WO2023119453A1 - Switch - Google Patents

Switch Download PDF

Info

Publication number
WO2023119453A1
WO2023119453A1 PCT/JP2021/047439 JP2021047439W WO2023119453A1 WO 2023119453 A1 WO2023119453 A1 WO 2023119453A1 JP 2021047439 W JP2021047439 W JP 2021047439W WO 2023119453 A1 WO2023119453 A1 WO 2023119453A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
vacuum interrupter
main circuit
conductor
movable
Prior art date
Application number
PCT/JP2021/047439
Other languages
French (fr)
Japanese (ja)
Inventor
幸三 田村
将人 小林
寛之 白井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2021/047439 priority Critical patent/WO2023119453A1/en
Publication of WO2023119453A1 publication Critical patent/WO2023119453A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements

Definitions

  • the present invention relates to a high-voltage switch that is molded with resin.
  • Switches that handle high voltage including vacuum circuit breakers, disconnectors, load switches, etc., are molded with resin to protect the surroundings from the high electric field around the equipment and improve insulation performance.
  • Patent Document 1 As a prior art document in this technical field, there is Patent Document 1, for example.
  • a vacuum interrupter comprising a fixed electrode and a movable electrode that contacts or dissociates with the fixed electrode, an insulated operating rod arranged coaxially with a movable conductor connected to the movable electrode, and a vacuum interrupter that is insulated
  • a vacuum switchgear is disclosed which is molded with solid insulation surrounding the operating rod.
  • an insulating operating rod is used to connect a main circuit portion, which is a high-potential switch portion, and a ground-potential operating device connected to the insulating operating rod.
  • a main circuit portion which is a high-potential switch portion
  • a ground-potential operating device connected to the insulating operating rod.
  • an object of the present invention is to provide a switch that can be miniaturized.
  • An example of the present invention is a switch, which is a vacuum interrupter having an opening/closing portion composed of a fixed electrode and a movable electrode that contacts or dissociates with the fixed electrode, and a vacuum interrupter connected to the fixed electrode.
  • a first bushing conductor electrically connected to a fixed conductor drawn out of the vacuum interrupter, and a second bushing conductor connected to the movable electrode and electrically connected to the movable conductor drawn out of the vacuum interrupter.
  • a main circuit section composed of a bushing conductor and an operating device that is directly connected to a movable conductor pulled out of the vacuum interrupter and moves the movable electrode to operate the opening and closing section, and the operating device and the main circuit
  • the parts are integrally molded with a solid insulating member.
  • FIG. 3 is a cross-sectional view taken along a plane including the central axis of the vacuum circuit breaker in the example.
  • FIG. 3 is a schematic functional configuration diagram of a vacuum circuit breaker in an embodiment; It is another functional structure schematic diagram of the vacuum circuit breaker in an Example.
  • FIG. 3 is a cross-sectional view of a conventional vacuum circuit breaker cut along a plane including the central axis;
  • FIG. 4 is a cross-sectional view cut along a plane including the central axis of a conventional vacuum circuit breaker, which is the premise of the present invention.
  • a railway car is composed of a plurality of cars, and a high-voltage lead-through cable is arranged on the roof of each car. receive power from Further, the high-voltage lead-through cables of the vehicles are connected between the vehicles by straight joints, and are branched in the vehicle floor direction by T-branch joints. The T-branch joint and the straight joint form an integrated switch. This switch is used by being attached to a fixed portion of a railway vehicle.
  • the vacuum circuit breaker 70 has electrical connections 10A, 10B, and 10C, the electrical connections 10B and 10C are electrically connected inside the vacuum circuit breaker 70, and the electrical connections 10B and 10C constitute the T-branch joint.
  • the electrical connection portion 10A and 10B and 10C there is an opening/closing portion composed of a fixed electrode and a movable electrode, which will be described later, inside the vacuum circuit breaker 70.
  • the electrical connection portion 10A, 10B and 10C constitute a linear joint.
  • the vacuum circuit breaker 70 is used with the T-shaped cable head connected to the electrical connections 10A, 10B, and 10C.
  • the vacuum circuit breaker 70 is attached to the railcar while being fixed to the base 71 via a stay.
  • the vacuum interrupter 70 is composed of the fixed electrode 3, the movable electrode 5 that contacts or separates from the fixed electrode 3, the arc shield 6 that covers the fixed electrode 3 and the movable electrode 5, and the like. It has The outer container of the vacuum interrupter 1 maintains the interior in a vacuum state.
  • the vacuum circuit breaker 70 extinguishes the arc within the vacuum vessel by utilizing the rapid diffusion of the arc into the vacuum. This configuration is also used in vacuum switches and is used from high pressure to extra high pressure. It is also used in high-voltage switchboards due to its durability and ease of maintenance.
  • the fixed electrode 3 is connected to a fixed conductor, which is pulled out of the vacuum interrupter 1 and electrically connected to the bushing conductors 12B and 12C on the fixed conductor side.
  • the movable electrode 5 is connected to a movable conductor, which is pulled out of the vacuum interrupter 1 and electrically connected to the bushing conductor 12A on the movable conductor side.
  • a high voltage of, for example, 25 kv to 30 kv is applied to the opening/closing part composed of the fixed electrode and the movable electrode.
  • the operating device 40 required to move the movable electrode and operate the opening/closing portion composed of the fixed electrode and the movable electrode is at ground potential, and the electric circuit constituting the operating device 40 is a low-voltage circuit of DC 100 V, for example.
  • an insulating operating rod 30 is provided, one of which is connected to the movable conductor and the other of which is connected to the operating device 40 .
  • the movable electrode is moved while maintaining the vacuum state of the vacuum interrupter 1, thereby operating the opening/closing portion composed of the fixed electrode and the movable electrode.
  • the operating device 40 generates a driving force by, for example, combining a permanent magnet and an electromagnet with a spring and switching ON/OFF the energization of a coil that constitutes the electromagnet.
  • the main circuit section 20 composed of the vacuum interrupter 1, the bushing conductors 12B and 12C on the fixed conductor side, the bushing conductor 12A on the movable conductor side, and the like, and the air insulation space 31 around the insulation operating rod 30 are made of epoxy resin.
  • a solid insulating member 15 made of a thermosetting resin such as a thermosetting resin is integrally molded so as to cover the outer peripheral portion, forming a molded insulator 50 indicated by a dashed line.
  • an insulated operating rod is used to connect the high-potential main circuit section and the ground-potential operating device. Therefore, in order to ensure sufficient insulation performance, it is necessary to increase the dimension of the insulation operating rod to ensure the insulation distance. Therefore, there is a problem that the size cannot be reduced. In addition, for miniaturization, it is possible to shorten the dimensions of the insulating operation rod and secure the insulation performance by using a medium with high insulation strength such as insulating gas or vacuum in the space of the insulating operation rod part. However, there was a problem that it was not sufficient and was expensive.
  • the air insulation space 31 is not required and the size is reduced by directly connecting the operating device to the main circuit section and molding it with resin. This embodiment will be described in detail below.
  • FIG. 1 is a cross-sectional view taken along a plane including the central axis of the vacuum circuit breaker in this embodiment.
  • the same components as those in FIG. 4 are denoted by the same reference numerals, and descriptions thereof are omitted. 1 differs from FIG. 4 in that the operating device 40 and the main circuit section 20 are directly connected to each other and the entirety is integrated with the resin-made solid insulating member 15 without the insulating operating rod 30 and the air insulating space 31. It is a point that it is mold-molded.
  • the vacuum circuit breaker 80 in this embodiment connects the movable conductor pulled out of the vacuum interrupter 1 of the main circuit section 20 to the operating device 40, and connects the operating device 40 to the main circuit section 20. Concatenate directly. This eliminates the need for an insulation distance between the main circuit section and the operating section, and thus the insulating operating rod 30 and the air insulating space 31 are not required, so that miniaturization is possible.
  • the operating device 40 By directly connecting the operating device 40 to the main circuit section 20, the operating device 40 also becomes the same charging section as the main circuit section 20. FIG. Therefore, since it is not a conducting path, current does not flow, but insulation is required. Therefore, the operation device 40 and the main circuit section 20 as a whole are molded to form a mold insulator 51, and the surface of the mold insulator 51 is grounded.
  • the operation unit since the operation unit will be operated by the low voltage circuit, it is necessary to avoid contact with the high voltage part of the main circuit. For that reason, the driving circuit, auxiliary circuit, and other parts are separated from the operating device, and only the mechanical part is molded.
  • FIG. 2 is a schematic diagram of the functional configuration of the vacuum circuit breaker in this embodiment.
  • the components in the operating device are a mechanical part 42, a drive source 43 such as an electromagnet consisting of a drive coil, an auxiliary circuit 44 such as a proximity sensor or a magnetic sensor for monitoring the state of the contact of the switching part, and an operating device.
  • a drive source 43 such as an electromagnet consisting of a drive coil
  • an auxiliary circuit 44 such as a proximity sensor or a magnetic sensor for monitoring the state of the contact of the switching part
  • an operating device is arranged outside the solid insulating member 15 .
  • the mechanical part 42 is arranged inside the case 41 and used as a mold for molding the case 41, and the periphery thereof is molded. Also, the case 41 and the mechanical portion 42 are fixed by the main circuit portion 20 . As the fixing structure, a screw or pin structure may be used.
  • FIG. 3 is another functional configuration schematic diagram of the vacuum circuit breaker in this embodiment.
  • the same components as in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. 3 differs from FIG. 2 in that it has an electromagnet 46 as a driving source 43 and has a plunger 47 , a contact pressure spring 48 for connecting parts, and a breaking spring 49 as a mechanical part 42 .
  • the electric circuit part of the controller cannot be physically connected to the mechanical part. Therefore, by using a non-contact type electromagnet 46 as the driving source 43 and driving the plunger 47 as the mechanical section 42 in a non-contact manner, the opening/closing section of the main circuit section can be operated.
  • non-contact type auxiliary circuits 44 such as a proximity sensor and a magnetic sensor, and other parts 45 such as an operation counter and a thermometer, the state inside the mold can be detected.
  • the case 41 is made of cast aluminum, for example, and the heat is dissipated in the case 41 to suppress the heat generation of the conductor.
  • Copel braided wire, multi-contact, or the like is used as a method of connecting the movable conductor pulled out of the vacuum interrupter 1 of the main circuit section 20 and the bushing conductor 12A.
  • the molds for the main circuit section and the mechanical section may be divided, and a part of the mold may be removed for maintenance.
  • a split type it is necessary to configure so that dielectric breakdown does not occur at the joints of the resin.
  • a structure in which the distance of the joint portion is increased or a structure in which the joint portion is fitted through an elastic body may be adopted so that the surface pressure at the joint of the resin is increased.
  • a sealing material such as insulating grease or an O-ring may be used at the junction of the joints.
  • the curing temperature at the time of casting the mold is, for example, 140°C
  • the mechanical part of the operating device may be damaged at that curing temperature. This can be dealt with by selecting parts that match the temperature specifications.
  • the vacuum circuit breaker of this embodiment does not require the insulated operating rod 30, so it is possible to reduce the weight of the circuit breaker. Since the sound is confined by the mold, noise reduction is possible.
  • the operating device is directly connected to the main circuit section and molded with resin, thereby eliminating the need for an insulated operating rod and providing a compact vacuum circuit breaker. .
  • the present invention can reduce the amount of materials used by achieving miniaturization. Therefore, it is possible to reduce carbon emissions, prevent global warming, and contribute especially to item 7 energy for realizing SDGs (Sustainable Development Goals).
  • the present invention is not limited to the above-described examples, and includes various modifications.
  • a vacuum circuit breaker for railway vehicles was explained as an example, but it is also applicable to switches that handle high voltages, including disconnectors, load switches, and the like.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • Vacuum interrupter 3: Fixed electrode, 5: Movable electrode, 6: Arc shield, 10A, 10B, 10C: Electrical connection part, 12A, 12B, 12C: Bushing conductor, 15: Solid insulating member, 20: Main circuit part , 30: insulated operating rod, 31: air-insulated space, 40: operator, 41: case, 42: mechanical part, 43: drive source, 44: auxiliary circuit, 45: other parts, 46: electromagnet, 47: plunger , 48: connecting part contact pressure spring, 49: breaking spring, 50, 51: molded insulator, 70, 80: vacuum circuit breaker, 71: base

Abstract

The purpose of the present invention is to provide a switch the size of which can be reduced. In order to achieve the purpose, this switch is configured to have: a main circuit section which is formed from a vacuum interrupter equipped with an opening/closing part formed from a stationary electrode and a movable electrode to be separated from or brought into contact with the stationary electrode, a first bushing conductor electrically connected to a stationary conductor connected to the stationary electrode and pulled out to the outside of the vacuum interrupter, and a second bushing conductor electrically connected to a movable conductor connected to the movable electrode and pulled out to the outside of the vacuum interrupter; and an operation unit which is directly connected to the movable conductor pulled out to the outside of the vacuum interrupter and carries out operation of the opening/closing part by moving the movable electrode, wherein the operation unit is integrally molded with the main circuit section by using a solid insulating member.

Description

開閉器switch
 本発明は、樹脂によりモールド成型された高電圧用開閉器に関する。 The present invention relates to a high-voltage switch that is molded with resin.
 高電圧を扱う、真空遮断器、断路器、負荷開閉器等を含む開閉器は、機器周辺の高電界から周囲を保護し絶縁性能を高めるために樹脂によるモールド成型を行うものがある。 Switches that handle high voltage, including vacuum circuit breakers, disconnectors, load switches, etc., are molded with resin to protect the surroundings from the high electric field around the equipment and improve insulation performance.
 本技術分野における先行技術文献として、例えば特許文献1がある。特許文献1では、固定電極と該固定電極に対して接触または解離する可動電極とを備える真空インタラプタと、可動電極に接続された可動導体と同軸に配置された絶縁操作ロッドと、真空インタラプタと絶縁操作ロッドの周囲を覆う固体絶縁物でモールドした真空開閉装置が開示されている。 As a prior art document in this technical field, there is Patent Document 1, for example. In Patent Document 1, a vacuum interrupter comprising a fixed electrode and a movable electrode that contacts or dissociates with the fixed electrode, an insulated operating rod arranged coaxially with a movable conductor connected to the movable electrode, and a vacuum interrupter that is insulated A vacuum switchgear is disclosed which is molded with solid insulation surrounding the operating rod.
特開2019-32994号公報JP 2019-32994 A
 特許文献1では、高電位の開閉器部分である主回路部分と絶縁操作ロッドに接続される接地電位の操作器を連結するために、絶縁操作ロッドを使用している。そして、十分な絶縁性能を確保するためには、絶縁操作ロッドの寸法を長くして絶縁距離を確保する必要がある。そのため、小型化できないという課題があった。また、小型化のために、絶縁操作ロッド部分の空間を絶縁ガスや真空にするなど絶縁強度の高い媒質にすることで絶縁操作ロッドの寸法を短くして絶縁性能を確保することも可能であるが、十分ではなく高価となるという課題があった。 In Patent Document 1, an insulating operating rod is used to connect a main circuit portion, which is a high-potential switch portion, and a ground-potential operating device connected to the insulating operating rod. In order to ensure sufficient insulation performance, it is necessary to increase the dimension of the insulation operating rod to ensure the insulation distance. Therefore, there is a problem that the size cannot be reduced. In addition, for miniaturization, it is possible to secure insulation performance by shortening the dimensions of the insulating operating rod by using a medium with high insulating strength such as insulating gas or vacuum in the space of the insulating operating rod portion. However, there was a problem that it was not sufficient and was expensive.
 本発明は、上記課題に鑑み、小型化が可能な開閉器を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a switch that can be miniaturized.
 本発明は、その一例を挙げるならば、開閉器であって、固定電極と該固定電極に対して接触または解離する可動電極とで構成される開閉部を備える真空インタラプタと、固定電極に接続され真空インタラプタの外に引き出された固定導体と電気的に接続されている第1のブッシング導体と、可動電極に接続され真空インタラプタの外に引き出された可動導体と電気的に接続されている第2のブッシング導体とから構成される主回路部と、真空インタラプタの外に引き出された可動導体と直接連結され可動電極を可動させて開閉部の操作を行う操作器を有し、操作器と主回路部が一体となって固体絶縁部材でモールド成型されているように構成する。 An example of the present invention is a switch, which is a vacuum interrupter having an opening/closing portion composed of a fixed electrode and a movable electrode that contacts or dissociates with the fixed electrode, and a vacuum interrupter connected to the fixed electrode. A first bushing conductor electrically connected to a fixed conductor drawn out of the vacuum interrupter, and a second bushing conductor connected to the movable electrode and electrically connected to the movable conductor drawn out of the vacuum interrupter. and a main circuit section composed of a bushing conductor and an operating device that is directly connected to a movable conductor pulled out of the vacuum interrupter and moves the movable electrode to operate the opening and closing section, and the operating device and the main circuit The parts are integrally molded with a solid insulating member.
 本発明によれば、小型化が可能な開閉器を提供することができる。 According to the present invention, it is possible to provide a switch that can be miniaturized.
実施例における真空遮断器の中心軸を含む平面で切断した断面図である。FIG. 3 is a cross-sectional view taken along a plane including the central axis of the vacuum circuit breaker in the example. 実施例における真空遮断器の機能構成概略図である。FIG. 3 is a schematic functional configuration diagram of a vacuum circuit breaker in an embodiment; 実施例における真空遮断器の他の機能構成概略図である。It is another functional structure schematic diagram of the vacuum circuit breaker in an Example. 従来の真空遮断器の中心軸を含む平面で切断した断面図である。FIG. 3 is a cross-sectional view of a conventional vacuum circuit breaker cut along a plane including the central axis;
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例では、開閉器の1例として鉄道車両用の真空遮断器を用いて説明する。図4は、本発明の前提となる従来の真空遮断器の中心軸を含む平面で切断した断面図である。 In this embodiment, a vacuum circuit breaker for railway vehicles will be used as an example of the switch. FIG. 4 is a cross-sectional view cut along a plane including the central axis of a conventional vacuum circuit breaker, which is the premise of the present invention.
 例えば、鉄道車両は複数の車両で編成されており、これらの各車両の屋根上には高圧引き通しケーブルが配置され、この高圧引き通しケーブルに接続されたパンタグラフを経由して、鉄道車両は電線から電力を受電する。また、各車両の高圧引き通しケーブルは、直線ジョイントで車両間を接続され、T分岐ジョイントで車両床下方向に分岐されている。そして、T分岐ジョイントと直線ジョイントは一体の開閉器を構成する。この、開閉器は鉄道車両の固定部に装着して用いられる。 For example, a railway car is composed of a plurality of cars, and a high-voltage lead-through cable is arranged on the roof of each car. receive power from Further, the high-voltage lead-through cables of the vehicles are connected between the vehicles by straight joints, and are branched in the vehicle floor direction by T-branch joints. The T-branch joint and the straight joint form an integrated switch. This switch is used by being attached to a fixed portion of a railway vehicle.
 図4において、真空遮断器70は、電気接続部10A、10B、10Cを有し、電気接続部10Bと10Cは真空遮断器70の内部で電気的に接続されており、電気接続部10Bと10CがT分岐ジョイントを構成する。また、電気接続部10Aと、10B及び10Cとの間には、真空遮断器70の内部で、後述する固定電極と可動電極で構成される開閉部を有しており、電気接続部10Aと、10B及び10Cで直線ジョイントを構成する。また、図示はしていないが、真空遮断器70は、T型ケーブルヘッドを電気接続部10A、10B、10Cに接続した状態で使用する。また、真空遮断器70はステー を介してベース71に固定した状態で、鉄道車両に装着される。 In FIG. 4, the vacuum circuit breaker 70 has electrical connections 10A, 10B, and 10C, the electrical connections 10B and 10C are electrically connected inside the vacuum circuit breaker 70, and the electrical connections 10B and 10C constitute the T-branch joint. In addition, between the electrical connection portion 10A and 10B and 10C, there is an opening/closing portion composed of a fixed electrode and a movable electrode, which will be described later, inside the vacuum circuit breaker 70. The electrical connection portion 10A, 10B and 10C constitute a linear joint. Although not shown, the vacuum circuit breaker 70 is used with the T-shaped cable head connected to the electrical connections 10A, 10B, and 10C. Also, the vacuum circuit breaker 70 is attached to the railcar while being fixed to the base 71 via a stay.
 また、真空遮断器70は、固定電極3と、固定電極3に対して接触または解離する可動電極5と、固定電極3及び可動電極5の周囲を覆うアークシールド6等から構成される真空インタラプタ1を備えている。真空インタラプタ1の外側容器は、内部を真空状態に維持している。真空遮断器70は、アークが真空中に急速に拡散するのを利用して真空容器内でアークを消弧する。この構成は、真空開閉器でも用いられ、高圧から特高で使用される。また、耐久性やメンテナンス性から高圧配電盤などでも用いられる。 The vacuum interrupter 70 is composed of the fixed electrode 3, the movable electrode 5 that contacts or separates from the fixed electrode 3, the arc shield 6 that covers the fixed electrode 3 and the movable electrode 5, and the like. It has The outer container of the vacuum interrupter 1 maintains the interior in a vacuum state. The vacuum circuit breaker 70 extinguishes the arc within the vacuum vessel by utilizing the rapid diffusion of the arc into the vacuum. This configuration is also used in vacuum switches and is used from high pressure to extra high pressure. It is also used in high-voltage switchboards due to its durability and ease of maintenance.
 固定電極3は、固定導体に接続されており、固定導体は真空インタラプタ1の外に引き出され、固定導体側のブッシング導体12B、12Cと電気的に接続されている。可動電極5は、可動導体に接続されており、可動導体は真空インタラプタ1の外に引き出され、可動導体側のブッシング導体12Aと電気的に接続されている。 The fixed electrode 3 is connected to a fixed conductor, which is pulled out of the vacuum interrupter 1 and electrically connected to the bushing conductors 12B and 12C on the fixed conductor side. The movable electrode 5 is connected to a movable conductor, which is pulled out of the vacuum interrupter 1 and electrically connected to the bushing conductor 12A on the movable conductor side.
 ここで、固定電極と可動電極で構成される開閉部には、例えば25kvから30KVの高電圧がかかる。一方、可動電極を可動させ固定電極と可動電極で構成される開閉部の操作に必要な操作器40は接地電位であり、操作器40を構成する電気回路は例えば直流100Vの低圧回路である。 Here, a high voltage of, for example, 25 kv to 30 kv is applied to the opening/closing part composed of the fixed electrode and the movable electrode. On the other hand, the operating device 40 required to move the movable electrode and operate the opening/closing portion composed of the fixed electrode and the movable electrode is at ground potential, and the electric circuit constituting the operating device 40 is a low-voltage circuit of DC 100 V, for example.
 そこで、高電位の開閉部と接地電位の操作器との絶縁を図るために、一方を可動導体と連結され、他方を操作器40と連結された絶縁操作ロッド30を設けている。操作器40により、絶縁操作ロッド30を操作することで、真空インタラプタ1の真空状態を維持したまま可動電極を可動させ固定電極と可動電極で構成される開閉部の操作を行う。操作器40は、例えば、バネに永久磁石と電磁石を組み合わせ、電磁石を構成するコイルへの通電をON/OFF切り換えることで駆動力を発生させる。 Therefore, in order to insulate the high-potential switching portion from the ground potential operating device, an insulating operating rod 30 is provided, one of which is connected to the movable conductor and the other of which is connected to the operating device 40 . By operating the insulated operating rod 30 with the operating device 40, the movable electrode is moved while maintaining the vacuum state of the vacuum interrupter 1, thereby operating the opening/closing portion composed of the fixed electrode and the movable electrode. The operating device 40 generates a driving force by, for example, combining a permanent magnet and an electromagnet with a spring and switching ON/OFF the energization of a coil that constitutes the electromagnet.
 なお、真空インタラプタ1や固定導体側のブッシング導体12B、12C、可動導体側のブッシング導体12Aなどから構成される主回路部20と、絶縁操作ロッド30の周辺の気中絶縁空間31は、エポキシ樹脂などの熱硬化性樹脂製の固体絶縁部材15で外周部を覆うように一体化成形され、1点鎖線で示すモールド絶縁体50が形成される。 The main circuit section 20 composed of the vacuum interrupter 1, the bushing conductors 12B and 12C on the fixed conductor side, the bushing conductor 12A on the movable conductor side, and the like, and the air insulation space 31 around the insulation operating rod 30 are made of epoxy resin. A solid insulating member 15 made of a thermosetting resin such as a thermosetting resin is integrally molded so as to cover the outer peripheral portion, forming a molded insulator 50 indicated by a dashed line.
 このように、従来は、高電位の主回路部と接地電位の操作器を連結するために、絶縁操作ロッドを使用している。そのため、十分な絶縁性能を確保するためには、絶縁操作ロッドの寸法を長くして絶縁距離を確保する必要がある。そのため、小型化できないという課題があった。また、小型化のために、絶縁操作ロッド部分の空間を絶縁ガスや真空にするなど絶縁強度の高い媒質にすることで絶縁操作ロッドの寸法を短くして絶縁性能を確保することも可能であるが、十分ではなく高価となるという課題があった。 In this way, conventionally, an insulated operating rod is used to connect the high-potential main circuit section and the ground-potential operating device. Therefore, in order to ensure sufficient insulation performance, it is necessary to increase the dimension of the insulation operating rod to ensure the insulation distance. Therefore, there is a problem that the size cannot be reduced. In addition, for miniaturization, it is possible to shorten the dimensions of the insulating operation rod and secure the insulation performance by using a medium with high insulation strength such as insulating gas or vacuum in the space of the insulating operation rod part. However, there was a problem that it was not sufficient and was expensive.
 そこで、本実施例では、操作器を主回路部と直接連結して樹脂によるモールド成型することで、気中絶縁空間31を不要にし、小型化する。以下、本実施例について詳細に説明する。 Therefore, in the present embodiment, the air insulation space 31 is not required and the size is reduced by directly connecting the operating device to the main circuit section and molding it with resin. This embodiment will be described in detail below.
 図1は、本実施例における真空遮断器の中心軸を含む平面で切断した断面図である。図1において、図4と同じ構成は同じ符号を付し、その説明は省略する。図1において、図4と異なる点は、絶縁操作ロッド30および気中絶縁空間31がなく、操作器40と主回路部20が直接連結されて樹脂製の固体絶縁部材15で全体が一体となってモールド成型されている点である。 FIG. 1 is a cross-sectional view taken along a plane including the central axis of the vacuum circuit breaker in this embodiment. In FIG. 1, the same components as those in FIG. 4 are denoted by the same reference numerals, and descriptions thereof are omitted. 1 differs from FIG. 4 in that the operating device 40 and the main circuit section 20 are directly connected to each other and the entirety is integrated with the resin-made solid insulating member 15 without the insulating operating rod 30 and the air insulating space 31. It is a point that it is mold-molded.
 図1に示すように、本実施例における真空遮断器80は、主回路部20の真空インタラプタ1の外に引き出された可動導体と操作器40を接続し、操作器40を主回路部20と直接連結する。これにより、主回路部と操作部で絶縁距離が不要となり絶縁操作ロッド30および気中絶縁空間31が不要になるため、小型化が可能となる。なお、操作器40を主回路部20と直接連結することで、操作器40も主回路部20と同じ課電部になる。よって、通電経路ではないので電流は流れないが絶縁が必要となる。そのため、操作器40と主回路部20の全体をモールド成型しモールド絶縁体51として形成し、モールド絶縁体51を表面接地する。 As shown in FIG. 1, the vacuum circuit breaker 80 in this embodiment connects the movable conductor pulled out of the vacuum interrupter 1 of the main circuit section 20 to the operating device 40, and connects the operating device 40 to the main circuit section 20. Concatenate directly. This eliminates the need for an insulation distance between the main circuit section and the operating section, and thus the insulating operating rod 30 and the air insulating space 31 are not required, so that miniaturization is possible. By directly connecting the operating device 40 to the main circuit section 20, the operating device 40 also becomes the same charging section as the main circuit section 20. FIG. Therefore, since it is not a conducting path, current does not flow, but insulation is required. Therefore, the operation device 40 and the main circuit section 20 as a whole are molded to form a mold insulator 51, and the surface of the mold insulator 51 is grounded.
 また、操作器は低圧回路で動かすことになるので、主回路部の高電圧部との混触を避ける必要がある。そのために、操作器から駆動回路や補助回路、その他部品を切り離してメカ部分だけモールドする。 In addition, since the operation unit will be operated by the low voltage circuit, it is necessary to avoid contact with the high voltage part of the main circuit. For that reason, the driving circuit, auxiliary circuit, and other parts are separated from the operating device, and only the mechanical part is molded.
 図2は、本実施例における真空遮断器の機能構成概略図である。図2において、従来、操作器内の構成部品である、メカ部42、駆動コイルからなる電磁石等の駆動源43、開閉部接点の状態を監視する近接センサや磁気センサ等の補助回路44、動作カウンタや温度計等のその他部品45のうち、メカ部42以外は固体絶縁部材15の外に配置する。これにより、操作器を低圧回路で動作させても、電気回路部分はモールドの外なので主回路部の高電圧部との混触を避けることができる。なお、図2において、メカ部42はケース41内に配置し、ケース41をモールド成型する際の型として使用し、その周囲をモールドする。また、ケース41、メカ部42は主回路部20で固定する。その固定構造としては、ねじ止めやピン構造とすればよい。 FIG. 2 is a schematic diagram of the functional configuration of the vacuum circuit breaker in this embodiment. In FIG. 2, conventionally, the components in the operating device are a mechanical part 42, a drive source 43 such as an electromagnet consisting of a drive coil, an auxiliary circuit 44 such as a proximity sensor or a magnetic sensor for monitoring the state of the contact of the switching part, and an operating device. Among other parts 45 such as a counter and a thermometer, parts other than the mechanical part 42 are arranged outside the solid insulating member 15 . As a result, even if the operating device is operated on a low-voltage circuit, the electrical circuit portion is outside the mold, so it is possible to avoid contact with the high-voltage portion of the main circuit portion. In FIG. 2, the mechanical part 42 is arranged inside the case 41 and used as a mold for molding the case 41, and the periphery thereof is molded. Also, the case 41 and the mechanical portion 42 are fixed by the main circuit portion 20 . As the fixing structure, a screw or pin structure may be used.
 図3は、本実施例における真空遮断器の他の機能構成概略図である。図3において、図2と同じ構成は同じ符号を付し、その説明は省略する。図3において、図2と異なる点は、駆動源43として電磁石46を有し、メカ部42として、プランジャ47と連結部品接圧ばね48と遮断ばね49を有している点である。 FIG. 3 is another functional configuration schematic diagram of the vacuum circuit breaker in this embodiment. In FIG. 3, the same components as in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. 3 differs from FIG. 2 in that it has an electromagnet 46 as a driving source 43 and has a plunger 47 , a contact pressure spring 48 for connecting parts, and a breaking spring 49 as a mechanical part 42 .
 主回路部の高電圧部との絶縁のために操作器内のメカ部以外はモールドの外に置く場合、操作器の電気回路部分はメカ部と物理的に接続できない。そのために、駆動源43として非接触タイプの電磁石46を使用し、メカ部42としてのプランジャ47を非接触で駆動することで、主回路部の開閉部の操作を行うことができる。また、近接センサや磁気センサ等の補助回路44や、動作カウンタや温度計等のその他部品45も非接触タイプのものを採用することで、モールド内の状態を検出することができる。  In order to insulate the main circuit from the high voltage part, if the mechanical part inside the controller is placed outside the mold, the electric circuit part of the controller cannot be physically connected to the mechanical part. Therefore, by using a non-contact type electromagnet 46 as the driving source 43 and driving the plunger 47 as the mechanical section 42 in a non-contact manner, the opening/closing section of the main circuit section can be operated. In addition, by adopting non-contact type auxiliary circuits 44 such as a proximity sensor and a magnetic sensor, and other parts 45 such as an operation counter and a thermometer, the state inside the mold can be detected.
 なお、本実施例では主回路部とメカ部の全体をモールドで覆うため、通電時の発熱の影響が懸念される。そのため、ケース41を例えばアルミ鋳物として、ケース41で放熱させて導体部の発熱を抑える。 In addition, in this embodiment, since the main circuit part and the mechanical part are entirely covered with a mold, there is concern about the influence of heat generation when energized. For this reason, the case 41 is made of cast aluminum, for example, and the heat is dissipated in the case 41 to suppress the heat generation of the conductor.
 また、主回路部20の真空インタラプタ1の外に引き出された可動導体とブッシング導体12Aとの接続方法としては、コーペル、編組線、マルチコンタクト等で接続する。 Also, as a method of connecting the movable conductor pulled out of the vacuum interrupter 1 of the main circuit section 20 and the bushing conductor 12A, Copel, braided wire, multi-contact, or the like is used.
 また、主回路部とメカ部の全体をモールドで覆うため、モールド内のメカ部のメンテナンスが困難となる。これに対しては、軸受けに低摩擦の材料を使用しグリスレスとして、調整レスとすればよい。または、主回路部とメカ部のモールドを分割形式とし、一部のモールドを取り外してメンテナンスを行ってもよい。なお、分割形式とする際には、樹脂のつなぎ目で絶縁破壊が起きないように構成することが必要である。そのために、樹脂のつなぎ目での面圧が高くなるように、つなぎ目部分の距離を長くする構造、あるいは、つなぎ目部分を弾性体を介した嵌め合い構造にすればよい。さらには、つなぎ目の接合部に絶縁性のグリースやOリングなどの封止材を用いてもよい。 Also, since the entire main circuit and mechanical parts are covered with a mold, maintenance of the mechanical parts inside the mold is difficult. In order to solve this problem, a low-friction material is used for the bearings, which eliminates the need for grease and adjustment. Alternatively, the molds for the main circuit section and the mechanical section may be divided, and a part of the mold may be removed for maintenance. When using a split type, it is necessary to configure so that dielectric breakdown does not occur at the joints of the resin. For this purpose, a structure in which the distance of the joint portion is increased or a structure in which the joint portion is fitted through an elastic body may be adopted so that the surface pressure at the joint of the resin is increased. Furthermore, a sealing material such as insulating grease or an O-ring may be used at the junction of the joints.
 また、モールド注型時の硬化温度は例えば140℃になるため、その硬化温度で操作器のメカ部が壊れることが懸念される。これに対しては、温度仕様を合わせた部品を選定することで対応可能である。 In addition, since the curing temperature at the time of casting the mold is, for example, 140°C, there is concern that the mechanical part of the operating device may be damaged at that curing temperature. This can be dealt with by selecting parts that match the temperature specifications.
 さらに、モールド注型する前の全体の封止構造としては、メカ部をケースで覆い、ケースは主回路部の導体等との合わせ面でシールすることで、対応可能である。 Furthermore, as the overall sealing structure before molding, it is possible to cover the mechanical part with a case and seal the case with the mating surface of the conductor of the main circuit part.
 また、本実施例における真空遮断器は、絶縁操作ロッド30が不要であるので軽量化か可能であり、さらに、主回路部とメカ部の全体をモールドで覆うため、開閉部の動作時に発生する音がモールドで閉じ込められるので騒音低下か可能となる。 In addition, the vacuum circuit breaker of this embodiment does not require the insulated operating rod 30, so it is possible to reduce the weight of the circuit breaker. Since the sound is confined by the mold, noise reduction is possible.
 以上説明したように、本実施例によれば、操作器を主回路部と直接連結して樹脂によるモールド成型することで、絶縁操作ロッドを不要にし、小型化が可能な真空遮断器を提供できる。 As described above, according to the present embodiment, the operating device is directly connected to the main circuit section and molded with resin, thereby eliminating the need for an insulated operating rod and providing a compact vacuum circuit breaker. .
 なお、実施例について説明したが、本発明は、小型化を図ることで、使用材料の量を抑えることができる。そのため、炭素排出量を減らし、地球温暖化を防止することができ、SDGs(Sustainable Development Goals)を実現するための特に項目7のエネルギーに貢献する。 Although the embodiments have been described, the present invention can reduce the amount of materials used by achieving miniaturization. Therefore, it is possible to reduce carbon emissions, prevent global warming, and contribute especially to item 7 energy for realizing SDGs (Sustainable Development Goals).
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、鉄道車両用の真空遮断器を例に説明したが、高電圧を扱う、断路器、負荷開閉器等を含む開閉器にも適用可能である。また、上記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, the present invention is not limited to the above-described examples, and includes various modifications. For example, in the above-described embodiments, a vacuum circuit breaker for railway vehicles was explained as an example, but it is also applicable to switches that handle high voltages, including disconnectors, load switches, and the like. Moreover, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 1:真空インタラプタ、3:固定電極、5:可動電極、6:アークシールド、10A、10B、10C:電気接続部、12A、12B、12C:ブッシング導体、15:固体絶縁部材、20:主回路部、30:絶縁操作ロッド、31:気中絶縁空間、40:操作器、41:ケース、42:メカ部、43:駆動源、44:補助回路、45:その他部品、46:電磁石、47:プランジャ、48:連結部品接圧ばね、49:遮断ばね、50、51:モールド絶縁体、70、80:真空遮断器、71:ベース 1: Vacuum interrupter, 3: Fixed electrode, 5: Movable electrode, 6: Arc shield, 10A, 10B, 10C: Electrical connection part, 12A, 12B, 12C: Bushing conductor, 15: Solid insulating member, 20: Main circuit part , 30: insulated operating rod, 31: air-insulated space, 40: operator, 41: case, 42: mechanical part, 43: drive source, 44: auxiliary circuit, 45: other parts, 46: electromagnet, 47: plunger , 48: connecting part contact pressure spring, 49: breaking spring, 50, 51: molded insulator, 70, 80: vacuum circuit breaker, 71: base

Claims (10)

  1.  固定電極と該固定電極に対して接触または解離する可動電極とで構成される開閉部を備える真空インタラプタと、前記固定電極に接続され前記真空インタラプタの外に引き出された固定導体と電気的に接続されている第1のブッシング導体と、前記可動電極に接続され前記真空インタラプタの外に引き出された可動導体と電気的に接続されている第2のブッシング導体とから構成される主回路部と、
     前記真空インタラプタの外に引き出された前記可動導体と直接連結され前記可動電極を可動させて前記開閉部の操作を行う操作器を有し、
     前記操作器と前記主回路部が一体となって固体絶縁部材でモールド成型されていることを特徴とする開閉器。
    A vacuum interrupter having an opening/closing portion composed of a fixed electrode and a movable electrode that contacts or disengages from the fixed electrode, and a fixed conductor that is connected to the fixed electrode and drawn out of the vacuum interrupter is electrically connected. and a second bushing conductor connected to the movable electrode and electrically connected to the movable conductor drawn out of the vacuum interrupter;
    an operating device that is directly connected to the movable conductor drawn out of the vacuum interrupter and moves the movable electrode to operate the opening/closing unit;
    A switch, wherein the operating device and the main circuit unit are integrally molded with a solid insulating member.
  2.  請求項1に記載の開閉器であって、
     前記操作器のメカ部と前記主回路部が前記固体絶縁部材でモールド成型され、
     前記メカ部を駆動する駆動回路は、前記モールド成型の外に配置されることを特徴とする開閉器。
    The switch according to claim 1,
    The mechanical part and the main circuit part of the operating device are molded with the solid insulating member,
    A switch, wherein a drive circuit for driving the mechanical part is arranged outside the molding.
  3.  請求項2に記載の開閉器であって、
     前記開閉部の状態を監視する補助回路は、前記モールド成型の外に配置されることを特徴とする開閉器。
    The switch according to claim 2,
    A switch, wherein an auxiliary circuit for monitoring the state of the switch is arranged outside the molding.
  4.  請求項2に記載の開閉器であって、
     前記操作器のメカ部以外のその他部品は、前記モールド成型の外に配置されることを特徴とする開閉器。
    The switch according to claim 2,
    A switch, wherein parts other than the mechanical part of the operating device are arranged outside the molding.
  5.  請求項4に記載の開閉器であって、
     前記その他部品は、動作カウンタまたは温度計であることを特徴とする開閉器。
    The switch according to claim 4,
    A switch, wherein the other part is an operation counter or a thermometer.
  6.  請求項2に記載の開閉器であって、
     前記駆動回路は、非接触で前記メカ部を駆動することを特徴とする開閉器。
    The switch according to claim 2,
    The switch, wherein the drive circuit drives the mechanical portion in a non-contact manner.
  7.  請求項1に記載の開閉器であって、
     前記モールド成型を表面接地することを特徴とする開閉器。
    The switch according to claim 1,
    A switch characterized in that the molding is surface-grounded.
  8.  請求項2に記載の開閉器であって、
     前記メカ部はケース内に配置され、該ケースは前記主回路部との合わせ面でシールされ、前記主回路部と前記ケースが一体となってモールド成型されることを特徴とする開閉器。
    The switch according to claim 2,
    A switch, wherein the mechanical part is arranged in a case, the case is sealed at a mating surface with the main circuit part, and the main circuit part and the case are integrally molded.
  9.  請求項8に記載の開閉器であって、
     前記ケースはアルミであって、通電時の発熱を放熱させることを特徴とする開閉器。
    The switch according to claim 8,
    The switch is characterized in that the case is made of aluminum and dissipates heat generated when energized.
  10.  請求項1に記載の開閉器であって、
     前記主回路部の前記真空インタラプタの外に引き出された前記可動導体と前記第2のブッシング導体とは、コーペル、編組線、またはマルチコンタクトの何れかで接続されていることを特徴とする開閉器。
    The switch according to claim 1,
    A switch, wherein the movable conductor drawn out of the vacuum interrupter of the main circuit section and the second bushing conductor are connected by any one of copel, braided wire, or multi-contact. .
PCT/JP2021/047439 2021-12-21 2021-12-21 Switch WO2023119453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047439 WO2023119453A1 (en) 2021-12-21 2021-12-21 Switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047439 WO2023119453A1 (en) 2021-12-21 2021-12-21 Switch

Publications (1)

Publication Number Publication Date
WO2023119453A1 true WO2023119453A1 (en) 2023-06-29

Family

ID=86901570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047439 WO2023119453A1 (en) 2021-12-21 2021-12-21 Switch

Country Status (1)

Country Link
WO (1) WO2023119453A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016889A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Solid insulation switch
JP2003031091A (en) * 2001-07-12 2003-01-31 Mitsubishi Electric Corp Electric power switch device
JP2018147642A (en) * 2017-03-03 2018-09-20 株式会社日立産機システム Electromagnetic operating device and electromagnetically operated switching device
JP2020087593A (en) * 2018-11-20 2020-06-04 株式会社日立産機システム Vacuum circuit breaker, and state monitoring method for vacuum circuit breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016889A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Solid insulation switch
JP2003031091A (en) * 2001-07-12 2003-01-31 Mitsubishi Electric Corp Electric power switch device
JP2018147642A (en) * 2017-03-03 2018-09-20 株式会社日立産機システム Electromagnetic operating device and electromagnetically operated switching device
JP2020087593A (en) * 2018-11-20 2020-06-04 株式会社日立産機システム Vacuum circuit breaker, and state monitoring method for vacuum circuit breaker

Similar Documents

Publication Publication Date Title
US8710388B2 (en) Switchgear and method for operating switchgear
JP5235620B2 (en) Vacuum switchgear
JP4568765B2 (en) Vacuum switchgear
JP4764906B2 (en) Vacuum switch and vacuum switch gear
TWI501492B (en) Switch unit and switch device
EP1152444B1 (en) Switch gear
US20210193416A1 (en) Switch Device
WO2023119453A1 (en) Switch
JP2009021124A (en) Vacuum circuit breaker
CN108454413B (en) Switch unit for railway vehicle
JP2018143039A (en) Heat dissipation device for solid insulation type switch unit, solid insulation type switch unit, and railway vehicle
CN109314010B (en) Switching device with double conductive shells
WO2017199465A1 (en) Branching unit and vehicular system
JP2018049764A (en) Switch unit and railway vehicle
JP2014026854A (en) Vacuum switch and switchgear using the same
US20150114933A1 (en) Pushrod assembly for a medium voltage vacuum circuit breaker
JP2011055567A (en) Switchgear and method for manufacturing the same
WO2019181271A1 (en) Solid dielectric vacuum switchgear
JP4048728B2 (en) Vacuum valve
JP6992434B2 (en) Solid insulation switchgear
WO2019171707A1 (en) Switch
JP2022006572A (en) Vacuum circuit breaker
JP2001067995A (en) Switch stored in insulating case
JP2016046235A (en) Unit switch and switchgear
JP2015035861A (en) Tank type vacuum interrupter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023568853

Country of ref document: JP