WO2023119546A1 - マイクロプロジェクタ光学系及び眼鏡型端末 - Google Patents

マイクロプロジェクタ光学系及び眼鏡型端末 Download PDF

Info

Publication number
WO2023119546A1
WO2023119546A1 PCT/JP2021/047826 JP2021047826W WO2023119546A1 WO 2023119546 A1 WO2023119546 A1 WO 2023119546A1 JP 2021047826 W JP2021047826 W JP 2021047826W WO 2023119546 A1 WO2023119546 A1 WO 2023119546A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
microprojector
display surface
Prior art date
Application number
PCT/JP2021/047826
Other languages
English (en)
French (fr)
Inventor
進 舘岡
達雄 稲畑
利明 生水
賢 白神
Original Assignee
Cellid株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellid株式会社 filed Critical Cellid株式会社
Priority to PCT/JP2021/047826 priority Critical patent/WO2023119546A1/ja
Publication of WO2023119546A1 publication Critical patent/WO2023119546A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a microprojector optical system and a glasses-type terminal.
  • JP 2017-182078 A Patent No. 6257171 JP 2006-145834 A JP 2018-10217 A
  • the present invention has been made in view of these points, and it is an object of the present invention to provide an optical system for constructing a microprojector capable of emitting image light having a sufficient field of view (FOV) angle of view with a simple structure. With the goal.
  • FOV field of view
  • a first aspect of the present invention provides a microprojector optical system for displaying input image light on a display surface, comprising a first lens group, a second lens group, and a third lens group from the display surface side. , and a fourth lens group, wherein the first lens group, the second lens group, the third lens group, and the fourth lens group have a positive refractive index, and the first lens group and the The configuration of the second lens group and the configuration of the third lens group and the fourth lens group are defined by the position of the center of gravity of the second lens group and the third lens group between the second lens group and the third lens group.
  • a first lens surface of the first lens group which is symmetrical with respect to a plane orthogonal to a line connecting the positions of the centers of gravity of the lens groups and which is closest to the display surface, is a convex surface protruding toward the display surface;
  • the radius of curvature of the first lens surface is R1 and the radius of curvature of the second lens surface of the first lens group closest to the input side is R2
  • the first lens group satisfies the following equation:
  • the focal length of the second lens group is f2
  • the radius of curvature of the third lens surface of the second lens group closest to the display surface is R3
  • the second lens group and the third lens group are represented by the following equation. satisfy the A microprojector optical system is provided.
  • f is the focal length of the first lens group, the second lens group, the third lens group, and the fourth lens group, the first lens group and the focal length f satisfy the following equation: good too.
  • the overall focal length f of the first lens group, the second lens group, the third lens group, and the fourth lens group may further satisfy the following equation.
  • the first lens group and the focal length f may further satisfy the following equation.
  • the first lens group and the second lens group may satisfy the following equation.
  • the Abbe number ⁇ 1 for the d-line of the medium of the lens closest to the display surface side in the first lens group is ⁇ 1
  • the Abbe number ⁇ 1 may satisfy the following equation.
  • the refractive index Nd2 may satisfy the following equation.
  • the refractive index Nd1 may satisfy the following equation.
  • At least one of the first lens group and the second lens group may have a cemented lens.
  • a lens closest to the display surface in the first lens group may have a meniscus shape protruding toward the display surface.
  • a spectacles-type terminal worn by a user is provided in at least one of a lens for the right eye and a lens for the left eye of the user so that the user can visually recognize the lens.
  • 1 shows a configuration example of a glasses-type terminal 10 according to this embodiment.
  • 1 shows a configuration example of a microprojector optical system 100 according to this embodiment.
  • An example of design values of the microprojector optical system 100 according to the present embodiment is shown.
  • An example of parameters of four lens groups corresponding to the design values shown in FIG. 3 is shown.
  • An example of astigmatism of the microprojector optical system 100 according to the present embodiment is shown.
  • An example of distortion aberration of the microprojector optical system 100 according to the present embodiment is shown.
  • FIG. 1 shows a configuration example of a glasses-type terminal 10 according to this embodiment.
  • the glasses-type terminal 10 is, for example, a wearable device worn by a user.
  • the spectacles-type terminal 10 projects image light onto a display surface provided on the lens of the spectacles while allowing the user to observe the scenery through the spectacles.
  • the glasses-type terminal 10 includes a display surface 20 , a frame 30 , an image light emitting section 40 and a microprojector optical system 100 .
  • the display surface 20 is provided on at least one of the user's right eye lens and left eye lens.
  • the display surface 20 displays image light emitted from the microprojector optics 100 for viewing by the user.
  • the display surface 20 is provided, for example, on the second surface of the lens, and projects image light onto the second surface while transmitting at least part of the light incident from the first surface of the lens to the user's eyes.
  • the first surface of the lens is the surface of the lens facing away from the user when the user wears the glasses-type terminal 10 .
  • the viewing surface 20 may be a partial area of the second surface of the lens, or alternatively, substantially the entire area of the second surface of the lens.
  • the frame 30 fixes the lens.
  • Frame 30 secures, for example, a lens for the user's right eye and a lens for left eye.
  • the frame 30 may be provided with a single lens for the user's binoculars.
  • the frame 30 may have the shape of goggles.
  • the frame 30 has parts such as temples and straps so that the user can wear the spectacles-type terminal 10 .
  • the image light emitting unit 40 is provided on the frame 30 and emits image light for projecting the image light onto the display surface 20 .
  • the frame 30 is provided with one or a plurality of such image light emitting portions 40 .
  • FIG. 1 shows an example in which a frame 30 is provided with an image light emitting portion 40a for displaying image light L1 on the display surface 20a and an image light emitting portion 40b for displaying image light L2 on the display surface 20b. indicates
  • the image light emitting part 40 may be provided at a portion of the frame 30 where the lens is fixed, or may be provided at a temple of the frame 30 or the like.
  • the image light emitting section 40 is desirably provided so as to be integrated with the frame 30 .
  • the image light emitting unit 40 may have, for example, a liquid crystal or the like, and the image to be displayed on the display surface 20 may be displayed on the liquid crystal.
  • the microprojector optical system 100 is provided on the frame 30 , receives image light emitted from the image light emitting unit 40 , and displays the input image light on the display surface 20 .
  • the microprojector optical system 100 has a plurality of lenses, expands the field angle of the input image light, and outputs the image light toward the display surface 20 .
  • the image light output from the microprojector optical system 100 may be applied to the display surface 20 via a mirror or the like.
  • FIG. 1 shows an example in which a frame 30 is provided with a micro-projector optical system 100a corresponding to the image light emitting portion 40a and a micro-projector optical system 100b corresponding to the image light emitting portion 40b.
  • the spectacles-type terminal 10 as described above incorporates an optical system in a limited space, the optical system may become complicated. Moreover, if a simple optical system is used, the image light cannot be sufficiently projected onto the display surface 20, or the displayed image may be distorted. Therefore, the microprojector optical system 100 according to the present embodiment reduces distortion while having a wide viewing angle of about 60 degrees with a simple optical system, for example. Next, such a microprojector optical system 100 will be described.
  • FIG. 2 shows a configuration example of the microprojector optical system 100 according to this embodiment.
  • an axis substantially parallel to the optical axis is defined as the X-axis.
  • the direction in which the image light is input to the microprojector optical system 100 and the direction in which the microprojector optical system 100 outputs the image light are defined as the +X direction.
  • the three axes orthogonal to each other are defined as the X-axis, the Y-axis, and the Z-axis.
  • An image light output section 40 is also shown on the input side of the microprojector optical system 100 .
  • the microprojector optical system 100 includes a first lens group 110, a second lens group 120, a third lens group 130, and a fourth lens group 140 from the display surface 20 side.
  • the term “lens group” refers to one or more lenses. 2
  • the first lens group 110, the second lens group 120, the third lens group 130, and the fourth lens group 140 are each composed of one lens
  • the microprojector optical system 100 is composed of a total of four lenses.
  • the "display surface 20 side” indicates the eyepoint side of the eyepiece
  • the "input side” indicates the object side of the eyepiece.
  • the first lens group 110, the second lens group 120, the third lens group 130, and the fourth lens group 140 have positive refractive indices.
  • the first lens group 110 , the second lens group 120 , the third lens group 130 and the fourth lens group 140 are fixed to the body (not shown) of the microprojector optical system 100 . It is desirable that the first lens group 110, the second lens group 120, the third lens group 130, and the fourth lens group 140 be movable in the optical axis direction.
  • the body of the microprojector optical system 100 is configured such that the user can manually adjust the positions of the first lens group 110, the second lens group 120, the third lens group 130, and the fourth lens group 140.
  • the microprojector optical system 100 may further include an actuator or the like for moving each lens group individually.
  • the image light output from the micro-projector optical system 100 has a large amount of aberration, which makes it difficult to correct the aberration.
  • the microprojector optical system 100 of this embodiment when changing the magnification, for example, the second lens group 120 and the third lens group 130 are moved in the optical axis direction. Thereby, the microprojector optical system 100 can change the magnification while reducing the deterioration of the aberration.
  • the microprojector optical system 100 is preferably configured to move the second lens group 120 and the third lens group 130 in the same direction. This makes it possible to reduce the space required for zooming. In addition, the microprojector optical system 100 can further reduce fluctuations in coma when the magnification is changed.
  • the microprojector optical system 100 may be configured to move the first lens group 110 and the second lens group 120 in the same direction. This makes it possible to change the magnification while keeping the diopter of the microprojector optical system 100 substantially constant.
  • the surface facing the +X direction of the first lens group 110 is defined as a first lens surface 111, and the surface facing the -X direction is defined as a second lens surface 112.
  • the surface facing the +X direction of the second lens group 120 is defined as a third lens surface 121 and the surface facing the -X direction is defined as a fourth lens surface 122 .
  • the surface facing the +X direction of the third lens group 130 is referred to as a fifth lens surface 131 and the surface facing the -X direction is referred to as a sixth lens surface 132 .
  • the surface facing the +X direction of the fourth lens group 140 is referred to as a seventh lens surface 141 and the surface facing the -X direction is referred to as an eighth lens surface 142 .
  • the first lens group 110, the second lens group 120, the third lens group 130, and the fourth lens group 140 have positive refractive indices.
  • the configuration of the first lens group 110 and the second lens group 120, and the configuration of the third lens group 130 and the fourth lens group 140 are the second lens group 120 between the second lens group 120 and the third lens group . and the center of gravity of the third lens group 130 and the reference plane perpendicular to the line.
  • the reference plane is a plane perpendicular to the optical axis and substantially parallel to the YZ plane.
  • a first lens surface 111 of the first lens group 110 closest to the display surface 20 is a convex surface protruding toward the display surface 20 .
  • the eighth lens surface 142 of the fourth lens group 140 closest to the image light emitting portion 40 is a convex surface protruding toward the image light emitting portion 40 .
  • the first lens group 110 satisfies the following equation.
  • the focal length of the second lens group 120 is f2 and the radius of curvature of the third lens surface 121 of the second lens group 120 closest to the display surface 20 is R3, then the second lens group 120 and the third lens group 130 satisfies the following equation.
  • the microprojector optical system 100 has a 60-degree It can have a large viewing angle of view.
  • the second lens group 120 and the third lens group 130 satisfy the expression (2), the third lens surface 121 of the second lens group 120 closest to the display surface 20 and the fourth lens surface closest to the input side of the second lens group 120
  • the lens surface 122 is biconvex, curvature of field, astigmatism, coma, and the like can be effectively corrected and reduced.
  • the lens closest to the display surface 20 in the third lens group 130 can minimize the deflection angle of the light ray irradiating the display surface 20 by satisfying Expression (2).
  • the first lens group 110 and the focal length f are given by the following equation. It is desirable to meet
  • formula (3) is a conditional formula for correcting astigmatism, coma, and the like when the diopter of the microprojector optical system 100 is set to a wide angle of 60 degrees. For example, if the right side of Equation (3) falls below the lower limit of the left side, the angle of deflection of light rays with a large angle of view will increase, resulting in worsening of astigmatism and coma, resulting in lower resolution. I don't like it.
  • the first lens group 110 and the second lens group 120 satisfy the following equation, where f1 is the focal length of the first lens group.
  • the expression (4) is a conditional expression for suppressing the occurrence of spherical aberration, curvature of field, etc. of the microprojector optical system 100 .
  • the Abbe number ⁇ 1 of the medium of the lens closest to the display surface 20 in the first lens group 110 for the d-line is ⁇ 1
  • the Abbe number ⁇ 1 preferably satisfies the following equation.
  • the expression (5) is a conditional expression for suppressing the occurrence of axial chromatic aberration, chromatic aberration of magnification, etc. of the microprojector optical system 100 .
  • the lens surface closest to the display surface 20 the first lens surface 111
  • the left side of the equation (5) exceeds the upper limit of the right side
  • axial chromatic aberration and lateral chromatic aberration become large. I don't like it.
  • the focal length f of the entire first lens group 110, second lens group 120, third lens group 130, and fourth lens group 140 satisfy the following equation.
  • the value of the left side of the formula (6) may be 3.00 or more.
  • Such a microprojector optical system 100 can have sufficient aberration correction capability. For example, when the display surface 20 is irradiated with image light formed by an LED or the like, the user wearing the glasses-type terminal 10 can observe an image with reduced aberration.
  • the focal length f of the first lens group 110, the first lens group 110, the second lens group 120, the third lens group 130, and the fourth lens group 140 as a whole satisfy the following equation.
  • each of the lens groups is made of a material having a refractive index higher than 1.50 with respect to the d-line.
  • the microprojector optical system 100 can easily widen the viewing angle.
  • each lens group contains a material with a high refractive index, the curvature can be made loose, and the distance between the lens groups required for high zoom ratio can be reduced.
  • the first lens group 110 By using a high refractive material for the first lens group 110 closest to the display surface 20 among the lens groups, it is possible to reduce the interval between the lens groups required for high zoom ratio. Also, by using a material with a high refractive index as the lens material, the magnitude of various aberrations of the lens can be reduced. For example, by using high-refractive-index lenses for the first lens group 110 and the second lens group 120, astigmatism, curvature of field, and the like can be reduced.
  • the refractive index Nd1 preferably satisfies the following equation.
  • the refractive index Nd2 preferably satisfies the following equation.
  • At least one of the first lens group 110 and the second lens group 120 preferably has a cemented lens. Since the cemented lens is a combination of a plurality of lenses, it is possible to satisfactorily correct chromatic aberration that occurs with a single lens. Further, by employing such a cemented lens in the moving lens groups such as the first lens group 110 and the second lens group 120, it is possible to reduce an increase in aberration due to the movement of the lenses.
  • the lens closest to the display surface 20 in the first lens group 110 has a meniscus shape protruding toward the display surface 20 .
  • the deflection angle of off-axis light in the microprojector optical system 100 can be reduced, and coma aberration correction can be reduced. can.
  • Such a cemented lens may be used as the most input-side lens in the fourth lens group.
  • the cemented lens preferably has a meniscus shape protruding toward the input side.
  • FIG. 3 shows an example of design values of the microprojector optical system 100 according to this embodiment.
  • FIG. 4 shows an example of parameters of four lens groups corresponding to the design values shown in FIG.
  • FIG. 5 shows an example of astigmatism of the microprojector optical system 100 according to this embodiment.
  • FIG. 6 shows an example of distortion aberration of the microprojector optical system 100 according to this embodiment.
  • FIGS. 5 and 6 show simulation results when the design values of FIGS. 3 and 4 are used and the visibility of the microprojector optical system 100 is ⁇ 1 [/m].
  • the "first ray”, “second ray” and “third ray” shown in FIGS. 5 and 6 are the same as the "first ray", “second ray” and “third ray” corresponds to 5 and 6, it can be seen that the microprojector optical system 100 can achieve a large viewing angle of 60 degrees with low distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

正の屈折率を有する、第1レンズ群、第2レンズ群、第3レンズ群、及び第4レンズ群を備え、第1レンズ群及び第2レンズ群の構成と、第3レンズ群及び第4レンズ群の構成とは、第2レンズ群及び第3レンズ群の間における面に対して対称であり、第1レンズ群の最も表示面側の第1レンズ面は、表示面に向けて突出する凸面であり、第1レンズ面の曲率半径R1と、第1レンズ群の最も入力側の第2レンズ面の曲率半径R2は所定の式を満たし、第2レンズ群の焦点距離f2と第2レンズ群の最も表示面側の第3レンズ面の曲率半径R3は所定の式を満たす、マイクロプロジェクタ光学系を提供する。

Description

マイクロプロジェクタ光学系及び眼鏡型端末
 本発明は、マイクロプロジェクタ光学系及び眼鏡型端末に関する。
 従来、複数のレンズを有する光学系を組み込んで、2次元画像等をユーザに観察させるように表示する眼鏡型のデバイス、ヘッドマウントディスプレイ等が知られている(例えば、特許文献1を参照)。
特開2017-182078号公報 特許第6257171号 特開2006-145834号公報 特開2018-10217号公報
 このような装置は、限られた空間に光学系を組み込むので、光学系が複雑になってしまうことがあった。また、簡便な光学系にすると、表示領域に画像を十分に投影することができなくなってしまったり、表示した画像に歪みが生じてしまったりすることがあった。
 そこで、本発明はこれらの点に鑑みてなされたものであり、マイクロプロジェクタを構成するための光学系において、簡便な構成で十分な視野(FOV)画角の画像光を出射できるようにすることを目的とする。
 本発明の第1の態様においては、入力した画像光を表示面に表示させるためのマイクロプロジェクタ光学系であって、前記表示面側から、第1レンズ群、第2レンズ群、第3レンズ群、及び第4レンズ群を備え、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群は、正の屈折率を有し、前記第1レンズ群及び前記第2レンズ群の構成と、前記第3レンズ群及び前記第4レンズ群の構成とは、前記第2レンズ群及び前記第3レンズ群の間における前記第2レンズ群の重心位置と前記第3レンズ群の重心位置とを結ぶ線に直交する面に対して対称であり、前記第1レンズ群の最も前記表示面側の第1レンズ面は、前記表示面に向けて突出する凸面であり、前記第1レンズ面の曲率半径をR1とし、前記第1レンズ群の最も入力側の第2レンズ面の曲率半径をR2とすると、前記第1レンズ群は次式を満たし、
Figure JPOXMLDOC01-appb-I000010
 前記第2レンズ群の焦点距離をf2とし、前記第2レンズ群の最も前記表示面側の第3レンズ面の曲率半径をR3とすると、前記第2レンズ群及び前記第3レンズ群は次式を満たす、
Figure JPOXMLDOC01-appb-I000011
 マイクロプロジェクタ光学系を提供する。
 前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群の全体の焦点距離をfとすると、前記第1レンズ群及び焦点距離fは、次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000012
 前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群の全体の焦点距離fは、更に次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000013
 前記第1レンズ群及び焦点距離fは、更に次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000014
 前記第1レンズ群の焦点距離をf1とすると、前記第1レンズ群及び前記第2レンズ群は次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000015
 前記第1レンズ群の最も前記表示面側のレンズの媒質のd線に対するアッベ数をν1とすると、アッベ数ν1は次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000016
 前記第2レンズ群のレンズの材質の平均の屈折率をNd2とすると、屈折率Nd2は次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000017
 前記第1レンズ群のレンズの材質の平均の屈折率をNd1とすると、屈折率Nd1は次式を満たしてもよい。
Figure JPOXMLDOC01-appb-I000018
 前記第1レンズ群と前記第2レンズ群とのうち少なくとも一方は、接合レンズを有してもよい。前記第1レンズ群の最も前記表示面側のレンズは、前記表示面に向けて突出するメニスカス形状を有してもよい。
 本発明の第2の態様においては、ユーザが装着する眼鏡型端末であって、前記ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方に設けられており、前記ユーザが視認できるように前記画像光を表示させる前記表示面と、前記ユーザの右眼用のレンズ及び左眼用レンズを固定するフレームと、前記フレームに設けられており、前記画像光を出射する画像光出射部と、前記フレームに設けられており、前記画像光出射部から出射された前記画像光が入力し、入力した前記画像光を前記表示面に表示させる、第1の態様の前記マイクロプロジェクタ光学系とを備える、眼鏡型端末を提供する。
 本発明によれば、マイクロプロジェクタを構成するための光学系において、簡便な構成で十分な視野画角の画像光を出射できるという効果を奏する。
本実施形態に係る眼鏡型端末10の構成例を示す。 本実施形態に係るマイクロプロジェクタ光学系100の構成例を示す。 本実施形態に係るマイクロプロジェクタ光学系100の設計値の一例を示す。 図3に示す設計値に対応する4つのレンズ群のパラメータの一例を示す。 本実施形態に係るマイクロプロジェクタ光学系100の非点収差の一例を示す。 本実施形態に係るマイクロプロジェクタ光学系100の歪曲収差の一例を示す。
<眼鏡型端末10の構成例>
 図1は、本実施形態に係る眼鏡型端末10の構成例を示す。眼鏡型端末10は、ユーザが装着する、例えば、ウェアラブルデバイスである。眼鏡型端末10は、眼鏡越しの景色をユーザに観察させつつ、眼鏡のレンズに設けられている表示面に画像光を投影する。眼鏡型端末10は、表示面20と、フレーム30と、画像光出射部40と、マイクロプロジェクタ光学系100とを備える。
 表示面20は、ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方に設けられている。表示面20は、ユーザが視認できるようにマイクロプロジェクタ光学系100から照射された画像光を表示させる。表示面20は、例えば、レンズの第2面に設けられており、レンズの第1面から入射する少なくとも一部の光をユーザの眼へと透過させつつ、当該第2面に画像光を投影させる。ここで、レンズの第1面は、眼鏡型端末10をユーザが装着した状態においてユーザとは反対側を向くレンズの面である。表示面20は、レンズの第2面の一部の領域でよく、これに代えて、レンズの第2面のほぼ全ての領域であってもよい。
 フレーム30は、レンズを固定している。フレーム30は、例えば、ユーザの右眼用のレンズ及び左眼用レンズを固定している。これに代えて、フレーム30は、ユーザの両眼用レンズとして1つのレンズが設けられていてもよい。この場合、フレーム30は、ゴーグルの形状を有してもよい。フレーム30は、ユーザが当該眼鏡型端末10を装着できるように、テンプル、ストラップ等の部位を有する。
 画像光出射部40は、フレーム30に設けられており、表示面20に画像光を投影させるための画像光を出射する。フレーム30には、このような画像光出射部40が1又は複数設けられている。図1は、表示面20aに画像光L1を表示させるための画像光出射部40aと、表示面20bに画像光L2を表示させるための画像光出射部40bとがフレーム30に設けられている例を示す。
 画像光出射部40は、フレーム30のレンズを固定している部位に設けられていてもよく、フレーム30のテンプル等に設けられていてもよい。画像光出射部40は、フレーム30と一体になるように設けられていることが望ましい。画像光出射部40は、例えば、液晶等を有し、表示面20に表示させる画像を当該液晶に表示させてもよい。
 マイクロプロジェクタ光学系100は、フレーム30に設けられており、画像光出射部40から出射された画像光が入力し、入力した画像光を表示面20に表示させる。マイクロプロジェクタ光学系100は、複数のレンズを有し、入力した画像光の視野画角を拡大して表示面20に向けて出力する。なお、マイクロプロジェクタ光学系100から出力された画像光は、ミラー等を介して表示面20に照射されてもよい。図1は、画像光出射部40aに対応するマイクロプロジェクタ光学系100aと、画像光出射部40bに対応するマイクロプロジェクタ光学系100bとがフレーム30に設けられている例を示す。
 以上のような眼鏡型端末10は、限られた空間に光学系を組み込むので、光学系が複雑になってしまうことがあった。また、簡便な光学系にすると、表示面20に画像光を十分に投影することができなくなってしまったり、表示した画像に歪みが生じてしまったりすることがあった。そこで、本実施形態に係るマイクロプロジェクタ光学系100は、例えば、簡便な光学系で60度程度の大きな視野画角を有しつつ、歪みを低減させる。このようなマイクロプロジェクタ光学系100について次に説明する。
<マイクロプロジェクタ光学系100の構成例>
 図2は、本実施形態に係るマイクロプロジェクタ光学系100の構成例を示す。本実施例において、光軸と略平行な軸をX軸とする。また、マイクロプロジェクタ光学系100に画像光が入力する方向と、マイクロプロジェクタ光学系100が画像光を出力する方向とを、+X方向とする。更に、互いに直交する3つの軸をX軸、Y軸、及びZ軸とする。また、マイクロプロジェクタ光学系100の入力側に画像光出射部40を示す。
 マイクロプロジェクタ光学系100は、表示面20側から、第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140を備える。ここで、「レンズ群」とは、1枚又は複数枚のレンズのことを示す。図2は、第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140がそれぞれ1枚のレンズであり、マイクロプロジェクタ光学系100が合計4枚のレンズで構成されている例を示す。また、本実施形態において、「表示面20側」は接眼レンズにおけるアイポイント側を示し、「入力側」は接眼レンズにおける物体側を示す。
 第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140は、正の屈折率を有する。第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140は、マイクロプロジェクタ光学系100の本体(不図示)に固定されている。第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140は、光軸方向に移動可能に設けられていることが望ましい。
 例えば、ユーザが手動で第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140の位置を調節できるように、マイクロプロジェクタ光学系100の本体が構成されている。これに代えて、マイクロプロジェクタ光学系100は、それぞれのレンズ群を個別に移動させるアクチュエータ等を更に備えてもよい。
 なお、複数のレンズ群を移動させる場合、例えば、複数のレンズ群のうち1つのレンズ群だけが正の屈折率を有する場合、屈折率の大きさの変動が大きくなってしまう。この場合、マイクロプロジェクタ光学系100から出力される画像光に発生する収差が大きくなってしまい、収差を補正することが困難になる。
 これに対し、2つの正の屈折率を有するレンズ群を移動させた場合、1つのレンズ群だけが正の屈折率を有する場合と比較して、屈折率の大きさの変動を少なくなり、画像光に発生する収差を小さくすることができる。そこで、本実施形態のマイクロプロジェクタ光学系100は、倍率を変更する場合、例えば、第2レンズ群120及び第3レンズ群130を光軸方向に移動させる。これにより、マイクロプロジェクタ光学系100は、収差の悪化を低減させつつ倍率を変えることができる。
 特に、マイクロプロジェクタ光学系100は、第2レンズ群120及び第3レンズ群130を同一の向きに移動させる用に構成されていることが好ましい。これにより、変倍に必要な空間を小さくすることができる。また、マイクロプロジェクタ光学系100は、更に、変倍した場合のコマ収差の変動を小さくすることができる。
 マイクロプロジェクタ光学系100は、第1レンズ群110及び第2レンズ群120を同一の向きに移動させるように構成されていてもよい。これにより、マイクロプロジェクタ光学系100の視度をほぼ一定に保ったまま倍率等を変更することができる。
 図2において、第1レンズ群110の+X方向を向く面を第1レンズ面111、-X方向を向く面を第2レンズ面112とする。同様に、第2レンズ群120の+X方向を向く面を第3レンズ面121、-X方向を向く面を第4レンズ面122とする。また、第3レンズ群130の+X方向を向く面を第5レンズ面131、-X方向を向く面を第6レンズ面132とする。更に、第4レンズ群140の+X方向を向く面を第7レンズ面141、-X方向を向く面を第8レンズ面142とする。
 第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140は、正の屈折率を有する。第1レンズ群110及び第2レンズ群120の構成と、第3レンズ群130及び第4レンズ群140の構成とは、第2レンズ群120及び第3レンズ群130の間における第2レンズ群120の重心位置と第3レンズ群130の重心位置とを結ぶ線に直交する基準面に対して対称である。図2において、基準面は光軸に垂直な面であり、YZ平面と略平行な面である。
 第1レンズ群110の最も表示面20側の第1レンズ面111は、表示面20に向けて突出する凸面である。同様に、第4レンズ群140の最も画像光出射部40側の第8レンズ面142は、画像光出射部40に向けて突出する凸面である。最も表示面20側の第1レンズ面111を表示面20に向けて凸型とすることにより、ユーザの視野の画角を大きくした場合に、画角の大きい光線の偏角を小さくすることができ、球面収差、非点収差、像面湾曲、コマ収差等を低減することができる。
 そして、第1レンズ面111の曲率半径をR1とし、第1レンズ群110の最も入力側の第2レンズ面112の曲率半径をR2とすると、第1レンズ群110は次式を満たす。
Figure JPOXMLDOC01-appb-M000019
 また、第2レンズ群120の焦点距離をf2とし、第2レンズ群120の最も表示面20側の第3レンズ面121の曲率半径をR3とすると、第2レンズ群120及び第3レンズ群130は次式を満たす。
Figure JPOXMLDOC01-appb-M000020
 マイクロプロジェクタ光学系100は、第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140が(数1)式、(数2)式を満たすことにより、60度程度の大きな視野画角を有することができる。第2レンズ群120及び第3レンズ群130が(数2)式を満たし、第2レンズ群120の最も表示面20側の第3レンズ面121と第2レンズ群120の最も入力側の第4レンズ面122とが両凸形状の場合、像面湾曲、非点収差、コマ収差等を効果的に補正して低減できる。また、第3レンズ群130の最も表示面20側のレンズは、(数2)式を満たすことで、表示面20に照射する光線の偏角を最小にすることができる。
 また、第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140の全体の焦点距離をfとすると、第1レンズ群110及び焦点距離fは、次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000021
 マイクロプロジェクタ光学系100の全体の焦点距離fは、第1レンズ群110の第1レンズ面111の曲率半径R1が大きく影響し、また、非点収差、コマ収差等の光学特性にも大きく影響する。したがって、(数3)式は、マイクロプロジェクタ光学系100の視度を60度といった広角にした場合に、非点収差、コマ収差等を補正するための条件式となる。例えば、(数3)式の右辺が左辺の下限値を下回ると、画角の大きい光線の偏角が大きくなるため、非点収差及びコマ収差が悪化し、解像感の低下を招いてしまうので好ましくない。
 マイクロプロジェクタ光学系100は、第1レンズ群の焦点距離をf1とすると、第1レンズ群110及び第2レンズ群120は次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000022
 マイクロプロジェクタ光学系100の球面収差、像面湾曲等は、第1レンズ群110の焦点距離f1と第2レンズ群120の焦点距離f2とに大きく影響される。したがって、(数4)式は、マイクロプロジェクタ光学系100の球面収差、像面湾曲等の発生を抑制するための条件式となる。
 例えば、(数4)式のf1/f2が左辺の下限値を下回ると、第1レンズ群110の焦点距離f1の屈折率が比較的強くなるため、歪曲収差及び像面湾曲が大きく発生してしまう。また、(数4)式のf1/f2が右辺の上限値を上回ると、第2レンズ群120の焦点距離f2の屈折率が比較的強くなるため、レンズ群を移動させて変倍すると、球面収差が大きく発生してしまうので好ましくない。
 マイクロプロジェクタ光学系100は、第1レンズ群110の最も表示面20側のレンズの媒質のd線に対するアッベ数をν1とすると、アッベ数ν1は次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000023
 マイクロプロジェクタ光学系100の軸上色収差、倍率色収差等は、最も表示面20側のレンズの媒質に大きく影響される。したがって、(数5)式は、マイクロプロジェクタ光学系100の軸上色収差、倍率色収差等の発生を抑制するための条件式となる。例えば、最も表示面20側のレンズ面(第1レンズ面111)が凸面の場合、(数5)式の左辺が右辺の上限値を上回ると、軸上色収差、倍率色収差が大きくなってしまうので好ましくない。
 また、第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140の全体の焦点距離fは、次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000024
 なお、(数6)式の左辺の値は、3.00以上であってもよい。このようなマイクロプロジェクタ光学系100は、十分な収差補正能力を有することができる。例えば、LED等によって形成された画像光を表示面20に照射した場合、眼鏡型端末10を装着したユーザは、収差を低減させた画像を観察することができる。
 また、第1レンズ群110と、第1レンズ群110、第2レンズ群120、第3レンズ群130、及び第4レンズ群140の全体の焦点距離fとは、次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000025
 なお、本実施形態に係るマイクロプロジェクタ光学系100は、レンズ群の各々がd線に対する屈折率が1.50より高い屈折率の材料で形成されていることが望ましい。これにより、マイクロプロジェクタ光学系100は、視野画角を広角にしやすくできる。また、各レンズ群が高屈折率の材料を含むことにより、曲率をゆるくすることができ、高変倍化に必要なレンズ群の間隔を小さくすることができる。
 各レンズ群のうち、最も表示面20側の第1レンズ群110を高屈折材料とすることで、高変倍化に必要なレンズ群の間隔を小さくすることができる。また、レンズの材料として高屈折率の材料を用いることで、レンズの種々の収差の大きさを低減できる。例えば、第1レンズ群110及び第2レンズ群120として高屈折率のレンズを用いることにより、非点収差、像面湾曲等を低減できる。
 例えば、第1レンズ群110のレンズの材質の平均の屈折率をNd1とすると、屈折率Nd1は次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000026
 また、第2レンズ群120のレンズの材質の平均の屈折率をNd2とすると、屈折率Nd2は次式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000027
 以上の本実施形態に係るマイクロプロジェクタ光学系100において、第1レンズ群110と第2レンズ群120とのうち少なくとも一方は、接合レンズを有することが望ましい。接合レンズは、複数のレンズを組み合わせるので、1枚のレンズで発生する色収差を良好に補正できる。また、このような接合レンズを、例えば、第1レンズ群110、第2レンズ群120といった、移動させるレンズ群に採用することで、レンズの移動に伴う収差の増加を低減させることができる。
 また、このような接合レンズは、第1レンズ群110の最も表示面20側のレンズは、表示面20に向けて突出するメニスカス形状を有することが望ましい。メニスカス形状の接合レンズを第1レンズ群の最も表示面20側のレンズとして用いることで、マイクロプロジェクタ光学系100の軸外光の偏角を小さくすることができ、コマ収差補正を低減させることができる。
 このような接合レンズは、第4レンズ群の最も入力側のレンズとして用いられてもよい。この場合、接合レンズは、入力側に向けて突出するメニスカス形状を有することが望ましい。メニスカス形状の接合レンズを第4レンズ群の最も入力側のレンズとして用いることで、マイクロプロジェクタ光学系100の歪曲収差を低減させることができる。
<マイクロプロジェクタ光学系100の設計例>
 以上の本実施形態に係る、マイクロプロジェクタ光学系100は、簡便な構成で十分な視野画角の画像光を出射できるようにすることができる。図3は、本実施形態に係るマイクロプロジェクタ光学系100の設計値の一例を示す。図4は、図3に示す設計値に対応する4つのレンズ群のパラメータの一例を示す。
 出願人らは、図3及び図4の設計値を用いることで、例えば、60度といった大きな視野画角を低い歪みで実現できることをシミュレーションで確かめた。出願人らは、光学特性を(数1)式から(数9)式の範囲にすることで、このような大きな視野画角を実現できることを見いだした。例えば、特許文献2から4で示される接眼レンズは、光学特性が(数1)式から(数9)式の範囲には入っておらず、60度といった大きな視野画角を達成できない。
<マイクロプロジェクタ光学系100のシミュレーション結果の一例>
 図5は、本実施形態に係るマイクロプロジェクタ光学系100の非点収差の一例を示す。また、図6は、本実施形態に係るマイクロプロジェクタ光学系100の歪曲収差の一例を示す。図5及び図6は、図3及び図4の設計値を用い、マイクロプロジェクタ光学系100の視度が-1[/m]のときのシミュレーション結果を示す。なお、図5及び図6の示す「第1光線」、「第2光線」、及び「第3光線」は、図2に示す「第1光線」、「第2光線」、及び「第3光線」に対応する。図5及び図6より、マイクロプロジェクタ光学系100が60度といった大きな視野画角を低い歪みで実現できることがわかる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
10 眼鏡型端末
20 表示面
30 フレーム
40 画像光出射部
100 マイクロプロジェクタ光学系
110 第1レンズ群
111 第1レンズ面
112 第2レンズ面
120 第2レンズ群
121 第3レンズ面
122 第4レンズ面
130 第3レンズ群
131 第5レンズ面
132 第6レンズ面
140 第4レンズ群
141 第7レンズ面
142 第8レンズ面
 

Claims (11)

  1.  入力した画像光を表示面に表示させるためのマイクロプロジェクタ光学系であって、
     前記表示面側から、第1レンズ群、第2レンズ群、第3レンズ群、及び第4レンズ群を備え、
     前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群は、正の屈折率を有し、
     前記第1レンズ群及び前記第2レンズ群の構成と、前記第3レンズ群及び前記第4レンズ群の構成とは、前記第2レンズ群及び前記第3レンズ群の間における前記第2レンズ群の重心位置と前記第3レンズ群の重心位置とを結ぶ線に直交する面に対して対称であり、
     前記第1レンズ群の最も前記表示面側の第1レンズ面は、前記表示面に向けて突出する凸面であり、
     前記第1レンズ面の曲率半径をR1とし、前記第1レンズ群の最も入力側の第2レンズ面の曲率半径をR2とすると、前記第1レンズ群は次式を満たし、
    Figure JPOXMLDOC01-appb-I000001
     前記第2レンズ群の焦点距離をf2とし、前記第2レンズ群の最も前記表示面側の第3レンズ面の曲率半径をR3とすると、前記第2レンズ群及び前記第3レンズ群は次式を満たす、
    Figure JPOXMLDOC01-appb-I000002
     マイクロプロジェクタ光学系。
  2.  前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群の全体の焦点距離をfとすると、前記第1レンズ群及び焦点距離fは、次式を満たす、
    Figure JPOXMLDOC01-appb-I000003
     請求項1に記載のマイクロプロジェクタ光学系。
  3.  前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群の全体の焦点距離fは、更に次式を満たす、
    Figure JPOXMLDOC01-appb-I000004
     請求項2に記載のマイクロプロジェクタ光学系。
  4.  前記第1レンズ群及び焦点距離fは、更に次式を満たす、
    Figure JPOXMLDOC01-appb-I000005
     請求項2又は3に記載のマイクロプロジェクタ光学系。
  5.  前記第1レンズ群の焦点距離をf1とすると、前記第1レンズ群及び前記第2レンズ群は次式を満たす、
    Figure JPOXMLDOC01-appb-I000006
     請求項1から4の何れか一項に記載のマイクロプロジェクタ光学系。
  6.  前記第1レンズ群の最も前記表示面側のレンズの媒質のd線に対するアッベ数をν1とすると、アッベ数ν1は次式を満たす、
    Figure JPOXMLDOC01-appb-I000007
     請求項1から5の何れか一項に記載のマイクロプロジェクタ光学系。
  7.  前記第2レンズ群のレンズの材質の平均の屈折率をNd2とすると、屈折率Nd2は次式を満たす、
    Figure JPOXMLDOC01-appb-I000008
     請求項1から6の何れか一項に記載のマイクロプロジェクタ光学系。
  8.  前記第1レンズ群のレンズの材質の平均の屈折率をNd1とすると、屈折率Nd1は次式を満たす、
    Figure JPOXMLDOC01-appb-I000009
     請求項1から7の何れか一項に記載のマイクロプロジェクタ光学系。
  9.  前記第1レンズ群と前記第2レンズ群とのうち少なくとも一方は、接合レンズを有する、請求項1から8の何れか一項に記載のマイクロプロジェクタ光学系。
  10.  前記第1レンズ群の最も前記表示面側のレンズは、前記表示面に向けて突出するメニスカス形状を有する、請求項1から9の何れか一項に記載のマイクロプロジェクタ光学系。
  11.  ユーザが装着する眼鏡型端末であって、
     前記ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方に設けられており、前記ユーザが視認できるように前記画像光を表示させる前記表示面と、
     前記ユーザの右眼用のレンズ及び左眼用レンズを固定するフレームと、
     前記フレームに設けられており、前記画像光を出射する画像光出射部と、
     前記フレームに設けられており、前記画像光出射部から出射された前記画像光が入力し、入力した前記画像光を前記表示面に表示させる、請求項1から10のいずれか一項に記載の前記マイクロプロジェクタ光学系と
     を備える、眼鏡型端末。
     
PCT/JP2021/047826 2021-12-23 2021-12-23 マイクロプロジェクタ光学系及び眼鏡型端末 WO2023119546A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047826 WO2023119546A1 (ja) 2021-12-23 2021-12-23 マイクロプロジェクタ光学系及び眼鏡型端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047826 WO2023119546A1 (ja) 2021-12-23 2021-12-23 マイクロプロジェクタ光学系及び眼鏡型端末

Publications (1)

Publication Number Publication Date
WO2023119546A1 true WO2023119546A1 (ja) 2023-06-29

Family

ID=86901746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047826 WO2023119546A1 (ja) 2021-12-23 2021-12-23 マイクロプロジェクタ光学系及び眼鏡型端末

Country Status (1)

Country Link
WO (1) WO2023119546A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217060A (ja) * 2008-03-11 2009-09-24 Nikon Corp プロジェクタ装置
JP2011022498A (ja) * 2009-07-17 2011-02-03 Fujifilm Corp 投写レンズ装置及びプロジェクタ装置
JP2018503123A (ja) * 2014-12-31 2018-02-01 ドルビー ラボラトリーズ ライセンシング コーポレイション 画像プロジェクタ用の個別レーザファイバ入力
US20200209717A1 (en) * 2018-12-28 2020-07-02 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Camera module, display module, and terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217060A (ja) * 2008-03-11 2009-09-24 Nikon Corp プロジェクタ装置
JP2011022498A (ja) * 2009-07-17 2011-02-03 Fujifilm Corp 投写レンズ装置及びプロジェクタ装置
JP2018503123A (ja) * 2014-12-31 2018-02-01 ドルビー ラボラトリーズ ライセンシング コーポレイション 画像プロジェクタ用の個別レーザファイバ入力
US20200209717A1 (en) * 2018-12-28 2020-07-02 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Camera module, display module, and terminal device

Similar Documents

Publication Publication Date Title
JP6036549B2 (ja) 接眼レンズおよび表示装置
JP7259427B2 (ja) 接眼レンズおよび表示装置
JP7157528B2 (ja) 映像表示装置
JP2006519421A (ja) 回折レンズ
JP2013250506A (ja) 接眼レンズおよび表示装置
CN113366371B (zh) 近焦矫正性ar眼镜
JP6060808B2 (ja) 接眼光学系
JP5646440B2 (ja) 接眼レンズ
JP6824769B2 (ja) 観察光学系及びそれを有する観察装置
JPWO2017022670A1 (ja) 接眼光学系および電子ビューファインダー
WO2018190031A1 (ja) 接眼レンズおよび表示装置
JP6185787B2 (ja) 接眼レンズ系および画像観察装置
JP7191005B2 (ja) 接眼レンズ、観察光学系、および光学装置
WO2020012817A1 (ja) 接眼レンズおよび表示装置
WO2023119546A1 (ja) マイクロプロジェクタ光学系及び眼鏡型端末
CN116626895A (zh) 虚像显示装置用光学系统、虚像显示装置及头戴式显示器
US8503089B2 (en) Ocular lens and optical apparatus including ocular lens
US9229215B2 (en) Ocular lens and optical apparatus
JP2020024363A (ja) 表示装置
TW201903464A (zh) 適眼距可調目鏡系統
JP2022190206A (ja) 伝搬光学系、虚像表示装置及びヘッドマウントディスプレイ
WO2020026749A1 (ja) 表示装置
WO2020026813A1 (ja) 表示装置
JP2006119159A (ja) 補正機構付対物レンズ
JP2022165238A (ja) 表示光学系および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023568927

Country of ref document: JP

Kind code of ref document: A