WO2023119542A1 - 燃料電池セルアセンブリおよびその製造方法 - Google Patents

燃料電池セルアセンブリおよびその製造方法 Download PDF

Info

Publication number
WO2023119542A1
WO2023119542A1 PCT/JP2021/047807 JP2021047807W WO2023119542A1 WO 2023119542 A1 WO2023119542 A1 WO 2023119542A1 JP 2021047807 W JP2021047807 W JP 2021047807W WO 2023119542 A1 WO2023119542 A1 WO 2023119542A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
electrode
adhesive member
fuel cell
gas diffusion
Prior art date
Application number
PCT/JP2021/047807
Other languages
English (en)
French (fr)
Inventor
秀哉 門野
英揮 大嶋
弘樹 板倉
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to CN202180101186.8A priority Critical patent/CN117813708A/zh
Priority to PCT/JP2021/047807 priority patent/WO2023119542A1/ja
Priority to US18/314,124 priority patent/US20230275241A1/en
Publication of WO2023119542A1 publication Critical patent/WO2023119542A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a fuel cell assembly in which an electrode member and a gasket are integrated with an adhesive member, and a manufacturing method thereof.
  • a fuel cell has a stack structure in which a large number of cells are stacked.
  • the stack of cells is fastened by end plates arranged on both sides in the stacking direction.
  • a cell of a polymer electrolyte fuel cell includes an electrode member having a membrane electrode assembly (MEA) and a gas diffusion layer, a separator laminated on the electrode member, and a separator disposed around the electrode member. and a rubber gasket that seals the electrode member against.
  • MEA membrane electrode assembly
  • Silicone rubber is often used as a gasket material (see Patent Documents 1 to 3, for example). Since silicone rubber is in a liquid state before curing, it can be easily molded by injection molding or the like, and cures at a relatively low temperature. Further, when liquid silicone rubber is injection molded, a part of the material is impregnated into the gas diffusion layer of the electrode member, so that the sealing performance can be improved. However, with silicone rubber, the siloxane bond (Si--O--Si bond) may be hydrolyzed in the operating environment of the fuel cell, and there is a concern that the sealing performance may deteriorate. In addition, decomposition products produced by hydrolysis of the silicone rubber may contaminate the electrolyte membrane and the electrode catalyst layer that constitute the MEA, causing them to deteriorate.
  • EPDM ethylene-propylene-diene rubber
  • fluororubber fluororubber
  • EPDM and fluororubber are in a solid state before curing, that is, solid rubber, they do not have fluidity comparable to that of silicone rubber.
  • a polymer membrane such as a perfluorinated sulfonic acid membrane is used for the electrolyte membrane of the polymer electrolyte fuel cell. Therefore, when the gasket material is placed near the electrolyte membrane and cured, it is necessary to ensure that the electrolyte membrane does not change in quality due to heating during curing, and that the gas diffusion layer is not damaged by stress during molding such as injection pressure. so, it needs to be taken into consideration.
  • EPDM and fluororubber it is difficult to cure EPDM and fluororubber in a relatively short period of time that is practical under a temperature that takes into consideration the heat resistance temperature of the electrolyte membrane.
  • solid rubber such as EPDM and fluororubber is used, it is difficult to integrally mold the gasket with the electrode member by injection molding at a relatively low temperature.
  • Patent Document 2 describes a membrane electrode sealing assembly that includes an MEA, a framing seal, and an integrated seal.
  • the framing seal is formed as a separate member from silicone, EPDM, or the like, and is arranged so as to sandwich the edge of the MEA in the thickness direction.
  • the integral seal is formed from a liquid sealant material such as thermoplastic resin, a liquid elastomer such as silicone, and is impregnated with the fluid distribution layer (gas diffusion layer) of the MEA.
  • the framing seal and integral seal are not glued together.
  • Patent Document 3 describes a fuel cell that includes an electrode member having an MEA and a gas diffusion layer, a resin frame member disposed around the electrode member, a separator, and a sealing member (gasket).
  • the resin frame member is made of polyphenylene sulfide (PPS) or the like, adhered to the MEA via an adhesive layer, and adhered to the gas diffusion layer via a resin-impregnated portion.
  • the sealing member is made of silicone rubber, EPDM, or the like, is integrated with the separator, and is not adhered to the resin frame member.
  • Patent Document 4 describes a joined body that includes an electrode member having an MEA and a gas diffusion layer, and a gasket structure arranged around the outer circumference of the electrode member. Gas diffusion layers with different areas are arranged on both sides of the electrolyte membrane.
  • the gasket structure is made of polyethylene naphthalate (PEN), polyethylene terephthalate (PET), or the like.
  • the gasket structure is adhered via an adhesive layer to the surface of the electrolyte membrane exposed on the side of the gas diffusion layer having a smaller area and to the outer peripheral end surface of the gas diffusion layer.
  • the adhesive layer is made of hot-melt adhesive such as polyolefin. The thickness of the adhesive layer is smaller than the thickness of the gas diffusion layer and is not in contact with the outer peripheral end face of the electrolyte membrane.
  • Patent Documents 2 and 3 describe silicone rubber, EPDM, and the like as materials for gaskets in the same class, and do not mention the deterioration of sealing performance when silicone rubber is used and the contamination of the MEA by decomposition products. .
  • the structures described in Patent Documents 2 and 3 are not structures in which the gasket and the electrode member are integrated via an adhesive member.
  • the gasket and the electrolyte membrane are adhered via an adhesive layer.
  • the adhesive layer does not cover the outer peripheral end face of the electrolyte membrane, and its thickness is smaller than the thickness of the gas diffusion layer.
  • there is no impregnation of the gas diffusion layer is small, and there is a risk of damage due to handling or external input such as vibration during stacking.
  • the present disclosure has been made in view of such circumstances, and provides a fuel cell assembly in which a gasket made of solid rubber and an electrode member are integrated and which is excellent in sealing performance, durability, and productivity, and its manufacture.
  • the object is to provide a method.
  • the fuel cell assembly of the present disclosure includes a membrane electrode assembly having an electrolyte membrane and an electrode catalyst layer, and arranged on at least one side of both sides in the thickness direction of the membrane electrode assembly.
  • an electrode member having a gas diffusion layer; a solid rubber gasket arranged in a frame shape on the outer side of the electrode member in a plane direction that intersects the stacking direction of the electrode member; an adhesive member having a plastic polymer, arranged in a frame shape on the outer side of the electrode member in the plane direction, and adhering to the electrode member and the gasket to integrate the electrode member and the gasket;
  • the form of adhesion of the adhesive member to the gas diffusion layer is at least one of impregnation into the gas diffusion layer and adhesion to the membrane electrode assembly, the adhesive member covers at least the outer peripheral end surface of the electrolyte membrane, and the electrode member In the stacking direction, the thickness of the adhesive member is equal to or greater than the thickness of the gas diffusion layer disposed on one side of the membrane electrode assembly
  • the manufacturing method of the fuel cell assembly of the present disclosure as a first example of the manufacturing method of the fuel cell assembly having the configuration of (1) above comprises a gasket forming step of forming a gasket from solid rubber, an electrolyte membrane and An electrode member having a membrane electrode assembly having an electrode catalyst layer, a gas diffusion layer disposed on at least one side of both sides in the thickness direction of the membrane electrode assembly, the molded gasket, and a thermoplastic polymer. and an integration step of melting and curing the adhesive member to integrate the electrode member and the gasket with the adhesive member. do.
  • the manufacturing method of the fuel cell assembly of the present disclosure as a second example of the manufacturing method of the fuel cell assembly having the configuration of (1) above comprises a gasket forming step of forming a gasket from solid rubber, an electrolyte membrane and An electrode member having a membrane electrode assembly having an electrode catalyst layer, a gas diffusion layer disposed on at least one side of both sides in the thickness direction of the membrane electrode assembly, and the molded gasket are placed in a mold. and a liquid composition containing a thermoplastic polymer is injected into the mold and cured to integrate the electrode member and the gasket with an adhesive member that is a cured product of the liquid composition. and an integration step.
  • the fuel cell assembly having the configuration of (1) above further includes a separator laminated on the electrode member and the gasket, and the adhesive member adheres to the electrode member, the gasket and the separator.
  • the electrode member, the gasket and the separator may be integrated.
  • the manufacturing method of the fuel cell assembly of the present disclosure which is a first example of the manufacturing method of the fuel cell assembly including the separator having the configuration of (4) above, comprises a gasket forming step of forming a gasket from solid rubber; an electrode member having, on one surface of a separator, a membrane electrode assembly having an electrolyte membrane and an electrode catalyst layer; and a gas diffusion layer disposed on at least one of both sides of the membrane electrode assembly in the thickness direction; An arranging step of arranging the gasket and an adhesive member having a thermoplastic polymer, and melting and curing the adhesive member to integrate the electrode member, the gasket and the separator by the adhesive member. and a conversion step.
  • the manufacturing method of the fuel cell assembly of the present disclosure as a second example of the manufacturing method of the fuel cell assembly including the separator having the configuration of (4) above comprises a gasket forming step of forming a gasket from solid rubber; A membrane electrode assembly having a separator disposed in a molding die, and having an electrolyte membrane and an electrode catalyst layer on one surface thereof, and a gas diffusion layer disposed on at least one of both sides in the thickness direction of the membrane electrode assembly. and a molded gasket; and a step of injecting a liquid composition having a thermoplastic polymer into the mold and curing the electrode member, the gasket and the separator. and an integration step of integrating with an adhesive member that is a cured product of the liquid composition.
  • the gasket is manufactured from solid rubber instead of liquid rubber. Since liquid silicone rubber does not need to be used, it is possible to solve the problems of deterioration of sealing performance due to hydrolysis of siloxane bonds and contamination of MEA by decomposed products.
  • the gasket is adhered to the electrode member by an adhesive member. Thereby, it is not necessary to impregnate the gas diffusion layer of the electrode member with the gasket in order to improve the adhesion and sealing properties. Since the contact between the gasket and the electrode member is reduced, there is less concern about deterioration of sealing performance due to the material of the gasket, contamination of the MEA, and the like. Therefore, the degree of freedom in selecting the material for the gasket is increased.
  • the adhesive form of the adhesive member to the electrode member is at least one of impregnation into the gas diffusion layer and adhesion to the membrane electrode assembly (hereinafter also referred to as "MEA" in the present disclosure as appropriate). is.
  • MEA membrane electrode assembly
  • the adhesive member covers at least the outer peripheral end surface of the electrolyte membrane, the electrolyte membrane is protected and reinforced, deformation is suppressed, and sealing performance is improved.
  • the thickness of the adhesive member is equal to or greater than the thickness of the gas diffusion layer arranged on one side of the membrane electrode assembly. By doing so, the strength and adhesiveness of the adhesive member are ensured.
  • the deformation of the electrolyte membrane can be suppressed, the durability can be improved, and the handleability is also improved.
  • At least a portion of one surface in the thickness direction of the adhesive member is covered with a gasket.
  • a first method for manufacturing a fuel cell assembly of the present disclosure which is a first example of a method for manufacturing a fuel cell assembly having the configuration of (1) above (hereinafter referred to as "first manufacturing method of the present disclosure ”)
  • first manufacturing method of the present disclosure in the gasket molding process, a gasket is manufactured in advance from solid rubber.
  • the gasket can be manufactured using solid rubber, which has lower fluidity than liquid materials.
  • the curing temperature of the solid rubber can be set regardless of the heat resistance temperature of the electrolyte membrane. Thereby, the gasket can be manufactured at a high temperature in a short time. Therefore, according to the first manufacturing method of the present disclosure, highly durable gaskets can be manufactured with high productivity.
  • the electrode member and the gasket are bonded together by melting and curing an adhesive member containing a thermoplastic polymer.
  • an adhesive member containing a thermoplastic polymer As a result, when the adhesive member is arranged so as to be in contact with the gas diffusion layer of the electrode member, the gas diffusion layer is impregnated with the adhesive member to achieve stronger adhesion and high sealing performance.
  • a second method for manufacturing a fuel cell assembly of the present disclosure which is a second example of a method for manufacturing a fuel cell assembly having the configuration of (1) above (hereinafter referred to as “second manufacturing method of the present disclosure”) ”), in which the electrode member and the gasket are placed in a mold, a liquid composition containing a thermoplastic polymer is injected and cured, so that the electrode member and the gasket are combined with the liquid composition. They are integrated by an adhesive member which is a cured product.
  • the efficiency of manufacturing the fuel cell assembly is increased, so productivity can be further improved.
  • the fuel cell assembly of the present disclosure includes a separator
  • the main constituent elements of the cell including the separator are integrated by an adhesive member
  • a stacking process can be simplified.
  • members are less likely to shift during lamination. This improves workability and productivity.
  • the sealing performance is also improved.
  • a third method for manufacturing a fuel cell assembly of the present disclosure which is a first example of a method for manufacturing a fuel cell assembly comprising a separator having the configuration of (4) above (hereinafter referred to as “third method of the present disclosure”)
  • a separator having the configuration of (4) above hereinafter referred to as “third method of the present disclosure”
  • an electrode member, a gasket, and an adhesive member are placed on one surface of the separator, and the adhesive member is melted and cured.
  • the electrode member, the gasket, and the separator can be easily integrated.
  • a fourth method for manufacturing a fuel cell assembly of the present disclosure which is a second example of a method for manufacturing a fuel cell assembly including a separator having the configuration of (4) above (hereinafter referred to as “fourth method of the present disclosure”).
  • a liquid composition having a thermoplastic polymer is injected and cured in a state where the electrode member and the gasket are arranged on one surface of the separator.
  • the electrode member, gasket, and separator can be easily integrated.
  • FIG. 1 is a top view of the fuel cell assembly of the first embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1
  • FIG. 4 is a schematic cross-sectional view of a molding die when molding a gasket
  • It is a cross-sectional schematic diagram of the separator which apply
  • It is a cross-sectional schematic diagram of each member in an arrangement process.
  • FIG. 7 is a schematic cross-sectional view of a gasket to which an adhesive member is adhered in the adhesive member fixing step of the fuel cell assembly manufacturing method of the second embodiment.
  • FIG. 10 is a partial cross-sectional view of a fuel cell assembly of a third embodiment
  • FIG. 10 is a schematic cross-sectional view of each member in an arrangement step of the manufacturing method of the fuel cell assembly of the third embodiment
  • It is a cross-sectional schematic diagram of the shaping
  • FIG. 11 is a partial cross-sectional view of a fuel cell assembly of a fourth embodiment
  • FIG. 11 is a partial cross section of a fuel cell assembly of a fifth embodiment;
  • FIG. 1 shows a top view of the fuel cell assembly of this embodiment.
  • FIG. 2 shows a sectional view taken along the line II-II of FIG.
  • the front, rear, left, and right directions indicate the surface direction of each member, and the vertical direction indicates the thickness direction and stacking direction of each member.
  • the laminated members are shown transparently, and the adhesive members are hatched.
  • the fuel cell assembly 10 includes an electrode member 2, a gasket 30, an adhesive member 40, and a separator 50.
  • FIG. 1 shows a top view of the fuel cell assembly of this embodiment.
  • FIG. 2 shows a sectional view taken along the line II-II of FIG.
  • the front, rear, left, and right directions indicate the surface direction of each member
  • the vertical direction indicates the thickness direction and stacking direction of each member.
  • the laminated members are shown transparently, and the adhesive members are hatched.
  • the fuel cell assembly 10 includes an electrode member 2, a gasket 30, an adhesive member 40, and a separator 50.
  • the separator 50 is a carbon bipolar plate and has a rectangular thin plate shape. Electrode member 2 , gasket 30 and adhesive member 40 are arranged on the upper surface of separator 50 . Concavo-convex flow paths are formed in regions of the upper and lower surfaces of the separator 50 that overlap with the electrode member 2 .
  • the electrode member 2 has a rectangular thin film shape.
  • the electrode member 2 comprises an MEA 20 and a pair of upper and lower gas diffusion layers 21 and 22 arranged on both sides in the thickness direction.
  • the MEA 20, the upper gas diffusion layer 21 and the lower gas diffusion layer 22 have the same size (area) in the plane direction.
  • the MEA 20 consists of an electrolyte membrane and a pair of electrode catalyst layers arranged on both sides in the thickness direction.
  • the electrolyte membrane is a perfluorinated sulfonic acid membrane, and the electrode catalyst layer has carbon particles carrying a platinum-containing catalyst.
  • the structure of the upper gas diffusion layer 21 and the lower gas diffusion layer 22 are the same, and each has carbon paper.
  • the upper gas diffusion layer 21 has an upper impregnated portion 210 impregnated with the adhesive member 40 .
  • the upper impregnated portion 210 is arranged at the outer peripheral edge of the upper gas diffusion layer 21 .
  • the lower gas diffusion layer 22 also has a lower impregnated portion 220 impregnated with the adhesive member 40 .
  • the lower impregnated portion 220 is arranged at the outer peripheral edge of the lower gas diffusion layer 22 .
  • the gasket 30 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the gasket 30 is made of a cross-linked rubber composition with EPDM.
  • the gasket 30 has a body portion 300 and an overlapping portion 301 .
  • the body portion 300 has two lip portions 302 arranged outside the frame and protruding in the thickness direction. The tops of the two lip portions 302 are curved.
  • the overlapping portion 301 is arranged inside the frame, and covers the upper surface of the adhesive member 40 and the outer edge of the upper surface of the electrode member 2 (regions corresponding to the upper impregnated portion 210 and the lower impregnated portion 220). extends from The gasket 30 is in elastic contact with the separator of another stacked fuel cell assembly when the fuel cell is constructed.
  • the adhesive member 40 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the adhesive member 40 is arranged between the electrode member 2 and the gasket 30 in the surface direction.
  • the thickness T2 of the adhesive member 40 is the same as the thickness of the electrode member 2 and is larger than the thickness T1 of the upper gas diffusion layer 21 and the lower gas diffusion layer 22 .
  • the upper surface of the adhesive member 40 is covered with the overlapping portion 301 of the gasket 30 .
  • a total thickness T3 of the overlapping portion 301 of the gasket 30 and the adhesive member 40 is greater than the thickness of the electrode member 2 .
  • the bonding member 40 includes an acid-modified olefinic thermoplastic resin (hereinafter referred to as "acid-modified olefinic thermoplastic resin").
  • the melting point of the acid-modified olefinic thermoplastic resin is about 130°C.
  • the acid-modified olefinic thermoplastic resin has adhesiveness. As described above, part of the adhesive member 40 impregnates the upper impregnated portion 210 of the upper gas diffusion layer 21 and the lower impregnated portion 220 of the lower gas diffusion layer 22 .
  • the adhesive member 40 adheres to contacting members, specifically, the outer peripheral end surface of the MEA 20 including the electrolyte membrane, the gasket 30 and the separator 50 .
  • the electrode member 2, gasket 30, and separator 50 are integrated by the adhesive member 40.
  • the fuel cell assembly manufacturing method of the present embodiment includes a gasket molding process, an arrangement process, and an integration process.
  • FIG. 3 shows a schematic cross-sectional view of a molding die during gasket molding. All of the following drawings including FIG. 3 correspond to FIG. 2 and show a portion corresponding to the section II-II of FIG.
  • the mold 8 includes an upper mold 80 and a lower mold 81. As shown in FIG. By combining the upper mold 80 and the lower mold 81, a cavity 82 having a shape symmetrical with the gasket 30 is defined. First, the mold 8 is clamped, and a rubber composition preheated to about 100° C. is injected into the cavity 82 . After cross-linking by holding the same at 170° C. for 10 minutes, the mold 8 is opened and the gasket 30 is taken out.
  • FIG. 4 shows a schematic cross-sectional view of a separator coated with an adhesive member.
  • FIG. 5 shows a schematic cross-sectional view of each member in the arrangement step.
  • the adhesive member 40 heated to a temperature of 150° C. or higher so as to have sufficient fluidity is applied to a predetermined position on the upper surface of the separator 50 using a dispenser in a frame shape.
  • the electrode member 2 is arranged inside the adhesive member 40 and the gasket 30 is arranged outside the adhesive member 40 .
  • FIG. 6 shows a schematic cross-sectional view of each member in the integration step.
  • the laminate of the separator 50, the electrode member 2, the gasket 30, and the adhesive member 40 set in the previous placement step was placed in a hot press machine, and heated at 140° C. as indicated by the downward white arrow in FIG.
  • the adhesive member 40 is pressed by the pressing member 83 heated to .
  • the adhesive member 40 melts and impregnates the outer peripheral end portions of the upper gas diffusion layer 21 and the lower gas diffusion layer 22 as indicated by horizontal white arrows in FIG.
  • the laminate is returned to room temperature to cure the adhesive member 40, and the fuel cell assembly 10 in which the electrode member 2, the gasket 30, and the separator 50 are integrated via the adhesive member 40 is manufactured ( See Figure 2 above).
  • the gasket 30 is made of EPDM. Therefore, the gasket 30 has excellent durability. In addition, since silicone rubber is not used, deterioration of sealing performance and contamination of the MEA 20 by decomposed products are reduced.
  • the adhesive member 40 contains the acid-modified olefinic thermoplastic resin, it has good adhesiveness. Part of the adhesive member 40 is impregnated into the upper gas diffusion layer 21 and the lower gas diffusion layer 22 . This provides high adhesion and sealability. The entire upper surface of the adhesive member 40 is covered with the gasket 30 . A thickness T3 of the portion where the gasket 30 and the adhesive member 40 are laminated is larger than the thickness of the electrode member 2 . As a result, when the fuel cell assemblies 10 are stacked to form a fuel cell, the sealing performance can be improved. By covering the entire upper surface of the adhesive member 40 with the gasket 30, adhesion (tack) of the adhesive member 40 between adjacent cells is suppressed.
  • the adhesive member 40 is less likely to leave marks on the laminated members. In addition, when some cells need to be repaired or replaced, the cells can be easily taken out, so the repairability is high.
  • the adhesive member 40 covers the outer peripheral end surface of the electrolyte membrane of the MEA 20 . This protects and reinforces the electrolyte membrane, suppresses deformation, and improves sealing performance.
  • the thickness T 2 of the adhesive member 40 is greater than the thickness T 1 of the lower gas diffusion layer 22 . Thereby, the strength and adhesiveness of the adhesive member 40 are ensured. In addition, the deformation of the electrolyte membrane can be suppressed, the durability can be enhanced, and the handleability is improved.
  • the separator 50 is also integrated together with the electrode member 2 and the gasket 30.
  • the stacking process of the fuel cell assembly 10 can be simplified, and misalignment of members is less likely to occur. Therefore, workability is improved and productivity is improved.
  • the bonding between the adhesive member 40 and the separator 50 improves the sealing performance.
  • the manufacturing method of the fuel cell assembly of this embodiment is included in the concepts of the first manufacturing method and the third manufacturing method of the present disclosure.
  • the gasket 30 is manufactured in advance from the rubber composition containing EPDM in the gasket molding step.
  • the gasket 30 can be manufactured using solid rubber, which has lower fluidity than liquid materials.
  • the molding temperature can be set to a high temperature of around 200° C. regardless of the heat resistance temperature of the electrolyte membrane, the gasket 30 can be manufactured in a short time.
  • the highly durable gasket 30 can be manufactured with high productivity.
  • the electrode member 2, the gasket 30, and the separator 50 can be easily integrated by melting and curing the adhesive member 40 by hot pressing.
  • the melting point of the thermal acid-modified olefinic thermoplastic resin, which is the material of the adhesive member 40, is about 130° C., and the hot pressing is performed at 140° C., so there is little possibility that the electrolyte membrane will deteriorate during heating.
  • the melted adhesive member 40 impregnates the upper gas diffusion layer 21 and the lower gas diffusion layer 22 of the electrode member 2 . This results in better adhesion and sealing.
  • the fuel cell assembly manufacturing method of the present embodiment includes a gasket forming step, an arranging step, and an integrating step, as in the first embodiment, and the arranging step includes an adhesive member fixing step.
  • the bonding member fixing step is performed at the beginning of the arranging step to bond the bonding member to the gasket.
  • FIG. 7 shows a schematic cross-sectional view of the gasket to which the adhesive member is adhered in the adhesive member fixing step.
  • FIG. 8 shows a schematic cross-sectional view of each member in the arrangement step.
  • the gasket molding step (see FIG. 3)
  • only the upper mold 80 is removed, and then the gasket 30 is adhered to the upper surface of the portion corresponding to the overlapping portion 301 of the gasket 30 obtained.
  • the member 40 is applied in a frame shape.
  • the application of the adhesive member 40 is performed using a dispenser while being heated to a temperature of 150° C. or higher so as to have sufficient fluidity, as in the arrangement step of the first embodiment.
  • the adhesive member 40 is molded into a predetermined shape and cooled.
  • the gasket 30 with an adhesive member is manufactured.
  • the manufactured gasket 30 with adhesive member is inverted and arranged on the upper surface of the separator 50 , and the electrode member 2 is arranged inside the adhesive member 40 . Then, the electrode member 2 , the gasket 30 and the separator 50 are integrated by the adhesive member 40 by melting the adhesive member 40 by hot pressing and then hardening it, as in the integration process of the first embodiment.
  • the adhesive member 40 is previously fixed to the surface of the gasket 30 in the adhesive member fixing step.
  • the gasket 30 is reinforced, so that the handleability when arranging the gasket 30 is improved in the next integration step.
  • the electrode member 2 can be arranged in accordance with the frame of the adhesive member 40, positioning when arranging the electrode member 2 is facilitated.
  • FIG. 9 shows a partial cross-sectional view of the fuel cell assembly of this embodiment.
  • the fuel cell assembly 11 includes electrode members 2 , gaskets 31 , adhesive members 41 and separators 50 .
  • the gasket 31 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the gasket 31 is made of the same material as the gasket 30 of the first embodiment, that is, a crosslinked rubber composition having EPDM.
  • the gasket 31 has a body portion 310 and an overlapping portion 311 .
  • the body portion 310 has two lip portions 312 arranged outside the frame and protruding in the thickness direction. The tops of the two lip portions 312 are curved.
  • the overlapping portion 311 is arranged inside the frame and laminated on a part of the adhesive member 41 .
  • the adhesive member 41 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the adhesive member 41 is arranged between the electrode member 2 and the gasket 31 in the planar direction.
  • the cross section of the adhesive member 41 in the thickness direction is L-shaped, and the portion protruding outward is laminated on the overlapping portion 311 of the gasket 31 .
  • a part of the lower surface of the adhesive member 41 is covered with a gasket 31 .
  • the upper surface of the adhesive member 41 is flush with the body portion 310 of the gasket 31 except for the lip portion 312 .
  • a total thickness T3 of the overlapping portion 311 of the gasket 31 and the adhesive member 41 is the same as the thickness of the electrode member 2 .
  • the thickness T2 of the adhesive member 41 in contact with the electrode member 2 is the same as the thickness of the electrode member 2 and is greater than the thickness T1 of the upper gas diffusion layer 21 and the lower gas diffusion layer 22 .
  • the bonding member 41 is made of the same material as the bonding member 40 of the first embodiment, and has an acid-modified olefinic thermoplastic resin. Part of the adhesive member 41 impregnates the upper impregnated portion 210 of the upper gas diffusion layer 21 and the lower impregnated portion 220 of the lower gas diffusion layer 22 of the electrode member 2 . In addition, the adhesive member 41 adheres to contacting members, specifically, the outer peripheral end face of the MEA 20 including the electrolyte membrane, the gasket 31 and the separator 50 . In this manner, the electrode member 2, gasket 31, and separator 50 are integrated by the adhesive member 41. As shown in FIG.
  • the fuel cell assembly manufacturing method of the present embodiment includes a gasket molding process, an arrangement process, and an integration process. Since the gasket forming process is the same as that of the first embodiment, the explanation is omitted.
  • FIG. 10 shows a schematic cross-sectional view of each member in the arranging step.
  • the separator 50 is placed on the lower mold 85 of the molding die, and the electrode member 2 and the gasket 31 are placed at predetermined positions on the upper surface of the separator 50 .
  • a space is arranged in which the liquid composition, which is the material of the adhesive member 41, is injected in the next integration step.
  • FIG. 11 shows a schematic cross-sectional view of the mold in the integration step.
  • the mold 8 includes an upper mold 84 and a lower mold 85.
  • a separator 50 , an electrode member 2 and a gasket 31 are arranged on the lower die 85 .
  • a cavity 86 having a shape symmetrical with the bonding member 41 is defined.
  • Upper mold 84 has a gate 87 connected to cavity 86 .
  • the mold 8 is clamped, and the liquid composition 410 containing the acid-modified olefinic thermoplastic resin is injected into the cavity 86 from the nozzle of the injection molding machine through the runner (not shown) and the gate 87 .
  • the liquid composition 410 is heated to about 140°C.
  • the injected liquid composition impregnates the outer peripheral end portions of the upper gas diffusion layer 21 and the lower gas diffusion layer 22, as indicated by the white arrows in FIG. Glue to 50.
  • the liquid composition 410 hardens and becomes the adhesive member 41 .
  • the fuel cell assembly 11 in which the electrode member 2, the gasket 31, and the separator 50 are integrated via the adhesive member 41 is manufactured (see FIG. 9).
  • the manufacturing method of the fuel cell assembly of the present embodiment is included in the concepts of the second manufacturing method and the fourth manufacturing method of the present disclosure.
  • the separator 50, the electrode member 2, and the gasket 31 are arranged in the mold 8, and the thermal acid-modified olefin thermoplastic resin is used.
  • the thermal acid-modified olefin thermoplastic resin is used.
  • the liquid composition 410 impregnates the upper gas diffusion layer 21 and the lower gas diffusion layer 22 of the electrode member 2 . This results in better adhesion and sealing. According to the manufacturing method of the fuel cell assembly of the present embodiment, the manufacturing of the fuel cell assembly 11 is made more efficient, so the productivity can be further improved.
  • the amount of the adhesive material is finite. If the variation is large, there is a possibility that the adhesive member will be insufficient.
  • the liquid composition flows and fills the gap between the gasket 31 and the electrode member 2 just enough. This is effective when the size is large.
  • FIG. 12 shows a partial cross-sectional view of the fuel cell assembly of this embodiment. 12, parts corresponding to those in FIG. 2 are denoted by the same reference numerals.
  • the fuel cell assembly 12 includes electrode members 2 , gaskets 30 , adhesive members 42 and separators 50 .
  • the electrode member 2 consists of an MEA 20 and a pair of upper gas diffusion layer 23 and lower gas diffusion layer 24 arranged on both sides in the thickness direction.
  • the upper gas diffusion layer 23 and the lower gas diffusion layer 24 have the same structure, but differ in size (area) in the plane direction. That is, the area of the upper gas diffusion layer 23 is smaller than the area of the lower gas diffusion layer 24 . Therefore, when the electrode member 2 is viewed from above, the outer edge of the MEA 20 is exposed.
  • An upper impregnated portion 230 impregnated with the adhesive member 42 is arranged at the outer peripheral edge of the upper gas diffusion layer 23 .
  • a lower impregnated portion 240 impregnated with the adhesive member 42 is also arranged at the outer peripheral end portion of the lower gas diffusion layer 24 .
  • the adhesive member 42 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the thickness T2 of the adhesive member 42 is the same as the thickness of the electrode member 2 and larger than the thickness T1 of the upper gas diffusion layer 23 and the lower gas diffusion layer 24 .
  • the upper surface of the adhesive member 42 is covered with the overlapping portion 301 of the gasket 30 .
  • a total thickness T3 of the overlapping portion 301 of the gasket 30 and the adhesive member 42 is greater than the thickness of the electrode member 2 .
  • the bonding member 42 is made of the same material as the bonding member 40 of the first embodiment, and has an acid-modified olefinic thermoplastic resin.
  • the adhesive member 42 impregnates the upper impregnated portion 230 of the upper gas diffusion layer 23 and the lower impregnated portion 240 of the lower gas diffusion layer 24 of the electrode member 2 . Also, the bonding member 42 is bonded to the upper surface of the MEA 20 exposed on the upper gas diffusion layer 23 side. Furthermore, the adhesive member 42 also adheres to the outer peripheral end face of the MEA 20 including the electrolyte membrane, the gasket 30 and the separator 50 . In this manner, the electrode member 2, gasket 30, and separator 50 are integrated by the adhesive member 42. As shown in FIG. The manufacturing method of the fuel cell assembly 12 is the same as the manufacturing method of the first embodiment.
  • the area of the upper gas diffusion layer 23 is smaller than the area of the lower gas diffusion layer 24, and the adhesive member 42 is adhered to the upper surface of the MEA 20 exposed upward.
  • FIG. 13 shows a partial cross-sectional view of the fuel cell assembly of this embodiment. 13, parts corresponding to those in FIG. 2 are denoted by the same reference numerals.
  • the fuel cell assembly 13 includes electrode members 2 , gaskets 32 , adhesive members 43 and separators 50 .
  • the electrode member 2 is composed of the MEA 20 and a pair of upper gas diffusion layer 25 and lower gas diffusion layer 26 arranged on both sides in the thickness direction.
  • the configuration and size of the upper gas diffusion layer 25 and the lower gas diffusion layer 26 are the same.
  • the size (area) of the MEA 20 in the plane direction is larger than that of the upper gas diffusion layer 25 and the lower gas diffusion layer 26 . Therefore, when the electrode member 2 is viewed from above, the outer edge of the MEA 20 protrudes outward and is exposed.
  • the adhesive member 43 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the thickness T 2 of the adhesive member 43 is the same as the total thickness of the MEA 20 and the lower gas diffusion layer 26 and is greater than the thickness T 1 of the lower gas diffusion layer 26 .
  • the bonding member 43 is made of the same material as the bonding member 40 of the first embodiment, and has an acid-modified olefinic thermoplastic resin.
  • the adhesive member 43 adheres to the lower surface of the MEA 20 protruding outside the electrode member 2 , the outer peripheral end surface, and the outer peripheral end surface of the lower gas diffusion layer 26 .
  • the adhesive member 43 also adheres to the gasket 32 and the separator 50 .
  • the electrode member 2 , gasket 32 and separator 50 are integrated by the adhesive member 43 .
  • the gasket 32 has a frame shape when viewed from above, and is arranged outside the electrode member 2 .
  • the gasket 32 is made of the same material as the gasket 30 of the first embodiment, that is, a crosslinked rubber composition having EPDM.
  • the gasket 32 has a body portion 320 and an overlapping portion 321 .
  • the body portion 320 is arranged outside the frame and has two lip portions 322 protruding in the thickness direction. The tops of the two lip portions 322 are curved.
  • the overlapping portion 321 is arranged inside the frame and covers the upper surface of the adhesive member 43 , the outer peripheral end surface of the upper gas diffusion layer 25 , and the upper surface of the MEA 20 protruding outside the electrode member 2 .
  • a total thickness T3 of the overlapping portion 321 of the gasket 32 and the adhesive member 43 is greater than the thickness of the electrode member 2 .
  • the manufacturing method of the fuel cell assembly 13 is the same as the manufacturing method of the first embodiment.
  • the area of the MEA 20 is larger than the areas of the upper gas diffusion layer 25 and the lower gas diffusion layer 26, and the outer edge of the MEA 20 protrudes outward.
  • the bonding member 43 is bonded to the exposed lower surface of the MEA 20 , the outer peripheral end surface, and the outer peripheral end surface of the lower gas diffusion layer 26 .
  • the thickness T2 of the adhesive member 43 is the same as the total thickness of the MEA 20 and the lower gas diffusion layer 26, and is greater than the thickness T1 of the lower gas diffusion layer 26.
  • the exposed upper surface of MEA 20 and the outer peripheral end surface of upper gas diffusion layer 25 are covered with gasket 32 .
  • the fuel cell assembly of the present disclosure only needs to have prescribed electrode members, gaskets, and adhesive members as essential constituent elements.
  • other components may be present in the fuel cell assembly of the present disclosure, and the types thereof are not limited.
  • the fuel cell assembly of the present disclosure and the method of manufacturing the same were shown in the form of including separators.
  • the fuel cell assembly and manufacturing method thereof of the present disclosure may be practiced in a form that does not include a separator.
  • the first manufacturing method or second manufacturing method of the present disclosure also corresponds to the method of manufacturing the fuel cell assembly of the present disclosure in a form that does not include a separator.
  • the separator does not necessarily have to be integrated with the adhesive member.
  • a predetermined gasket-equipped electrode member in which an electrode member and a gasket are integrated by an adhesive member, may be stacked on a separator to form a fuel cell assembly.
  • the electrode member has an MEA and a gas diffusion layer.
  • the MEA has an electrolyte membrane and a pair of electrode catalyst layers arranged on both sides of the electrolyte membrane.
  • the electrode catalyst layer may be composed of a conductive carrier supporting a catalyst such as platinum or platinum alloy.
  • the electrode catalyst layer does not necessarily have to be formed on the entire surface of the electrolyte membrane.
  • the electrode catalyst layer may be appropriately formed on the surface of the electrolyte membrane according to the power generation region in the MEA.
  • a carbon porous material such as carbon paper or carbon cloth, a metal porous material such as a metal mesh, or the like may be used.
  • the gas diffusion layer may be arranged on one side or both sides of the MEA in the thickness direction.
  • the gas diffusion layer may be a single layer or two or more layers.
  • the thickness of the gas diffusion layers and the size (area) in the plane direction may be the same or different on one side and the other side in the thickness direction.
  • the area of the gas diffusion layer arranged on one side is smaller than the area of the gas diffusion layer arranged on the other side, the outer edge of the MEA is exposed on the side of the gas diffusion layer with the smaller area. In this case, from the viewpoint of protecting the electrolyte membrane, it is desirable to adhere an adhesive member to the exposed outer edge of the MEA.
  • the outer edge of the MEA is exposed. Also in this case, from the viewpoint of protecting the electrolyte membrane, it is desirable to adhere an adhesive member to the exposed outer edge of the MEA.
  • Gaskets are manufactured using solid rubber.
  • a rubber composition containing solid rubber as a rubber component may be produced by injection molding, press molding, or the like.
  • Solid rubbers other than silicone rubber are desirable, and examples include EPDM, fluororubber, butyl rubber (IIR), ethylene-propylene rubber (EPM), acrylonitrile-butadiene rubber (NBR), and hydrogenated acrylonitrile-butadiene rubber (H-NBR). , styrene-butadiene rubber (SBR), butadiene rubber (BR), and the like.
  • EPDM and fluororubber are suitable.
  • the rubber composition may contain a cross-linking agent, a cross-linking aid, a plasticizer, a reinforcing agent, an anti-aging agent, a processing aid, etc., in addition to the rubber component.
  • a cross-linking agent it is desirable to use an organic peroxide because it does not contain volatile components such as sulfur.
  • the lip portion is arranged on the gasket from the viewpoint of improving the sealing performance when stacking the fuel cell assemblies.
  • the shape and thickness of the gasket, including the presence or absence of the lip portion, may be appropriately determined.
  • Separator materials include stainless steel, titanium, copper, magnesium, aluminum, carbon, graphite, ceramics, conductive resin (thermoplastic or thermosetting resin containing carbon, graphite, polyacrylonitrile-based carbon fiber, etc.). mentioned.
  • a carbon thin film such as a diamond-like carbon film (DLC film) or graphite film may be formed on the surface of the main body made of these materials by a process such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the configuration of the separator is not limited, including the channels and through-holes that are formed.
  • the adhesive member may have a thermoplastic polymer and should adhere to at least the electrode member and the gasket. Considering the operating temperature of the fuel cell and the heat resistance temperature of the electrolyte membrane, it is desirable to select a thermoplastic polymer having a melting point of 70° C. or higher and 170° C. or lower. Those having a melting point of 140° C. or lower are more preferable.
  • Thermoplastic polymers having a relatively low melting point include olefinic thermoplastic resins such as polyethylene and polypropylene. Among them, acid-modified olefin-based thermoplastic resins are preferable from the viewpoint of good adhesiveness.
  • An acid-modified olefinic thermoplastic resin means an olefinic thermoplastic resin modified with an acid, an acid anhydride, an acid ester, a metallocene, or the like. Modification with an acid may be carried out by grafting an acid component onto the olefinic thermoplastic resin, copolymerizing it, or combining these.
  • the shape of the adhesive member is not particularly limited as long as it can adhere to the electrode member and the gasket and integrate the two.
  • the adhesive member may also adhere to the separator to integrate the separator together with the electrode member and the gasket.
  • the adhesive member may be adhered to the electrode member by impregnating the gas diffusion layer, may be adhered to the electrode member by adhering to the MEA, or both.
  • the adhesion and sealing properties are improved.
  • the adhesive member is adhered to the MEA, the electrolyte membrane is protected by the adhesive member, thereby suppressing deformation and breakage of the electrolyte membrane.
  • the adhesive member When the adhesive member is adhered to the MEA, it may be adhered to the electrolyte membrane of the MEA, or may be adhered to the electrode catalyst layer disposed on the surface of the electrolyte membrane. Even in the mode in which the adhesive member impregnates the gas diffusion layer and does not adhere to both sides of the MEA in the thickness direction, the adhesive member covers at least the outer peripheral end surface of the electrolyte membrane. This protects the electrolyte membrane and improves the sealing performance.
  • the thickness of the adhesive member is equal to or greater than the thickness of the gas diffusion layer arranged on one side of the MEA.
  • the term "thickness" means the length of the electrode member in the stacking direction.
  • the thickness of the portion of the adhesive member that is in contact with the electrode member is compared.
  • the thickness of the adhesive member 41 differs between the inner and outer directions of the frame.
  • the thickness T2 of the portion in contact with the electrode member 2 and the thickness T1 of the gas diffusion layer (lower gas diffusion layer 22 or upper gas diffusion layer 21) are compared.
  • the thickness of the portion where the gasket and the adhesive member are stacked in the stacking direction of the electrode member is determined from the viewpoint of improving the sealing performance. Thickness or more is desirable.
  • the fuel cell assembly may be implemented in a form in which one surface in the thickness direction of the adhesive member is not covered with the gasket at all.
  • the gasket does not have overlapping portions (such as the overlapping portion 301 in the first embodiment and the overlapping portion 311 in the third embodiment) extending from the body portion to overlap the adhesive member. Therefore, the shape of the gasket is simple, and the manufacturing of the gasket is facilitated.
  • the fuel cell assembly manufacturing method of the present disclosure is characterized in that a gasket is molded in advance, and the molded gasket and electrode member are bonded and integrated by melting and curing a thermoplastic polymer. do.
  • the following forms (a) and (b) are exemplified depending on the method of supplying the adhesive member containing the thermoplastic polymer.
  • a gasket is formed by holding a rubber composition containing solid rubber as a rubber component at a predetermined temperature for a predetermined time.
  • a known method such as injection molding or press molding may be used for molding the gasket.
  • the adhesive member when placing an adhesive member containing a thermoplastic polymer, the adhesive member may be placed on the surface of a gasket or the surface of a base material such as a separator. If the adhesive member is previously fixed to the surface of the gasket as in the above second embodiment, the gasket is reinforced, so that the handleability when arranging the gasket is improved. In addition, since the electrode member can be arranged in accordance with the frame of the adhesive member, it becomes easy to position the electrode member when arranging it. In the placement step, the adhesive member to be placed may be solid or liquid.
  • the method of arranging the adhesive member includes a method of applying with a brush, a coating machine such as a dispenser, a method of applying with a spray, a method of using a molding die, and a method of forming the adhesive member into a frame-shaped sheet in advance and then applying it. Arrangement methods and the like can be mentioned.
  • a hot press machine or the like may be used to melt and harden the adhesive members in the integration process.
  • a liquid composition containing a thermoplastic polymer is injected into a mold and cured
  • an injection molding machine or the like may be used.
  • the adhesive member is melted and adhered, including the mode in which the liquid composition is injected, it is not always necessary to pressurize. Pressing the adhesive member in a melted state makes it easier to impregnate the gas diffusion layer.
  • the heating temperature for melting the adhesive member may be appropriately determined in consideration of the heat resistance temperature of the electrolyte membrane, the melting point of the thermoplastic polymer, the environmental temperature in which the fuel cell is used, and the like. should be
  • Impregnated parts 220, 240 lower impregnated parts 30, 31, 32: gaskets 300, 310, 320: body parts 301, 311, 321: overlapping parts 302, 312, 322: lip parts 40, 41 , 42, 43: Adhesive member, 410: Liquid composition, 50: Separator, 8: Mold, 80, 84: Upper mold, 81, 85: Lower mold, 82, 86: Cavity, 83: Pressing member, 87: Gate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池セルアセンブリ(10)は、電解質膜および電極触媒層を有する膜電極接合体(20)と、ガス拡散層(21、22)と、を有する電極部材(2)と、電極部材(2)の面方向外側に枠状に配置されるソリッドゴム製のガスケット(30)と、熱可塑性ポリマーを有し、電極部材(2)の面方向外側に枠状に配置され、電極部材(2)およびガスケット(30)に接着してこれらを一体化する接着部材(40)と、を備える。電極部材(2)に対する接着部材(40)の接着形態は、ガス拡散層(21、22)への含浸および膜電極接合体(20)への接着の少なくとも一方である。接着部材(40)は電解質膜の少なくとも外周端面を被覆する。接着部材(40)の厚さは膜電極接合体(20)の片面に配置されるガス拡散層(21)の厚さ以上であり、接着部材(40)の厚さ方向一面の少なくとも一部はガスケット(30)で被覆される。

Description

燃料電池セルアセンブリおよびその製造方法
 本開示は、電極部材とガスケットとが接着部材により一体化されている燃料電池セルアセンブリ、およびその製造方法に関する。
 燃料電池は、多数のセルが積層されたスタック構造を呈している。セルの積層体は、積層方向両側に配置されたエンドプレートにより締結されている。例えば、固体高分子型燃料電池のセルは、膜電極接合体(MEA)およびガス拡散層を有する電極部材と、電極部材に積層されるセパレータと、電極部材の周囲に配置され、反応ガスや冷媒に対して電極部材をシールするゴム製のガスケットと、を有している。
 ガスケットの材料としては、シリコーンゴムが用いられることが多い(例えば、特許文献1~3参照)。シリコーンゴムは、硬化前の状態が液体であるため射出成形などにより成形が容易であり、比較的低温で硬化する。また、液状のシリコーンゴムを射出成形すると、材料の一部が電極部材のガス拡散層に含浸されるため、シール性を高めることができる。しかしながら、シリコーンゴムは、燃料電池の作動環境においてシロキサン結合(Si-O-Si結合)が加水分解するおそれがあり、シール性の低下が懸念される。また、シリコーンゴムの加水分解により生成した分解物が、MEAを構成する電解質膜および電極触媒層を汚染して、これらを劣化させるおそれがある。
 このため、シリコーンゴムに代わるガスケット材料が検討されている。例えば、耐久性および高温特性に優れ、ガス透過性が小さいなどの観点から、エチレン-プロピレン-ジエンゴム(EPDM)、フッ素ゴムなどが挙げられる。
米国特許第7070876号明細書 米国特許第6716550号明細書 特開2013-168353号公報 特開2007-66766号公報
 しかしながら、EPDMおよびフッ素ゴムは、硬化前の状態が固体、すなわちソリッドゴムであるため、シリコーンゴム並の流動性が得られない。また、固体高分子型燃料電池の電解質膜には、全フッ素系スルホン酸膜などの高分子膜が用いられる。よって、ガスケットの材料を電解質膜の近くに配置して硬化させる場合には、硬化時の加熱により電解質膜が変質しないように、さらには射出圧などの成形時の応力によりガス拡散層を破損しないように、配慮する必要がある。しかしながら、電解質膜の耐熱温度を考慮した温度下では、EPDMおよびフッ素ゴムを実用性がある比較的短時間で硬化させることは難しい。このように、EPDMおよびフッ素ゴムなどのソリッドゴムを用いる場合、比較的低温下で、射出成形により、ガスケットを電極部材に一体成形することは難しい。
 例えば、特許文献2には、MEAと、フレーミングシールと、一体型シールと、を備える膜電極シーリングアセンブリが記載されている。フレーミングシールは、シリコーン、EPDMなどから別部材として形成され、MEAの端部を厚さ方向に挟むように配置されている。一体型シールは、熱可塑性樹脂などの液状シーラント材料、シリコーンなどの液状エラストマーから形成され、MEAの流体分配層(ガス拡散層)に含浸されている。フレーミングシールと一体型シールとは、接着されていない。
 特許文献3には、MEAおよびガス拡散層を有する電極部材と、該電極部材の外周に配置される樹脂製枠部材と、セパレータと、シール部材(ガスケット)と、を備える燃料電池が記載されている。樹脂製枠部材は、ポリフェニレンサルファイド(PPS)などからなり、接着剤層を介してMEAに接着され、樹脂含浸部を介してガス拡散層に接着されている。シール部材は、シリコーンゴム、EPDMなどからなり、セパレータに一体化されており、樹脂製枠部材には接着されていない。
 特許文献4には、MEAおよびガス拡散層を有する電極部材と、該電極部材の外周に配置されるガスケット構造体と、を備える接合体が記載されている。電解質膜の両面には面積が異なるガス拡散層が配置されている。ガスケット構造体は、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などから形成されている。ガスケット構造体は、ガス拡散層の面積が小さい側に露出した電解質膜の表面や、ガス拡散層の外周端面に、接着層を介して接着されている。接着層は、ポリオレフィンなどのホットメルト系接着剤からなる。接着層の厚さは、ガス拡散層の厚さよりも小さく、電解質膜の外周端面には接していない。
 特許文献2、3には、ガスケットの材料としてシリコーンゴム、EPDMなどが同列に記載されており、シリコーンゴムを使用する場合のシール性の低下や、分解物によるMEAの汚染を考慮する記載はない。また、特許文献2、3に記載されている構造は、ガスケットと電極部材とが接着部材を介して一体化される構造ではない。特許文献4に記載されている接合体においては、ガスケットと電解質膜とが接着層を介して接着されている。しかしながら、接着層は電解質膜の外周端面を被覆しておらず、その厚さはガス拡散層の厚さより小さい。また、ガス拡散層への含浸もない。このため、電極部材に対する保持力が小さく、ハンドリングにより破損したり、スタッキング時の振動などの外部入力により破損するおそれがある。
 本開示は、このような実情に鑑みてなされたものであり、ソリッドゴム製のガスケットと電極部材とが一体化され、シール性、耐久性、および生産性に優れる燃料電池セルアセンブリ、およびその製造方法を提供することを課題とする。
 (1)上記課題を解決するため、本開示の燃料電池セルアセンブリは、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、該電極部材の積層方向に対して交差する方向を面方向として、該電極部材の面方向外側に枠状に配置されるソリッドゴム製のガスケットと、熱可塑性ポリマーを有し、該電極部材の面方向外側に枠状に配置され、該電極部材および該ガスケットに接着して該電極部材および該ガスケットを一体化する接着部材と、を備え、該電極部材に対する該接着部材の接着形態は、該ガス拡散層への含浸および該膜電極接合体への接着の少なくとも一方であり、該接着部材は該電解質膜の少なくとも外周端面を被覆し、該電極部材の積層方向において、該接着部材の厚さは該膜電極接合体の該片面に配置される該ガス拡散層の厚さ以上であり、該接着部材の厚さ方向一面の少なくとも一部は該ガスケットで被覆されることを特徴とする。
 (2)上記(1)の構成の燃料電池セルアセンブリの製造方法の第一例としての本開示の燃料電池セルアセンブリの製造方法は、ソリッドゴムからガスケットを成形するガスケット成形工程と、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、熱可塑性ポリマーを有する接着部材と、を配置する配置工程と、該接着部材を溶融させてから硬化して、該電極部材と該ガスケットとを該接着部材により一体化する一体化工程と、を有することを特徴とする。
 (3)上記(1)の構成の燃料電池セルアセンブリの製造方法の第二例としての本開示の燃料電池セルアセンブリの製造方法は、ソリッドゴムからガスケットを成形するガスケット成形工程と、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、を成形型内に配置する配置工程と、該成形型に熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、該電極部材と該ガスケットとを該液状組成物の硬化物である接着部材により一体化する一体化工程と、を有することを特徴とする。
 (4)上記(1)の構成の燃料電池セルアセンブリは、さらに、前記電極部材および前記ガスケットに積層されるセパレータを備え、前記接着部材は、該電極部材、該ガスケットおよび該セパレータに接着して該電極部材、該ガスケットおよび該セパレータを一体化する形態でもよい。
 (5)上記(4)の構成のセパレータを備える燃料電池セルアセンブリの製造方法の第一例としての本開示の燃料電池セルアセンブリの製造方法は、ソリッドゴムからガスケットを成形するガスケット成形工程と、セパレータの一面に、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、熱可塑性ポリマーを有する接着部材と、を配置する配置工程と、該接着部材を溶融させてから硬化して、該電極部材、該ガスケットおよび該セパレータを該接着部材により一体化する一体化工程と、を有することを特徴とする。
 (6)上記(4)の構成のセパレータを備える燃料電池セルアセンブリの製造方法の第二例としての本開示の燃料電池セルアセンブリの製造方法は、ソリッドゴムからガスケットを成形するガスケット成形工程と、成形型内にセパレータを配置して、さらにその一面に、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、を配置する配置工程と、該成形型に熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、該電極部材、該ガスケットおよび該セパレータを該液状組成物の硬化物である接着部材により一体化する一体化工程と、を有することを特徴とする。
 (1)本開示の燃料電池セルアセンブリによると、ガスケットは液状ゴムではなくソリッドゴムから製造される。液状のシリコーンゴムを使用しなくてよいため、シロキサン結合の加水分解によるシール性の低下や、分解物によるMEAの汚染問題を解消することができる。ガスケットは、接着部材により電極部材に接着される。これにより、接着性およびシール性を高めるために、ガスケットを電極部材のガス拡散層に含浸させる必要はない。ガスケットと電極部材との接触が少なくなるため、ガスケットの材料に起因したシール性の低下やMEAの汚染などの懸念が少ない。よって、ガスケットの材料選択の自由度が大きくなる。
 本開示の燃料電池セルアセンブリにおける、電極部材に対する接着部材の接着形態は、ガス拡散層への含浸および膜電極接合体(以下、本開示においても適宜「MEA」と称す)への接着の少なくとも一方である。これにより、高い接着性およびシール性が実現される。また、接着部材は電解質膜の少なくとも外周端面を被覆するため、電解質膜が保護、補強されて変形が抑制されると共に、シール性も向上する。電極部材の積層方向において、接着部材の厚さは膜電極接合体の片面に配置されるガス拡散層の厚さ以上である。こうすることにより、接着部材の強度、接着性が確保される。加えて、電解質膜の変形を抑制して耐久性を高めることができ、ハンドリング性も向上する。接着部材の厚さ方向一面の少なくとも一部は、ガスケットで被覆される。これにより、燃料電池セルアセンブリを積層して燃料電池を構成した場合に、シール性を高めることができる。また、隣り合うセル間で接着部材の粘着(タック)が抑制されるため、積層される部材に接着部材の跡が付きにくくなる。さらには、一部のセルに修理や取り替えが必要になった場合に、セルを取り出しやすいため、リペア性が向上する。
 (2)上記(1)の構成の燃料電池セルアセンブリの製造方法の第一例である、本開示の燃料電池セルアセンブリの第一の製造方法(以下適宜、「本開示の第一の製造方法」と称す)によると、ガスケット成形工程において、予め、ソリッドゴムからガスケットを製造しておく。ガスケットを製造する工程を、電極部材と一体化する工程と別にすることで、液状材料と比較して流動性が低いソリッドゴムを用いてガスケットを製造することができる。そして、ソリッドゴムの硬化温度を、電解質膜の耐熱温度に関係なく設定することができる。これにより、ガスケットの製造を高温下で短時間に行うことができる。したがって、本開示の第一の製造方法によると、高耐久性のガスケットを高い生産性で製造することができる。また、一体化工程においては、熱可塑性ポリマーを有する接着部材を溶融、硬化することにより、電極部材とガスケットとを接着する。これにより、接着部材を電極部材のガス拡散層と接するように配置する場合に、接着部材をガス拡散層に含浸させて、より強固な接着性および高いシール性を実現することができる。
 (3)上記(1)の構成の燃料電池セルアセンブリの製造方法の第二例である、本開示の燃料電池セルアセンブリの第二の製造方法(以下適宜、「本開示の第二の製造方法」と称す)においては、成形型内に電極部材とガスケットと配置した状態で、熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、該電極部材と該ガスケットとを該液状組成物の硬化物である接着部材により一体化する。本開示の第二の製造方法によると、先の第一の製造方法により奏される作用効果に加えて、燃料電池セルアセンブリの製造が効率化されるため、より生産性を高めることができる。
 (4)本開示の燃料電池セルアセンブリがセパレータを備える形態において、セパレータを含めてセルの主な構成要素が接着部材により一体化されると、燃料電池セルアセンブリを積層する際に扱いやすくなり、スタッキング工程を簡略化することができる。また、積層時における部材のずれなども生じにくくなる。これにより、作業性が向上して生産性が向上する。また、接着部材とセパレータとが接着されることにより、シール性も向上する。
 (5)上記(4)の構成のセパレータを備える燃料電池セルアセンブリの製造方法の第一例である、本開示の燃料電池セルアセンブリの第三の製造方法(以下適宜、「本開示の第三の製造方法」と称す)によると、セパレータの一面に、電極部材、ガスケットおよび接着部材を配置して、接着部材を溶融、硬化することにより、上記(2)に記載された第一の製造方法により奏される作用効果に加えて、電極部材、ガスケット、およびセパレータを容易に一体化することができる。
 (6)上記(4)の構成のセパレータを備える燃料電池セルアセンブリの製造方法の第二例である、本開示の燃料電池セルアセンブリの第四の製造方法(以下適宜、「本開示の第四の製造方法」と称す)によると、セパレータの一面に、電極部材およびガスケットを配置した状態で、熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、上記(3)に記載された第二の製造方法により奏される作用効果に加えて、電極部材、ガスケット、およびセパレータを容易に一体化することができる。
第一実施形態の燃料電池セルアセンブリの上面図である。 図1のII-II断面図である。 ガスケット成形時の成形型の断面模式図である。 接着部材を塗布したセパレータの断面模式図である。 配置工程における各部材の断面模式図である。 一体化工程における各部材の断面模式図である。 第二実施形態の燃料電池セルアセンブリの製造方法の接着部材固定工程において、接着部材を接着したガスケットの断面模式図である。 同製造方法の配置工程における各部材の断面模式図である。 第三実施形態の燃料電池セルアセンブリの部分断面図である。 第三実施形態の燃料電池セルアセンブリの製造方法の配置工程における各部材の断面模式図である。 同製造方法の一体化工程における成形型の断面模式図である。 第四実施形態の燃料電池セルアセンブリの部分断面図である。 第五実施形態の燃料電池セルアセンブリの部分断面である。
 <第一実施形態>
 [燃料電池セルアセンブリの構成]
 まず、本実施形態の燃料電池セルアセンブリの構成について説明する。図1に、本実施形態の燃料電池セルアセンブリの上面図を示す。図2に、図1のII-II断面図を示す。図の方位のうち、前後左右方向は各部材の面方向、上下方向は各部材の厚さ方向、積層方向を示す。図1においては、説明の便宜上、積層されている部材を透過して示し、接着部材についてはハッチングを施して示す。図1、図2に示すように、燃料電池セルアセンブリ10は、電極部材2と、ガスケット30と、接着部材40と、セパレータ50と、を備えている。
 セパレータ50は、カーボン製のバイポーラプレートであり、矩形薄板状を呈している。電極部材2、ガスケット30、および接着部材40は、セパレータ50の上面に配置されている。セパレータ50の上面および下面の電極部材2と重なる領域には、凹凸状の流路が形成されている。
 電極部材2は、矩形薄膜状を呈している。電極部材2は、MEA20と、その厚さ方向両面に配置される一対の上側ガス拡散層21および下側ガス拡散層22と、からなる。MEA20、上側ガス拡散層21および下側ガス拡散層22の面方向の大きさ(面積)は、同じである。MEA20は、電解質膜とその厚さ方向両面に配置される一対の電極触媒層と、からなる。電解質膜は、全フッ素系スルホン酸膜であり、電極触媒層は、白金を含む触媒を担持したカーボン粒子を有している。上側ガス拡散層21および下側ガス拡散層22の構成は同じであり、各々、カーボンペーパーを有している。上側ガス拡散層21は、接着部材40が含浸されている上側含浸部210を有している。上側含浸部210は、上側ガス拡散層21の外周端部に配置されている。同様に、下側ガス拡散層22も、接着部材40が含浸されている下側含浸部220を有している。下側含浸部220は、下側ガス拡散層22の外周端部に配置されている。
 ガスケット30は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。ガスケット30は、EPDMを有するゴム組成物の架橋物からなる。ガスケット30は、本体部300と、重なり部301と、を有している。本体部300は、枠の外側に配置され、厚さ方向に突出する二つのリップ部302を有している。二つのリップ部302の頂部は、曲面状を呈している。重なり部301は、枠の内側に配置され、接着部材40の上面および電極部材2の上面外縁部(上側含浸部210および下側含浸部220に対応する領域)を被覆するように、本体部300から延在している。ガスケット30は、燃料電池を構成した場合に、積層される別の燃料電池セルアセンブリのセパレータに弾接する。
 接着部材40は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。接着部材40は、面方向において電極部材2とガスケット30との間に配置されている。接着部材40の厚さTは、電極部材2の厚さと同じであり、上側ガス拡散層21、下側ガス拡散層22の厚さTより大きい。接着部材40の上面は、ガスケット30の重なり部301で被覆されている。ガスケット30の重なり部301と接着部材40との合計厚さTは、電極部材2の厚さより大きい。接着部材40は、酸により変性されたオレフィン系熱可塑性樹脂(以下適宜、「酸変性オレフィン系熱可塑性樹脂」と称す)を有している。酸変性オレフィン系熱可塑性樹脂の融点は、130℃程度である。酸変性オレフィン系熱可塑性樹脂は、接着性を有している。前述したように、接着部材40の一部は、上側ガス拡散層21の上側含浸部210および下側ガス拡散層22の下側含浸部220に含浸している。加えて、接着部材40は、接触している部材、具体的には、電解質膜を含むMEA20の外周端面、ガスケット30、およびセパレータ50に接着している。このようにして、電極部材2、ガスケット30、およびセパレータ50は、接着部材40により一体化されている。
 [燃料電池セルアセンブリの製造方法]
 次に、本実施形態の燃料電池セルアセンブリの製造方法について説明する。本実施形態の燃料電池セルアセンブリの製造方法は、ガスケット成形工程と、配置工程と、一体化工程と、を有している。
 (1)ガスケット成形工程
 本工程においては、EPDMを有するゴム組成物を射出成形してガスケット30を成形する。図3に、ガスケット成形時の成形型の断面模式図を示す。なお、図3を含む以下の図面は全て、図2に対応しており、図1のII-II断面に相当する部分を示す。図3に示すように、成形型8は、上型80と下型81とを備えている。上型80と下型81とを合わせることにより、ガスケット30と型対称の形状を有するキャビティ82が区画されている。まず、成形型8を型締めし、予め100℃程度に加熱されているゴム組成物をキャビティ82に注入する。そのまま170℃下で10分間保持して架橋させた後、成形型8の型開きを行い、ガスケット30を取り出す。
 (2)配置工程
 本工程においては、セパレータ50の上面に、電極部材2と、成形されたガスケット30と、接着部材40と、を配置する。図4に、接着部材を塗布したセパレータの断面模式図を示す。図5に、配置工程における各部材の断面模式図を示す。まず、図4に示すように、セパレータ50の上面の所定位置に、充分に流動性を有するよう150℃以上の温度に加熱した接着部材40を、ディスペンサーを用いて枠状に塗布する。次に、図5に示すように、セパレータ50の上面において、接着部材40の内側に電極部材2を配置し、接着部材40の外側にガスケット30を配置する。
 (3)一体化工程
 本工程においては、接着部材40を溶融させてから硬化して、電極部材2、ガスケット30およびセパレータ50を接着部材40により一体化する。図6に、一体化工程における各部材の断面模式図を示す。先の配置工程においてセットされたセパレータ50、電極部材2、ガスケット30、および接着部材40の積層体を、ホットプレス機に設置して、図6に下向きの白抜き矢印で示すように、140℃に加熱された押圧部材83により接着部材40を押圧する。これにより、接着部材40が溶融して、図6に横向きの白抜き矢印で示すように、上側ガス拡散層21および下側ガス拡散層22の外周端部に含浸すると共に、MEA20の外周端面、ガスケット30、およびセパレータ50に接着する。その後、積層体を常温に戻すことにより、接着部材40が硬化して、電極部材2、ガスケット30、およびセパレータ50が接着部材40を介して一体化された燃料電池セルアセンブリ10が製造される(前出図2参照)。
 [作用効果]
 次に、本実施形態の燃料電池セルアセンブリおよびその製造方法の作用効果について説明する。本実施形態の燃料電池セルアセンブリ10において、ガスケット30はEPDM製である。このため、ガスケット30は耐久性に優れる。また、シリコーンゴムを使用しないため、シール性の低下や、分解物によるMEA20の汚染が少ない。
 接着部材40は、酸変性オレフィン系熱可塑性樹脂を有するため、接着性が良好である。接着部材40の一部は、上側ガス拡散層21、下側ガス拡散層22に含浸される。これにより、高い接着性およびシール性が実現される。接着部材40の上面は、全てガスケット30で被覆される。そして、ガスケット30と接着部材40とが積層される部分の厚さTは、電極部材2の厚さより大きい。これにより、燃料電池セルアセンブリ10を積層して燃料電池を構成した場合に、シール性を高めることができる。接着部材40の上面全てがガスケット30で被覆されることにより、隣り合うセル間で接着部材40の粘着(タック)が抑制される。よって、積層される部材に接着部材40の跡が付きにくくなる。また、一部のセルに修理や取り替えが必要になった場合に、セルを取り出しやすいため、リペア性が高い。接着部材40は、MEA20の電解質膜の外周端面を被覆する。これにより、電解質膜が保護、補強されて変形が抑制されると共に、シール性も向上する。接着部材40の厚さTは、下側ガス拡散層22の厚さTより大きい。これにより、接着部材40の強度、接着性が確保される。加えて、電解質膜の変形を抑制して耐久性を高めることができ、ハンドリング性が向上する。
 燃料電池セルアセンブリ10においては、電極部材2およびガスケット30と共に、セパレータ50も一体化される。これにより、燃料電池セルアセンブリ10のスタッキング工程を簡略化することができ、部材のずれなども生じにくい。よって、作業性が向上して生産性が向上する。また、接着部材40とセパレータ50とが接着されることにより、シール性も向上する。
 本実施形態の燃料電池セルアセンブリの製造方法は、本開示の第一の製造方法、第三の製造方法の概念に含まれる。本実施形態の燃料電池セルアセンブリの製造方法によると、ガスケット成形工程において、予め、EPDMを有するゴム組成物からガスケット30を製造しておく。ガスケット30を製造する工程を、電極部材2と一体化する工程と別にすることで、液状材料と比較して流動性が低いソリッドゴムを用いてガスケット30を製造することができる。また、成形時の温度を、電解質膜の耐熱温度に関係なく200℃前後の高温に設定することができるため、ガスケット30の製造を短時間に行うことができる。このように、本実施形態の燃料電池セルアセンブリの製造方法によると、高耐久性のガスケット30を高い生産性で製造することができる。
 一体化工程においては、ホットプレスにより接着部材40を溶融、硬化させて、電極部材2、ガスケット30、およびセパレータ50を容易に一体化することができる。接着部材40の材料である熱酸変性オレフィン系熱可塑性樹脂の融点は130℃程度であり、ホットプレスを140℃で行うため、加熱時に電解質膜が変質するおそれは少ない。溶融した接着部材40は、電極部材2の上側ガス拡散層21および下側ガス拡散層22に含浸する。これにより、接着性およびシール性が高くなる。
 <第二実施形態>
 本実施形態の燃料電池セルアセンブリおよびその製造方法と、第一実施形態のそれとの相違点は、製造方法の一部のみであり、配置工程において、セパレータに接着部材を塗布するのではなく、成形されたガスケットに予め接着部材を固定しておく点である。ここでは、主に相違点を説明する。
 本実施形態の燃料電池セルアセンブリの製造方法は、第一実施形態と同様に、ガスケット成形工程と、配置工程と、一体化工程と、を有しており、配置工程として、接着部材固定工程が追加されている。本実施形態では、配置工程の最初に接着部材固定工程を行い、ガスケットに接着部材を接着する。図7に、接着部材固定工程において、接着部材を接着したガスケットの断面模式図を示す。図8に、配置工程における各部材の断面模式図を示す。
 まず、図7に示すように、ガスケット成形工程(前出図3参照)の後、上型80のみを取り外した状態で、得られたガスケット30の重なり部301に対応する部分の上面に、接着部材40を枠状に塗布する。接着部材40の塗布は、第一実施形態の配置工程と同様に、充分に流動性を有するよう150℃以上の温度に加熱した状態でディスペンサーを用いて行う。それから、別の成形型を使用して、接着部材40を所定の形状に成形して冷却する。このようにして、接着部材付きガスケット30を製造する。次に、図8に示すように、セパレータ50の上面に、製造した接着部材付きガスケット30を反転させて配置し、接着部材40の内側に電極部材2を配置する。それから、第一実施形態の一体化工程と同様に、接着部材40をホットプレスにより溶融させてから硬化して、電極部材2、ガスケット30およびセパレータ50を接着部材40により一体化する。
 本実施形態の燃料電池セルアセンブリの製造方法によると、接着部材固定工程において、予めガスケット30の表面に接着部材40を固定しておく。こうすることにより、ガスケット30が補強されるため、次の一体化工程において、ガスケット30を配置する際のハンドリング性が向上する。また、接着部材40の枠に合わせて電極部材2を配置することができるため、電極部材2を配置する際の位置決めが容易になる。
 <第三実施形態>
 本実施形態の燃料電池セルアセンブリおよびその製造方法と、第一実施形態のそれとの相違点は、接着部材およびガスケットの形状などと、接着部材を射出成形により成形する点である。ここでは、主に相違点を説明する。
 [燃料電池セルアセンブリの構成]
 まず、本実施形態の燃料電池セルアセンブリの構成について説明する。図9に、本実施形態の燃料電池セルアセンブリの部分断面図を示す。図9において、図2と対応する部位については、同じ符号で示す。図9に示すように、燃料電池セルアセンブリ11は、電極部材2と、ガスケット31と、接着部材41と、セパレータ50と、を備えている。
 ガスケット31は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。ガスケット31は、第一実施形態のガスケット30と同じ材料、すなわちEPDMを有するゴム組成物の架橋物からなる。ガスケット31は、本体部310と、重なり部311と、を有している。本体部310は、枠の外側に配置され、厚さ方向に突出する二つのリップ部312を有している。二つのリップ部312の頂部は、曲面状を呈している。重なり部311は、枠の内側に配置され、接着部材41の一部に積層されている。
 接着部材41は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。接着部材41は、面方向において電極部材2とガスケット31との間に配置されている。接着部材41の厚さ方向断面はL字状を呈しており、外側に張り出した部分がガスケット31の重なり部311に積層されている。接着部材41の下面の一部は、ガスケット31で被覆されている。接着部材41の上面は、ガスケット31のリップ部312を除く本体部310と面一である。ガスケット31の重なり部311と接着部材41との合計厚さTは、電極部材2の厚さと同じである。電極部材2に接触している接着部材41の厚さTは、電極部材2の厚さと同じであり、上側ガス拡散層21、下側ガス拡散層22の厚さTより大きい。接着部材41は、第一実施形態の接着部材40と同じ材料からなり、酸変性オレフィン系熱可塑性樹脂を有している。接着部材41の一部は、電極部材2における上側ガス拡散層21の上側含浸部210、および下側ガス拡散層22の下側含浸部220に含浸している。加えて、接着部材41は、接触している部材、具体的には、電解質膜を含むMEA20の外周端面、ガスケット31、およびセパレータ50に接着している。このようにして、電極部材2、ガスケット31、およびセパレータ50は、接着部材41により一体化されている。
 [燃料電池セルアセンブリの製造方法]
 次に、本実施形態の燃料電池セルアセンブリの製造方法について説明する。本実施形態の燃料電池セルアセンブリの製造方法は、ガスケット成形工程と、配置工程と、一体化工程と、を有している。ガスケット成形工程は、第一実施形態と同様であるため説明を省略する。
 (1)配置工程
 図10に、配置工程における各部材の断面模式図を示す。図10に示すように、本工程においては、成形型の下型85に、セパレータ50を配置して、セパレータ50の上面の所定位置に電極部材2とガスケット31とを配置する。面方向における電極部材2とガスケット31との間には、次の一体化工程において、接着部材41の材料である液状組成物が注入される空間が配置されている。
 (2)一体化工程
 本工程においては、成形型に液状組成物を注入し硬化させることにより、電極部材2、ガスケット31およびセパレータ50を該液状組成物の硬化物である接着部材41により一体化する。図11に、一体化工程における成形型の断面模式図を示す。図11に示すように、成形型8は、上型84と下型85とを備えている。下型85には、セパレータ50、電極部材2、およびガスケット31が配置されている。上型84と下型85とを合わせることにより、接着部材41と型対称の形状を有するキャビティ86が区画されている。上型84は、キャビティ86に接続されるゲート87を有している。
 まず、成形型8を型締めし、酸変性オレフィン系熱可塑性樹脂を有する液状組成物410を、射出成形機のノズルから、ランナ(図略)およびゲート87を通して、キャビティ86に注入する。液状組成物410は、140℃程度に加熱されている。注入された液状組成物は、図11に白抜き矢印で示すように、上側ガス拡散層21および下側ガス拡散層22の外周端部に含浸すると共に、MEA20の外周端面、ガスケット31、およびセパレータ50に接着する。その後、成形型8を冷却することにより、液状組成物410は硬化して接着部材41になる。このようにして、電極部材2、ガスケット31、およびセパレータ50が接着部材41を介して一体化された燃料電池セルアセンブリ11が製造される(前出図9参照)。
 [作用効果]
 次に、本実施形態の燃料電池セルアセンブリおよびその製造方法の作用効果について説明する。本実施形態の燃料電池セルアセンブリの製造方法は、本開示の第二の製造方法、第四の製造方法の概念に含まれる。本実施形態の燃料電池セルアセンブリの製造方法によると、一体化工程において、成形型8内にセパレータ50、電極部材2、およびガスケット31を配置した状態で、熱酸変性オレフィン系熱可塑性樹脂を有する液状組成物410を注入し硬化させることにより、電極部材2、ガスケット31、およびセパレータ50を容易に一体化することができる。液状組成物410の射出成形を140℃程度で行うため、加熱時に電解質膜が変質するおそれは少ない。液状組成物410は、電極部材2の上側ガス拡散層21および下側ガス拡散層22に含浸する。これにより、接着性およびシール性が高くなる。本実施形態の燃料電池セルアセンブリの製造方法によると、燃料電池セルアセンブリ11の製造が効率化されるため、より生産性を高めることができる。
 第一、第二実施形態のように、接着部材を予め塗布しておく方法においては、接着部材の量が有限であるため、ガスケットと電極部材との隙間が大きい場合や、隙間の大きさのばらつきが大きい場合などには、接着部材が不足するおそれがある。この点、本実施形態の射出成形によると、液状組成物が流動してガスケット31と電極部材2との隙間に過不足無く充填されるため、隙間が大きい場合や、隙間の大きさのばらつきが大きい場合などに有効である。
 <第四実施形態>
 本実施形態の燃料電池セルアセンブリおよびその製造方法と、第一実施形態のそれとの相違点は、電極部材におけるガス拡散層の大きさおよび接着部材の接着形態である。ここでは、主に相違点を説明する。図12に、本実施形態の燃料電池セルアセンブリの部分断面図を示す。図12において、図2と対応する部位については、同じ符号で示す。図12に示すように、燃料電池セルアセンブリ12は、電極部材2と、ガスケット30と、接着部材42と、セパレータ50と、を備えている。
 電極部材2は、MEA20と、その厚さ方向両面に配置される一対の上側ガス拡散層23および下側ガス拡散層24と、からなる。上側ガス拡散層23および下側ガス拡散層24の構成は同じであるが、面方向の大きさ(面積)は異なる。すなわち、上側ガス拡散層23の面積は、下側ガス拡散層24の面積より小さい。このため、電極部材2を上方から見ると、MEA20の外縁部が露出している。上側ガス拡散層23の外周端部には、接着部材42が含浸されている上側含浸部230が配置されている。同様に、下側ガス拡散層24の外周端部にも、接着部材42が含浸されている下側含浸部240が配置されている。
 接着部材42は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。接着部材42の厚さTは、電極部材2の厚さと同じであり、上側ガス拡散層23、下側ガス拡散層24の厚さTより大きい。接着部材42の上面は、ガスケット30の重なり部301により被覆されている。ガスケット30の重なり部301と接着部材42との合計厚さTは、電極部材2の厚さより大きい。接着部材42は、第一実施形態の接着部材40と同じ材料からなり、酸変性オレフィン系熱可塑性樹脂を有している。接着部材42の一部は、電極部材2における上側ガス拡散層23の上側含浸部230、および下側ガス拡散層24の下側含浸部240に含浸している。また、接着部材42は、上側ガス拡散層23側に露出したMEA20の上面に接着している。さらに、接着部材42は、電解質膜を含むMEA20の外周端面、ガスケット30、およびセパレータ50にも接着している。このようにして、電極部材2、ガスケット30、およびセパレータ50は、接着部材42により一体化されている。燃料電池セルアセンブリ12の製造方法は、第一実施形態の製造方法と同じである。
 本実施形態の燃料電池セルアセンブリ12においては、上側ガス拡散層23の面積は、下側ガス拡散層24の面積より小さく、上方に露出したMEA20の上面に接着部材42が接着される。このような構成を採用することにより、電極部材2の外周端部で生じやすいクロスリークを抑制することができる。結果、発電性能の低下、電解質膜の劣化などが抑制される。
 <第五実施形態>
 本実施形態の燃料電池セルアセンブリおよびその製造方法と、第一実施形態のそれとの相違点は、電極部材におけるガス拡散層の大きさ、接着部材の接着形態、およびガスケットの形状などである。ここでは、主に相違点を説明する。図13に、本実施形態の燃料電池セルアセンブリの部分断面図を示す。図13において、図2と対応する部位については、同じ符号で示す。図13に示すように、燃料電池セルアセンブリ13は、電極部材2と、ガスケット32と、接着部材43と、セパレータ50と、を備えている。
 電極部材2は、MEA20と、その厚さ方向両面に配置される一対の上側ガス拡散層25および下側ガス拡散層26と、からなる。上側ガス拡散層25および下側ガス拡散層26の構成および大きさは同じである。MEA20の面方向の大きさ(面積)は、上側ガス拡散層25および下側ガス拡散層26のそれより大きい。このため、電極部材2を上方から見ると、MEA20の外縁部が外側に突出して露出している。
 接着部材43は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。接着部材43の厚さTは、MEA20と下側ガス拡散層26との合計厚さと同じであり、下側ガス拡散層26の厚さTより大きい。接着部材43は、第一実施形態の接着部材40と同じ材料からなり、酸変性オレフィン系熱可塑性樹脂を有している。接着部材43は、電極部材2の外側に突出したMEA20の下面、外周端面、および下側ガス拡散層26の外周端面に接着している。接着部材43は、ガスケット32、およびセパレータ50にも接着している。このようにして、電極部材2、ガスケット32、およびセパレータ50は、接着部材43により一体化されている。
 ガスケット32は、上方から見て枠状を呈しており、電極部材2の外側に配置されている。ガスケット32は、第一実施形態のガスケット30と同じ材料、すなわちEPDMを有するゴム組成物の架橋物からなる。ガスケット32は、本体部320と、重なり部321と、を有している。本体部320は、枠の外側に配置され、厚さ方向に突出する二つのリップ部322を有している。二つのリップ部322の頂部は、曲面状を呈している。重なり部321は、枠の内側に配置され、接着部材43の上面、上側ガス拡散層25の外周端面、および電極部材2の外側に突出したMEA20の上面を被覆している。ガスケット32の重なり部321と接着部材43との合計厚さTは、電極部材2の厚さより大きい。燃料電池セルアセンブリ13の製造方法は、第一実施形態の製造方法と同じである。
 本実施形態の燃料電池セルアセンブリ13においては、MEA20の面積が上側ガス拡散層25および下側ガス拡散層26の面積より大きく、MEA20の外縁部が外側に突出している。接着部材43は、露出したMEA20の下面、外周端面、および下側ガス拡散層26の外周端面に接着される。ここで、接着部材43の厚さTは、MEA20と下側ガス拡散層26との合計厚さと同じであり、下側ガス拡散層26の厚さTより大きい。他方、露出したMEA20の上面、および上側ガス拡散層25の外周端面は、ガスケット32により被覆される。このような構成を採用することにより、電極部材2の高いシール性を実現している。また、接着部材43の強度、接着性を確保して、電解質膜の変形を抑制している。
 <その他の実施形態>
 以上、本開示の燃料電池セルアセンブリおよびその製造方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
 本開示の燃料電池セルアセンブリは、所定の電極部材、ガスケット、および接着部材を必須の構成要素としていればよい。本開示の燃料電池セルアセンブリにおいては、これら必須の構成要素に加えて他の構成要素が存在していてもよく、その種類は限定されない。上記実施形態においては、本開示の燃料電池セルアセンブリおよびその製造方法を、セパレータを備える形態で示した。しかしながら、本開示の燃料電池セルアセンブリおよびその製造方法は、セパレータを備えない形態で実施してもよい。本開示の第一の製造方法または第二の製造方法は、セパレータを備えない形態の本開示の燃料電池セルアセンブリの製造方法にも対応する。燃料電池セルアセンブリがセパレータを備える形態においても、セパレータは必ずしも接着部材により一体化される必要はない。例えば、電極部材およびガスケットが接着部材により一体化された所定のガスケット付き電極部材を、セパレータに積層させて、燃料電池セルアセンブリを構成してもよい。
 [電極部材]
 本開示の燃料電池セルアセンブリの構成要素のうち、電極部材は、MEAとガス拡散層とを有する。MEAは、電解質膜と、電解質膜の両面に配置される一対の電極触媒層と、を有する。電解質膜としては、燃料電池に用いられるプロトン伝導性のイオン交換膜を用いればよい。電極触媒層は、白金、白金合金などの触媒を担持した導電性の担体などを含んで構成すればよい。電極触媒層は、必ずしも電解質膜の表面全体に形成される必要はない。電極触媒層は、MEAにおける発電領域に応じて、電解質膜の表面に適宜形成すればよい。ガス拡散層としては、カーボンペーパー、カーボンクロスなどのカーボン多孔質体、金属メッシュなどの金属多孔質体などを用いればよい。
 ガス拡散層は、MEAの厚さ方向の片面または両面に配置すればよい。ガス拡散層は、単層でも二層以上でもよい。ガス拡散層をMEAの厚さ方向の両面に配置する場合、厚さ方向の一面と他面とにおいて、ガス拡散層の厚さ、面方向の大きさ(面積)などは同じでも異なってもよい。例えば、一面に配置されるガス拡散層の面積が、他面に配置されるガス拡散層の面積よりも小さい場合、面積が小さい方のガス拡散層側に、MEAの外縁部が露出する。この場合、電解質膜を保護する観点から、露出したMEAの外縁部に接着部材を接着させることが望ましい。また、ガス拡散層の面積よりも、MEAの面積が大きい場合にも、MEAの外縁部が露出する。この場合も、電解質膜を保護する観点から、露出したMEAの外縁部に接着部材を接着させることが望ましい。
 [ガスケット]
 ガスケットは、ソリッドゴムを用いて製造される。例えば、ソリッドゴムをゴム成分とするゴム組成物を、射出成形、プレス成形などして製造すればよい。ソリッドゴムとしては、シリコーンゴム以外が望ましく、例えば、EPDM、フッ素ゴム、ブチルゴム(IIR)、エチレン-プロピレンゴム(EPM)、アクリロニトリル-ブタジエンゴム(NBR)、水素添加アクリロニトリル-ブタジエンゴム(H-NBR)、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)などが挙げられる。ガスケットの耐久性などを考慮すると、EPDM、フッ素ゴムが好適である。ゴム組成物は、ゴム成分の他に、架橋剤、架橋助剤、可塑剤、補強剤、老化防止剤、加工助剤などを含んでいてもよい。架橋剤としては、硫黄などの揮発成分を含まないという理由から、有機過酸化物を用いることが望ましい。上記実施形態においては、燃料電池セルアセンブリを積層した際のシール性を高めるという観点から、ガスケットにリップ部を配置した。リップ部の有無を含めて、ガスケットの形状、厚さなどは適宜決定すればよい。
 [セパレータ]
 セパレータの材質としては、ステンレス鋼、チタン、銅、マグネシウム、アルミニウム、カーボン、グラファイト、セラミックス、導電性樹脂(カーボン、グラファイト、ポリアクリロニトリル系炭素繊維などを有する熱可塑性樹脂または熱硬化性樹脂)などが挙げられる。また、これらの材料からなる本体部の表面に、物理蒸着(PVD)、化学蒸着(CVD)などの処理によりダイヤモンドライクカーボン膜(DLC膜)、グラファイト膜などの炭素薄膜が形成されたものでもよい。形成される流路、貫通孔などを含めて、セパレータの構成は限定されない。
 [接着部材]
 接着部材は、熱可塑性ポリマーを有し、少なくとも電極部材およびガスケットに接着するものであればよい。燃料電池の作動温度、電解質膜の耐熱温度を考慮すると、熱可塑性ポリマーとしては、融点が70℃以上170℃以下のものを選択することが望ましい。融点が140℃以下のものがより好適である。融点が比較的低い熱可塑性ポリマーとしては、ポリエチレン、ポリプロピレンなどのオレフィン系熱可塑性樹脂が挙げられる。なかでも、接着性が良好であるという観点から、酸変性オレフィン系熱可塑性樹脂が好適である。酸変性オレフィン系熱可塑性樹脂とは、酸、酸無水物、酸エステル、メタロセンなどにより変性された、オレフィン系熱可塑性樹脂を意味する。酸による変性は、オレフィン系熱可塑性樹脂に酸成分をグラフト化してもよく、共重合してもよく、あるいはこれらを組み合わせて行ってもよい。
 接着部材の形状は、電極部材およびガスケットに接着し、両者を一体化できれば特に限定されない。燃料電池セルアセンブリがセパレータを備える場合、接着部材がセパレータにも接着し、電極部材およびガスケットと共にセパレータを一体化してもよい。接着部材は、ガス拡散層に含浸することにより電極部材と接着されてもよく、MEAに接着することにより電極部材と接着されてもよく、その両方でもよい。接着部材がガス拡散層に含浸される場合には、接着性およびシール性が向上する。接着部材がMEAに接着される場合には、電解質膜が接着部材により保護されることにより、電解質膜の変形、破損などが抑制される。接着部材がMEAに接着される場合には、MEAの電解質膜に接着されてもよく、電解質膜の表面に配置される電極触媒層に接着されてもよい。接着部材がガス拡散層に含浸し、MEAの厚さ方向両面には接着しない形態においても、接着部材は電解質膜の少なくとも外周端面を被覆する。これにより、電解質膜が保護されると共にシール性が向上する。
 接着部材の強度および接着性の観点から、接着部材の厚さは、MEAの片面に配置されるガス拡散層の厚さ以上である。本明細書において「厚さ」とは、電極部材の積層方向の長さを意味する。接着部材の厚さとガス拡散層の厚さと比較する場合、接着部材については、電極部材に接触している部分の厚さで比較する。例えば、上記第三実施形態においては、接着部材41の厚さは枠の内外方向で異なる。この場合は、電極部材2に接触している部分の厚さTと、ガス拡散層(下側ガス拡散層22または上側ガス拡散層21)の厚さTと、を比較する。また、燃料電池セルアセンブリを積層して燃料電池を構成した場合に、シール性を高めるという観点から、ガスケットと接着部材とが電極部材の積層方向に積層される部分の厚さは、電極部材の厚さ以上であることが望ましい。
 燃料電池セルアセンブリのシール性およびリペア性の観点から、接着部材の厚さ方向一面の少なくとも一部は、ガスケットで被覆される。接着部材の厚さ方向一面は、上記第一実施形態における上面でも、上記第三実施形態における下面でもよい。接着部材のガスケットで被覆される部分は、厚さ方向の一面でも両面でもよく、一面のうちの全体でも一部でもよい。これとは別に、接着部材の厚さ方向の一面を全くガスケットで被覆しない形態で燃料電池セルアセンブリを実施してもよい。この形態においては、ガスケットが、本体部から接着部材に重なるように延在する重なり部(第一実施形態における重なり部301、第三実施形態における重なり部311など)を有しない。したがって、ガスケットの形状が単純になり、ガスケットの製造が容易になる。
 [燃料電池セルアセンブリの製造方法]
 本開示の燃料電池セルアセンブリの製造方法は、予めガスケットを成形しておき、成形されたガスケットと電極部材とを、熱可塑性ポリマーの溶融、硬化を利用して接着し一体化することを特徴とする。熱可塑性ポリマーを有する接着部材の供給方法の違いにより、次の(a)、(b)の形態が挙げられる。
(a)ソリッドゴムからガスケットを成形するガスケット成形工程と、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、熱可塑性ポリマーを有する接着部材と、を配置する配置工程と、該接着部材を溶融させてから硬化して、該電極部材と該ガスケットとを該接着部材により一体化する一体化工程と、を有する燃料電池セルアセンブリの製造方法。
(b)ソリッドゴムからガスケットを成形するガスケット成形工程と、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、を成形型内に配置する配置工程と、該成形型に熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、該電極部材と該ガスケットとを該液状組成物の硬化物である接着部材により一体化する一体化工程と、を有する燃料電池セルアセンブリの製造方法。
 ガスケット成形工程においては、ソリッドゴムをゴム成分とするゴム組成物を、所定温度で所定時間保持することにより、ガスケットを成形する。ガスケットの成形には、射出成形、プレス成形などの公知の方法を用いればよい。
 配置工程において、熱可塑性ポリマーを有する接着部材を配置する場合には、接着部材をガスケットの表面、またはセパレータなどの基材の表面に配置すればよい。上記第二実施形態のように、予めガスケットの表面に接着部材を固定しておくと、ガスケットが補強されるため、ガスケットを配置する際のハンドリング性が向上する。また、接着部材の枠に合わせて電極部材を配置することができるため、電極部材を配置する際の位置決めが容易になる。配置工程において、配置される接着部材は、固体でも液体でもよい。接着部材の配置方法としては、刷毛塗り、ディスペンサーなどの塗工機、スプレーなどを使用して塗布する方法、成形型を使用する方法、予め接着部材を枠状シートに成形しておき、それを配置する方法などが挙げられる。
 一体化工程において、接着部材を溶融、硬化させる場合には、ホットプレス機などを使用すればよい。あるいは、成形型に熱可塑性ポリマーを有する液状組成物を注入し硬化させる場合には、射出成形機などを使用すればよい。液状組成物を注入する形態を含めて接着部材を溶融して接着させる際、必ずしも加圧することは必要ではない。接着部材を溶融させた状態で加圧すると、ガス拡散層に含浸しやすくなる。接着部材を溶融させるための加熱温度は、電解質膜の耐熱温度、熱可塑性ポリマーの融点、燃料電池が使用される環境温度などを考慮して適宜決定すればよく、例えば、110℃以上150℃以下にすればよい。
10、11、12、13:燃料電池セルアセンブリ、2:電極部材、20:MEA、21、23、25:上側ガス拡散層、22、24、26:下側ガス拡散層、210、230:上側含浸部、220、240:下側含浸部、30、31、32:ガスケット、300、310、320:本体部、301、311、321:重なり部、302、312、322:リップ部、40、41、42、43:接着部材、410:液状組成物、50:セパレータ、8:成形型、80、84:上型、81、85:下型、82、86:キャビティ、83:押圧部材、87:ゲート。

Claims (12)

  1.  電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、
     該電極部材の積層方向に対して交差する方向を面方向として、
     該電極部材の面方向外側に枠状に配置されるソリッドゴム製のガスケットと、
     熱可塑性ポリマーを有し、該電極部材の面方向外側に枠状に配置され、該電極部材および該ガスケットに接着して該電極部材および該ガスケットを一体化する接着部材と、
    を備え、
     該電極部材に対する該接着部材の接着形態は、該ガス拡散層への含浸および該膜電極接合体への接着の少なくとも一方であり、
     該接着部材は該電解質膜の少なくとも外周端面を被覆し、
     該電極部材の積層方向において、該接着部材の厚さは該膜電極接合体の該片面に配置される該ガス拡散層の厚さ以上であり、該接着部材の厚さ方向一面の少なくとも一部は該ガスケットで被覆されることを特徴とする燃料電池セルアセンブリ。
  2.  前記ガス拡散層は、前記膜電極接合体の厚さ方向両面に配置され、
     前記接着部材は、二つの該ガス拡散層の少なくとも一方に含浸される請求項1に記載の燃料電池セルアセンブリ。
  3.  前記ガス拡散層は、前記膜電極接合体の厚さ方向両面に配置され、
     前記電極部材を積層方向から見た場合に、二つの該ガス拡散層の面方向の大きさは異なり、
     前記接着部材は、小さい方の該ガス拡散層側に露出した該膜電極接合体に接着される請求項1または請求項2に記載の燃料電池セルアセンブリ。
  4.  前記電極部材を積層方向から見た場合に、前記膜電極接合体の面方向の大きさは、前記ガス拡散層の面方向の大きさより大きく、
     前記接着部材は、外側に突出した該膜電極接合体の少なくとも一面に接着される請求項1ないし請求項3のいずれかに記載の燃料電池セルアセンブリ。
  5.  前記ガスケットと前記接着部材とが前記電極部材の積層方向に積層される部分の厚さは、該電極部材の厚さ以上である請求項1ないし請求項4のいずれかに記載の燃料電池セルアセンブリ。
  6.  さらに、前記電極部材および前記ガスケットに積層されるセパレータを備え、
     前記接着部材は、該電極部材、該ガスケットおよび該セパレータに接着して該電極部材、該ガスケットおよび該セパレータを一体化する請求項1ないし請求項5のいずれかに記載の燃料電池セルアセンブリ。
  7.  前記ソリッドゴムは、エチレン-プロピレン-ジエンゴム(EPDM)またはフッ素ゴムである請求項1ないし請求項6のいずれかに記載の燃料電池セルアセンブリ。
  8.  前記熱可塑性ポリマーは、酸により変性されたオレフィン系熱可塑性樹脂を有する請求項1ないし請求項7のいずれかに記載の燃料電池セルアセンブリ。
  9.  請求項1に記載の燃料電池セルアセンブリの製造方法であって、
     ソリッドゴムからガスケットを成形するガスケット成形工程と、
     電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、熱可塑性ポリマーを有する接着部材と、を配置する配置工程と、
     該接着部材を溶融させてから硬化して、該電極部材と該ガスケットとを該接着部材により一体化する一体化工程と、
    を有することを特徴とする燃料電池セルアセンブリの製造方法。
  10.  請求項1に記載の燃料電池セルアセンブリの製造方法であって、
     ソリッドゴムからガスケットを成形するガスケット成形工程と、
     電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、を成形型内に配置する配置工程と、
     該成形型に熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、該電極部材と該ガスケットとを該液状組成物の硬化物である接着部材により一体化する一体化工程と、
    を有することを特徴とする燃料電池セルアセンブリの製造方法。
  11.  請求項6に記載の燃料電池セルアセンブリの製造方法であって、
     ソリッドゴムからガスケットを成形するガスケット成形工程と、
     セパレータの一面に、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、熱可塑性ポリマーを有する接着部材と、を配置する配置工程と、
     該接着部材を溶融させてから硬化して、該電極部材、該ガスケットおよび該セパレータを該接着部材により一体化する一体化工程と、
    を有することを特徴とする燃料電池セルアセンブリの製造方法。
  12.  請求項6に記載の燃料電池セルアセンブリの製造方法であって、
     ソリッドゴムからガスケットを成形するガスケット成形工程と、
     成形型内にセパレータを配置して、さらにその一面に、電解質膜および電極触媒層を有する膜電極接合体と、該膜電極接合体の厚さ方向両面の少なくとも片面に配置されるガス拡散層と、を有する電極部材と、成形された該ガスケットと、を配置する配置工程と、
     該成形型に熱可塑性ポリマーを有する液状組成物を注入し硬化させることにより、該電極部材、該ガスケットおよび該セパレータを該液状組成物の硬化物である接着部材により一体化する一体化工程と、
    を有することを特徴とする燃料電池セルアセンブリの製造方法。
PCT/JP2021/047807 2021-12-23 2021-12-23 燃料電池セルアセンブリおよびその製造方法 WO2023119542A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180101186.8A CN117813708A (zh) 2021-12-23 2021-12-23 燃料电池单元组件及其制造方法
PCT/JP2021/047807 WO2023119542A1 (ja) 2021-12-23 2021-12-23 燃料電池セルアセンブリおよびその製造方法
US18/314,124 US20230275241A1 (en) 2021-12-23 2023-05-08 Fuel cell assembly and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047807 WO2023119542A1 (ja) 2021-12-23 2021-12-23 燃料電池セルアセンブリおよびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/314,124 Continuation US20230275241A1 (en) 2021-12-23 2023-05-08 Fuel cell assembly and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2023119542A1 true WO2023119542A1 (ja) 2023-06-29

Family

ID=86901738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047807 WO2023119542A1 (ja) 2021-12-23 2021-12-23 燃料電池セルアセンブリおよびその製造方法

Country Status (3)

Country Link
US (1) US20230275241A1 (ja)
CN (1) CN117813708A (ja)
WO (1) WO2023119542A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716550B1 (en) 2002-12-20 2004-04-06 Ballard Power Systems Inc. Sealing membrane electrode assemblies for electrochemical fuel cells
US7070876B2 (en) 2003-03-24 2006-07-04 Ballard Power Systems, Inc. Membrane electrode assembly with integrated seal
JP2007066766A (ja) 2005-08-31 2007-03-15 Nissan Motor Co Ltd 電解質膜−電極接合体
JP2012243580A (ja) * 2011-05-19 2012-12-10 Tokai Rubber Ind Ltd 燃料電池セルアセンブリおよびその製造方法
JP2013168353A (ja) 2012-01-16 2013-08-29 Honda Motor Co Ltd 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2013229323A (ja) * 2012-03-30 2013-11-07 Tokai Rubber Ind Ltd 燃料電池シール体およびゴム組成物
JP2016100152A (ja) * 2014-11-20 2016-05-30 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2019117730A (ja) * 2017-12-27 2019-07-18 住友理工株式会社 燃料電池セルおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716550B1 (en) 2002-12-20 2004-04-06 Ballard Power Systems Inc. Sealing membrane electrode assemblies for electrochemical fuel cells
US7070876B2 (en) 2003-03-24 2006-07-04 Ballard Power Systems, Inc. Membrane electrode assembly with integrated seal
JP2007066766A (ja) 2005-08-31 2007-03-15 Nissan Motor Co Ltd 電解質膜−電極接合体
JP2012243580A (ja) * 2011-05-19 2012-12-10 Tokai Rubber Ind Ltd 燃料電池セルアセンブリおよびその製造方法
JP2013168353A (ja) 2012-01-16 2013-08-29 Honda Motor Co Ltd 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2013229323A (ja) * 2012-03-30 2013-11-07 Tokai Rubber Ind Ltd 燃料電池シール体およびゴム組成物
JP2016100152A (ja) * 2014-11-20 2016-05-30 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2019117730A (ja) * 2017-12-27 2019-07-18 住友理工株式会社 燃料電池セルおよびその製造方法

Also Published As

Publication number Publication date
CN117813708A (zh) 2024-04-02
US20230275241A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
KR100719201B1 (ko) 연료 전지용 구성 부품
EP2946431B1 (en) Fuel cell assembly, fuel cell stack and preparation methods therefor
WO2012137609A1 (ja) 燃料電池用電解質膜・電極構造体及びその製造方法
JP5857929B2 (ja) 燃料電池セル、および、燃料電池セルの製造方法
JP4600632B2 (ja) 燃料電池用構成部品
US10468692B2 (en) Fuel cell and method of manufacturing fuel cell
KR20060038356A (ko) 개스킷
KR101484126B1 (ko) 연료 전지 스택, 연료 전지 스택의 제조 방법, 및, 연료 전지 스택을 구성하는 모듈의 교환 방법
WO2001004983A1 (fr) Joint pour pile a combustible et son procede de formage
WO2013042542A1 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2008168448A (ja) シール部品の製造方法
JP5177619B2 (ja) 燃料電池用ガスケット一体部品の製造方法
CN110391437B (zh) 燃料电池和燃料电池的制造方法
WO2023119542A1 (ja) 燃料電池セルアセンブリおよびその製造方法
CN112310431B (zh) 用于燃料电池的弹性体电池框架及其制造方法和单元电池
WO2015072082A1 (ja) 燃料電池用セパレータのシールの保護
JP2016170960A (ja) 燃料電池単セル
EP2686902B1 (en) Fuel cell plate bonding method and arrangement
KR102264147B1 (ko) 연료전지용 기체확산층 일체형 가스켓, 및 이를 구비한 가스켓 일체형 막-전극 집합체
CN109659580B (zh) 燃料电池
JP5273369B2 (ja) シール構造体の製造方法
EP2202833B1 (en) Gasket for fuel cell and method of forming it
US20220399551A1 (en) Separator-integrated gasket and manufacturing method therefor
JP5972409B2 (ja) 燃料セルコンポーネントおよび燃料セルアセンブリ
JP6329799B2 (ja) 積層体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521147

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101186.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021968979

Country of ref document: EP

Effective date: 20240301