WO2023119842A1 - ストーカ式処理装置及びストーカ式処理方法 - Google Patents
ストーカ式処理装置及びストーカ式処理方法 Download PDFInfo
- Publication number
- WO2023119842A1 WO2023119842A1 PCT/JP2022/039559 JP2022039559W WO2023119842A1 WO 2023119842 A1 WO2023119842 A1 WO 2023119842A1 JP 2022039559 W JP2022039559 W JP 2022039559W WO 2023119842 A1 WO2023119842 A1 WO 2023119842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stoker
- distribution
- depth
- field
- deposition
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 75
- 238000003672 processing method Methods 0.000 title claims description 7
- 230000008021 deposition Effects 0.000 claims description 182
- 238000011156 evaluation Methods 0.000 claims description 95
- 238000012937 correction Methods 0.000 claims description 72
- 230000008859 change Effects 0.000 claims description 32
- 230000032258 transport Effects 0.000 claims description 28
- 238000003384 imaging method Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 238000010801 machine learning Methods 0.000 claims description 10
- 230000004044 response Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 12
- 238000007664 blowing Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000002699 waste material Substances 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010882 bottom ash Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/50—Control or safety arrangements
Definitions
- the present disclosure relates to a stoker-type processing apparatus and a stoker-type processing method.
- Patent Document 1 discloses a thermal image capturing unit that captures a thermal image of dust in a target area, which is at least a partial area on a fire grate, and dust height information that indicates the distribution of dust heights on the target area. , and a computational unit that acquires based on thermal images.
- a stoker-type processing apparatus includes a stoker that supports an object to be processed and transports the object to be processed in a transport direction that intersects the vertical direction, and a predetermined field of view on the stoker from the transport direction.
- a depth sensor a depth distribution generation unit that generates depth distribution information on the stoker representing the distribution of depth from the depth sensor to an object within the field of view based on the output of the depth sensor, a position within the field of view, and a position on the stoker and a deposition distribution evaluation unit that evaluates the distribution of the deposition amount of the processing object on the stoker based on the correspondence relationship between and the stoker depth distribution information.
- the present stoker-type processing apparatus which evaluates the distribution of the amount of deposits of processing objects on the stoker based on the output of the depth sensor, can easily evaluate the distribution of the amount of deposits of processing objects on the stoker. It is valid.
- the depth sensor is an imaging device that acquires a two-dimensional image within the field of view
- the depth distribution generator generates depth distribution information representing the depth distribution to objects in the two-dimensional image according to the input of the two-dimensional image.
- the depth distribution information on the stoker may be generated by inputting an in-field image into a depth model constructed by machine learning so as to output the depth distribution information.
- this Stoker-type processing device depth distribution information constructed by machine learning so as to output depth distribution information representing the distribution of depths to objects in a two-dimensional image according to the input of a two-dimensional image. Based on the model, the deposition amount distribution on the stoker is evaluated. Depth models can be easily constructed outside the stoker. Therefore, it is possible to immediately start evaluating the deposition amount distribution on the stoker by utilizing the depth model constructed in advance on the other than on the stoker. Therefore, it is effective to more easily evaluate the distribution of the deposition amount of the processing object on the stoker.
- the imaging device may acquire an image within the field of view by imaging mid-infrared rays incident from the field of view.
- mid-infrared rays it is possible to obtain an image within the field of view that is not easily affected by flame, water vapor, carbon dioxide gas, etc., generated by combustion of the object to be processed. Therefore, the deposition amount distribution can be evaluated with higher reliability.
- the accumulation distribution evaluation unit compares the depth distribution information on the stoker generated while the stoker does not support the object to be processed and the depth distribution information on the stoker generated while the object is supported by the stoker. Based on the difference, the deposition amount distribution may be evaluated. By using the state in which the stoker does not support the object to be treated as a reference, the deposition amount distribution can be evaluated more appropriately.
- the difference represents the distribution of the depth difference between the state where the stoker does not support the processing target and the state where the stoker supports the processing target, and the fields of view correspond to a plurality of deposition areas on the stoker.
- a plurality of in-field areas may be included, and the deposition distribution evaluation unit may calculate the deposition amount for each of the plurality of in-field areas by integrating depth differences for each of the plurality of in-field areas. The calculation for evaluating the amount of deposition can be simplified, and the distribution of the amount of deposition can be evaluated more easily.
- a correction unit may be further provided that corrects an evaluation error of the deposition amount due to the perspective effect in the field of view based on the depth distribution information on the stoker.
- the deposition amount distribution can be evaluated more appropriately.
- the difference represents the distribution of the depth difference between the state in which the stoker does not support the processing target and the state in which the stoker supports the processing target
- the correction unit determines the field of view based on the depth distribution information on the stoker. is converted into a depth-independent post-correction field of view, and the post-correction difference is generated by adapting the difference to the post-correction field of view.
- the field of view includes a plurality of areas within the field of view respectively corresponding to the plurality of deposition areas on the stoker
- the post-correction field of view includes a plurality of post-correction areas respectively corresponding to the plurality of areas of the field of view
- the deposition distribution evaluation unit The deposition amount may be calculated for each of the plurality of deposition areas by integrating the depth difference for each of the plurality of post-correction areas.
- the computation for evaluating the deposition amount can be further simplified, and the distribution of the deposition amount can be evaluated more easily.
- a control device may further be provided that controls the stoker so as to suppress bias in the amount of deposition based on the distribution of the amount of deposition evaluated by the deposition distribution evaluation unit. It is possible to effectively utilize the evaluation result of the deposition amount distribution.
- a distribution evaluation unit may be further provided.
- the distribution of changes in deposition amount can be easily evaluated. According to the evaluation result of the distribution of the change in the deposition amount, it is possible to easily detect the stagnation of the object to be processed on the stoker.
- the stoker is controlled so as to suppress the bias in the deposition amount based on the deposition amount distribution evaluated by the deposition distribution evaluation unit, and the deposition amount is determined based on the distribution of changes in the deposition amount evaluated by the flow distribution evaluation unit.
- a stoker-type processing method includes transporting a processing target along a transport direction that intersects the vertical direction by a stoker that supports the processing target; generating on-stoker depth distribution information representing the distribution of depths from the depth sensor to objects within the field of view based on the output of the depth sensor directed toward the field of view; Evaluating the distribution of the deposition amount of the processing target on the stoker based on the correspondence relationship and the stoker depth distribution information.
- a stoker-type processing apparatus and a stoker-type processing method that are effective in easily evaluating the distribution of the deposition amount of the object to be processed on the stoker.
- FIG. 1 is a schematic diagram illustrating the configuration of a stoker-type processing apparatus; FIG. It is a top view of a support / conveyance part.
- FIG. 3 is a schematic diagram illustrating an image captured by a depth sensor; FIG. It is a block diagram which illustrates the structure of a control apparatus. It is a schematic diagram which shows the relationship between depth and pixel density.
- FIG. 10 is a schematic diagram illustrating contents of correction processing of evaluation error due to perspective effect;
- FIG. 10 is a schematic diagram illustrating contents of correction processing of evaluation error due to perspective effect;
- It is a block diagram which illustrates the hardware constitutions of a control apparatus.
- Fig. 4 is a flow chart illustrating a stoker-type procedure;
- a stoker-type processing apparatus 1 shown in FIG. 1 is an apparatus for heat-treating an object to be processed while transporting the object in a transport direction 19 that intersects the vertical direction.
- objects to be treated include wastes such as industrial wastes and general wastes.
- the stoker-type processing apparatus 1 heat-treats (for example, burns) the waste supplied from the dust feeder 14 and sends it out to the bottom ash chute.
- Objects to be treated are not limited to waste.
- the object to be processed may be biomass.
- the stoker-type processing apparatus 1 includes a stoker furnace 10, a depth sensor 20, and a control device 100.
- the stoker furnace 10 accommodates an object to be processed and transports the object to be processed in a (for example, horizontal) transport direction 19 that intersects the vertical direction (gravitational direction).
- the stoker furnace 10 has a furnace body 11 , a stoker 30 , a driving device 33 and a blower section 40 .
- the furnace body 11 accommodates objects to be processed.
- the furnace body 11 extends along the transport direction 19 .
- the furnace body 11 has a receiving part 12 and a sending part 13 at both ends of the furnace body 11 .
- the receiving unit 12 receives processing objects.
- the sending unit 13 sends out the object to be processed.
- the receiving unit 12 receives the waste supplied by the dust supply device 14.
- the delivery unit 13 delivers waste to a main ash chute provided below the furnace body 11 .
- the stoker 30 is provided at the bottom of the furnace body 11, supports the object to be processed, and transports it in the transport direction 19.
- the stoker 30 has multiple fixed grates 31 and multiple movable grates 32 .
- a plurality of fixed grates 31 are arranged along the conveying direction 19 .
- the multiple movable grates 32 are provided so as to correspond to the multiple fixed fire grates 31, respectively.
- each of the plurality of movable grates 32 is provided on the corresponding fixed grate 31 .
- the driving device 33 reciprocates each of the plurality of movable grates 32 along the transport direction.
- the driving device 33 reciprocates each of the plurality of movable grates 32 along the transport direction by using an electric motor, a hydraulic cylinder, or the like.
- the drive device 33 is configured to individually change the grate speed of the plurality of movable grates 32 .
- the grate speed is the transport speed of the object to be processed by the reciprocation of the movable grate 32 (for example, the average moving speed of the object to be processed from the receiving unit 12 to the sending unit 13).
- the driving device 33 may change the displacement speed of the movable grate 32 in one reciprocation, or may change the displacement stroke of the movable grate 32 in one reciprocation.
- the number of reciprocations of the movable grate 32 per unit time may be changed.
- the drive device 33 may change two or more of the displacement speed, displacement stroke, and number of reciprocations to change the grate speed.
- the heights of the plurality of fixed grates 31 may decrease stepwise in the conveying direction 19 . In this case, every time the object to be processed moves from one fixed fire grate 31 to the next fixed fire grate 31, it descends by the step between the fixed fire grates 31. In this way, transporting the processing object in the transport direction includes displacing the processing object in the transport direction and also displacing the processing object in a direction other than the transport direction (for example, downward).
- Each of the multiple movable grates 32 may be divided into multiple zones 34 aligned in the width direction 18 of the furnace body 11 (see FIG. 2).
- the width direction 18 is the direction perpendicular to both the vertical direction and the transport direction 19 .
- the drive 33 may be configured to individually vary the grate speed of multiple zones 34 .
- the air blower 40 sends gas for heat treatment from below the stoker 30 to the object to be treated through the plurality of fixed fire grates 31 and movable grates 32 .
- the heat treatment gas is, for example, an oxygen-containing gas such as air.
- the gas for heat treatment (eg combustion) may be at room temperature or may be preheated.
- the air blowing unit 40 may be configured to be able to individually change the amount of air blown to a plurality of air blowing areas 43 on the stoker 30 .
- the plurality of ventilation areas 43 may correspond to the plurality of fixed grates 31, respectively.
- the blower unit 40 has a blower source 41 and a plurality of valves 42 .
- the blowing source 41 pressure-feeds a heat treatment gas to a plurality of blowing areas 43 using, for example, a blower.
- a plurality of valves 42 respectively adjust the flow rate of gas from the blowing source 41 to the plurality of blowing areas 43 .
- Each of the plurality of blowing areas 43 may be divided into a plurality of blowing zones 44 respectively corresponding to the plurality of zones 34 (see FIG. 2), and the blowing unit 40 individually adjusts the blowing volume for the plurality of blowing zones 44. It may be configured to be changeable.
- the depth sensor 20 is directed to a predetermined field of view 21 above the stoker 30 (inside the furnace body 11) in the stoker furnace 10 (inside the furnace body 11) from the transport direction 19.
- the depth sensor 20 is located in front of the feeding section 13 in the transport direction 19 and faces rearward.
- the depth sensor 20 may be provided so that the viewing direction (the direction toward the center of the viewing field 21) faces the upper surface of the stoker 30 from obliquely above.
- the depth sensor 20 is provided at a position higher than the stoker 30 and directed obliquely downward.
- the depth sensor 20 may be provided such that each of the plurality of fixed grates 31 is at least partially within the field of view 21 .
- the depth sensor 20 has a predetermined viewpoint 22 and acquires information for detecting depth (distance) distribution from the viewpoint 22 to objects within the field of view 21 .
- the information acquired by the depth sensor 20 is hereinafter referred to as information for depth detection.
- the depth sensor 20 may be an optical sensor that acquires information for depth detection based on light.
- a specific example of the optical depth sensor 20 is an imaging device that acquires a two-dimensional in-field image.
- the depth sensor 20 may be configured to acquire information for depth detection based on mid-infrared rays.
- the imaging device which is an example of the depth sensor 20, may be configured to form an image of mid-infrared rays incident from the field of view 21 to acquire the in-field image.
- Mid-infrared rays are electromagnetic waves with a wavelength of about 2.5 to 4 ⁇ m. With mid-infrared rays, it is possible to acquire information for depth detection that is not easily affected by flame, water vapor, carbon dioxide gas, etc., generated by combustion of the object to be processed.
- FIG. 3 is a schematic diagram illustrating an in-field image captured by the depth sensor 20.
- field of view 21 includes a plurality of in-field areas 23 corresponding respectively to a plurality of deposition areas on stoker 30 .
- the plurality of deposition areas are areas where objects to be processed are deposited.
- the multiple deposition areas are areas obtained by subdividing the upper surface of the stoker 30 .
- the deposition areas correspond respectively to the zones 34 of the movable grates 32 described above.
- the control device 100 controls the driving device 33 .
- the stoker furnace 10 in order to improve the efficiency of the heat treatment of the object to be processed, it is necessary to properly distribute the deposition amount of the object to be processed on the stoker 30.
- FIG. For example, if there is a cavity on the stoker 30 where the deposition amount of the object to be processed is extremely small, the heat treatment gas may flow intensively in the cavity and heat treatment may not proceed sufficiently at other locations. . Therefore, the control device 100 evaluates the distribution of the deposition amount of the processing object on the stoker 30, and controls the driving device 33 to adjust the distribution of the deposition amount based on the evaluation result.
- the control device 100 In order to evaluate the deposition amount distribution, the control device 100 generates stoker depth distribution information representing the depth distribution from the depth sensor 20 to objects within the field of view 21 based on the output of the depth sensor 20. , evaluating the distribution of the deposition amount of the processing object on the stoker 30 based on the correspondence relationship between the position in the field of view 21 and the position on the stoker 30, and the depth distribution information on the stoker 30. is configured as
- control device 100 that evaluates the distribution of the deposition amount of the processing object on the stoker 30 based on the output of the depth sensor 20, the distribution of the deposition amount of the processing object on the stoker 30 can be easily evaluated. can do.
- the configuration of the control device 100 will be illustrated in detail below.
- the control device 100 includes, as functional components (functional blocks), a model storage unit 111, a depth distribution generation unit 112, a depth distribution storage unit 113, an area information storage unit 114, and a deposition distribution evaluation unit 115 .
- the model storage unit 111 stores depth models.
- the depth model is pre-built by machine learning based on multiple learning data sets so that it outputs depth distribution information representing the depth distribution to objects in the 2D image according to the input of the 2D image. .
- Each of the plurality of learning data sets includes two-dimensional image data and actually measured data of depth distribution to objects in the two-dimensional image.
- the depth model may be constructed in advance based on a plurality of learning sets obtained in one or more spaces other than on the stoker 30 (outside the stoker furnace 10) having a different configuration from that on the stoker 30.
- Specific examples of learning algorithms used to build depth models include ViT (Vision Transformer), neural networks, and the like.
- the depth distribution generation unit 112 Based on the output of the depth sensor 20, the depth distribution generation unit 112 generates depth distribution information on the stoker representing the depth distribution from the depth sensor 20 to the object within the field of view 21, and stores the generation result in the depth distribution storage unit 113. Memorize. For example, the depth distribution generation unit 112 generates stoker depth distribution information representing the distribution of distances from the viewpoint 22 to objects within the field of view 21 . As an example, the depth distribution generation unit 112 generates stalk depth distribution information by inputting the in-field image output by the depth sensor 20 into the depth model stored in the model storage unit 111 .
- the optical depth sensor 20 is not limited to an imaging device that acquires a two-dimensional in-field image.
- the depth sensor 20 may be a stereo camera or a TOF (Time of Flight) camera.
- the distribution of distances from the viewpoint 22 to the objects within the field of view 21 can be calculated by triangulation.
- the distribution of the distances from the viewpoint 22 to the objects within the field of view 21 can be calculated based on the time difference from the light emission time to the light reception time. Therefore, the model storage unit 111 can be omitted with a stereo camera or a TOF camera.
- the area information storage unit 114 stores area information representing the correspondence relationship between the position within the field of view 21 and the position on the stoker 30 .
- the area information stores correspondence relationships between the plurality of in-field-of-view areas 23 and the plurality of deposition areas.
- the deposition distribution evaluation unit 115 evaluates the distribution of the deposition amount of the processing target on the stoker 30 based on the correspondence relationship between the positions in the field of view 21 and the positions on the stoker 30 and on-stoker depth distribution information. .
- the deposition distribution evaluation unit 115 based on the area information stored by the area information storage unit 114 and the depth distribution information on the stoker stored by the depth distribution storage unit 113, calculates the deposition amount for each of the plurality of in-field areas 23, It is evaluated as the deposition amount for each of a plurality of deposition areas.
- the deposition distribution evaluation unit 115 evaluates the depth distribution information on the stoker generated when the stoker 30 does not support the object to be processed, and the depth distribution on the stoker generated when the object is supported by the stoker 30.
- the deposition amount distribution may be evaluated based on the difference from the information. For example, the above difference represents the distribution of the depth difference between the state where the stoker 30 does not support the processing target and the state where the stoker 30 supports the processing target.
- the depth distribution generation unit 112 determines the state where the stoker 30 does not support the processing target and the state where the stoker 30 supports the processing target. Depth distribution information on the stoker is generated in both the state where the vehicle is on the stoker, and the generated result is stored in the depth distribution storage unit 113 .
- base information the stoker depth distribution information generated while the stoker 30 does not support the processing object
- the distribution information is called "evaluation target information”.
- the area information storage unit 114 stores the area information in the base information.
- the deposition distribution evaluation unit 115 calculates the difference between the evaluation target information and the base information as the depth difference for each position within the field of view 21 . For example, the deposition distribution evaluation unit 115 calculates the depth difference for each pixel in the in-field image.
- the deposition distribution evaluation unit 115 evaluates the deposition amount for each of a plurality of deposition areas based on the area information stored by the area information storage unit 114 and the distribution of the depth difference. For example, the deposition distribution evaluation unit 115 calculates the deposition amount for each of the plurality of deposition areas by integrating the depth difference for each of the plurality of in-field areas 23 .
- the control device 100 may further have a correction section 116 .
- the correction unit 116 corrects the evaluation error of the deposition amount due to the perspective effect in the field of view 21 based on the stoker depth distribution information.
- FIG. 5 is a schematic diagram showing the relationship between depth and pixel density.
- the in-field image 200 includes a plurality of pixel areas 201 respectively corresponding to a plurality of pixels of the imaging device.
- FIG. 5 shows an in-field image 200 on a stoker 30 of uniform width. Even if the width is uniform, the width in the in-field image 200 decreases as the depth increases. For example, in the in-field image 200 in FIG.
- the width at the deepest (farthest) position 202 is about 8 pixels in the in-field image 200, and the lowest (closest) )
- the width at position 203 is about 16 pixels wide in the in-field image 200 .
- the integration result for 8 pixels is calculated at the position 202.
- the integration result for 16 pixels is calculated, so an evaluation error occurs between the evaluation result of the deposition amount at the position 202 and the evaluation result of the deposition amount at the position 203 .
- the correction unit 116 corrects such an evaluation error.
- the correction unit 116 converts the field of view 21 into a post-correction field of view 21A (see FIG. 6) that does not depend on the depth based on the depth distribution information on the stoker, and applies the difference to the post-correction field of view 21A.
- FIG. 6 is a schematic diagram illustrating the result of converting the field of view 21 in the in-field image 200 of FIG. 5 into the post-correction field of view 21A.
- the correction unit 116 changes the width of each pixel area 201 according to the depth so as to suppress the difference in width due to the perspective effect. Specifically, the width of each pixel area 201 is increased as the depth increases.
- the field of view 21 is converted into the post-correction field of view 21A.
- the correction unit 116 may convert the field of view 21 into the corrected field of view 21A based on the base information, or may convert the field of view 21 into the corrected field of view 21A based on the evaluation target information.
- the correction unit 116 divides each pixel area 201 in the post-correction field of view 21A into grids 204 having a constant area, and assigns the depth difference of the pixel area 201 corresponding to each grid 204 to perform the above correction. Generate post-diff.
- the deposition distribution evaluation unit 115 evaluates the deposition amount distribution on the stoker 30 based on the corrected difference.
- the post-correction field of view 21A includes a plurality of post-correction areas 23A respectively corresponding to the plurality of in-field areas 23 .
- the deposition distribution evaluation unit 115 integrates the depth difference assigned to each grid 204 for each of the plurality of post-correction areas 23A, thereby calculating the deposition amount for each of the plurality of deposition areas.
- the correction unit 116 may generate post-correction depth distribution information by adapting the post-stoker depth distribution information to the post-correction field of view 21A, and calculate the post-correction difference based on the post-correction depth distribution information.
- the correction unit 116 calculates the post-correction difference based on the post-correction base information obtained by adapting the base information to the post-correction field of view 21A and the post-correction evaluation target information obtained by applying the post-correction field of view 21A to the evaluation target information. You may The correction unit 116 may use the post-correction field of view 21A based on the base information to calculate the post-correction base information, and may use the post-correction field of view 21A based on the evaluation object information to calculate the post-correction evaluation object information.
- the post-correction difference corresponds to the above-mentioned difference adapted to the post-correction field of view. Therefore, the evaluation of the distribution of the amount of accumulation on the stoker 30 by the accumulation distribution evaluating unit 115 based on the corrected difference is included in the evaluation of the distribution of the amount of accumulation on the stoker 30 based on the difference.
- the correction unit 116 may recognize the deposition shape of the object to be processed for each of the plurality of in-field areas 23 based on the difference, and correct the evaluation error by correcting the distortion of the deposition shape due to the perspective effect.
- control device 100 may further include a flow distribution evaluation section 117.
- the flow distribution evaluation unit 117 calculates the deposition amount based on the difference between the stoker depth distribution information generated at the first timing and the stoker depth distribution information generated at the second timing after the first timing. Assess the distribution of change.
- the depth distribution generation unit 112 generates evaluation target information at both the first timing and the second timing, and causes the depth distribution storage unit 113 to store the generation results.
- the stoker depth distribution information generated at the first timing will be referred to as "preceding information”
- the stoker depth distribution information generated on the stoker 30 at the second timing will be referred to as "following information”.
- the flow distribution evaluation unit 117 calculates the difference between the subsequent information and the preceding information as a depth change distribution. For example, the flow distribution evaluation unit 117 calculates a depth change (difference between subsequent information and preceding information) for each position within the field of view 21 (for example, each pixel in the image within the field of view).
- the flow distribution evaluation unit 117 calculates the change in deposition amount for each of a plurality of deposition areas based on the area information stored by the area information storage unit 114 and the depth change distribution. For example, the flow distribution evaluation unit 117 integrates changes in depth for each of the plurality of within-field-of-view areas 23, thereby calculating changes in the deposition amount for each of the plurality of deposition areas.
- the correction unit 116 may correct the evaluation error of the distribution of changes in the deposition amount due to the perspective effect in the field of view 21 based on the stoker depth distribution information. For example, the correction unit 116 may generate a post-correction depth change distribution by adapting the depth change distribution to the post-correction field of view 21A. As a technique for adapting the depth change distribution to the post-correction field of view 21A, it is possible to use the same technique as the technique of adapting the difference to the post-correction field of view 21A.
- the flow distribution evaluation unit 117 calculates the distribution of changes in the amount of deposition based on the post-correction depth change distribution.
- the control device 100 may further have a control section 118 .
- the controller 118 controls the stoker 30 based on the distribution of the deposition amount evaluated by the deposition distribution evaluation unit 115 so as to suppress the deviation of the deposition amount.
- the control unit 118 individually adjusts the grate velocities in the plurality of zones 34 of the plurality of movable grates 32 by the driving device 33 so as to suppress the uneven deposition amount.
- the control unit 118 controls the stoker 30 so as to suppress the bias in the deposition amount based on the deposition amount distribution evaluated by the deposition distribution evaluation unit 115, and the change in the deposition amount evaluated by the flow distribution evaluation unit 117.
- the stoker 30 may be controlled so as to suppress the bias in the variation of the deposition amount.
- FIG. 8 is a block diagram illustrating the hardware configuration of the control device 100.
- the control device 100 is, for example, a control computer such as a programmable logic controller, and has a circuit 190 as shown in FIG.
- Circuitry 190 includes one or more processors 191 , memory 192 , storage 193 , imaging control circuitry 194 and grate control circuitry 195 .
- the storage 193 Based on the output of the depth sensor 20 , the storage 193 generates depth distribution information on the stoker representing the distribution of depths from the depth sensor 20 to objects within the field of view 21 , positions within the field of view 21 , and a program for causing the control device 100 to evaluate the distribution of the deposition amount of the object to be processed on the stoker 30 based on the correspondence relationship with the position in the stoker and the depth distribution information on the stoker.
- the storage 193 stores programs for causing the control device 100 to configure the functional blocks described above. Specific examples of the storage 193 include read-only memory, non-volatile memory, hard disk, and the like.
- the storage 193 may be a portable medium such as a disk or USB memory.
- the memory 192 temporarily stores programs loaded from the storage 193 .
- a specific example of memory 192 is random access memory.
- One or more processors 191 cause the control device 100 to configure each of the functional blocks by executing programs loaded in the memory 192 .
- the one or more processors 191 appropriately store the calculation results in the process of executing the program in the memory 192 and use the calculation results stored in the memory 192 to perform further calculations.
- the imaging control circuit 194 acquires information for depth detection from the depth sensor 20 based on commands from one or more processors 191 .
- Grate control circuitry 195 controls drive 33 based on commands from one or more processors 191 .
- a stoker-type processing procedure executed by the stoker-type processing apparatus 1 will be illustrated.
- This processing procedure consists of transporting the object to be processed in the transport direction 19 by the stoker 30, generating depth distribution information on the stoker based on the output of the depth sensor 20, the position within the field of view 21, and the stoker 30 Evaluating the distribution of the deposition amount of the processing object on the stoker 30 based on the correspondence relationship with the position on the stoker and the stoker depth distribution information.
- FIG. 9 is a flowchart illustrating a stoker-type processing procedure.
- the base information is stored in the depth distribution storage unit 113 in advance.
- the control device 100 first executes steps S01 and S02.
- the controller 118 causes the driving device 33 to start transporting the object to be processed.
- the depth distribution generation unit 112 generates depth distribution information on the stoker (the evaluation target information) based on the output of the depth sensor 20 and stores the generation result in the depth distribution storage unit 113 .
- step S03 the deposition distribution evaluation unit 115 calculates the difference between the evaluation target information and the base information. For example, the deposition distribution evaluation unit 115 calculates the difference between the evaluation target information and the base information as the depth difference for each position within the field of view 21 .
- step S04 the correction unit 116 converts the field of view 21 into the post-correction field of view 21A that does not depend on the depth based on the depth distribution information on the stoker, and generates the post-correction difference by adapting the difference to the post-correction field of view 21A.
- step S05 the deposition distribution evaluation unit 115 evaluates the deposition amount distribution on the stoker 30 based on the corrected difference.
- step S06 the flow distribution evaluation unit 117 calculates the difference between the subsequent information and the preceding information as a depth change distribution. For example, the flow distribution evaluation unit 117 calculates the depth change for each position within the field of view 21 (for example, each pixel in the image within the field of view).
- step S07 the correction unit 116 may generate a post-correction depth change distribution by adapting the depth change distribution to the post-correction field of view 21A.
- step S08 the flow distribution evaluation unit 117 calculates the distribution of changes in the deposition amount based on the post-correction depth change distribution.
- step S9 the control unit 118 controls the driving device 33 so as to suppress the unevenness of the deposition amount based on the deposition amount distribution evaluated by the deposition distribution evaluation unit 115 .
- the driving device 33 is controlled based on the distribution of the change in the deposition amount obtained so as to suppress the bias in the change in the deposition amount.
- control device 100 repeatedly executes steps S02 to S09.
- the procedure shown above is just an example, and can be changed as appropriate. For example, steps S06, S07 and S08 can be omitted. In this case, in step S09, the control unit 118 does not control the driving device 33 based on the distribution of changes in the deposition amount.
- the stoker-type processing apparatus 1 includes a stoker 30 that supports an object to be processed and transports the object to be processed in the transport direction 19 that intersects the vertical direction; a depth sensor 20 directed toward the field of view 21; a depth distribution generator 112 that generates stoker depth distribution information representing the depth distribution from the depth sensor 20 to objects within the field of view 21 based on the output of the depth sensor 20; , a deposition distribution evaluation unit 115 that evaluates the distribution of the deposition amount of the processing object on the stoker 30 based on the correspondence relationship between the positions in the field of view 21 and the positions on the stoker 30, and the depth distribution information on the stoker 30; , provided.
- the Stoker-type processing device 1 according to the input of a two-dimensional image, it is constructed by machine learning so as to output depth distribution information representing the distribution of depth to objects in the two-dimensional image. Based on the depth model, the deposition amount distribution on the stoker 30 is evaluated.
- the depth model can be easily constructed also outside the stoker 30 (outside the stoker furnace 10). Therefore, it is possible to immediately start evaluating the deposition amount distribution on the stoker 30 by utilizing a depth model constructed in advance other than on the stoker 30 . Therefore, it is effective to more easily evaluate the distribution of the deposition amount of the object to be processed on the stoker 30 .
- the imaging device may acquire an in-field image by forming an image of mid-infrared rays incident from the field of view 21 .
- mid-infrared rays it is possible to obtain an image within the field of view that is not easily affected by flame, water vapor, carbon dioxide gas, etc., generated by combustion of the object to be processed. Therefore, the deposition amount distribution can be evaluated with higher reliability.
- the deposition distribution evaluation unit 115 evaluates the depth distribution information on the stoker generated when the stoker 30 does not support the object to be processed, and the depth distribution on the stoker generated when the object is supported by the stoker 30.
- the deposition amount distribution may be evaluated based on the difference from the information. By using the state in which no object to be processed is accommodated on the stoker 30 as a reference, it is possible to more appropriately evaluate the distribution of the deposition amount.
- the difference represents the distribution of the depth difference between the state in which the stoker 30 does not support the processing target and the state in which the stoker 30 supports the processing target.
- the field of view 21 is converted into the corrected field of view 21A that does not depend on the depth, and a corrected difference is generated by adapting the difference to the corrected field of view 21A.
- the distribution of the amount of deposition on the top may be evaluated. While correcting the evaluation error due to the perspective effect, the calculation for evaluating the deposition amount can be simplified, and the distribution of the deposition amount can be evaluated more easily.
- the field of view 21 includes a plurality of in-field areas 23 respectively corresponding to the plurality of deposition areas on the stoker 30, the corrected field of view 21A includes a plurality of corrected areas 23A respectively corresponding to the plurality of in-field areas 23,
- the deposition distribution evaluation unit 115 may calculate the deposition amount for each of the plurality of deposition areas by integrating the depth difference for each of the plurality of post-correction areas 23A. The computation for evaluating the deposition amount can be further simplified, and the distribution of the deposition amount can be evaluated more easily.
- a control device may further be provided that controls the stoker 30 so as to suppress bias in the amount of deposition based on the distribution of the amount of deposition evaluated by the deposition distribution evaluation unit 115 . It is possible to effectively utilize the evaluation result of the deposition amount distribution.
- a distribution evaluation unit 117 may be further provided.
- the distribution of changes in deposition amount can be easily evaluated. According to the evaluation result of the distribution of the change in the deposition amount, it is possible to easily detect the stagnation or the like of the processing object on the stoker 30 .
- the stoker 30 is controlled to suppress the deposition amount bias, and based on the deposition amount change distribution evaluated by the flow distribution evaluation unit 117 , a control device that controls the stoker 30 so as to suppress the bias of the change in the deposition amount. It is possible to effectively utilize the evaluation result of the deposition amount distribution and the evaluation result of the distribution of the change in the deposition amount.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Image Processing (AREA)
- Incineration Of Waste (AREA)
Abstract
ストーカ式処理装置1は、処理対象物を支持し、鉛直方向に交差する搬送方向19に処理対象物を搬送するストーカ30と、搬送方向19からストーカ30上の所定の視野21に向けられた深度センサ20と、深度センサ20の出力に基づいて、深度センサ20から視野21内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成する深度分布生成部112と、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価する堆積分布評価部115と、を備える。
Description
本開示は、ストーカ式処理装置及びストーカ式処理方法に関する。
特許文献1には、火格子部上の少なくとも一部の領域である対象領域におけるごみの熱画像を撮像する熱画像撮像部と、対象領域上におけるごみ高さの分布を示すごみ高さ情報を、熱画像に基づいて取得する演算部と、を備えるストーカ式焼却炉が開示されている。
本開示は、ストーカ上における処理対象物の堆積量の分布を容易に評価するのに有効なストーカ式処理装置及びストーカ式処理方法を提供する。
本開示の一側面に係るストーカ式処理装置は、処理対象物を支持し、鉛直方向に交差する搬送方向に処理対象物を搬送するストーカと、搬送方向からストーカ上の所定の視野に向けられた深度センサと、深度センサの出力に基づいて、深度センサから視野内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成する深度分布生成部と、視野内における位置と、ストーカ上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ上における処理対象物の堆積量の分布を評価する堆積分布評価部と、を備える。
搬送方向からストーカ上の視野に向けられた深度センサによれば、ストーカ上の情報を容易に得ることができる。このため、深度センサの出力に基づいて、ストーカ上における処理対象物の堆積量の分布を評価する本ストーカ式処理装置は、ストーカ上における処理対象物の堆積量の分布を容易に評価するのに有効である。
深度センサは、二次元の視野内画像を取得する撮像装置であり、深度分布生成部は、二次元画像の入力に応じて、二次元画像内のオブジェクトまでの深度の分布を表す深度分布情報を出力するように機械学習により構築された深度モデルに、視野内画像を入力することで、ストーカ上深度分布情報を生成してもよい。二次元画像に基づいて、ストーカ上における処理対象物の堆積高さを評価するためには、ストーカ上における大量のデータ収集と、収集したデータに基づく機械学習が必要である。このため、機械学習結果に基づく堆積高さの評価結果を利用するまでに長い準備期間を要する。これに対し、このストーカ式処理装置によれば、二次元画像の入力に応じて、二次元画像内のオブジェクトまでの深度の分布を表す深度分布情報を出力するように機械学習により構築された深度モデルに基づいて、ストーカ上における堆積量の分布が評価される。深度モデルは、ストーカ上以外においても容易に構築可能である。このため、ストーカ上以外において予め構築された深度モデルを活用し、ストーカ上における堆積量の分布の評価を即時に開始することができる。従って、ストーカ上における処理対象物の堆積量の分布を更に容易に評価するのに有効である。
撮像装置は、視野から入射した中赤外線を結像させて視野内画像を取得してもよい。中赤外線によれば、処理対象物の燃焼により発生する火炎、水蒸気、炭酸ガス等に影響され難い視野内画像を取得することがきる。このため、堆積量の分布をより高い信頼性で評価することができる。
堆積分布評価部は、ストーカが処理対象物を支持していない状態で生成されたストーカ上深度分布情報と、ストーカが処理対象物を支持している状態で生成されたストーカ上深度分布情報との差分に基づいて、堆積量の分布を評価してもよい。ストーカが処理対象物を支持していない状態を基準とすることで、堆積量の分布をより適切に評価することができる。
差分は、ストーカが処理対象物を支持していない状態と、ストーカが処理対象物を支持している状態との深度差の分布を表し、視野は、ストーカ上の複数の堆積エリアにそれぞれ対応する複数の視野内エリアを含み、堆積分布評価部は、複数の視野内エリアごとに深度差を積分することで、複数の堆積エリアごとに堆積量を算出してもよい。堆積量を評価するための演算を簡素化し、堆積量の分布を更に容易に評価することができる。
ストーカ上深度分布情報に基づいて、視野内の遠近効果による堆積量の評価誤差を補正する補正部を更に備えてもよい。堆積量の分布をより適切に評価することができる。
差分は、ストーカが処理対象物を支持していない状態と、ストーカが処理対象物を支持している状態との深度差の分布を表し、補正部は、ストーカ上深度分布情報に基づいて、視野を深度に依存しない補正後視野に変換し、差分を補正後視野に適応させた補正後差分を生成し、堆積分布評価部は、補正後差分に基づいて、ストーカ上における堆積量の分布を評価してもよい。遠近効果による評価誤差を補正しつつ、堆積量を評価するための演算を簡素化し、堆積量の分布を更に容易に評価することができる。
視野は、ストーカ上の複数の堆積エリアにそれぞれ対応する複数の視野内エリアを含み、補正後視野は、複数の視野内エリアにそれぞれ対応する複数の補正後エリアを含み、堆積分布評価部は、複数の補正後エリアごとに深度差を積分することで、複数の堆積エリアごとに堆積量を算出してもよい。堆積量を評価するための演算を更に簡素化し、堆積量の分布を更に容易に評価することができる。
堆積分布評価部により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するようにストーカを制御する制御装置を更に備えてもよい。堆積量の分布の評価結果を有効活用することができる。
第1タイミングで生成されたストーカ上深度分布情報と、第1タイミングよりも後の第2タイミングで生成されたストーカ上深度分布情報との差に基づいて、堆積量の変化の分布を評価する流動分布評価部を更に備えてもよい。堆積量の変化の分布を容易に評価することができる。堆積量の変化の分布の評価結果によれば、ストーカ上における処理対象物の停滞等を容易に検出することができる。
堆積分布評価部により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するようにストーカを制御し、流動分布評価部により評価された堆積量の変化の分布に基づいて、堆積量の変化の偏りを抑制するようにストーカを制御する制御装置を更に備えてもよい。堆積量の分布の評価結果、及び堆積量の変化の分布の評価結果を有効活用することができる。
本開示の他の側面に係るストーカ式処理方法は、処理対象物を支持するストーカにより、鉛直方向に交差する搬送方向に沿って処理対象物を搬送することと、搬送方向からストーカ上の所定の視野に向けられた深度センサの出力に基づいて、深度センサから視野内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成することと、視野内における位置と、ストーカ上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ上における処理対象物の堆積量の分布を評価することと、を含む。
本開示によれば、ストーカ上における処理対象物の堆積量の分布を容易に評価するのに有効なストーカ式処理装置及びストーカ式処理方法を提供することができる。
以下、実施形態について、図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。
〔ストーカ式処理装置〕
図1に示すストーカ式処理装置1は、処理対象物を鉛直方向に交差する搬送方向19に搬送しながら熱処理する装置である。処理対象物の具体例としては、産業廃棄物、一般廃棄物などの廃棄物が挙げられる。処理対象物が廃棄物である場合、ストーカ式処理装置1は、給じん装置14により供給された廃棄物を熱処理(例えば燃焼)させて主灰シュートに送り出す。処理対象物は廃棄物に限られない。例えば処理対象物は、バイオマスであってもよい。
図1に示すストーカ式処理装置1は、処理対象物を鉛直方向に交差する搬送方向19に搬送しながら熱処理する装置である。処理対象物の具体例としては、産業廃棄物、一般廃棄物などの廃棄物が挙げられる。処理対象物が廃棄物である場合、ストーカ式処理装置1は、給じん装置14により供給された廃棄物を熱処理(例えば燃焼)させて主灰シュートに送り出す。処理対象物は廃棄物に限られない。例えば処理対象物は、バイオマスであってもよい。
ストーカ式処理装置1は、ストーカ炉10と、深度センサ20と、制御装置100とを備える。ストーカ炉10は、処理対象物を収容し、鉛直方向(重力方向)に交差する(例えば水平な)搬送方向19に処理対象物を搬送する。例えばストーカ炉10は、炉体11と、ストーカ30と、駆動装置33と、送風部40とを有する。炉体11は、処理対象物を収容する。炉体11は搬送方向19に沿って延びている。炉体11は、炉体11における両端に、受入部12と送出部13とを有する。受入部12は処理対象物を受け入れる。送出部13は処理対象物を送り出す。
処理対象物が廃棄物である場合、受入部12は給じん装置14により供給された廃棄物を受け入れる。送出部13は炉体11の下方に設けられる主灰シュートに廃棄物を送り出す。
ストーカ30は、炉体11の底部に設けられており、処理対象物を支持し、搬送方向19に搬送する。例えばストーカ30は、複数の固定火格子31と、複数の可動火格子32とを有する。複数の固定火格子31は、搬送方向19に沿って並んでいる。複数の可動火格子32は、複数の固定火格子31にそれぞれ対応するように設けられている。例えば複数の可動火格子32のそれぞれは、対応する固定火格子31の上に設けられている。
駆動装置33は、複数の可動火格子32のそれぞれを、搬送方向に沿って往復させる。例えば駆動装置33は、電動モータ又は油圧シリンダ等により、複数の可動火格子32のそれぞれを搬送方向に沿って往復させる。駆動装置33は、複数の可動火格子32の火格子速度を個別に変更し得るように構成されている。
火格子速度とは、可動火格子32の往復による処理対象物の搬送速度(例えば、受入部12から送出部13に達するまでの処理対象物の平均移動速度)である。火格子速度を変更するために、駆動装置33は、一回の往復における可動火格子32の変位速度を変更してもよく、一回の往復における可動火格子32の変位ストロークを変更してもよく、単位時間あたりの可動火格子32の往復回数を変更してもよい。駆動装置33は、火格子速度を変更するために、変位速度、変位ストローク、及び往復回数の2項目以上を変更してもよい。
複数の固定火格子31の高さは、搬送方向19へ向かうにつれて階段状に低くなっていてもよい。この場合、処理対象物は、固定火格子31上から次の固定火格子31上に移る度に、固定火格子31同士の段差の分だけ下降することとなる。このように、搬送方向に処理対象物を搬送することは、搬送方向に処理対象物を変位させつつ、搬送方向とは別の方向(例えば下方)にも処理対象物を変位させることを含む。
複数の可動火格子32のそれぞれは、炉体11の幅方向18に並ぶ複数のゾーン34に分かれていてもよい(図2参照)。幅方向18は、鉛直方向及び搬送方向19の両方に垂直な方向である。駆動装置33は、複数のゾーン34の火格子速度を個別に変更し得るように構成されていてもよい。
送風部40は、ストーカ30の下方から、複数の固定火格子31及び可動火格子32を通して処理対象物に熱処理用のガスを送る。熱処理用のガスは、例えば空気等の酸素含有ガスである。熱処理(例えば燃焼)用のガスは常温であってもよく、予熱されていてもよい。送風部40は、ストーカ30上の複数の送風エリア43に対する送風量を個別に変更し得るように構成されていてもよい。複数の送風エリア43は、複数の固定火格子31にそれぞれ対応していてもよい。
例えば送風部40は、送風源41と、複数のバルブ42とを有する。送風源41は、例えばブロワなどにより、複数の送風エリア43に熱処理用のガスを圧送する。複数のバルブ42は、送風源41から複数の送風エリア43へのガスの流量をそれぞれ調節する。
複数の送風エリア43のそれぞれは、複数のゾーン34にそれぞれ対応する複数の送風ゾーン44に分かれていてもよく(図2参照)、送風部40は、複数の送風ゾーン44に対する送風量を個別に変更し得るように構成されていてもよい。
深度センサ20は、搬送方向19からストーカ炉10内(炉体11内)におけるストーカ30上(炉体11内)の所定の視野21に向けられている。例えば深度センサ20は、搬送方向19において送出部13よりも前方に位置し、後方に向けられている。深度センサ20は、視野方向(視野21の中心へ向かう方向)が、斜め上方からストーカ30の上面に向かうように設けられていてもよい。例えば深度センサ20は、ストーカ30よりも高い位置に設けられ、斜め下方に向けられている。深度センサ20は、複数の固定火格子31のそれぞれが、少なくとも部分的に視野21内に入るように設けられていてもよい。
深度センサ20は、予め定められた視点22を有し、視点22から視野21内の物体までの深度(距離)分布を検出するための情報を取得する。以下、深度センサ20が取得する情報を、深度検出用の情報という。深度センサ20は、光に基づいて深度検出用の情報を取得する光学式のセンサであってもよい。光学式の深度センサ20の具体例としては、二次元の視野内画像を取得する撮像装置が挙げられる。
光は、可視光に加えて、赤外線等の不可視の電磁波も含む。深度センサ20は、中赤外線に基づいて深度検出用の情報を取得するように構成されていてもよい。例えば深度センサ20の一例である上記撮像装置は、視野21から入射した中赤外線を結像させて上記視野内画像を取得するように構成されていてもよい。中赤外線は、波長が約2.5~4μmの電磁波である。中赤外線によれば、処理対象物の燃焼により発生する火炎、水蒸気、炭酸ガス等に影響され難い深度検出用の情報を取得することができる。
図3は、深度センサ20により撮影される視野内画像を例示する模式図である。図3に示すように、視野21は、ストーカ30上の複数の堆積エリアにそれぞれ対応する複数の視野内エリア23を含む。複数の堆積エリアは、処理対象物が堆積するエリアである。例えば複数の堆積エリアは、ストーカ30の上面を細分化したエリアである。一例として、複数の堆積エリアは、上述した複数の可動火格子32の複数のゾーン34にそれぞれ対応している。
制御装置100は、駆動装置33を制御する。ストーカ炉10において、処理対象物の熱処理の効率を向上させるためには、ストーカ30上における処理対象物の堆積量を適切に分布させる必要がある。例えば、ストーカ30上に、処理対象物の堆積量が著しく少ない空洞箇所が存在すると、熱処理用のガスが空洞箇所に集中して流れ、他の箇所における熱処理が十分に進行しなくなる可能性がある。そこで、制御装置100は、ストーカ30上における処理対象物の堆積量の分布を評価し、評価結果に基づいて、堆積量の分布を調節するように駆動装置33を制御する。
堆積量の分布を評価するために、制御装置100は、深度センサ20の出力に基づいて、深度センサ20から視野21内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成することと、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価することと、を実行するように構成されている。
搬送方向19からストーカ30上の視野21に向けられた深度センサ20によれば、ストーカ30上の情報を容易に得ることができる。このため、深度センサ20の出力に基づいて、ストーカ30上における処理対象物の堆積量の分布を評価する制御装置100によれば、ストーカ30上における処理対象物の堆積量の分布を容易に評価することができる。以下、制御装置100の構成を詳細に例示する。
図4に示すように、制御装置100は、機能上の構成要素(機能ブロック)として、モデル記憶部111と、深度分布生成部112と、深度分布記憶部113と、エリア情報記憶部114と、堆積分布評価部115とを有する。モデル記憶部111は、深度モデルを記憶する。深度モデルは、二次元画像の入力に応じて、二次元画像内のオブジェクトまでの深度の分布を表す深度分布情報を出力するように、複数の学習データセットに基づく機械学習により予め構築されている。複数の学習データセットのそれぞれは、二次元画像のデータと、二次元画像内のオブジェクトまでの深度の分布の実測データとを含む。深度モデルは、ストーカ30上とは構成が異なるストーカ30上以外(ストーカ炉10外)の一以上の空間において取得された複数の学習セットに基づいて予め構築されていてもよい。深度モデルの構築に使用される学習アルゴリズムの具体例としては、ViT(Vision Transformer)又はニューラルネットワーク等が挙げられる。
深度分布生成部112は、深度センサ20の出力に基づいて、深度センサ20から視野21内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成し、生成結果を深度分布記憶部113に記憶させる。例えば深度分布生成部112は、視点22から視野21内のオブジェクトまでの距離の分布を表すストーカ上深度分布情報を生成する。一例として、深度分布生成部112は、モデル記憶部111が記憶する深度モデルに、深度センサ20が出力した視野内画像を入力することで、ストーカ上深度分布情報を生成する。
なお、光学式の深度センサ20は、二次元の視野内画像を取得する撮像装置に限られない。例えば深度センサ20は、ステレオカメラであってもよく、TOF(Time of Flight)カメラであってもよい。ステレオカメラの出力に基づけば、三角測量の演算によって視点22から視野21内のオブジェクトまでの距離の分布を算出することができる。TOFカメラの出力に基づけば、発光時刻から受光時刻までの時間差に基づいて、視点22から視野21内のオブジェクトまでの距離の分布を算出することができる。このため、ステレオカメラ又はTOFカメラによれば、モデル記憶部111を省略可能である。
エリア情報記憶部114は、視野21内における位置と、ストーカ30上における位置との対応関係を表すエリア情報を記憶する。例えばエリア情報は、上記複数の視野内エリア23と、上記複数の堆積エリアとの対応関係を記憶する。
堆積分布評価部115は、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価する。例えば堆積分布評価部115は、エリア情報記憶部114が記憶するエリア情報と、深度分布記憶部113が記憶するストーカ上深度分布情報とに基づいて、複数の視野内エリア23ごとの堆積量を、複数の堆積エリアごとの堆積量として評価する。
堆積分布評価部115は、ストーカ30が処理対象物を支持していない状態で生成されたストーカ上深度分布情報と、ストーカ30が処理対象物を支持している状態で生成されたストーカ上深度分布情報との差分に基づいて、堆積量の分布を評価してもよい。例えば上記差分は、ストーカ30が処理対象物を支持していない状態と、ストーカ30が処理対象物を支持している状態との深度差の分布を表す。
堆積分布評価部115が上記差分に基づいて堆積量の分布を評価する場合、深度分布生成部112は、ストーカ30が処理対象物を支持していない状態と、ストーカ30が処理対象物を支持している状態との両方においてストーカ上深度分布情報を生成し、生成結果を深度分布記憶部113に記憶させる。以下、ストーカ30が処理対象物を支持していない状態で生成されたストーカ上深度分布情報を「ベース情報」といい、ストーカ30が処理対象物を支持している状態で生成されたストーカ上深度分布情報を「評価対象情報」という。エリア情報記憶部114は、ベース情報における上記エリア情報を記憶する。
堆積分布評価部115は、視野21内の位置ごとに、評価対象情報と、ベース情報との差を上記深度差として算出する。例えば堆積分布評価部115は、上記視野内画像における画素ごとに上記深度差を算出する。
堆積分布評価部115は、エリア情報記憶部114が記憶するエリア情報と、深度差の分布とに基づいて、複数の堆積エリアごとに堆積量を評価する。例えば堆積分布評価部115は、複数の視野内エリア23ごとに深度差を積分することで、複数の堆積エリアごとに堆積量を算出する。
制御装置100は、補正部116を更に有してもよい。補正部116は、ストーカ上深度分布情報に基づいて、視野21内の遠近効果による堆積量の評価誤差を補正する。図5は、深度と画素密度との関係を示す模式図である。図5に示すように、視野内画像200は、撮像素子の複数の画素にそれぞれ対応する複数の画素エリア201を含む。図5は、幅が均一のストーカ30上の視野内画像200を示している。幅が均一であっても、深度が大きくなるにつれて、視野内画像200内における幅は小さくなる。例えば、図5の視野内画像200においては、最も深度が高い(最も遠い)位置202における幅は、視野内画像200内において約8画素分の幅となっており、最も深度が低い(最も近い)位置203における幅は、視野内画像200内において約16画素分の幅となっている。換言すると、深度が増すにつれて、同じ幅に対する画素密度が低くなっている。このため、単に複数の視野内エリア23ごとの深度差を積分する場合、仮に位置202における堆積量と位置203における堆積量とが等しかったとしても、位置202においては8画素分の積分結果が算出され、位置203においては16画素分の積分結果が算出されるので、位置202における堆積量の評価結果と位置203における堆積量の評価結果との間に評価誤差が生じることとなる。
補正部116は、このような評価誤差を補正する。例えば補正部116は、ストーカ上深度分布情報に基づいて、視野21を深度に依存しない補正後視野21A(図6参照)に変換し、上記差分を補正後視野21Aに適応させた補正後差分を生成する。図6は、図5の視野内画像200における視野21を補正後視野21Aに変換した結果を例示する模式図である。図6に示すように、補正部116は、遠近効果による幅の違いを抑制するように、深度に応じて各画素エリア201の幅を変更する。具体的には、深度が増すにつれて各画素エリア201の幅を大きくする。これにより、視野21が補正後視野21Aに変換される。なお、補正部116は、ベース情報に基づいて視野21を補正後視野21Aに変換してもよく、評価対象情報に基づいて視野21を補正後視野21Aに変換してもよい。
補正部116は、図7に示すように、補正後視野21Aにおける各画素エリア201を、一定面積のグリッド204に分割し、各グリッド204に対応する画素エリア201の深度差を割り当てることで上記補正後差分を生成する。堆積分布評価部115は、補正後差分に基づいて、ストーカ30上における堆積量の分布を評価する。補正後視野21Aは、複数の視野内エリア23にそれぞれ対応する複数の補正後エリア23Aを含む。堆積分布評価部115は、上記各グリッド204に割り当てられた深度差を、複数の補正後エリア23Aごとに積分することで、複数の堆積エリアごとに堆積量を算出する。
以上においては、堆積分布評価部115による算出済みの差分を補正後視野21Aに適応させる例を示したが、補正後差分の算出手法はこれに限られない。例えば補正部116は、ストーカ上深度分布情報を補正後視野21Aに適応させた補正後深度分布情報を生成し、補正後深度分布情報に基づいて補正後差分を算出してもよい。例えば補正部116は、ベース情報を補正後視野21Aに適応させた補正後ベース情報と、評価対象情報を補正後視野21Aに適応させた補正後評価対象情報とに基づいて、補正後差分を算出してもよい。補正部116は、補正後ベース情報の算出にベース情報に基づく補正後視野21Aを用い、補正後評価対象情報の算出に評価対象情報に基づく補正後視野21Aを用いてもよい。
このように、差分の算出を行うことなく補正後差分を算出する場合であっても、補正後差分は上記差分を補正後視野に適応させたものに相当する。このため、堆積分布評価部115が補正後差分に基づきストーカ30上における堆積量の分布を評価することは、上記差分に基づきストーカ30上における堆積量の分布を評価することに含まれる。
補正部116は、差分に基づいて、複数の視野内エリア23ごとに処理対象物の堆積形状を認識し、遠近効果による堆積形状の歪みを補正することで上記評価誤差を補正してもよい。
図4に戻り、制御装置100は、流動分布評価部117を更に有してもよい。流動分布評価部117は、第1タイミングで生成されたストーカ上深度分布情報と、第1タイミングよりも後の第2タイミングで生成されたストーカ上深度分布情報との差に基づいて、堆積量の変化の分布を評価する。例えば深度分布生成部112は、第1タイミング及び第2タイミングの両方における評価対象情報を生成し、生成結果を深度分布記憶部113に記憶させる。以下、第1タイミングで生成されたストーカ上深度分布情報を「先行情報」といい、ストーカ30上に第2タイミングで生成されたストーカ上深度分布情報を「後続情報」という。
流動分布評価部117は、後続情報と、先行情報との差を深度変化分布として算出する。例えば流動分布評価部117は、視野21内の位置ごと(例えば視野内画像における画素ごと)に、深度変化(後続情報と先行情報との差)を算出する。
流動分布評価部117は、エリア情報記憶部114が記憶するエリア情報と、深度変化分布とに基づいて、複数の堆積エリアごとに堆積量の変化を算出する。例えば流動分布評価部117は、複数の視野内エリア23ごとに深度変化を積分することで、複数の堆積エリアごとに堆積量の変化を算出する。
補正部116は、ストーカ上深度分布情報に基づいて、視野21内の遠近効果による堆積量の変化の分布の評価誤差を補正してもよい。例えば補正部116は、深度変化分布を補正後視野21Aに適応させた補正後深度変化分布を生成してもよい。深度変化分布を補正後視野21Aに適応させる手法には、上記差分を補正後視野21Aに適応させる手法と同様の手法を用いることが可能である。流動分布評価部117は、補正後深度変化分布に基づいて、堆積量の変化の分布を算出する。
制御装置100は、制御部118を更に有してもよい。制御部118は、堆積分布評価部115により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するようにストーカ30を制御する。例えば制御部118は、堆積量の偏りを抑制するように、複数の可動火格子32の複数のゾーン34における火格子速度を駆動装置33により個別に調節する。制御部118は、堆積分布評価部115により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するようにストーカ30を制御し、流動分布評価部117により評価された堆積量の変化の分布に基づいて、堆積量の変化の偏りを抑制するようにストーカ30を制御してもよい。
図8は、制御装置100のハードウェア構成を例示するブロック図である。制御装置100は、例えばプログラマブルロジックコントローラ等の制御用コンピュータであり、図8に示すように、回路190を有する。回路190は、1以上のプロセッサ191と、メモリ192と、ストレージ193と、撮像制御回路194と、火格子制御回路195とを有する。ストレージ193は、深度センサ20の出力に基づいて、深度センサ20から視野21内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成することと、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価することと、を制御装置100に実行させるためのプログラムを記憶している。例えばストレージ193は、制御装置100に上記各機能ブロックを構成させるためのプログラムを記憶している。ストレージ193の具体例としては、リードオンリメモリ、不揮発性のメモリ、又はハードディスク等が挙げられる。ストレージ193は、ディスク又はUSBメモリ等の可搬型のメディアであってもよい。
メモリ192は、ストレージ193からロードされたプログラムを一時的に記憶する。メモリ192の具体例としては、ランダムアクセスメモリが挙げられる。
1以上のプロセッサ191は、メモリ192にロードされたプログラムを実行することにより、上記各機能ブロックを制御装置100に構成させる。1以上のプロセッサ191は、プログラムの実行過程における演算結果を適宜メモリ192に記憶させ、メモリ192に記憶させた演算結果を利用して更なる演算を行う。
撮像制御回路194は、1以上のプロセッサ191からの指令に基づいて、深度センサ20から深度検出用の情報を取得する。火格子制御回路195は、1以上のプロセッサ191からの指令に基づいて駆動装置33を制御する。
〔ストーカ式処理方法〕
続いて、ストーカ式処理方法の一例として、ストーカ式処理装置1が実行するストーカ式処理手順を例示する。この処理手順は、ストーカ30により、搬送方向19に処理対象物を搬送することと、深度センサ20の出力に基づいてストーカ上深度分布情報を生成することと、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価することと、を含む。
続いて、ストーカ式処理方法の一例として、ストーカ式処理装置1が実行するストーカ式処理手順を例示する。この処理手順は、ストーカ30により、搬送方向19に処理対象物を搬送することと、深度センサ20の出力に基づいてストーカ上深度分布情報を生成することと、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価することと、を含む。
図9は、ストーカ式処理手順を例示するフローチャートである。図9に示す手順の開始時点において、深度分布記憶部113には、予め上記ベース情報が格納されている。図9に示すように、制御装置100は、まずステップS01,S02を実行する。ステップS01では、制御部118が、駆動装置33に処理対象物の搬送を開始させる。ステップS02では、深度分布生成部112が、深度センサ20の出力に基づいて、ストーカ上深度分布情報(上記評価対象情報)を生成し、生成結果を深度分布記憶部113に記憶させる。
次に、制御装置100は、ステップS03,S04,S05を実行する。ステップS03では、堆積分布評価部115が、評価対象情報と、ベース情報との差分を算出する。例えば堆積分布評価部115は、視野21内の位置ごとに、評価対象情報と、ベース情報との差を上記深度差として算出する。ステップS04では、補正部116が、ストーカ上深度分布情報に基づいて、視野21を深度に依存しない補正後視野21Aに変換し、上記差分を補正後視野21Aに適応させた補正後差分を生成する。ステップS05では、堆積分布評価部115が、補正後差分に基づいて、ストーカ30上における堆積量の分布を評価する。
次に、制御装置100は、ステップS06,S07,S08を実行する。ステップS06では、流動分布評価部117が、上記後続情報と、上記先行情報との差を深度変化分布として算出する。例えば流動分布評価部117は、視野21内の位置ごと(例えば視野内画像における画素ごと)に深度変化を算出する。ステップS07では、補正部116が、深度変化分布を補正後視野21Aに適応させた補正後深度変化分布を生成してもよい。ステップS08では、流動分布評価部117が、補正後深度変化分布に基づいて、堆積量の変化の分布を算出する。
次に、制御装置100は、ステップS09を実行する。ステップS09では、制御部118が、堆積分布評価部115により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するように駆動装置33を制御し、流動分布評価部117により評価された堆積量の変化の分布に基づいて、堆積量の変化の偏りを抑制するように駆動装置33を制御する。以後、制御装置100は、ステップS02~S09を繰り返し実行する。なお、以上に示した手順はあくまで一例であり、適宜変更可能である。例えば、ステップS06,S07,S08は省略可能である。この場合、ステップS09において、制御部118は、堆積量の変化の分布に基づく駆動装置33の制御を行わない。
〔まとめ〕
以上に説明したように、ストーカ式処理装置1は、処理対象物を支持し、鉛直方向に交差する搬送方向19に処理対象物を搬送するストーカ30と、搬送方向19からストーカ30上の所定の視野21に向けられた深度センサ20と、深度センサ20の出力に基づいて、深度センサ20から視野21内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成する深度分布生成部112と、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価する堆積分布評価部115と、を備える。
以上に説明したように、ストーカ式処理装置1は、処理対象物を支持し、鉛直方向に交差する搬送方向19に処理対象物を搬送するストーカ30と、搬送方向19からストーカ30上の所定の視野21に向けられた深度センサ20と、深度センサ20の出力に基づいて、深度センサ20から視野21内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成する深度分布生成部112と、視野21内における位置と、ストーカ30上における位置との対応関係と、ストーカ上深度分布情報とに基づいて、ストーカ30上における処理対象物の堆積量の分布を評価する堆積分布評価部115と、を備える。
搬送方向19からストーカ30上の視野21に向けられた深度センサ20によれば、ストーカ30上の情報を容易に得ることができる。このため、深度センサ20の出力に基づいて、ストーカ30上における処理対象物の堆積量の分布を評価する本ストーカ式処理装置1は、ストーカ30上における処理対象物の堆積量の分布を容易に評価するのに有効である。
深度センサ20は、二次元の視野内画像を取得する撮像装置であり、深度分布生成部112は、二次元画像の入力に応じて、二次元画像内のオブジェクトまでの深度の分布を表す深度分布情報を出力するように機械学習により構築された深度モデルに、視野内画像を入力することで、ストーカ上深度分布情報を生成してもよい。二次元画像に基づいて、ストーカ30上における処理対象物の堆積高さを評価するためには、ストーカ30上における大量のデータ収集と、収集したデータに基づく機械学習が必要である。このため、機械学習結果に基づく堆積高さの評価結果を利用するまでに長い準備期間を要する。これに対し、このストーカ式処理装置1によれば、二次元画像の入力に応じて、二次元画像内のオブジェクトまでの深度の分布を表す深度分布情報を出力するように機械学習により構築された深度モデルに基づいて、ストーカ30上における堆積量の分布が評価される。深度モデルは、ストーカ30上以外(ストーカ炉10外)においても容易に構築可能である。このため、ストーカ30上以外において予め構築された深度モデルを活用し、ストーカ30上における堆積量の分布の評価を即時に開始することができる。従って、ストーカ30上における処理対象物の堆積量の分布を更に容易に評価するのに有効である。
撮像装置は、視野21から入射した中赤外線を結像させて視野内画像を取得してもよい。中赤外線によれば、処理対象物の燃焼により発生する火炎、水蒸気、炭酸ガス等に影響され難い視野内画像を取得することがきる。このため、堆積量の分布をより高い信頼性で評価することができる。
堆積分布評価部115は、ストーカ30が処理対象物を支持していない状態で生成されたストーカ上深度分布情報と、ストーカ30が処理対象物を支持している状態で生成されたストーカ上深度分布情報との差分に基づいて、堆積量の分布を評価してもよい。ストーカ30上に処理対象物が収容されていない状態を基準とすることで、堆積量の分布をより適切に評価することができる。
差分は、ストーカ30が処理対象物を支持していない状態と、ストーカ30が処理対象物を支持している状態との深度差の分布を表し、視野21は、ストーカ30上の複数の堆積エリアにそれぞれ対応する複数の視野内エリア23を含み、堆積分布評価部115は、複数の視野内エリア23ごとに深度差を積分することで、複数の堆積エリアごとに堆積量を算出してもよい。堆積量を評価するための演算を簡素化し、堆積量の分布を更に容易に評価することができる。
ストーカ上深度分布情報に基づいて、視野21内の遠近効果による堆積量の評価誤差を補正する補正部116を更に備えてもよい。堆積量の分布をより適切に評価することができる。
差分は、ストーカ30が処理対象物を支持していない状態と、ストーカ30が処理対象物を支持している状態との深度差の分布を表し、補正部116は、ストーカ上深度分布情報に基づいて、視野21を深度に依存しない補正後視野21Aに変換し、差分を補正後視野21Aに適応させた補正後差分を生成し、堆積分布評価部115は、補正後差分に基づいて、ストーカ30上における堆積量の分布を評価してもよい。遠近効果による評価誤差を補正しつつ、堆積量を評価するための演算を簡素化し、堆積量の分布を更に容易に評価することができる。
視野21は、ストーカ30上の複数の堆積エリアにそれぞれ対応する複数の視野内エリア23を含み、補正後視野21Aは、複数の視野内エリア23にそれぞれ対応する複数の補正後エリア23Aを含み、堆積分布評価部115は、複数の補正後エリア23Aごとに深度差を積分することで、複数の堆積エリアごとに堆積量を算出してもよい。堆積量を評価するための演算を更に簡素化し、堆積量の分布を更に容易に評価することができる。
堆積分布評価部115により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するようにストーカ30を制御する制御装置を更に備えてもよい。堆積量の分布の評価結果を有効活用することができる。
第1タイミングで生成されたストーカ上深度分布情報と、第1タイミングよりも後の第2タイミングで生成されたストーカ上深度分布情報との差に基づいて、堆積量の変化の分布を評価する流動分布評価部117を更に備えてもよい。堆積量の変化の分布を容易に評価することができる。堆積量の変化の分布の評価結果によれば、ストーカ30上における処理対象物の停滞等を容易に検出することができる。
堆積分布評価部115により評価された堆積量の分布に基づいて、堆積量の偏りを抑制するようにストーカ30を制御し、流動分布評価部117により評価された堆積量の変化の分布に基づいて、堆積量の変化の偏りを抑制するようにストーカ30を制御する制御装置を更に備えてもよい。堆積量の分布の評価結果、及び堆積量の変化の分布の評価結果を有効活用することができる。
以上、実施形態について説明したが、本開示は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
1…ストーカ式処理装置、30…ストーカ、19…搬送方向、20…深度センサ、21…視野、23…視野内エリア、112…深度分布生成部、115…堆積分布評価部、116…補正部、21A…補正後視野、23A…補正後エリア、117…流動分布評価部、118…制御部。
Claims (12)
- 処理対象物を支持し、鉛直方向に交差する搬送方向に前記処理対象物を搬送するストーカと、
前記搬送方向から前記ストーカ上の所定の視野に向けられた深度センサと、
前記深度センサの出力に基づいて、前記深度センサから前記視野内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成する深度分布生成部と、
前記視野内における位置と、前記ストーカ上における位置との対応関係と、前記ストーカ上深度分布情報とに基づいて、前記ストーカ上における前記処理対象物の堆積量の分布を評価する堆積分布評価部と、を備えるストーカ式処理装置。 - 前記深度センサは、二次元の視野内画像を取得する撮像装置であり、
前記深度分布生成部は、二次元画像の入力に応じて、前記二次元画像内のオブジェクトまでの深度の分布を表す深度分布情報を出力するように機械学習により構築された深度モデルに、前記視野内画像を入力することで、前記ストーカ上深度分布情報を生成する、請求項1記載のストーカ式処理装置。 - 前記撮像装置は、前記視野から入射した中赤外線を結像させて前記視野内画像を取得する、請求項2記載のストーカ式処理装置。
- 前記堆積分布評価部は、前記ストーカが前記処理対象物を支持していない状態で生成された前記ストーカ上深度分布情報と、前記ストーカが前記処理対象物を支持している状態で生成された前記ストーカ上深度分布情報との差分に基づいて、前記堆積量の分布を評価する、請求項1~3のいずれか一項記載のストーカ式処理装置。
- 前記差分は、前記ストーカが前記処理対象物を支持していない状態と、前記ストーカが前記処理対象物を支持している状態との深度差の分布を表し、
前記視野は、前記ストーカ上の複数の堆積エリアにそれぞれ対応する複数の視野内エリアを含み、
前記堆積分布評価部は、前記複数の視野内エリアごとに前記深度差を積分することで、前記複数の堆積エリアごとに前記堆積量を算出する、請求項4記載のストーカ式処理装置。 - 前記ストーカ上深度分布情報に基づいて、前記視野内の遠近効果による前記堆積量の評価誤差を補正する補正部を更に備える、請求項4記載のストーカ式処理装置。
- 前記差分は、前記ストーカが前記処理対象物を支持していない状態と、前記ストーカが前記処理対象物を支持している状態との深度差の分布を表し、
前記補正部は、前記ストーカ上深度分布情報に基づいて、前記視野を深度に依存しない補正後視野に変換し、前記差分を前記補正後視野に適応させた補正後差分を生成し、
前記堆積分布評価部は、前記補正後差分に基づいて、前記ストーカ上における前記堆積量の分布を評価する、請求項6記載のストーカ式処理装置。 - 前記視野は、前記ストーカ上の複数の堆積エリアにそれぞれ対応する複数の視野内エリアを含み、
前記補正後視野は、前記複数の視野内エリアにそれぞれ対応する複数の補正後エリアを含み、
前記堆積分布評価部は、前記複数の補正後エリアごとに前記深度差を積分することで、前記複数の堆積エリアごとに前記堆積量を算出する、請求項7記載のストーカ式処理装置。 - 前記堆積分布評価部により評価された前記堆積量の分布に基づいて、前記堆積量の偏りを抑制するように前記ストーカを制御する制御装置を更に備える、請求項1~8のいずれか一項記載のストーカ式処理装置。
- 第1タイミングで生成された前記ストーカ上深度分布情報と、前記第1タイミングよりも後の第2タイミングで生成された前記ストーカ上深度分布情報との差に基づいて、前記堆積量の変化の分布を評価する流動分布評価部を更に備える、請求項1~8のいずれか一項記載のストーカ式処理装置。
- 前記堆積分布評価部により評価された前記堆積量の分布に基づいて、前記堆積量の偏りを抑制するように前記ストーカを制御し、前記流動分布評価部により評価された前記堆積量の変化の分布に基づいて、前記堆積量の変化の偏りを抑制するように前記ストーカを制御する制御装置を更に備える、請求項10記載のストーカ式処理装置。
- 処理対象物を支持するストーカにより、鉛直方向に交差する搬送方向に沿って前記処理対象物を搬送することと、
前記搬送方向から前記ストーカ上の所定の視野に向けられた深度センサの出力に基づいて、前記深度センサから前記視野内のオブジェクトまでの深度の分布を表すストーカ上深度分布情報を生成することと、
前記視野内における位置と、前記ストーカ上における位置との対応関係と、前記ストーカ上深度分布情報とに基づいて、前記ストーカ上における前記処理対象物の堆積量の分布を評価することと、を含むストーカ式処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021209326A JP2023094081A (ja) | 2021-12-23 | 2021-12-23 | ストーカ式処理装置及びストーカ式処理方法 |
JP2021-209326 | 2021-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023119842A1 true WO2023119842A1 (ja) | 2023-06-29 |
Family
ID=86902018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039559 WO2023119842A1 (ja) | 2021-12-23 | 2022-10-24 | ストーカ式処理装置及びストーカ式処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023094081A (ja) |
WO (1) | WO2023119842A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7507931B1 (ja) | 2023-05-24 | 2024-06-28 | 三菱重工業株式会社 | 燃焼設備用システム、および情報処理方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002130640A (ja) * | 2000-10-31 | 2002-05-09 | Hitachi Zosen Corp | ごみ計測装置 |
JP2016216228A (ja) * | 2015-05-22 | 2016-12-22 | 三菱重工環境・化学エンジニアリング株式会社 | クレーン制御装置、廃棄物処理設備およびプログラム |
JP2017187228A (ja) * | 2016-04-06 | 2017-10-12 | 日立造船株式会社 | ストーカ式焼却炉 |
WO2021075489A1 (ja) * | 2019-10-18 | 2021-04-22 | 川崎重工業株式会社 | 燃焼状況評価方法及び燃焼制御方法 |
JP2021077359A (ja) * | 2019-10-17 | 2021-05-20 | トヨタ リサーチ インスティテュート,インコーポレイティド | 単眼画像を用いた深度推定のためのシステムおよび方法 |
JP2021143768A (ja) * | 2020-03-10 | 2021-09-24 | Jfeエンジニアリング株式会社 | 廃棄物焼却装置及び廃棄物焼却方法 |
-
2021
- 2021-12-23 JP JP2021209326A patent/JP2023094081A/ja active Pending
-
2022
- 2022-10-24 WO PCT/JP2022/039559 patent/WO2023119842A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002130640A (ja) * | 2000-10-31 | 2002-05-09 | Hitachi Zosen Corp | ごみ計測装置 |
JP2016216228A (ja) * | 2015-05-22 | 2016-12-22 | 三菱重工環境・化学エンジニアリング株式会社 | クレーン制御装置、廃棄物処理設備およびプログラム |
JP2017187228A (ja) * | 2016-04-06 | 2017-10-12 | 日立造船株式会社 | ストーカ式焼却炉 |
JP2021077359A (ja) * | 2019-10-17 | 2021-05-20 | トヨタ リサーチ インスティテュート,インコーポレイティド | 単眼画像を用いた深度推定のためのシステムおよび方法 |
WO2021075489A1 (ja) * | 2019-10-18 | 2021-04-22 | 川崎重工業株式会社 | 燃焼状況評価方法及び燃焼制御方法 |
JP2021143768A (ja) * | 2020-03-10 | 2021-09-24 | Jfeエンジニアリング株式会社 | 廃棄物焼却装置及び廃棄物焼却方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202327754A (zh) | 2023-07-16 |
JP2023094081A (ja) | 2023-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023119842A1 (ja) | ストーカ式処理装置及びストーカ式処理方法 | |
CN106573467B (zh) | 用于具有改进的速度和精度的永久层的阵列式打印技术 | |
EP3162474B1 (en) | Imaging device, additive manufacturing system including an imaging device and method of operating such system | |
CN107877855B (zh) | 用于校准制造三维物体的装置的方法和实施该方法的装置 | |
CN106569382B (zh) | 激光投影仪及其深度相机 | |
CN105358310B (zh) | 用于对用于以生成方式制造三维物体的设备进行自动校准的方法 | |
JP7041688B2 (ja) | 三次元印刷中に複数のセンサーを用いる三次元画像処理 | |
JP2017528342A (ja) | マシンビジョン支援型付加製作のシステムおよび方法 | |
Wang et al. | Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform | |
JP2018155411A (ja) | ストーカ式焼却炉 | |
JP6889422B2 (ja) | 三次元造形装置及び三次元造形方法 | |
EP3758439A1 (en) | Method and system for controlling an oven, and oven for heating food items | |
JP2019132485A (ja) | 焼却炉内のごみ量推定機能を備えた燃焼制御システム | |
US11925983B2 (en) | Devices, systems, and methods for using an imaging device to calibrate and operate a plurality of electron beam guns in an additive manufacturing system | |
US20180250932A1 (en) | Inkjet recording device and ink-discharge adjustment method for inkjet recording device | |
TWI635319B (zh) | 虛擬實境系統及方法 | |
TWI853335B (zh) | 爐床式處理裝置及爐床式處理方法 | |
TWI526232B (zh) | 粒子線照射裝置 | |
JP2019119162A (ja) | 立体造形装置 | |
CN114729746A (zh) | 燃烧设备的控制装置、燃烧设备的控制方法及程序 | |
JP2020139866A (ja) | 温度計測装置、加熱調理器、および温度計測方法 | |
WO2021075489A1 (ja) | 燃焼状況評価方法及び燃焼制御方法 | |
JP7507931B1 (ja) | 燃焼設備用システム、および情報処理方法 | |
JP6941501B2 (ja) | 画像処理装置及び画像処理方法 | |
JP2016099561A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22910563 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12024551505 Country of ref document: PH Ref document number: 2401004084 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |