WO2023119816A1 - 固体撮像装置、形状測定装置および形状測定方法 - Google Patents

固体撮像装置、形状測定装置および形状測定方法 Download PDF

Info

Publication number
WO2023119816A1
WO2023119816A1 PCT/JP2022/038601 JP2022038601W WO2023119816A1 WO 2023119816 A1 WO2023119816 A1 WO 2023119816A1 JP 2022038601 W JP2022038601 W JP 2022038601W WO 2023119816 A1 WO2023119816 A1 WO 2023119816A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pixel
solid
imaging device
state imaging
Prior art date
Application number
PCT/JP2022/038601
Other languages
English (en)
French (fr)
Inventor
宗則 宅見
圭祐 内田
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2023119816A1 publication Critical patent/WO2023119816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present disclosure relates to solid-state imaging devices, shape measuring devices, and shape measuring methods.
  • Patent Documents 1 and 2 disclose inventions of solid-state imaging devices that include a light receiving section in which first pixels and second pixels are alternately arranged along a first direction.
  • the width of the first pixel in the first direction gradually narrows from one side toward the other side in the second direction intersecting the first direction, and the width of the second pixel The width in one direction is gradually widened.
  • a solid-state imaging device having a light-receiving part in which a plurality of pixels are arranged two-dimensionally can also be used in shape measurement by the light-section method.
  • the number of pixels is large, it takes a long time to read a signal corresponding to the amount of received light in each pixel.
  • the solid-state imaging device described in Patent Documents 1 and 2 is used in the shape measurement by the light section method, the number of pixels is smaller than that of the area sensor, so the time to read the signal from each pixel can be shortened. It is possible to increase the speed and resolution of shape measurement.
  • the solid-state imaging devices described in Patent Documents 1 and 2 use area sensors because they are the same as linear sensors in that a plurality of pixels (first pixels and second pixels) are arranged one-dimensionally in the light receiving section. Compared to the case, the time for reading out signals from each pixel can be shortened. Further, in the solid-state imaging devices described in Patent Documents 1 and 2, each of the first pixels and the second pixels in the light receiving section has a characteristic structure, so that each pixel in the first direction in which these pixels are arranged At the position, the light incident position in the second direction that intersects with the first direction can be calculated.
  • the solid-state imaging devices described in Patent Documents 1 and 2 can be used in place of an area sensor in shape measurement by the light section method, and compared to the case of using an area sensor, the speed and resolution of shape measurement are increased. is possible.
  • the inventors of the present invention found that the solid-state imaging devices had the following problems. I found out that there is That is, although the solid-state imaging devices described in Patent Documents 1 and 2 can calculate the light incident position in the second direction that intersects the first direction in the light receiving portion, the two-dimensional light incident on the light receiving portion Since the intensity distribution cannot be detected, it cannot be determined whether the optical settings are correct.
  • the light irradiated to the object by the light irradiation unit is in the shape of a narrow line extending in a predetermined direction. Due to the imaging optical system provided between the object and the solid-state imaging device, it is desired that the light-irradiated region of the object and the light-receiving section of the solid-state imaging device have an optically conjugate positional relationship with each other.
  • the reflected light that enters the light receiving unit of the solid-state imaging device from the object through the imaging optical system is parallel to the first direction at the light receiving unit. A linear shape is desired. To realize these, it is necessary that the optical setting state is proper.
  • the solid-state imaging devices described in Patent Documents 1 and 2 is difficult when using If the shape of the object is measured by the light section method when the optical setting state is not proper, the accuracy of the output signal from the solid-state imaging device may deteriorate, and the accuracy of the shape measurement may also deteriorate. Also, since it is difficult to evaluate the optical settings, it is also difficult to adjust and optimize the optical settings.
  • the embodiment is a solid-state imaging device.
  • the solid-state imaging device includes a first light-receiving unit in which a plurality of pixel pairs are arranged along a first direction, and an electric charge corresponding to the amount of received light is generated along a second direction that intersects with the first direction.
  • a second light receiving portion in which a plurality of pixels are arranged, and each of the plurality of pixel pairs of the first light receiving portion includes a first pixel and a second pixel arranged side by side along the first direction.
  • the embodiment is a shape measuring device.
  • a shape measuring device is a device that measures the shape of an object by a light section method, and includes a light irradiation unit that irradiates light on each position on a predetermined line to the object, and a light irradiation unit that irradiates the object with light.
  • An imaging optical system that receives reflected light generated by light irradiation and forms an image, and a solid-state imaging device configured as described above that receives the reflected light that has passed through the imaging optical system.
  • the light incident position in the second direction at each position in the first direction in the first light receiving unit based on the first electrical signal output from the signal processing unit of the solid-state imaging device, and measuring the shape of the object; Based on the second electrical signal output from the signal processing unit of the solid-state imaging device, the light incident intensity distribution in the second direction at the second light receiving unit is obtained, and the light irradiation unit, the imaging optical system, or the optical system of the solid-state imaging device is obtained. Evaluate the setting status.
  • the embodiment is a shape measuring method.
  • the shape measurement method consists of a light irradiation unit that irradiates light onto each position on a predetermined line to the object, and an imaging that forms an image by inputting the reflected light generated by the light irradiation of the object by the light irradiation unit.
  • a method for measuring the shape of an object by a light section method using an optical system and a solid-state imaging device configured as described above for receiving reflected light that has passed through an imaging optical system comprising: a signal processing unit of the solid-state imaging device a measurement step of measuring the shape of the object by obtaining the light incident position in the second direction at each position in the first direction in the first light receiving unit based on the first electrical signal output from the solid-state imaging device; Based on the second electrical signal output from the signal processing section, the optical setting state of the light irradiation section, the imaging optical system, or the solid-state imaging device is determined by obtaining the light incident intensity distribution in the second direction at the second light receiving section. and an evaluation step of evaluating.
  • the embodiment is a correction method.
  • the solid-state imaging device configured as described above is irradiated with light at each position on a predetermined line extending in the first direction, and output from the signal processing unit of the solid-state imaging device
  • the light incident position in the second direction determined based on the first electrical signal is corrected based on the comparison of the light incident position in the second direction determined based on the first electrical signal and the second electrical signal.
  • the embodiment it is possible to provide a solid-state imaging device capable of evaluating and adjusting the optical setting state when used for shape measurement by the light section method.
  • FIG. 1 is a diagram showing the configuration of a shape measuring device 1.
  • FIG. 2 is a diagram showing a first configuration example of the solid-state imaging device 5.
  • FIG. 3 is a diagram showing a circuit configuration example of the first signal processing section 30.
  • FIG. 4 is a diagram showing a second configuration example of the solid-state imaging device 5.
  • FIG. 5 is a diagram showing a third configuration example of the solid-state imaging device 5.
  • FIG. FIG. 6 is a diagram showing a fourth configuration example of the solid-state imaging device 5. As shown in FIG. FIG. FIG.
  • FIG. 7 is a diagram showing an example of the intensity distribution of linear light incident on the first light receiving section 10 or the like of the solid-state imaging device 5A (FIG. 2) of the first configuration example, using shading.
  • FIG. 8 is a diagram showing an example of the intensity distribution of linear light incident on the first light receiving section 10 and the like of the solid-state imaging device 5A (FIG. 2) of the first configuration example.
  • FIG. 9 is a diagram showing an example of the intensity distribution of linear light incident on the first light receiving section 10 and the like of the solid-state imaging device 5A (FIG. 2) of the first configuration example.
  • FIG. 10 is a diagram showing an example of the intensity distribution of linear light incident on the first light receiving section 10 and the like of the solid-state imaging device 5D (FIG.
  • FIG. 11 is a diagram for explaining a method of correcting the light incident position in the y direction obtained based on the first electrical signal in the solid-state imaging device 5A (FIG. 2) of the first configuration example.
  • FIG. 12 shows (a) the first pixel 12 and the second A graph showing changes in the value of the first electric signal in each of the two pixels 13 and the converted height value of the object 2 obtained from the value of the first electric signal, and (b) the value obtained from the first electric signal 3 is a graph showing the difference between the height conversion value and the true height of the target object 2.
  • FIG. FIG. 13 is a diagram showing another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13. As shown in FIG. FIG. FIG.
  • FIG. 14 is a diagram showing an example in which a plurality of pixel pairs 11A are arranged along the x direction in the first light receiving section 10.
  • FIG. 15 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. 16 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. 17 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. FIG. 18 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13. As shown in FIG. FIG. FIG.
  • FIG. 19 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. 20 is (a) a plan view and (b) a cross-sectional view showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13 .
  • FIG. 21 is (a) a plan view and (b) a cross-sectional view showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13 .
  • FIG. 22 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13. As shown in FIG.
  • FIG. 1 is a diagram showing the configuration of the shape measuring device 1.
  • FIG. A shape measuring device 1 measures the surface shape of an object 2 by a light section method, and includes a light irradiation unit 3 , an imaging optical system 4 , a solid-state imaging device 5 and an adjustment unit 6 .
  • the imaging optical system 4 and the solid-state imaging device 5 constitute an imaging camera that images the surface of the object 2 .
  • the object 2 is placed on the mounting surface S of the moving stage that moves in the direction D1, and moves in the direction D1 as the moving stage moves.
  • This movement speed is, for example, 1 m/s.
  • the mounting surface S is a surface parallel to both the direction D1 and the direction D2.
  • Direction D2 intersects (eg, is orthogonal to) direction D1.
  • the object 2 has a rectangular parallelepiped appearance with the direction D1 as the longitudinal direction in this figure, it is not limited to this.
  • the light irradiation unit 3 irradiates the surface 2a of the object 2 with light at each position on a predetermined line.
  • the light irradiation section 3 includes a light source and an irradiation optical system. It is preferable that the light irradiation unit 3 outputs a laser beam.
  • the light irradiation unit 3 is arranged at a position facing the surface 2a of the object 2 in a direction D3 that intersects (for example, is perpendicular to) both the direction D1 and the direction D2.
  • the light irradiator 3 may irradiate linear light extending along the direction D2.
  • the light irradiation unit 3 includes, for example, a light source that outputs light L1, and a cylindrical lens as an irradiation optical system that condenses and irradiates the light L1 output from the light source onto the linear region ML.
  • the light L1 travels along the direction D3 and passes through the cylindrical lens, and then spreads in the direction D2 and irradiates each position on the linear region ML on the surface 2a of the object 2 at the same time.
  • the light irradiation unit 3 may scan the spot light along the line-shaped area ML.
  • the light irradiation section 3 includes, for example, a light source that outputs light and a scanning means for scanning the line-shaped region ML with the light output from the light source.
  • the imaging optical system 4 receives the reflected light L2 generated by the irradiation of the light L1 to the object 2 by the light irradiation unit 3 and forms an image.
  • the solid-state imaging device 5 receives reflected light L2 that has passed through the imaging optical system 4 .
  • the imaging optical system 4 and the solid-state imaging device 5 constitute an imaging camera that captures the surface of the object 2 by inputting the reflected light L2 generated by the irradiation of the light L1 to the object 2 by the light irradiation unit 3. there is
  • the imaging camera is provided in a tilt direction Db that is tilted with the line-shaped region ML as a starting point with respect to the irradiation direction Da of the light L1 to the line-shaped region ML.
  • the solid-state imaging device 5 sequentially captures the reflected light L2 generated in the linear region ML of the surface 2a of the object 2 at a predetermined frame rate for each position along the direction D1, and acquires the image. It outputs an electrical signal consisting of a data string.
  • the solid-state imaging device 5 has a light-receiving section to which the reflected light L2 generated in the linear region ML is input, and a signal processing section for processing a signal output from the light-receiving section in response to the incidence of the reflected light L2.
  • the object 2 moves relative to the light irradiation unit 3 and the imaging camera along the direction D1 as the moving stage moves in the direction D1.
  • the irradiation of the light L1 to the line-shaped region ML by the light irradiation unit 3 and the imaging of the line-shaped region ML based on the reflected light L2 by the solid-state imaging device 5 are sequentially performed. done. Thereby, the three-dimensional shape of the surface 2a of the object 2 can be measured.
  • the adjustment unit 6 adjusts the optical setting state of the light irradiation unit 3 , the imaging optical system 4 or the solid-state imaging device 5 based on the signal output from the solid-state imaging device 5 .
  • the adjustment unit 6 may be a computer including a processing unit such as a CPU and a storage unit such as a RAM, HDD, SSD, or the like. The details of this adjustment will be described later.
  • FIG. 2 is a diagram showing a first configuration example of the solid-state imaging device 5.
  • the solid-state imaging device 5A of the first configuration example shown in this figure includes a first light receiving section 10, second light receiving sections 20A and 20B, a first signal processing section 30, second signal processing sections 40A and 40B, a computing section 50 and A storage unit 60 is provided.
  • the computing unit 50 and the storage unit 60 may be a computer or an embedded system having a microcomputer, FPGA, or the like.
  • the first light receiving section 10 has a plurality of pixel pairs 11 arranged along the first direction (x direction).
  • Each of the second light receiving portions 20A and 20B has a plurality of pixels 21 arranged along a second direction that intersects with the first direction, each of which generates an amount of charge corresponding to the amount of received light.
  • the second direction may be the y-direction orthogonal to the x-direction.
  • Each of the plurality of pixel pairs 11 of the first light receiving section 10 includes a first pixel 12 and a second pixel 13.
  • the amount of charge generated by the first pixels 12 as the light incident position moves from one side to the other side in the y direction when linear light extending in the x direction is incident on the first light receiving section 10 gradually decreases, and the amount of charge generated by the second pixel 13 gradually increases.
  • the first pixel 12 and the second pixel 13 having such a relationship between the light incident position in the y direction and the amount of generated charge may have various configurations. It is characterized by the shape of That is, the shape of the first pixel 12 is a triangle whose width in the x direction gradually narrows from one side in the y direction to the other side.
  • the shape of the second pixel 13 is a triangle whose width in the x direction gradually widens from one side in the y direction to the other side.
  • this triangle is an isosceles triangle, the width of the base is about 10 ⁇ m, and the height is about several mm.
  • the width in the x direction of each of the first pixel 12 and the second pixel 13 is the width in the x direction of a region (photosensitive region) capable of generating charges in response to incident light in each pixel.
  • the second light receiving section 20A is provided on one side of the first light receiving section 10 in the x direction.
  • the second light receiving section 20B is provided on the other side of the first light receiving section 10 in the x direction.
  • the number of pixels 21 included in the second light receiving section 20A and the number of pixels 21 included in the second light receiving section 20B are preferably the same, and preferably provided at the same position in the y direction.
  • the pixels 21 included in each of the second light receiving section 20A and the second light receiving section 20B may have the same configuration.
  • the first signal processing unit 30 is electrically connected to each of the first pixels 12 and the second pixels 13 of the plurality of pixel pairs 11 of the first light receiving unit 10, and the first pixels 12 and the second pixels 13 are electrically connected to each other. It outputs a first electrical signal of a data string according to the amount of charge generated in each.
  • the second signal processing section 40A is electrically connected to each of the plurality of pixels 21 of the second light receiving section 20A, and outputs a second electrical signal of a data string according to the amount of charge generated in these pixels 21. do.
  • the second signal processing section 40B is electrically connected to each of the plurality of pixels 21 of the second light receiving section 20B, and outputs a second electrical signal of a data string corresponding to the amount of charge generated in these pixels 21. do.
  • the calculation unit 50 is electrically connected to the first signal processing unit 30 . Based on the first electrical signal output from the first signal processing unit 30, the calculation unit 50 obtains the light incident position in the y direction at each position in the x direction in the first light receiving unit 10, and determines the shape of the object 2. is measured (measurement step).
  • the calculation unit 50 calculates the data D12 of the first pixel 12 and the first pixel data D12 based on the first electric signal.
  • Data D13 of two pixels 13 are obtained, and the light incident position in the y direction can be obtained based on the ratio of these two data D12 and D13.
  • the calculation unit 50 is also electrically connected to the second signal processing units 40A and 40B. Based on the second electrical signal output from the second signal processing unit 40A, the calculation unit 50 obtains the light incident intensity distribution in the y direction at the second light receiving unit 20A, and the light irradiation unit 3 and the imaging optical system 4 Alternatively, the optical setting state of the solid-state imaging device 5 is evaluated (evaluation step). Based on the second electrical signal output from the second signal processing section 40B, the calculation section 50 obtains the light incident intensity distribution in the y direction at the second light receiving section 20B.
  • the incident light intensity distribution includes information on the light intensity peak position and information on the width of the distribution (for example, full width at half maximum).
  • a storage unit 60 is preferably provided.
  • the storage unit 60 stores a correction formula for correcting the light incident position in the y direction obtained based on the first electrical signal. If the storage unit 60 is provided, the calculation unit 50 stores the light incident position in the y direction at each position in the x direction on the first light receiving unit 10 based on the first electrical signal. Correction is performed based on the correction formula provided. The details of this correction will be described later.
  • FIG. 3 is a diagram showing a circuit configuration example of the first signal processing section 30. As shown in FIG. In this figure, the first pixel 12 and the second pixel 13 are represented by photodiode circuit symbols.
  • the first signal processing unit 30 includes NMOS transistors 31 , shift registers 32 , charge amplifiers 33 and AD conversion circuits 34 in the same number as the total number of the first pixels 12 and second pixels 13 .
  • Each of the first pixel 12 and the second pixel 13 is electrically connected to the input terminal of the charge amplifier 33 via the corresponding NMOS transistor 31 .
  • the NMOS transistor 31 is used as a switch and is set to either an ON state or an OFF state according to the value of the control signal output from the shift register 32 and given to its gate.
  • the shift register 32 sequentially turns on the plurality of NMOS transistors 31 by applying a control signal to each gate of the plurality of NMOS transistors 31 .
  • the charge amplifier 33 inputs electric charge from the first pixel 12 or the second pixel 13 through the NMOS transistor 31, and inputs a voltage value corresponding to the amount of electric charge.
  • the AD conversion circuit 34 is electrically connected to the charge amplifier 33 .
  • the AD conversion circuit 34 receives the voltage value (analog value) output from the charge amplifier 33 and outputs a digital value corresponding to the voltage value.
  • the first electric charge of the data string corresponding to the amount of charge generated in each of the first pixel 12 and the second pixel 13 of the plurality of pixel pairs 11 is generated.
  • a signal is output from the AD conversion circuit 34 .
  • the second signal processing units 40A and 40B can also have the same configuration as the first signal processing unit 30.
  • the second signal processing units 40A and 40B may output signals during a common period.
  • a shift register may be commonly provided in the second signal processing units 40A and 40B.
  • the first signal processing section 30 and the second signal processing sections 40A and 40B may output signals during a common period.
  • a common shift register may be provided in the first signal processing section 30 and the second signal processing sections 40A and 40B.
  • the first signal processing section 30 and the second signal processing sections 40A and 40B may output signals in different periods.
  • the first signal processing section 30 and the second signal processing sections 40A and 40B may be provided separately, or a common signal processing section may control the output of the first signal and the output of the second signal for different periods. You can go to
  • the signal processing unit shown in FIG. 3 has a PPS (Passive Pixel Sensor) configuration
  • the signal processing unit may have an APS (Active Pixel Sensor) configuration.
  • the signal processing unit shown in FIG. 3 has a rolling shutter configuration for sequentially reading out the signals of each pixel
  • the signal processing unit may have a global shutter configuration for simultaneously reading out the signals of each pixel. .
  • FIG. 4 Another configuration example of the solid-state imaging device 5 will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a diagrammatic representation of the solid-state imaging device 5
  • FIG. 4 is a diagram showing a second configuration example of the solid-state imaging device 5.
  • a solid-state imaging device 5B of the second configuration example shown in this figure includes a first light receiving section 10, a second light receiving section 20A, a first signal processing section 30, a second signal processing section 40A, a calculation section 50, and a storage section 60.
  • the second light receiving section 20A is provided on one side of the first light receiving section 10 in the x direction, and the second light receiving section 20B is provided on the other side.
  • the second light receiving section 20A is provided only on one side of the first light receiving section 10 in the x direction.
  • FIG. 5 is a diagram showing a third configuration example of the solid-state imaging device 5.
  • a solid-state imaging device 5C of the third configuration example shown in this figure includes a first light receiving section 10 and a second light receiving section 20C, as well as a signal processing section, a calculation section, and a storage section.
  • a signal processing unit, a computing unit, and a storage unit are not shown.
  • the first light receiving section 10 is divided into a first region 10A on one side in the x direction and a second region 10B on the other side.
  • a second light-receiving portion 20C is provided between.
  • the second light receiving section 20C has the same configuration as the second light receiving sections 20A and 20B of the solid-state imaging device 5A (FIG. 2) of the first configuration example.
  • FIG. 6 is a diagram showing a fourth configuration example of the solid-state imaging device 5.
  • a solid-state imaging device 5D of the fourth configuration example shown in this figure includes a first light receiving section 10 and second light receiving sections 20A, 20B, and 20C, as well as a signal processing section, a calculation section, and a storage section.
  • a signal processing unit, a computing unit, and a storage unit are not shown.
  • the second light receiving section 20A is provided on one side of the first light receiving section 10 in the x direction, and the second light receiving section 20B is provided on the other side.
  • the first light receiving section 10 is divided into a first region 10A on one side in the x direction and a second region 10B on the other side, and a second light receiving section 20C is provided between the first region 10A and the second region 10B. is provided.
  • each of the solid-state imaging device 5C (FIG. 5) of the third configuration example and the solid-state imaging device 5D (FIG. 6) of the fourth configuration example the distance between the first region 10A and the second region 10B of the first light receiving section 10
  • the width in the x direction of each pixel 21 of the second light receiving section 20 ⁇ /b>C provided in the second light receiving section 20 ⁇ /b>C can be set to several ⁇ m.
  • a shift register for reading the charge of the second light receiving section 20C can be provided on either side of the first light receiving section 10 in the x direction. Therefore, the gap between the first region 10A and the second region 10B of the first light-receiving section 10 can be narrowed to the extent that it does not pose a serious problem during shape measurement by the light section method.
  • the light incident on the first light receiving section 10 and the second light receiving section 20C may be configured to be incident from the back surface opposite to the front surface of the semiconductor substrate on which these are formed.
  • the wiring between each pixel 21 of the second light receiving section 20C and the shift register does not block the light incidence.
  • the first light receiving portion 10, the second light receiving portion 20C, etc. are formed on one semiconductor substrate, the signal processing portion, etc. are formed on another semiconductor substrate, and these two semiconductor substrates are electrically connected by bumps. It may be configured to be In this case also, the gap between the first region 10A and the second region 10B of the first light receiving section 10 can be narrowed, and the wiring between each pixel 21 of the second light receiving section 20C and the shift register can be reduced. do not block light incidence.
  • FIG. 7 to 9 are diagrams showing an example of the intensity distribution of linear light incident on the first light receiving section 10 or the like of the solid-state imaging device 5A (FIG. 2) of the first configuration example.
  • FIG. 10 is a diagram showing an example of the intensity distribution of linear light incident on the first light receiving section 10 and the like of the solid-state imaging device 5D (FIG. 6) of the fourth configuration example.
  • the light L is incident on a region extending in a direction parallel to the x direction and having a narrow width in the y direction. This is a state in which the optical settings of the light irradiation unit 3, the imaging optical system 4, and the solid-state imaging device 5 in the shape measuring apparatus 1 are appropriate.
  • the second electrical signals output from the second signal processing units 40A and 40B have the same light intensity peak positions in the y direction in the light incident intensity distributions in the y direction in the second light receiving units 20A and 20B. It indicates that the width of the distribution is narrow.
  • the light L is incident on a region extending in a direction parallel to the x direction and having a narrow width in the y direction in the first light receiving unit 10. You can detect what is happening. Furthermore, it can be detected that the optical settings of the light irradiation unit 3, the imaging optical system 4, and the solid-state imaging device 5 in the shape measuring device 1 are in an appropriate state.
  • the light L is incident on a region extending in a direction parallel to the x direction and wide in the y direction.
  • the optical setting of the light irradiation unit 3 is not appropriate (a state in which a wide range of the surface of the object 2 is irradiated with light), or the imaging optical system
  • the second electrical signals output from the second signal processing units 40A and 40B have the same light intensity peak positions in the y direction in the light incident intensity distributions in the y direction in the second light receiving units 20A and 20B. It indicates that the distribution is wide.
  • the light L is incident on a region extending in a direction parallel to the x direction and wide in the y direction in the first light receiving unit 10. You can detect what is happening. Furthermore, it can be detected that the optical setting of the light irradiation unit 3 or the imaging optical system 4 is not in an appropriate state in the shape measuring device 1 .
  • the light L is incident on a region extending in a direction inclined with respect to the x direction and having a narrow width in the y direction. .
  • a state in which the optical setting of the light irradiation unit 3 is not appropriate in the shape measuring apparatus 1 a state in which light is irradiated to the linear region ML inclined with respect to the direction D2 on the surface of the object 2?
  • a state in which the optical setting of the solid-state imaging device 5 is not proper a state in which the orientation around the optical axis is not proper).
  • the second electrical signals output from the second signal processing units 40A and 40B have different light intensity peak positions in the y direction in the light incident intensity distributions in the y direction in the second light receiving units 20A and 20B, respectively, and It indicates that the width of the distribution is narrow.
  • the detection of the y-direction width of the light incident on the first light receiving unit 10 is performed not only by the solid-state imaging device 5A (FIG. 2) of the first configuration example, but also by the solid-state imaging device 5B (FIG. 4) of the second configuration example.
  • the degree of inclination of light incident on the first light receiving unit 10 can be detected not only by the solid-state imaging device 5A (FIG. 2) of the first configuration example, but also by the solid-state imaging device 5D (FIG. 6) of the fourth configuration example. It is possible.
  • the light L is incident on regions extending in a direction inclined with respect to the x direction.
  • this is a state in which the optical setting of the light irradiation unit 3 is not appropriate (a state in which the light is irradiated to the linear region ML inclined with respect to the direction D2 on the surface of the object 2). or the optical setting of the solid-state imaging device 5 is improper (the orientation around the optical axis is improper).
  • the incident area of the light L has a narrow width in the y direction near the center and a wide width in the y direction at both ends. This is because the optical setting of the imaging optical system 4 is appropriate (the imaging focus is appropriate) near the center of the incident area of the light L, but the optical setting of the imaging optical system 4 is appropriate at both ends. It is in a state where it is not (imaging focus is not proper).
  • the second electrical signal output from the second signal processing section has a light intensity peak position in the y direction in the light incident intensity distribution in the y direction in each of the second light receiving sections 20A, 20B, and 20C. Indicates that they are different from each other. Further, the second electrical signal output from the second signal processing section indicates that the width of the light incident intensity distribution in the y direction in the second light receiving section 20C provided in the center is narrow, while the width of the light incident intensity distribution in the y direction is narrow. It shows that the width of the light incident intensity distribution in the y direction in the second light receiving sections 20A and 20B is wide.
  • the shape measuring device 1 it can be detected that the optical settings of the light irradiation unit 3, the imaging optical system 4, or the solid-state imaging device 5 are not in an appropriate state.
  • the calculation unit 50 of the solid-state imaging device 5 obtains the light incident intensity distribution in the y direction on the second light receiving unit based on the second electrical signal output from the second signal processing unit. Then, based on the light incident intensity distribution in the y direction in the second light receiving section, the calculation section 50, as described with reference to FIGS. 5 optical settings can be evaluated (evaluation step).
  • the adjustment unit 6 of the shape measuring device 1 adjusts the optical setting state of the light irradiation unit 3, the imaging optical system 4, or the solid-state imaging device 5 based on the evaluation result by the calculation unit 50 of the solid-state imaging device 5. (adjustment step).
  • the optical setting state of the light irradiation unit 3 is, for example, the relative position and orientation with respect to the object 2 and the state of the optical system between the light source and the object 2 .
  • the optical setting state of the imaging optical system 4 is, for example, the state of focus adjustment.
  • the optical setting state of the solid-state imaging device 5 is, for example, the position or orientation relative to the object 2 .
  • FIG. 11 is a diagram for explaining a method of correcting the light incident position in the y direction obtained based on the first electrical signal in the solid-state imaging device 5A (FIG. 2) of the first configuration example.
  • the light incident position in the y direction is obtained at each position in the x direction of the first light receiving section 10 . Also, the light incident positions in the y direction at the second light receiving sections 20A and 20B are obtained based on the second signal output from the signal processing section. Then, at each position in the y direction, the light incidence position in the y direction obtained based on the first electric signal and the light incidence position in the y direction obtained based on the first electric signal and the second electric signal are compared. Correct the position.
  • the storage unit 60 stores a correction formula for correcting the light incident position in the y direction obtained based on the first electrical signal.
  • a correction formula is obtained for each position in the x-direction.
  • the correction formula converts the light incident position in the y direction determined based on the first electrical signal to the light incident position in the y direction (true light incident position in the y direction) determined based on the second electrical signal. It is a conversion formula for
  • the storage unit 60 may store the coefficients of a certain functional formula when the correction formula is represented by the functional formula. Also, the storage unit 60 may be a lookup table. In this case, the light incident position in the y direction obtained based on the first electrical signal is used as the address of the lookup table, and the data at that address is used as the true light incident position in the y direction.
  • the calculation unit 50 performs correction based on the correction formula stored in the storage unit 60 when obtaining the light incident position in the y direction at each position in the x direction in the first light receiving unit 10 based on the first electrical signal. conduct. Even if the light incident position in the y direction obtained based on the first electrical signal is not accurate, the correct light incident position in the y direction can be obtained by performing such correction.
  • the correction described above is applied not only to the solid-state imaging device 5A (FIG. 2) of the first configuration example, but also to the solid-state imaging device 5B (FIG. 4) of the second configuration example and the solid-state imaging device 5C (FIG. 5) of the third configuration example. ) and the solid-state imaging device 5D (FIG. 6) of the fourth configuration example.
  • FIG. 12A shows the first pixel 12 and the first pixel 12 of one pixel pair 11 of the first light receiving unit 10 of the solid-state imaging device 5 when the height of the object 2 is changed in the shape measuring device 1 .
  • 4 is a graph showing changes in the value of the first electric signal in each of the two pixels 13 and the converted height value of the object 2 obtained from the value of the first electric signal.
  • the horizontal axis of this graph is the actual height of the object 2 set by changing the height of the Z stage on which the object 2 is placed by 1 mm.
  • the increase and decrease in the value of the first electric signal in each of the first pixel 12 and the second pixel 13 have opposite tendencies. . Therefore, the data D12 of the first pixel 12 and the data D13 of the second pixel 13 are obtained based on the first electrical signal, and the light incident position in the y direction (height conversion value) is calculated based on the ratio of these two data D12 and D13. ) can be obtained.
  • FIG. 12(b) shows the difference between the height conversion value of the object 2 obtained from the first electric signal and the true height when the height of the object 2 is changed in the shape measuring device 1. graph.
  • This difference is ideally 0 (or a very small value), but in practice it is a significant non-zero value. Such errors degrade the measurement accuracy of the shape of the object 2 . Therefore, by performing the correction as described above, the light incident position in the y direction in the first light receiving section 10 can be obtained accurately, and the shape of the object 2 can be accurately measured.
  • the amount of charge generated by the first pixels 12 as the light incident position moves from one side to the other side in the y direction when linear light extending in the x direction is incident on the first light receiving section 10 gradually decreases, and the amount of charge generated by the second pixel 13 gradually increases.
  • the first pixel 12 and the second pixel 13, which have such a relationship between the light incident position in the y direction and the amount of charge generation, may have various configurations.
  • the first pixel 12 and the second pixel 13 have a characteristic shape, which is an isosceles triangle.
  • the first pixel 12 and the second pixel 13 are not limited to this, and may be configured as shown in FIGS. 13 to 22.
  • FIG. 1
  • FIG. 13 is a diagram showing another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. Each pixel pair 11A in the configuration example shown in this figure includes a first pixel 12A and a second pixel 13A.
  • the shape of the first pixel 12A is a right-angled triangle in which the width in the x direction gradually narrows from one side in the y direction to the other side. It is a right-angled triangle whose width in the x direction gradually widens.
  • the first pixel 12A and the second pixel 13A are arranged such that oblique sides of the three sides of each right triangle face each other.
  • the overall shape of each pixel pair 11A can be approximately rectangular.
  • the first pixels 12A and the second pixels 13A may be alternately arranged in the first light receiving section 10 in which a plurality of pixel pairs 11A are arranged along the x direction, They may be arranged as shown in FIG.
  • the first pixel 12A of one pixel pair 11A and the first pixel 12A of the adjacent pixel pair 11A are parallel to the y-direction among the three sides of each right triangle.
  • the second pixel 13A of one pixel pair 11A and the second pixel 13A of the adjacent pixel pair 11A are located on the y The sides parallel to the direction face each other.
  • FIG. 15 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. Each pixel pair 11B in the configuration example shown in this figure includes a first pixel 12B and a second pixel 13B.
  • the shape of the first pixel 12B is a trapezoid whose width in the x direction gradually narrows from one side in the y direction to the other side. It is a trapezoid whose width in the x direction gradually widens.
  • the overall shape of each pixel pair 11B can be approximately parallelogram as shown in this figure, or can be approximately rectangular.
  • FIG. 16 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. 16 In the configuration examples described so far, the width in the x direction changes continuously from one side to the other side in the y direction in each of the first pixels 12 and the second pixels 13 .
  • each pixel pair 11C in the configuration example shown in this figure includes a first pixel 12C and a second pixel 13C.
  • the shape of the first pixel 12C is such that the width in the x direction gradually narrows from one side in the y direction to the other side
  • the shape of the second pixel 13C is such that the width in the x direction gradually decreases from one side to the other side in the y direction.
  • the width of the direction widens step by step.
  • the maximum width W1 in the x direction is about 10 ⁇ m
  • the minimum width W2 in the x direction is 1 ⁇ m or less
  • the length in the y direction is several millimeters
  • the y The width in the x-direction increases or decreases stepwise by a constant value (eg, 0.05 ⁇ m to 0.10 ⁇ m) at every constant interval H (eg, 10 ⁇ m to 20 ⁇ m) in the direction.
  • the width in the y-direction of the line-shaped light or the diameter of the spot-shaped light incident on the first light-receiving unit 10 in which a plurality of pixel pairs 11C are arranged along the x-direction is set to, for example, about 20 ⁇ m so as to be larger than the interval H in the y direction at which the width in the x direction changes.
  • FIG. 17 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. Each pixel pair 11D in the configuration example shown in this figure includes a first pixel 12D and a second pixel 13D.
  • the shape of the first pixel 12D is such that the width in the x direction gradually narrows from one side in the y direction to the other side
  • the shape of the second pixel 13D is such that the width in the x direction gradually decreases from one side to the other side in the y direction.
  • the width of the direction widens step by step.
  • the y-direction position of the line-shaped or spot-shaped light incident on the first light-receiving unit 10 is detected by the signal change of each pixel pair. Detection resolution can be improved by changing in the y direction.
  • the maximum width W1 in the x direction is about 10 ⁇ m
  • the minimum width W2 in the x direction is 1 ⁇ m or less
  • the length in the y direction is several millimeters
  • the y The width in the x direction is stepwise increased or decreased by a constant value (eg, 0.05 ⁇ m to 0.10 ⁇ m) at each constant interval H (eg, 10 ⁇ m to 20 ⁇ m) in the direction.
  • the position of one step in the x direction is moved in the y direction by H/2 with respect to the position of the other step.
  • the width in the y-direction of the line-shaped light or the diameter of the spot-shaped light incident on the first light-receiving unit 10 in which a plurality of pixel pairs 11D are arranged along the x-direction is set to, for example, about 10 ⁇ m so as to be larger than the interval H in the y direction at which the width in the x direction changes.
  • FIG. 18 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. Each pixel pair 11E in the configuration example shown in this figure includes a first pixel 12E and a second pixel 13E.
  • the shape of the first pixel 12E gradually narrows from one side in the y direction to the other side while the width in the x direction repeatedly increases and decreases.
  • the width in the x direction gradually increases while repeating increases and decreases.
  • the shape of each of the first pixel 12E and the second pixel 13E may be a combination of a plurality of squares arranged along the y direction.
  • FIG. 19 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. Each pixel pair 11F in the configuration example shown in this figure includes a first pixel 12F and a second pixel 13F.
  • the first pixel 12F is electrically connected to wiring 35 through a plurality of contacts 18 discretely provided along the y direction, and is electrically connected to the first signal processing section 30 through the plurality of contacts 18 and wiring 35. It is connected.
  • the second pixel 13F is electrically connected to the wiring 36 through a plurality of contacts 19 discretely provided along the y direction, and is electrically connected to the first signal processing section 30 through the plurality of contacts 19 and the wiring 36. It is connected.
  • the impedance between the first pixel 12F and the first signal processing unit 30 can be reduced, and the impedance generated at a location far from the first signal processing unit 30 in the first pixel 12F Even if it is an electric charge, the time it takes to reach the first signal processing unit 30 can be shortened, so the electric charge reading speed can be improved.
  • the second pixel 13F the same applies to the second pixel 13F.
  • each of the wirings 35 and 36 in the x direction can be made narrow to the extent that the light reception of each of the first pixel 12F and the second pixel 13F is not affected. Further, if the light incident on the first light receiving section 10 and the like is incident from the back surface opposite to the front surface of the semiconductor substrate on which these are formed, the wiring does not block the light incidence.
  • each pixel pair 11 has characteristic shapes.
  • each pixel pair 11 further includes a light transmission filter or a light shielding film in addition to the first pixel 12 and the second pixel 13 .
  • FIG. 20 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. FIG. 20(a) is a plan view
  • FIG. 20(b) is a cross-sectional view.
  • Each pixel pair 11G in the configuration example shown in this figure further includes a first filter 14 and a second filter 15 in addition to the first pixel 12G and second pixel 13G.
  • each of the first pixel 12G and the second pixel 13G may be a rectangle having four sides parallel to the x-direction or the y-direction.
  • the first filter 14 is provided covering the entire area of the first pixel 12G, and attenuates the intensity of light incident on the first pixel 12G according to the light transmittance.
  • the second filter 15 is provided covering the entire area of the second pixel 13G, and attenuates the intensity of light incident on the second pixel 13G according to the light transmittance.
  • FIG. 20(a) shows the magnitude of the light transmittance of each of the first filter 14 and the second filter 15 in shades.
  • the light transmittance of the first filter 14 gradually increases as the light incident position moves from one side to the other side in the y direction. Since the light transmittance of the second filter 15 gradually increases, the amount of charge generated by the second pixel 13G gradually increases. To go.
  • FIG. 21 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. FIG. 21(a) is a plan view
  • FIG. 21(b) is a cross-sectional view.
  • Each pixel pair 11H in the configuration example shown in this figure further includes a first light shielding film 16 and a second light shielding film 17 in addition to the first pixel 12H and the second pixel 13H.
  • each of the first pixel 12H and the second pixel 13H may be a rectangle having four sides parallel to the x-direction or the y-direction.
  • the first light shielding film 16 is provided so as to partially cover the first pixels 12H, and restricts light from entering the first pixels 12H.
  • the second light shielding film 17 is provided so as to partially cover the second pixels 13H, and restricts light from entering the second pixels 13H.
  • the width in the x direction of the portion of the first pixel 12H that is not covered with the first light shielding film 16 gradually narrows from one side in the y direction toward the other side.
  • the width in the x direction of the portion of the pixel 13H that is not covered with the second light shielding film 17 gradually widens.
  • the shape of the portion of the first pixel 12H that is not covered with the first light shielding film 16 is an isosceles shape in which the width in the x direction gradually narrows from one side to the other side in the y direction.
  • the shape of the portion of the second pixel 13H not covered with the second light shielding film 17 is an isosceles triangle whose width in the x direction gradually widens from one side in the y direction to the other side.
  • the first pixels 12H are arranged as the light incident position moves from one side to the other side in the y direction. gradually decreases, and the amount of charge generated by the second pixel 13H gradually increases.
  • FIG. 22 is a diagram showing still another configuration example of the pixel pair 11 including the first pixel 12 and the second pixel 13.
  • FIG. Each pixel pair 11J in the configuration example shown in this figure further includes a first filter 14 and a second filter 15 in addition to the first pixel 12J and second pixel 13J.
  • the configuration example shown in FIG. 22 is different in that each of the first pixel 12J and the second pixel 13J is divided into two regions.
  • the first pixel 12J is divided into a first region 12Ja on one side in the y direction and a second region 12Jb on the other side.
  • the second pixel 13J is divided into a first region 13Ja on one side in the y direction and a second region 13Jb on the other side.
  • the first signal processing unit that reads signals from each pixel of the first light receiving unit 10 includes a first circuit provided on one side of the first light receiving unit 10 in the y direction, Regarding the second circuit provided on the other side in the y direction with respect to one light receiving unit 10, and the same pixel (the first pixel 12J or the second pixel 13J) among the signals output from the first circuit and the second circuit, respectively and a summing circuit for summing the data of .
  • the first circuit reads signals from the first region 12Ja of the first pixel 12J and the first region 13Ja of the second pixel 13J of each pixel pair 11J.
  • the second circuit reads signals from the second regions 12Jb of the first pixels 12J and the second regions 13Jb of the second pixels 13J of each pixel pair 11J.
  • the first electrical signal output from the adder circuit is a data string corresponding to the amount of charge generated in each of the first pixel 12J and the second pixel 13J of the plurality of pixel pairs 11J.
  • each of the first pixel 12J and the second pixel 13J is divided into a region on one side and a region on the other side in the y direction, the first region 12Ja of the first pixel 12J And the signal line between the first region 13Ja of the second pixel 13J and the first circuit can be shortened, and the second region 12Jb of the first pixel 12J and the second region 13Jb of the second pixel 13J and the second circuit can be shortened.
  • the solid-state imaging device, shape measuring device, and shape measuring method are not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • a configuration in which two or more of the configuration examples described above are combined may be employed.
  • the solid-state imaging device includes a first light receiving section in which a plurality of pixel pairs are arranged along a first direction, and an amount of light corresponding to the amount of received light along a second direction that intersects with the first direction.
  • a second light-receiving portion in which a plurality of pixels that generate electric charges are arranged, and each of the plurality of pixel pairs of the first light-receiving portion includes the first pixel and the first pixel arranged side by side along the first direction.
  • the second light receiving section may be arranged on one side in the first direction with respect to the first light receiving section. Further, the second light receiving section may be provided on both sides in the first direction with respect to the first light receiving section.
  • the first light receiving section is divided into a first area on one side in the first direction and a second area on the other side, and the second light receiving section is divided into the first area and the second area. It is good also as a structure provided in between.
  • the width of the first pixel in the first direction gradually narrows from one side to the other side in the second direction, and the width of the second pixel in the first direction gradually widens. good.
  • each of the plurality of pixel pairs of the first light receiving unit includes a first filter provided covering the first pixel and a second filter provided covering the second pixel,
  • a configuration may be adopted in which the light transmittance of the first filter gradually decreases and the light transmittance of the second filter gradually increases from one side toward the other side in the second direction.
  • each of the plurality of pixel pairs of the first light receiving section includes a first light shielding film provided to partially cover the first pixels and a second light shielding film provided to partially cover the second pixels.
  • 2 light shielding film the width in the first direction of the portion of the first pixel not covered with the first light shielding film gradually narrows from one side to the other side in the second direction, and the second pixel The width in the first direction of the portion not covered with the second light shielding film may gradually widen.
  • the above-described solid-state imaging device outputs the first electric signal of the data string corresponding to the amount of charge generated in each of the first and second pixels of the plurality of pixel pairs of the first light receiving section
  • the configuration may further include a signal processing section that outputs a second electrical signal of a data string corresponding to the amount of charge generated in each of the plurality of pixels.
  • the above-described solid-state imaging device obtains the light incident position in the second direction at each position in the first direction in the first light receiving section based on the first electrical signal, and calculates the second light incident position in the second light receiving section based on the second electrical signal.
  • a configuration may be adopted in which a calculation unit that obtains the light incident intensity distribution in a direction is further provided.
  • the above-described solid-state imaging device further includes a storage section that stores a correction formula for correcting the light incident position in the second direction obtained based on the first electrical signal, and the computing section stores When obtaining the light incident position in the second direction at each position in the first direction in the first light receiving section, the correction may be performed based on the correction formula stored in the storage section.
  • the shape measuring apparatus is an apparatus for measuring the shape of an object by a light section method.
  • a solid-state imaging device comprising: an imaging optical system for inputting reflected light generated by irradiating an object with light and forming an image;
  • the calculation unit obtains the light incident position in the second direction at each position in the first direction in the first light receiving unit based on the first electrical signal output from the signal processing unit of the solid-state imaging device, and determines the shape of the object. is measured, and based on the second electrical signal output from the signal processing unit of the solid-state imaging device, the light incident intensity distribution in the second direction at the second light receiving unit is obtained, and the light irradiation unit, the imaging optical system, or the solid Evaluate the optical settings of the imager.
  • the shape measuring apparatus described above may further include an adjustment section that adjusts the optical setting state of the light irradiation section, the imaging optical system, or the solid-state imaging device based on the evaluation result of the calculation section.
  • the shape measuring method includes a light irradiating unit that irradiates an object with light at each position on a predetermined line;
  • the above shape measurement method may further include an adjustment step of adjusting the optical setting state of the light irradiation unit, the imaging optical system, or the solid-state imaging device based on the evaluation result in the evaluation step.
  • the signal processing unit of the solid-state imaging device Correct the light incident position in the second direction determined based on the first electrical signal based on a comparison of the light incident position in the second direction determined based on each of the first electrical signal and the second electrical signal output from do.
  • the embodiment can be used as a solid-state imaging device capable of evaluating and adjusting the optical setting state when used for shape measurement by the light section method. Further, the embodiments can be used as an apparatus and method capable of measuring the shape of an object at high speed and high resolution by the light section method using the solid-state imaging device.
  • SYMBOLS 1 Shape measuring apparatus, 2... Object, 3... Light irradiation part, 4... Imaging optical system, 5, 5A-5D... Solid-state imaging device, 6... Adjustment part, 10... First light receiving part, 10A... First Area 10B... Second area 11, 11A to 11J... Pixel pair 12, 12A to 12J... First pixel 13, 13A to 13J... Second pixel 14... First filter 15...
  • Second filter 16 1st light-shielding film 17 2nd light-shielding film 20A, 20B, 20C 2nd light receiving section 21 pixel 30 first signal processing section 31 NMOS transistor 32 shift register 33 charge amplifier , 34...AD conversion circuit, 40A, 40B...second signal processing section, 50...calculation section, 60...storage section.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

固体撮像装置5Aは、第1受光部10および第2受光部20A,20Bを備える。第1受光部10は、x方向に沿って複数の画素対11が配列されている。第2受光部20A,20Bそれぞれは、y方向に沿って各々受光量に応じた量の電荷を発生させる複数の画素21が配列されている。各画素対11は、第1画素12および第2画素13を含む。x方向に延在するライン状の光が第1受光部10に入射したときに、その光入射位置がy方向の一方側から他方側へ向かうのに従って、第1画素12が発生させる電荷の量が次第に減少していき、第2画素13が発生させる電荷の量が次第に増加していく。これにより、光切断法による形状測定に用いられる場合に光学的設定状態の評価および調整が可能な固体撮像装置が実現される。

Description

固体撮像装置、形状測定装置および形状測定方法
 本開示は、固体撮像装置、形状測定装置および形状測定方法に関するものである。
 特許文献1,2には、第1方向に沿って第1画素と第2画素とが交互に配列された受光部を備える固体撮像装置の発明が開示されている。この固体撮像装置の一つの構成例では、上記第1方向と交差する第2方向の一方側から他方側に向かって、第1画素の第1方向の幅が次第に狭くなり、第2画素の第1方向の幅が次第に広くなっている。また、これらの文献には、この固体撮像装置を用いて光切断法により対象物の形状を測定することができる旨が記載されている。
 光切断法による形状測定において、複数の画素が2次元配列された受光部を備える固体撮像装置(エリアセンサ)を用いることもできる。この場合には、画素数が多いので、各画素において受光量に応じた信号を読み出すのに長時間を要する。これに対して、光切断法による形状測定において、特許文献1,2に記載された固体撮像装置を用いれば、エリアセンサと比べて画素数が少ないので、各画素から信号を読み出す時間を短縮することができ、形状測定の高速化および高解像度化が可能である。
 特許文献1,2に記載された固体撮像装置は、受光部において複数の画素(第1画素、第2画素)が1次元配列されている点でリニアセンサと同じであるので、エリアセンサを用いる場合と比べると、各画素から信号を読み出す時間を短縮することができる。また、特許文献1,2に記載された固体撮像装置は、受光部において第1画素および第2画素それぞれが特徴的な構造を有することにより、これらの画素が配列されている第1方向の各位置において、この第1方向と交差する第2方向についての光入射位置を演算により求めることができる。
 すなわち、特許文献1,2に記載された固体撮像装置は、光切断法による形状測定においてエリアセンサに替えて用いることができ、エリアセンサを用いる場合と比べると形状測定の高速化および高解像度化が可能である。
国際公開第2019/058897号 国際公開第2019/059236号
 本発明者は、特許文献1,2に記載された固体撮像装置を用いて光切断法による形状測定技術の研究開発を行う過程で、この固体撮像装置が次のような問題点を有していることを見出した。すなわち、特許文献1,2に記載された固体撮像装置は、受光部において第1方向と交差する第2方向についての光入射位置を演算により求めることができるものの、受光部における入射光の2次元強度分布を検出することができないことから、光学的設定状態が適正であるか否かを判断することができない。
 例えば、光照射部により対象物に照射される光は、所定方向に延在する幅狭のライン状であることが望まれる。対象物と固体撮像装置との間に設けられた結像光学系により、対象物における光照射領域と固体撮像装置の受光部とは、互いに光学的に共役な位置関係であることが望まれる。また、光切断法により形状測定において対象物が平坦である場合には、対象物から結像光学系を経て固体撮像装置の受光部に入射する反射光は、受光部において第1方向に平行なライン状であることが望まれる。これらを実現するには光学的設定状態が適正であることが必要である。
 しかし、光学的設定状態の評価は、受光部における入射光の2次元強度分布を検出することができるエリアセンサを用いる場合には可能であるものの、特許文献1,2に記載された固体撮像装置を用いる場合には困難である。光学的設定状態が適正でない場合に光切断法により対象物の形状を測定すると、固体撮像装置からの出力信号の精度が悪くなって、形状測定の精度も悪くなる場合がある。また、光学的設定状態の評価が困難であることから、光学的設定状態を調整して適正化することも困難である。
 実施形態は、光切断法による形状測定に用いられる場合に光学的設定状態の評価および調整が可能な固体撮像装置を提供することを目的とする。また、実施形態は、上記の固体撮像装置を用いて光切断法により対象物の形状を高速・高解像度で測定することができる装置および方法を提供することを目的とする。
 実施形態は、固体撮像装置である。固体撮像装置は、第1方向に沿って複数の画素対が配列されている第1受光部と、第1方向と交差する第2方向に沿って各々受光量に応じた量の電荷を発生させる複数の画素が配列されている第2受光部と、を備え、第1受光部の複数の画素対それぞれは、第1方向に沿って並んで配置されている第1画素および第2画素を含み、第1方向に延在するライン状の光が第1受光部に入射したときに、その光入射位置が第2方向の一方側から他方側へ向かうのに従って、第1画素が発生させる電荷の量が次第に減少していき、第2画素が発生させる電荷の量が次第に増加していく。
 実施形態は、形状測定装置である。形状測定装置は、光切断法により対象物の形状を測定する装置であって、対象物に対して所定ライン上の各位置に光を照射する光照射部と、光照射部による対象物への光照射により生じた反射光を入力して結像する結像光学系と、結像光学系を経た反射光を受光する上記構成の固体撮像装置と、を備え、固体撮像装置の演算部は、固体撮像装置の信号処理部から出力される第1電気信号に基づいて、第1受光部における第1方向の各位置において第2方向の光入射位置を求めて、対象物の形状を測定し、固体撮像装置の信号処理部から出力される第2電気信号に基づいて、第2受光部における第2方向の光入射強度分布を求めて、光照射部、結像光学系または固体撮像装置の光学的設定状態を評価する。
 実施形態は、形状測定方法である。形状測定方法は、対象物に対して所定ライン上の各位置に光を照射する光照射部と、光照射部による対象物への光照射により生じた反射光を入力して結像する結像光学系と、結像光学系を経た反射光を受光する上記構成の固体撮像装置と、を用いて、光切断法により対象物の形状を測定する方法であって、固体撮像装置の信号処理部から出力される第1電気信号に基づいて、第1受光部における第1方向の各位置において第2方向の光入射位置を求めて、対象物の形状を測定する測定ステップと、固体撮像装置の信号処理部から出力される第2電気信号に基づいて、第2受光部における第2方向の光入射強度分布を求めて、光照射部、結像光学系または固体撮像装置の光学的設定状態を評価する評価ステップと、を備える。
 実施形態は、補正方法である。補正方法は、第2方向の各位置において、上記構成の固体撮像装置に対し第1方向に延在する所定ライン上の各位置に光を入射させ、固体撮像装置の信号処理部から出力される第1電気信号および第2電気信号それぞれに基づいて求められる第2方向の光入射位置の比較に基づいて、第1電気信号に基づいて求められる第2方向の光入射位置を補正する。
 実施形態によれば、光切断法による形状測定に用いられる場合に光学的設定状態の評価および調整が可能な固体撮像装置を提供することができる。
図1は、形状測定装置1の構成を示す図である。 図2は、固体撮像装置5の第1構成例を示す図である。 図3は、第1信号処理部30の回路構成例を示す図である。 図4は、固体撮像装置5の第2構成例を示す図である。 図5は、固体撮像装置5の第3構成例を示す図である。 図6は、固体撮像装置5の第4構成例を示す図である。 図7は、第1構成例の固体撮像装置5A(図2)の第1受光部10等に入射したライン状の光の強度分布の例を濃淡で示す図である。 図8は、第1構成例の固体撮像装置5A(図2)の第1受光部10等に入射したライン状の光の強度分布の例を濃淡で示す図である。 図9は、第1構成例の固体撮像装置5A(図2)の第1受光部10等に入射したライン状の光の強度分布の例を濃淡で示す図である。 図10は、第4構成例の固体撮像装置5D(図6)の第1受光部10等に入射したライン状の光の強度分布の例を濃淡で示す図である。 図11は、第1構成例の固体撮像装置5A(図2)において第1電気信号に基づいて求められるy方向の光入射位置を補正する方法について説明する図である。 図12は、(a)形状測定装置1において対象物2の高さを変化させたときに、固体撮像装置5の第1受光部10の或る1つの画素対11の第1画素12および第2画素13それぞれにおける第1電気信号の値、ならびに、この第1電気信号の値から求められた対象物2の高さ換算値の変化を示すグラフ、及び(b)第1電気信号から求められた対象物2の高さ換算値と真の高さとの差を示すグラフである。 図13は、第1画素12および第2画素13を含む画素対11の他の構成例を示す図である。 図14は、第1受光部10において複数の画素対11Aがx方向に沿って配列される例を示す図である。 図15は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。 図16は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。 図17は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。 図18は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。 図19は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。 図20は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す(a)平面図、及び(b)断面図である。 図21は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す(a)平面図、及び(b)断面図である。 図22は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。
 以下、添付図面を参照して、固体撮像装置、形状測定装置、及び形状測定方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1は、形状測定装置1の構成を示す図である。形状測定装置1は、光切断法により対象物2の表面形状を測定するものであって、光照射部3、結像光学系4、固体撮像装置5および調整部6を備える。結像光学系4および固体撮像装置5は、対象物2の表面を撮像する撮像カメラを構成している。
 対象物2は、方向D1に移動する移動ステージの載置面S上に置かれており、移動ステージの移動に伴い方向D1に移動する。この移動速度は例えば1m/sである。載置面Sは、方向D1および方向D2の双方に平行な面である。方向D2は方向D1と交差(例えば直交)している。対象物2は、この図では方向D1を長手方向とする直方体状の外観を有しているが、これに限られない。
 光照射部3は、対象物2の表面2aに対して所定ライン上の各位置に光を照射する。光照射部3は、光源及び照射光学系を含む。光照射部3はレーザ光を出力するのが好適である。光照射部3は、方向D1および方向D2の双方と交差(例えば直交)する方向D3において対象物2の表面2aと対向する位置に配置されている。
 光照射部3は、方向D2に沿って延在するライン状の光を照射してもよい。この場合、光照射部3は、例えば、光L1を出力する光源と、その光源から出力された光L1をライン状領域MLに集光照射する照射光学系としてのシリンドリカルレンズと、を含む。光L1は、方向D3に沿って進行してシリンドリカルレンズを通過した後、方向D2に拡がった状態で対象物2の表面2aのライン状領域ML上の各位置に同時に照射される。
 また、光照射部3は、スポット光をライン状領域MLに沿って走査してもよい。この場合、光照射部3は、例えば、光を出力する光源と、その光源から出力された光をライン状領域MLに走査するための走査手段と、を含む。
 結像光学系4は、光照射部3による対象物2への光L1の照射により生じた反射光L2を入力して結像する。固体撮像装置5は、結像光学系4を経た反射光L2を受光する。結像光学系4および固体撮像装置5は、光照射部3による対象物2への光L1の照射により生じた反射光L2を入力して対象物2の表面を撮像する撮像カメラを構成している。撮像カメラは、ライン状領域MLへの光L1の照射方向Daに対して、ライン状領域MLを起点として傾斜した傾斜方向Dbに設けられている。
 固体撮像装置5は、方向D1に沿った各位置について、対象物2の表面2aのライン状領域MLで生じた反射光L2を所定のフレームレートで順次重厚して撮像し、その撮像によって取得したデータ列からなる電気信号を出力する。固体撮像装置5は、ライン状領域MLで生じた反射光L2が入力される受光部と、その反射光L2の入射に応じて受光部から出力される信号を処理する信号処理部とを有する。
 対象物2は、移動ステージの方向D1への移動に伴って、光照射部3および撮像カメラに対して方向D1に沿って相対移動する。これにより、方向D1に沿った各位置について、光照射部3によるライン状領域MLへの光L1の照射、および、固体撮像装置5による反射光L2に基づくライン状領域MLの撮像が、順次に行われる。これによって対象物2の表面2aの三次元形状を計測することができる。
 調整部6は、固体撮像装置5から出力される信号に基づいて、光照射部3、結像光学系4または固体撮像装置5の光学的設定状態を調整する。調整部6は、例えばCPU等の処理部とRAM、HDD、SSD等の記憶部とを備えるコンピュータであってもよい。この調整の詳細については後述する。
 図2は、固体撮像装置5の第1構成例を示す図である。この図に示される第1構成例の固体撮像装置5Aは、第1受光部10、第2受光部20A,20B、第1信号処理部30、第2信号処理部40A,40B、演算部50および記憶部60を備える。
 これらは1つの半導体基板上に形成されていてもよい。或いは、第1受光部10および第2受光部20A,20Bが1つの半導体基板上に形成されていて、第1信号処理部30、第2信号処理部40A,40B、演算部50および記憶部60が他の1つの半導体基板上に形成されていてもよい。この場合、これら2つの半導体基板がバンプにより電気的に接続されていてもよい。演算部50および記憶部60は、コンピュータ又は、マイコンやFPGA等を有する組み込みシステムであってもよい。
 第1受光部10は、第1方向(x方向)に沿って複数の画素対11が配列されている。第2受光部20A,20Bそれぞれは、第1方向と交差する第2方向に沿って各々受光量に応じた量の電荷を発生させる複数の画素21が配列されている。第2方向は、x方向に直交するy方向であってもよい。
 第1受光部10の複数の画素対11それぞれは、第1画素12および第2画素13を含む。x方向に延在するライン状の光が第1受光部10に入射したときに、その光入射位置がy方向の一方側から他方側へ向かうのに従って、第1画素12が発生させる電荷の量が次第に減少していき、第2画素13が発生させる電荷の量が次第に増加していく。
 このようなy方向の光入射位置と電荷発生量との間の関係を有する第1画素12および第2画素13は、様々な態様の構成があり得るが、この図に示される構成では各画素の形状に特徴を有する。すなわち、第1画素12の形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に狭くなる三角形である。第2画素13の形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に広くなる三角形である。
 例えば、この三角形は、二等辺三角形であり、底辺の幅が10μm程度であり、高さが数mm程度である。第1画素12および第2画素13それぞれのx方向の幅とは、各々の画素において光入射に応じて電荷を発生し得る領域(光感応領域)のx方向の幅である。
 第2受光部20Aは、第1受光部10に対しx方向の一方側に設けられている。第2受光部20Bは、第1受光部10に対しx方向の他方側に設けられている。第2受光部20Aに含まれる画素21と、第2受光部20Bに含まれる画素21とは、同数であるのが好ましく、y方向の同じ位置に設けられているのが好ましい。第2受光部20Aおよび第2受光部20Bそれぞれに含まれる画素21は、同一構成であってよい。
 第1信号処理部30は、第1受光部10の複数の画素対11の第1画素12および第2画素13それぞれと電気的に接続されており、これらの第1画素12および第2画素13それぞれで発生した電荷の量に応じたデータ列の第1電気信号を出力する。
 第2信号処理部40Aは、第2受光部20Aの複数の画素21それぞれと電気的に接続されており、これらの画素21で発生した電荷の量に応じたデータ列の第2電気信号を出力する。第2信号処理部40Bは、第2受光部20Bの複数の画素21それぞれと電気的に接続されており、これらの画素21で発生した電荷の量に応じたデータ列の第2電気信号を出力する。
 演算部50は、第1信号処理部30と電気的に接続されている。演算部50は、第1信号処理部30から出力された第1電気信号に基づいて、第1受光部10におけるx方向の各位置においてy方向の光入射位置を求めて、対象物2の形状を測定する(測定ステップ)。
 具体的には、演算部50は、複数の画素対11それぞれについて(すなわち、第1受光部10におけるx方向の各位置について)、第1電気信号に基づいて第1画素12のデータD12および第2画素13のデータD13を求め、これら2つのデータD12,D13の比に基づいてy方向の光入射位置を求めることができる。
 演算部50は、第2信号処理部40A,40Bとも電気的に接続されている。演算部50は、第2信号処理部40Aから出力された第2電気信号に基づいて、第2受光部20Aにおけるy方向の光入射強度分布を求めて、光照射部3、結像光学系4または固体撮像装置5の光学的設定状態を評価する(評価ステップ)。演算部50は、第2信号処理部40Bから出力された第2電気信号に基づいて、第2受光部20Bにおけるy方向の光入射強度分布を求める。光入射強度分布は、光強度ピーク位置の情報および当該分布の幅(例えば半値全幅)の情報を含む。
 記憶部60が設けられているのが好ましい。記憶部60は、第1電気信号に基づいて求められるy方向の光入射位置を補正するための補正式を記憶する。記憶部60が設けられている場合、演算部50は、第1電気信号に基づいて第1受光部10におけるx方向の各位置においてy方向の光入射位置を求める際に、記憶部60に記憶されている補正式に基づいて補正を行う。この補正の詳細については後述する。
 図3は、第1信号処理部30の回路構成例を示す図である。この図では、第1画素12および第2画素13はフォトダイオードの回路記号で示されている。第1信号処理部30は、第1画素12および第2画素13の総数と同じ個数のNMOSトランジスタ31、シフトレジスタ32、チャージアンプ33およびAD変換回路34を含む。
 第1画素12および第2画素13それぞれは、対応するNMOSトランジスタ31を介して電気的にチャージアンプ33の入力端に接続されている。NMOSトランジスタ31は、スイッチとして用いられるものであり、シフトレジスタ32から出力されてゲートに与えられる制御信号の値に応じてオン状態およびオフ状態の何れかに設定される。シフトレジスタ32は、複数のNMOSトランジスタ31それぞれのゲートに制御信号を与えることにより、複数のNMOSトランジスタ31を順次にオン状態とする。
 チャージアンプ33は、第1画素12または第2画素13からNMOSトランジスタ31を介して電荷を入力し、その電荷の量に応じた電圧値を入力する。AD変換回路34は、チャージアンプ33と電気的に接続されている。AD変換回路34は、チャージアンプ33から出力された電圧値(アナログ値)を入力して、その電圧値に応じたデジタル値を出力する。
 複数のNMOSトランジスタ31が順次に1つずつオン状態とされると、そのオン状態とされたNMOSトランジスタ31と接続されている第1画素12または第2画素13において受光によって発生した電荷がチャージアンプ33に入力される。そして、その電荷の量に応じた電圧値がチャージアンプ33から出力され、さらに、チャージアンプ33から出力された電圧値に応じたデジタル値がAD変換回路34から出力される。
 複数のNMOSトランジスタ31が順次に1つずつオン状態とされることで、複数の画素対11の第1画素12および第2画素13それぞれで発生した電荷の量に応じたデータ列の第1電気信号がAD変換回路34から出力される。
 第2信号処理部40A,40Bも、第1信号処理部30と同様の構成とすることができる。第2信号処理部40A,40Bは、共通の期間に信号を出力してもよい。この場合、第2信号処理部40A,40Bにおいてシフトレジスタは共通に設けられてもよい。
 第1信号処理部30および第2信号処理部40A,40Bは、共通の期間に信号を出力してもよい。この場合、第1信号処理部30および第2信号処理部40A,40Bにおいてシフトレジスタは共通に設けられてもよい。
 第1信号処理部30および第2信号処理部40A,40Bは、互いに異なる期間に信号を出力してもよい。この場合には、第1信号処理部30および第2信号処理部40A,40Bを別個に設けてもよいし、共通の信号処理部により第1信号の出力および第2信号の出力を互いに異なる期間に行ってもよい。
 図3に示される信号処理部はPPS(Passive Pixel Sensor)の構成であったが、信号処理部はAPS(Active Pixel Sensor)の構成であってもよい。また、図3に示される信号処理部は各画素の信号を順次に読み出すローリングシャッタ方式の構成であったが、信号処理部は各画素の信号を同時に読み出すグローバルシャッタ方式の構成であってもよい。
 次に、固体撮像装置5の他の構成例について、図4~図6を用いて説明する。
 図4は、固体撮像装置5の第2構成例を示す図である。この図に示される第2構成例の固体撮像装置5Bは、第1受光部10、第2受光部20A、第1信号処理部30、第2信号処理部40A、演算部50および記憶部60を備える。
 第1構成例の固体撮像装置5A(図2)では第1受光部10に対しx方向の一方側に第2受光部20Aが設けられるとともに他方側に第2受光部20Bが設けられていたのに対し、第2構成例の固体撮像装置5B(図4)では第1受光部10に対しx方向の一方側のみに第2受光部20Aが設けられている。
 図5は、固体撮像装置5の第3構成例を示す図である。この図に示される第3構成例の固体撮像装置5Cは、第1受光部10および第2受光部20Cを備える他、信号処理部、演算部および記憶部を備える。なお、信号処理部、演算部および記憶部は、図示されていない。
 第3構成例の固体撮像装置5Cでは、第1受光部10がx方向の一方側の第1領域10Aと他方側の第2領域10Bとに区分され、第1領域10Aと第2領域10Bとの間に第2受光部20Cが設けられている。第2受光部20Cは、第1構成例の固体撮像装置5A(図2)の第2受光部20A,20Bと同様の構成を有する。
 図6は、固体撮像装置5の第4構成例を示す図である。この図に示される第4構成例の固体撮像装置5Dは、第1受光部10および第2受光部20A,20B,20Cを備える他、信号処理部、演算部および記憶部を備える。なお、信号処理部、演算部および記憶部は、図示されていない。
 第4構成例の固体撮像装置5Dでは、第1受光部10に対しx方向の一方側に第2受光部20Aが設けられるとともに他方側に第2受光部20Bが設けられている。また、第1受光部10がx方向の一方側の第1領域10Aと他方側の第2領域10Bとに区分され、第1領域10Aと第2領域10Bとの間に第2受光部20Cが設けられている。
 なお、第3構成例の固体撮像装置5C(図5)および第4構成例の固体撮像装置5D(図6)それぞれにおいて、第1受光部10の第1領域10Aと第2領域10Bとの間に設けられた第2受光部20Cの各画素21のx方向の幅は数μmにすることができる。第2受光部20Cの電荷を読み出すためのシフトレジスタは、第1受光部10に対しx方向の何れか一方側に設けることができる。したがって、第1受光部10の第1領域10Aと第2領域10Bとの間の間隙は、光切断法による形状測定の際に大きな問題とならない程度に狭くすることができる。
 また、第1受光部10および第2受光部20C等へ入射する光を、これらが形成されている半導体基板の表面に対し反対側の裏面から入射させる構成としてもよい。この場合、第2受光部20Cの各画素21とシフトレジスタとの間の配線が光入射を遮ることはない。
 第1受光部10および第2受光部20C等が1つの半導体基板上に形成され、信号処理部等が他の半導体基板上に形成されていて、これら2つの半導体基板がバンプにより電気的に接続される構成としてもよい。この場合も、第1受光部10の第1領域10Aと第2領域10Bとの間の間隙を狭くすることができ、また、第2受光部20Cの各画素21とシフトレジスタとの間の配線が光入射を遮ることがないようにすることができる。
 次に、形状測定装置1において各構成例の固体撮像装置5(5A~5D)を用いた場合の作用効果について、図7~図10を用いて説明する。図7~図9は、第1構成例の固体撮像装置5A(図2)の第1受光部10等に入射したライン状の光の強度分布の例を濃淡で示す図である。図10は、第4構成例の固体撮像装置5D(図6)の第1受光部10等に入射したライン状の光の強度分布の例を濃淡で示す図である。
 図7に示される例では、第1受光部10および第2受光部20A,20Bにおいて、光Lは、x方向に平行な方向に延在しy方向の幅が狭い領域に入射している。これは、形状測定装置1において光照射部3、結像光学系4および固体撮像装置5の光学的設定が適正な状態である。
 このとき、第2信号処理部40A,40Bから出力される第2電気信号は、第2受光部20A,20Bそれぞれにおけるy方向の光入射強度分布においてy方向の光強度ピーク位置が互いに等しく且つ当該分布の幅が狭いことを示す。
 すなわち、第2信号処理部40A,40Bから出力される第2電気信号に基づいて、第1受光部10においてx方向に平行な方向に延在しy方向の幅が狭い領域に光Lが入射していることを検知することができる。さらに、形状測定装置1において光照射部3、結像光学系4および固体撮像装置5の光学的設定が適正な状態であることを検知することができる。
 図8に示される例では、第1受光部10および第2受光部20A,20Bにおいて、光Lは、x方向に平行な方向に延在しy方向の幅が広い領域に入射している。これは、形状測定装置1において、光照射部3の光学的設定が適正でない状態(対象物2の表面において幅の広い範囲に光を照射している状態)であるか、または、結像光学系4の光学的設定が適正でない状態(撮像のピントが適正でない状態)である。
 このとき、第2信号処理部40A,40Bから出力される第2電気信号は、第2受光部20A,20Bそれぞれにおけるy方向の光入射強度分布においてy方向の光強度ピーク位置が互いに等しく且つ当該分布の幅が広いことを示す。
 すなわち、第2信号処理部40A,40Bから出力される第2電気信号に基づいて、第1受光部10においてx方向に平行な方向に延在しy方向の幅が広い領域に光Lが入射していることを検知することができる。さらに、形状測定装置1において光照射部3または結像光学系4の光学的設定が適正な状態でないことを検知することができる。
 図9に示される例では、第1受光部10および第2受光部20A,20Bにおいて、光Lは、x方向に対し傾斜した方向に延在しy方向の幅が狭い領域に入射している。これは、形状測定装置1において、光照射部3の光学的設定が適正でない状態(対象物2の表面において方向D2に対し傾斜したライン状領域MLに光を照射している状態)であるか、または、固体撮像装置5の光学的設定が適正でない状態(光軸の周りの方位が適正でない状態)である。
 このとき、第2信号処理部40A,40Bから出力される第2電気信号は、第2受光部20A,20Bそれぞれにおけるy方向の光入射強度分布においてy方向の光強度ピーク位置が互いに異なり且つ当該分布の幅が狭いことを示す。
 すなわち、第2信号処理部40A,40Bから出力される第2電気信号に基づいて、第1受光部10においてx方向に対し傾斜した方向に延在しy方向の幅が狭い領域に光Lが入射していることを検知することができる。さらに、形状測定装置1において光照射部3または固体撮像装置5の光学的設定が適正な状態でないことを検知することができる。
 なお、第1受光部10に入射する光のy方向の幅の検知は、第1構成例の固体撮像装置5A(図2)だけでなく、第2構成例の固体撮像装置5B(図4)、第3構成例の固体撮像装置5C(図5)および第4構成例の固体撮像装置5D(図6)でも可能である。また、第1受光部10に入射する光の傾斜の程度の検知は、第1構成例の固体撮像装置5A(図2)だけでなく、第4構成例の固体撮像装置5D(図6)でも可能である。
 図10に示される例では、第1受光部10および第2受光部20A,20B,20Cにおいて、光Lは、x方向に対し傾斜した方向に延在する領域に入射している。これは、図9の場合と同様に、光照射部3の光学的設定が適正でない状態(対象物2の表面において方向D2に対し傾斜したライン状領域MLに光を照射している状態)であるか、または、固体撮像装置5の光学的設定が適正でない状態(光軸の周りの方位が適正でない状態)である。
 また、この例では、光Lの入射領域は、中央付近においてy方向の幅が狭く、両端においてy方向の幅が広い。これは、光Lの入射領域の中央付近においては結像光学系4の光学的設定が適正である(撮像のピントが適正である)ものの、両端では結像光学系4の光学的設定が適正でない(撮像のピントが適正でない)状態である。
 図10に示される例では、第2信号処理部から出力される第2電気信号は、第2受光部20A,20B,20Cそれぞれにおけるy方向の光入射強度分布においてy方向の光強度ピーク位置が互いに異なることを示す。また、第2信号処理部から出力される第2電気信号は、中央に設けられた第2受光部20Cにおけるy方向の光入射強度分布の幅が狭いことを示す一方で、両端に設けられた第2受光部20A,20Bにおけるy方向の光入射強度分布の幅が広いことを示す。
 すなわち、第2信号処理部から出力される第2電気信号に基づいて、第1受光部10においてx方向に対し傾斜した方向に延在する領域に光Lが入射していることを検知することができ、また、中央付近ではピントが適正であるものの両端ではピントが適正でないことを検知することができる。さらに、形状測定装置1において光照射部3、結像光学系4または固体撮像装置5の光学的設定が適正な状態でないことを検知することができる。
 固体撮像装置5(5A~5D)の演算部50は、第2信号処理部から出力される第2電気信号に基づいて、第2受光部におけるy方向の光入射強度分布を求める。そして、演算部50は、第2受光部におけるy方向の光入射強度分布に基づいて、図7~図10を用いて説明したように、光照射部3、結像光学系4または固体撮像装置5の光学的設定状態を評価することができる(評価ステップ)。
 形状測定装置1の調整部6は、固体撮像装置5の演算部50による評価の結果に基づいて、光照射部3、結像光学系4または固体撮像装置5の光学的設定状態を調整することができる(調整ステップ)。光照射部3の光学的設定状態とは、例えば、対象物2に対する相対的な位置や方位、および、光源と対象物2との間の光学系の状態である。結像光学系4の光学的設定状態とは、例えば、ピント調整の状態である。固体撮像装置5の光学的設定状態とは、例えば、対象物2に対する相対的な位置や方位である。
 次に、固体撮像装置5(5A~5D)において第1電気信号に基づいて求められるy方向の光入射位置を補正する方法について、図11を用いて説明する。第1電気信号に基づいて求められるy方向の光入射位置が正確でない場合、次に説明するような補正をして、真のy方向の光入射位置を求めるのが好適である。図11は、第1構成例の固体撮像装置5A(図2)において第1電気信号に基づいて求められるy方向の光入射位置を補正する方法について説明する図である。
 この補正に際しては、先ず、y方向の各位置において、固体撮像装置5Aに対しx方向に延在する所定ライン上の各位置に光を入射させる。このとき、y方向の各位置において、x方向に延在するライン状の光を入射させてもよいし、図11に示されるようにx方向に沿ってスポット光Lsの入射位置を走査してもよい。
 信号処理部から出力される第1信号に基づいて、第1受光部10のx方向の各位置においてy方向の光入射位置を求める。また、信号処理部から出力される第2信号に基づいて、第2受光部20A,20Bにおけるy方向の光入射位置を求める。そして、y方向の各位置において、第1電気信号および第2電気信号それぞれに基づいて求められるy方向の光入射位置の比較に基づいて、第1電気信号に基づいて求められるy方向の光入射位置を補正する。
 記憶部60は、第1電気信号に基づいて求められるy方向の光入射位置を補正するための補正式を記憶する。補正式は、x方向の各位置について求められる。補正式は、第1電気信号に基づいて求められたy方向の光入射位置を、第2電気信号に基づいて求められたy方向の光入射位置(真のy方向の光入射位置)へ変換するための変換式である。
 記憶部60は、補正式を或る関数式で表したときに当該関数式の係数を記憶してもよい。また、記憶部60はルックアップテーブルであってもよい。この場合、第1電気信号に基づいて求められたy方向の光入射位置をルックアップテーブルのアドレスとして、そのアドレスにあるデータを真のy方向の光入射位置とする。
 演算部50は、第1電気信号に基づいて第1受光部10におけるx方向の各位置においてy方向の光入射位置を求める際に、記憶部60に記憶されている補正式に基づいて補正を行う。第1電気信号に基づいて求められるy方向の光入射位置が正確でない場合であっても、このような補正を行うことにより、正確なy方向の光入射位置を求めることができる。
 以上に説明した補正は、第1構成例の固体撮像装置5A(図2)だけでなく、第2構成例の固体撮像装置5B(図4)、第3構成例の固体撮像装置5C(図5)および第4構成例の固体撮像装置5D(図6)でも可能である。
 図12(a)は、形状測定装置1において対象物2の高さを変化させたときに、固体撮像装置5の第1受光部10の或る1つの画素対11の第1画素12および第2画素13それぞれにおける第1電気信号の値、ならびに、この第1電気信号の値から求められた対象物2の高さ換算値の変化を示すグラフである。このグラフの横軸は、対象物2を載置したZステージの高さを1mmずつ変えることにより設定した対象物2の実際の高さである。
 このグラフに示されるように、対象物2の高さを変化させたとき、第1画素12および第2画素13それぞれにおける第1電気信号の値の増減は、互いに逆の傾向を有している。したがって、第1電気信号に基づいて第1画素12のデータD12および第2画素13のデータD13を求め、これら2つのデータD12,D13の比に基づいてy方向の光入射位置(高さ換算値)を求めることができる。
 図12(b)は、形状測定装置1において対象物2の高さを変化させたときに、第1電気信号から求められた対象物2の高さ換算値と真の高さとの差を示すグラフである。この差は、理想的には0(または非常に小さい値)であるが、実際には0でない有意の値となる。このような誤差があると、対象物2の形状の測定精度が低下する。そこで、上述したような補正を行うことにより、第1受光部10におけるy方向の光入射位置を正確に求めることができ、対象物2の形状を正確に測定することができる。
 次に、第1受光部10の複数の画素対11それぞれの第1画素12および第2画素13の他の構成例について説明する。x方向に延在するライン状の光が第1受光部10に入射したときに、その光入射位置がy方向の一方側から他方側へ向かうのに従って、第1画素12が発生させる電荷の量が次第に減少していき、第2画素13が発生させる電荷の量が次第に増加していく。
 このようなy方向の光入射位置と電荷発生量との間の関係を有する第1画素12および第2画素13は、様々な態様の構成があり得る。これまでに説明した構成例では、第1画素12および第2画素13は形状に特徴を有し、その形状は二等辺三角形であった。第1画素12および第2画素13は、これに限られず、図13~図22に示されるような構成例であってもよい。
 図13は、第1画素12および第2画素13を含む画素対11の他の構成例を示す図である。この図に示される構成例の各画素対11Aは、第1画素12Aおよび第2画素13Aを含む。
 第1画素12Aの形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に狭くなる直角三角形であり、第2画素13Aの形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に広くなる直角三角形である。各々の画素対11Aにおいて、第1画素12Aと第2画素13Aとは、各々の直角三角形の3辺のうちの斜辺が互いに対向して配置される。各々の画素対11Aの全体としての形状は概略長方形とすることができる。
 図13に示される構成例では、複数の画素対11Aがx方向に沿って配列された第1受光部10において、第1画素12Aと第2画素13Aとは交互に配列されてもよいし、図14に示されるように配列されていてもよい。図14に示される配列では、或る1つの画素対11Aの第1画素12Aと、隣にある画素対11Aの第1画素12Aとは、各々の直角三角形の3辺のうちのy方向に平行な辺が互いに対向しており、また、或る1つの画素対11Aの第2画素13Aと、隣にある画素対11Aの第2画素13Aとは、各々の直角三角形の3辺のうちのy方向に平行な辺が互いに対向していている。
 図15は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。この図に示される構成例の各画素対11Bは、第1画素12Bおよび第2画素13Bを含む。
 第1画素12Bの形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に狭くなる台形であり、第2画素13Bの形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に広くなる台形である。各々の画素対11Bの全体としての形状は、この図に示されるように概略平行四辺形とすることができ、また、概略長方形とすることもできる。
 図16は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。これまでに説明した構成例では、第1画素12および第2画素13それぞれにおいて、y方向の一方側から他方側へ向かってx方向の幅が連続的に変化していた。これに対して、この図に示される構成例の各画素対11Cは、第1画素12Cおよび第2画素13Cを含む。
 第1画素12Cの形状は、y方向の一方側から他方側へ向かってx方向の幅が段階的に狭くなり、第2画素13Cの形状は、y方向の一方側から他方側へ向かってx方向の幅が段階的に広くなる。
 例えば、第1画素12Cおよび第2画素13Cそれぞれにおいて、x方向の最大幅W1は10μm程度であり、x方向の最小幅W2は1μm以下であり、y方向の長さは数mmであり、y方向の一定間隔H(例えば10μm~20μm)毎にx方向の幅が一定値(例えば0.05μm~0.10μm)だけ段階的に増加または減少する。
 複数の画素対11Cがx方向に沿って配列された第1受光部10に入射するライン状の光のy方向の幅またはスポット状の光の径は、第1画素12Cおよび第2画素13Cそれぞれにおいてx方向の幅が変化するy方向の間隔Hより大きくなるように、例えば20μm程度に設定される。
 図17は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。この図に示される構成例の各画素対11Dは、第1画素12Dおよび第2画素13Dを含む。
 第1画素12Dの形状は、y方向の一方側から他方側へ向かってx方向の幅が段階的に狭くなり、第2画素13Dの形状は、y方向の一方側から他方側へ向かってx方向の幅が段階的に広くなる。このとき、第1受光部10に入射するライン状またはスポット状の光のy方向位置は各画素対の信号変化で検出するので、第1画素12Dおよび第2画素13Dそれぞれにおいて、段階の位置をy方向に変更することで検出分解能を向上させることができる。
 例えば、第1画素12Dおよび第2画素13Dそれぞれにおいて、x方向の最大幅W1は10μm程度であり、x方向の最小幅W2は1μm以下であり、y方向の長さは数mmであり、y方向の一定間隔H(例えば10μm~20μm)毎にx方向の幅が一定値(例えば0.05μm~0.10μm)だけ段階的に増加または減少する。
 このとき、各画素においてx方向で一方の段階の位置を他方の段階の位置に対しH/2だけy方向に移動させる。複数の画素対11Dがx方向に沿って配列された第1受光部10に入射するライン状の光のy方向の幅またはスポット状の光の径は、第1画素12Dおよび第2画素13Dそれぞれにおいてx方向の幅が変化するy方向の間隔Hより大きくなるように、例えば10μm程度に設定される。
 図18は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。この図に示される構成例の各画素対11Eは、第1画素12Eおよび第2画素13Eを含む。
 第1画素12Eの形状は、y方向の一方側から他方側へ向かってx方向の幅が増減を繰り返しながらも次第に狭くなり、第2画素13Eの形状は、y方向の一方側から他方側へ向かってx方向の幅が増減を繰り返しながらも次第に広くなる。第1画素12Eおよび第2画素13Eそれぞれの形状は、y方向に沿って配置された複数の四角形が順に結合されたものであってもよい。
 図19は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。この図に示される構成例の各画素対11Fは、第1画素12Fおよび第2画素13Fを含む。
 第1画素12Fは、y方向に沿って離散的に設けられた複数のコンタクト18により配線35と電気的に接続され、これら複数のコンタクト18および配線35により第1信号処理部30と電気的に接続されている。第2画素13Fは、y方向に沿って離散的に設けられた複数のコンタクト19により配線36と電気的に接続され、これら複数のコンタクト19および配線36により第1信号処理部30と電気的に接続されている。
 図19に示される構成例では、第1画素12Fと第1信号処理部30との間のインピーダンスを小さくすることができ、第1画素12Fのうち第1信号処理部30から遠い箇所で発生した電荷であっても第1信号処理部30に到達する時間を短くすることができるので、電荷読み出し速度を向上させることができる。第2画素13Fについても同様である。
 配線35,36それぞれのx方向の幅は、第1画素12Fおよび第2画素13Fそれぞれの受光に影響がない程度に狭くすることができる。また、第1受光部10等へ入射する光を、これらが形成されている半導体基板の表面に対し反対側の裏面から入射させれば、配線が光入射を遮ることはない。
 これまでに説明した構成例では、各画素対11の第1画素12および第2画素13は形状に特徴を有するものであった。以降に説明する構成例では、各画素対11は、第1画素12および第2画素13に加えて、光透過フィルタまたは遮光膜を更に含む。
 図20は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。図20(a)は平面図であり、図20(b)は断面図である。この図に示される構成例の各画素対11Gは、第1画素12Gおよび第2画素13Gに加えて、第1フィルタ14および第2フィルタ15を更に含む。
 第1画素12Gおよび第2画素13Gそれぞれの形状は、x方向またはy方向に平行な4辺を有する長方形であってよい。第1フィルタ14は、第1画素12Gの全領域を覆って設けられており、光透過率に応じて第1画素12Gに入射する光の強度を減衰させる。第2フィルタ15は、第2画素13Gの全領域を覆って設けられており、光透過率に応じて第2画素13Gに入射する光の強度を減衰させる。
 図20に示される構成例では、y方向の一方側から他方側へ向かって、第1フィルタ14の光透過率は次第に小さくなり、第2フィルタ15の光透過率は次第に大きくなる。図20(a)は、第1フィルタ14および第2フィルタ15それぞれの光透過率の大きさを濃淡で示している。
 x方向に延在するライン状の光が第1受光部10に入射したときに、その光入射位置がy方向の一方側から他方側へ向かうのに従って、第1フィルタ14の光透過率が次第に小さくなるので第1画素12Gが発生させる電荷の量が次第に減少していき、一方で、第2フィルタ15の光透過率が次第に大きくなるので第2画素13Gが発生させる電荷の量が次第に増加していく。
 図21は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。図21(a)は平面図であり、図21(b)は断面図である。この図に示される構成例の各画素対11Hは、第1画素12Hおよび第2画素13Hに加えて、第1遮光膜16および第2遮光膜17を更に含む。
 第1画素12Hおよび第2画素13Hそれぞれの形状は、x方向またはy方向に平行な4辺を有する長方形であってよい。第1遮光膜16は、第1画素12Hの一部を覆って設けられており、第1画素12Hの一部への光入射を制限する。第2遮光膜17は、第2画素13Hの一部を覆って設けられており、第2画素13Hの一部への光入射を制限する。
 図21に示される構成例では、y方向の一方側から他方側へ向かって、第1画素12Hのうち第1遮光膜16で覆われていない部分のx方向の幅が次第に狭くなり、第2画素13Hのうち第2遮光膜17で覆われていない部分のx方向の幅が次第に広くなる。
 この図に示される例では、第1画素12Hのうち第1遮光膜16で覆われていない部分の形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に狭くなる二等辺三角形であり、第2画素13Hのうち第2遮光膜17で覆われていない部分の形状は、y方向の一方側から他方側へ向かってx方向の幅が次第に広くなる二等辺三角形である。
 この構成例においても、x方向に延在するライン状の光が第1受光部10に入射したときに、その光入射位置がy方向の一方側から他方側へ向かうのに従って、第1画素12Hが発生させる電荷の量が次第に減少していき、第2画素13Hが発生させる電荷の量が次第に増加していく。
 図22は、第1画素12および第2画素13を含む画素対11の更に他の構成例を示す図である。この図に示される構成例の各画素対11Jは、第1画素12Jおよび第2画素13Jに加えて、第1フィルタ14および第2フィルタ15を更に含む。
 図20に示された構成例と比較すると、この図22に示される構成例では、第1画素12Jおよび第2画素13Jそれぞれが2つの領域に分割されている点で相違する。第1画素12Jは、y方向の一方側の第1領域12Jaと他方側の第2領域12Jbとに分割されている。第2画素13Jは、y方向の一方側の第1領域13Jaと他方側の第2領域13Jbとに分割されている。
 図22に示される構成例では、第1受光部10の各画素から信号を読み出す第1信号処理部は、第1受光部10に対しy方向の一方側に設けられた第1回路と、第1受光部10に対しy方向の他方側に設けられた第2回路と、第1回路および第2回路それぞれから出力された信号のうち同一の画素(第1画素12Jまたは第2画素13J)についてのデータを加算する加算回路と、を含むのが好適である。
 第1回路は、各画素対11Jの第1画素12Jの第1領域12Jaおよび第2画素13Jの第1領域13Jaそれぞれから信号を読み出す。第2回路は、各画素対11Jの第1画素12Jの第2領域12Jbおよび第2画素13Jの第2領域13Jbそれぞれから信号を読み出す。加算回路から出力される第1電気信号は、複数の画素対11Jの第1画素12Jおよび第2画素13Jそれぞれで発生した電荷の量に応じたデータ列である。
 図22に示される構成例では、第1画素12Jおよび第2画素13Jそれぞれがy方向の一方側の領域と他方側の領域とに分割されていることから、第1画素12Jの第1領域12Jaおよび第2画素13Jの第1領域13Jaと第1回路との間の信号線を短くすることができ、第1画素12Jの第2領域12Jbおよび第2画素13Jの第2領域13Jbと第2回路との間の信号線を短くすることができる。
 固体撮像装置、形状測定装置、及び形状測定方法は、上述した実施形態および構成例に限定されるものではなく、種々の変形が可能である。例えば、上述した構成例のうちの2以上のものを組み合わせた構成としてもよい。
 上記実施形態による固体撮像装置は、第1方向に沿って複数の画素対が配列されている第1受光部と、第1方向と交差する第2方向に沿って各々受光量に応じた量の電荷を発生させる複数の画素が配列されている第2受光部と、を備え、第1受光部の複数の画素対それぞれは、第1方向に沿って並んで配置されている第1画素および第2画素を含み、第1方向に延在するライン状の光が第1受光部に入射したときに、その光入射位置が第2方向の一方側から他方側へ向かうのに従って、第1画素が発生させる電荷の量が次第に減少していき、第2画素が発生させる電荷の量が次第に増加していくように構成されている。
 上記の固体撮像装置において、第2受光部は、第1受光部に対し第1方向の一方側に設けられている構成としてもよい。また、第2受光部は、第1受光部に対し第1方向の両側に設けられている構成としてもよい。
 上記の固体撮像装置において、第1受光部は、第1方向の一方側の第1領域と他方側の第2領域とに区分され、第2受光部は、第1領域と第2領域との間に設けられている構成としてもよい。
 上記の固体撮像装置において、第2方向の一方側から他方側へ向かって、第1画素の第1方向の幅が次第に狭くなり、第2画素の第1方向の幅が次第に広くなる構成としてもよい。
 上記の固体撮像装置において、第1受光部の複数の画素対それぞれは、第1画素を覆って設けられた第1フィルタと、第2画素を覆って設けられた第2フィルタと、を含み、第2方向の一方側から他方側へ向かって、第1フィルタの光透過率が次第に小さくなり、第2フィルタの光透過率が次第に大きくなる構成としてもよい。
 上記の固体撮像装置において、第1受光部の複数の画素対それぞれは、第1画素の一部を覆って設けられた第1遮光膜と、第2画素の一部を覆って設けられた第2遮光膜と、を含み、第2方向の一方側から他方側へ向かって、第1画素のうち第1遮光膜で覆われていない部分の第1方向の幅が次第に狭くなり、第2画素のうち第2遮光膜で覆われていない部分の第1方向の幅が次第に広くなる構成としてもよい。
 上記の固体撮像装置は、第1受光部の複数の画素対の第1画素および第2画素それぞれで発生した電荷の量に応じたデータ列の第1電気信号を出力し、第2受光部の複数の画素それぞれで発生した電荷の量に応じたデータ列の第2電気信号を出力する信号処理部を更に備える構成としてもよい。
 上記の固体撮像装置は、第1電気信号に基づいて第1受光部における第1方向の各位置において第2方向の光入射位置を求め、第2電気信号に基づいて第2受光部における第2方向の光入射強度分布を求める演算部を更に備える構成としてもよい。
 上記の固体撮像装置は、第1電気信号に基づいて求められる第2方向の光入射位置を補正するための補正式を記憶する記憶部を更に備え、演算部は、第1電気信号に基づいて第1受光部における第1方向の各位置において第2方向の光入射位置を求める際に、記憶部に記憶されている補正式に基づいて補正を行う構成としてもよい。
 上記実施形態による形状測定装置は、光切断法により対象物の形状を測定する装置であって、対象物に対して所定ライン上の各位置に光を照射する光照射部と、光照射部による対象物への光照射により生じた反射光を入力して結像する結像光学系と、結像光学系を経た反射光を受光する上記構成の固体撮像装置と、を備え、固体撮像装置の演算部は、固体撮像装置の信号処理部から出力される第1電気信号に基づいて、第1受光部における第1方向の各位置において第2方向の光入射位置を求めて、対象物の形状を測定し、固体撮像装置の信号処理部から出力される第2電気信号に基づいて、第2受光部における第2方向の光入射強度分布を求めて、光照射部、結像光学系または固体撮像装置の光学的設定状態を評価する。
 上記の形状測定装置は、演算部による評価の結果に基づいて、光照射部、結像光学系または固体撮像装置の光学的設定状態を調整する調整部を更に備える構成としてもよい。
 上記実施形態による形状測定方法は、対象物に対して所定ライン上の各位置に光を照射する光照射部と、光照射部による対象物への光照射により生じた反射光を入力して結像する結像光学系と、結像光学系を経た反射光を受光する上記構成の固体撮像装置と、を用いて、光切断法により対象物の形状を測定する方法であって、固体撮像装置の信号処理部から出力される第1電気信号に基づいて、第1受光部における第1方向の各位置において第2方向の光入射位置を求めて、対象物の形状を測定する測定ステップと、固体撮像装置の信号処理部から出力される第2電気信号に基づいて、第2受光部における第2方向の光入射強度分布を求めて、光照射部、結像光学系または固体撮像装置の光学的設定状態を評価する評価ステップと、を備える。
 上記の形状測定方法は、評価ステップにおける評価の結果に基づいて、光照射部、結像光学系または固体撮像装置の光学的設定状態を調整する調整ステップを更に備える構成としてもよい。
 上記実施形態による補正方法は、第2方向の各位置において、上記構成の固体撮像装置に対し第1方向に延在する所定ライン上の各位置に光を入射させ、固体撮像装置の信号処理部から出力される第1電気信号および第2電気信号それぞれに基づいて求められる第2方向の光入射位置の比較に基づいて、第1電気信号に基づいて求められる第2方向の光入射位置を補正する。
 実施形態は、光切断法による形状測定に用いられる場合に光学的設定状態の評価および調整が可能な固体撮像装置として利用可能である。また、実施形態は、上記の固体撮像装置を用いて光切断法により対象物の形状を高速・高解像度で測定することができる装置および方法として利用可能である。
 1…形状測定装置、2…対象物、3…光照射部、4…結像光学系、5,5A~5D…固体撮像装置、6…調整部、10…第1受光部、10A…第1領域、10B…第2領域、11,11A~11J…画素対、12,12A~12J…第1画素、13,13A~13J…第2画素、14…第1フィルタ、15…第2フィルタ、16…第1遮光膜、17…第2遮光膜、20A,20B,20C…第2受光部、21…画素、30…第1信号処理部、31…NMOSトランジスタ、32…シフトレジスタ、33…チャージアンプ、34…AD変換回路、40A,40B…第2信号処理部、50…演算部、60…記憶部。

Claims (15)

  1.  第1方向に沿って複数の画素対が配列されている第1受光部と、
     前記第1方向と交差する第2方向に沿って各々受光量に応じた量の電荷を発生させる複数の画素が配列されている第2受光部と、
    を備え、
     前記第1受光部の前記複数の画素対それぞれは、前記第1方向に沿って並んで配置されている第1画素および第2画素を含み、
     前記第1方向に延在するライン状の光が前記第1受光部に入射したときに、その光入射位置が前記第2方向の一方側から他方側へ向かうのに従って、前記第1画素が発生させる電荷の量が次第に減少していき、前記第2画素が発生させる電荷の量が次第に増加していく、固体撮像装置。
  2.  前記第2受光部は、前記第1受光部に対し前記第1方向の一方側に設けられている、請求項1に記載の固体撮像装置。
  3.  前記第2受光部は、前記第1受光部に対し前記第1方向の両側に設けられている、請求項1に記載の固体撮像装置。
  4.  前記第1受光部は、前記第1方向の一方側の第1領域と他方側の第2領域とに区分され、
     前記第2受光部は、前記第1領域と前記第2領域との間に設けられている、請求項1~3の何れか1項に記載の固体撮像装置。
  5.  前記第2方向の一方側から他方側へ向かって、前記第1画素の前記第1方向の幅が次第に狭くなり、前記第2画素の前記第1方向の幅が次第に広くなる、請求項1~4の何れか1項に記載の固体撮像装置。
  6.  前記第1受光部の前記複数の画素対それぞれは、前記第1画素を覆って設けられた第1フィルタと、前記第2画素を覆って設けられた第2フィルタと、を含み、
     前記第2方向の一方側から他方側へ向かって、前記第1フィルタの光透過率が次第に小さくなり、前記第2フィルタの光透過率が次第に大きくなる、請求項1~4の何れか1項に記載の固体撮像装置。
  7.  前記第1受光部の前記複数の画素対それぞれは、前記第1画素の一部を覆って設けられた第1遮光膜と、前記第2画素の一部を覆って設けられた第2遮光膜と、を含み、
     前記第2方向の一方側から他方側へ向かって、前記第1画素のうち前記第1遮光膜で覆われていない部分の前記第1方向の幅が次第に狭くなり、前記第2画素のうち前記第2遮光膜で覆われていない部分の前記第1方向の幅が次第に広くなる、請求項1~4の何れか1項に記載の固体撮像装置。
  8.  前記第1受光部の前記複数の画素対の前記第1画素および前記第2画素それぞれで発生した電荷の量に応じたデータ列の第1電気信号を出力し、前記第2受光部の前記複数の画素それぞれで発生した電荷の量に応じたデータ列の第2電気信号を出力する信号処理部を更に備える、請求項1~7の何れか1項に記載の固体撮像装置。
  9.  前記第1電気信号に基づいて前記第1受光部における前記第1方向の各位置において前記第2方向の光入射位置を求め、前記第2電気信号に基づいて前記第2受光部における前記第2方向の光入射強度分布を求める演算部を更に備える、請求項8に記載の固体撮像装置。
  10.  前記第1電気信号に基づいて求められる前記第2方向の光入射位置を補正するための補正式を記憶する記憶部を更に備え、
     前記演算部は、前記第1電気信号に基づいて前記第1受光部における前記第1方向の各位置において前記第2方向の光入射位置を求める際に、前記記憶部に記憶されている前記補正式に基づいて補正を行う、請求項9に記載の固体撮像装置。
  11.  光切断法により対象物の形状を測定する装置であって、
     前記対象物に対して所定ライン上の各位置に光を照射する光照射部と、
     前記光照射部による前記対象物への光照射により生じた反射光を入力して結像する結像光学系と、
     前記結像光学系を経た前記反射光を受光する請求項9または10に記載の固体撮像装置と、
    を備え、
     前記固体撮像装置の前記演算部は、
     前記固体撮像装置の前記信号処理部から出力される前記第1電気信号に基づいて、前記第1受光部における前記第1方向の各位置において前記第2方向の光入射位置を求めて、前記対象物の形状を測定し、
     前記固体撮像装置の前記信号処理部から出力される前記第2電気信号に基づいて、前記第2受光部における前記第2方向の光入射強度分布を求めて、前記光照射部、前記結像光学系または前記固体撮像装置の光学的設定状態を評価する、形状測定装置。
  12.  前記演算部による評価の結果に基づいて、前記光照射部、前記結像光学系または前記固体撮像装置の光学的設定状態を調整する調整部を更に備える、請求項11に記載の形状測定装置。
  13.  対象物に対して所定ライン上の各位置に光を照射する光照射部と、
     前記光照射部による前記対象物への光照射により生じた反射光を入力して結像する結像光学系と、
     前記結像光学系を経た前記反射光を受光する請求項9または10に記載の固体撮像装置と、
    を用いて、光切断法により前記対象物の形状を測定する方法であって、
     前記固体撮像装置の前記信号処理部から出力される前記第1電気信号に基づいて、前記第1受光部における前記第1方向の各位置において前記第2方向の光入射位置を求めて、前記対象物の形状を測定する測定ステップと、
     前記固体撮像装置の前記信号処理部から出力される前記第2電気信号に基づいて、前記第2受光部における前記第2方向の光入射強度分布を求めて、前記光照射部、前記結像光学系または前記固体撮像装置の光学的設定状態を評価する評価ステップと、
    を備える、形状測定方法。
  14.  前記評価ステップにおける評価の結果に基づいて、前記光照射部、前記結像光学系または前記固体撮像装置の光学的設定状態を調整する調整ステップを更に備える、請求項13に記載の形状測定方法。
  15.  前記第2方向の各位置において、請求項8~10の何れか1項に記載の固体撮像装置に対し前記第1方向に延在する所定ライン上の各位置に光を入射させ、前記固体撮像装置の前記信号処理部から出力される前記第1電気信号および前記第2電気信号それぞれに基づいて求められる前記第2方向の光入射位置の比較に基づいて、前記第1電気信号に基づいて求められる前記第2方向の光入射位置を補正する、補正方法。
PCT/JP2022/038601 2021-12-21 2022-10-17 固体撮像装置、形状測定装置および形状測定方法 WO2023119816A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021206787A JP2023091916A (ja) 2021-12-21 2021-12-21 固体撮像装置、形状測定装置および形状測定方法
JP2021-206787 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119816A1 true WO2023119816A1 (ja) 2023-06-29

Family

ID=86901938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038601 WO2023119816A1 (ja) 2021-12-21 2022-10-17 固体撮像装置、形状測定装置および形状測定方法

Country Status (2)

Country Link
JP (1) JP2023091916A (ja)
WO (1) WO2023119816A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140827A (ja) * 1984-12-14 1986-06-27 Hamamatsu Photonics Kk 半導体光検出装置
US5567976A (en) * 1995-05-03 1996-10-22 Texas Instruments Incorporated Position sensing photosensor device
WO2019059236A1 (ja) * 2017-09-20 2019-03-28 浜松ホトニクス株式会社 形状計測センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140827A (ja) * 1984-12-14 1986-06-27 Hamamatsu Photonics Kk 半導体光検出装置
US5567976A (en) * 1995-05-03 1996-10-22 Texas Instruments Incorporated Position sensing photosensor device
WO2019059236A1 (ja) * 2017-09-20 2019-03-28 浜松ホトニクス株式会社 形状計測センサ

Also Published As

Publication number Publication date
JP2023091916A (ja) 2023-07-03

Similar Documents

Publication Publication Date Title
USRE36560E (en) Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station
US9574967B2 (en) Wavefront measurement method, shape measurement method, optical element manufacturing method, optical apparatus manufacturing method, program, and wavefront measurement apparatus
JP5798810B2 (ja) 画像相関変位センサ
JP4269393B2 (ja) アライメントマーク及びアライメント方法
JP2006189389A (ja) 光学式厚さ測定方法および装置
JP2001281049A (ja) 輝度の視野角依存性ならびに場所依存性測定装置及びその測定方法
CN103676487A (zh) 一种工件高度测量装置及其校正方法
JPH04319615A (ja) 光学式高さ測定装置
TW200952042A (en) Measurement apparatus, measurement method, exposure apparatus, and device manufacturing method
JP2012512426A (ja) 走査型顕微鏡
JP3966804B2 (ja) 距離検出装置,厚さ測定装置及びその方法
JP2015108582A (ja) 3次元計測方法と装置
WO2023119816A1 (ja) 固体撮像装置、形状測定装置および形状測定方法
CN104880913B (zh) 一种提高工艺适应性的调焦调平系统
JP4197340B2 (ja) 三次元形状測定装置
CN110095944B (zh) 一种调焦装置、光刻机及调焦装置的调焦方法
JPWO2019059236A1 (ja) 形状計測センサ
JPH0562882A (ja) 結像位置測定方法
JP6524357B1 (ja) 波面センサ、波面計測装置および波面計測方法
TW201721087A (zh) 增加用於檢測和度量之高度感測器之動態範圍
JP5151136B2 (ja) 形状測定装置
JP5494758B2 (ja) 形状測定装置
JP4265786B2 (ja) 高さ測定方法及び高さ測定装置、並びに信号処理方法
JP4176320B2 (ja) 走査光学系ビーム測定装置および方法
JP7241986B2 (ja) 波面測定装置、および波面測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910539

Country of ref document: EP

Kind code of ref document: A1