alkenyl groups in the molecule.
  • the mass ratio of block X to block Y in component (A1) may be in the range of 1:99 to 80:20, more preferably 20:80 to 60:40.
  • R B and R B′ in the above formula are monovalent organic groups other than R A described above, such as alkyl groups, alkenyl groups, aryl groups, aralkyl groups, and fluorine atoms. are exemplified by monovalent hydrocarbon groups selected from halogenated alkyl groups in which a portion of the hydrogen atoms are substituted with halogen atoms of . However, at least one of RB' is an alkenyl group.
  • R B may be an alkyl group (especially including a methyl group) or a phenyl group
  • R B ' may be at least one alkenyl group having 2 to 8 carbon atoms (C2-C8 alkenyl), A vinyl group or a hexenyl group is preferred, and the other R B ' may be an alkyl group (particularly including a methyl group) or a phenyl group.
  • a is a number ranging from 1 to 3, preferably 1;
  • the resinous organosiloxane block X may contain a siloxane unit (M unit) represented by R B′′ 3 SiO 1/2 (R B′′ is an alkyl group or a phenyl group).
  • M unit may be (CH 3 ) 3 SiO 1/2 .
  • the resinous organosiloxane block X constituting component (A1) comprises the above M RA units, M Alk units, optionally M units and Q units, and M units and M RA units per mol of Q units and M Alk units are preferably in the range of 0.5 to 2.0 moles.
  • the M RA units that make up the resinous organosiloxane block X may be RA (CH 3 ) 2 SiO 1/2 and the M Alk units are (C2-C8 alkenyl)(CH 3 ) 2 SiO It may be 1/2 .
  • the amount of the MRA unit is in the range of 0.02 to 0.50 mol per 1 mol of the Q unit.
  • the chain organosiloxane block Y has a diorganopolysiloxane structure
  • R C in the above formula is a monovalent organic group
  • the functional group R A alkyl group, alkenyl group, aryl group, aralkyl group, and halogenated alkyl groups in which a portion of the hydrogen atoms are substituted with halogen atoms such as fluorine atoms, and industrially, it may be a methyl group or a phenyl group.
  • is a number of 2 or more, which means the number of repeating diorganosiloxy units, and ranges from 2 to 10,000, 5 to 5,000, 5 to 1,000, 5 to 500, 5 to 250, 10 to 200, and 10 to 150. can be the number of
  • the linking group between the silicon atoms constituting the resinous organosiloxane block X of the component (A1) and the chain organosiloxane block Y is not particularly limited, but resins having a structure linked by a siloxane bond or a silalkylene bond- It may be and is preferably a linear structure-containing organopolysiloxane block copolymer.
  • These linking groups can be introduced intermolecularly by a condensation reaction or a hydrosilylation reaction of the precursor compounds of block X and block Y. are preferably linked by siloxane bonds between silicon atoms.
  • the degree of siloxane polymerization of the block copolymer, which is the component (A1) according to the present invention, is not particularly limited.
  • the degree is preferably in the range of 10 to 10,000, more preferably in the range of 25 to 2,000.
  • an organopolysiloxane having a high degree of polymerization exceeding the above upper limit is used, coating of the curable organopolysiloxane composition may be difficult unless an organic solvent or diluent is used.
  • Component (A2) is an organosiloxane mixture obtained by mixing component (A2-1) and component (A2-2) below at a mass ratio of 1:99 to 80:20, and the mass ratio is 20:80 to 60:40.
  • component (A2-1) is a resinous organopolysiloxane having M RA units containing the functional group RA and M Alk units containing an alkenyl group
  • component (A2-2) has a chain length It is a component that gives a linear organopolysiloxane structure through an extension reaction.
  • Component (A2-1) is R A R B (3-a) SiO 1/2 (R A is a silicon atom - bonded functional group containing an acrylic group or a methacrylic group, and R B is a monovalent is an organic group, and a is a number in the range of 1 to 3), a siloxane unit (M RA unit), R B' 3 SiO 1/2 (R B' is a monovalent organic group excluding R A , at least one of R B' is an alkenyl group) and a siloxane unit (Q unit) represented by SiO 4/2 , a resin having an acrylic group or a methacrylic group It is an organopolysiloxane.
  • R A is a silicon atom - bonded functional group containing an acrylic group or a methacrylic group
  • R B is a monovalent is an organic group, and a is a number in the range of 1 to 3
  • M RA unit siloxane unit
  • R B' 3 SiO 1/2 R B
  • RA , RB , and RB ' are the same groups as described above, and a is the same number as described above.
  • the component (A2-1) contains the M RA units, M Alk units, Q units and optionally M units described above, and the sum of the amounts of the M units, M RA units and M Alk units per mole of Q units is in the range of 0.5 to 2.0 moles and the amount of MRA units per mole of Q units is in the range of 0.02 to 0.50 moles.
  • Component (A2-2) is a linear organopolysiloxane having two alkenyl groups in the molecule, and preferably has alkenyl groups only at both ends of the molecular chain. More specifically, a dialkylalkenylsiloxy group at both ends of the molecular chain, industrially a (C2-C8 alkenyl) dimethylsiloxy unit represented by (C2-C8 alkenyl)(CH 3 ) 2 SiO 1/2 A blocked polydimethylsiloxane is exemplified.
  • the diorganosiloxane polymerization degree of component (A2-2) is not particularly limited, but from the standpoint of coatability, The number may range from ⁇ 250, 10-200, 10-150.
  • linear organopolysiloxane having more than 2 alkenyl groups in the molecule becomes a three-dimensional cross-linking reaction point instead of a two-dimensional intermolecular chain elongation reaction.
  • the technical effect of the invention cannot be fully exhibited.
  • the (A3) component is an organosiloxane mixture obtained by mixing the following components (A3-1) to (A3-3).
  • component (A3-1) is a resinous organopolysiloxane having M RA units containing the above functional group RA
  • component (A3-2) is a resinous organopolysiloxane having M Alk units containing alkenyl groups. It is a polysiloxane
  • (A3-3) is a component that gives a linear organopolysiloxane structure through a chain extension reaction.
  • the mixing ratio of each component is not particularly limited, but (A3-1) + (A3-2): (A3-3) has a mass ratio in the range of 1:99 to 80:20, preferably 20: It may be in the range of 80 to 60:40, and the mass ratio of (A3-1) and (A3-2) may be in the range of 10:90 to 90:10.
  • Component (A3-1) is R A R B (3-a) SiO 1/2
  • R A is a silicon atom - bonded functional group containing an acrylic group or a methacrylic group
  • R B is a monovalent is an organic group
  • a is a number in the range of 1 to 3
  • MRA unit siloxane unit
  • Q unit siloxane unit
  • component (A3-1) contains the M RA units, Q units and optionally M units described above, and the sum of the amounts of M units and M RA units per mole of Q units is 0.5 to 2.0. moles and the amount of material of MRA units per mole of Q units is in the range of 0.02 to 0.50 moles.
  • Component (A3-2) is a siloxane represented by R B' 3 SiO 1/2 (R B ' is a monovalent organic group excluding R A , and at least one of R B' is an alkenyl group)
  • R B ' is a monovalent organic group excluding R A , and at least one of R B' is an alkenyl group
  • the component (A3-2) contains the M Alk units, Q units and optionally M units described above, and the sum of the amounts of the M units and M Alk units per mole of the Q units is 0.5 to 2.0. It may be an organopolysiloxane resin in the molar range.
  • Component (A3-3) is a straight-chain organopolysiloxane having two alkenyl groups in the molecule, and preferably has alkenyl groups only at both ends of the molecular chain. Such components are the same as those exemplified above for component (A2-2).
  • Component (B) is a non-reactive or low-reactive siloxane component used in combination with component (A), and is one of the characteristic features of the present invention.
  • the component (B) is an adhesive force adjuster including the initial adhesiveness of the pressure-sensitive adhesive layer formed by semi-curing the present composition by a heat-curing reaction, and the pressure-sensitive adhesive layer containing the component (B) exhibits high initial adhesion. While exhibiting strong adhesive strength, the photo-curing reaction associated with the irradiation of high-energy rays greatly changes the adhesive strength to the base material.
  • component (B) is a siloxane component that does not contain a carbon-carbon multiple bond in the molecule, and component (A) (its constituent component) and component (D), which will be described later, are functional groups R A or an alkenyl group. More specifically, component (B) is one or more siloxane components free of carbon-carbon multiple bonds selected from the following components (B1) to (B3).
  • Component (B1) is an MQ-type organopolysiloxane resin and is a component that improves the adhesion of the cured layer.
  • component (B1) is a siloxane represented by R 3 SiO 1/2 (wherein R independently represents a monovalent organic group containing no carbon-carbon multiple bond) in the molecule.
  • M unit an organo unit
  • Q unit siloxane unit
  • R is an alkyl group, an aryl group, an aralkyl group, and a monovalent hydrocarbon group selected from halogenated alkyl groups in which a portion of the hydrogen atoms are substituted with halogen atoms such as fluorine atoms.
  • M unit organo unit
  • Q unit siloxane unit
  • R is an alkyl group, an aryl group, an aralkyl group, and a monovalent hydrocarbon group selected from halogenated alkyl groups in which a portion of the hydrogen atoms are substituted with halogen atoms such as fluorine atoms.
  • the component (B1) may contain a small amount of hydroxyl groups (silanol groups) or alkoxy groups, and if necessary, these hydrolyzable groups can be hydrolyzed with a silylating agent such as trimethylsilane. The content of hydroxyl groups or hydrolyzable groups may be reduced.
  • Component (B2) is a linear or branched diorganopolysiloxane containing no carbon-carbon multiple bond in the molecule, and is a component that adjusts the adhesion of the cured layer.
  • Such component (B2) is a monovalent alkyl group selected from a hydroxyl group (silanol group), an alkyl group, an aryl group, an aralkyl group, and a halogenated alkyl group in which a portion of the hydrogen atoms are substituted by halogen atoms such as fluorine atoms.
  • component (B2) may be a diorganopolysiloxane having a relatively high degree of polymerization, and may be a diorganopolysiloxane having a number average molecular weight of 100,000 or more.
  • component (B2) may preferably be a gum-like diorganopolysiloxane having a viscosity at room temperature of 1,000,000 mPa ⁇ s or more and a plasticity.
  • has plasticity means the plasticity measured according to the method specified in JIS K6249 (25 ° C., 4.2 g spherical sample, thickness when 1 kgf load is applied for 3 minutes is read to 1/100 mm, and this value is multiplied by 100) can be measured.
  • the component (B2) is a raw rubber-like polydimethylsiloxane having a plasticity in the range of 50 to 200. It's okay.
  • Component (B3) is a condensation reaction product of components (B1) and (B2), and is particularly preferred as a component for adjusting the adhesive strength of the cured layer.
  • a component (B3) is the component (B1) or the component (B2) described above, and is obtained by condensation reaction of a component having a hydrolyzable functional group such as a silanol group in the molecule by a known method.
  • a condensation reaction product having a relatively high degree of polymerization is preferred, and a condensation reaction product of the above components (B1) and (B2), which has a number average molecular weight of 100,000 or more after condensation, is preferred.
  • Such a condensation reaction product having a high degree of polymerization and a high molecular weight can be easily obtained by subjecting components (B1) and (B2) having relatively large molecular weights as raw material components to a condensation reaction in the presence of a known condensation reaction catalyst. can get to
  • the component (B) is selected from the above components (B2) and (B3). It may contain one or more ingredients.
  • the semi-cured material containing these components can be adjusted in adhesive strength, and when the semi-cured material is cured by a photo-curing reaction accompanied by irradiation with high-energy rays, these components are added to the surface of the cured layer. A part of the adhesive bleeds out to form a smooth surface, and in addition to the decrease in adhesive strength due to the progress of the curing reaction, the releasability from the substrate may be remarkably improved.
  • the amount of the component (B) used can be appropriately designed in consideration of the desired initial adhesive strength and the peelability of the cured product after the photocuring reaction. , 1 to 50 parts by weight, 5 to 40 parts by weight, and 10 to 30 parts by weight per 100 parts by weight of component (A). Furthermore, as component (B), component (B1) and one or more selected from components (B2) and (B3) are preferably used in combination, and the mass ratio of the two is in the range of 50:50 to 95:5. can be This is because within such a range, in addition to a high initial adhesive strength and a large decrease in adhesive strength after photocuring reaction, the releasability from the substrate is also improved.
  • Component (C) is a photoradical polymerization initiator, and is a component that accelerates the photocuring reaction of the acrylic group or methacrylic group of the silicon-bonded functional group (R A ) in component (A) by irradiation with high-energy rays. .
  • the pressure-sensitive adhesive layer has a large adhesive strength to the substrate. to form an easily peelable cured product.
  • Radical photopolymerization initiators are roughly classified into photocleavage type and hydrogen abstraction type, but the photoradical polymerization initiator used in the composition of the present invention is arbitrarily selected from those known in the art. It can be selected and used, and is not limited to a specific one, but is preferably one that hardly inhibits the hydrosilylation reaction at a high temperature of 80° C. or higher.
  • photoradical polymerization initiators include 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropyl ⁇ -Ketol compounds such as piophenone and 1-hydroxycyclohexylphenyl ketone; )-phenyl]-2-morpholinopropane-1 and other acetophenone compounds; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyl dimethyl ketal; 2-naphthalenesulfonyl chloride aromatic sulfonyl chloride compounds such as; 1-phenone-1,1-propanedione-2-(o-ethoxycarbonyl) photoactive oxime compounds such as oxime; benzophenone, benzoylbenzoic acid, 3,3'-di
  • the amount of component (C) used depends on the content of the silicon atom-bonded functional group (R A ) derived from component (A), the desired change in adhesive strength of the cured product triggered by irradiation with high-energy rays, and the ease of peeling. Although it can be appropriately designed according to the requirements, it is preferably in an amount of 0.1 to 10 parts by mass, particularly preferably in an amount of 0.5 to 5 parts by mass, per 100 parts by mass of component (A).
  • (C') photosensitizer can also be used in combination with (C) a radical photopolymerization initiator.
  • the use of a sensitizer can increase the photon efficiency of the polymerization reaction, making longer wavelength light available for the polymerization reaction compared to using the photoinitiator alone. It is known to be particularly effective when the coating thickness is relatively thick or when relatively long wavelength LED light sources are used.
  • Sensitizers include anthracene compounds, phenothiazine compounds, perylene compounds, cyanine compounds, merocyanine compounds, coumarin compounds, benzylidene ketone compounds, (thio)xanthene or (thio)xanthone compounds such as isopropyl Thioxanthone, 2,4-diethylthioxanthone, squalium-based compounds, (thia)pyrylium-based compounds, porphyrin-based compounds, and the like are known, and any photosensitizer may be used in the curable organopolysiloxane composition of the present invention. It can be used for products and adhesive compositions. The amount used is arbitrary, but the mass ratio of the component (C') to the component (C) is in the range of 0 to 10, and when used, it is selected in the range of 0.01 to 5. is common.
  • composition according to the present invention [(D) alkenyl group-containing MQ type organopolysiloxane resin]
  • (D) an alkenyl group-containing MQ-type organopolysiloxane resin can be added independently of components (A) to (C).
  • Component (D) is a reactive component in the heat curing reaction and optionally a component that adjusts the adhesion to the substrate. It is possible to adjust the hardness and adhesion to the substrate.
  • component (D) contains one or more alkenyl groups in the molecule, and (a) R 3 SiO 1/2 (wherein R is independently and (b) siloxane units (Q units) represented by SiO 4/2 .
  • the molar ratio of M units to Q units is preferably between 0.5 and 2.0. If this molar ratio is less than 0.5, the adhesion of the cured product to the substrate may be reduced, and if it is greater than 2.0, the cohesive force of the substances constituting the adhesion layer will be reduced. is.
  • the above molar ratio can be easily measured by 29 Si nuclear magnetic resonance.
  • Component (D) may consist only of (a) M units and (b) Q units, but may be R 2 SiO 2/2 units (D units) and/or RSiO 3/2 units (T units). may include In the formula, each R independently represents a monovalent organic group.
  • the total content of (a) M units and (b) Q units in component (D) is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 100% by mass.
  • component (D) is a reactive MQ-type organopolysiloxane resin that is added independently of component (A)
  • the monovalent organic group (R) is not particularly limited, and the functional group R A is exemplified by monovalent hydrocarbon groups selected from alkyl groups, alkenyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups in which a portion of the hydrogen atoms are substituted with halogen atoms such as fluorine atoms. may be a methyl group or a phenyl group. However, at least one of all Rs in the molecule must be an alkenyl group.
  • the alkenyl group in the component (D) may be an alkenyl group having 2 to 8 carbon atoms (C2-C8 alkenyl), more preferably a vinyl group or a hexenyl group. including) or a phenyl group.
  • component (D) may contain hydrolyzable groups such as hydroxyl groups or alkoxy groups, and these hydrolyzable groups are hydrolyzed with a silylating agent such as trimethylsilane to form hydroxyl groups.
  • a silylating agent such as trimethylsilane to form hydroxyl groups.
  • it may be an organopolysiloxane resin with a reduced content of hydrolyzable groups.
  • component (D) is an optional component, it can be blended in an amount of 0.0 to 50 parts by mass per 100 parts by mass of component (A), and an amount of 0.5 to 35 parts by mass is used. A range of 1.0 to 20 parts by mass is particularly preferred.
  • Component (E) is an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, and functions as a cross-linking agent for the curable organopolysiloxane composition.
  • the alkenyl groups in components (A) and (D) react with each other in the presence of the hydrosilylation reaction catalyst (C) to form a semi-cured pressure-sensitive adhesive layer.
  • the adhesive layer has excellent initial adhesive strength to the substrate, it contains an unreacted photocurable silicon atom-bonded functional group (R A ), so it adheres by two-stage curing triggered by high-energy ray irradiation. The force is greatly reduced, exhibiting easy peelability.
  • the molecular structure of component (E) is not particularly limited, and cyclic organohydrogenpolysiloxane having at least 3 silicon-bonded hydrogen atoms in the molecule, linear, partially branched linear, branched linear, resin-like, and preferably linear, partially branched linear, and resin-like.
  • the viscosity of component (E) at 25°C is not limited, but is preferably in the range of 1 to 10,000 mPa ⁇ s, or in the range of 1 to 1,000 mPa ⁇ s. It may also be at least one selected from linear, branched, and resinous organohydrogenpolysiloxanes having at least three silicon-bonded hydrogen atoms in the molecule.
  • the component (E) may also be a mixture of two or more of the above organohydrogenpolysiloxanes.
  • the silicon atoms to which the silicon-bonded hydrogen atoms in component (E) are bonded are not limited, and examples thereof include silicon atoms at molecular chain terminals and/or other silicon atoms.
  • Examples of silicon-bonded organic groups in the component (E) include monovalent hydrocarbon groups having 1 to 12 carbon atoms and having no aliphatic unsaturated bonds.
  • alkyl groups having 1 to 12 carbon atoms such as groups, propyl groups, butyl groups, pentyl groups, hexyl groups and octyl groups; aryl groups having 6 to 12 carbon atoms such as phenyl groups, tolyl groups and xylyl groups; benzyl groups and phenethyl aralkyl groups having 7 to 12 carbon atoms such as groups; halogen-substituted alkyl groups having 1 to 12 carbon atoms such as 3-chloropropyl group and 3,3,3-trifluoropropyl group; , is a phenyl group.
  • component (E) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris(dimethylhydrogensiloxy)methylsilane, tris(dimethylhydrogensiloxy) gensiloxy)phenylsilane, 1-glycidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-glycidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-glycidoxypropyl-5-trimethoxysilylethyl-1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsiloxy-blocked methylhydrogenpolysiloxane at both molecular chain ends, trimethylsiloxy-blocked at both molecular chain ends Dimethylsiloxane/methylhydrogensiloxane copolymer, dimethylpolysiloxane with dimethyl
  • cyclic organohydrogenpolysiloxane for example, the following formula: [(R 3 HSiO) m3 (R 3 2 SiO) m4 ] is represented by Here, m3+m4 is a number in the range of 3 to 20, m3 is a number of 3 or more, and m4 is a number of 0 or more.
  • R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms excluding an alkenyl group, examples of which are the same as those for R 2 , preferably a methyl group or a phenyl group.
  • the straight-chain or branched-chain organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in the molecule has at least two silicon-bonded hydrogen atoms in the side chain portion and the molecular chain end is an organohydrogenpolysiloxane such as a polyorganohydrogensiloxane or an organohydrogensiloxane-diorganosiloxane copolymer blocked with a trialkylsiloxy group, an aryldialkylsiloxy group, or the like.
  • the degree of siloxane polymerization is in the range of 4-500, preferably in the range of 5-200.
  • the amount of component (E) used can be appropriately selected according to the desired adhesive strength and curing characteristics. From the viewpoint of sexuality, it is preferably in the range of 0.1 to 5 parts by mass, more preferably 0.5 to 4.5 parts by mass, and 1.0 to 3.5 parts by mass with respect to 100 parts by mass of component (A). A range of parts is particularly preferred. If the amount of component (E) used is less than the above lower limit, the cross-linking agent will be insufficient, and the heat-curing properties of the composition may be insufficient. The change in adhesive strength becomes small, and the object of the present invention may not be achieved.
  • the amount of component (E) to be used is the number of moles of silicon-bonded hydrogen atoms in component (E) relative to the number of moles of aliphatic unsaturated carbon-carbon bonds such as alkenyl groups in the composition.
  • number (hereinafter, “SiH/Vi ratio”) is preferably in the range of 0.1 to 5.0, more preferably in the range of 0.1 to 2.0, still more preferably 0.1 A range of ⁇ 0.75 is particularly preferred. Within this range, the overall crosslink density can be appropriately adjusted, and the desired properties of storage elastic modulus and adhesion of the cured product can be exhibited. On the other hand, if the SiH/Vi ratio is less than the lower limit, it may cause adhesive residue or the like when the cured product is adhered to the substrate. The adhesion properties of the cured product may become unstable.
  • Component (F) is a hydrosilylation reaction catalyst, and by heating or the like promotes the hydrosilylation reaction of component (E) with aliphatic unsaturated carbon-carbon bonds such as alkenyl groups in component (A) and other optional components. It is a component that
  • hydrosilylation reaction catalysts examples include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Platinum-based catalysts are preferred, and platinum-alkenylsiloxane complexes are particularly preferred, since they can significantly accelerate the curing of the present composition.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, alkenylsiloxanes in which some of the methyl groups of these alkenylsiloxanes are substituted with groups selected from the group consisting of nitriles, amides, dioxolanes, and sulfolanes, ethyl groups, phenyl groups, etc.; vinyls of these alkenylsiloxanes; Alkenylsiloxanes substituted with allyl groups, hexenyl groups and the like are exemplified.
  • these hydrosilylation reaction catalysts are catalysts dispersed or encapsulated in thermoplastic resins such as silicone resins, polycarbonate resins and acrylic resins.
  • thermoplastic resins such as silicone resins, polycarbonate resins and acrylic resins.
  • Thermoplastic resin fine particles containing a hydrosilylation reaction catalyst particularly thermoplastic resin fine particles containing a platinum-containing hydrosilylation reaction catalyst may be used.
  • non-platinum metal catalysts such as iron, ruthenium, and iron/cobalt may be used.
  • the content of the hydrosilylation reaction catalyst is not particularly limited, but it is within the range where the amount of platinum-based metal is in the range of 0.1 to 200 pm with respect to the total amount of solids in the composition. , 0.1 to 150 ppm, 0.1 to 100 ppm, and may range from 0.1 to 50 ppm.
  • the platinum-based metal is a Group VIII metal element consisting of platinum, rhodium, palladium, ruthenium, and iridium. is preferred.
  • the solid content refers to the components that form the cured layer when the curable organopolysiloxane composition according to the present invention undergoes a curing reaction (mainly the main agent, adhesion-imparting component, cross-linking agent, catalyst and other non-volatile components ) and does not contain volatile components such as solvents that volatilize during heat curing.
  • the content of the platinum-based metal in the curable organopolysiloxane composition according to the present invention is 50 ppm or less (45 ppm or less, 35 ppm or less, 30 ppm or less, 25 ppm or less, or 20 ppm or less), after curing, heating, ultraviolet rays, etc. In the case of exposure to high-energy rays of , discoloration and coloring of the transparent adhesive layer can be suppressed in some cases.
  • the content of the platinum-based metal is 0.1 ppm or more, and if it is less than the lower limit, it may cause poor curing.
  • the curable organopolysiloxane compositions of the present invention may optionally contain a cure retardant.
  • the curing retarder suppresses the cross-linking reaction between the aliphatic unsaturated carbon-carbon bond-containing groups and silicon-bonded hydrogen atoms in the composition, extends the pot life at room temperature, and improves the storage stability. It is blended in. Therefore, it is practically an essential component for the curable organopolysiloxane composition of the present invention.
  • curing retarders are exemplified by acetylene compounds, enyne compounds, organic nitrogen compounds, organic phosphorus compounds, oxime compounds and phosphorus compounds.
  • the phosphorus-containing hydrosilylation reaction retarder is at least one selected from the group consisting of phosphine-based compounds, phosphoric acid-based compounds, phosphonic acid-based compounds, phosphine oxide-based compounds, phosphorous acid-based compounds, and phosphonous acid-based compounds.
  • Examples include components described in JP-A-2007-308542 such as 1,3-bis(diphenylphosphino)propane.
  • the curable organopolysiloxane composition of the present invention exhibits a viscosity increase of 1.5 times or less after 8 hours at room temperature after preparation of the composition, and can be cured at 80 to 200°C. is preferred. Suppression of thickening is important from the standpoint of handling workability, pot life, and properties after curing. Because we can. Incidentally, such a composition can be realized by selecting a suitable combination and blending amount of each of the above components, a hydrosilylation catalyst, and a curing retarder.
  • any release modifier may be added to the composition of the present invention in addition to the components (A) to (G) (especially component (B2)).
  • component (B2) By using the component, it is possible to adjust the viscosity necessary for coating the curable organopolysiloxane composition, the adhesiveness of the cured or semi-cured product, the hardness, the crosslink density, etc.
  • the cured product It may be possible to improve peeling properties and the like.
  • Such release modifiers are not particularly limited in type and amount as long as they have a certain degree of compatibility with other components and can improve the release properties of the cured product.
  • fluorosilicone having a, MQ type silicone resin optionally having a lower or higher alkenyl group, ⁇ , ⁇ -diolefin compound, medium to long chain olefin compound having an alkenyl group only at one end, optionally
  • a known release modifier selected from linear organopolysiloxanes, which may have alkenyl groups, or mixtures thereof, may be added within the required release force adjustment range.
  • a linear organopolysiloxane optionally having an alkenyl group can be added as a release modifier independently of component (B2) and the like.
  • a release modifier has a viscosity in the range of 1.5 to 1,000,000 mPa ⁇ s at 25° C., and is a trimethylsiloxy- or vinyldimethylsiloxy-terminated polydimethylsiloxane.
  • polyphenylmethylsiloxane poly(dimethylsiloxane-diphenylsiloxane) copolymer, poly(dimethylsiloxane-trifluoropropylmethylsiloxane) copolymer, poly(dimethylsiloxane-nonafluorohexylmethylsiloxane) copolymer, as described above. , but not limited to these ingredients
  • the composition according to the present invention can be designed as a low-solvent or solvent-free composition by selecting components having relatively low viscosity. It's okay.
  • the organic solvent may be used as a diluent for dispersing or dissolving each component in order to improve the coatability and wettability of the composition on the substrate, and is inevitably included as a solvent accompanying other raw material components. It may be a component that can be
  • any organic solvent that can dissolve all or part of the constituents in the composition can be used.
  • the type is not particularly limited, and those having a boiling point of 80° C. or higher and 200° C. or lower are preferably used.
  • the types thereof may be non-halogen solvents or halogen solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, ester solvents, alcohol solvents, ether solvents, chlorinated aliphatic hydrocarbon solvents.
  • Hydrogen-based solvents, solvent volatile oils, and the like can be mentioned, and two or more of them may be combined according to coatability, wettability, and the like.
  • the content of the organic solvent is preferably from 0 to less than 60% by mass, less than 50% by mass, and substantially within the range of from 0 to 30% by mass with respect to 100 parts by mass of the entire composition.
  • the composition according to the present invention can be easily designed so that the concentration of solids that form solids by the curing reaction is in the range of 30 to 100% by mass of the entire composition.
  • the curable organopolysiloxane composition according to the present invention can optionally contain components other than the above components within a range that does not impair the technical effects of the present invention.
  • adhesion promoter such as polydimethyldiphenylsiloxane other than component (B); phenol, quinone, amine, phosphorus, phosphite, sulfur, or thioether Antioxidants; light stabilizers such as triazoles or benzophenones; flame retardants such as phosphates, halogens, phosphorus, or antimony; cationic surfactants, anionic surfactants, or nonionic
  • pigments, dyes, inorganic fine particles may optionally be blended.
  • the method for preparing the curable organopolysiloxane composition of the present invention is not particularly limited, and is carried out by homogeneously mixing each component.
  • An organic solvent may be added as necessary, and a known stirrer or kneader may be used to mix and prepare.
  • the present composition exhibits hydrosilylation reactivity when heated, it is preferable to mix under temperature conditions of less than 100°C, preferably less than 50°C.
  • the curable organopolysiloxane composition according to the present invention contains the component (A), it has both heat curing properties and photo-curing properties when irradiated with high-energy rays.
  • the semi-cured product functions as an adhesive layer with excellent initial adhesive strength, and by irradiating it with high-energy rays, the adhesive strength of the adhesive layer to the substrate is greatly reduced, and the cured product is easy to peel. can be easily removed from the substrate. How to use it will be explained below.
  • the curable organopolysiloxane composition according to the present invention forms a coating film by coating it on a substrate, and is applied under temperature conditions of 80 to 200°C, preferably 90 to 150°C.
  • a hydrosilylation reaction gives a semi-cured product that functions as an adhesive layer with excellent initial adhesive strength.
  • the heating time required for curing can be appropriately selected according to the thickness of the pressure-sensitive adhesive layer and the amount of catalyst used, but is generally in the range of 0.5 to 90 minutes. Since the adhesive layer obtained by heat curing using the composition according to the present invention contains unreacted silicon atom-bonded functional groups (R A ), further photocuring reaction is triggered by high-energy beam irradiation. maintain sexuality.
  • Coating methods include gravure coating, offset coating, offset gravure, roll coating, reverse roll coating, air knife coating, curtain coating, and comma coating.
  • the amount of coating can be designed to have a desired thickness according to the application such as a display device. Well, it may be from 10 to 800 ⁇ m, but it is not limited to these.
  • the semi-cured product before the photocuring reaction has sufficient initial adhesive strength. It is possible to design an adhesive layer having an adhesive strength of 30 gf/25 mm or more, preferably in the range of 30 to 2000 gf/25 mm, as measured at a tensile speed of 300 mm/min.
  • the above thickness (75 ⁇ m) is the thickness of the cured layer itself, which serves as a reference for objectively defining the adhesive strength of the cured layer according to the present invention. Needless to say, the thickness is not limited to 75 ⁇ m, and any thickness can be used as a cured layer or pressure-sensitive adhesive layer.
  • the adhesive layer which is a semi-cured product obtained by heat curing, undergoes a further photocuring reaction triggered by the irradiation of high-energy rays, and its adhesive strength is greatly reduced, and it is easy to peel, and it is easy to peel off from the base material.
  • a hard cured product that leaves no adhesive residue is formed and can be easily peeled off from the substrate.
  • the adhesive strength to the base material is reduced by photocuring due to irradiation of high energy rays. It is reduced by 10% or more before and after the reaction, preferably by 30% or more, and particularly preferably by 50% or more.
  • Such changes in adhesive force can be quantitatively measured by the above-described adhesive force measurement test using a SUS plate or the like.
  • the present invention realizes a strong initial adhesive force as described above by using the components (A) and (B) (preferably, the combination of components (B1) and (B2) or (B3)). And, before and after the photo-curing reaction triggered by the irradiation of high-energy rays, it can be designed so that the adhesive force to the substrate is reduced in the range of 30 to 99%, and after the photo-curing reaction, the substrate It has the distinct advantage that it can be easily peeled from the material.
  • High-energy rays used for the photocuring reaction include ultraviolet rays, electron beams, radiation, and the like, and ultraviolet rays are preferred from the standpoint of practicality.
  • High-pressure mercury lamps, medium-pressure mercury lamps, Xe—Hg lamps, deep UV lamps, and the like are suitable as the ultraviolet light source, and ultraviolet irradiation with a wavelength of 280 to 400 nm, preferably 300 to 400 nm, is preferred.
  • Light sources with emission bands may also be used.
  • the irradiation dose of high-energy rays can be appropriately designed .
  • a favorable change in the adhesive strength of the adhesive layer according to the present invention is realized with the irradiation of high-energy rays as a trigger.
  • Irradiation with high-energy rays may be performed with a substrate interposed therebetween as long as the substrate carrying the pressure-sensitive adhesive layer according to the present invention does not absorb electromagnetic waves in the above wavelength range. That is, if a certain amount of irradiation can be realized, high-energy rays may be irradiated through a base material or a cover material such as a protective film.
  • the curable organopolysiloxane composition according to the present invention and the pressure-sensitive adhesive layer (including semi-cured products and cured products) obtained by curing the organopolysiloxane pressure-sensitive adhesive composition are substantially transparent, translucent or opaque. and the transparency can be designed according to the application of the pressure-sensitive adhesive layer.
  • the transmittance of light at a wavelength of 450 nm of the adhesive layer composed of a cured layer with a thickness of 100 ⁇ m is 80% or more when the value of air is 100%, and is preferably is 90% or more, and may be designed to be 95% or more.
  • the adhesive layer may be translucent or opaque. Filler components or additives that impair the
  • the pressure-sensitive adhesive layer according to the present invention is subjected to surface treatment such as primer treatment, corona treatment, etching treatment, plasma treatment, etc. on the surface of the pressure-sensitive adhesive layer or base material in order to improve the adhesion to the adherend.
  • surface treatment such as primer treatment, corona treatment, etching treatment, plasma treatment, etc.
  • the adhesion layer of the present invention is excellent in adhesion to substrates such as display devices. Also, by omitting these steps, higher production efficiency may be achieved.
  • the curable organopolysiloxane composition according to the present invention is applied to a release liner and then heated under the temperature conditions described above to semi-harden due to a condensation reaction. or sheet-like substrate (hereinafter referred to as "film-like substrate"), or after coating on the film-like substrate, curing by heating under the above temperature conditions, and An adhesive layer can be formed on the surface of the material.
  • this pressure-sensitive adhesive layer has excellent initial adhesiveness and contains a photocurable functional group derived from the component (A). Adhesive properties change to releasability.
  • a cured layer obtained by curing the organopolysiloxane composition of the present invention on these film-like substrates, particularly laminates provided with a film-like cured layer, can be used as adhesive tapes, protective films intended for attachment and detachment, and bandages. , cold supports, transfer films, labels, emblems and decorative or instructional markings.
  • the cured layer formed by curing the organopolysiloxane composition of the present invention may be used in the construction of automobile parts, toys, electronic circuits, or keyboards.
  • cured layers, particularly film-like cling layers, formed by curing the organopolysiloxane compositions of the present invention may be used to protect, construct and utilize laminated touch screens or flat panel displays.
  • substrate types include paperboard, cardboard, clay-coated paper, polyolefin-laminated paper, especially polyethylene-laminated paper, synthetic resin film/sheet, natural fiber cloth, synthetic fiber cloth, artificial leather cloth, and metal foil.
  • synthetic resin films and sheets are preferred, and examples of synthetic resins include polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyethylene terephthalate, cyclopolyolefin, and nylon.
  • heat-resistant synthetic resin films such as polyimide, polyetheretherketone, polyethylenenaphthalate (PEN), liquid crystal polyarylate, polyamideimide, and polyethersulfone are suitable.
  • transparent substrates specifically transparent materials such as polypropylene, polystyrene, polyvinylidene chloride, polycarbonate, polyethylene terephthalate, and PEN, are suitable.
  • the base material is preferably film-like or sheet-like.
  • the thickness is not particularly limited, and can be designed to have a desired thickness depending on the application.
  • a support film that has been subjected to primer treatment, corona treatment, etching treatment, or plasma treatment may be used.
  • the surface opposite to the cured layer/cured adhesion layer of the film-like substrate is surface-treated such as anti-scratch, anti-fouling, anti-fingerprint, anti-glare, anti-reflection, and anti-static treatment. good too.
  • the pressure-sensitive adhesive layer according to the present invention may be a single layer or a multiple layer formed by laminating two or more pressure-sensitive adhesive layers depending on the required properties.
  • the multi-layered adhesive layer may be formed by laminating films prepared one by one, or the step of applying and curing the curable silicone composition on a film base material having a release layer may be performed multiple times. good.
  • the pressure-sensitive adhesive layer according to the present invention may be given a role as a functional layer selected from a dielectric layer, a conductive layer, a heat dissipation layer, an insulating layer, a reinforcing layer, etc., in addition to bonding or adhesion between members.
  • the pressure-sensitive adhesive layer which is a semi-cured product obtained by heating and curing the curable organopolysiloxane according to the present invention, has excellent initial adhesiveness and contains a photocurable functional group derived from the component (A). Therefore, with high-energy beam irradiation as a trigger, the adhesive force decreases and the adhesive characteristics change to make it easy to peel off. Since a cured adhesion layer that can be removed very easily is formed, it is extremely useful for temporary fixing of a functional layer or a functional layer that is supposed to be attached and detached.
  • the pressure-sensitive adhesive layer has release coating ability. It is preferably treated as a laminate film adhered in a releasable state on a film substrate having a release layer.
  • the release layer is sometimes called a release liner, separator, release layer, or release coating layer, and is preferably a release coating such as a silicone-based release agent, a fluorine-based release agent, an alkyd-based release agent, or a fluorosilicone-based release agent.
  • It may be a release layer having an ability, a base material having fine physical irregularities formed on the surface of the base material, or a base material itself that is difficult to adhere to the adhesion layer of the present invention.
  • a release layer obtained by curing a fluorosilicone release agent as the release layer.
  • the pressure-sensitive adhesive layer according to the present invention has the above-described characteristic pressure-sensitive adhesive properties and can realize transparency and low haze, it can be used as an elastic adhesion layer or a temporary fixing layer in various electronic devices or It is useful as a protective film during the processing of electrical device members and semiconductor wafers. Similarly, it is also useful as an electronic material, display device member or transducer member (including for sensors, speakers, actuators, and generators), and the preferred use of the cured product is an electronic component or display device member is.
  • the cured product according to the present invention may be transparent or opaque. It is particularly useful for a so-called touch panel application that can operate a device, especially an electronic device, by touching it with a device such as a touch panel.
  • the cured product layer of the present invention is not required to be transparent, and is applicable to film-like or sheet-like members used in sensors, speakers, actuators, etc., where the adhesion layer itself is required to have a certain degree of stretchability or flexibility. may
  • Articles containing a cured layer obtained by curing the curable organopolysiloxane composition of the present invention may be adhesive tapes, particularly protective tapes intended for attachment and detachment. It is characterized by comprising a sheet-like member made of a fiber product such as woven fabric, non-woven fabric, paper, etc., and the adhesion layer described above.
  • the types of such adhesive tapes are not particularly limited, and include insulating tapes, heat-resistant tapes, solder masking tapes, mica tape binders, temporary fixing tapes (particularly including temporary fixing tapes for silicone rubber parts, etc.), and splicing tapes. (particularly including splicing tapes for silicone release papers).
  • the cured product obtained by curing the curable organopolysiloxane composition of the present invention, particularly the cured product layer has a strong initial adhesive strength of 30 gf/25 mm or more as measured by a predetermined method, and (A) Since it contains a photocurable functional group derived from the component, the adhesive strength to the substrate decreases in the range of 30 to 99% with the irradiation of high energy rays as a trigger, and the adhesive property is easy to peel. Since it changes, the adhesion layer used for temporary fixing and the like can be attached relatively firmly to the substrate, and the appearance is stable, and after use, it can be easily removed from the substrate surface by irradiation with light such as ultraviolet rays.
  • display devices such as CRT displays, liquid crystal displays, plasma displays, organic EL displays, inorganic EL displays, LED displays, surface electrolytic displays (SED), and field emission displays (FED), and touch panels using these, which will be described later. It is extremely useful as a temporary fixing adhesive used during the production of.
  • a laminate having a cured adhesion layer formed by curing the curable silicone composition may be formed on the above-described film-like substrate.
  • a release layer may be provided.
  • the sheet-like substrate has at least one release layer, and the release layer is in contact with the cured adhesion layer. Thereby, the cured adhesion layer can be easily peeled off from the sheet-like substrate.
  • the release agent contained in the release layer is not particularly limited, and includes the same release agents as described above.
  • the above-mentioned laminate may be able to handle the adhesive layer separated from the film-like substrate alone, or may have two film-like substrates.
  • film substrate a first release layer formed on the film-like substrate; It may comprise a pressure-sensitive adhesive layer layer formed by applying the curable organopolysiloxane composition on the release layer and heat-curing it, and a second release layer laminated on the adhesion layer. .
  • the laminate of the above form forms an adhesion layer by, for example, applying the above curable organopolysiloxane composition onto one of the release layers formed on the film-like substrate and curing the composition. Then, another release layer may be laminated on the adhesion layer.
  • the laminate having the above configuration can be obtained, for example, by sandwiching the above curable silicone composition between the first film-like substrate and the second film-like substrate, heating the composition, and pressing or rolling it to a certain thickness. It may be produced by curing the composition after molding.
  • the first sheet base material may have a first release layer, or the first sheet base material itself may have releasability.
  • the second sheet substrate may have a second release layer, or the second sheet substrate itself may have peelability.
  • the cured adhesive layer is the first release layer and/or the second release layer. It is preferred to contact the layer.
  • the sheet substrate having releasability examples include a sheet substrate made of a material having releasability such as a fluororesin film, or a material having no or low releasability such as a polyolefin film and a material such as silicone or fluororesin.
  • a sheet substrate made of one to which a release agent is added may be mentioned.
  • examples of sheet substrates having a release layer include polyolefin films coated with a release agent such as silicone and fluororesin.
  • the laminate can be used, for example, by peeling off the adhesive layer from the film-like substrate after applying the cured adhesive layer to the adherend.
  • the thickness of the adhesion layer (adhesive layer) obtained by heating and curing the curable organopolysiloxane composition according to the present invention is preferably 5 to 10000 ⁇ m, especially 10 ⁇ m or more or 8000 ⁇ m or less, especially 20 ⁇ m or more or 5000 ⁇ m is particularly preferred.
  • the adhesion layer (adhesive layer) obtained by heat-curing the curable organopolysiloxane composition of the present invention can be used for protection, construction and utilization of laminated touch screens or flat panel displays.
  • adhesion layers eg, silicone PSA, silicone adhesive, and silicone sealant
  • the curable organopolysiloxane composition according to the present invention and the pressure-sensitive adhesive layer obtained by semi-curing/curing it are not particularly limited in use other than those disclosed above.
  • a film having objects can be used for various display devices for displaying characters, symbols, and images.
  • the surface shape of such a display device may be a curved or curved shape instead of a flat surface, and in addition to various flat panel displays (FPD), curved displays used in automobiles (including electric vehicles), aircraft, etc.
  • FPD flat panel displays
  • curved displays used in automobiles (including electric vehicles), aircraft, etc.
  • a curved transmissive screen is exemplified.
  • these display devices may be provided with a touch panel function that enables input operations by touching icons, notification displays, and operation buttons for executing functions or programs on the screen or display. .
  • the cured product obtained by curing the composition has excellent adhesion to the substrate and viscoelastic properties, so it can be used as a member for transducers such as membranes for speakers (sensors, speakers, actuators, and generators. ), and furthermore, it can be used as a sealing layer or an adhesion layer for use in secondary batteries, fuel cells, or solar cell modules.
  • the average structure is the formula: ( Me3SiO1 /2 ) 0.206 (Me2ViSiO1 /2 ) 0.013 ( Me2RASiO1 /2 ) 0.017 (Me2SiO ) 0.50 ( SiO2 ) 0.24 (SiO(OH)) 0.03 692 g of a resin-linear structure-containing organopolysiloxane block copolymer solution having methacrylic functional groups represented by were obtained.
  • Table 1 shows the adhesive strength (gf/25 mm) measured at a tensile speed of 300 mm/min using the 180° peeling test method according to JIS Z 0237 to the SUS plate as "initial adhesive strength".
  • ultraviolet rays with a wavelength of 365 nm were applied from the PET surface side so that the ultraviolet irradiation amount (illuminance) was 2,000 mJ / cm as an integrated light amount. was irradiated, and the adhesive strength (gf/25 mm) of the test piece after ultraviolet irradiation was measured in the same manner as described above. * The adhesive strength did not decrease, and the adhesive strength increased due to UV irradiation.
  • Comparative Example 1 in which the component (B) was not used in combination, sufficient initial adhesive strength could not be achieved, and easy peelability could not be achieved.
  • Comparative Example 2 which does not contain the component (A), the adhesive strength is greatly increased by irradiation with ultraviolet rays, and easy peelability cannot be achieved at all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題]仮固定等の工程において強い初期粘着力を有し、その後工程では、容易に基材から剥離可能な硬化性オルガノポリシロキサン組成物およびその使用方法を提供する。 [解決手段](A)特定の(メタ)アクリル基を含有するケイ素原子結合官能基(R)、および、アルケニル基を含有する樹脂状オルガノシロキサン構造因子と鎖状オルガノポリシロキサン構造因子を含むオルガノシロキサン成分、(B)分子内に炭素―炭素多重結合を含有しないシロキサン成分、(C)光ラジカル重合開始剤を含有する、硬化性オルガノポリシロキサン組成物、およびその使用。

Description

硬化性オルガノポリシロキサン組成物およびそれを含む粘着剤組成物
本発明は、(メタ)アクリル官能基およびその他の脂肪族不飽和炭素-炭素結合含有基を含むシロキサン成分(コポリマーまたは混合物であってよい)を主剤とし、加熱硬化反応により比較的強い初期接着力を有する粘着層を与え、かつ、加熱硬化反応の後に光硬化反応を行うことにより、光硬化反応の前後で粘着剤の基材に対する粘着力が変化することを特徴とする硬化性オルガノポリシロキサン組成物、それを含むオルガノポリシロキサン粘着剤組成物、およびその使用方法に関する。なお、本発明において、粘着剤には、いわゆる感圧接着剤(=PSA)が含まれる。
オルガノポリシロキサン粘着剤組成物は、アクリル系やゴム系の感圧接着剤組成物と比較して、電気絶縁性、耐熱性、耐寒性、各種被着体に対する粘着性、必要に応じて透明性に優れるため、半導体ウェハ、スマートフォンやタブレット型PCなどの電子・電気デバイスやディスプレイ等の表示装置の製造時に広く利用されている。特に、近年、半導体ウェハの加工、電子・電気デバイスやディスプレイの組み立て工程において、比較的弱い接着力で部材や保護フィルムを仮固定し、工程の進行に応じて接着剤から仮固定した部材等を剥離して工程を進めるため、従来のオルガノポリシロキサン粘着剤組成物に比べて、微粘着性の粘着剤を形成する組成物が求められている。
特に、近年、半導体ウェハの加工等において、その裏面を研削する工程を経て、そのダイシング/ピックアップ/マウント工程において、フィルムからなる基材上に粘着剤が塗布されてなる粘着シートが用いられているが、これらの工程においては粘着力が必要とされる場面と、易剥離性が求められる場面が分かれている。すなわち、これらの工程のうち、半導体ウェハの裏面研削工程においては、半導体ウェハのパターン面を保護するために、粘着シートは剥がれることなく十分に半導体ウェハに接着していることが要求される。また、研削後は、半導体ウェハより容易に剥離できることが要求される。同様に、半導体ウェハのダイシング工程においては、切断分離した素子小片が粘着シートから剥がれ落ちないように高粘着性が要求される。一方、ピックアップ工程においては、切断分離した素子小片が粘着シートから容易に剥離されなくてはならない。すなわち、粘着シートには低粘着性が要求される。
しかしながら、固定や保護を目的とする粘着力と、部材の易剥離性はトレードオフの関係にあり、微粘着性の粘着剤を使用すると、仮固定等で粘着力が求められる工程においては粘着力が不十分で工程不良の原因となる場合がある。他方、粘着力が高い場合、後工程における剥離が困難になったり、凝集層の破壊による糊残りによる工程不良の問題を生じたりする場合がある。このため、仮固定等の工程において必要十分な粘着力を有し、かつ、その後工程では、極めて容易に基材から剥離可能な粘着剤が求められている。
他方、フィルム材料、電極材料などの分野において、活性エネルギー線硬化型再剥離用粘着剤が提案されている(例えば、特許文献1~3)。これらの粘着剤は、アクリル系共重合体またはポリウレタン系共重合体を使用することで、活性エネルギー線照射前後で粘着性を大きく変化させることができ、活性エネルギー線照射前は高粘着性を発現でき、活性エネルギー線照射後は高剥離性を発現させることができるが、これらの文献に記載の粘着剤は、有機系の分子骨格を有するため、加工時の基材保護を目的とする用途において、特に耐熱性および耐久性において改善の余地を残している。
他方、特許文献4には、(メタ)アクリル官能基を含むオルガノポリシロキサン化合物を含み、白金系触媒と光開始剤を含み、光重合反応と付加反応による硬化反応が可能であり、耐熱性、耐変色性および低タック性に優れるオルガノポリシロキサン組成物およびその硬化物からなる封止剤が提案されている。
しかしながら、これらの文献には、(メタ)アクリル官能基とアルケニル基等を含むシロキサン成分(特に、レジン―リニア構造含有オルガノポリシロキサンブロックコポリマーやシロキサン混合物)は具体的に開示されておらず、特に、そのようなシロキサン成分を含む粘着剤組成物およびその硬化に関する特徴(特に二段階の硬化性や粘着力の変化)については何ら記載も示唆もされていない。
これに対して、上記課題を解決すべく、本件出願人らは、加熱硬化性および光硬化性を併有する、(メタ)アクリル官能基とアルケニル基等を含む共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物を提案している(特許文献5および特許文献6)。当該組成物は、半硬化物である粘着剤層を加熱硬化反応により形成させ、その後に光硬化反応を行って完全に硬化することにより、光硬化反応の前後で粘着剤層の基材に対する粘着力が顕著に減少するものであるが、その初期接着力が必ずしも高くないため、更なる改善の余地を残していた。
特開2012-012545号公報 特開2012-136678号公報 特開2013-166877号公報 特開2013-203794号公報 日本国特許出願2021-34958号(出願時未公開) 日本国特許出願2021-34959号(出願時未公開)
本発明は上記課題を解決すべくなされたものであり、比較的強い初期粘着力を有し、かつ、その後工程では、極めて容易に基材から剥離可能となる粘着剤層を与える、硬化性オルガノポリシロキサン組成物、それを含んでなるオルガノポリシロキサン粘着剤組成物およびオルガノポリシロキサン粘着剤組成物の使用方法を提供することを目的とする。
本発明者らは上記課題について鋭意検討した結果、本発明に到達した。すなわち、本発明の課題は、主剤である、特定のアクリル基またはメタクリル基を含有するケイ素原子結合官能基、および、アルケニル基等の脂肪族不飽和炭素-炭素結合を少なくとも1個ずつ含有するケイ素原子結合官能基を含有し、かつ、樹脂状オルガノポリシロキサン構造および直鎖状シロキサン構造を有するシロキサン成分(レジン―リニア構造含有オルガノポリシロキサンブロックコポリマーまたは異なるオルガノシロキサン混合物であってよい)、接着付与成分である分子内に炭素―炭素多重結合を含有しないシロキサン成分および光ラジカル重合開始剤を含む硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン粘着剤組成物により達成されうる。
本発明に係る硬化性オルガノポリシロキサン組成物は、加熱硬化性および光硬化性を併有し、当該組成物を加熱硬化反応により硬化させてなる半硬化物である粘着剤層は、30gf/25mm以上の比較的強い初期接着力を有し、かつ、その後に光硬化反応を行って完全に硬化することにより、光硬化反応の前後で粘着剤層の基材に対する粘着力が顕著に減少する。これにより、本発明に係る粘着剤層は、加熱硬化後には必要十分な粘着力を有し、かつ、その後に高エネルギー線を照射して光硬化させることで、粘着力を減少させ、易剥離性を実現可能である。
本発明により、加熱硬化性および光硬化性を併有し、加熱硬化後の半硬化物は30g/25mm以上の比較的強い初期接着力を有し、かつ、光硬化反応後の硬化物は、極めて容易に基材から剥離可能な性質を有する、硬化性オルガノポリシロキサン組成物、それを含むオルガノポリシロキサン粘着剤、およびその使用方法を提供することができる。
特に、本発明に係る硬化性オルガノポリシロキサン組成物は、塗工可能な粘度を有し、硬化性に優れ、硬化反応により、基材に対する良好な密着性を有し、透明性に優れる硬化物(特に、硬化物フィルム)を与えることができる。さらに、本発明により、光硬化反応の前後で粘着力が変化するシリコーン系の粘着剤層/密着層を実現することができ、広汎な用途における保護部材としての使用およびそれらを備えた機器または装置を含む製造方法および保護方法を提供することができる。
本発明に係る硬化性オルガノポリシロキサン組成物は、
(A)特定の1種類以上のケイ素原子結合(メタ)アクリル基およびアルケニル基等を有し、かつ、同成分中に樹脂状オルガノポリシロキサン構造および直鎖状シロキサン構造を有するオルガノシロキサン成分((A1)レジン―リニア構造含有オルガノポリシロキサンブロックコポリマーおよび(A2/A3)オルガノシロキサン混合物から選ばれる)、
(B)分子内に炭素―炭素多重結合を含有しないシロキサン成分
(C)光ラジカル重合開始剤
を含有し、好ましくは、さらに、
(D)アルケニル基を含有する、特定のMQ型オルガノポリシロキサン樹脂、
(E)分子内に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン、
(F)ヒドロシリル化反応触媒、および
硬化遅延剤、有機溶媒その他の任意成分を含有するものであって良い。
また、本件明細書中において、「(メタ)アクリル基」は、「アクリル基またはメタクリル基」を意味する。以下、各成分について説明する。
[(A)成分]
(A)成分は、本組成物の主剤であり、(メタ)アクリル基を含有するケイ素原子結合官能基、および、アルケニル基等の脂肪族不飽和炭素-炭素結合を少なくとも1個含有するケイ素原子結合官能基を含有し、かつ、同成分中に樹脂状オルガノポリシロキサン構造および直鎖状シロキサン構造を有するシロキサン成分である。ここで、(A)成分中において、(メタ)アクリル基を含有するケイ素原子結合官能基は、樹脂状オルガノポリシロキサン構造に結合していることが必要であるが、アルケニル基については、同一分子内にあってもよく、その他のシロキサン成分中にあってもよい。すなわち、(A)成分は、これらの官能基を同一分子内に有する、共変性型のレジン―リニア構造含有オルガノポリシロキサンブロックコポリマーであってもよく、(メタ)アクリル基を含有する樹脂状オルガノポリシロキサンを含み、その他の官能基を有する直鎖状または樹脂状オルガノポリシロキサンをさらに含むオルガノシロキサン混合物であってよい。
より具体的には、(A)成分は、以下の(A1)成分~(A3)成分から選ばれる1種類以上の(メタ)アクリル基含有オルガノシロキサン成分である。すなわち、(A1)成分は、レジン―リニア構造含有オルガノポリシロキサンブロックコポリマーであり、(A2)成分は、(A2-1)(メタ)アクリル基およびアルケニル基を含有する樹脂状オルガノポリシロキサンと、(A2-2)分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサンとの混合物であり、(A3)成分は、(A3-1)(メタ)アクリル基を含有する樹脂状オルガノポリシロキサンと、(A3-2)アルケニルを含有する樹脂状オルガノポリシロキサンと、(A3-3)分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサンとの混合物である。ここで、(A2-2/A3-3)分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサンは、分子鎖両末端のみにアルケニル基を有する直鎖状オルガノポリシロキサンであってよく、硬化反応時に分子間の鎖長延長剤として機能する。なお、(A2-1)、(A3-1)、(A3-2)成分は、後述するMQ型の樹脂状オルガノポリシロキサンであるが、その技術的効果を損なわない範囲で、モノオルガノシロキシ単位(T単位)、ジオルガノオシロキシ単位(D単位)および少量の水酸基(シラノール基)、アルコキシ基等の加水分解性基を含んでもよく、これらの加水分解性基をトリメチルシラン等のシリル化剤で加水分解処理することで水酸基または加水分解性基の含有量を低減した樹脂状オルガノポリシロキサンであってもよい。
このような(A)成分は、成分全体として、アクリル基またはメタクリル基を含有するケイ素原子結合官能基(R)、および、アルケニル基を含有することを特徴とする。ここで、ケイ素原子結合官能基(R)は、光ラジカル重合開始剤の存在下、高エネルギー線の照射により光硬化性を示す官能基であり、アルケニル基は、ヒドロシリル化反応触媒の存在下、加熱硬化性を示す官能基である。本発明に係る硬化性オルガノポリシロキサン組成物は、(A)成分中に加熱硬化性および光硬化性のケイ素原子結合官能基を併有するため、加熱硬化反応後の半硬化物からなる粘着層は、後述する(B)成分との併用により高い初期接着力を有し、かつ、同半硬化物に高エネルギー線を照射することで、粘着力が大きく減少し、易剥離性を実現することができる。
さらに、(A)成分は、成分全体として、直鎖状オルガノポリシロキサン構造および(メタ)アクリル基を含有する樹脂状オルガノポリシロキサン構造、アルケニル基を有する樹脂状オルガノポリシロキサン構造を備えるため、加熱硬化により得られる半硬化物は、適度な硬さと柔軟性を示し、粘着剤として好適に利用可能である。すなわち、上記の(A)成分として使用可能な(A1)~(A3)の各成分は、上記の構造因子および官能基を、同一分子内に集約したブロックコポリマーを主剤として選択するか、各々の特徴を備えたシロキサン原料の混合物を主剤として選択するかの相違であり、これらの特徴を備えた主剤を(A)成分として用いることで、本発明の技術的効果を奏するものである。
ここで、(A)成分中のアクリル基またはメタクリル基を含有するケイ素原子結合官能基(R)は、
一般式(1):
Figure JPOXMLDOC01-appb-C000002
により表される。式中、Rは互いに独立して水素原子、メチル基、またはフェニル基であり、アクリル基またはメタクリル基部分を形成するため、水素原子またはメチル基であることが好ましい。Zは*であるポリシロキサンの主鎖を構成するケイ素原子に結合する、ヘテロ原子を含んでもよい二価の有機基であり、酸素原子、窒素原子、または硫黄原子を含んでもよい二価の有機基であってよい。
具体的には、Zは、
炭素原子数2~22のアルキレン基、
-R-C(=O)-O-R-で示される2価の有機基{式中、Rは炭素原子数2~22のアルキレン基であり、Rはエチレン基、プロピレン基、メチルエチレン基又はヘキシレン基から選択される基である}、および
-Z-X-C(=O)-X-Z-で示される2価の有機基{式中、Zは-O(CH-(kは0~3の範囲の数)を表し、Xは酸素原子、窒素原子、または硫黄原子をあらわす。Zは*であるポリシロキサンの主鎖を構成するケイ素原子に結合する-[(CHO](CH-(mは0~3の範囲の数、nは3~10の範囲の数)で表される2価の有機基である}
から選ばれる基であることが好ましい。
特に好適には、ケイ素原子結合官能基(R)は、一般式(1-1):
Figure JPOXMLDOC01-appb-C000003
で表される。式中、Rは互いに独立して水素原子、メチル基、またはフェニル基を表し、水素原子またはメチル基が好ましい。Rは互いに独立してアルキル基またはアリール基を表し、工業上、炭素原子数1~20のアルキル基またはフェニル基であることが好ましく、特に好適にはメチル基である。Zは-O(CH-(mは0~3の範囲の数)を表し、mは1または2であることが好ましい。Zは*であるポリシロキサンの主鎖を構成するケイ素原子に結合する-(CH-(nは3~10の範囲の数)で表される2価の有機基であり、nが2~6であるものが実用上好ましい。なお、一般式(1-1)で表されるケイ素原子結合官能基(R)は、アルケニル基を少なくとも1個含有するケイ素原子結合官能基と、分子内にケイ素原子結合水素原子および(メタ)アクリル官能基を有するヒドロシラン化合物(例えば、3-(1,1,3,3-テトラメチルジシロキサニル)プロピル=メタクリラート等)とをヒドロシリル化反応触媒の存在下、反応させることで分子内に導入することができる。また、同反応は、ジブチルヒドロキシトルエン(BHT)等の重合禁止剤の存在下で行ってよく、かつ好ましい。
(A)成分中のアルケニル基は、炭素原子数2~20のアルケニル基であることが好ましく、ビニル基、アリル基、ブチル基、ヘキセニル基等が例示され、架橋反応性の見地から、ビニル基またはヘキセニル基が好適に例示される。
(A1)成分は、R a (3-a)SiO1/2(Rはアクリル基またはメタクリル基を含むケイ素原子結合官能基であり、RはRを除く一価有機基であり、aは1~3の範囲の数)で表されるシロキサン単位(MRA単位)、RB´ SiO1/2(RB´はRを除く一価有機基であり、RB´の少なくとも1個はアルケニル基である)で表されるシロキサン単位(MAlk単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アクリル基またはメタクリル基を有する樹脂状オルガノシロキサンブロックXと、{R SiO2/2β(Rは一価有機基であり、βは2以上の数)で表されるシロキサン単位を有する鎖状オルガノシロキサンブロックYとを有し、かつ、分子内に少なくとも2個のアルケニル基を有する、レジン―リニア構造含有オルガノポリシロキサンブロックコポリマーである。(A1)成分中のブロックXとブロックYの比率は、質量比1:99~80:20の範囲であればよく、より好ましくは、20:80~60:40の範囲である。
樹脂状オルガノシロキサンブロックXについて、上式中のRはおよびRB´は、前記のRを除く一価有機基であり、アルキル基、アルケニル基、アリール基、アラルキル基、およびフッ素原子等のハロゲン原子により水素原子の一部が置換されたハロゲン化アルキル基から選ばれる一価炭化水素基が例示される。ただし、RB´の少なくとも一つはアルケニル基である。工業的には、Rはアルキル基(特にメチル基を含む)またはフェニル基であってよく、RB´は少なくとも一つが炭素原子数2~8のアルケニル基(C2~C8アルケニル)でよく、好ましくはビニル基またはヘキセニル基であり、その他のRB´はアルキル基(特にメチル基を含む)またはフェニル基であってよい。aは1~3の範囲の数であり、好ましくは1である。
さらに、樹脂状オルガノシロキサンブロックXは、RB´´ SiO1/2(RB´´はアルキル基またはフェニル基)で表されるシロキサン単位(M単位)を含んでよく、工業的には、当該M単位は、(CHSiO1/2であってよい。
(A1)成分を構成する、樹脂状オルガノシロキサンブロックXは、上記のMRA単位、MAlk単位、任意でM単位およびQ単位を含有してなり、Q単位1モルに対するM単位、MRA単位およびMAlk単位の物質量の和が0.5~2.0モルの範囲にあることが好ましい。一例として、樹脂状オルガノシロキサンブロックXを構成する前記のMRA単位はR(CHSiO1/2であってよく、MAlk単位は(C2~C8アルケニル)(CHSiO1/2であってよい。また、樹脂状オルガノシロキサンブロックXにおいて、Q単位1モルに対するMRA単位の物質量が0.02~0.50モルの範囲にあることが反応性の見地から、特に好ましい。
鎖状オルガノシロキサンブロックYは、ジオルガノポリシロキサン構造を有し、上式中のRは一価有機基であり、前記の官能基R、アルキル基、アルケニル基、アリール基、アラルキル基、およびフッ素原子等のハロゲン原子により水素原子の一部が置換されたハロゲン化アルキル基から選ばれる一価炭化水素基が例示され、工業的には、メチル基またはフェニル基であってよい。βは、ジオルガノシロキシ単位の繰り返し単位数を意味する2以上の数であり、2~10000、5~5000、5~1000、5~500、5~250、10~200、10~150の範囲の数であってよい。
(A1)成分の樹脂状オルガノシロキサンブロックXと前記の鎖状オルガノシロキサンブロックYを構成するケイ素原子間の連結基は特に制限されないが、シロキサン結合またはシルアルキレン結合により連結された構造を有するレジン―リニア構造含有オルガノポリシロキサンブロックコポリマーであってよく、かつ、好ましい。これらの連結基は、ブロックXとブロックYの前駆体化合物の縮合反応乃至ヒドロシリル化反応により、分子間に導入可能であり、特に、ブロックXとブロックYが、両ブロックの前駆体化合物の縮合反応により、ケイ素原子間のシロキサン結合により連結されていることが好ましい。
本発明に係る(A1)成分であるブロックコポリマーは、そのシロキサン重合度において特に制限されるものではないが、これを含む硬化性オルガノポリシロキサン組成物に塗工可能な粘度を与える見地からシロキサン重合度が10~10,000の範囲であることが好ましく、25~2,000の範囲であることがより好ましい。特に、前記上限を超える高重合度のオルガノポリシロキサンを使用した場合、有機溶媒や希釈剤を用いないと、硬化性オルガノポリシロキサン組成物の塗工が困難となる場合がある。
(A2)成分は、以下の(A2-1)成分と(A2-2)成分を質量比1:99~80:20で混合したオルガノシロキサン混合物であり、質量比は20:80~60:40であってよい。ここで、(A2-1)成分は、前記の官能基Rを含むMRA単位およびアルケニル基を含むMAlk単位を有する樹脂状オルガノポリシロキサンであり、(A2-2)成分は、鎖長延長反応により直鎖状オルガノポリシロキサン構造を与える成分である。
(A2-1)成分は、R a (3-a)SiO1/2(Rはアクリル基またはメタクリル基を含むケイ素原子結合官能基であり、RはRを除く一価有機基であり、aは1~3の範囲の数)で表されるシロキサン単位(MRA単位)、RB´ SiO1/2(RB´はRを除く一価有機基であり、RB´の少なくとも1個はアルケニル基である)で表されるシロキサン単位(MAlk単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アクリル基またはメタクリル基を有する樹脂状オルガノポリシロキサンである。ここで、R、R、RB´は前記同様の基であり、aは前記同様の数である。さらに、(A2-1)成分は、前記したMRA単位、MAlk単位、Q単位および任意でM単位を含み、Q単位1モルに対するM単位、MRA単位およびMAlk単位の物質量の和が0.5~2.0モルの範囲にあり、Q単位1モルに対するMRA単位の物質量が0.02~0.50モルの範囲の範囲にあるオルガノポリシロキサン樹脂であってよい。
(A2-2)成分は、分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサンであり、分子鎖両末端のみにアルケニル基を有することが好ましい。より具体的には、分子鎖両末端にジアルキルアルケニルシロキシ基、工業的には、(C2~C8アルケニル)(CHSiO1/2で表される(C2~C8アルケニル)ジメチルシロキシ単位で封鎖されたポリジメチルシロキサンが例示される。ここで、(A2-2)成分のジオルガノシロキサン重合度は、特に制限されるものではないが、塗工性の見地から、2~10000、5~5000、5~1000、5~500、5~250、10~200、10~150の範囲の数であってよい。他方、分子内に2を超えるアルケニル基を有する直鎖状オルガノポリシロキサンは、二次元的な分子間の鎖長延長反応ではなく三次元的な架橋反応点となるため、初期粘着力等、本発明の技術的効果を十分に発揮できない場合がある。
(A3)成分は、以下の(A3-1)~(A3-3)成分を混合したオルガノシロキサン混合物である。ここで、(A3-1)成分は、前記の官能基R含むMRA単位を有する樹脂状オルガノポリシロキサンであり、(A3-2)成分はアルケニル基を含むMAlk単位を有する樹脂状オルガノポリシロキサンであり、(A3-3)は鎖長延長反応により直鎖状オルガノポリシロキサン構造を与える成分である。ここで、各成分の混合比は特に制限されないが、(A3-1)+(A3-2):(A3-3)が質量比1:99~80:20の範囲となり、好適には20:80~60:40の範囲であり、かつ、(A3-1)と(A3-2)が質量比10:90~90:10の範囲であってよい。
(A3-1)成分は、R a (3-a)SiO1/2(Rはアクリル基またはメタクリル基を含むケイ素原子結合官能基であり、RはRを除く一価有機基であり、aは1~3の範囲の数)で表されるシロキサン単位(MRA単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アクリル基またはメタクリル基を有する樹脂状オルガノシロキサンであり、R、Rは前記同様の基であり、aは前記同様の数である。さらに、(A3-1)成分は、前記したMRA単位、Q単位および任意でM単位を含み、Q単位1モルに対するM単位およびMRA単位の物質量の和が0.5~2.0モルの範囲にあり、Q単位1モルに対するMRA単位の物質量が0.02~0.50モルの範囲の範囲にあるオルガノポリシロキサン樹脂であってよい。
(A3-2)成分は、RB´ SiO1/2(RB´はRを除く一価有機基であり、RB´の少なくとも1個はアルケニル基である)で表されるシロキサン単位(MAlk単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アルケニル基を有する樹脂状オルガノポリシロキサンであり、RB´は前記同様の基であり、aは前記同様の数である。さらに、(A3-2)成分は、前記したMAlk単位、Q単位および任意でM単位を含み、Q単位1モルに対するM単位およびMAlk単位の物質量の和が0.5~2.0モルの範囲にあるオルガノポリシロキサン樹脂であってよい。
(A3-3)成分は、分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサンであり、分子鎖両末端のみにアルケニル基を有することが好ましい。このような成分は、先に(A2-2)成分において例示した成分と同様である。
[(B)成分]
(B)成分は、上記の(A)成分と併用される非反応性乃至低反応性のシロキサン成分であり、本発明の特徴的な構成の一つである。かかる(B)成分は、本組成物を加熱硬化反応により半硬化させてなる粘着剤層の初期接着性を含む接着力の調整剤であり、(B)成分を含む粘着剤層は高い初期粘着力を示す一方、高エネルギー線の照射に伴う光硬化反応により、その基材に対する粘着力が大きく変化する特徴を有する。
より具体的には、(B)成分は分子内に炭素―炭素多重結合を含有しないシロキサン成分であり、(A)成分(その構成成分)および後述する(D)成分とは、官能基Rやアルケニル基を有しない点で明確に区別される。より具体的には、(B)成分は、以下の(B1)~(B3)成分から選ばれる1種類以上の炭素―炭素多重結合を含有しないシロキサン成分である。
(B1)成分は、MQ型のオルガノポリシロキサン樹脂であり、硬化層の粘着力を向上させる成分である。具体的には、(B1)成分は、分子内にRSiO1/2(式中、Rは互いに独立して炭素―炭素多重結合を含有しない一価有機基を表す)で表されるシロキサン単位(M単位)、およびSiO4/2表されるシロキサン単位(Q単位)を含有してなり、Q単位1モルに対するM単位の物質量比が0.5~2.0の範囲にあるオルガノポリシロキサン樹脂であり、Rは、アルキル基、アリール基、アラルキル基、およびフッ素原子等のハロゲン原子により水素原子の一部が置換されたハロゲン化アルキル基から選ばれる一価炭化水素基が例示され、工業的には、メチル基またはフェニル基であってよい。さらに、(B1)成分中には、少量の水酸基(シラノール基)またはアルコキシ基を含んでもよく、必要に応じ、これらの加水分解性基をトリメチルシラン等のシリル化剤で加水分解処理することで水酸基または加水分解性基の含有量を低減してもよい。
(B2)成分は、分子内に炭素―炭素多重結合を含有しない直鎖または分岐状ジオルガノポリシロキサンであり、硬化層の粘着力を調整する成分である。このような(B2)成分は、水酸基(シラノール基)、アルキル基、アリール基、アラルキル基、およびフッ素原子等のハロゲン原子により水素原子の一部が置換されたハロゲン化アルキル基から選ばれる一価炭化水素基から選ばれる官能基の実を有する直鎖または分岐状ジオルガノポリシロキサンであってよく、工業的には、分子内にシラノール基を有してもよい、直鎖または分岐状のジメチルポリシロキサンが例示される。また、硬化層の粘着力を調整する見地から、(B2)成分は、比較的高重合度のジオルガノポリシロキサンであってよく、数平均分子量10万以上のジオルガノポリシロキサンであってよい。このような(B2)成分は、好ましくは、室温における粘度が100万mPa・s以上乃至可塑度を有するガム状のジオルガノポリシロキサンであってよい。ここで、「可塑度を有する」とは、JIS K6249に規定される方法に準じて測定された可塑度(25℃、4.2gの球状試料に1kgfの荷重を3分間かけたときの厚さを1/100mmまで読み、この数値を100倍したもの)が測定可能であることを意味し、特に、(B2)成分は、可塑度が50~200の範囲にある生ゴム状のポリジメチルシロキサンであってよい。
(B3)成分は、(B1)成分および(B2)成分の縮合反応物であり、硬化層の粘着力を調整する成分として特に好ましい。このような(B3)成分は、前記の(B1)成分または(B2)成分であって、分子内にシラノール基等の加水分解性官能基を有する成分を公知の方法で縮合反応させることで得ることができ、比較的高重合度の縮合反応物が好ましく、縮合後に得られる数平均分子量は10万以上となる、上記の(B1)成分および(B2)成分の縮合反応物が好ましい。なお、このような高重合度、高分子量の縮合反応物は、分子量が比較的大きい(B1)成分および(B2)成分を原料成分として、公知の縮合反応触媒下で縮合反応させることにより、容易に得ることができる。
本発明にかかる硬化性オルガノポリシロキサン組成物またはそれを含むオルガノポリシロキサン粘着剤組成物は、(B)成分の少なくとも一部または全部として、上記の(B2)成分および(B3)成分から選ばれる1種類以上の成分を含んでよい。これらの成分を含む半硬化物は粘着力の調整が可能であるほか、当該半硬化物を高エネルギー線の照射に伴う光硬化反応により硬化させた場合、当該硬化層の表面にこれらの成分の一部が滲出(ブリードアウト)して滑らかな表面状態を形成し、硬化反応の進行による粘着力の低下に加え、基材からの剥離性が著しく改善される場合がある。
本発明にかかる硬化性オルガノポリシロキサン組成物において、(B)成分の使用量は、所望の初期粘着力および光硬化反応後の硬化生成物の剥離性等を考慮して適宜設計可能であるが、(A)成分100質量部に対して1~50質量部、5~40質量部、10~30質量部の範囲である。さらに、(B)成分は、(B1)成分と、(B2)成分および(B3)成分から選ばれる1種類以上を併用することが好ましく、両者の質量比は50:50~95:5の範囲であってよい。かかる範囲であると、高い初期接着力と光硬化反応後の大きな粘着力低下に加えて、基材からの剥離性も向上するためである。
[(C)光ラジカル重合開始剤]
(C)成分は光ラジカル重合開始剤であり、高エネルギー線照射により、(A)成分中のケイ素原子結合官能基(R)のアクリル基またはメタクリル基の光硬化反応を促進させる成分である。特に、(A)成分に由来する未反応の官能基(R)を含む半硬化物からなる粘着剤層に高エネルギー線を照射することで、当該粘着剤層の基材に対する粘着力が大きく低下し、易剥離性の硬化物を形成する。
光ラジカル重合開始剤は、大きく分けて光開裂型と水素引き抜き型のものが知られているが、本発明の組成物に用いる光ラジカル重合開始剤は、当技術分野で公知のものから任意に選択して用いることができ、特定のものに限定されないが、好ましくは80℃以上の高温でヒドロシリル化反応を阻害しにくいものである。光ラジカル重合開始剤の例としては、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1-プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。 
(C)成分の使用量は、(A)成分に由来するケイ素原子結合官能基(R)の含有量、高エネルギー線の照射をトリガーとする硬化物の所望の粘着力変化および易剥離性に応じて適宜設計可能であるが、(A)成分100質量部に対して0.1~10質量部となる量が好ましく、0.5~5質量部となる量が特に好ましい。
[(C´)光増感剤]
任意選択により、(C)光ラジカル重合開始剤と組み合わせて(C´)光増感剤を用いることもできる。増感剤の使用は、重合反応の光量子効率を高めることができ、光開始剤のみを用いた場合と比べて、より長波長の光を重合反応に利用できるようになるために、組成物のコーティング厚さが比較的厚い場合、又は比較的長波長のLED光源を使用する場合に特に有効であることが知られている。増感剤としては、アントラセン系化合物、フェノチアジン系化合物、ペリレン系化合物、シアニン系化合物、メロシアニン系化合物、クマリン系化合物、ベンジリデンケトン系化合物、(チオ)キサンテンあるいは(チオ)キサントン系化合物、例えば、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、スクアリウム系化合物、(チア)ピリリウム系化合物、ポルフィリン系化合物などが知られており、これらに限らず任意の光増感剤を本発明の硬化性オルガノポリシロキサン組成物および粘着剤組成物に用いることができる。その使用量は任意であるが、(C)成分に対する(C´)の成分の質量比が0~10となる範囲であり、使用する場合には0.01~5となる範囲で選択するのが一般的である。
[(D)アルケニル基含有MQ型オルガノポリシロキサン樹脂]
本発明に係る組成物は、(A)~(C)成分と独立に、(D)アルケニル基含有MQ型オルガノポリシロキサン樹脂を添加することができる。(D)成分は、加熱硬化反応における反応性成分であり、かつ、任意で基材への密着力を調整する成分であり、当該成分の使用量応じて、ヒドロシリル化反応後の半硬化物の硬さおよび基材に対する密着性を調整することが可能である。
より具体的には、(D)成分は、分子内に分子内に1つ以上のアルケニル基を含有してなり、(a)RSiO1/2(式中、Rは、互いに独立して一価有機基を表す)で表されるシロキサン単位(M単位)、及び、(b)SiO4/2で表されるシロキサン単位(Q単位)を含むオルガノポリシロキサン樹脂である。M単位対Q単位のモル比は、0.5~2.0であることが好ましい。このモル比が0.5未満である場合には硬化物の基材への密着性が低下することがあり、2.0より大きい場合には密着層を構成する物質の凝集力が低下するからである。
特に、(a)M単位と(b)Q単位のモル比はM単位:Q単位=0.50:1.00~1.50:1.00の範囲にあることが好ましく、0.55:1.00~1.20:1.00の範囲がより好ましく、0.60:1.00~1.10:1.00が更により好ましい。上記モル比は、29Si核磁気共鳴によって容易に測定することができる。
(D)成分は一般単位式:(RSiO1/2(SiO4/2(式中、Rは互いに独立して一価有機基であり、a及びbはそれぞれ正数であり、a+b=1、a/b=0.5~1.5である)で表されるオルガノポリシロキサン樹脂であることが好ましい。
(D)成分は(a)M単位と(b)Q単位のみから構成されてもよいが、RSiO2/2単位(D単位)、及び/又は、RSiO3/2単位(T単位)を含んでもよい。なお、式中、Rは、互いに独立して一価有機基を表す。(D)成分中の(a)M単位と(b)Q単位の合計含有量は好ましくは50質量%以上であり、更に好ましくは80質量%以上であり、特に好ましくは100質量%である。
(D)成分は、(A)成分と独立に添加される反応性のMQ型オルガノポリシロキサン樹脂であるので、一価有機基(R)は、特に限定されるものではなく、前記の官能基R、アルキル基、アルケニル基、アリール基、アラルキル基、およびフッ素原子等のハロゲン原子により水素原子の一部が置換されたハロゲン化アルキル基から選ばれる一価炭化水素基が例示され、工業的には、メチル基またはフェニル基であってよい。ただし、分子内の全てのRのうち、一つ以上がアルケニル基であることが必要である。(D)成分中のアルケニル基は、炭素原子数2~8のアルケニル基(C2~C8アルケニル)でよく、より好ましくはビニル基またはヘキセニル基であり、その他のRはアルキル基(特にメチル基を含む)またはフェニル基であってよい。また、(D)成分中には、水酸基またはアルコキシ基等の加水分解性基が含まれていてもよく、これらの加水分解性基をトリメチルシラン等のシリル化剤で加水分解処理することで水酸基または加水分解性基の含有量を低減したオルガノポリシロキサン樹脂であってもよい。
(D)成分は、任意成分であるため、(A)成分100質量部に対して0.0~50質量部となる量で配合することができ、0.5~35質量部となる量が好ましく、1.0~20質量部となる範囲が特に好ましい。
[(E)オルガノハイドロジェンポリシロキサン]
(E)成分は、一分子内に少なくとも2個以上のケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサンであり、上記の硬化性オルガノポリシロキサン組成物の架橋剤として機能する成分である。具体的には、(A)、(D)成分中のアルケニル基と(C)ヒドロシリル化反応触媒の存在下で反応し、半硬化物である粘着剤層を形成することができる。当該粘着剤層は、基材に対する初期粘着力に優れる一方、未反応の光硬化性のケイ素原子結合官能基(R)を含むため、高エネルギー線の照射をトリガーとする二段階硬化により粘着力が大きく減少し、易剥離性を呈する。
このような(E)成分は、分子構造は特に限定されず分子内に少なくとも3個のケイ素結合水素原子を有する環状オルガノハイドロジェンポリシロキサン、直鎖状、一部分岐を有する直鎖状、分岐鎖状、レジン状が挙げられ、好ましくは、直鎖状、一部分岐を有する直鎖状、レジン状である。また、(E)成分の25℃における粘度は限定されず、好ましくは、1~10,000mPa・sの範囲内、または、1~1,000mPa・sの範囲内である。並びに、分子内に少なくとも3個以上のケイ素結合水素原子を有する直鎖状ま分岐鎖状、レジン状のオルガノハイドロジェンポリシロキサンから選ばれる少なくとも1種類以上であってよい。また、(E)成分は上記の2種類以上のオルガノハイドロジェンポリシロキサンからなる混合物であってもよい。
(E)成分中のケイ素原子結合の水素原子の結合するケイ素原子は限定されず、例えば、分子鎖末端のケイ素原子および/またはそれ以外のケイ素原子が挙げられる。また、(E)成分中のケイ素原子結合の有機基としては、脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基が例示され、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等の炭素数1~12のアルキル基;フェニル基、トリル基、キシリル基等の炭素数6~12のアリール基;ベンジル基、フェネチル基等の炭素数7~12のアラルキル基;3-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン置換の炭素数1~12のアルキル基が例示され、好ましくは、メチル基、フェニル基である。
 このような(E)成分としては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1-グリシドキシプロピル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-グリシドキシプロピル-1,3,5,7-テトラメチルシクロテトラシロキサン、1-グリシドキシプロピル-5-トリメトキシシリルエチル-1,3,5,7-テトラメチルシクロテトラシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシランの加水分解縮合物、(CH3)2HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH3)2HSiO1/2単位とSiO4/2単位と(C6H5)SiO3/2単位とからなる共重合体、およびこられの2種以上の混合物が例示される。
環状オルガノハイドロジェンポリシロキサンとしては、例えば、下記式:
[(RHSiO)m3(R SiO)m4
で表される。ここで、m3+m4は3~20の範囲の数であり、m3は3以上の数であり、m4は0以上の数である。Rは、アルケニル基を除く炭素数1~10の一価炭化水素基であり、Rと同様の基が例示でき、好適には、メチル基またはフェニル基である。
分子内に少なくとも2個以上のケイ素結合水素原子を有する直鎖状または分岐鎖状のオルガノハイドロジェンポリシロキサンとしては、側鎖部分に少なくとも2個以上のケイ素結合水素原子を有し、分子鎖末端がトリアルキルシロキシ基、アリールジアルキルシロキシ基等で封鎖されたポリオルガノハイドジェンシロキサンまたはオルガノハイドジェンシロキサン・ジオルガノシロキサンコポリマー等のオルガノハイドロジェンポリシロキサンである。そのシロキサン重合度は4~500の範囲であり、5~200の範囲であることが好ましい。
(E)成分の使用量は、所望とする粘着力及び硬化特性に応じて適宜選択しうるものであるが、本発明の課題である初期粘着力および高エネルギー線の照射をトリガーとする易剥離性の見地から、前記の(A)成分 100質量部に対し、0.1~5質量部の範囲が好ましく、0.5~4.5質量部がより好ましく、1.0~3.5質量部の範囲が特に好ましい。(E)成分の使用量が前記下限未満では架橋剤不足となって、組成物の加熱硬化性が不十分となる場合があり、前記上限を超えると、高エネルギー線の照射前後における粘着層の粘着力変化が小さくなり、本発明の目的を達成できない場合がある。また、好適には、(E)成分の使用量は、組成物中のアルケニル基等の脂肪族不飽和炭素-炭素結合のモル数に対して、(E)成分中のケイ素結合水素原子のモル数(以下、「SiH/Vi比」)が、0.1~5.0の範囲にあることが好ましい、更に好ましくは、0.1~2.0の範囲が好ましく、更に好ましくは0.1~0.75の範囲が特に好ましい。当該範囲内において、全体の架橋密度が適度に調整され、硬化物の貯蔵弾性率および密着性について、所望の特性を発揮することが可能となる。一方、SiH/Vi比が当該下限未満では、硬化物を基材に密着させた場合に糊残り等の原因となる場合があり、当該上限を超えると未反応のSiH基が過剰となって、硬化物の密着特性が安定しなくなる場合がある。
[(F)ヒドロシリル化反応触媒]
(F)成分はヒドロシリル化反応触媒であり、加熱等により(A)成分、その他の任意成分中のアルケニル基等の脂肪族不飽和炭素-炭素結合と、(E)成分のヒドロシリル化反応を促進する成分である。
ヒドロシリル化反応触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましく、特に、白金-アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をニトリル類、アミド類、ジオキソラン類、及びスルホラン類からなる群から選択される基、エチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましく、アルケニルシロキサン溶液の形態で添加することが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、これらのヒドロシリル化反応触媒は、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂中に分散あるいはカプセル化した触媒である、ヒドロシリル化反応触媒含有熱可塑性樹脂微粒子、特に、白金含有ヒドロシリル化反応触媒を含む熱可塑性樹脂微粒子であってもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
本発明において、ヒドロシリル化反応触媒の含有量は特に制限されるものではないが、組成物中の固形分の合計量に対し、白金系金属量が0.1~200pmの範囲となる範囲であり、0.1~150ppm、0.1~100ppmの範囲であってよく、0.1~50ppmの範囲であってもよい。ここで、白金系金属は、白金、ロジウム、パラジウム、ルテニウム、イリジウムからなるVIII族の金属元素であるが、実用上、ヒドロシリル化反応触媒の配位子を除いた白金金属の含有量が上記範囲であることが好ましい。なお、固形分とは、本発明にかかる硬化性オルガノポリシロキサン組成物を硬化反応させた場合に、硬化層を形成する成分(主として主剤、接着付与成分、架橋剤、触媒およびその他の不揮発性成分)であり、加熱硬化時に揮発する溶媒等の揮発性成分を含まない。
本発明にかかる硬化性オルガノポリシロキサン組成物中の白金系金属の含有量が50ppm以下(45ppm以下,35ppm以下,30ppm以下,25ppm以下または20ppm以下)である場合、硬化後、あるいは加熱や紫外線等の高エネルギー線に暴露した場合、特に、透明な密着層の変色や着色を抑制できる場合がある。一方、オルガノポリシロキサン組成物の硬化性の見地から、白金系金属の含有量は、0.1ppm以上であり、当該下限を下回ると硬化不良の原因となる場合がある。
[(G)硬化遅延剤]
本発明の硬化性オルガノポリシロキサン組成物は、任意で、硬化遅延剤を含んでもよい。硬化遅延剤は、組成物中の脂肪族不飽和炭素-炭素結合含有基とケイ素結合水素原子との架橋反応を抑制して、常温での可使時間を延長し、保存安定性を向上するために配合するものである。したがって、実用上は、本発明の硬化性オルガノポリシロキサン組成物にとって、必須に近い成分である。
具体的には、硬化遅延剤はアセチレン系化合物、エンイン化合物、有機窒素化合物、有機燐化合物、オキシム化合物、リン系化合物が例示される。具体的には、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ペンチン-3-オール、1-エチニル-1-シクロヘキサノール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-1-ヘキシン-3-イン等のエンイン化合物;2-エチニル-4-メチル-2-ペンテン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のメチルアルケニルシクロシロキサン;ベンゾトリアゾールが例示される。
リン含有ヒドロシリル化反応遅延剤は、ホスフィン系化合物、リン酸系化合物、ホスホン酸系化合物、ホスフィンオキサイド系化合物、亜リン酸系化合物、および亜ホスホン酸系化合物からなる群から選らばれる少なくとも一種であってよく、例えば、1,3-ビス(ジフェニルホスフィノ)プロパン等の特開2007-308542号公報に記載された成分が例示される。
組成物の硬化挙動の見地から、本発明の硬化性オルガノポリシロキサン組成物は、組成物の調製後室温で8時間後に粘度の増大が1.5倍以内であり、80~200℃で硬化可能であることが好ましい。増粘が抑制されていることは、取扱作業性、ポットライフ、硬化後の特性の見地から重要であり、一定以上の高温(80~200℃)で硬化させることで硬化性を確保することができるためである。なお、このような組成物は上記の各成分およびヒドロシリル化触媒と硬化遅延剤の好適な組み合わせおよび配合量を選択することで、実現可能である。
[(H)剥離改質剤]
本発明に係る組成物には、前記の(A)~(G)成分(特に(B2)成分)とは別に任意の剥離改質剤を添加してもよい。当該成分を使用することで、硬化性オルガノポリシロキサン組成物の塗工に必要な粘度、硬化物または半硬化物の粘着性、硬さ、架橋密度等を調整することができるほか、硬化物の剥離特性等を改善することができる場合がある。
このような剥離改質剤は、その他の成分と一定の相溶性があり、かつ、硬化物の剥離特性を改善できる限り、特にその種類及び量において制限されるものではなく、パーフルオロアルキル基等を有するフルオロシリコーン、任意で低級または高級アルケニル基を有してもよいMQ型のシリコーン樹脂、α,ω―ジオレフィン化合物、片末端のみにアルケニル基を有す中~長鎖オレフィン化合物、任意でアルケニル基を有してもよい直鎖状オルガノポリシロキサン、またはこれらの混合物から選ばれる公知の剥離改質剤を、必要とされる剥離力の調整範囲で添加してよい。
例えば、本発明において、剥離改質剤として、(B2)成分等と独立して、任意でアルケニル基を有してもよい直鎖状オルガノポリシロキサンを添加することができる。このような剥離改質剤は、具体的には、25℃における粘度が1.5~1,000,000mPa・sの範囲にあり、トリメチルシロキシ基末端またはビニルジメチルシロキシ基末端封鎖のポリジメチルシロキサン、ポリフェニルメチルシロキサン、ポリ(ジメチルシロキサン・ジフェニルシロキサン)コポリマー、ポリ(ジメチルシロキサン・トリフルオロプロピルメチルシロキサン)コポリマー、ポリ(ジメチルシロキサン・ノナフルオロヘキシルメチルシロキサン)コポリマーが例示されるが、上記の通り、これらの成分に限定されるものではない
[(I)有機溶剤]
本発明に係る組成物は、その構成成分が比較的低粘度の成分を選択することにより、低溶剤型乃至無溶剤型の組成物が設計可能であるが、任意で(I)有機溶剤を含んでもよい。有機溶剤は、組成物の基材への塗工性や濡れ性を改善すべく、各成分を分散乃至溶解させる希釈剤として用いてもよく、その他の原料成分に付随する溶媒として不可避的に含まれる成分であってもよい。
本発明に用いることができる有機溶剤は、本発明の技術的効果を損なわない限り、使用する有機溶媒としては、組成物中の全構成成分又は一部の構成成分を溶解させ得る化合物であれば、その種類は特に限定されず、沸点が80℃以上200℃以下のものが好ましく使用される。その種類は、非ハロゲン系溶媒でも、ハロゲン系溶媒であってもよく、芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤、エステル系溶剤、アルコール系溶剤、エーテル系溶剤、塩素化脂肪族炭化水素系溶剤、溶剤揮発油などが挙げられ、塗工性や濡れ性などに応じて2種以上を組み合わせても良い。
有機溶媒の含有量は、組成物全体100質量部に対しての0~60質量%未満であり、50質量%未満であり、実質的に0~30質量%の範囲内であることが特に好ましい。特に、本発明にかかる組成物において、硬化反応により固形分を形成する固形分濃度が組成物全体の30~100質量%となる範囲で容易に設計することができる。
[その他の任意成分]
本発明にかかる硬化性オルガノポリシロキサン組成物は、本発明の技術的効果を損なわない範囲で、任意で、上記成分以外の成分を含むことができる。例えば、接着促進剤;(B)成分以外のポリジメチルジフェニルシロキサンなどの非反応性のオルガノポリシロキサン;フェノール系、キノン系、アミン系、リン系、ホスファイト系、イオウ系、またはチオエーテル系などの酸化防止剤;トリアゾール系またはベンゾフェノン系などの光安定剤;リン酸エステル系、ハロゲン系、リン系、またはアンチモン系などの難燃剤;カチオン系界面活性剤、アニオン系界面活性剤、または非イオン系界面活性剤などからなる1種類以上の帯電防止剤などを含むことができる。なお、これらの成分のほか、顔料、染料、無機微粒子(補強性フィラー、誘電性フィラー、導電性フィラー、熱伝導性フィラー)などを任意で配合することもできる。
本発明にかかる硬化性オルガノポリシロキサン組成物の調製方法は特に限定されず、それぞれの成分を均質に混合することによって行われる。必要に応じて有機溶剤を加えてもよく、公知の攪拌機または混練機を用いて、混合して調製してもよい。なお、本組成物は加熱によりヒドロシリル化反応性を有するため、100℃未満、好ましくは50℃未満の温度条件で混合することが好ましい。
[粘着剤としての使用方法]
本発明にかかる硬化性オルガノポリシロキサン組成物は、前記の(A)成分を含むため、加熱硬化性および高エネルギー線の照射による光硬化性を併有しており、特に、加熱硬化により得られた半硬化物は初期粘着力に優れた粘着剤層として機能し、ここに高エネルギー線を照射することで、当該粘着剤層の基材に対する粘着力が大きく低下し、易剥離性の硬化物を形成して、基材から容易に除去することが可能である。以下、その使用方法を説明する。
[塗布および加熱硬化]
本発明にかかる硬化性オルガノポリシロキサン組成物は、基材上に塗工することによって塗膜を形成し、80~200℃の温度条件下、好適には、90~150℃の温度条件下で加熱することによって、ヒドロシリル化反応により、初期粘着力に優れる粘着剤層として機能する半硬化物を与える。なお、硬化に必要な加熱時間は粘着剤層の厚さや触媒の使用量に応じ適宜選択しうるが、0.5~90分間の範囲であることが一般的である。本発明に係る組成物を用いて、加熱硬化により得られた粘着剤層は、未反応のケイ素原子結合官能基(R)を含有するため、高エネルギー線の照射をトリガーとしてさらなる光硬化反応性を維持する。
塗工方法としては、グラビアコート、オフセットコート、オフセットグラビア、ロールコート、リバースロールコート、エアナイフコート、カーテンコート、及びコンマコートが例示される。塗工量は表示装置等の用途に応じて所望の厚さで設計することができ、一例として、硬化したあとの粘着剤層の厚みとして1~1,000μmであり、5~900μmであってよく、10~800μmであってよいが、これらに限定されるものではない。
光硬化反応前の半硬化物は、十分な初期粘着力を有し、例えば、厚み75μmの粘着剤層を設計した場合、SUS板に対し、JIS Z 0237に従う180°引き剥がし試験方法を用いて引張速度300mm/minにより測定された粘着力が30gf/25mm以上、好適には、30~2000gf/25mmの範囲にある粘着層を設計可能である。なお、上記の厚み(75μm)は、本発明にかかる硬化層の粘着力を客観的に定義するための基準となる硬化層自体の厚みであり、本発明の硬化性オルガノポリシロキサン組成物は厚み75μmに限らず、任意の厚みの硬化層または粘着剤層として利用することができることは言うまでもない。
[高エネルギー線の照射による粘着力変化]
加熱硬化により得られた半硬化物である粘着剤層は、高エネルギー線の照射をトリガーとしてさらなる光硬化反応が進行し、その粘着力が大きく減少し、易剥離性であり、基材等に糊残りを生じない硬質な硬化物を形成して、容易に基材から剥離することができる。具体的には、加熱硬化反応によって得られたオルガノポリシロキサン半硬化物を、他の基材に対して密着させた場合に、その基材に対する粘着力が、高エネルギー線の照射に伴う光硬化反応の前後で10%以上減少するものであり、30%以上減少することが好ましく、50%以上減少することが特に好ましい。なお、こうした粘着力変化は、前記のSUS板等を用いた粘着力測定試験により、定量的に計測可能である。
特に、本発明は、上記の(A)成分と(B)成分(好ましくは、(B1)成分と(B2)または(B3)成分の併用)により、上記のように強い初期粘着力を実現し、かつ、高エネルギー線の照射をトリガーとする光硬化反応の前後で、基材に対する粘着力が30~99%の範囲で減少するように設計可能であり、かつ、光硬化反応後には、基材からの易剥離性を実現できるという際立った利点を有する。
光硬化反応に用いる高エネルギー線(活性エネルギー線とも言われる)としては、紫外線、電子線、放射線等が挙げられるが、実用性の点で紫外線が好ましい。紫外線発生源としては高圧水銀ランプ、中圧水銀ランプ、Xe-Hgランプ、ディープUVランプ等が好適であり、特に、波長280~400nm、好適には波長300~400nmの紫外線照射が好ましく、複数の発光帯を有する光源を使用してもよい。
高エネルギー線の照射量は、適宜設計可能であるが、紫外線照射量(照度)が、積算光量として100mJ/cm~10,000mJ/cm、より好ましくは1,000mJ/cm~5,000mJ/cmのとき、高エネルギー線の照射をトリガーとして、本発明に係る粘着層の良好な粘着力の変化が実現される。なお、高エネルギー線の照射は、本発明に係る粘着剤層を担持する基材が上記の波長領域の電磁波を吸収しない限りにおいては、当該基材を間に挟んで照射されてもよい。すなわち、一定量の照射量が実現可能であれば、基材または保護フィルム等のカバー材料越しに高エネルギー線の照射を行ってもよい。
[粘着剤層の透明性、色調または着色・変色に関する特性]
本発明に係る硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン粘着剤組成物を硬化させてなる粘着剤層(半硬化物、硬化物を含む)は、実質的に透明、半透明または不透明のいずれであってもよく、当該粘着剤層の用途に応じてその透明性を設計することができる。目視で透明である場合、より客観的には、厚み100μmの硬化層からなる粘着剤層の波長450nmの光の透過率が空気の値を100%とした場合に80%以上であり、好適には90%以上であり、95%以上に設計してもよい。一方、光透過性が求められない仮留等の粘着剤等においては、半透明~不透明な粘着剤層であってもよく、光透過性以外の要求特性に応じて、着色性あるいは光透過性を損なうようなフィラー成分または添加剤を利用しても良い。
[粘着剤層としての使用方法、高エネルギー線照射前後で粘着特性の変化を伴う粘着シート]
本発明に係る粘着剤層は、被着体との密着性を向上させるために、粘着剤層または基材の表面に対してプライマー処理、コロナ処理、エッチング処理、プラズマ処理等の表面処理を行ってもよい。ただし、本発明の密着層は、上記のとおり、表示デバイス等の基材への密着性に優れることから、必要に応じ、これらの工程を加えてさらに被着体との密着性を向上させてもよく、これらの工程を省くことにより、より高い生産効率を実現してもよい
本発明に係る硬化性オルガノポリシロキサン組成物は、剥離ライナーに塗工した後、上記の温度条件下で加熱することにより、縮合反応によって半硬化させ、剥離ライナーを剥がしてフィルム状基材、テープ状基材、またはシート状基材(以下、「フィルム状基材」という)と貼り合せたり、フィルム状基材に塗工した後、上記の温度条件下で加熱することにより硬化させ、前記基材の表面に粘着剤層を形成することができる。この粘着剤層は、前記の通り、初期接着性に優れ、かつ、(A)成分に由来する光硬化性の官能基を含むため、高エネルギー線照射をトリガーとして、粘着力が減少し、易剥離性に粘着特性が変化する。
これらのフィルム状基材上に本発明に係るオルガノポリシロキサン組成物を硬化してなる硬化層、特にフィルム状の硬化層を備えた積層体は、密着テープ、着脱を前提とする保護フィルム、絆創膏、低温支持体、転写フィルム、ラベル、エンブレム及び装飾又は説明用の標示に使用してもよい。更に、本発明に係るオルガノポリシロキサン組成物を硬化してなる硬化層は、自動車部品、玩具、電子回路、又はキーボードの組み立てに使用してもよい。あるいは、本発明に係るオルガノポリシロキサン組成物を硬化してなる硬化層、特にフィルム状の密着層は、積層タッチスクリーン又はフラットパネルディスプレイの保護、構築及び利用に使用してもよい。
基材の種類として、板紙,ダンボール紙,クレーコート紙,ポリオレフィンラミネート紙,特にはポリエチレンラミネート紙,合成樹脂フィルム・シート,天然繊維布,合成繊維布,人工皮革布,金属箔が例示される。特に、合成樹脂フィルム・シートが好ましく、合成樹脂として、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエチレンテレフタレート、シクロポリオレフィン、ナイロンが例示される。特に耐熱性が要求される場合には、ポリイミド、ポリエーテルエーテルケトン、ポリエチレンナフタレート(PEN)、液晶ポリアリレート、ポリアミドイミド、ポリエーテルスルフォン等の耐熱性合成樹脂のフィルムが好適である。一方、表示デバイス等視認性が求められる用途においては、透明基材、具体的にはポリプロピレン、ポリスチレン、ポリ塩化ビニリデン、ポリカーボネート、ポリエチレンテレフタレート、PEN等の透明材料が好適である。
上記基材はフィルム状またはシート状であることが好ましい。その厚さは特に制限されず、用途に応じて所望の厚さで設計することができる。さらに、支持フィルムと硬化密着層の密着性を向上させるために、プライマー処理、コロナ処理、エッチング処理、プラズマ処理された支持フィルムを用いてもよい。また、フィルム状基材の硬化層/硬化密着層と反対面には、傷つき防止、汚れ防止、指紋付着防止、防眩、反射防止、帯電防止などの処理などの表面処理されたものであってもよい。
本発明に係る粘着剤層は、その要求特性に応じて単層であっても2層以上の粘着層を積層してなる複層であってもよい。複層の粘着層は、一層ずつ作成したフィルムを貼り合わせても良く、剥離層を備えたフィルム基材上等で、硬化性シリコーン組成物を塗工して硬化させる工程を複数回行ってもよい。
本発明に係る粘着剤層は、部材間の接合乃至密着のほか、誘電層、導電層、放熱層、絶縁層、補強層等から選ばれる他の機能層としての役割を付与されていても良い。特に、本発明にかかる硬化性オルガノポリシロキサンを加熱硬化させてなる半硬化物である粘着剤層は、初期接着性に優れ、かつ、(A)成分に由来する光硬化性の官能基を含むため、高エネルギー線照射をトリガーとして、粘着力が減少し、易剥離性に粘着特性が変化するため、所望の装置またはプロセスで固定乃至接着を行ったあと、高エネルギー線照射によって基材表面から極めて容易に除去可能な硬化密着層を形成するため、一時的な機能層あるいは着脱を前提とする機能層の仮固定等に極めて有用である。
本発明の硬化性オルガノポリシロキサン組成物を加熱硬化してなる粘着剤層、特に、高エネルギー線照射前後で粘着特性の変化を伴う粘着シートである場合、当該粘着剤層は、剥離コーティング能を有する剥離層を備えたフィルム基材上に、剥離可能な状態で密着した積層体フィルムとして取り扱うことが好ましい。剥離層は剥離ライナー、セパレーター、離型層あるいは剥離コーティング層と呼ばれることもあり、好適には、シリコーン系剥離剤、フッ素系剥離剤、アルキド系剥離剤、またはフルオロシリコーン系剥離剤等の剥離コーティング能を有する剥離層、基材表面に物理的に微細な凹凸を形成させたり、本発明の密着層と付着しにくい基材それ自体であってもよい。特に本発明にかかる積層体においては、剥離層として、フルオロシリコーン系剥離剤を硬化させてなる剥離層の使用が好ましい。
本発明に係る粘着剤層は、上記のような特徴的な粘着特性を有し、かつ、透明性と低いヘイズを実現可能であるため、弾性密着層または仮固定層として、各種の電子機器または電気的装置の部材、半導体ウェハの加工時における保護フィルムとして有用である。同様に、電子材料、表示装置用部材またはトランスデューサー用部材(センサ、スピーカー、アクチュエーター、およびジェネレーター用を含む)としても有用であり、当該硬化物の好適な用途は、電子部品または表示装置の部材である。本発明にかかる硬化物は透明でも不透明であってもよいが、フィルム形状の硬化物、特に実質的に透明な保護フィルムは、表示パネルまたはディスプレイ用の部材として好適であり、特に、画面を指先等で接触することにより機器、特に電子機器を操作可能な所謂タッチパネル用途に特に有用である。なお、本発明の硬化物層は透明性が要求されず、密着層自体に一定の伸縮性または柔軟性が求められるセンサ、スピーカー、アクチュエーター等に用いられるフィルム状またはシート状部材の用途に適用してもよい。
[密着テープとしての使用]
本発明の硬化性オルガノポリシロキサン組成物を硬化させてなる硬化層を含む物品は、密着テープ、特に、着脱を前提とする保護テープであってよく、上記の合成樹脂フィルム・シート、金属箔、織布、不織布、紙等の繊維製品からなるシート状部材と上記の密着層を備えることを特徴とする。このような密着テープの種類は、特に制限されるものではなく、絶縁テープ、耐熱テープ、ハンダマスキングテープ、マイカテープバインダー、仮止めテープ(シリコーンゴム部品等の仮止めテープを特に含む)、スプライシングテープ(シリコーン剥離紙用スプライシングテープを特に含む)があげられる。
特に、本発明の硬化性オルガノポリシロキサン組成物を硬化してなる硬化物、特に硬化物層は、所定の方法で測定した粘着力が30gf/25mm以上の強い初期粘着力を実現し、かつ、(A)成分に由来する光硬化性の官能基を含むため、高エネルギー線照射をトリガーとして、基材に対する粘着力が30~99%の範囲で減少し、かつ、易剥離性に粘着特性が変化するため、仮固定等に用いる密着層と基材を比較的強固に密着させることができ、かつ、外観が安定しており、使用後には、紫外線等の光照射によって容易に基材表面から除去可能であるので、表示デバイスや半導体等について、着脱を前提として一時的に使用する機能性フィルムに特に好適に利用可能である。特に、後述する、CRTディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイ、LEDディスプレイ、表面電解ディスプレイ(SED)、電界放出型ディスプレイ(FED)などの表示装置や、これらを利用したタッチパネルの製造時に使用する仮固定用粘着剤として、極めて有用である。
[積層体および密着性シート]
上記のフィルム状基材上に、上記の硬化性シリコーン組成物を硬化してなる硬化密着層を備えた積層体を形成させて良く、好適には、これらのフィルム状基材に当該硬化密着層に対する剥離層が設けられていてもよい。
 前記の積層体では、シート状基材が少なくとも1つの剥離層を備えており、当該剥離層が硬化密着層と接触していることが好ましい。これにより、硬化密着層をシート状基材から容易に剥離することができる。剥離層に含まれる剥離剤は特には限定されるものではなく、上記同様の剥離剤を挙げることができる。
特に、前記の積層体は、フィルム状基材から分離した密着層を単独で取り扱うことができてもよく、フィルム状基材は二つであってもよい。
具体的には、
フィルム状基材、
該フィルム状基材上に形成された第1剥離層、
該剥離層上に上記の硬化性オルガノポリシロキサン組成物を塗工し加熱硬化させて形成された粘着剤層層、及び
該密着層上に積層された第2剥離層
を備えるものであってよい。
同様に、上記の形態の積層体は、例えば、上記の硬化性オルガノポリシロキサン組成物をフィルム状基材上に形成された一方の剥離層上に塗工し硬化させることにより、密着層を形成させ、当該密着層上に、他の剥離層を積層して形成させてもよい。
また、上記の形態の積層体は、例えば、上記の硬化性シリコーン組成物を第1のフィルム状基材及び第2のフィルム状基材に挟み、加熱しつつ、プレス又はロールで一定の厚みに成形した後、前記組成物を硬化させることによって製造してもよい。
 第1のシート基材は第1の剥離層を備えていてもよく、或いは、第1のシート基材自体が剥離性を備えるものであってもよい。同様に、第2のシート基材は第2の剥離層を備えていてもよく、或いは、第2のシート基材自体が剥離性を備えるものであってもよい。第1のシート基材及び/又は第2のシート基材が第1の剥離層及び/又は第2の剥離層を備える場合は、硬化密着層は第1の剥離層及び/又は第2の剥離層に接触することが好ましい。
 剥離性を有するシート基材としては、例えば、フッ素樹脂製フィルム等の剥離性を有する材質からなるシート基材、或いは、ポリオレフィンフィルム等の剥離性がないか若しくは低い材質にシリコーン、フッ素樹脂等の剥離剤を添加したものからなるシート基材が挙げられる。一方、剥離層を備えるシート基材としては、例えば、シリコーン、フッ素樹脂等の剥離剤をコーティングしたポリオレフィンフィルム等が挙げられる。
 前記の積層体は、例えば、硬化密着層を被着体に適用後に、フィルム状基材から密着層を剥離することにより使用することができる。
本発明に係る硬化性オルガノポリシロキサン組成物を加熱硬化して得られる密着層(粘着剤層)の厚みは、5~10000μmであるのが好ましく、中でも10μm以上或いは8000μm以下、その中でも20μm以上或いは5000μmであるのが特に好ましい。
[表示パネルまたはディスプレイ用の部材]
本発明の硬化性オルガノポリシロキサン組成物を加熱硬化して得られる密着層(粘着剤層)は、積層タッチスクリーン又はフラットパネルディスプレイの保護、構築及び利用に使用することができ、その具体的な使用方法は、密着層(例えば、シリコーンPSA、シリコーン接着剤、およびシリコーン封止剤)の公知の使用方法を特に制限なく用いることができる。
本発明にかかる硬化性オルガノポリシロキサン組成物、それを半硬化/硬化して得られる粘着剤層の用途としては、上記に開示した他に何ら制約はなく、当該組成物を硬化してなる硬化物を備えてなるフィルムは文字や記号、画像を表示するための種々の表示装置に利用可能である。このような表示装置の表面形状は、平面ではなく曲面状ないし湾曲した形状であってもよく、各種フラットパネルディスプレイ(FPD)のほか、自動車(電気自動車含む)や航空機等に利用される曲面ディスプレイまたは曲面透過型スクリーンが例示される。さらに、これらの表示装置は、スクリーンやディスプレイ上に機能またはプログラムを実行するためのアイコンや通知表示、操作ボタンに指を触れることで、入力操作が可能となるタッチパネル機能が付加されていてもよい。装置としては、CRTディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイ、LEDディスプレイ、表面電解ディスプレイ(SED)、電界放出型ディスプレイ(FED)などの表示装置や、これらを利用したタッチパネルに応用が可能である。また、当該組成物を硬化してなる硬化物は、基材への密着性と粘弾性特性に優れるため、スピーカー用のメンブレン等のトランスデューサー用部材(センサ、スピーカー、アクチュエーター、およびジェネレーター用を含む)であるフィルム又はシート状部材として利用できるほか、さらに、二次電池、燃料電池または太陽電池モジュールに用いる封止層または密着層として利用することができる。
以下、実施例および比較例によってより本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。また、本発明係る半硬化物の性質上、加熱硬化時には、高エネルギー線の照射を同時に行っていない。
(オルガノポリシロキサン成分の分子量の測定)
Waters社製ゲルパーミエーションクロマトグラフィー(GPC)を用い、テトラヒドロフラン(トルエン)を溶媒として、標準ポリスチレン換算で、オルガノポリシロキサンレジン等のオルガノポリシロキサン成分の重量平均分子量(Mw)、数平均分子量(Mn)を求めた。
(合成例1)
1000mLの4口フラスコに下記平均式:
(MeSiO1/20.411(MeViSiO1/20.06(SiO0.46(SiO(OH))0.07
で表されるMQレジンの60%キシレン溶液333.0g(ビニル基含有量:2質量%、OH基含有量:1.7質量%、以下Vi-MQレジンと表記)、粘度が13Pa・sの両末端シラノール基封鎖ポリジメチルシロキサン200.0g、およびトルエン133.0gを添加し混合した。得られた混合物に対して30%アンモニア水5gを添加して40°Cで8時間攪拌したあと、120°Cでトルエンを還流させることでアンモニアと水を溜去した。平均構造が下記式:
(MeSiO1/20.20(MeViSiO1/20.03(MeSiO)0.50(SiO0.24(SiO(OH))0.03
で表されるレジン―リニア構造含有オルガノポリシロキサンブロックコポリマー溶液を666g得た。
(合成例2)
1000mLの4口フラスコに(合成例1)で得られた縮合混合物666.0gと3-(1,1,3,3-テトラメチルジシロキサニル)プロピル=メタクリラート26.3g、4-メトキシフェノール0.1gを加え混合した。この混合物に対して白金/1,3-ジビニルテトラメチルジシロキサン錯体のトルエン溶液を白金質量換算で2ppmを加え、混合物の温度が40℃~50℃になるように温度調整しながら4時間攪拌し、SiHの消費をIR分光測定にて確認後、反応混合物を冷却し攪拌を停止した。平均構造が下記式:
(MeSiO1/20.206(MeViSiO1/20.013(MeSiO1/20.017(MeSiO)0.50(SiO0.24(SiO(OH))0.03
Figure JPOXMLDOC01-appb-C000004
で表されるメタクリル官能基を有するレジン―リニア構造含有オルガノポリシロキサンブロックコポリマー溶液を692g得た。
(実施例1~7、比較例1~2)
以下に、本発明の実施例及び比較例を記す。
(硬化性のシリコーン組成物の調製)
表1に示す各成分を用いて、各実施例、比較例に示す硬化反応性のオルガノポリシロキサン組成物からなる粘着剤組成物を濃度70%のトルエン溶液として調製した。なお、同表における%は全て質量%である。また、各成分の粘度および可塑度は25℃における測定値であり、組成物中のアルケニル基の和に対するケイ素原子結合水素原子数の物質量比をSiH/Viとして表中に示した。
(a1)合成例(2)に示すレジン―リニア構造含有オルガノポリシロキサン(ビニル基含有量:0.48質量%、メタクリレート基含有量:1.86質量%)
(a2-1)MeSiO1/2で表されるシロキサン単位(M単位)、ViMeSiO1/2で表されるシロキサン単位(MVi単位)、RMeSiO1/2で表されるシロキサン単位(MRA単位:Rは合成例1に記載の一価の置換基である)およびSiO4/2で表されるシロキサン単位(Q単位)からなり、トルエンを溶媒として用いたGPCにより測定される重量平均分子量(Mw)は78,000g/molであり、平均組成がM0.41Vi 0.01RA 0.050.53で表されるオルガノポリシロキサン樹脂(ビニル基含有量:0.41質量%、メタクリレート基含有量:5.19質量%)
(a2-2)粘度37Pa・sの両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン重合物(ビニル基含有量:0.10質量%)
(a´)合成例(1)に示すレジン―リニア構造含有オルガノポリシロキサン(ビニル基含有量:1.14質量%)
(b1)分子内にMeSiO1/2で表されるシロキサン単位(M単位)、及び、SiO4/2で表されるシロキサン単位(Q単位)を1.0:1.0のモル比で含むオルガノポリシロキサン樹脂(トルエンを溶媒として用いたGPCにより測定される重量平均分子量(Mw)は7,000)
(b2)可塑度が170のポリジメチルシロキサン生ゴム
(b3)(b1)成分と(b2)成分の質量比60:40の縮合反応物
(c)2,2-ジメトキシ-2-フェニルアセトフェノン(東京化成工業製)
(d)分子内にMeSiO1/2で表されるシロキサン単位(M単位)、ViMeSiO1/2で表されるシロキサン単位(MVi単位)、及び、SiO4/2で表されるシロキサン単位(Q単位)を0.41:0.06:0.53のモル比で含み、トルエンを溶媒として用いたGPCにより測定される重量平均分子量(Mw)が7,200であるオルガノポリシロキサン樹脂(ビニル基含有量:2.40質量%)
(e)粘度5.2mPa・sの両末端トリメチルシロキシ基封鎖ジメチルシロキシ・メチルハイドロジェンシロキシ共重合物(SiH基のハイドロジェン基含有量:0.75質量%)
(f)白金-1,3-ジビニル1,1,3,3-テトラメチルジシロキサン錯体の両末端ビニルジメチルシロキシ基封鎖ジメチルシロキサンポリマー溶液(白金濃度で約0.7質量%)
(g)1-エチニル-1-シクロヘキサノール(東京化成工業製)
(初期および紫外線照射後の粘着力測定)
各組成物を、PETフィルム(株式会社東レ製、製品名ルミラー(登録商標)S10、厚さ50μm)に硬化後の厚みが20μmとなるように塗工し、130℃で3分間硬化させた。30分放置後、同試料を幅25mmに切断し、粘着層面をSUS板(パルテック製)にローラーを用いて貼り合せて試験片とした。SUS板に対し、JIS Z 0237に従う180°引き剥がし試験方法を用いて引張速度300mm/minにより測定された粘着力(gf/25mm)を「初期粘着力」として表1に示した。また、同試験片にUV-LED紫外線照射装置(JATEC社製)を用いて、PET面側から、紫外線照射量(照度)が積算光量として2,000mJ/cmとなるように波長365nmの紫外線を照射し、紫外線照射後の試験片の粘着力(gf/25mm)を上記と同様にして測定し、「紫外線照射後の粘着力」として、表1に示した。
Figure JPOXMLDOC01-appb-T000005

*粘着力が減少せず、紫外線照射により粘着力が増大した。
表1に示すとおり、実施例1~7に係る本発明の硬化性オルガノポリシロキサン組成物の加熱硬化物(=半硬化物)は、初期粘着力が30gf/25mm以上であって、強固な仮固定および基材間の密着が可能である。さらに、当該粘着層は、紫外線照射によって、その粘着力が大きく低下し、易剥離性へと粘着特性が変化し、かつ、その透明性を維持していた。このため、半導体ウェハ等、表示装置や電子デバイス等の製造工程で使用した場合、保護フィルム、仮固定フィルム等として有用性に優れることが期待される。
他方、(B)成分を併用していない比較例1にあっては、十分な初期粘着力が実現できず、易剥離性も実現できなかった。また、(A)成分を含まない比較例2にあっては、紫外線照射により大きく粘着力が増大し、易剥離性が全く実現できないものであった。

Claims (15)

  1. (A)以下の(A1)成分~(A3)成分から選ばれる1種類以上の(メタ)アクリル基含有オルガノシロキサン成分 100質量部
    (A1):R a (3-a)SiO1/2(Rはアクリル基またはメタクリル基を含むケイ素原子結合官能基であり、RはRを除く一価有機基であり、aは1~3の範囲の数)で表されるシロキサン単位(MRA単位)、RB´ SiO1/2(RB´はRを除く一価有機基であり、RB´の少なくとも1個はアルケニル基である)で表されるシロキサン単位(MAlk単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アクリル基またはメタクリル基を有する樹脂状オルガノシロキサンブロックXと、{R SiO2/2β(Rは一価有機基であり、βは2以上の数)で表されるシロキサン単位を有する鎖状オルガノシロキサンブロックYとを有し、かつ、分子内に少なくとも1個のアルケニル基を有する、レジン―リニア構造含有オルガノポリシロキサンブロックコポリマー 
    (A2):以下の(A2-1)成分と(A2-2)成分を質量比1:99~80:20で混合したオルガノシロキサン混合物:
    (A2-1)R a (3-a)SiO1/2(Rはアクリル基またはメタクリル基を含むケイ素原子結合官能基であり、RはRを除く一価有機基であり、aは1~3の範囲の数)で表されるシロキサン単位(MRA単位)、RB´ SiO1/2(RB´はRを除く一価有機基であり、RB´の少なくとも1個はアルケニル基である)で表されるシロキサン単位(MAlk単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アクリル基またはメタクリル基を有する樹脂状オルガノポリシロキサン
    (A2-2)分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサン
    (A3):以下の(A3-1)~(A3-3)成分を混合したオルガノシロキサン混合物

    (A3-1)R a (3-a)SiO1/2(Rはアクリル基またはメタクリル基を含むケイ素原子結合官能基であり、RはRを除く一価有機基であり、aは1~3の範囲の数)で表されるシロキサン単位(MRA単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アクリル基またはメタクリル基を有する樹脂状オルガノシロキサン
    (A3-2)RB´ SiO1/2(RB´はRを除く一価有機基であり、RB´の少なくとも1個はアルケニル基である)で表されるシロキサン単位(MAlk単位)およびSiO4/2表されるシロキサン単位(Q単位)を含む、アルケニル基を有する樹脂状オルガノポリシロキサン
    (A3-3)分子内に2つのアルケニル基を有する直鎖状オルガノポリシロキサン
    (B)分子内に炭素―炭素多重結合を含有しないシロキサン成分 1~50質量部
    (C)光ラジカル重合開始剤 0.1~10質量部
    を含有する、硬化性オルガノポリシロキサン組成物。
  2. さらに、(D)分子内に1つ以上のアルケニル基を含有してなり、RSiO1/2(式中、Rは互いに独立して一価有機基を表す)で表されるシロキサン単位(M単位)、およびSiO4/2表されるシロキサン単位(Q単位)を含有してなり、Q単位1モルに対するM単位の物質量比が0.5~2.0の範囲にあるオルガノポリシロキサン樹脂 0~50質量部
    を含む、請求項1に記載の硬化性オルガノポリシロキサン組成物。
  3. さらに、(E)分子内に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンおよび(F)ヒドロシリル化反応触媒を含有する、請求項1または請求項2に記載の硬化性オルガノポリシロキサン組成物。
  4. (A)成分の少なくとも一部が、(A1-1)前記の樹脂状オルガノシロキサンブロックXと前記の鎖状オルガノシロキサンブロックYを構成するケイ素原子間が、シロキサン結合またはシルアルキレン結合により連結された構造を有するレジン―リニア構造含有オルガノポリシロキサンブロックコポリマーである、請求項1~請求項3のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  5. (A)成分の少なくとも一部が、(A1-2)RB´´ SiO1/2(RB´´はアルキル基またはフェニル基)で表されるシロキサン単位(M単位)、上記のMRA単位、MAlk単位およびQ単位を含有してなり、Q単位1モルに対するM単位、MRA単位およびMAlk単位の物質量の和が0.5~2.0モルの範囲にある樹脂状オルガノシロキサンブロックXを含むことを特徴とするレジン―リニア構造含有オルガノポリシロキサンブロックコポリマーである、請求項1~請求項4のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  6. (A)成分の少なくとも一部が、(A1-1―1)前記の樹脂状オルガノシロキサンブロックXと、{R SiO2/2β1(Rは一価有機基であり、β1は5~5000の範囲の数)で表されるシロキサン単位を有する鎖状オルガノシロキサンブロックYからなり、かつ、ブロックXとブロックYが、ケイ素原子間のシロキサン結合により連結された構造を有することを特徴とするレジン―リニア構造含有オルガノポリシロキサンブロックコポリマーである、請求項1~請求項5のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  7. (A)成分の少なくとも一部が、(A1-3)Q単位1モルに対するMRA単位の物質量が0.02~0.50モルの範囲にある樹脂状オルガノシロキサンブロックXを含むことを特徴とするレジン―リニア構造含有オルガノポリシロキサンブロックコポリマーである、請求項1~請求項6のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  8. (A)成分中のケイ素原子結合官能基Rが下記一般式(1)で表される官能基である、請求項1~請求項7のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは互いに独立して水素原子、メチル基、またはフェニル基を表し、Rは互いに独立してアルキル基またはアリール基を表す。Zは-O(CH-(mは0~3の範囲の数)を表す。Zは*であるポリシロキサンの主鎖を構成するケイ素原子に結合する-C2n-(nは2~10の範囲の数)で表される2価の有機基である。]
  9. (B)成分が、以下の(B1)~(B3)成分から選ばれる1種類以上の炭素―炭素多重結合を含有しないシロキサン成分である、請求項1~請求項8のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
    (B1)分子内にRSiO1/2(式中、Rは互いに独立して炭素―炭素多重結合を含有しない一価有機基を表す)で表されるシロキサン単位(M単位)、およびSiO4/2表されるシロキサン単位(Q単位)を含有してなり、Q単位1モルに対するM単位の物質量比が0.5~2.0の範囲にあるオルガノポリシロキサン樹脂
    (B2)直鎖または分岐状ジオルガノポリシロキサン
    (B3)(B1)成分および(B2)成分がシロキサン結合で連結されたオルガノポリシロキサン樹脂
  10. (B)成分の少なくとも一部が、(B3-1)数平均分子量10万以上の、上記の(B1)成分および(B2)成分の縮合反応物である、請求項1~請求項9のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  11. 加熱硬化性および高エネルギー線の照射による光硬化性を併有することを特徴とする、請求項1~請求項10のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  12. 加熱硬化反応によって得られたオルガノポリシロキサン半硬化物を、他の基材に対して密着させた場合に、その基材に対する粘着力が、高エネルギー線の照射に伴う光硬化反応の前後で50%以上減少することを特徴とする、請求項1~請求項11のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  13. 請求項1~請求項12のいずれか1項に記載の硬化性オルガノポリシロキサン組成物を含む、オルガノポリシロキサン粘着剤組成物。
  14. 請求項1~請求項12のいずれか1項に記載の硬化性オルガノポリシロキサン組成物を硬化ないし半硬化させてなる、オルガノポリシロキサン粘着剤層。
  15. 工程(I):請求項13に記載のオルガノポリシロキサン粘着剤組成物を基材上に塗布する工程、
    工程(II):工程(I)で塗布したオルガノポリシロキサン粘着剤組成物を加熱硬化反応により半硬化させる工程、
    工程(III):工程(II)により得た半硬化物に、高エネルギー線を照射し、光硬化反応によりさらに硬化させる工程
    を含み、工程(III)における高エネルギー線の照射により、工程(II)で得た半硬化物の他の基材に対する粘着力が変化することを特徴とする、オルガノポリシロキサン粘着剤組成物の使用方法。
PCT/JP2022/046170 2021-12-24 2022-12-15 硬化性オルガノポリシロキサン組成物およびそれを含む粘着剤組成物 WO2023120356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280077773.2A CN118302500A (zh) 2021-12-24 2022-12-15 固化性有机聚硅氧烷组合物以及包含其的粘合剂组合物
KR1020247024421A KR20240127414A (ko) 2021-12-24 2022-12-15 경화성 오가노폴리실록산 조성물 및 이를 포함하는 점착제 조성물
JP2023569365A JPWO2023120356A1 (ja) 2021-12-24 2022-12-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-210695 2021-12-24
JP2021210695 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023120356A1 true WO2023120356A1 (ja) 2023-06-29

Family

ID=86902513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046170 WO2023120356A1 (ja) 2021-12-24 2022-12-15 硬化性オルガノポリシロキサン組成物およびそれを含む粘着剤組成物

Country Status (4)

Country Link
JP (1) JPWO2023120356A1 (ja)
KR (1) KR20240127414A (ja)
CN (1) CN118302500A (ja)
WO (1) WO2023120356A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066572A1 (ja) * 2016-10-04 2018-04-12 東レ・ダウコーニング株式会社 新規レジン-リニアオルガノポリシロキサンブロックコポリマー、その用途、およびその製造方法
JP2021501813A (ja) * 2017-10-27 2021-01-21 ダウ シリコーンズ コーポレーション 硬化性ポリオルガノシロキサン組成物、当該組成物を硬化することにより得られる硬化体、およびそれを含む電子デバイス
JP2022501460A (ja) * 2018-10-01 2022-01-06 ダウ・東レ株式会社 光硬化性オルガノポリシロキサン組成物およびその硬化物
JP2022524781A (ja) * 2019-03-14 2022-05-10 ダウ シリコーンズ コーポレーション ポリ(メタ)アクリレート基を有するポリオルガノシロキサンならびにそれを調製および使用するための方法
WO2022186138A1 (ja) * 2021-03-05 2022-09-09 ダウ・東レ株式会社 共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物
WO2022186137A1 (ja) * 2021-03-05 2022-09-09 ダウ・東レ株式会社 共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物
WO2022234802A1 (ja) * 2021-05-07 2022-11-10 ダウ・東レ株式会社 紫外線硬化性シリコーン組成物及びその硬化物、積層体、並びに光学装置又は光学ディスプレイ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631081B2 (ja) 2010-07-05 2014-11-26 日東電工株式会社 活性エネルギー線硬化型再剥離用粘着剤
JP5781302B2 (ja) 2010-12-28 2015-09-16 日東電工株式会社 放射線硬化型粘着剤組成物及び粘着シート
JP5914024B2 (ja) 2012-02-16 2016-05-11 日東電工株式会社 放射線硬化型粘着剤組成物の製造方法、該製造方法で得られた放射線硬化型粘着剤組成物、および、該粘着剤組成物を用いた粘着シート
JP5735446B2 (ja) 2012-03-27 2015-06-17 信越化学工業株式会社 オルガノポリシロキサン組成物、該オルガノポリシロキサン組成物の硬化方法、及び発光ダイオード
KR102596174B1 (ko) 2019-09-23 2023-10-30 삼성중공업 주식회사 추진장치
KR102246780B1 (ko) 2019-09-23 2021-04-30 금호석유화학 주식회사 수율이 제고되며 생산성이 향상된 san 수지의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066572A1 (ja) * 2016-10-04 2018-04-12 東レ・ダウコーニング株式会社 新規レジン-リニアオルガノポリシロキサンブロックコポリマー、その用途、およびその製造方法
JP2021501813A (ja) * 2017-10-27 2021-01-21 ダウ シリコーンズ コーポレーション 硬化性ポリオルガノシロキサン組成物、当該組成物を硬化することにより得られる硬化体、およびそれを含む電子デバイス
JP2022501460A (ja) * 2018-10-01 2022-01-06 ダウ・東レ株式会社 光硬化性オルガノポリシロキサン組成物およびその硬化物
JP2022524781A (ja) * 2019-03-14 2022-05-10 ダウ シリコーンズ コーポレーション ポリ(メタ)アクリレート基を有するポリオルガノシロキサンならびにそれを調製および使用するための方法
WO2022186138A1 (ja) * 2021-03-05 2022-09-09 ダウ・東レ株式会社 共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物
WO2022186137A1 (ja) * 2021-03-05 2022-09-09 ダウ・東レ株式会社 共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物
WO2022234802A1 (ja) * 2021-05-07 2022-11-10 ダウ・東レ株式会社 紫外線硬化性シリコーン組成物及びその硬化物、積層体、並びに光学装置又は光学ディスプレイ

Also Published As

Publication number Publication date
JPWO2023120356A1 (ja) 2023-06-29
CN118302500A (zh) 2024-07-05
KR20240127414A (ko) 2024-08-22

Similar Documents

Publication Publication Date Title
JP7174696B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JP7046196B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JP7046198B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JP7469232B2 (ja) シリコーン粘着剤組成物およびその用途
JP7046197B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
TW201630982A (zh) 含有氟烷基之硬化性有機聚矽氧烷組合物、其硬化物及具備該硬化物之電子零件或顯示裝置
JP7491655B2 (ja) シリコーン感圧接着剤組成物およびその用途
TW201807074A (zh) 高介電性薄膜、其用途以及製造方法
WO2022186138A1 (ja) 共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物
WO2021029413A1 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JPWO2018186161A1 (ja) 硬化反応性のオルガノポリシロキサン組成物、それを用いた感圧接着剤組成物、およびその使用
WO2021029414A1 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2021029412A1 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2022138345A1 (ja) シリコーン粘着剤組成物およびその用途
WO2022186137A1 (ja) 共変性オルガノポリシロキサンおよびそれを含む硬化性オルガノポリシロキサン組成物
WO2023120356A1 (ja) 硬化性オルガノポリシロキサン組成物およびそれを含む粘着剤組成物
CN115777004B (zh) 固化性有机硅组合物及其固化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569365

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280077773.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247024421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE