WO2019181271A1 - Solid dielectric vacuum switchgear - Google Patents

Solid dielectric vacuum switchgear Download PDF

Info

Publication number
WO2019181271A1
WO2019181271A1 PCT/JP2019/004839 JP2019004839W WO2019181271A1 WO 2019181271 A1 WO2019181271 A1 WO 2019181271A1 JP 2019004839 W JP2019004839 W JP 2019004839W WO 2019181271 A1 WO2019181271 A1 WO 2019181271A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
vacuum switch
conductor
movable
bushing
Prior art date
Application number
PCT/JP2019/004839
Other languages
French (fr)
Japanese (ja)
Inventor
中山 靖章
佐藤 隆
雅人 藪
幸三 田村
裕己 田井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201980017184.3A priority Critical patent/CN111837213B/en
Priority to EP19770731.8A priority patent/EP3770938A4/en
Publication of WO2019181271A1 publication Critical patent/WO2019181271A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings

Definitions

  • the present invention relates to a solid-insulated vacuum switch.
  • the switch mounted on the railway vehicle is placed on the roof or under the floor of the railway vehicle. And from the viewpoints of reducing air resistance, vehicle height when passing through the tunnel, restrictions on the space on the roof or under the floor, etc., the dimensions of the switch, particularly the height and width dimensions are limited.
  • the switch disclosed in Patent Document 1 surrounds a contact pressure spring mechanism, a contact pressure spring mechanism disposed close to a connection portion between a vacuum valve, a movable operation shaft, and a movable conductor of the movable operation shaft.
  • a conductive box for conducting electric field relaxation is molded with an insulator.
  • a ground layer is provided on the outer periphery of the insulating layer provided around the vacuum valve.
  • the present invention provides a solid-insulated vacuum switch that can reduce the insulation distance from peripheral devices and improve the insulation characteristics.
  • a solid-insulated vacuum switch includes a fixed electrode and a movable electrode, a fixed conductor connected to the fixed electrode, and a movable conductor connected to the movable electrode. And an insulating operating rod mechanically connected to the movable conductor, an operating device for operating the insulating operating rod, and a solid insulator covering the vacuum valve, the outer surface of the solid insulator being A grounding layer for covering is provided, and a conductive shield for covering the periphery of the connecting portion between the movable conductor and the insulating operation rod is provided in the solid insulator.
  • the insulation distance between the vacuum switch and the peripheral device can be reduced, and the insulation characteristics of the vacuum switch can be improved.
  • FIG. 1 shows a feeding circuit of the railway vehicle of Fig. 1.
  • the other example of the vehicle organization of the rail vehicle by which the vacuum switch which is Example 1 is mounted is shown.
  • Fig. 4 shows a feeding circuit of the railway vehicle of Fig. 3.
  • the external appearance of the vacuum switch which is Example 1 of this invention is shown. It is sectional drawing at the time of cut
  • the external appearance of the vacuum switch which is Example 3 is shown.
  • the external appearance of the vacuum switch which is Example 4 is shown.
  • the external appearance of the vacuum switch which is Example 5 is shown.
  • the external appearance of the vacuum switch which is Example 6 is shown.
  • a vacuum switch is a solid-insulated vacuum switch whose surface is covered with a ground potential, the longitudinal direction of which is parallel to the ground surface, for example, the longitudinal direction is the roof top surface of a railway vehicle.
  • the bushing is installed on the floor along the direction of travel of the vehicle, and the bushing that connects the cable is arranged either vertically or horizontally perpendicular to the longitudinal direction, and the operation mechanism case is substantially straight with the vacuum valve that is the opening / closing part Placed in.
  • the height dimension and width dimension in an installation state are suppressed.
  • the insulation distance between the vacuum switch and the peripheral device can be reduced. For this reason, the installation space for peripheral devices can be reduced.
  • a conductive shield is provided to cover the periphery of the insulating operation rod, and the conductive shield is disposed close to the surface ground layer.
  • FIG. 1 shows an example of a vehicle organization of a railway vehicle on which the vacuum switch according to the first embodiment is mounted.
  • the railway vehicle shown in FIG. 1 is composed of an eight-car train (1 st to 8 th car).
  • High-voltage lead-through cables RC1, RC2, RC3, RC4, and RC5 are disposed on the roofs of these vehicles.
  • the high-voltage passing cables RC3 and RC5 are connected to the pantographs PG1 and PG2, respectively.
  • the railway vehicle receives power from feeders (not shown) by pantographs PG1 and PG2, and the received power is distributed to each vehicle via high-voltage passing cables RC1 to RC5.
  • Each cable is connected between vehicles by linear joints SJ1, SJ2, SJ3, SJ4 located on the roof, and is branched on the roof by T-branch joints TJ1, TJ2.
  • T-branch joint TJ1 and the straight joint SJ2 are integrated with a vacuum switch described later, and the T-branch joint TJ2 and the straight joint SJ4 are also integrated with the vacuum switch.
  • FIG. 2 shows a feeding (saddle) circuit of the railway vehicle of FIG.
  • High pull through cable RC1 of the two eyes (2 nd car) is directly connected to the primary side of the power receiving vacuum interrupter VCB1 provided under the floor, the secondary side of the power receiving vacuum interrupter VCB1 the main transformer Tr1 Connected to the primary winding.
  • the secondary winding of the main transformer Tr1 supplies power to the motor, and the tertiary winding supplies power to auxiliary equipment such as an air conditioner and lighting.
  • a four eyes (4 th car) and the primary side of the T-branch joint TJ1, respectively high pressure pull through cable is the branch in TJ2, power receiving vacuum interrupter provided under the floor VCB2, VCB3 six eyes (6 th car)
  • the secondary sides of the power receiving vacuum circuit breakers VCB2 and VCB3 are connected to the primary windings of the main transformers Tr2 and Tr3, respectively.
  • the secondary windings of the main transformers Tr2 and Tr3 supply power to the motor, and the tertiary winding supplies power to the auxiliary machinery.
  • the power receiving vacuum circuit breakers VCB1, VCB2, and VCB3 and the main transformers Tr1, Tr2, and Tr3 are arranged under the floor, and other electrical devices (RC1 to 5, SJ1 to 4, PG1 to 2). , TJ1-2) are arranged on the roof. Since the VCBs 1 to 3 and Tr1 to 3 are arranged under the floor, the work on the roof is reduced during the installation and maintenance of electrical equipment. In addition, when an electric device is arranged on the roof, there is a large space restriction in the height direction, but as described later, according to Example 1 of the present invention, the dimension of the vacuum switch in the height direction is set. Since it can be reduced, the vacuum switch can be easily installed on the roof.
  • FIG. 3 shows another example of the vehicle organization of the railway vehicle on which the vacuum switch according to the first embodiment is mounted.
  • FIG. 4 shows a feeding circuit of the railway vehicle of FIG.
  • the high-pressure passing cables RC1 to RC5, the straight joints SJ1 to SJ4, and the T branch joints TJ1 to TJ2 are installed under the floor (Under Floor). Further, high voltage cables are drawn into the vehicle from the pantographs PG1 and PG2, and are connected to the high voltage lead-in cables RC3 and RC5, respectively. Even when the electrical device is installed under the floor as described above, the installation space is largely limited. However, according to Example 1 described later, the vacuum switch can be easily installed under the floor.
  • the vacuum switch to be operated that is, the linear joint (SJ2 or SJ4) to be disconnected is appropriately selected according to the location of the ground fault.
  • the high voltage cable including the failure portion and the healthy high voltage cable can be automatically electrically separated.
  • the vacuum switch according to the first embodiment is integrated with the T-branch joints (TJ1, TJ2) and the linear joints (SJ2, SJ4) when mounted on a railway vehicle.
  • FIG. 5 shows the appearance of a vacuum switch that is Embodiment 1 of the present invention.
  • the broken line in FIG. 5 shows an internal structure.
  • FIG. 5 is a plan view of the vacuum switch installed in a railway vehicle (the same applies to FIGS. 6 and 7). Therefore, the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle.
  • the vacuum switch according to the first embodiment is mounted on a railway vehicle in a state of being fixed to a base 81 via stays 83A to 83C.
  • FIG. 6 is a cross-sectional view of the vacuum switch of Example 1 cut along the longitudinal direction.
  • the cutting plane is a plane including the center axis of the movable electrode 5a and the air-insulating operating rod 20 described later.
  • the vacuum switch includes a fixed electrode 3a, a movable electrode 5a that contacts or dissociates with the fixed electrode 3a, and an arc shield that covers the periphery of the fixed electrode 3a and the movable electrode 5a. 6, and a vacuum valve 1 having a cylindrical ceramic insulating cylinder 7 constituting a part of an outer container supporting the arc shield 6 and a bellows 2 as main parts.
  • the outer container of the vacuum valve 1 is configured by covering both ends of the ceramic insulating cylinder 7 with end plates, and the inside is maintained in a vacuum state.
  • the fixed electrode 3a is connected to the fixed conductor 3b.
  • the fixed conductor 3b is drawn out of the vacuum valve 1 and is electrically connected to the bushing conductor 12A on the fixed conductor 3b side.
  • the movable electrode 5a is connected to the movable conductor 5b.
  • the movable conductor 5b is drawn out of the vacuum valve 1 and is electrically connected to the bushing conductors 12B and 12C on the movable conductor 5b side.
  • the vacuum valve 1, the bushing conductor 12A on the fixed conductor 3b side, and the bushing conductors 12B and 12C on the movable conductor 5b side are molded and covered with a solid insulator 21 made of epoxy resin or the like.
  • the surface of the solid insulator 21 is covered with a ground layer 23.
  • a ground potential is applied to the ground layer 23.
  • the ground layer 23 is formed by metal spraying or application of a conductive paint.
  • the tip of each bushing conductor on the outside air side is not molded by the solid insulator 21, and the conductor is exposed.
  • These tip portions constitute connection portions 10A, 10B, and 10C with a T-type cable head (FIG. 7) described later.
  • a bellows 2 is disposed between the movable conductor 5b and the movable side end plate. By this bellows, the movable conductor 5b becomes movable while the vacuum state of the vacuum valve 1 is maintained.
  • An electromagnetic operating device 30 for operating the air insulating operating rod 20 is provided on the movable side of the vacuum valve 1.
  • the movable operating shaft of the electromagnetic operating device 30 is coaxially connected to the air-insulated operating rod 20 via the operating link portion 31.
  • the end of the air-insulating operating rod 20 connected to the electromagnetic operating unit 30, the operating link unit 31, and the electromagnetic operating unit 30 is stored in a mechanism case 82 that is coaxially in contact with the substantially cylindrical mold unit made of the solid insulator 21. Is done. Therefore, in the vacuum switch, the electromagnetic operating device 30 is disposed coaxially with the air-insulating operating rod 20.
  • the electromagnetic operating device 30 for example, a permanent magnet and an electromagnet are combined with a spring, and a driving force is generated by turning on / off a coil constituting the electromagnet.
  • the structure of the electromagnetic operating device 30 in a present Example is well-known, and detailed description of the electromagnetic operating device 30 is abbreviate
  • the vacuum valve 1 and the electromagnetic operating unit 30 are operated.
  • the movable electrode 5a can be brought into contact with the fixed electrode 3a or can be separated from the fixed electrode 3a while securing a sufficient insulation distance therebetween.
  • the metal adapter 24 that moves together with the movable conductor 5b and the flexible conductor 27 that electrically connects the metal adapter 24 and the bushing conductor are interposed between the movable conductor 5b and the bushing conductors 12B and 12C. And mobility are ensured.
  • the conductive shield 13 is connected to the movable conductor 5 b between the distal end portion of the air-insulating operating rod 20 on the movable conductor 5 b side in the solid insulator 21. It is provided so as to cover the outer periphery of the part.
  • the conductive shield 13 is electrically connected to the movable conductor 5b via the bushing conductors 12B and 12C and the flexible conductor 27.
  • the end of the conductive shield 13 on the movable conductor 5b side is in contact with and electrically connected to the bushing conductors 12B and 12C on the movable conductor 5b side.
  • the conductive shield 13 extends in the solid insulator 21 from the contact portion with the bushing conductors 12B and 12C on the movable conductor 5b side toward the electromagnetic actuator 30.
  • the conductive shield 13 is a connection portion between the air insulation operation rod 20 and the movable conductor 5b, and is around the metal adapter 24, the housing 25, the bearing 26, and the flexible conductor 27, that is, the air insulation operation rod.
  • the periphery of the conductor portion at the connection portion between the movable conductor 5b and the movable conductor 5b is covered, and the portion around the air exposed portion of the air-insulated operation rod 20 extending from the connection portion with the metal adapter 24 toward the electromagnetic actuator 30 is covered.
  • the conductive shield 13 is made of a conductive material such as metal or conductive rubber.
  • the electric field is generated between the conductive shield 13 and the ground layer 23.
  • the electric field concentration is reduced.
  • the electric field concentration region between the conductive shield 13 and the ground layer 23 or at the end of the conductive shield 13 on the electromagnetic actuator 30 side is covered with a solid insulator 21 having a higher dielectric strength than the air.
  • the thickness b of the solid insulator 21 between the solid insulator inner wall 22 and the conductive shield 13 is set to the ground layer 23.
  • the thickness a of the solid insulator 21 between the conductive shield 13 and the conductive shield 13 (b> a).
  • the conductive shield 13 is disposed in the solid insulator 21 so as to be separated from the inner wall 22 of the solid insulator or to be close to the outer surface of the solid insulator 21, and to be electrically conductive with the inner wall 22 of the solid insulator.
  • the thickness of the solid insulator 21 between the shield 13 can be increased. For this reason, the electric field strength in the solid insulator inner wall 22 can be reduced.
  • the thickness a is set to such a value that the electric field strength that does not cause the insulating deterioration of the solid insulator 21 due to the electric field between the conductive shield 13 and the ground layer 23 is obtained.
  • the tip of the conductive shield 13 on the side of the electromagnetic actuator 30 is bent toward the ground layer 23 in the solid insulator 21. Thereby, since this tip part is separated from the adjacent solid insulator inner wall 22, the electric field concentration can be relaxed in the solid insulator inner wall 22 where the electric field concentration is likely to occur.
  • the solid insulator inner wall 22 adjacent to the tip of the conductive shield 13 has an inner wall surface that is a curved surface that protrudes toward the air side in the vacuum switch. More specifically, the inner wall 22 of the solid insulator has a substantially constant inner diameter from a portion adjacent to the connection portion between the air-insulating operation rod 20 and the movable conductor 5b to a portion adjacent to the tip portion of the conductive shield 13.
  • the first inner wall surface, the inner wall surface that is a curved surface that protrudes toward the air side, and the second inner wall surface are smoothly continuous.
  • the total thickness of the solid insulator 21 adjacent to the first inner wall surface and the total thickness of the solid insulator 21 adjacent to the second inner wall surface are substantially equal.
  • the thickness dimension at portion A in FIG. The total thickness of a and b and the thickness of the conductive shield 13 or the total thickness of the thickness dimensions a and b is set. This improves the mechanical strength and insulation performance of the vacuum switch.
  • the outer surface of the solid insulator 21 that comes into contact with the outside air is the air insulating operation rod 20 and the movable conductor 5b.
  • the portion adjacent to the connecting portion to the portion adjacent to the tip of the conductive shield 13 has a cylindrical first outer surface having a substantially constant outer diameter and is adjacent to the tip of the conductive shield 13
  • the portion has a curved surface that protrudes toward the outside air side, and has a larger outer diameter than the first outer surface at a portion that extends from the portion adjacent to the tip of the conductive shield 13 toward the electromagnetic actuator 30. It has a cylindrical second outer surface having a substantially constant outer diameter.
  • the first outer surface, the outer surface that is a curved surface convex toward the outside air side, and the second outer surface are smoothly continuous. That is, the outer surfaces of the solid insulator 21 and the ground layer 23 have the same shape as the inner wall surface of the solid insulator 21.
  • the thicknesses a and b of the solid insulator 21 indicated by A in FIG. 6 are set so that a ⁇ b, and the conductive shield 13 is formed on the outer surface of the solid insulator 21. By disposing it close to the position, the heat dissipation of the vacuum switch is improved.
  • the operation direction of the drive shaft of the movable electrode 5a in which the movable electrode 5a, the movable conductor 5b, the metal adapter 24, and the air insulating operation rod 20 are integrated coaxially.
  • the guide 8 and the bearing 26 are provided in order to regulate the movement and increase the smoothness of sliding.
  • the guide 8 supports the movable conductor 5b that constitutes the drive shaft of the movable electrode 5a.
  • the bearing 26 held by the housing 25 supports the metal adapter 24 that constitutes the drive shaft of the movable electrode 5a.
  • the guide 8 and the bearing 26 have a shape in which a flange is provided at one end of the short tube.
  • the shape is not limited to this shape, and other shapes may be used.
  • the space around the air-insulating operation rod 20 and the space around the connecting portion between the air-insulating operation rod 20 and the movable conductor 5b are in the air, and the atmosphere
  • the body is the atmosphere, but is not limited to this, and may be an insulating gas such as dry air or SF6 gas.
  • the insulation performance of a vacuum switch improves.
  • the space between the opening of the solid insulator 21 on the electromagnetic operating unit 30 side and the opening of the mechanism case 82 in contact with the solid insulating member 21 is sealed by a sealing means such as a sealing material, and the inside of the vacuum switch Insulating gas is sealed.
  • FIG. 7 shows a state in which the T-type cable heads 40A, 40B, and 40C are connected to the vacuum switch according to the first embodiment.
  • the conductor portions in the T-type cable heads 40A, 40B, and 40C connected to the distal ends of the cables 42A, 42B, and 42C are bolted to the distal ends of the bushing conductors 12A, 12B, and 12C, respectively.
  • This conductor is housed in a T-shaped insulating resin.
  • the T-shaped head portion has a hollow portion for fitting with the bushing portion and fastening of the conductor portion bolt, and both ends of the head portion are open. Since the opening on the bolt fastening portion side is closed by the insulating plugs (41A, 41B, 41C), the connecting portion between the bushing conductor and the T-type cable head is covered with an insulator and is not exposed to the outside.
  • the vacuum valve 1, the air-insulating operating rod 20, and the electromagnetic operating unit 30 are coaxially and substantially straight along the longitudinal direction of the vacuum switching unit. Arranged on the line.
  • the bushing conductors 12A, 12B, and 12C are perpendicular to the longitudinal direction of the vacuum switch, that is, the direction perpendicular to the movable direction of the movable electrode 5a, the movable conductor 5b, and the air-insulating operating rod 20, and the base 81. It protrudes in a direction parallel to the plane for fixing the vacuum switch.
  • the surface of the solid insulator 21 for molding the constituent parts of the vacuum switch is covered with the ground layer 23, and the air insulating operation rod 20 and the movable member are movable in the solid insulator.
  • the conductive shield 13 so as to cover the periphery of the connection portion with the conductor 5b, the insulation performance of the vacuum switch can be improved while the ground layer 23 is provided.
  • the height dimension and width dimension of the vacuum switch after the cable connection can be reduced, the degree of freedom of the installation location of the vacuum switch in a railway vehicle or the like can be increased.
  • the insulation distance between the vacuum switch and the peripheral device can be reduced by covering the surface of the vacuum switch with the ground layer 23, the total installation space including the vacuum switch and the peripheral device can be reduced. Can be reduced.
  • FIG. 8 is a cross-sectional view of the vacuum switch according to the second embodiment of the present invention cut along the longitudinal direction.
  • differences from the first embodiment will be mainly described.
  • the solid insulator inner wall 22 extends from the portion adjacent to the connection portion between the air-insulating operation rod 20 and the movable conductor 5b to the tip portion of the conductive shield 13.
  • the adjacent inner portion has a cylindrical first inner wall surface with a substantially constant inner diameter, and a portion adjacent to the tip of the conductive shield 13 has a curved surface that protrudes toward the air, and is electrically conductive.
  • the portion extending toward the electromagnetic actuator 30 from the portion adjacent to the distal end portion of the conductive shield 13 has a cylindrical second inner wall surface having a substantially larger inner diameter than the first inner wall surface.
  • the first inner wall surface, the inner wall surface that is a curved surface that protrudes toward the air side, and the second inner wall surface are smoothly continuous.
  • the total thickness of the solid insulator 21 adjacent to the second inner wall surface is smaller than the total thickness of the solid insulator 21 adjacent to the first inner wall surface. That is, the total thickness of the solid insulator 21 adjacent to the second inner wall surface is, for example, a thickness obtained by combining the thickness dimensions a and b in the portion A in FIG. The thickness is set to be smaller than the combined thickness of the dimensions a and b.
  • the vacuum switch in the solid insulator 21, a portion away from the portion adjacent to the tip of the conductive shield 13 where the electric field is likely to concentrate to the electromagnetic actuator 30 side, that is, the tip of the conductive shield 13.
  • the thickness of the solid insulator 21 in the portion where the electric field strength is lower than that in the portion adjacent to is reduced.
  • FIG. 9 shows the appearance of a vacuum switch that is Embodiment 3 of the present invention.
  • the broken line in FIG. 9 shows an internal structure.
  • FIG. 9 is a plan view of the vacuum switch installed in a railway vehicle. Therefore, the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle.
  • differences from the first embodiment will be mainly described.
  • the vacuum switch according to the third embodiment has a cable connected to the bushing conductor 12A (corresponding to 42A in FIG. 7) and a cable connected to the bushing conductor 12B among the functions as the linear joint and the T-shaped joint ( 7 corresponds to 42B in FIG. 7).
  • the part when there is a part having a cable branch and a part having no cable branch, as in a railway vehicle, the part is not integrated with the linear joint at a part having no cable branch.
  • the insulation performance of the vacuum switch can be improved, and the insulation distance between the vacuum switch and peripheral devices can be reduced.
  • the height dimension and width dimension of the vacuum switch after cable connection can be reduced.
  • FIG. 10 shows the appearance of a vacuum switch that is Embodiment 4 of the present invention.
  • the broken line in FIG. 10 shows an internal structure.
  • FIG. 10 is a plan view of the vacuum switch installed in a railway vehicle. Therefore, the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle.
  • differences from the first embodiment will be mainly described.
  • the vacuum switch according to the third embodiment has a straight line that connects a cable (corresponding to 42A in FIG. 7) connected to the bushing conductor 12A and a cable (corresponding to 42B in FIG. 7) connected to the bushing conductor 12B.
  • the function as a joint the function as a T-shaped joint for branching the cable (corresponding to 42C in FIG. 7) connected to the bushing conductor 12C on the movable electrode 5a side, and the cable connected to the bushing conductor 12D on the fixed side It functions as a T-joint that branches off.
  • the cable can be branched not only on the movable electrode 5a side but also on the fixed electrode 3a side, the flexibility of the circuit configuration of the feeder circuit can be expanded.
  • FIG. 11 shows the appearance of a vacuum switch that is Embodiment 5 of the present invention.
  • the broken line in FIG. 11 shows an internal structure.
  • FIG. 11 is a side view along the longitudinal direction in a state where the vacuum switch is installed in the railway vehicle.
  • the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle.
  • the air-insulating operating rod 20 and the electromagnetic operating device 30 are not arranged coaxially, and the height from the base 81 is set in the air when the vacuum switch is installed.
  • the insulation operation rod 20 and the movable operation shaft of the electromagnetic operation device 30 are made different.
  • the air-insulated operating rod 20 and the movable operating shaft of the electromagnetic operating device 30 are connected via a link 84 in addition to the operating link portion 31. That is, the air insulation operating rod 20 and the movable operating shaft of the electromagnetic operating device 30 are connected non-coaxially via the link 84.
  • the workability of stroke adjustment is improved. Further, by providing the link 84 with a mechanism that operates as a lever, the output of the electromagnetic operating device 30 can be reduced. Thereby, the electromagnetic operating device 30 can be reduced in size. Therefore, the electromagnetic operating device 30 can be stored in the mechanism case 82.
  • FIG. 12 shows the appearance of a vacuum switch that is Embodiment 6 of the present invention.
  • the broken line in FIG. 12 shows an internal structure.
  • FIG. 12 is a side view along the longitudinal direction in a state where the vacuum switch is installed on the roof of the railway vehicle.
  • the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle.
  • FIG. 12 shows a state in which a T-type cable head is connected to the vacuum switch.
  • the base 81 of a vacuum switch is installed on the vehicle roof 86.
  • the two bushing conductors 12A and 12D on the fixed conductor 3b side and the bushing conductor 12C on the movable conductor 5b side are perpendicular to the longitudinal direction of the vacuum switch and perpendicular to the plane of the base 81.
  • the bushing conductors 12A, 12C, 12D protrude in a direction perpendicular to the mounting plane of the vacuum switch.
  • the bushing conductor 12A protrudes to the inside of the vehicle under the vehicle roof 86, and the cable connected to the bushing conductor 12A can be routed under the vehicle roof 86.
  • the vacuum switch according to the configuration of the bushing conductor of Example 6 (two fixed conductors and one movable conductor) (in Example 1, one fixed conductor and two movable conductors) It can have a straight joint function and a T-branch joint function.
  • the mounting location of the base 81 is not limited to the vehicle roof 86 as in the sixth embodiment, but may be the vehicle roof, the vehicle floor, the vehicle floor, or the like.
  • the bushing conductor 12A protrudes on the side opposite to the side where the vacuum switch is located with respect to the base 81, and the cable can be routed. Accordingly, the degree of freedom of arrangement of the vacuum switch is expanded.
  • the vacuum switch according to the present invention is applicable not only to railway vehicles but also to various power receiving facilities and power distribution facilities.
  • the vacuum switch according to the present invention may be installed such that its longitudinal direction is perpendicular to the horizontal plane of the installation location.

Abstract

The objective of the invention is to reduce the insulation distance between vacuum switchgear and peripheral equipment while improving the insulation properties of the vacuum switchgear. This solid dielectric vacuum switchgear comprises: a vacuum valve (1) including a fixed electrode (3a), a movable electrode (5a), a fixed conductor (3b) connected to the fixed electrode, and a movable conductor (5b) connected to the movable electrode; an insulated operating rod (20) connected mechanically to the movable conductor; an actuator (30) for operating the insulated operating rod; and a solid dielectric (21) covering the vacuum valve. A grounding layer (23) is provided, covering the external surface of the solid dielectric. Inside the solid dielectric, a conductive shield (13) is provided, covering the periphery of the connection between the movable conductor and the insulated operating rod.

Description

固体絶縁形の真空開閉器Solid insulated vacuum switch
 本発明は、固体絶縁形の真空開閉器に関する。 The present invention relates to a solid-insulated vacuum switch.
 鉄道車両に搭載される開閉器は、鉄道車両の屋根上もしくは床下に配置される。そして空気抵抗の低減、トンネル通過時の車両高さ、屋根上もしくは床下スペースの制約等の観点から、開閉器の寸法、特に高さおよび幅寸法が制限される。 The switch mounted on the railway vehicle is placed on the roof or under the floor of the railway vehicle. And from the viewpoints of reducing air resistance, vehicle height when passing through the tunnel, restrictions on the space on the roof or under the floor, etc., the dimensions of the switch, particularly the height and width dimensions are limited.
 小形化が可能な開閉器として、特許文献1および特許文献2に記載されるような、固体絶縁形の真空開閉器が知られている。 As a switch that can be miniaturized, a solid-insulated vacuum switch as described in Patent Document 1 and Patent Document 2 is known.
 特許文献1に記載の開閉器では、真空バルブと、可動操作軸と、可動操作軸の可動導体との接続部に近接して配置される接点加圧ばね機構と、接点加圧ばね機構を包囲する導電性箱を有し、真空バルブ、および電界緩和のための導電性箱が、絶縁体でモールドされている。 The switch disclosed in Patent Document 1 surrounds a contact pressure spring mechanism, a contact pressure spring mechanism disposed close to a connection portion between a vacuum valve, a movable operation shaft, and a movable conductor of the movable operation shaft. A conductive box for conducting electric field relaxation is molded with an insulator.
 また、特許文献2の開閉器では、真空バルブの周りに設けられる絶縁層の外周に接地層が設けられている。 Further, in the switch of Patent Document 2, a ground layer is provided on the outer periphery of the insulating layer provided around the vacuum valve.
特開2012-69345号公報JP 2012-69345 A 特開2017-21939号公報JP 2017-21939 A
 特許文献1に記載の開閉器では、開閉器の周囲に他の機器を配置する場合に、絶縁距離を要するため、開閉器を含む各種機器の設置スペースが増大してしまう。 In the switch described in Patent Document 1, when other devices are arranged around the switch, an insulation distance is required, so that an installation space for various devices including the switch is increased.
 また、特許文献2に記載の開閉器では、絶縁層の外周が接地されるため、周辺機器との絶縁距離は抑制できるが、真空バルブの可動導体に連結される絶縁操作ロッドや、絶縁操作ロッドに連結される操作器や、これらの周囲部における絶縁については配慮されていない。 Further, in the switch described in Patent Document 2, since the outer periphery of the insulating layer is grounded, the insulation distance from the peripheral device can be suppressed, but the insulation operation rod connected to the movable conductor of the vacuum valve or the insulation operation rod No consideration is given to the operation devices connected to the, and the insulation in the surroundings.
 そこで、本発明は、周辺機器との絶縁距離を低減できるとともに、絶縁特性を向上できる固体絶縁形の真空開閉器を提供する。 Therefore, the present invention provides a solid-insulated vacuum switch that can reduce the insulation distance from peripheral devices and improve the insulation characteristics.
 上記の課題を解決するため、本発明による固体絶縁形の真空開閉器は、固定電極および可動電極と、固定電極に接続される固定導体と、可動電極に接続される可動導体とを有する真空バルブと、可動導体に機械的に接続される絶縁操作ロッドと、絶縁操作ロッドを操作する操作器と、真空バルブを被覆する固体絶縁物と、を備えるものであって、固体絶縁物の外表面を覆う接地層が設けられ、固体絶縁物内において、可動導体と絶縁操作ロッドとの接続部の周囲を覆う導電性シールドが設けられる。 In order to solve the above problems, a solid-insulated vacuum switch according to the present invention includes a fixed electrode and a movable electrode, a fixed conductor connected to the fixed electrode, and a movable conductor connected to the movable electrode. And an insulating operating rod mechanically connected to the movable conductor, an operating device for operating the insulating operating rod, and a solid insulator covering the vacuum valve, the outer surface of the solid insulator being A grounding layer for covering is provided, and a conductive shield for covering the periphery of the connecting portion between the movable conductor and the insulating operation rod is provided in the solid insulator.
 本発明によれば、真空開閉器と周辺機器との絶縁距離を低減できるとともに、真空開閉器の絶縁特性を向上できる。 According to the present invention, the insulation distance between the vacuum switch and the peripheral device can be reduced, and the insulation characteristics of the vacuum switch can be improved.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
実施例1である真空開閉器が搭載される鉄道車両の車両編成の一例を示す。An example of the vehicle organization of the rail vehicle by which the vacuum switch which is Example 1 is mounted is shown. 図1の鉄道車両のき電回路を示す。Fig. 2 shows a feeding circuit of the railway vehicle of Fig. 1. 実施例1である真空開閉器が搭載される鉄道車両の車両編成の他の例を示す。The other example of the vehicle organization of the rail vehicle by which the vacuum switch which is Example 1 is mounted is shown. 図3の鉄道車両のき電回路を示す。Fig. 4 shows a feeding circuit of the railway vehicle of Fig. 3. 本発明の実施例1である真空開閉器の外観を示す。The external appearance of the vacuum switch which is Example 1 of this invention is shown. 実施例1の真空開閉器を、長手方向に沿って切断した場合の断面図である。It is sectional drawing at the time of cut | disconnecting the vacuum switch of Example 1 along a longitudinal direction. 実施例1の真空開閉器にT型ケーブルヘッドを接続した状態を示す。The state which connected the T-type cable head to the vacuum switch of Example 1 is shown. 実施例2である真空開閉器を、長手方向に沿って切断した場合の断面図である。It is sectional drawing at the time of cut | disconnecting the vacuum switch which is Example 2 along a longitudinal direction. 実施例3である真空開閉器の外観を示す。The external appearance of the vacuum switch which is Example 3 is shown. 実施例4である真空開閉器の外観を示す。The external appearance of the vacuum switch which is Example 4 is shown. 実施例5である真空開閉器の外観を示す。The external appearance of the vacuum switch which is Example 5 is shown. 実施例6である真空開閉器の外観を示す。The external appearance of the vacuum switch which is Example 6 is shown.
 本発明の一実施形態である真空開閉器は、表面が接地電位で覆われた固体絶縁形の真空開閉器であり、その長手方向を接地面に平行に、例えば長手方向が鉄道車両の屋根上面もしくは床面において車両進行方向に沿うように設置され、ケーブルを接続するブッシングが長手方向とは垂直の上下左右のいずれかに配置するとともに、操作機構ケースが開閉部である真空バルブと略直線上に配置される。これにより、設置状態における高さ寸法および幅寸法が抑えられる。また、表面が接地電位で覆われるので、真空開閉器と周辺機器との絶縁距離を低減できる。このため、周辺機器の設置スペースを削減できる。 A vacuum switch according to an embodiment of the present invention is a solid-insulated vacuum switch whose surface is covered with a ground potential, the longitudinal direction of which is parallel to the ground surface, for example, the longitudinal direction is the roof top surface of a railway vehicle. Alternatively, the bushing is installed on the floor along the direction of travel of the vehicle, and the bushing that connects the cable is arranged either vertically or horizontally perpendicular to the longitudinal direction, and the operation mechanism case is substantially straight with the vacuum valve that is the opening / closing part Placed in. Thereby, the height dimension and width dimension in an installation state are suppressed. Further, since the surface is covered with the ground potential, the insulation distance between the vacuum switch and the peripheral device can be reduced. For this reason, the installation space for peripheral devices can be reduced.
 しかしながら、本発明者の検討によれば、真空開閉器の表面を接地電位で覆うと、真空開閉器内部に高電界となる箇所が生じてしまう。特に、絶縁操作ロッドの周囲は、固体絶縁樹脂などに比べて破壊電界が低い大気で覆われているので、高電界部が生じると絶縁性能が低下する怖れが有る。 However, according to the study of the present inventor, when the surface of the vacuum switch is covered with the ground potential, a place where a high electric field is generated inside the vacuum switch. In particular, since the periphery of the insulating operation rod is covered with an atmosphere having a lower breakdown electric field than that of a solid insulating resin or the like, there is a fear that the insulation performance may be lowered when a high electric field portion is generated.
 そこで、本発明の一実施形態である真空開閉器では、絶縁操作ロッドの周囲を覆う導電性シールドが設けられ、またこの導電性シールドが表面接地層に近接させて配置される。これにより、表面接地層を設けながらも、開閉器内部における絶縁操作ロッドの周囲の気中空間の電界が緩和されるので、真空開閉器の絶縁特性が向上する。さらに、本発明者の検討によれば、これら表面接地層および導電性シールドによれば、導電性シールドだけ設けるよりも電界緩和効果が大きくなる。 Therefore, in the vacuum switch according to the embodiment of the present invention, a conductive shield is provided to cover the periphery of the insulating operation rod, and the conductive shield is disposed close to the surface ground layer. Thereby, while providing the surface ground layer, the electric field in the air space around the insulating operation rod inside the switch is relaxed, so that the insulating characteristics of the vacuum switch are improved. Further, according to the study by the present inventor, the surface ground layer and the conductive shield have a larger electric field relaxation effect than the case where only the conductive shield is provided.
 以下、本発明の実施形態について、下記の実施例1~6により、図面を用いながら説明する。なお、各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 Hereinafter, embodiments of the present invention will be described with reference to the following Examples 1 to 6 with reference to the drawings. In each figure, the same reference numerals indicate the same constituent elements or constituent elements having similar functions.
 まず、実施例1である真空開閉器が搭載される鉄道車両について、図1~4を用いて説明する。 First, a railway vehicle equipped with a vacuum switch according to the first embodiment will be described with reference to FIGS.
 図1は、実施例1である真空開閉器が搭載される鉄道車両の車両編成の一例を示す。 FIG. 1 shows an example of a vehicle organization of a railway vehicle on which the vacuum switch according to the first embodiment is mounted.
 図1に示す鉄道車両は、8両編成(1st~8th car)で構成されている。これらの車両の屋根上には、高圧引き通しケーブルRC1,RC2,RC3,RC4,RC5が配置される。高圧引き通しケーブルRC3,RC5は、それぞれパンタグラフPG1,PG2に接続される。鉄道車両は、パンタグラフPG1,PG2によって、き電線(図示せず)から電力を受電し、受電した電力は、高圧引き通しケーブルRC1~RC5を介して、各車両に配電される。 The railway vehicle shown in FIG. 1 is composed of an eight-car train (1 st to 8 th car). High-voltage lead-through cables RC1, RC2, RC3, RC4, and RC5 are disposed on the roofs of these vehicles. The high-voltage passing cables RC3 and RC5 are connected to the pantographs PG1 and PG2, respectively. The railway vehicle receives power from feeders (not shown) by pantographs PG1 and PG2, and the received power is distributed to each vehicle via high-voltage passing cables RC1 to RC5.
 各ケーブルは、車両間において、屋根上に位置する直線ジョイントSJ1,SJ2,SJ3,SJ4によって接続されるとともに、屋根上においてT分岐ジョイントTJ1,TJ2によって車両床下方向に分岐されている。ここで、T分岐ジョイントTJ1および直線ジョイントSJ2は、後述する真空開閉器に一体化され、T分岐ジョイントTJ2および直線ジョイントSJ4も真空開閉器に一体化されている。 Each cable is connected between vehicles by linear joints SJ1, SJ2, SJ3, SJ4 located on the roof, and is branched on the roof by T-branch joints TJ1, TJ2. Here, the T-branch joint TJ1 and the straight joint SJ2 are integrated with a vacuum switch described later, and the T-branch joint TJ2 and the straight joint SJ4 are also integrated with the vacuum switch.
 図2は、図1の鉄道車両のき電(饋電)回路を示す。 FIG. 2 shows a feeding (saddle) circuit of the railway vehicle of FIG.
 図2に示すように、二両目(2nd car)、四両目(4th car)、六両目(6th car)の床下(Under Floor)には、それぞれ受電用真空遮断器VCB1,VCB2,VCB3が設けられるとともに、それぞれ主変圧器Tr1,Tr2,Tr3が設けられる。 As shown in FIG. 2, the two eyes (2 nd car), four eyes (4 th car), the floor (Under Floor) six eyes (6 th car), respectively receiving a vacuum interrupter VCB1, VCB2, VCB3 Are provided, and main transformers Tr1, Tr2, Tr3 are provided, respectively.
 二両目(2nd car)の高圧引き通しケーブルRC1は、床下に設けられる受電用真空遮断器VCB1の1次側に直接接続され、受電用真空遮断器VCB1の2次側は主変圧器Tr1の1次巻線に接続される。主変圧器Tr1の2次巻線は電動機に電力を供給し、3次巻線はエアコンや照明などの補機へ電力を供給する。 High pull through cable RC1 of the two eyes (2 nd car) is directly connected to the primary side of the power receiving vacuum interrupter VCB1 provided under the floor, the secondary side of the power receiving vacuum interrupter VCB1 the main transformer Tr1 Connected to the primary winding. The secondary winding of the main transformer Tr1 supplies power to the motor, and the tertiary winding supplies power to auxiliary equipment such as an air conditioner and lighting.
 四両目(4th car)と六両目(6th car)のT分岐ジョイントTJ1,TJ2で分岐される高圧引き通しケーブルはそれぞれ、床下に設けられる受電用真空遮断器VCB2,VCB3の1次側に接続され、受電用真空遮断器VCB2,VCB3の2次側はそれぞれ主変圧器Tr2,Tr3の1次巻線に接続される。主変圧器Tr2,Tr3の2次巻線は電動機に電力を供給し、3次巻線は補機へ電力を供給する。 A four eyes (4 th car) and the primary side of the T-branch joint TJ1, respectively high pressure pull through cable is the branch in TJ2, power receiving vacuum interrupter provided under the floor VCB2, VCB3 six eyes (6 th car) The secondary sides of the power receiving vacuum circuit breakers VCB2 and VCB3 are connected to the primary windings of the main transformers Tr2 and Tr3, respectively. The secondary windings of the main transformers Tr2 and Tr3 supply power to the motor, and the tertiary winding supplies power to the auxiliary machinery.
 なお、電動機や補機へは、主変圧器から電力変換装置を介して電力を供給しても良い。 In addition, you may supply electric power to an electric motor or an auxiliary machine via a power converter from a main transformer.
 このように、受電用真空遮断器VCB1,VCB2,VCB3、並びに主変圧器Tr1,Tr2,Tr3は、床下に配置されており、それ以外の電気機器(RC1~5,SJ1~4,PG1~2,TJ1~2)は屋根の上に配置されている。VCB1~3,Tr1~3が床下に配置されるので、電気機器の据え付けや保守点検の際に、屋根上作業が低減される。また、屋根の上に電気機器を配置する場合、高さ方向でのスペースの制約が大きいが、後述するように、本発明の実施例1によれば、真空開閉器の高さ方向の寸法を低減できるので、真空開閉器を容易に屋根上に設置できる。 As described above, the power receiving vacuum circuit breakers VCB1, VCB2, and VCB3 and the main transformers Tr1, Tr2, and Tr3 are arranged under the floor, and other electrical devices (RC1 to 5, SJ1 to 4, PG1 to 2). , TJ1-2) are arranged on the roof. Since the VCBs 1 to 3 and Tr1 to 3 are arranged under the floor, the work on the roof is reduced during the installation and maintenance of electrical equipment. In addition, when an electric device is arranged on the roof, there is a large space restriction in the height direction, but as described later, according to Example 1 of the present invention, the dimension of the vacuum switch in the height direction is set. Since it can be reduced, the vacuum switch can be easily installed on the roof.
 図3は、実施例1である真空開閉器が搭載される鉄道車両の車両編成の他の例を示す。また、図4は、図3の鉄道車両のき電回路を示す。 FIG. 3 shows another example of the vehicle organization of the railway vehicle on which the vacuum switch according to the first embodiment is mounted. FIG. 4 shows a feeding circuit of the railway vehicle of FIG.
 図3、図4に示すように、本例においては、高圧引き通しケーブルRC1~5、直線ジョイントSJ1~4、T分岐ジョイントTJ1~2が床下(Under Floor)に設置される。また、パンタグラフPG1,PG2から高圧ケーブルが車内に引き込まれ、それぞれ高圧引き通しケーブルRC3,RC5に接続される。このように電気機器を床下に設置する場合においても、設置スペースの制約が大きいが、後述する実施例1によれば、真空開閉器を容易に床下に設置できる。 As shown in FIG. 3 and FIG. 4, in this example, the high-pressure passing cables RC1 to RC5, the straight joints SJ1 to SJ4, and the T branch joints TJ1 to TJ2 are installed under the floor (Under Floor). Further, high voltage cables are drawn into the vehicle from the pantographs PG1 and PG2, and are connected to the high voltage lead-in cables RC3 and RC5, respectively. Even when the electrical device is installed under the floor as described above, the installation space is largely limited. However, according to Example 1 described later, the vacuum switch can be easily installed under the floor.
 図2および図4に示すように、三両目(3rd car)の高圧引き通しケーブルRC2で地絡故障(Fault)が発生した場合には、外部からの指令により真空開閉器を動作させ、直線ジョイントSJ2を自動で開放することで、地絡故障(Fault)の影響を受ける主変圧器Tr1およびそれに接続される電動機をき電回路から切り離す。このとき、地絡故障(Fault)の影響を受けない主変圧器Tr2,Tr3はき電回路に接続されたままであるので、それらに接続される電動機を用いて鉄道車両の運転を続行することができる。 As shown in FIG. 2 and FIG. 4, when a ground fault (Fault) occurs in the high-voltage lead-in cable RC2 of the third car (3 rd car), the vacuum switch is operated by an external command, By automatically opening the joint SJ2, the main transformer Tr1 affected by the ground fault (Fault) and the electric motor connected thereto are disconnected from the feeder circuit. At this time, since the main transformers Tr2 and Tr3 that are not affected by the ground fault (Fault) remain connected to the feeder circuit, it is possible to continue the operation of the railway vehicle using the electric motor connected to them. it can.
 なお、地絡故障の箇所に応じて、動作させる真空開閉器、すなわち、切り離しを行う直線ジョイント(SJ2またはSJ4)が適宜選択される。これにより、故障箇所を含む高電圧ケーブルと、健全な高電圧ケーブルとを、自動的に電気的に分離することができる。 In addition, the vacuum switch to be operated, that is, the linear joint (SJ2 or SJ4) to be disconnected is appropriately selected according to the location of the ground fault. As a result, the high voltage cable including the failure portion and the healthy high voltage cable can be automatically electrically separated.
 次に、本発明の実施例1である真空開閉器について、図5~7を用いて説明する。なお、本実施例1の真空開閉器は、上述のように、鉄道車両に搭載される場合、T分岐ジョイント(TJ1,TJ2)と直線ジョイント(SJ2,SJ4)と一体化される。 Next, a vacuum switch that is Embodiment 1 of the present invention will be described with reference to FIGS. As described above, the vacuum switch according to the first embodiment is integrated with the T-branch joints (TJ1, TJ2) and the linear joints (SJ2, SJ4) when mounted on a railway vehicle.
 図5は、本発明の実施例1である真空開閉器の外観を示す。図5中の破線は、内部構造を示す。なお、図5は、真空開閉器を、鉄道車両に設置された状態における、平面図である(図6,7も同様)。従って、真空開閉器の長手方向が鉄道車両の長手方向に沿っている。 FIG. 5 shows the appearance of a vacuum switch that is Embodiment 1 of the present invention. The broken line in FIG. 5 shows an internal structure. FIG. 5 is a plan view of the vacuum switch installed in a railway vehicle (the same applies to FIGS. 6 and 7). Therefore, the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle.
 図5に示すように、本実施例1の真空開閉器は、ステー83A~83Cを介してベース81に固定された状態で、鉄道車両に搭載される。 As shown in FIG. 5, the vacuum switch according to the first embodiment is mounted on a railway vehicle in a state of being fixed to a base 81 via stays 83A to 83C.
 図6は、実施例1の真空開閉器を、長手方向に沿って切断した場合の断面図である。なお、切断平面は、後述する可動電極5a、気中絶縁操作ロッド20の中心軸を含む平面である。 FIG. 6 is a cross-sectional view of the vacuum switch of Example 1 cut along the longitudinal direction. The cutting plane is a plane including the center axis of the movable electrode 5a and the air-insulating operating rod 20 described later.
 図6に示すように、本実施例1の真空開閉器は、固定電極3aと、固定電極3aに対して接触または解離する可動電極5aと、固定電極3aおよび可動電極5aの周囲を覆うアークシールド6と、アークシールド6を支持する外側容器の一部を構成する円筒形状のセラミック絶縁筒7と、ベローズ2とを主要部として構成される真空バルブ1を備えている。 As shown in FIG. 6, the vacuum switch according to the first embodiment includes a fixed electrode 3a, a movable electrode 5a that contacts or dissociates with the fixed electrode 3a, and an arc shield that covers the periphery of the fixed electrode 3a and the movable electrode 5a. 6, and a vacuum valve 1 having a cylindrical ceramic insulating cylinder 7 constituting a part of an outer container supporting the arc shield 6 and a bellows 2 as main parts.
 真空バルブ1の外側容器は、セラミック絶縁筒7の両端を端板で覆って構成され、内部が真空状態に維持されている。固定電極3aは、固定導体3bに接続されており、固定導体3bは真空バルブ1の外に引き出され、固定導体3b側のブッシング導体12Aと電気的に接続される。可動電極5aは、可動導体5bに接続されており、可動導体5bは真空バルブ1の外に引き出され、可動導体5b側のブッシング導体12B,12Cと電気的に接続される。 The outer container of the vacuum valve 1 is configured by covering both ends of the ceramic insulating cylinder 7 with end plates, and the inside is maintained in a vacuum state. The fixed electrode 3a is connected to the fixed conductor 3b. The fixed conductor 3b is drawn out of the vacuum valve 1 and is electrically connected to the bushing conductor 12A on the fixed conductor 3b side. The movable electrode 5a is connected to the movable conductor 5b. The movable conductor 5b is drawn out of the vacuum valve 1 and is electrically connected to the bushing conductors 12B and 12C on the movable conductor 5b side.
 真空バルブ1と、固定導体3b側のブッシング導体12Aと、可動導体5b側のブッシング導体12B,12Cは、エポキシ樹脂などからなる固体絶縁物21でモールドされて被覆される。また、固体絶縁物21の表面は、接地層23で覆われる。接地層23には接地電位が与えられる。なお、接地層23は、金属溶射や、導電性塗料の塗布などによって形成される。各ブッシング導体の外気側の先端部は固体絶縁物21によってはモールドされず導体部が露出している。これら先端部は、後述するT型ケーブルヘッド(図7)との接続部10A,10B,10Cを構成する。 The vacuum valve 1, the bushing conductor 12A on the fixed conductor 3b side, and the bushing conductors 12B and 12C on the movable conductor 5b side are molded and covered with a solid insulator 21 made of epoxy resin or the like. The surface of the solid insulator 21 is covered with a ground layer 23. A ground potential is applied to the ground layer 23. The ground layer 23 is formed by metal spraying or application of a conductive paint. The tip of each bushing conductor on the outside air side is not molded by the solid insulator 21, and the conductor is exposed. These tip portions constitute connection portions 10A, 10B, and 10C with a T-type cable head (FIG. 7) described later.
 真空バルブ1の可動側では、可動導体5bと可動側の端板の間にベローズ2が配置されている。このベローズによって、真空バルブ1の真空状態を維持したまま可動導体5bが可動になる。また、真空バルブ1の可動側には、気中絶縁操作ロッド20を操作する電磁操作器30が設けられている。電磁操作器30の可動操作軸は、操作リンク部31を介して気中絶縁操作ロッド20に同軸に接続される。電磁操作器30、操作リンク部31、電磁操作器30に接続される気中絶縁操作ロッド20の端部は、固体絶縁物21による略円筒状のモールド部に同軸に接する機構ケース82内に格納される。従って、真空開閉器において、電磁操作器30は、気中絶縁操作ロッド20と同軸に配置される。 On the movable side of the vacuum valve 1, a bellows 2 is disposed between the movable conductor 5b and the movable side end plate. By this bellows, the movable conductor 5b becomes movable while the vacuum state of the vacuum valve 1 is maintained. An electromagnetic operating device 30 for operating the air insulating operating rod 20 is provided on the movable side of the vacuum valve 1. The movable operating shaft of the electromagnetic operating device 30 is coaxially connected to the air-insulated operating rod 20 via the operating link portion 31. The end of the air-insulating operating rod 20 connected to the electromagnetic operating unit 30, the operating link unit 31, and the electromagnetic operating unit 30 is stored in a mechanism case 82 that is coaxially in contact with the substantially cylindrical mold unit made of the solid insulator 21. Is done. Therefore, in the vacuum switch, the electromagnetic operating device 30 is disposed coaxially with the air-insulating operating rod 20.
 電磁操作器30においては、例えばバネに永久磁石と電磁石を組み合わせ、電磁石を構成するコイルへの通電をON/OFFすることで駆動力を発生させる。なお、本実施例における電磁操作器30の構成は公知であり、電磁操作器30の詳細な説明は省略する。 In the electromagnetic operating device 30, for example, a permanent magnet and an electromagnet are combined with a spring, and a driving force is generated by turning on / off a coil constituting the electromagnet. In addition, the structure of the electromagnetic operating device 30 in a present Example is well-known, and detailed description of the electromagnetic operating device 30 is abbreviate | omitted.
 この電磁操作器30で、気中絶縁操作ロッド20と可動導体5bを金属アダプタ24で一体かつ同軸に連結した、いわば可動電極5aの駆動軸を操作することで、真空バルブ1と電磁操作器30の間に十分な絶縁距離を確保しながら、可動電極5aを、固定電極3aに接触させたり、固定電極3aから離したりすることができる。さらに、可動導体5bとブッシング導体12B,12Cの間に、可動導体5bとともに動く、金属アダプタ24、および金属アダプタ24とブッシング導体を電気的に接続する可撓性導体27を介在させることで、通電性および可動性が確保される。 By operating the drive shaft of the movable electrode 5a, in which the air insulation operating rod 20 and the movable conductor 5b are integrally and coaxially connected by the metal adapter 24 with the electromagnetic operating unit 30, the vacuum valve 1 and the electromagnetic operating unit 30 are operated. The movable electrode 5a can be brought into contact with the fixed electrode 3a or can be separated from the fixed electrode 3a while securing a sufficient insulation distance therebetween. Furthermore, the metal adapter 24 that moves together with the movable conductor 5b and the flexible conductor 27 that electrically connects the metal adapter 24 and the bushing conductor are interposed between the movable conductor 5b and the bushing conductors 12B and 12C. And mobility are ensured.
 さらに、本実施例1においては、図6に示すように、導電性シールド13が、固体絶縁物21内において、気中絶縁操作ロッド20の可動導体5b側の先端部と可動導体5bとの接続部分の外周を覆うように設けられる。導電性シールド13は、ブッシング導体12B,12Cや可撓性導体27を介して可動導体5bと電気的に接続されている。また、導電性シールド13の可動導体5b側の端部は、可動導体5b側のブッシング導体12Bおよび12Cに接触して電気的に接続される。 Furthermore, in the first embodiment, as shown in FIG. 6, the conductive shield 13 is connected to the movable conductor 5 b between the distal end portion of the air-insulating operating rod 20 on the movable conductor 5 b side in the solid insulator 21. It is provided so as to cover the outer periphery of the part. The conductive shield 13 is electrically connected to the movable conductor 5b via the bushing conductors 12B and 12C and the flexible conductor 27. The end of the conductive shield 13 on the movable conductor 5b side is in contact with and electrically connected to the bushing conductors 12B and 12C on the movable conductor 5b side.
 導電性シールド13は、固体絶縁物21内において、可動導体5b側のブッシング導体12Bおよび12Cとの接触部から、電磁操作器30に向って延びている。これにより、導電性シールド13は、気中絶縁操作ロッド20と可動導体5bとの接続部分である、金属アダプタ24、ハウジング25、軸受26および可撓性導体27の周囲、すなわち気中絶縁操作ロッド20と可動導体5bとの接続部における導体部分の周囲を覆うと共に、金属アダプタ24との接続部から電磁操作器30に向って延びる気中絶縁操作ロッド20の気中露出部の周囲を覆う。 The conductive shield 13 extends in the solid insulator 21 from the contact portion with the bushing conductors 12B and 12C on the movable conductor 5b side toward the electromagnetic actuator 30. As a result, the conductive shield 13 is a connection portion between the air insulation operation rod 20 and the movable conductor 5b, and is around the metal adapter 24, the housing 25, the bearing 26, and the flexible conductor 27, that is, the air insulation operation rod. The periphery of the conductor portion at the connection portion between the movable conductor 5b and the movable conductor 5b is covered, and the portion around the air exposed portion of the air-insulated operation rod 20 extending from the connection portion with the metal adapter 24 toward the electromagnetic actuator 30 is covered.
 なお、導電性シールド13は、金属や導電性ゴム等の導電性材料から構成される。 Note that the conductive shield 13 is made of a conductive material such as metal or conductive rubber.
 このような導電性シールド13および前述の接地層23によれば、ブッシング導体12B,12Cを介して導電性シールド13に高電圧が印加されると、電界は導電性シールド13と接地層23の間の固体絶縁物21内に集中し、気中絶縁操作ロッド20と可動導体5bとの接続部における導体部分の周囲の気中においては電界集中が緩和される。さらに、導電性シールド13と接地層23の間や、導電性シールド13の電磁操作器30側の端部における電界集中領域は、気中より絶縁耐力の高い固体絶縁物21で覆われている。これらにより、接地層23を設けながらも、真空開閉器の絶縁特性が向上する。従って、本実施例1によれば、周辺機器との絶縁距離を低減できるととともに、真空開閉器の絶縁特性が向上する。 According to the conductive shield 13 and the above-described ground layer 23, when a high voltage is applied to the conductive shield 13 via the bushing conductors 12B and 12C, the electric field is generated between the conductive shield 13 and the ground layer 23. In the air around the conductor portion at the connection portion between the air insulating operation rod 20 and the movable conductor 5b, the electric field concentration is reduced. Furthermore, the electric field concentration region between the conductive shield 13 and the ground layer 23 or at the end of the conductive shield 13 on the electromagnetic actuator 30 side is covered with a solid insulator 21 having a higher dielectric strength than the air. Thus, the insulating characteristics of the vacuum switch are improved while the ground layer 23 is provided. Therefore, according to the present Example 1, while being able to reduce the insulation distance with a peripheral device, the insulation characteristic of a vacuum switch improves.
 なお、導電性シールド13の先端部に近い固体絶縁物内壁22は気中に接しているため、絶縁弱点部となる怖れが有る。そこで、本実施例1においては、図6中において破線で囲むA部が示すように、固体絶縁物内壁22と導電性シールド13との間の固体絶縁物21の厚さbが、接地層23と導電性シールド13との間の固体絶縁物21の厚さaよりも大きくする(b>a)。これにより、導電性シールド13は、固体絶縁物21内において、固体絶縁物内壁22よりも、固体絶縁物21の外表面すなわち接地層23に近いところに配置される。すなわち、導電性シールド13が、固体絶縁物21内において、固体絶縁物内壁22から離すように、もしくは固体絶縁物21の外表面に近づくように配置されるとともに、固体絶縁物内壁22と導電性シールド13との間の固体絶縁物21の厚さを増加できる。このため、固体絶縁物内壁22における電界強度を低減できる。なお、厚さaは、導電性シールド13と接地層23の間における電界によって固体絶縁物21が絶縁劣化を起こさない電界強度が得られるような大きさに設定される。 In addition, since the solid insulator inner wall 22 near the tip of the conductive shield 13 is in contact with the air, there is a fear of becoming an insulation weak point. Therefore, in the first embodiment, as shown by the A portion surrounded by a broken line in FIG. 6, the thickness b of the solid insulator 21 between the solid insulator inner wall 22 and the conductive shield 13 is set to the ground layer 23. And the thickness a of the solid insulator 21 between the conductive shield 13 and the conductive shield 13 (b> a). As a result, the conductive shield 13 is disposed in the solid insulator 21 closer to the outer surface of the solid insulator 21, that is, the ground layer 23, than the inner wall 22 of the solid insulator. That is, the conductive shield 13 is disposed in the solid insulator 21 so as to be separated from the inner wall 22 of the solid insulator or to be close to the outer surface of the solid insulator 21, and to be electrically conductive with the inner wall 22 of the solid insulator. The thickness of the solid insulator 21 between the shield 13 can be increased. For this reason, the electric field strength in the solid insulator inner wall 22 can be reduced. The thickness a is set to such a value that the electric field strength that does not cause the insulating deterioration of the solid insulator 21 due to the electric field between the conductive shield 13 and the ground layer 23 is obtained.
 また、本実施例1においては、導電性シールド13の電磁操作器30側の先端部が、固体絶縁物21内において、接地層23に向って曲がっている。これにより、この先端部が、隣接する固体絶縁物内壁22から離れるので、電界集中が起きやすいこの固体絶縁物内壁22において電界集中を緩和できる。 In the first embodiment, the tip of the conductive shield 13 on the side of the electromagnetic actuator 30 is bent toward the ground layer 23 in the solid insulator 21. Thereby, since this tip part is separated from the adjacent solid insulator inner wall 22, the electric field concentration can be relaxed in the solid insulator inner wall 22 where the electric field concentration is likely to occur.
 さらに、導電性シールド13の先端部に隣接する固体絶縁物内壁22は、真空開閉器内の気中側に向って凸になる曲面である内壁表面を有する。より具体的には、固体絶縁物内壁22は、気中絶縁操作ロッド20と可動導体5bとの接続部に隣接する部分から導電性シールド13の先端部に隣接する部分までは内径が略一定の円筒状の第1の内壁面を有し、導電性シールド13の先端部に隣接する部分において、気中側に向って凸になる曲面を有し、導電性シールド13の先端部に隣接する部分から電磁操作器30に向って延びる部分において、第1の内壁面よりも大きな内径を有する内径が略一定の円筒状の第2の内壁面を有する。そして、第1の内壁面と、気中側に向って凸になる曲面である内壁表面と、第2の内壁面は滑らかに連続している。 Further, the solid insulator inner wall 22 adjacent to the tip of the conductive shield 13 has an inner wall surface that is a curved surface that protrudes toward the air side in the vacuum switch. More specifically, the inner wall 22 of the solid insulator has a substantially constant inner diameter from a portion adjacent to the connection portion between the air-insulating operation rod 20 and the movable conductor 5b to a portion adjacent to the tip portion of the conductive shield 13. A portion having a cylindrical first inner wall surface and having a curved surface that protrudes toward the air at a portion adjacent to the tip of the conductive shield 13 and adjacent to the tip of the conductive shield 13 In the portion extending from to the electromagnetic actuator 30, there is a cylindrical second inner wall surface having a substantially constant inner diameter having a larger inner diameter than the first inner wall surface. The first inner wall surface, the inner wall surface that is a curved surface that protrudes toward the air side, and the second inner wall surface are smoothly continuous.
 なお、第1の内壁面に隣接する固体絶縁物21の総厚みと第2の内壁面に隣接する固体絶縁物21の総厚みは、ほぼ等しく、例えば、図6中のA部における厚さ寸法a,bおよび導電性シールド13の厚さを合わせた厚さ、あるいは厚さ寸法a,bを合わせた厚さに設定される。これにより、真空開閉器の機械的強度および絶縁性能が向上する。 Note that the total thickness of the solid insulator 21 adjacent to the first inner wall surface and the total thickness of the solid insulator 21 adjacent to the second inner wall surface are substantially equal. For example, the thickness dimension at portion A in FIG. The total thickness of a and b and the thickness of the conductive shield 13 or the total thickness of the thickness dimensions a and b is set. This improves the mechanical strength and insulation performance of the vacuum switch.
 なお、本実施例1では、固体絶縁物21の総厚みの設定に伴い、固体絶縁物21において外気に接触する外表面すなわち接地層23の外表面は、気中絶縁操作ロッド20と可動導体5bとの接続部に隣接する部分から導電性シールド13の先端部に隣接する部分までは外径が略一定の円筒状の第1の外表面を有し、導電性シールド13の先端部に隣接する部分において、外気側に向って凸になる曲面を有し、導電性シールド13の先端部に隣接する部分から電磁操作器30に向って延びる部分において、第1の外表面よりも大きな外径を有する外径が略一定の円筒状の第2の外表面を有する。そして、第1の外表面と、外気側に向って凸になる曲面である外表面と、第2の外表面は滑らかに連続している。すなわち、固体絶縁物21および接地層23の外表面の形状は、固体絶縁物21の内壁表面と同様の形状を有する。 In the first embodiment, as the total thickness of the solid insulator 21 is set, the outer surface of the solid insulator 21 that comes into contact with the outside air, that is, the outer surface of the grounding layer 23 is the air insulating operation rod 20 and the movable conductor 5b. From the portion adjacent to the connecting portion to the portion adjacent to the tip of the conductive shield 13 has a cylindrical first outer surface having a substantially constant outer diameter and is adjacent to the tip of the conductive shield 13 The portion has a curved surface that protrudes toward the outside air side, and has a larger outer diameter than the first outer surface at a portion that extends from the portion adjacent to the tip of the conductive shield 13 toward the electromagnetic actuator 30. It has a cylindrical second outer surface having a substantially constant outer diameter. The first outer surface, the outer surface that is a curved surface convex toward the outside air side, and the second outer surface are smoothly continuous. That is, the outer surfaces of the solid insulator 21 and the ground layer 23 have the same shape as the inner wall surface of the solid insulator 21.
 このような固体絶縁物内壁の形状により、並びに、本形状に伴い導電性シールド13の電磁操作器30側の先端部に隣接する固体絶縁物21における固体絶縁物内壁22と導電性シールド13との間の厚さを増加することができることにより、導電性シールドの先端部に隣接する固体絶縁物内壁22において電界集中を緩和できる。 Due to the shape of the inner wall of the solid insulator as well as the shape of the inner wall 22 of the solid insulator and the conductive shield 13 in the solid insulator 21 adjacent to the tip of the conductive shield 13 on the electromagnetic actuator 30 side in accordance with this shape. Since the thickness can be increased, the electric field concentration can be mitigated in the solid insulator inner wall 22 adjacent to the tip of the conductive shield.
 なお、上述のように、図6中にA部が示す固体絶縁物21の厚さa,bをa<bとなるように設定して、導電性シールド13が、固体絶縁物21の外表面に近いところに配置されることにより、真空開閉器の放熱性が向上する。 As described above, the thicknesses a and b of the solid insulator 21 indicated by A in FIG. 6 are set so that a <b, and the conductive shield 13 is formed on the outer surface of the solid insulator 21. By disposing it close to the position, the heat dissipation of the vacuum switch is improved.
 図6に示すように、本実施例1の真空開閉器では、可動電極5a、可動導体5b、金属アダプタ24、気中絶縁操作ロッド20を同軸に一体化した可動電極5aの駆動軸の動作方向を規制し、かつ摺動の滑らかさを高めるために、ガイド8および軸受26が設けられている。ガイド8は、可動電極5aの駆動軸を構成する可動導体5bを軸支する。また、ハウジング25に保持される軸受26は、可動電極5aの駆動軸を構成する金属アダプタ24を軸支する。このように、ガイド8と軸受26の二つの構成部品で軸支することで、同軸に一体化される可動導体5b、金属アダプタ24および気中絶縁操作ロッド20の芯出し精度が向上するので、摺動の滑らかさが向上する。なお、本実施例1では、ガイド8と軸受26が、短管の一端にフランジを設けた形状を有するが、この形状に限らず、他の形状でも良い。 As shown in FIG. 6, in the vacuum switch according to the first embodiment, the operation direction of the drive shaft of the movable electrode 5a in which the movable electrode 5a, the movable conductor 5b, the metal adapter 24, and the air insulating operation rod 20 are integrated coaxially. The guide 8 and the bearing 26 are provided in order to regulate the movement and increase the smoothness of sliding. The guide 8 supports the movable conductor 5b that constitutes the drive shaft of the movable electrode 5a. The bearing 26 held by the housing 25 supports the metal adapter 24 that constitutes the drive shaft of the movable electrode 5a. In this way, by pivotally supporting the two components of the guide 8 and the bearing 26, the centering accuracy of the movable conductor 5b, the metal adapter 24, and the air-insulating operation rod 20 that are integrated coaxially is improved. The smoothness of sliding is improved. In the first embodiment, the guide 8 and the bearing 26 have a shape in which a flange is provided at one end of the short tube. However, the shape is not limited to this shape, and other shapes may be used.
 本実施例1では、真空開閉器内において、気中絶縁操作ロッド20の周囲の空間や、気中絶縁操作ロッド20と可動導体5bとの接続部の周囲の空間は、気中であり、雰囲気体は大気であるが、これに限らず、乾燥空気やSF6ガスなどの絶縁ガスでも良い。これにより、真空開閉器の絶縁性能が向上する。なお、この場合、固体絶縁物21の電磁操作器30側の開口部と、これに接する機構ケース82の開口部との間をシール材などの封止手段によって封止して、真空開閉器内部に絶縁ガスが封入する。 In the first embodiment, in the vacuum switch, the space around the air-insulating operation rod 20 and the space around the connecting portion between the air-insulating operation rod 20 and the movable conductor 5b are in the air, and the atmosphere The body is the atmosphere, but is not limited to this, and may be an insulating gas such as dry air or SF6 gas. Thereby, the insulation performance of a vacuum switch improves. In this case, the space between the opening of the solid insulator 21 on the electromagnetic operating unit 30 side and the opening of the mechanism case 82 in contact with the solid insulating member 21 is sealed by a sealing means such as a sealing material, and the inside of the vacuum switch Insulating gas is sealed.
 図7は、本実施例1の真空開閉器にT型ケーブルヘッド40A,40B,40Cを接続した状態を示す。 FIG. 7 shows a state in which the T-type cable heads 40A, 40B, and 40C are connected to the vacuum switch according to the first embodiment.
 ケーブル42A,42B,42Cの先端部に、それぞれ接続されるT型ケーブルヘッド40A,40B,40C内の導体部が、それぞれブッシング導体12A,12B,12Cの先端部にボルト締結される。この導体部は、T字状の絶縁樹脂内に収納される。T字の頭部は、ブッシング部との嵌合および導体部ボルト締結のために中空部を有するとともに頭部両端が開口している。ボルト締結部側の開口部は、絶縁栓(41A,41B,41C)によって塞がれるので、ブッシング導体とT型ケーブルヘッドの接続部は、絶縁体で覆われ、外部に露出しない。 The conductor portions in the T-type cable heads 40A, 40B, and 40C connected to the distal ends of the cables 42A, 42B, and 42C are bolted to the distal ends of the bushing conductors 12A, 12B, and 12C, respectively. This conductor is housed in a T-shaped insulating resin. The T-shaped head portion has a hollow portion for fitting with the bushing portion and fastening of the conductor portion bolt, and both ends of the head portion are open. Since the opening on the bolt fastening portion side is closed by the insulating plugs (41A, 41B, 41C), the connecting portion between the bushing conductor and the T-type cable head is covered with an insulator and is not exposed to the outside.
 図7に示すように、本実施例1の真空開閉器では、真空バルブ1、気中絶縁操作ロッド20および電磁操作器30が、真空開閉器の長手方向に沿って、同軸に、かつ略一直線上に配置される。また、ブッシング導体12A,12B,12Cは、真空開閉器の長手方向に対して垂直な方向、すなわち可動電極5a、可動導体5b並びに気中絶縁操作ロッド20の可動方向に垂直な方向、かつベース81における真空開閉器を固定する平面に対して平行な方向に突出している。これにより、ケーブルを接続したときに、電磁操作器30とT型ケーブルヘッド40A,40B,40Cが干渉しないため、ケーブル接続後おける真空開閉器の高さ寸法および幅寸法を低減できる。 As shown in FIG. 7, in the vacuum switch according to the first embodiment, the vacuum valve 1, the air-insulating operating rod 20, and the electromagnetic operating unit 30 are coaxially and substantially straight along the longitudinal direction of the vacuum switching unit. Arranged on the line. The bushing conductors 12A, 12B, and 12C are perpendicular to the longitudinal direction of the vacuum switch, that is, the direction perpendicular to the movable direction of the movable electrode 5a, the movable conductor 5b, and the air-insulating operating rod 20, and the base 81. It protrudes in a direction parallel to the plane for fixing the vacuum switch. Thereby, when the cable is connected, the electromagnetic operating device 30 and the T-type cable heads 40A, 40B, and 40C do not interfere with each other, so that the height and width of the vacuum switch after the cable connection can be reduced.
 上述のように、本実施例1によれば、真空開閉器の構成部分をモールドする固体絶縁物21の表面を接地層23で覆うとともに、固体絶縁物内において、気中絶縁操作ロッド20と可動導体5bとの接続部の周囲を覆うように導電性シールド13を設けることにより、接地層23を設けながらも、真空開閉器の絶縁性能を向上できる。また、ケーブル接続後の真空開閉器の高さ寸法および幅寸法を低減できるため、鉄道車両などにおける真空開閉器の設置場所の自由度を高めることができる。また、真空開閉器の表面が接地層23で覆われていることにより、真空開閉器と周辺機器との間の絶縁距離を低減できるので、真空開閉器と周辺機器とを合わせた総設置スペースを低減できる。 As described above, according to the first embodiment, the surface of the solid insulator 21 for molding the constituent parts of the vacuum switch is covered with the ground layer 23, and the air insulating operation rod 20 and the movable member are movable in the solid insulator. By providing the conductive shield 13 so as to cover the periphery of the connection portion with the conductor 5b, the insulation performance of the vacuum switch can be improved while the ground layer 23 is provided. Moreover, since the height dimension and width dimension of the vacuum switch after the cable connection can be reduced, the degree of freedom of the installation location of the vacuum switch in a railway vehicle or the like can be increased. Moreover, since the insulation distance between the vacuum switch and the peripheral device can be reduced by covering the surface of the vacuum switch with the ground layer 23, the total installation space including the vacuum switch and the peripheral device can be reduced. Can be reduced.
 図8は、本発明の実施例2である真空開閉器を、長手方向に沿って切断した場合の断面図である。以下、主に、実施例1と異なる点について説明する。 FIG. 8 is a cross-sectional view of the vacuum switch according to the second embodiment of the present invention cut along the longitudinal direction. Hereinafter, differences from the first embodiment will be mainly described.
 まず、本実施例2については、実施例1と同様に、固体絶縁物内壁22は、気中絶縁操作ロッド20と可動導体5bとの接続部に隣接する部分から導電性シールド13の先端部に隣接する部分までは内径が略一定の円筒状の第1の内壁面を有し、導電性シールド13の先端部に隣接する部分において、気中側に向って凸になる曲面を有し、導電性シールド13の先端部に隣接する部分から電磁操作器30に向って延びる部分において、第1の内壁面よりも大きな内径を有する内径が略一定の円筒状の第2の内壁面を有する。そして、第1の内壁面と、気中側に向って凸になる曲面である内壁表面と、第2の内壁面は滑らかに連続している。 First, in the second embodiment, as in the first embodiment, the solid insulator inner wall 22 extends from the portion adjacent to the connection portion between the air-insulating operation rod 20 and the movable conductor 5b to the tip portion of the conductive shield 13. The adjacent inner portion has a cylindrical first inner wall surface with a substantially constant inner diameter, and a portion adjacent to the tip of the conductive shield 13 has a curved surface that protrudes toward the air, and is electrically conductive. The portion extending toward the electromagnetic actuator 30 from the portion adjacent to the distal end portion of the conductive shield 13 has a cylindrical second inner wall surface having a substantially larger inner diameter than the first inner wall surface. The first inner wall surface, the inner wall surface that is a curved surface that protrudes toward the air side, and the second inner wall surface are smoothly continuous.
 本実施例2においては、実施例1と異なり、第2の内壁面に隣接する固体絶縁物21の総厚みは、第1の内壁面に隣接する固体絶縁物21の総厚みよりも小さい。すなわち、第2の内壁面に隣接する固体絶縁物21の総厚みは、例えば、図6中のA部における厚さ寸法a,bおよび導電性シールド13の厚さを合わせた厚さ、あるいは厚さ寸法a,bを合わせた厚さよりも小さな厚さに設定される。 In the second embodiment, unlike the first embodiment, the total thickness of the solid insulator 21 adjacent to the second inner wall surface is smaller than the total thickness of the solid insulator 21 adjacent to the first inner wall surface. That is, the total thickness of the solid insulator 21 adjacent to the second inner wall surface is, for example, a thickness obtained by combining the thickness dimensions a and b in the portion A in FIG. The thickness is set to be smaller than the combined thickness of the dimensions a and b.
 すなわち、本実施例2においては、固体絶縁物21において、電界が集中し易い導電性シールド13の先端部に隣接する部分から電磁操作器30側に離れた部分、すなわち導電性シールド13の先端部に隣接する部分よりも電界強度が低くなる部分における固体絶縁物21の厚さが低減される。これにより、真空開閉器の絶縁性能に影響することなく、固体絶縁物21の重量を低減されるので、真空開閉器を軽量化できる。 That is, in the second embodiment, in the solid insulator 21, a portion away from the portion adjacent to the tip of the conductive shield 13 where the electric field is likely to concentrate to the electromagnetic actuator 30 side, that is, the tip of the conductive shield 13. The thickness of the solid insulator 21 in the portion where the electric field strength is lower than that in the portion adjacent to is reduced. Thereby, since the weight of the solid insulator 21 is reduced without affecting the insulation performance of the vacuum switch, the vacuum switch can be reduced in weight.
 図9は、本発明の実施例3である真空開閉器の外観を示す。図9中の破線は、内部構造を示す。なお、図9は、真空開閉器を、鉄道車両に設置された状態における、平面図である。従って、真空開閉器の長手方向が鉄道車両の長手方向に沿っている。以下、主に、実施例1と異なる点について説明する。 FIG. 9 shows the appearance of a vacuum switch that is Embodiment 3 of the present invention. The broken line in FIG. 9 shows an internal structure. FIG. 9 is a plan view of the vacuum switch installed in a railway vehicle. Therefore, the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle. Hereinafter, differences from the first embodiment will be mainly described.
 本実施例3では、実施例1と異なり、可動導体5b側において、一個のみのブッシング導体12Bが設けられる。すなわち、本実施例3の真空開閉器は、直線ジョイントおよびT型ジョイントとしての機能の内、ブッシング導体12Aに接続されるケーブル(図7の42Aに相当)とブッシング導体12Bに接続されるケーブル(図7の42Bに相当)を接続する直線ジョイントとしての機能のみを有する。 In the third embodiment, unlike the first embodiment, only one bushing conductor 12B is provided on the movable conductor 5b side. That is, the vacuum switch according to the third embodiment has a cable connected to the bushing conductor 12A (corresponding to 42A in FIG. 7) and a cable connected to the bushing conductor 12B among the functions as the linear joint and the T-shaped joint ( 7 corresponds to 42B in FIG. 7).
 本実施例3によれば、鉄道車両のように、ケーブルの分岐を有する箇所とケーブルの分岐を有さない個所がある場合に、ケーブルの分岐を有さない個所において、直線ジョイントと一体化される真空開閉器の絶縁性能を向上できるとともに、真空開閉器と周辺機器との間の絶縁距離を低減できる。また、ケーブル接続後の真空開閉器の高さ寸法および幅寸法を低減できる。 According to the third embodiment, when there is a part having a cable branch and a part having no cable branch, as in a railway vehicle, the part is not integrated with the linear joint at a part having no cable branch. The insulation performance of the vacuum switch can be improved, and the insulation distance between the vacuum switch and peripheral devices can be reduced. Moreover, the height dimension and width dimension of the vacuum switch after cable connection can be reduced.
 図10は、本発明の実施例4である真空開閉器の外観を示す。図10中の破線は、内部構造を示す。なお、図10は、真空開閉器を、鉄道車両に設置された状態における、平面図である。従って、真空開閉器の長手方向が鉄道車両の長手方向に沿っている。以下、主に、実施例1と異なる点について説明する。 FIG. 10 shows the appearance of a vacuum switch that is Embodiment 4 of the present invention. The broken line in FIG. 10 shows an internal structure. FIG. 10 is a plan view of the vacuum switch installed in a railway vehicle. Therefore, the longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle. Hereinafter, differences from the first embodiment will be mainly described.
 本実施例4では、実施例1と同様に、可動電極5a側に2個のブッシング導体12B,12Cが設けられるが、実施例1と異なり、固定電極3a側にも2個のブッシング導体12A,12Dが設けられる。これにより、本実施例3の真空開閉器は、ブッシング導体12Aに接続されるケーブル(図7の42Aに相当)とブッシング導体12Bに接続されるケーブル(図7の42Bに相当)を接続する直線ジョイントとしての機能と、ブッシング導体12Cに接続されるケーブル(図7の42Cに相当)を可動電極5a側で分岐するT型ジョイントとしての機能と、ブッシング導体12Dに接続されるケーブルを固定側で分岐するT型ジョイントとしての機能を有する。 In the fourth embodiment, as in the first embodiment, two bushing conductors 12B and 12C are provided on the movable electrode 5a side. However, unlike the first embodiment, the two bushing conductors 12A and 12A are also provided on the fixed electrode 3a side. 12D is provided. Thereby, the vacuum switch according to the third embodiment has a straight line that connects a cable (corresponding to 42A in FIG. 7) connected to the bushing conductor 12A and a cable (corresponding to 42B in FIG. 7) connected to the bushing conductor 12B. The function as a joint, the function as a T-shaped joint for branching the cable (corresponding to 42C in FIG. 7) connected to the bushing conductor 12C on the movable electrode 5a side, and the cable connected to the bushing conductor 12D on the fixed side It functions as a T-joint that branches off.
 本実施例では、可動電極5a側に加え、固定電極3a側でもケーブルを分岐することが可能になるため、き電回路の回路構成の自由度を拡大できる。 In this embodiment, since the cable can be branched not only on the movable electrode 5a side but also on the fixed electrode 3a side, the flexibility of the circuit configuration of the feeder circuit can be expanded.
 図11は、本発明の実施例5である真空開閉器の外観を示す。図11中の破線は、内部構造を示す。なお、図11は、真空開閉器を、鉄道車両に設置された状態における、長手方向に沿った側面図である。なお、真空開閉器の長手方向が鉄道車両の長手方向に沿っている。以下、主に、実施例1と異なる点について説明する。 FIG. 11 shows the appearance of a vacuum switch that is Embodiment 5 of the present invention. The broken line in FIG. 11 shows an internal structure. In addition, FIG. 11 is a side view along the longitudinal direction in a state where the vacuum switch is installed in the railway vehicle. The longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle. Hereinafter, differences from the first embodiment will be mainly described.
 本実施例5においては、図11に示すように、気中絶縁操作ロッド20と電磁操作器30は同軸には配置されず、真空開閉器の設置状態において、ベース81からの高さを気中絶縁操作ロッド20と、電磁操作器30の可動操作軸とで異ならしめる。気中絶縁操作ロッド20と、電磁操作器30の可動操作軸とは、操作リンク部31のほか、リンク84を介して接続される。すなわち、気中絶縁操作ロッド20と、電磁操作器30の可動操作軸とは、リンク84を介して、非同軸に連結される。これにより、電磁操作器のストロークと気中絶縁操作ロッド20のストロークを異ならしめることができ、両者の設定の自由度が拡大する。従って、ストローク調整の作業性が向上する。また、リンク84に梃子として動作する機構を備えることにより、電磁操作器30の出力を低減できる。これにより、電磁操作器30を小型化できる。従って、電磁操作器30を機構ケース82に収納できる。 In the fifth embodiment, as shown in FIG. 11, the air-insulating operating rod 20 and the electromagnetic operating device 30 are not arranged coaxially, and the height from the base 81 is set in the air when the vacuum switch is installed. The insulation operation rod 20 and the movable operation shaft of the electromagnetic operation device 30 are made different. The air-insulated operating rod 20 and the movable operating shaft of the electromagnetic operating device 30 are connected via a link 84 in addition to the operating link portion 31. That is, the air insulation operating rod 20 and the movable operating shaft of the electromagnetic operating device 30 are connected non-coaxially via the link 84. Thereby, the stroke of the electromagnetic operating device and the stroke of the air-insulated operating rod 20 can be made different, and the degree of freedom of setting of both is expanded. Therefore, the workability of stroke adjustment is improved. Further, by providing the link 84 with a mechanism that operates as a lever, the output of the electromagnetic operating device 30 can be reduced. Thereby, the electromagnetic operating device 30 can be reduced in size. Therefore, the electromagnetic operating device 30 can be stored in the mechanism case 82.
 図12は、本発明の実施例6である真空開閉器の外観を示す。図12中の破線は、内部構造を示す。なお、図12は、真空開閉器を、鉄道車両の屋根上に設置された状態における、長手方向に沿った側面図である。真空開閉器の長手方向が鉄道車両の長手方向に沿っている。また、図12は、真空開閉器にT型ケーブルヘッドを接続した状態を示す。以下、主に、実施例1と異なる点について説明する。 FIG. 12 shows the appearance of a vacuum switch that is Embodiment 6 of the present invention. The broken line in FIG. 12 shows an internal structure. In addition, FIG. 12 is a side view along the longitudinal direction in a state where the vacuum switch is installed on the roof of the railway vehicle. The longitudinal direction of the vacuum switch is along the longitudinal direction of the railway vehicle. FIG. 12 shows a state in which a T-type cable head is connected to the vacuum switch. Hereinafter, differences from the first embodiment will be mainly described.
 図12に示すように、本実施例6では、真空開閉器のベース81が車両屋根86の上に設置される。また、固定導体3b側の2個のブッシング導体12A,12Dと可動導体5b側のブッシング導体12Cが、真空開閉器の長手方向に対して垂直な方向、かつベース81の平面に対して垂直方向に設けられる。すなわち、ブッシング導体12A,12C,12Dは、真空開閉器の取り付け平面に垂直な方向に突出する。これにより、ブッシング導体12Aは車両屋根86の下の車内側に突き出され、ブッシング導体12Aに接続されるケーブルを車両屋根86の下で引き回すことができる。 As shown in FIG. 12, in the present Example 6, the base 81 of a vacuum switch is installed on the vehicle roof 86. FIG. In addition, the two bushing conductors 12A and 12D on the fixed conductor 3b side and the bushing conductor 12C on the movable conductor 5b side are perpendicular to the longitudinal direction of the vacuum switch and perpendicular to the plane of the base 81. Provided. That is, the bushing conductors 12A, 12C, 12D protrude in a direction perpendicular to the mounting plane of the vacuum switch. As a result, the bushing conductor 12A protrudes to the inside of the vehicle under the vehicle roof 86, and the cable connected to the bushing conductor 12A can be routed under the vehicle roof 86.
 なお、本実施例6のブッシング導体の構成(固定導体側2個、可動導体側1個)によっても(実施例1では、固定導体側1個、可動導体側2個)、真空開閉器は、直線ジョイント機能とT分岐ジョイントの機能を有することができる。 Note that the vacuum switch according to the configuration of the bushing conductor of Example 6 (two fixed conductors and one movable conductor) (in Example 1, one fixed conductor and two movable conductors) It can have a straight joint function and a T-branch joint function.
 なお、ベース81の取り付け場所は、本実施例6のような車両屋根86の上に限らず、車両屋根下、車両床上、車両床下などでもよい。いずれの場合も、ベース81に対して真空開閉器が位置する側とは反対側において、ブッシング導体12Aが突き出され、ケーブルを引き回すことが可能となる。従って、真空開閉器の配置の自由度が拡大する。 In addition, the mounting location of the base 81 is not limited to the vehicle roof 86 as in the sixth embodiment, but may be the vehicle roof, the vehicle floor, the vehicle floor, or the like. In any case, the bushing conductor 12A protrudes on the side opposite to the side where the vacuum switch is located with respect to the base 81, and the cable can be routed. Accordingly, the degree of freedom of arrangement of the vacuum switch is expanded.
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 例えば、本発明による真空開閉器は、鉄道車両用に限らず、各種の受電設備や配電設備に適用できる。また、本発明による真空開閉器は、その長手方向が、設置場所の水平面に対して垂直方向になるように、設置されても良い。 For example, the vacuum switch according to the present invention is applicable not only to railway vehicles but also to various power receiving facilities and power distribution facilities. Moreover, the vacuum switch according to the present invention may be installed such that its longitudinal direction is perpendicular to the horizontal plane of the installation location.
PG1,PG2 パンタグラフ、RC1,RC2,RC3,RC4,RC5 高圧引き通しケーブル、SJ1,SJ2,SJ3,SJ4 直線ジョイント、TJ1,TJ2 T分岐ジョイント、Tr1,Tr2,Tr3 主変圧器、VCB1,VCB2,VCB3 受電用真空遮断器、1 真空バルブ、2 ベローズ、3a 固定電極、3b 固定導体、5a 可動電極、5b 可動導体、6 アークシールド、7 セラミック絶縁筒、8 ガイド、10A,10B,10C,10D 接続部、12,12A,12B,12C,12D ブッシング導体、13 導電性シールド、20 気中絶縁操作ロッド、21 固体絶縁物、22 固体絶縁物内壁、23 接地層、24 金属アダプタ、25 ハウジング、26 軸受、27 可撓性導体、30 電磁操作器、31 操作リンク部、40A,40B,40C,40D T型ケーブルヘッド、41A,41B,41C,41D 絶縁栓、42A,42B,42C,42D ケーブル、81 ベース、82 機構ケース、83A,83B,83C ステー、84 リンク、86 車両屋根 PG1, PG2, pantograph, RC1, RC2, RC3, RC4, RC5, high-voltage through cable, SJ1, SJ2, SJ3, SJ4, straight joint, TJ1, TJ2, T branch joint, Tr1, Tr2, Tr3 main transformer, VCB1, VCB2, VCB3 Power receiving vacuum circuit breaker, 1 vacuum valve, 2 bellows, 3a fixed electrode, 3b fixed conductor, 5a movable electrode, 5b movable conductor, 6 arc shield, 7 ceramic insulation cylinder, 8 guide, 10A, 10B, 10C, 10D connection 12, 12A, 12B, 12C, 12D Bushing conductor, 13 Conductive shield, 20 Air insulation operation rod, 21 Solid insulation, 22 Solid insulation inner wall, 23 Grounding layer, 24 Metal adapter, 25 Housing, 26 Bearing, 27 Flexible conductor 30 electromagnetic actuator, 31 operation link section, 40A, 40B, 40C, 40D T type cable head, 41A, 41B, 41C, 41D insulation plug, 42A, 42B, 42C, 42D cable, 81 base, 82 mechanism case, 83A, 83B, 83C stay, 84 links, 86 vehicle roof

Claims (14)

  1.  固定電極および可動電極と、前記固定電極に接続される固定導体と、前記可動電極に接続される可動導体とを有する真空バルブと、
     前記可動導体に機械的に接続される絶縁操作ロッドと、
     前記絶縁操作ロッドを操作する操作器と、
     前記真空バルブを被覆する固体絶縁物と、
    を備える固体絶縁形の真空開閉器において、
     前記固体絶縁物の外表面を覆う接地層が設けられ、
     前記固体絶縁物内において、前記可動導体と前記絶縁操作ロッドとの接続部の周囲を覆う導電性シールドが設けられることを特徴とする固体絶縁形の真空開閉器。
    A vacuum valve having a fixed electrode and a movable electrode, a fixed conductor connected to the fixed electrode, and a movable conductor connected to the movable electrode;
    An insulating operating rod mechanically connected to the movable conductor;
    An operating device for operating the insulating operating rod;
    A solid insulator covering the vacuum valve;
    In a solid insulation type vacuum switch comprising:
    A grounding layer covering the outer surface of the solid insulator is provided;
    A solid-insulated vacuum switch characterized in that a conductive shield is provided in the solid insulator to cover a periphery of a connection portion between the movable conductor and the insulating operation rod.
  2.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記導電性シールドは、前記固体絶縁物の内壁よりも前記接地層に近づけて配置されることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    The solid insulated vacuum switch is characterized in that the conductive shield is disposed closer to the ground layer than an inner wall of the solid insulator.
  3.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記固体絶縁物の内壁と前記導電性シールドとの間の前記固体絶縁物の厚さが、前記接地層と前記導電性シールドとの間の前記固体絶縁物の厚さよりも大きいことを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    The thickness of the solid insulator between the inner wall of the solid insulator and the conductive shield is greater than the thickness of the solid insulator between the ground layer and the conductive shield. Solid insulation type vacuum switch.
  4.  請求項1乃至3の何れか一項に記載の固体絶縁形の真空開閉器において、
     前記導電性シールドの先端部は前記接地層に向って曲がっていることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to any one of claims 1 to 3,
    A solid-insulated vacuum switch characterized in that a tip portion of the conductive shield is bent toward the ground layer.
  5.  請求項1乃至3の何れか一項に記載の固体絶縁形の真空開閉器において、
     前記導電性シールドの先端部に隣接する前記固体絶縁物の内壁表面は、気中側に向けて凸となる曲面を有することを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to any one of claims 1 to 3,
    The solid insulating vacuum switch characterized in that the inner wall surface of the solid insulator adjacent to the tip of the conductive shield has a curved surface that protrudes toward the air.
  6.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記導電性シールドの先端部と前記操作器との間に隣接する前記固体絶縁物の厚さが、前記可動導体と前記絶縁操作ロッドとの前記接続部と、前記導電性シールドの前記先端部との間に隣接する前記固体絶縁物の厚さよりも小さいことを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    The thickness of the solid insulator adjacent between the distal end portion of the conductive shield and the manipulator is such that the connecting portion between the movable conductor and the insulating operation rod, the distal end portion of the conductive shield, A solid insulation type vacuum switch having a thickness smaller than the thickness of the solid insulation adjacent to each other.
  7.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記固定導体に接続される第1のブッシング導体と、
     前記可動導体に接続される第2のブッシング導体と、
    を備え、
     前記第1のブッシング導体および前記第2のブッシング導体は前記固体絶縁物によって覆われることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    A first bushing conductor connected to the fixed conductor;
    A second bushing conductor connected to the movable conductor;
    With
    The solid-insulated vacuum switch, wherein the first bushing conductor and the second bushing conductor are covered with the solid insulator.
  8.  請求項7に記載の固体絶縁形の真空開閉器において、
     前記固定導体または前記可動導体に接続される第3のブッシング導体を備え、
     前記第3のブッシング導体は前記固体絶縁物によって覆われることを特徴とする固体絶縁形の真空開閉器。
    In the solid insulation type vacuum switch according to claim 7,
    A third bushing conductor connected to the fixed conductor or the movable conductor;
    The third bushing conductor is covered with the solid insulator, and is a solid insulation type vacuum switch.
  9.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記固定導体および前記可動導体に接続される複数のブッシング導体を備え、
     前記複数のブッシング導体は前記固体絶縁物で覆われ、
     前記複数のブッシング導体は、前記可動電極および前記可動導体並びに前記絶縁操作ロッドの可動方向に垂直な方向に設けられることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    A plurality of bushing conductors connected to the fixed conductor and the movable conductor;
    The plurality of bushing conductors are covered with the solid insulator;
    The plurality of bushing conductors are provided in a direction perpendicular to a movable direction of the movable electrode, the movable conductor, and the insulating operation rod.
  10.  請求項9に記載の固体絶縁形の真空開閉器において、
     前記可動電極および前記可動導体並びに前記絶縁操作ロッドは同軸に連結されることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 9,
    A solid-insulated vacuum switch, wherein the movable electrode, the movable conductor, and the insulating operating rod are connected coaxially.
  11.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記固定導体および前記可動導体に接続される複数のブッシング導体を備え、
     前記複数のブッシング導体は前記固体絶縁物で覆われ、
     前記複数のブッシング導体は、前記真空開閉器の取り付け平面に平行な方向に突出することを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    A plurality of bushing conductors connected to the fixed conductor and the movable conductor;
    The plurality of bushing conductors are covered with the solid insulator;
    The plurality of bushing conductors protrude in a direction parallel to a mounting plane of the vacuum switch.
  12.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記固定導体および前記可動導体に接続される複数のブッシング導体を備え、
     前記複数のブッシング導体は前記固体絶縁物で覆われ、
     前記複数のブッシング導体は、前記真空開閉器の取り付け平面に垂直な方向に突出することを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    A plurality of bushing conductors connected to the fixed conductor and the movable conductor;
    The plurality of bushing conductors are covered with the solid insulator;
    The plurality of bushing conductors protrude in a direction perpendicular to a mounting plane of the vacuum switch.
  13.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記絶縁操作ロッドと、前記操作器の可動操作軸とが、同軸に連結されることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    A solid-insulated vacuum switch, wherein the insulating operating rod and the movable operating shaft of the operating device are connected coaxially.
  14.  請求項1に記載の固体絶縁形の真空開閉器において、
     前記絶縁操作ロッドと、前記操作器の可動操作軸とが、リンク部を介して非同軸に連結されることを特徴とする固体絶縁形の真空開閉器。
    The solid-insulated vacuum switch according to claim 1,
    A solid-insulated vacuum switch, wherein the insulating operating rod and the movable operating shaft of the operating device are connected non-coaxially via a link portion.
PCT/JP2019/004839 2018-03-19 2019-02-12 Solid dielectric vacuum switchgear WO2019181271A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980017184.3A CN111837213B (en) 2018-03-19 2019-02-12 Solid insulation type vacuum switch
EP19770731.8A EP3770938A4 (en) 2018-03-19 2019-02-12 Solid dielectric vacuum switchgear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018050985A JP6933598B2 (en) 2018-03-19 2018-03-19 Solid insulation type vacuum switch
JP2018-050985 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181271A1 true WO2019181271A1 (en) 2019-09-26

Family

ID=67987017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004839 WO2019181271A1 (en) 2018-03-19 2019-02-12 Solid dielectric vacuum switchgear

Country Status (4)

Country Link
EP (1) EP3770938A4 (en)
JP (1) JP6933598B2 (en)
CN (1) CN111837213B (en)
WO (1) WO2019181271A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320305A (en) * 2001-04-19 2002-10-31 Toshiba Corp Switch gear, and method of sealing mobile section thereof
JP2003111225A (en) * 2001-10-02 2003-04-11 Toshiba Corp Switchgear
JP2012069345A (en) 2010-09-22 2012-04-05 Nissin Electric Co Ltd Vacuum circuit breaker and switchgear
WO2012063501A1 (en) * 2010-11-12 2012-05-18 三菱電機株式会社 Gas insulated switching device
JP2013048024A (en) * 2011-08-29 2013-03-07 Hitachi Ltd Switchgear and method of operating switchgear
WO2015178072A1 (en) * 2014-05-22 2015-11-26 株式会社日立製作所 Unit switch, switching device, and railroad car
JP2016092871A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Switch gear
JP2017021939A (en) 2015-07-08 2017-01-26 株式会社東芝 Epoxy resin insulation vacuum valve

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD241810A1 (en) * 1985-10-16 1986-12-24 Buchwitz Otto Starkstrom SWITCHPOL FOR CIRCUIT BREAKER
US6373015B1 (en) * 2000-01-03 2002-04-16 Eaton Corporation Integral load connector module
KR20050110064A (en) * 2004-05-17 2005-11-22 주식회사 비츠로테크 Embeded vacuum interrupter in epoxy barrier for vacuum circuit breaker
CN101859662A (en) * 2010-06-28 2010-10-13 郑文秀 Cross full-shielded vacuum circuit breaker
CN102882149B (en) * 2012-09-07 2015-12-23 北海银河开关设备有限公司 Solid insulation pole moved end screening arrangement
CN104201042A (en) * 2014-09-04 2014-12-10 麦克奥迪(厦门)电气股份有限公司 Polar column inner chamber shielding structure of solid insulation switch
CN104269316B (en) * 2014-09-10 2018-03-02 平高集团有限公司 Pole and the solid insulation ring main unit using the pole
JP2016219175A (en) * 2015-05-18 2016-12-22 株式会社東芝 Resin molded vacuum valve and manufacturing method
CN106128850A (en) * 2016-08-24 2016-11-16 厦门普力维电气科技有限公司 A kind of outdoor high-voltage pole or automatic circuit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320305A (en) * 2001-04-19 2002-10-31 Toshiba Corp Switch gear, and method of sealing mobile section thereof
JP2003111225A (en) * 2001-10-02 2003-04-11 Toshiba Corp Switchgear
JP2012069345A (en) 2010-09-22 2012-04-05 Nissin Electric Co Ltd Vacuum circuit breaker and switchgear
WO2012063501A1 (en) * 2010-11-12 2012-05-18 三菱電機株式会社 Gas insulated switching device
JP2013048024A (en) * 2011-08-29 2013-03-07 Hitachi Ltd Switchgear and method of operating switchgear
WO2015178072A1 (en) * 2014-05-22 2015-11-26 株式会社日立製作所 Unit switch, switching device, and railroad car
JP2016092871A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Switch gear
JP2017021939A (en) 2015-07-08 2017-01-26 株式会社東芝 Epoxy resin insulation vacuum valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770938A4

Also Published As

Publication number Publication date
EP3770938A4 (en) 2022-03-09
JP2019164900A (en) 2019-09-26
JP6933598B2 (en) 2021-09-08
CN111837213B (en) 2022-08-26
CN111837213A (en) 2020-10-27
EP3770938A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
US8710388B2 (en) Switchgear and method for operating switchgear
KR101010295B1 (en) Vacuum switch gear
TWI501492B (en) Switch unit and switch device
JP6328998B2 (en) Unit switch, switchgear, and railway vehicle
US20090159568A1 (en) Vacuum insulated switchgear
EP1152444A1 (en) Switch gear
CN108454413B (en) Switch unit for railway vehicle
JP6713940B2 (en) Radiator for solid insulated switchgear unit, solid insulated switchgear unit, and railway vehicle
KR101736290B1 (en) Railroad vehicle
WO2019181271A1 (en) Solid dielectric vacuum switchgear
WO2017199465A1 (en) Branching unit and vehicular system
EP3300096A1 (en) Switch unit and rail car using the same
JP6783720B2 (en) Vacuum switchgear
WO2023119453A1 (en) Switch
JP6951201B2 (en) Switch unit and railroad vehicle using it
JP7141377B2 (en) RAILWAY CAR SWITCH AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019770731

Country of ref document: EP

Effective date: 20201019