WO2023120167A1 - 測量システムおよび測量方法 - Google Patents

測量システムおよび測量方法 Download PDF

Info

Publication number
WO2023120167A1
WO2023120167A1 PCT/JP2022/044938 JP2022044938W WO2023120167A1 WO 2023120167 A1 WO2023120167 A1 WO 2023120167A1 JP 2022044938 W JP2022044938 W JP 2022044938W WO 2023120167 A1 WO2023120167 A1 WO 2023120167A1
Authority
WO
WIPO (PCT)
Prior art keywords
targets
surveying
terminals
point
target
Prior art date
Application number
PCT/JP2022/044938
Other languages
English (en)
French (fr)
Inventor
良彦 郷家
圭介 庄司
雄紀 久保
基広 宮嶋
義弘 西
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2023120167A1 publication Critical patent/WO2023120167A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers

Definitions

  • the present invention relates to surveying technology using targets.
  • the work at the construction site includes surveying.
  • the points specified on the drawing (hereinafter referred to as “stake points") are specified at the site, and stakes are driven or marked there.
  • stake points As a classical method for this work, a method using a total station and a target is known.
  • the target held by the worker is positioned using a total station with a laser positioning function.
  • Patent Document 1 the technique described in Patent Document 1 is known for this induction technique.
  • the present invention aims to provide an effective technique for guiding a worker in surveying using a plurality of targets.
  • the present invention is a system comprising a surveying device, a plurality of targets surveyed by the surveying device, and a plurality of terminals provided corresponding to the plurality of targets and having a GNSS positioning function,
  • the plurality of targets and the plurality of terminals correspond to each other on a 1:1 basis, the corresponding targets and the terminals move together, and in each of the terminals, a predetermined installation planned position of the target and the It is a surveying system that displays its own positioning position measured by the GNSS positioning function on the display screen of the terminal.
  • the order of surveying the plurality of targets by the surveying device is displayed on the display screen.
  • one of the predetermined installation positions of the target is assigned to one of the plurality of terminals, and the assigned position of the target is displayed on the display screen of the terminal. The aspect to be carried out is mentioned.
  • the number of the plurality of targets is N
  • the number of planned installation positions of the targets is M
  • the N targets assigned to the plurality of terminals are the surveying device. or the side closest to one of the plurality of terminals is selected in order.
  • a next planned installation position is specified for a terminal corresponding to a target that has been surveyed by the surveying device, and the next planned installation position is assigned among the planned installation positions. and the installation position closest to the position of the target for which the survey has been completed is selected from among the planned installation positions.
  • a plurality of reference points are provided around an area in which the plurality of targets are installed, a local coordinate system is set in the area based on the plurality of reference points, and the Based on GNSS positioning data obtained by performing GNSS positioning of the plurality of reference points by at least one of a plurality of terminals, localization processing that performs localization processing in which the relationship between the GNSS positioning value and the local coordinate system is obtained.
  • the positioning data obtained by one of the plurality of targets and the GNSS positioning data of the terminal corresponding to the target are compared with each other, and the GNSS positioning data of the plurality of terminals are calibrated. are mentioned.
  • the present invention is a surveying method using a surveying device, a plurality of targets surveyed by the surveying device, and a plurality of terminals provided corresponding to the plurality of targets and having a GNSS positioning function,
  • the plurality of targets and the plurality of terminals respectively correspond to each other on a 1:1 basis, and the corresponding targets and terminals move together, and each of the terminals moves with a predetermined installation planned position of the target.
  • This is a surveying method for displaying the positioning position of the terminal itself measured by the GNSS positioning function on the display screen of the terminal.
  • FIG. 4 is a diagram showing a flowchart showing an example of a procedure of processing; It is a figure which shows a work map. It is a figure which shows an example of the screen displayed on the screen of the terminal which a surveyor holds.
  • FIG. 4 is a diagram showing an example of a screen displayed on the screen of the terminal held by Prism Man.
  • FIG. 4 is a diagram showing an example of a screen displayed on the screen of the terminal held by Prism Man.
  • FIG. 4 is a conceptual diagram illustrating an example of a method of determining the placement of a Prism Man with respect to a survey setting point; It is a figure explaining a local coordinate system.
  • FIG. 4 is a diagram illustrating an example of a target device;
  • FIG. 1 shows a total station 100, which is a surveying device having a positioning function using laser light, and a surveyor 110 who supervises work on site.
  • a surveyor holds a smartphone 111 as an operation terminal.
  • reflecting prisms 141 to 145 are used as targets used for measuring.
  • the reflecting prisms 141 to 145 are held and supported by prism men 121 to 125 who are workers, and are installed at the survey setting points.
  • the reflecting prisms 141 to 145 are optical targets for surveying that invert and reflect incident light by 180°.
  • the reflecting prisms 141 to 145 are omnidirectional reflecting prisms capable of responding to incident light from all directions. A reflecting prism that can respond to incident light from a specific direction can also be employed.
  • the reflecting prism 141 is fixed to the upper end of the pole 141a.
  • the prism man 121 holds the pole 141 a by hand and supports the reflecting prism 141 .
  • the prism man 121 moves while holding the pole 141a to set the reflecting prism 141 at a predetermined position.
  • the total station 100 captures the reflecting prism 141 and continuously measures the position of the reflecting prism 141 while tracking the moving reflecting prism 141 .
  • the prism man 121 brings the lower end of the pole 141a into contact with the ground to determine that point as the staking point.
  • the above is the same for the other reflecting prisms 142-145.
  • Prismmen 121 to 125 carry smartphones 131 to 135 as terminals, respectively.
  • the smartphone 111 and the smartphones 131 to 135 are ordinary commercially available ones, and have a positioning function by GNSS (Global Navigation Satellite System), a communication function using a mobile phone network, and a wireless LAN (Local area network). It has a communication function using , and a communication interface using other wires.
  • GNSS Global Navigation Satellite System
  • a communication function using a mobile phone network and a wireless LAN (Local area network). It has a communication function using , and a communication interface using other wires.
  • control computer 200 transmits data necessary for guiding Prism Man 121 to 125 to smartphones 131 to 135, and smartphones 131 to 135 display a guide screen for guiding each Prism Man to a survey setting point. Is displayed.
  • the prism men 121 to 125 move with the reflecting prisms they are in charge of, and carry out the measuring work.
  • the smartphones 131 to 135 may be fixed to poles that support the reflecting prisms, and the smartphones and the reflecting prisms may be structurally integrated.
  • the reflecting prisms 141-145 correspond to the smartphones 131-135 on a 1:1 basis, and the corresponding target and terminal move together. That is, the reflecting prism 141 is held and supported by the prism man 121 carrying the smart phone 131 . Therefore, the reflecting prism 141 and the smart phone 131 move together with the prism man 121 while maintaining a 1:1 relationship.
  • This point is the same for the reflecting prism 142 and the smartphone 132, the reflecting prism 143 and the smartphone 133, the reflecting prism 144 and the smartphone 134, and the reflecting prism 145 and the smartphone 135.
  • FIG. 2 is a block diagram of control computer 200. As shown in FIG.
  • the control computer 200 is configured using a PC (personal computer).
  • the control computer 200 may be configured with dedicated hardware.
  • a form in which the control computer 200 is built in the total station 100 is also possible.
  • a PC that constitutes the control computer 200 is connected to the total station 100 via wireless LAN connection or USB connection.
  • a configuration in which the control computer 100 is implemented by a data processing server is also possible. In this case, communication is performed between the data processing server, the total station 100, and the smartphones 111, 131-135.
  • the control computer 200 controls the total station 100 and processes data displayed on the smartphones 111, 131-135.
  • the control computer 200 includes an operation reception unit 201, a positioning data reception unit 202, a localization processing unit 203, a survey setting point data reception unit 204, a work map creation unit 205, a positioning order determination unit 206, a prism man assignment unit 207, and a notification It has a signal generation unit 208 , a control signal generation unit 209 , a data storage unit 210 and a communication unit 211 .
  • the operation reception unit 201 receives the operation of the control computer 200 by the surveyor 110 .
  • the total station 100 is operated by operating the smart phone 111 held by the surveyor 110 .
  • the smartphone 111 is operated, the details of the operation are sent to the control computer 200 and accepted by the operation accepting unit 201 .
  • the positioning data reception unit 202 receives the positioning data of the total station 100, the GNSS positioning data of the smartphone 111, and the GNSS positioning data of the smartphones 131-135.
  • the localization processing unit 203 performs the processing of step S102 in FIG.
  • the survey setting point data reception unit 204 performs the process of step S103 in FIG.
  • the work map creation unit 205 performs the process of step S104 in FIG.
  • the positioning order determining unit 206 performs the process of step S105 in FIG.
  • the Prismman assigning unit 207 performs the process of step S106 in FIG.
  • the notification signal generation unit 208 generates notification signals to be sent to the smartphone 111 and the smartphones 131-135.
  • a control signal generator 209 generates a control signal for controlling the total station 100 .
  • the data storage unit 210 stores data necessary for the operation of the control computer 200, programs, and data obtained as a result of the operation. A form in which data is stored in an external storage medium is also possible.
  • the communication unit 211 communicates with external devices. Communication is performed using a telephone line, a wireless LAN, USB standard wired communication, or the like.
  • the positions of the staking points are specified in advance in the drawing created on the local coordinate system set at the construction site.
  • the construction site does not use the absolute coordinate system (of course, the use of the absolute coordinate system is not excluded).
  • the absolute coordinate system is a coordinate system used in GNSS and maps, and coordinates are described by, for example, latitude, longitude, and altitude.
  • FIG. 1 An example of the local coordinate system is shown in FIG.
  • the construction area map is described on a local coordinate system determined by reference points T1 to T6.
  • the setting of the local coordinate system will be described below.
  • the reference points T1 to T6 are arranged so as to surround the construction area.
  • the installation positions of T1 to T6 may be appropriate (roughly).
  • the positions of T1 to T6 are measured by the total station 100 installed at an appropriate position.
  • a local coordinate system can be set in which the coordinates of T1 to T6 are described with an appropriate position as the origin.
  • the exterior orientation elements (position and orientation) in the local coordinate system of the total station are determined by the retrosection method with T1 to T6 as references.
  • the survey setting points are set at points that serve as landmarks, such as the corner points of the partition, in the local coordinate system. Further, for example, if a building is to be built within the construction area, the survey setting point is set at the point where the building is to be built in the local coordinate system.
  • the data of the measuring points are stored in the data storage unit 210, for example.
  • the control for directing the total station 100 to the target of positioning is performed by a motor drive, and the surveyor (operator who operates the total station) 110 simply performs an operation to instruct the start of the processing related to the measurement. shall be started. It is also possible for a surveyor to manually direct the total station 100 to the target of positioning.
  • the staking points are set in advance within the construction area using the local coordinate system set by the method described above.
  • prism men There are five workers (reference numerals 121 to 125) with reflecting prisms (hereinafter referred to as prism men). Note that the number of Prismmen is not limited to five, but is assumed to be five here.
  • Each of the five Prismmen carries a terminal with GNSS positioning capabilities.
  • smartphones 131 to 135 are used as terminals. The smartphones 131 to 135 are capable of communication using a mobile phone network and communication using a wireless LAN.
  • the smartphones 131-135 held by the Prismmen 121-125 are given identification codes.
  • a surveyor (or operator) 110 who operates the total station also carries a terminal (smartphone in this example) 111 having a GNSS positioning function.
  • FIG. 3 is a flow chart showing an example of a procedure of processing.
  • a program for executing the flowchart of FIG. 3 is stored in the data storage unit 210 and executed by the CPU of the control computer 200 . It is also possible to store the program in an appropriate storage medium and read it out from there to execute it.
  • a reference point is positioned on the local coordinate system to be used, and a calibration process is performed to determine the position and orientation of the total station 100 on the local coordinate system (step S101). For example, in the example of FIG. 9, two or more reference points T1 to T6 are positioned, and the exterior orientation elements (position and attitude) of the total station 100 in the local coordinate system are obtained.
  • step S102 localization processing is performed so that the GNSS positioning data of each smartphone can be used on the local coordinate system.
  • the localization process will be described below with reference to FIG.
  • Fig. 9 the construction area where the staking points are set is described by the local coordinate system.
  • the relationship between this local coordinate system and the absolute coordinate system is not clear. Therefore, the GNSS positioning data of the smartphones 131 to 135 and 111 are made available in the local coordinate system. This processing is localization processing.
  • one of the prism men or the surveyor 110 goes to the reference points T1 to T6 and performs GNSS positioning.
  • This positioning data is sent to the control computer 200 .
  • the positions of reference points T1-T6 are measured by total station 100 and the position data is sent to control computer 200.
  • FIG. The control computer 200 compares the position of the reference point in the local coordinate system being used with the GNSS positioning data of the reference point using the smartphone, and obtains the relationship between the two.
  • the position of the reference point T1 in the absolute coordinate system (the position measured by GNSS) and the position of the reference point T1 in the local coordinate system (the position measured by the total station 100) are known, and the correspondence between the two is obtained.
  • the relationship between the absolute coordinate system and the local coordinate system used here can be clarified.
  • the GNSS positioning values from each smartphone can be specified on the local coordinate system used here.
  • the GNSS positioning of a smartphone has an error of up to several meters, so the above relationship between the absolute coordinate system and the local coordinate system includes an error.
  • the position of the smartphone carried by each Prism Man and the position of the reflecting prism do not match, so the difference is also included in the error.
  • step S102 The process of obtaining the relationship between the GNSS positioning data of the smartphone and the local coordinate system is performed in step S102.
  • This processing is performed in one smartphone, and the result is transmitted to other smartphones. In this way, each smartphone can measure the position on the local coordinate system at the site using GNSS.
  • step S103 the position of the staking point is acquired (step S103). After that, the process proceeds to step S104 to create a work map.
  • This work map is described on the local coordinate system, and the positions of the total station 100 and the positions of the survey setting points are written therein.
  • FIG. 4 An example of the work map is shown in Figure 4. Based on the work map in FIG. 4, a map screen to be displayed on the smartphone 111 held by the surveyor 110 who operates the total station 100 and a map screen to be displayed on the smartphones 131 to 135 held by each prism man are created.
  • step S105 the order (order) for positioning the staking points is determined (step S105).
  • the processing is performed as follows. First, five staking points are selected in order of proximity to the total station. Next, the positioning order for the 1st, 2nd, .
  • the five measurement points determined in the order of measurement in step S105 are assigned to each of the five smartphones (five Prismmen) (step S106). That is, the first staking point is assigned to the first smartphone (first Prismman), the second staking point is assigned to the second smartphone (second Prismman), and the third staking point is assigned. is assigned to the third smartphone (third Prismman), the fourth staking point is assigned to the fourth smartphone (fourth Prismman), and the fifth staking point is assigned to the fifth smartphone (fifth Prismman).
  • the total station 100 is instructed to start the process of specifying the surveying points (pile driving process).
  • the surveyor 110 operates the smartphone 111 functioning as an operation terminal and instructs the total station 100 to perform stakeout processing.
  • step S104 When the start of the above process is instructed, the work map created in step S104, the order of measurement determined in step S105, and the assignment information to the smartphone assigned in step S106 are transferred to the smartphone 111 of the surveyor 110, the It is wirelessly transmitted to the first to fifth smartphones 131 to 135 (step S107).
  • each smartphone identifies the transmission to itself from among them and acquires the contents.
  • the smartphone 111 Upon receiving the above transmission, the smartphone 111 displays a guide map displaying the information required by the surveyor 110 on its own display screen. For example, a screen displaying the positions of the total station 100 and the staking points and the order of staking is displayed on the display screen of the smartphone 111 .
  • FIG. 5 An example of the guide map displayed on the display screen of the smartphone 111 is shown in FIG.
  • centering on the position of the total station 100, the staking points whose order of positioning is determined, the order of the staking points, the next staking point to be positioned, and the staking points whose order of positioning is not decided can be identified. is displayed.
  • FIG. 5 it is also possible to display the position of Prism Man.
  • FIG. 6 shows an example of the guide map displayed on the smartphones 131-135 of the Prism Man 121-125.
  • FIG. 6 shows a guide map displayed on a specific terminal. In FIG. 6, it is also possible to display another Prism Man or another setting point.
  • the guide map is customized specifically for each Prismman.
  • the position of the total station 100, the position of the staking point to be handled by the prism man, his own position, and the order of positioning (order of piling work: number of people waiting) are displayed.
  • the position of the Prism Man is the position measured using GNSS by the smartphone possessed by the Prism Man.
  • the result of the localization processing performed in step S102 is used, and the position of the smartphone obtained by GNSS positioning is embedded in the guide map described on the local coordinate system.
  • Prismman moves to the staking point with reference to this guide map. It should be noted that, when the own reflecting prism becomes the object of positioning, a display or a blinking display is performed to inform the effect, so that the Prism Man can recognize that effect.
  • the map screen displayed on the terminal As for the map screen displayed on the terminal, the form in which it is created on the control computer 200 side and sent to the terminal, the basic work map data of FIG. Both forms are possible.
  • the total station 100 After the transmission in step S107 is performed, the total station 100 is instructed to aim at the vicinity of the staking point to be positioned at that time, and to start searching for a reflecting prism in the vicinity (step S108). . At this time, the total station 100 performs the above search by autonomous control using its own motor drive function. A function of searching for a target of a total station is described, for example, in Japanese Patent Application Laid-Open No. 2009-229192.
  • each prism man upon receiving the transmission in step S107, each prism man sees the guide map (see FIG. 6) on the screen of the smartphone he/she carries, and holds the reflecting prism at the measuring point assigned to him/herself. Moving. Movement is assumed to be on foot, but movement in vehicles is not excluded.
  • the total station 100 captures the reflecting prism held by the Prism Man by the target capture function of the total station 100 .
  • step S109 it is determined whether or not the total station 100 has captured the reflecting prism (step S109), and when the reflecting prism has been captured, positioning of the reflecting prism at the measurement setting point is started (step S110). Positioning is continuously performed thereafter.
  • step S111 guidance processing is performed to guide the Prism Man to the surveying point.
  • information about the difference between the measuring point and the position of the reflecting prism being positioned is sent to the target smartphone.
  • the smartphone displays the direction of the staking point and the distance to it. Seeing this display, the prism man moves onto the staking point and acts to match the position of the reflecting prism on the horizontal plane with the staking point.
  • This technology is described, for example, in Japanese Patent Application Laid-Open No. 2012-225697.
  • the display of the corresponding smartphone switches from FIG. 6 to the detailed guide display of FIG.
  • the detailed guide display in FIG. 7 concentric circles centering on the measuring point and positioning positions (black circles in the figure) of the reflecting prism held by Prism Man are displayed. Seeing this display, the Prism Man approaches the staking point and installs the Reflecting Prism there.
  • the surveyor who operates the total station directly calls out to the Prismman to guide him.
  • step S113 When the measurement point and the positioning point of the reflecting prism (usually the position on the horizontal plane) match, record that effect and notify the smartphone of the completion of positioning (step S113). Upon receiving this notification, the Prismman carries out operations such as driving stakes at the fixed surveying points and marking.
  • step S114 it is determined whether or not there is a next staking point (step S114), and if there is a next staking point, the processing from step S105 onwards is executed again. At this time, since the processing for the Nth staking point is shifted to the processing for the (N+1)th staking point, the order of processing is advanced.
  • step S105 the second set point to the sixth set point are selected as the next set of five set points (in this example, in step S105, five set points are selected). point).
  • the sixth staking setting point has not been selected before this time, and among the unselected staking setting points, the closest staking point to the total station is selected. That is, the sixth survey setting point is selected as the next closest survey setting point to the total station after the fifth survey setting point.
  • the allocation of the Prism Man in step S106 is changed to correspond to the second to sixth staking points.
  • the second staking point is changed (advance processing) so that it becomes the next point to be positioned at this stage, and the third staking point is next next at this stage. It is changed to become a target point for positioning.
  • the first prism man who has completed the work is assigned a sixth stake setting point, which is a new stake setting point.
  • the new relationship between the shifted order and position is transmitted to each smartphone in the next step S107. Specifically, a new guide map updated with respect to the processing in steps S105 and S106 or correction information of the guide map is transmitted to each smartphone.
  • the guide map on the smartphone of the 3rd Prism Man who is in charge of the 3rd staking point, will initially display "2 people waiting”. Then, when the process for the first staking point is completed, the display is changed to "waiting number of people 1", and when the process for the second staking point is completed, the display is changed to "waiting number of people 0". It is possible to recognize that it is your turn next.
  • the Prism Man 123 in FIG. 1 is in charge of the first staking point and the positioning of the first staking point is completed.
  • the guide map displayed on the smartphone 133 is updated, and a new survey setting point that was not selected before is displayed on the guide map as the next target survey setting point.
  • the display is updated to show the number of people who have been moved up by one.
  • the display on the smartphone 111 is updated. In this way, positioning by the total station is sequentially performed for a plurality of survey setting points. Also, the display on the terminal is appropriately updated to the latest at that time.
  • Mode 1 A mode is also possible in which the surveyor 110 manually performs the positioning work by the total station 100 . This case will be described below.
  • the surveyor 110 carries an operating terminal such as a PC, tablet, or smartphone (hereinafter referred to as terminal 111).
  • the control computer 200 that performs the above-described processing is prepared separately, and the terminal 111 carried by the surveyor 110 is used as an operation terminal.
  • step S104 the work map created in step S104 is displayed on the operation terminal 111 carried by the surveyor 110.
  • the direction of the Prismman to be guided is displayed on this work map, and the surveyor 110 points the total station 100 in the direction of the Prismman by referring to it. This operation is performed after step S107.
  • step S108 By pointing the total station 100 in the direction of the target Prism Man and executing the search mode, the processing of step S108 is performed, and the reflecting prism of the Prism Man is captured.
  • a total station without a target search mode can also be used.
  • the surveyor operates the total station to collimate the reflecting prism and measure the position of the reflecting prism.
  • steps S108 to S112 are performed by the surveyor.
  • the processing of steps S108 to S112 is performed by the surveyor.
  • the end of the piling work for the staking point is input to the control computer 200, and the processing from step S113 onwards is executed.
  • control computer 200 performs the processing of steps S105 to S107. Further, the content reflecting the result of this processing is displayed on the terminal 111 of the surveyor 110, and the surveyor 110 performs sighting work for the next survey setting point.
  • the location furthest from the total station may be selected as the first stakeout point.
  • the second stakeout point is chosen at the next farthest location. Selection of the third and subsequent staking points is performed in the same manner.
  • (Modification 3) Select the point closest to the total station as the first stakeout point. For the second stakeout point, select the closest stakeout point to the first stakeout point. For the third stakeout point, select the closest stakeout point to the second stakeout point. Selection of the third and subsequent staking points is performed in the same manner.
  • the smart phone of the Prism Man having the reflecting prism to be positioned transmits its own GNSS positioning data to the control computer 200.
  • the control computer compares the positioning data of the reflecting prism from the total station 100 with the GNSS positioning data of the smart phone, and updates the relationship between the absolute coordinate system and the local coordinate system used here.
  • This updated information is sent to all smartphones, and each smartphone that receives it uses this information to calibrate (correct) its own GNSS positioning data.
  • GNSS positioning by smartphones includes errors, but the values are not constant and fluctuate over time. This is because the orbital position of the navigation satellite to be used changes over time, and the navigation satellite to be used is switched.
  • the measurement setting point the position of the reflecting prism ⁇ the GNSS positioning value of the smartphone is considered, the relationship between the local coordinate system and the GNSS positioning value is obtained, and the GNSS positioning value of each smartphone is obtained. used for calibration.
  • the GNSS positioning of smartphones has an error of up to several meters.
  • the positional difference between the smartphone and the reflecting prism in each Prism Man is several tens of centimeters or less. Therefore, the above processing maintains the accuracy of GNSS positioning of other smartphones.
  • step S105 When proceeding from step S114 to step S105, in other words, as a method of specifying the next staking point to the Prismman whose stakeout (positioning) has been completed, the position of the Prismman (this It is also possible to select the closest staking point to the staking point for which positioning has been completed in the first step. In this case, the Prism Man can move to the next survey setting point in the shortest possible time.
  • a notification signal to the effect that it is a search target is transmitted to the smartphone carried by the prism man who handles the reflecting prism to be searched (for example, the smart phone 131 for the reflecting prism 141).
  • the smartphone which has received this signal, performs notification processing to notify Prismman that it is being searched for by the total station 100 .
  • This notification is performed, for example, by displaying a notification screen on the smartphone, outputting a notification sound, etc.
  • the prism man handling the corresponding reflecting prism can recognize that the positioning is to be performed.
  • FIG. 8 shows a conceptual diagram.
  • N the number of prism men
  • M the number of staking points
  • N ⁇ M the number of Prismmen
  • the position data of all Prismmen are acquired as position data group 1.
  • the position of the Prism Man is determined using the GNSS function of the smartphone carried by each Prism Man.
  • the position data of all the survey setting points are acquired as position data group 2 .
  • the position data of the survey setting points are prepared in advance.
  • the above processing is performed by the work map creation unit 205, for example.
  • a dedicated calculation unit may be prepared and performed there.
  • T1 to T6 makes it possible to set staking points on the absolute coordinate system.
  • T1 to T6 which are positioned in advance on the absolute coordinate system, it is possible to set the setting points on the absolute coordinate system.
  • Modification 9 Another example of localization is shown.
  • the position of the total station 100 is used as a reference point to establish a relationship between the local coordinate system and the absolute coordinate system (GNSS coordinate system).
  • GNSS is used to measure the position of the total station 100 .
  • the positioning of the GNSS to be used may be single positioning. Of course, if relative positioning is possible, relative positioning may be used.
  • the total station 100 measures the positions of the reference points T1 to T6.
  • the position of each reference point can be described in a local coordinate system with the total station 100 as the origin.
  • the position of the total station 100 on the absolute coordinate system is measured by GNSS. Therefore, the positions of the reference points T1 to T6 on the absolute coordinate system can be obtained. In this way, the relationship between the positions in the absolute coordinate system and the positions in the local coordinate system is obtained for the reference points T1 to T6. Then, the relationship between the absolute coordinate system and the local coordinate system at this survey site is obtained.
  • a target device 150 is shown in FIG.
  • Target device 150 is carried by Prismman 160 .
  • the target device 150 includes a pole 151 , a reflecting prism 152 attached to the tip of the pole, and a terminal fixture 154 for fixing a smart phone 153 .
  • the amount of offset between the reflecting prism 152 and the smartphone 153 can be grasped in advance.
  • the amount of offset in the vertical direction can be determined accurately. Therefore, an error (offset error) due to the amount of offset between the reflecting prism 152 and the smartphone 153 can be suppressed.
  • the smartphone 153 by fixing the smartphone 153 as close to the pole 151 as possible, the error in the offset amount in the horizontal direction can be reduced.
  • GNSS devices external GPS devices
  • the offset error can be minimized by fixing the GNSS device (antenna portion) above the reflecting prism 152, for example.
  • a terminal device having a user interface capable of realizing the functions related to the screen display of FIGS. 6 and 7, a positioning function using GNSS, and a communication function may be prepared. Tablets and portable computers with similar functions can also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】複数のターゲットを用いた測設における作業員の効果的な誘導技術の提供を目的とする。 【解決手段】測量装置であるトータルステーション100と、トータルステーション100によって測量される複数のターゲットである反射プリズム141~145と、反射プリズム141~145に対応して用意され、GNSS測位機能を備えたスマートフォン131~135とを有したシステムであって、反射プリズム141~145とスマートフォン131~135は、それぞれ1:1で対応し、反射プリズム141~145とスマートフォン131~135は、一体となって移動し、スマートフォン131~135において、予め決められた反射プリズムの設置予定位置と前記GNSS測位機能により測位した自身の測位位置を当該端末の表示画面に表示する測量システム。

Description

測量システムおよび測量方法
 本発明は、ターゲットを用いた測量の技術に関する。
 工事現場における作業に測設がある。この作業では、図面上で特定された点(以下測設点)を現場で特定し、そこに杭を打ったり印を付けたりする。この作業の古典的な方法として、トータルステーションとターゲットを用いた方法が知られている。
 この作業では、作業員が持ったターゲットを、レーザー測位機能を有するトータルステーションを用いて測位する。ここで、測位値=測設点となるように作業員を誘導し、測設点の位置を特定し、その位置に杭打ちを行う。
 ここで、作業員の測設点への誘導を効果的に行う事が重要となる。この誘導の技術に関しては、例えば特許文献1に記載されたものが知られている。
特開2012-225697号公報
 複数のターゲットを使用することで、測設の効率を高める方法が考えられる。しかしながらこの場合、作業員の誘導の方法が問題となる。このような背景において、本発明は、複数のターゲットを用いた測設における作業員の効果的な誘導技術の提供を目的とする。
 本発明は、測量装置と、前記測量装置によって測量される複数のターゲットと、前記複数のターゲットに対応して用意され、GNSS測位機能を備えた複数の端末とを有したシステムであって、前記複数のターゲットと前記複数の端末は、それぞれ1:1で対応し、前記対応するターゲットと端末は、一体となって移動し、前記各端末において、予め決められた前記ターゲットの設置予定位置と前記GNSS測位機能により測位した自身の測位位置を当該端末の表示画面に表示する測量システムである。
 本発明において、前記測量装置による前記複数のターゲットの測量の順番が前記表示画面に表示される態様が挙げられる。本発明において、前記複数の端末の一つには、前記予め決められた前記ターゲットの設置予定位置の一つが割り当てられ、前記端末の前記表示画面には、前記割り当てられた前記ターゲットの位置が表示される態様が挙げられる。
 本発明において、前記複数のターゲットの数はNあり、前記ターゲットの設置予定位置の数はMであり、N<Mであり、前記複数の端末に割り当てられる前記N個のターゲットは、前記測量装置に近い側または前記複数の端末の中の一つに近い側から順に選ばれる態様が挙げられる。
 本発明において、前記測量装置による測量が終了したターゲットに対応する端末に対して、次の設置予定位置が指定され、前記次の設置予定位置は、前記設置予定位置の中で前記割り当てが行われておらず、且つ、前記設置予定位置の中で前記測量が終了したターゲットの位置から最も近い設置が選択される態様が挙げられる。
 本発明において、前記複数のターゲットが設置されるエリアの周囲には、複数の基準点が設けられており、前記複数の基準点に基づき、前記エリアにはローカル座標系が設定されており、前記複数の端末の少なくとも一つにより、前記複数の基準点のGNSS測位を行うことで得られたGNSS測位データに基づき、該GNSS測位値と前記ローカル座標系の関係が求められるローカライズ処理を行うローカライズ処理部を備える態様が挙げられる。
 本発明において、前記複数のターゲットの中の一つの前記測量装置による測位データと、該ターゲットに対応する端末のGNSS測位データとを比較し、前記複数の端末のGNSS測位データの校正が行われる態様が挙げられる。
 本発明は、測量装置と、前記測量装置によって測量される複数のターゲットと、前記複数のターゲットに対応して用意され、GNSS測位機能を備えた複数の端末とを用いた測量方法であって、前記複数のターゲットと前記複数の端末は、それぞれ1:1で対応し、前記対応するターゲットと端末は、一体となって移動し、前記各端末において、予め決められた前記ターゲットの設置予定位置と前記GNSS測位機能により測位した自身の測位位置を当該端末の表示画面に表示する測量方法である。
 本発明によれば、複数のターゲットを用いた測設における作業員の効果的な誘導技術が得られる。
実施形態の概念図である。 制御コンピュータのブロック図である。 処理の手順の一例を示すフローチャートを示す図である。 作業マップを示す図である。 測量士が手にする端末の画面に表示される画面の一例を示す図である。 プリズムマンが手にする端末の画面に表示される画面の一例を示す図である。 プリズムマンが手にする端末の画面に表示される画面の一例を示す図である。 測設点に対するプリズムマンの配置を決める方法の一例を説明する概念図である。 ローカル座標系を説明する図である。 ターゲット装置の一例を示す図である。
1.第1の実施形態
(概要)
 図1に概要を示す。図1には、レーザー光を用いた測位機能を有する測量装置であるトータルステーション100、現場における作業を監督する測量士110が示されている。測量士は、操作端末となるスマートフォン111を手にしている。この例では、測設に用いられるターゲットとして、反射プリズム141~145が利用される。反射プリズム141~145は、作業員であるプリズムマン121~125によって手で持って支えられ、測設点に設置される。反射プリズム141~145は、入射光を180°反転させて反射する測量用の光学ターゲットである。反射プリズム141~145は、全周からの入射光に対応できる全周反射プリズムである。特定の方向からの入射光に対応できる反射プリズムを採用することもできる。
 例えば、反射プリズム141はポール141aの上端に固定されている。ここで、プリズムマン121はポール141aを手で持ち、反射プリズム141を支える。そして、プリズムマン121はポール141aを手に持って移動し、反射プリズム141を所定の位置に設置するために移動する。この際、トータルステーション100は、反射プリズム141を捕捉し、移動する反射プリズム141を追尾しつつ反射プリズム141の測位を継続して行う。ここで、反射プリズム141の水平位置が測設点の水平位置に一致した段階で、プリズムマン121はポール141aの下端を地面に接触させ、その点を測設点として確定する。以上は、他の反射プリズム142~145についても同じである。
 プリズムマン121~125は、それぞれ端末となるスマートフォン131~135を携帯している。スマートフォン111およびスマートフォン131~135は、市販されている通常のもので、GNSS(Global Navigation Satellite System/全球測位衛星システム)による測位機能、携帯電話網を用いた通信機能、無線LAN(Local area network)を用いた通信機能、その他有線を用いた通信インターフェースを備えている。
 この例では、制御コンピュータ200からスマートフォン131~135にプリズムマン121~125の誘導に必要なデータが送信され、スマートフォン131~135には、各プリズムマンを測設点に誘導するためのガイド画面が表示される。
 このガイド画面を見て、プリズムマン121~125は、自分が担当する反射プリズムを持って移動し、測設の作業が行なわれる。なお、スマートフォン131~135を反射プリズムを支えるポールに固定し、スマートフォンと反射プリズムを構造的に一体化してもよい。
 図1の例では、反射プリズム141~145は、スマートフォン131~135に1:1で対応し、対応するターゲットと端末は、一体となって移動する。すなわち、反射プリズム141は、スマートフォン131を携帯しているプリズムマン121によって保持され支えられている。このため、反射プリズム141とスマートフォン131は1:1の関係を維持した状態で、一体となった状態でプリズムマン121と共に移動する。この点は、反射プリズム142とスマートフォン132、反射プリズム143とスマートフォン133、反射プリズム144とスマートフォン134、反射プリズム145とスマートフォン135についても同じである。
(制御コンピュータ)
 図2は、制御コンピュータ200のブロック図である。制御コンピュータ200は、PC(パーソナル・コンピュータ)を利用して構成されている。制御コンピュータ200を専用のハードウェアで構成してもよい。制御コンピュータ200をトータルステーション100に内蔵させる形態も可能である。この例では、制御コンピュータ200を構成するPCが、無線LAN接続やUSB接続により、トータルステーション100に接続される。
 データ処理サーバで制御コンピュータ100を実現する構成も可能である。この場合、当該データ処理サーバとトータルステーション100、スマートフォン111,131~135との間で通信が行われる。
 制御コンピュータ200は、トータルステーション100の制御、スマートフォン111,131~135に表示するデータに関する処理を行う。制御コンピュータ200は、操作受付部201、測位データ受付部202、ローカルライズ処理部203、測設点データ受付部204、作業マップ作成部205、測位の順序決定部206、プリズムマン割り当て部207、報知信号生成部208、制御信号生成部209、データ記憶部210、通信部211を有する。
 これら機能部は、動作ソフトウェアを当該PCにインストールすることで実現、あるいは当該PCが備える機能を利用して実現される。
 操作受付部201は、測量士110による制御コンピュータ200に対する操作を受け付ける。この例において、トータルステーション100の操作は、測量士110が保持するスマートフォン111が操作されることにより行われる。スマートフォン111が操作されると、その操作内容が制御コンピュータ200に送られ、操作受付部201で受け付けられる。
 スマートフォン111を操作端末として用いてトータルステーション100を直接制御する形態やトータルステーション110が備える操作パネルを操作することでトータルステーション100の操作を行う形態も可能である。
 測位データ受付部202は、トータルステーション100の測位データ、スマートフォン111のGNSS測位データ、スマートフォン131~135のGNSS測位データを受け付ける。ローカライズ処理部203は、図3のステップS102の処理を行う。測設点データ受付部204は、図3のステップS103の処理を行う。作業マップ作成部205は、図3のステップS104の処理を行う。
 測位の順序決定部206は、図3のステップS105の処理を行う。プリズムマン割り当て部207は、図3のステップS106の処理を行う。報知信号生成部208は、スマートフォン111およびスマートフォン131~135に送る報知信号を生成する。制御信号生成部209は、トータルステーション100を制御する制御信号を生成する。
 データ記憶部210は、制御コンピュータ200の動作に必要なデータ、プログラム、動作の結果得られたデータが記憶される。外部の記憶媒体にデータを記憶する形態も可能である。通信部211は、外部の機器との間で通信を行う。通信は、電話回線、無線LAN、USB規格の有線通信等を利用して行われる。
(測設点の設定)
 この例において、測設点は、施工現場で設定されたローカル座標系上で作成された図面中で位置が予め特定されている。ここでは、施工現場として絶対座標系を利用しない場合を想定する(勿論、絶対座標系の利用は排除されない)。なお、絶対座標系は、GNSSや地図で利用される座標系であり、例えば緯度、経度、標高で座標が記述される。
 図9にローカル座標系の一例を示す。この場合、施工エリアの地図は、基準点T1~T6によって決められるローカル座標系上で記述されている。以下、ローカル座標系の設定について説明する。
 まず、基準点T1~T6を、施工エリアを囲むように配置する。T1~T6の設置位置は、適当(凡そ)でよい。T1~T6の設置後に、適当な位置に設置したトータルステーション100により、T1~T6の位置を測位する。これにより、適当な位置を原点としてT1~T6の座標を記述したローカル座標系が設定できる。また、T1~T6を基準とした後方交会法により、トータルステーションの当該ローカル座標系における外部標定要素(位置と姿勢)が求まる。 
 このローカル座標系を用いて、施工エリア内における測設点を設定する。例えば、施工エリア内を区画するのであれば、当該ローカル座標系において、区画の角の点等の目印となる点に測設点を設定する。また例えば、施工エリア内に建物を建てるのであれば、当該ローカル座標系において、建物を建てる位置を決める点に測設点を設定する。
 こうして、ローカル座標系上で特定された測設点の座標データが得られる。測設点のデータは、例えばデータ記憶部210に記憶される。
(処理の一例)
 以下、トータルステーション100を用いて杭打ち(測設点を確定し、杭を打ったり印を付けたりする作業)を行う場合におけるトータルステーション100を制御する制御コンピュータ200が行う処理の一例を説明する。
 ここでは、以下のことを前提とする。トータルステーション100を測位の対象に向ける制御(光軸制御)は、モータドライブにより行われ、測量士(トータルステーションを操作するオペレータ)110は、測設に係る処理の開始を指示する操作を行うだけで処理が開始されるものとする。なお、トータルステーション100を測位の対象に向ける制御を測量士が手動で行う形態も可能である。
 また、測設点は多数(例えば10点以上)あるとする。測設点は、上述した方法により設定されたローカル座標系を用いて予め施工エリア内に設定されている。
 反射プリズムを持った作業者(以下、プリズムマン)は5人(符号121~125)いる。なお、プリズムマンの数は、5人に限定されないが、ここでは仮に5人とする。5人のプリズムマンのそれぞれは、GNSS測位機能を備えた端末を保持している。この例では、端末としてスマートフォン131~135を利用する。このスマートフォン131~135は、携帯電話網を用いた通信および無線LANを用いた通信が可能である。
 プリズムマン121~125がそれぞれ保持するスマートフォン131~135は、識別符号が付与されている。また、トータルステーションを操作する測量士(またはオペレータ)110もGNSS位置測位機能を有する端末(この例ではスマートフォン)111を携帯している。
 処理に先立ち、トータルステーション100の設置を行う。この状態で処理が開始される。図3は、処理の手順の一例を示すフローチャートである。図3のフローチャートを実行するためのプログラムは、データ記憶部210に記憶され、制御コンピュータ200のCPUにより実行される。当該プログラムを適当な記憶媒体に記憶し、そこから読み出して実行する形態も可能である。
 トータルステーション100を設置したら、使用するローカル座標系上で基準点の測位を行い、トータルステーション100のローカル座標系上での位置と姿勢を確定するキャリブレーション処理を行う(ステップS101)。例えば、図9の例でいうと、基準点T1~T6の2点以上の測位を行い、当該ローカル座標系におけるトータルステーション100の外部標定要素(位置と姿勢)を求める。
 次に、各スマートフォンのGNSS測位データを当該ローカル座標系上で使えるようにするローカライズ処理を行う(ステップS102)。以下、図9を参照してローカライズ処理を説明する。
 図9において、測設点が設定された施工エリアは、ローカル座標系により記述される。この例において、このローカル座標系と絶対座標系の関係は明らかでない。そこで、スマートフォン131~135,111のGNSS測位データを当該ローカル座標系で利用できるようにする。この処理がローカライズ処理である。
 ローカライズ処理では、プリズムマンの一人あるいは測量士110が基準点T1~T6の所に行き、その位置をGNSS測位する。この測位データは、制御コンピュータ200に送られる。他方において、基準点T1~T6の位置がトータルステーション100により測定され、その位置データが制御コンピュータ200に送られる。制御コンピュータ200は、利用しているローカル座標系における基準点の位置と、当該基準点のスマートフォンを用いたGNSS測位データとを比較し、両者の関係を求める。例えば、基準点T1の絶対座標系における位置(GNSSにより測位した位置)と基準点T1のローカル座標系上での位置(トータルステーション100により測定した位置)が判り、両者の対応関係が求まる。これを1点以上の基準点で行うことで、絶対座標系と、ここで用いているローカル座標系の関係が判明する。
 この結果、各スマートフォンによるGNSS測位値をここで利用しているローカル座標系上で特定できる。なお、スマートフォンのGNSS測位は、最大数mの誤差があるので、上記の絶対座標系とローカル座標系の関係には誤差が含まれる。また、各プリズムマンが携帯するスマートフォンの位置と反射プリズムの位置は一致していないので、その違いも誤差に含まれる。
 上記のスマートフォンのGNSS測位データとローカル座標系の関係を求める処理がステップS102において行われる。この処理は、一つのスマートフォンにおいて行い、その結果は他のスマートフォンに送信される。こうして、各スマートフォンは、GNSSを利用して当該現場におけるローカル座標系上での位置を測位できる。
 次に、測設点の位置を取得する(ステップS103)。その後、ステップS104に進み作業マップを作成する。この作業マップは、ローカル座標系上で記述され、そこには、トータルステーション100の位置および測設点の位置が書き込まれている。
 図4に作業マップの一例を示す。図4の作業マップを基礎として、トータルステーション100を操作する測量士110が持つスマートフォン111に表示するマップ画面、および各プリズムマンが持つスマートフォン131~135に表示するマップ画面が作成される。
 次に、測設点の測位を行う順序(順番)を定める(ステップS105)。この方法には多様な方法があるがここでは、以下のように処理が行なわれる。まず、トータルステーションに近い順に5つの測設点を選択する。次に、トータルステーションに近い順に、1番目、2番目・・・5番目と5点の測設点に対する測位の順序を定める。
 次に、ステップS105において測定の順番を決めた5点の測設点を5台のスマートフォン(5人のプリズムマン)のそれぞれに割り当てる(ステップS106)。すなわち、第1の測設点を第1のスマートフォン(第1のプリズムマン)に割り当て、第2の測設点を第2のスマートフォン(第2のプリズムマン)に割り当て、第3の測設点を第3のスマートフォン(第3のプリズムマン)に割り当て、第4の測設点を第4のスマートフォン(第4のプリズムマン)に割り当て、第5の測設点を第5のスマートフォン(第5のプリズムマン)に割り当てる。
 この段階で測設点を特定する処理(杭打ち処理)の開始がトータルステーション100に対して指示される。例えば、測量士110が操作端末として機能するスマートフォン111を操作し、トータルステーション100に杭打ちの処理を指示する。
 上記の処理の開始が指示されると、ステップS104において作成した作業マップと、ステップS105において決めた測定の順番と、ステップS106で割り当てたスマートフォンへの割り当て情報とが測量士110のスマートフォン111、第1~第5のスマートフォン131~135に無線送信される(ステップS107)。
 送信の形態としては、一斉に行い、その中から各スマートフォンが自身に対する送信を識別し、その内容を取得する形態が挙げられる。また、スマートフォン毎に1対1で送信を行う形態も可能である。またこの際、ステップS102のローカライズ処理の結果が各スマートフォンに送信される。
 上記の送信を受け、スマートフォン111は、測量士110が必要とする情報を表示した案内マップを自身の表示画面上に表示する。例えば、トータルステーション100と測設点の位置、測設の順番が表示された画面がスマートフォン111の表示画面上に表示される。
 図5にスマートフォン111の表示画面上に表示される案内マップの一例を示す。図5の例では、トータルステーション100の位置を中心に、測位の順番の決まった測設点、その順番、次に測位する測設点、測位の順番が決まっていない測設点が識別できるように表示されている。図5において、プリズムマンの位置を表示する形態も可能である。
 図6にプリズムマン121~125のスマートフォン131~135に表示される案内マップの一例を示す。図6には、ある特定の端末に表示される案内マップが示されている。図6において、他のプリズムマンや他の測設点を表示する形態も可能である。
 案内マップは、各プリズムマンに特化してカスタマイズされている。図6の案内マップでは、トータルステーション100の位置、当該プリズムマンが担当すべき測設点の位置、自身の位置、測位の順番(杭打ち作業の順番:待ち人数)が表示されている。
 ここで、自身の位置は、当該プリズムマンが所持するスマートフォンがGNSSを利用して測位した位置である。この際、ステップS102で行われたローカライズ処理の結果が利用され、GNSS測位で得た当該スマートフォンの位置がローカル座標系上で記述された案内マップに埋め込まれる。
 プリズムマンは、この案内マップを参考にして測設点に移動する。なお、自身の反射プリズムが測位の対象となると、その旨を報知する内容の表示や点滅表示が行われ、その旨をプリズムマンが認識できるように工夫されている。
 端末に表示されるマップ画面については、制御コンピュータ200の側で作成されて端末に送られる形態、基本となる図4の作業マップのデータその他を制御コンピュータ200から端末に送り、端末の側で加工する形態の両方が可能である。
 ステップS107の送信を行ったら、トータルステーション100に、その時点で測位の対象となる測設点の付近に狙いを定め、その付近での反射プリズムの探索を開始する処理が指示される(ステップS108)。この際、トータルステーション100は、自身が備えるモータドライブ機能により、自律制御により、上記の探索を行う。トータルステーションのターゲットを探索する機能については、例えば特開2009-229192号公報に記載されている。
 他方において、ステップS107の送信を受け、各プリズムマンは、自身が携帯するスマートフォンの画面上の案内マップ(図6参照)を見て、自身に割り当てられている測設点に反射プリズムを持って移動する。移動は徒歩を想定するが、乗り物に乗っての移動は排除されない。
 プリズムマンが測設の対象となっている地点に近づくと、トータルステーション100のターゲット捕捉機能によって当該プリズムマンが持つ反射プリズムがトータルステーション100によって捕捉される。
 ここで、トータルステーション100が反射プリズムを捕捉したか否かが判定され(ステップS109)、反射プリズムを捕捉すると、測設点における当該反射プリズムの測位が開始される(ステップS110)。以後測位は継続して行われる。
 次にプリズムマンを測設点に誘導する誘導処理が行われる(ステップS111)。この処理では、ここで対象となるスマートフォンに測設点と測位している反射プリズムの位置の差に関する情報を送信する。
 この情報に基づき、当該スマートフォンには、測設点の方向とそこまでの距離が表示される。この表示を見て、プリズムマンは、測設点上に移動し、水平面上における反射プリズムの位置を測設点に一致させるべく行動する。この技術については、例えば特開2012-225697号公報に記載されている。
 例えば、反射プリズムの位置から測設点までの距離が2m以下となったら、該当するスマートフォンの表示が図6から図7の詳細ガイド表示に切り替わる。図7の詳細ガイド表示には、測設点を中心とする同心円およびプリズムマンが持つ反射プリズムの測位位置(図中の黒丸)が表示される。この表示を見て、プリズムマンは、測設点に近づき、そこに反射プリズムを設置する。ここで、トータルステーションを操作する測量士がプリズムマンに直接声をかけ誘導する形態も可能である。
 測設点と反射プリズムの測位点(通常は、その水平面上の位置)が一致したら、その旨を記録し、測位の完了を当該スマートフォンに報知する(ステップS113)。またこの報知を受けたプリズムマンは、確定した測設点に杭を打つ、マーキングを行う等の作業を行う。
 そして、次の測設点の有無を判定し(ステップS114)、次の測設点があれば、ステップS105以下の処理を再度実行する。この際、N番目の測設点に対する処理から、N+1番目の測設点に対する処理に移行するので、処理の順番が繰り上げる。
 例えば、第1の測設点に対する処理が終了し、ステップS114からステップS105に進むとする。この場合、ステップS105では、次の組の5つの測設点として、第2の測設点~第6の測設点の5つが選択される(この例では、ステップS105において、5つの測設点を選択している)。
 ここで、第6の測設点は、この時点以前で未選択であり、且つ、未選択の測設点の中でトータルステーションに最も近い測設点が選択される。すなわち、第6の測設点は、第5の測設点の次にトータルステーションに近い測設点が選択される。
 そして、ステップS106におけるプリズムマンの割り当てが、第2の測設点~第6の測設点に対応したものに変更される。具体的には、第2の測設点が、この段階で次に測位の対象となる点となるように変更(繰り上げ処理)され、第3の測設点が、この段階で次の次に測位の対象となる点となるように変更される。そして、作業が終了した第1のプリズムマンには、新たな測設点となる第6の測設点が割り当てられる。
 この順次ずれた順番と位置の新たな関係が次のステップS107において各スマートフォンに送信される。具体的には、ステップS105、S106の処理に関して更新された新たな案内マップ、あるいは案内マップの修正情報が各スマートフォンに送信される。
 例えば、初期の状態において、第3の測設点の担当である第3プリズムマンのスマートフォンの案内マップには、最初は「待機人数2人」と表示される。そして、第1の測設点に係る処理が終了すると、表示が「待機人数1人」に変更され、第2の測設点に係る処理が終了すると、表示が「待機人数0人」に変更され、次は自分の番である旨が認識できる。
 例えば、図1のプリズムマン123が第1の測設点の担当であり、第1の測設点の測位が終了したとする。この場合、スマートフォン133に表示された案内マップが更新され、それ以前は未選択であった新たな測設点が次に目指すべき測設点として案内マップ上に表示される。また、他のプリズムマンのスマートフォンの案内マップの待ち人数に関して、一人繰り上がった人数の表示に更新される。また、スマートフォン111の表示も更新される。こうして、複数の測設点に対して、トータルステーションによる測位が順次行われる。また、端末の表示も適宜その時点で最新のものに更新される。
(変形例1)
 トータルステーション100による測位の作業を測量士110が手動で行う形態も有り得る。以下、この場合について説明する。この場合、測量士110は、PC、タブレットまたはスマートフォン等の操作端末(以下、端末111)を携帯する。ここでは、上述した処理を行う制御コンピュータ200は、別に用意され、測量士110が携帯する端末111は操作端末して利用される。
 この場合、測量士110が携帯する操作端末111にステップS104で作成した作業マップが表示される。この作業マップに誘導すべきプリズムマンの方向が表示され、それを参照して測量士110はトータルステーション100を当該プリズムマンの方向に向ける。この操作がステップS107以後の段階で行われる。
 トータルステーション100が対象となるプリズムマンの方向に指向され、探索モードを実行することでステップS108の処理が行なわれ、当該プリズムマンの反射プリズムの捕捉が行われる。
 ターゲットの探索モードのないトータルステーションを用いることもできる。この場合、上記端末の表示を参考にして、測量士は当該トータルステーションを操作して反射プリズムを視準し、当該反射プリズムの測位を行う。
 この場合、ステップS108~S112の処理は測量士が行う。ステップS112の判定の結果を端末に入力することで、制御コンピュータ200に当該測設点に関する杭打ち作業の終了が入力され、またステップS113以下の処理が実行される。
 この結果、ステップS105~S107の処理が制御コンピュータ200で行われる。またこの処理の結果を反映した内容が測量士110の端末111に表示され、測量士110は次の測設点に対する視準作業を行う。
(変形例2)
 第1の測設点として、トータルステーションに最も遠い場所を選択してもよい。この場合、第2の測設点は、次に遠い場所を選択する。第3の測設点以下の選択も同様にして行う。
(変形例3)
 第1の測設点としてトータルステーションに最も近い点を選択する。第2の測設点は、第1の測設点に最も近い測設点を選択する。第3の測設点は、第2の測設点に最も近い測設点を選択する。第3の測設点以下の選択も同様にして行う。
(変形例4)
 ステップS110~S113の段階において、測位の対象となっている反射プリズムを持っているプリズムマンのスマートフォンは、自身のGNSS測位データを制御コンピュータ200に送信する。制御コンピュータは、当該反射プリズムのトータルステーション100による測位データと上記スマートフォンのGNSS測位データとを比較し、絶対座標系とここで用いているローカル座標系との関係を更新する。
 この更新された情報は、全てのスマートフォンに送信され、それを受信した各スマートフォンは、この情報を用いて、自身のGNSS測位データを校正(補正)する。
 スマートフォンによるGNSS測位は、誤差を含むが、その値は一定せず時間の経過と共に変動する。これは、利用する航法衛星の軌道上での位置が時間の経過と共に変化し、また利用する航法衛星が切り替わるからである。
 よって、最初のローカライズから時間が経過すると、スマートフォンのGNSS測位値とローカル座標系との関係の誤差が徐々に増大する。そこで、各プリズムマンにおけるステップS112の処理の都度、測設点=反射プリズムの位置≒スマートフォンのGNSS測位値と見なし、ローカル座標系とGNSS測位値の関係を求め、それを各スマートフォンのGNSS測位値の校正に用いる。
 スマートフォンのGNSS測位は最大で数mの誤差がある。これに対して、各プリズムマンにおけるスマートフォンと反射プリズムの位置の差は、数十cm以下である。よって、上記の処理により、他のスマートフォンのGNSS測位の精度が維持される。
(変形例5)
 ステップS114からステップS105に進んだ場合、すなわち杭打ち(測位)が終了したプリズムマンに次の測設点を指定する方法として、この時点で未測位であり、且つ、当該プリズムマンの位置(この段階で測位が終了した測設点)に最も近い測設点を選択することも可能である。この場合、当該プリズムマンは、次の測設点に最短の時間で移動できる。
(変形例6)
 ステップS108の段階で、探索の対象となる反射プリズムを扱うプリズムマンが携帯するスマートフォン(例えば、反射プリズム141であればスマートフォン131)に探索の対象となっている旨の報知信号を送信する。この信号を受けた当該スマートフォンは、トータルステーション100の探索の対象となっている旨をプリズムマンに報知する報知処理を行う。
 この報知は、例えば当該スマートフォンにおける報知画面の表示、報知音の出力等によって行われる。この報知により、該当する反射プリズムを扱うプリズムマンが測位の対象となっている旨を認識できる。
(変形例7)
 以下、複数の測設点に対する複数のプリズムマンの配置を自動で決める方法の一例を説明する。図8に概念図を示す。ここで、プリズムマンの数をN、測設点の数をM、N<Mとする。ここでは、分かり易い様にプリズムマンの数はN=5人とする。測設点の数は、それよりはるかに多いとする。
 まず、プリズムマンすべての位置データを位置データ群1として取得する。プリズムマンの位置は、各プリズムマンが携帯するスマートフォンのGNSS機能を用いて行われる。次に、測設点全ての位置データを位置データ群2として取得する。測設点の位置データは予め用意されている。
 次に、位置データ群2に最も近い位置データ群1の中の位置を基準位置として選択する。そして、基準位置に近い位置から順に、N=5箇所の測設点を位置データ群2の中から選択する。
 1つ目の測設点の測位が終了したら、そこから最も近い未指定の測設点を選択し、そこを新たな測位すべき測設点とする。
 グループ分けを未指定の位置データ群2がなくなるまで繰り返し行う方法もある。この場合、予め全ての位置データ群2がグループ分けされて指定される。
 以上の処理は、例えば作業マップ作成部205で行われる。また、専用の演算部を用意し、そこで行っても良い。
(変形例8)
 図9において、相対測位が可能であれば、T1~T6の少なくとも3つの絶対座標系上での位置を測位することで、絶対座標系での測設点の設定が可能となる。また、T1~T6の少なくとも3つにおいて、絶対座標系上で予め測位されたものを用いることで、絶対座標系での測設点の設定が可能となる。
(変形例9)
 ローカライズの他の一例を示す。この場合、トータルステーション100の位置を基準点として、ローカル座標系と絶対座標系(GNSS座標系)の関係づけが行われる。この場合、GNSSを用いてトータルステーション100の位置を測定する。なお、利用するGNSSの測位は単独測位でよい。勿論、相対測位が可能な状況であれば、相対測位を利用してもよい。
 他方において、トータルステーション100により基準点T1~T6の位置を測定する。これにより、各基準点の位置は、トータルステーション100を原点としたローカル座標系で記述が可能となる。
 ここで、トータルステーション100の絶対座標系上での位置は、GNSSにより測定されている。よって、基準点T1~T6の絶対座標系上での位置を求めることができる。こうして、基準点T1~T6に関して、絶対座標系における位置とローカル座標系における位置の関係が求まる。そして、この測量現場における絶対座標系とローカル座標系の関係が求まる。
(変形例10)
 前述したように、ローカライズの処理において、誤差が生じる。この誤差の第1の要因は、スマートフォンのGNSS測位値の誤差に起因する。第1の要因は、相対測位を用いることで解消されるが、相対測位のインフラがない環境では、解決できない。第2の要因は、各プリズムマンにおいて、反射プリズムの位置とスマートフォンの位置(正確には、スマートフォンのGNSSアンテナの位置)が一致しないことにある。反射プリズムの位置とスマートフォンの位置のオフセット値が既知であれば、上記第2の要因の影響を低減できる。そこで、本変型例では、以下の構成を採用する。
 図10には、ターゲット装置150が示されている。ターゲット装置150は、プリズムマン160により携帯される。ターゲット装置150は、ポール151、ポールの先端に取り付けられた反射プリズム152、スマートフォン153を固定する端末固定具154を備える。
 この構造では、反射プリズム152とスマートフォン153のオフセット量を事前に把握できる。特に鉛直方向におけるオフセット量は正確に決めることができる。そのため、反射プリズム152とスマートフォン153のオフセット量に起因する誤差(オフセット誤差)を抑えることができる。
 また、スマートフォン153を極力ポール151に近接させて固定することで、水平方向におけるオフセット量の誤差を小さくできる。
 ところで、スマートフォンに外付けで利用できるGNSS装置(外付けGPS装置)が市販されている。この装置を用いた場合、例えば反射プリズム152の上部に当該GNSS装置(アンテナ部分)を固定することで、オフセット誤差を最小にできる。
(変形例11)
 スマートフォンの代わりに、図6や図7の画面表示に係る機能を実現できるユーザーインターフェース、GNSSを利用した測位機能、および通信機能を持った端末装置を用意しても良い。また、同様な機能を持ったタブレット、携帯型コンピュータを用いることもできる。
 100…トータルステーション、110…測量士、111…スマートフォン、121~125…プリズムマン、131~135…スマートフォン、141~145…反射プリズム、141a…ポール、200…制御コンピュータ、150…ターゲット装置、151ポール、152…反射プリズム、153…スマートフォン、154…端末固定具、160…プリズムマン。

 

Claims (8)

  1.  測量装置と、
     前記測量装置によって測量される複数のターゲットと、
     前記複数のターゲットに対応して用意され、GNSS測位機能を備えた複数の端末と
     を有したシステムであって、
     前記複数のターゲットと前記複数の端末は、それぞれ1:1で対応し、
     前記対応するターゲットと端末は、一体となって移動し、 
     前記各端末において、予め決められた前記ターゲットの設置予定位置と前記GNSS測位機能により測位した自身の測位位置を当該端末の表示画面に表示する測量システム。
  2.  前記測量装置による前記複数のターゲットの測量の順番が前記表示画面に表示される請求項1に記載の測量システム。
  3.  前記複数の端末の一つには、前記予め決められた前記ターゲットの設置予定位置の一つが割り当てられ、
     前記端末の前記表示画面には、前記割り当てられた前記ターゲットの位置が表示される請求項1に記載の測量システム。
  4.  前記複数のターゲットの数はNあり、
     前記ターゲットの設置予定位置の数はMであり、
     N<Mであり、
     前記複数の端末に割り当てられる前記N個のターゲットは、前記測量装置に近い側または前記複数の端末の中の一つに近い側から順に選ばれる請求項1に記載の測量システム。
  5.  前記測量装置による測量が終了したターゲットに対応する端末に対して、次の設置予定位置が指定され、
     前記次の設置予定位置は、前記設置予定位置の中で前記割り当てが行われておらず、且つ、前記設置予定位置の中で前記測量が終了したターゲットの位置から最も近い設置が選択される請求項4に記載の測量システム。
  6.  前記複数のターゲットが設置されるエリアの周囲には、複数の基準点が設けられており、
     前記複数の基準点に基づき、前記エリアにはローカル座標系が設定されており、
     前記複数の端末の少なくとも一つにより、前記複数の基準点のGNSS測位を行うことで得られたGNSS測位データに基づき、該GNSS測位値と前記ローカル座標系の関係が求められるローカライズ処理を行うローカライズ処理部を備える請求項1に記載の測量システム。
  7.  前記複数のターゲットの中の一つの前記測量装置による測位データと、
     該ターゲットに対応する端末のGNSS測位データと
     を比較し、前記複数の端末のGNSS測位データの校正が行われる請求項1に記載の測量システム。
  8.  測量装置と、
     前記測量装置によって測量される複数のターゲットと、
     前記複数のターゲットに対応して用意され、GNSS測位機能を備えた複数の端末と
     を用いた測量方法であって、
     前記複数のターゲットと前記複数の端末は、それぞれ1:1で対応し、
     前記対応するターゲットと端末は、一体となって移動し、 
     前記各端末において、予め決められた前記ターゲットの設置予定位置と前記GNSS測位機能により測位した自身の測位位置を当該端末の表示画面に表示する測量方法。

     
PCT/JP2022/044938 2021-12-24 2022-12-06 測量システムおよび測量方法 WO2023120167A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-210899 2021-12-24
JP2021210899 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023120167A1 true WO2023120167A1 (ja) 2023-06-29

Family

ID=86902222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044938 WO2023120167A1 (ja) 2021-12-24 2022-12-06 測量システムおよび測量方法

Country Status (1)

Country Link
WO (1) WO2023120167A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286768A (ja) * 2007-05-16 2008-11-27 Kokusai Kogyo Co Ltd 測量システムおよび測量方法
JP2009229222A (ja) * 2008-03-21 2009-10-08 Topcon Corp 測定システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286768A (ja) * 2007-05-16 2008-11-27 Kokusai Kogyo Co Ltd 測量システムおよび測量方法
JP2009229222A (ja) * 2008-03-21 2009-10-08 Topcon Corp 測定システム

Similar Documents

Publication Publication Date Title
US9097530B2 (en) Method for ensuring continuity of service of a personal navigation device and device thereof
US7933001B2 (en) Geographic data collecting system
US9772185B2 (en) Measuring system and method for determining new points
CN102016505A (zh) 用于轨道显示的方法及设备
US20220283327A1 (en) Measurement method, measurement systems and auxiliary measurement instruments
CN105136144A (zh) 商场导航系统以及商场导航方法
EP3306347B1 (en) System and method for registration of survey points
US10067233B2 (en) Illuminance measuring system
EP2788715B1 (en) Robotic leveling
JP2013231634A (ja) 位置情報提供システム、ナビゲーションシステム、及び端末装置
CN102137183A (zh) 移动通信终端及方法
JP2012242932A (ja) 情報提供システム及び端末装置
US11808571B2 (en) Surveying system, staking assistance method, and storage medium storing staking assistance program
US12008679B2 (en) Measurement method, measurement systems and auxiliary measurement instruments for displaying desired positions in a live image
JP6488470B1 (ja) 自動測量システム及び自動測量方法
WO2023120167A1 (ja) 測量システムおよび測量方法
EP4113059A1 (en) Portable display terminal for survey assistance, survey assistance system, survey assistance method, and survey assistance program
EP4174254A1 (en) Batter board installation method, batter board installation program and surveying system
JP7434699B2 (ja) 測量支援システム、測量情報表示方法、及び測量情報表示プログラム
KR20130026031A (ko) 휴대용 단말기의 멀티패스 지역 내 위치정보 보정장치 및 그 방법
JP6101033B2 (ja) 測設支援装置、測設支援方法、及びプログラム
JP5145302B2 (ja) ナビゲーションシステム、端末装置、ナビゲーションサーバ、ナビゲーション装置、ナビゲーション方法、および、プログラム
EP4312000A1 (en) Automatic, stationing of a geodetic survey instrument based on reference marker database
EP4191201A1 (en) Surveying method, surveying system, and surveying program
KR101654421B1 (ko) 지적기준점 위치 안내장치 및 이를 이용한 위치 안내방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569272

Country of ref document: JP

Kind code of ref document: A