JP4048728B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP4048728B2
JP4048728B2 JP2001117797A JP2001117797A JP4048728B2 JP 4048728 B2 JP4048728 B2 JP 4048728B2 JP 2001117797 A JP2001117797 A JP 2001117797A JP 2001117797 A JP2001117797 A JP 2001117797A JP 4048728 B2 JP4048728 B2 JP 4048728B2
Authority
JP
Japan
Prior art keywords
movable
electrode
fixed
fixed electrode
energizing shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001117797A
Other languages
Japanese (ja)
Other versions
JP2002313197A (en
Inventor
和徳 内藤
利眞 深井
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2001117797A priority Critical patent/JP4048728B2/en
Publication of JP2002313197A publication Critical patent/JP2002313197A/en
Application granted granted Critical
Publication of JP4048728B2 publication Critical patent/JP4048728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/003Earthing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は真空バルブに関し、絶縁性能を向上し信頼性の優れた、しかも、単なる接続・開放をするのみならず断路機能を持つことができるように工夫したものである。本発明の真空バルブは、真空遮断器,真空断路器,真空接地断路器,真空切換断路器やこれら機器を収納して構成した受配電装置に適用することができる。
【0002】
【従来の技術】
母線から受電した電力は、受配電装置を用いて、各種の負荷機器、他の電気室に配電される。この受配電装置は、母線及びケーブルとの接続,接地回路への接続,回路の接離のための各開閉装置と、それを駆動する操作装置と、監視制御に必要な制御機器等の内部機器とを、接地金属製の外箱内に適宜に配設して構成されている。
【0003】
この種の受配電装置に使用する開閉装置として、特開2000−188046号公報に開示される真空バルブ及び特開平11−041726号公報に開示される真空バルブがある。
【0004】
ここで特開2000−188046号公報に開示される真空バルブを、図11を参照して説明する。図11において、セラミックまたはガラスからなる円筒型の真空容器1の両端開口部を、固定側蓋板3aおよび可動側蓋板3bで気密封着し,真空容器1の中間に可動側引出し電極8bを備えている。真空容器1の内部には、接触子6aを備えた固定側電極5aと、この固定側電極5aと対向するように接触子6bを備えた可動側電極5bとを配置している。また、固定側電極5aは、固定側蓋板3aに支持固定された固定側通電軸4aに接続しており、固定側引出し電極8aで図示しない真空バルブの外部導体と接続している。さらに、可動側電極5bは、フレキシブルコンダクターや平網線等の伸縮性を有する導体7と接続された可動側通電軸4bと接続しており、真空容器1の側面に配置した可動側引出し電極8bで図示しない真空バルブの外部導体と接続している。
【0005】
さらにまた、可動側通電軸4bと操作ロッド12との間には、セラミック等の絶縁物で作られた絶縁棒9を接続し、この絶縁棒9と可動側蓋板3bとの間に、ベローズカバー10を備えたベローズ11を設けている。そして、真空バルブの外部に設けられた操作機構にて操作ロッド12を軸方向に稼働することにより、真空容器1内の固定側電極5aおよび可動側電極5bからなる一対の電極を接離自在としている。
【0006】
以上のように構成した真空バルブにおいては、真空容器1内の可動側通電軸4bとベローズ11との間に絶縁棒9を挿入し、真空容器1の側面に配置した可動側引出し電極8bをフレキシブルコンダクター等の導体7で接続していることにより、固定側引出し電極8aから真空バルブ内へ流れた電流は、固定側電極5aおよび可動側電極5bを介して可動側通電軸4bへ流れ、さらに導体7を介して真空容器1の側面に配置した可動側引出し電極8bより真空バルブ外部へ引き出すことができる。この結果、ベローズ11,可動側蓋板3b及び操作ロッド12は、接地電位となる。
【0007】
以上により、可動側電極5bを駆動する操作機構と真空容器1との間に従来から設けられていた絶縁ロッドが必要なくなり、直接真空バルブを操作することができる。また、操作ロッド12の絶縁媒体が気中よりも優れた絶縁特性を有する真空中となるため、操作ロッド12の絶縁距離を大幅に短縮することができ、もって本真空バルブを操作する遮断器もしくは断路器自体の小形化を図る構造となる。
【0008】
次に、特開平11−041726号公報に開示される真空バルブを、図12を参照して説明する。図12において、相スイッチギヤは遮断機能,断路機能,接地機能及び母線を一体に集合したものである。即ち、相スイッチギヤは主として固定電極05と接地装置06との間を移動する可動電極07とから構成している。固定電極05は内部母線08に接続している。可動電極07は負荷側導体09に接続し、負荷側導体09は真空容器外に伸びるケーブルヘッドに接続している。また可動電極07は可動ブレードと機械的に連結し、図示していない操作機構部により駆動される可動ブレードの回動により上下方向或いは左右方向に回動する。可動電極07が固定電極05から接地装置06まで移動し、4位置に停止する。
【0009】
即ち、可動電極07が回動するのに応じて、可動電極07が固定電極05に接触する投入位置Y1で通電し、投入位置Y1より下側に回動して遮断位置Y2で可動電極07が固定電極05と離れ電流を遮断する。更に下側に回動して断路位置Y3で可動電極07が固定電極05と離れ、雷などで絶縁破壊しないこと及び負荷導体側で作業員が感電しない絶縁距離を取る。更に下側に可動電極07が回動して接地位置Y4で可動電極07が接地装置06と接触する。尚、断路位置Y3を省略して遮断位置Y2から接地位置Y4に移動しても本装置の下記効果を損なうものではない。
【0010】
本装置では、高絶縁体である真空中で、可動電極07が固定電極05から接地装置06に回動する間に、一つの操作で連続的に4位置すなわち機能を持つことができるので、操作がしやすく使い勝手が良い。また可動電極07,固定電極05,接地装置06を一箇所に集合化したので、より小型化することができる。更に断路位置Y3を設けると、異電源突合せ例えば2つの系統電源を持つ2回線受電において、いずれか1回線の相スイッチギヤが投入位置Y1で運転中にあり、他回線の相が断路位置Y3で待機中の時には、この回路の負荷側導体09に作業員が接触しても安全である。しかも、待機中から運転或いは運転中から待機に切り替える場合も連続して操作できるので、作業スピードが速く、操作がしやすい。
【0011】
本装置では可動電極07がフレキシブル導体022で負荷側導体09と可動電極07との間を接続しており、可動電極07及び負荷側導体09の溶着が生じることがなく、操作機構部の回動力は大きくならず、操作機構部も小型化することができるばかりか、可動電極07及び負荷側導体09の寿命も長くなり、経済的にも有利である。またフレキシブル導体022で負荷側導体09と可動電極07との間を接続しており、可動電極07が負荷側導体09に摺動する時の金属微粒子を発生することもなく、絶縁性能が大幅に向上し、この分、真空容器04を小型化することができる。
【0012】
更に、接地装置及び断路位置を除去しても使用でき、除去したとき更に真空容器,操作機構部を小型化できるので、回路スイッチギヤも当然小型化できる。
【0013】
【発明が解決しようとする課題】
上記した従来の真空バルブ及びこれを用いて構成される受配電装置においては、開閉部について「入」及び「切」の単一の機能しか持たず、市場の要求する受配電装置を構成する回路構成に容易に対応することができず、その対応に真空以外の絶縁媒体で製作された他の機能を持つ機器の組合せを余儀なくされている。このため、回路の汎用性、機器間の接続部の絶縁が容易に行えない等の問題が残っており、受配電装置として組み込んだときにも縮小化が制限される。
【0014】
開閉部について、投入位置・遮断位置に追加して、更に接地位置・断路位置を持つことは、操作機構を複雑にするうえ強度的にも負担を増大させ、寿命・信頼性を低下させる。また、可動電極をブレード方式にて回動させることは、電極接点の精度に対する信頼を低下させ、更に高度の気密を要する真空容器の構造を複雑とし、信頼性、安全性を低下させ、コストを上昇させる。また、母線を含み、主回路開閉部と接地開閉部を同一容器内にて収納することは、縮小化ができる反面、一部での事故や不具合を容器内の全ての要素に波及させ、安全性を低下させると共に事故の拡大、復旧を困難とさせる恐れがある。
【0015】
本発明の目的は、絶縁性能を向上し、信頼性に優れ、かつコンパクトな真空バルブを提供することを目的とする。本発明の真空バルブを用いれば、安全性が高くコンパクトな真空遮断器や受配電装置を低コストにて提供することができる。
【0016】
【課題を解決するための手段】
上記課題を解決する本発明の構成は、絶縁筒の両端面を閉塞してなる真空容器の内部に、固定電極および可動電極からなる接離自在な一対の電極を配設し、
前記可動電極に接続した可動通電軸と当該可動通電軸を軸方向に可動自在に支持するベローズとの間に、絶縁部材を挿入し、
かつ前記真空容器の側面に配置した可動側引出し端子と前記可動通電軸との間を、可撓性を有する導体で接続して構成される真空バルブにおいて、
前記可動通電軸と前記ベローズとの間に挿入した前記絶縁部材は、前記ベローズに接続された操作軸と前記可動通電軸とで固定してあり、
前記可動電極と前記ベローズとの間に中間固定電極を配置し、前記中間固定電極と接しないように前記中間固定電極を貫通して配置した前記可動通電軸に接続した前記可動電極を、前記固定電極と前記中間固定電極との間で切換接離自在に可動する様になし、
前記中間固定電極は前記真空容器の側面に配置した固定側引出し端子と接続し、
前記真空容器は複数のセラミック絶縁筒を接続してなり、前記真空容器の側面に配置した前記固定側引出し端子を接続する下部側のセラミック絶縁筒において、前記固定側引出し端子の下部を支持するように断面を門型に成形したセラミック絶縁筒とすることを特徴とする。
【0017】
また本発明の構成は、絶縁筒の両端面を閉塞してなる真空容器の内部に、固定電極および可動電極からなる接離自在な一対の電極を配設し、
前記可動電極に接続した可動通電軸と当該可動通電軸を軸方向に可動自在に支持するベローズとの間に、絶縁部材を挿入し、
かつ前記真空容器の側面に配置した可動側引出し端子と前記可動通電軸との間を、可撓性を有する導体で接続して構成される真空バルブにおいて、
前記可動通電軸と前記ベローズとの間に挿入した前記絶縁部材は、前記ベローズに接続された操作軸と前記可動通電軸とで固定してあり、
前記可動電極と前記ベローズとの間に中間固定電極を配置し、前記中間固定電極と接しないように前記中間固定電極を貫通して配置した前記可動通電軸に接続した前記可動電極を、前記固定電極と前記中間固定電極との間で切換接離自在に可動する様になし、
前記中間固定電極は前記真空容器の側面に配置した固定側引出し端子と接続し、
前記可動電極は、前記固定電極と前記中間固定電極との間の位置で且つ前記固定電極及び前記中間固定電極に接しない断路位置に占位することができるようにし、
前記真空容器は複数のセラミック絶縁筒を接続してなり、前記真空容器の側面に配置した前記固定側引出し端子を接続する下部側のセラミック絶縁筒において、前記固定側引出し端子の下部を支持するように断面を門型に成形したセラミック絶縁筒とすることを特徴とする。
【0018】
また本発明の構成は、前記真空容器の側面に配置した固定側引出し端子を支持するために配置された補強支持板の内径を、この補強支持板を貫通する前記可動通電軸の外径に合わせることにより、軸方向に可動する前記可動通電軸を前記補強支持板によりガイドすることを特徴とする。
【0020】
また本発明の構成は、前記真空容器の内部には、円筒形をなすと共に基端が固定側引出し端子に接続され先端に丸みをつけた金属シールドが、固定電極及び可動電極を包囲するように配設されていることを特徴とする。
【0026】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。
【0027】
〔第1の実施の形態〕
図1は本発明の第1の実施の形態にかかる真空バルブを示す。同図に示すように、筒形絶縁部材からなる絶縁筒60の両端面を、固定側フランジ61及び本体アダプタ73を接続した可動側フランジ62で気密封着(閉塞)して真空容器が形成されている。なお、本例では3個のセラミック製の絶縁筒60を接続しており、この接続した3個の絶縁筒60の端面を、固定側フランジ61と可動側フランジ62とで閉塞して真空容器を形成している。この真空容器の内部に、ゲッターといった残留ガス吸着材72を封入している。更に真空容器の内部には、固定側フランジ61に固定された固定通電軸66に支持された固定電極65aと、絶縁筒60に側面で固定された固定側引出し端子63に支持された中間固定電極65bが対向配置され、固定電極65aと中間固定電極65bの間の位置に可動電極65cを配置している。
【0028】
更に可動電極65cは、固定側引出し端子63に支持された中間固定電極65bに接しないように貫通配置された可動通電軸67に支持されている。可動電極65cを支持する可動通電軸67は、絶縁部材70を介して、可動側フランジ62に気密封着されたベローズ68に支持された作動軸69に接続され、図示しない真空容器外部の操作装置により駆動される。この結果、可動電極65cは、対向配置した固定電極65aと中間固定電極65bとの間で切換接離される。
【0029】
また可動通電軸67は、絶縁筒60に側面で固定された可動側引出し端子64に対して、銅条といった駆動を吸収する可撓導体71で接続され通電をなしている。そして固定通電軸66,固定側引出し端子63及び可動側引出し端子64は真空容器外部で図示しない外部導体と接続している。
【0030】
また、図示されない操作装置によって可動電極65cが可動して、固定電極65aに接触したり、中間固定電極65bに接触したりすることができ、可動側引出し端子64との電気的接続を2系統(固定電極65aの系統と中間固定電極65cの系統)の間で切換えて接続させることができる。
【0031】
以上のように構成した第1の実施の形態にかかる真空バルブにおいては、真空容器内の可動通電軸67は、操作軸69との間を絶縁部材70を介し接続し、側面に配置した可動側引出し端子64との間を可撓導体71で接続している。このため、可動電極65cが固定電極65aと接触している時は、側面に配置した可動側引出し端子64から真空バルブ内へ流れた電流は、可撓導体71を介して可動通電軸67へ流れ、可動電極65c及び固定電極65aを介して固定通電軸66より真空バルブ外部へ引き出すことができる。同様に、可動電極65cが中間固定電極65bと接触している時は、側面に配置した可動側引出し端子64から真空バルブ内へ流れた電流は、可撓導体71を介して可動通電軸67へ流れ、可動電極65c及び中間固定電極65bを介して固定側引出し端子63より真空バルブ外部へ引き出すことができる。この結果、絶縁筒60及び絶縁部材70を介して電気的に切離された操作軸69,ベローズ68,本体アダプタ73及び可動側フランジ62は接地電位とすることができる。
【0032】
この第1の実施の形態では次のような効果が得られる。即ち、可動通電軸67とベローズ68との間に挿入した絶縁部材70を、ベローズ68に接続した操作軸69と可動通電軸67で固定することで、その固定を容易とすると共に、ベローズ68の気密接続信頼性も向上する。
【0033】
また可動側引出し端子64と可動通電軸67との間を、駆動を吸収する銅条等の可撓性を有する可撓導体71で接続することとあわせ、操作軸69を通電経路(充電部)と切離すことができ、操作軸69,ベローズ68,本体アダプタ73及び可動側フランジ62を接地電位とすることができる。これにより可動電極65cを駆動するための操作機構と真空容器との間に設けられていた絶縁ロッドが不要になり直接真空バルブを操作することができると共に、真空バルブの固定においても可動側フランジ62を接地金属固定枠に直接固定でき、接地金属固定枠から浮かせて接続するための絶縁フレーム等も不要になる。
【0034】
また操作軸69の絶縁媒体が、気中または絶縁ガス等よりも優れた絶縁特性を有する真空中となるため、操作軸69の絶縁距離を大幅に短縮することができ、本真空バルブを適用する切換装置または断路装置及び受配電装置の大幅な小型化と低コスト化を図ることが可能となる。
【0035】
更に固定電極65a,中間固定電極65bと可動電極65cとを切換接離することにより、電源または負荷を2系統に切換える切換装置や、電源側または負荷側を主回路または接地等へ切換を行う接地断路装置として適用でき、受配電装置を構成する回路構成の多くの要求に容易に対応し、受配電装置の機器構成の簡略化を図ることができる。
【0036】
〔第2の実施の形態〕
本発明の第2の実施の形態にかかる真空バルブを図2に示す。この真空バルブでは、図示されない操作装置によって可動電極65cが、固定電極65aと中間固定電極65bとの中間位置で、固定電極65a及び中間固定電極65bに接触しない断路位置に占位することができるようにしている。このように断路位置を持つことにより本真空バルブは三位置を持ち、可動側引出し端子64との電気的接続を、2系統の間での切位置と合わせて切換えて接続させることができる。他の部分の構成は、図1に示す第1の実施の形態と同様である。
【0037】
この第2の実施の形態では次のような効果が得られる。即ち、電源または負荷の断路を可能とし、断路位置を持つことにより回路の運用上安全性の向上がはかれ、待機状態から運転,接地と一組の電極において連続で切換えが可能となり、メンテナンス時の簡略化と共に受配電装置の縮小化がはかれる。
【0038】
〔第3の実施の形態〕
本発明の第3の実施の形態にかかる真空バルブを図3に示す。この真空バルブでは、固定側引出し端子63の下部に補強支持板74をろう付け接続し中間固定電極65bを固定支持している。他の部分の構成は、図1に示す第1の実施の形態と同様である。
【0039】
この第3の実施の形態では、加熱排気処理後の強度低下した電極部の強度を保持し、可動電極圧接時においても電極が変形して規定圧接力を低下させる事のない、長寿命で信頼性の高い真空バルブが得られる。
【0040】
〔第4の実施の形態〕
本発明の第4の実施の形態にかかる真空バルブを図4に示す。この真空バルブでも、セラミック製の複数の絶縁筒60により絶縁筒が形成されている。そして、固定側引出し端子63の下部側で接続する断面形状を門型に成形した円筒形の絶縁筒60において、固定側引出し端子63の下部側で中間固定電極65bを補強支持している。他の部分の構成は、図1に示す第1の実施の形態と同様である。
【0041】
この第4の実施の形態では、加熱排気処理後の強度低下した電極部の強度を保持し、可動電極圧接時においても電極が変形して規定圧接力を低下させる事がなく、絶縁筒と一体化された補強支持部は、更に強度を向上でき、組立て生産性、ろう付け工程の信頼性も向上し、更に長寿命で信頼性の高い真空バルブが得られる。
【0042】
〔第5の実施の形態〕
本発明の第5の実施の形態にかかる真空バルブを図5に示す。この真空バルブでは、固定側引出し端子63の下部にセラミック製の補強支持板74を接続し中間固定電極65bを固定支持している。しかも、補強支持板74の内径を、この補強支持板74を貫通する可動通電軸67の外径に合わせている。つまり補強支持板74を可動通電軸67にまで延設し、補強支持板74の内径と可動通電軸67の外径とを接触させている。このため、軸方向に可動する可動通電軸67を、補強支持板74によりガイドすることができる。他の部分の構成は、図1に示す第1の実施の形態と同様である。
【0043】
この第5の実施の形態では、電磁力及び駆動方法等による外力が作用しても、可動する可動通電軸67の芯を固定することができるため、電磁面を常に均一に接触をさせることができる信頼性の高い真空バルブが得られる。
【0044】
〔第6の実施の形態〕
本発明の第6の実施の形態にかかる真空バルブを図6に示す。この真空バルブでは、固定側引出し端子63の下部側で接続する断面形状を門型に成形した円筒形絶縁筒60において、固定側引出し端子63の下部側で中間固定電極65bを補強支持している。しかも、断面を門型に成形した絶縁筒60の内径を、可動通電軸67の外径に合わせている。つまり絶縁筒60の内径を可動通電軸67にまで延設し、絶縁筒60の内径と可動通電軸67の外径とを接触させている。このため、軸方向に可動する可動通電軸67を、絶縁筒60によりガイドすることができる。他の部分の構成は、図1に示す第1の実施の形態と同様である。
【0045】
この第6の実施の形態では、電磁力及び駆動方法等による外力が作用しても、可動する可動通電軸67の芯を固定することができるため、電磁面を常に均一に接触をさせることができる信頼性の高い真空バルブが得られる。
【0046】
〔第7の実施の形態〕
本発明の第7の実施の形態にかかる真空バルブを図7に示す。この真空バルブでは、可動電極65cは、可動通電軸67に接続された導電率の高い円板状の支持板651に、融点が高く機械的強度の高い接触子652,653を接続して構成されている。接触子652は固定電極65aに接触する部分に配置され、接触子653は中間固定電極65bに接触する部分に配置されている。
また、固定通電軸66に支持される固定電極65aを、接触子652と同等の径を有する、融点が高く機械的強度の高い金属の接触子としている。
また、固定側引出し端子63に支持される中間固定電極65bを、接触子653と接触する、融点が高く機械的強度の高い金属の接触子としている。
他の部分の構成は、図1に示す第1の実施の形態と同様である。
【0047】
この第7の実施の形態では、接触部に設けた接触子652,653,65a,65bにより電極面間の絶縁耐力を向上させ、導電性円板により通電性能を向上させることができる。また、高電界にさらされる表面積を小さくし信頼性を向上させることができる。
【0048】
〔第8の実施の形態〕
本発明の第8の実施の形態にかかる真空バルブを図8に示す。この真空バルブでは、絶縁筒60の内部において、絶縁筒60の一端面を閉塞する固定側フランジ61に、円筒形の金属シールド75が接続されている。この金属シールド75は固定通電軸66を囲繞した状態で、その基端(図8では上端)が固定側フランジ61に固定されており、その先端(図8では下端)には丸みがつけられている。この金属シールド75の先端は、固定側フランジ61と絶縁筒60との接続部近傍まで延在して配置されている。他の部分の構成は、図7に示す第7の実施の形態と同様である。
【0049】
この第8の実施の形態では、固定側フランジ61と同電位の金属シールド75により、固定側フランジ61とセラミック絶縁筒60との接続部に集中する電界を緩和し、また金属シールド75の先端に丸みをつけることにより、金属シールド75の先端に集中する電界を緩和している。
【0050】
〔第9の実施の形態〕
本発明の第9の実施の形態にかかる真空バルブを図9に示す。この真空バルブでは、固定通電軸66にカップ型の金属シールド76の基端を接続している。このカップ型の金属シールド76は、固定側フランジ61と絶縁筒60との接続部近傍から固定側の端面近傍にまで延在して配設されている。
このため、固定側フランジ61と同電位の金属シールド76により固定側フランジ61とセラミック絶縁筒60との接続部に集中する電界を緩和し、絶縁性能を向上させることができる。
【0051】
また固定側引出し端子63の上部に、円筒形の金属シールド77の基端が接続されており、その金属シールド77の先端( 上端)には丸みがつけられている。しかも、金属シールド77は、固定電極65a及び可動電極65c及び中間固定電極65bを包囲するように配設されている。
このため、先端に丸みをつけ先端に集中する電界を緩和した金属シールド77により、電極間から発生する金属粒子を捕捉するため、絶縁筒60の沿面に金属粒子が付着することがなくなり、長期間使用した後もセラミック絶縁筒60の沿面の絶縁性能の劣化が少なく、長寿命で信頼性の高い真空バルブが得られる。
【0052】
〔第10の実施の形態〕
本発明の第10の実施の形態にかかる真空バルブを図10に示す。この真空バルブでは、真空容器のうち本体アダプタ73の中間部から上部を、外部接続をなす固定通電軸66、固定側引出し端子63、可動側引出し端子64の端子形状部を除き、周囲を絶縁層78で注型して成形している。
【0053】
このように、可動通電軸67と操作軸69との間に絶縁部材70を挿入した真空バルブ本体の周囲を、絶縁層78で注型して成形することにより、真空バルブ本体の外部絶縁沿面距離自体を短くすることができ、真空バルブ本体の小型化を図ることができる。また、可動側フランジ62及び操作軸69は接地電位となるため、操作軸69に直接操作機構を接続でき、切替または接地断路装置自体を大幅に小型化することができる。
【0054】
【発明の効果】
以上実施の形態と共に具体的に説明したように本発明では、操作軸等を接地電位とすることができ、絶縁性能を向上し信頼性を高めることができる。また、可動電極を断路位置に位置させることにより、単なる接続・開放をするのみならず、断路機能を持つことができるようになった。中間固定電極を備えることにより、系統の切換ができるようになった。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかる真空バルブを示す構成図である。
【図2】本発明の第2の実施の形態にかかる真空バルブを示す構成図である。
【図3】本発明の第3の実施の形態にかかる真空バルブを示す構成図である。
【図4】本発明の第4の実施の形態にかかる真空バルブを示す構成図である。
【図5】本発明の第5の実施の形態にかかる真空バルブを示す構成図である。
【図6】本発明の第6の実施の形態にかかる真空バルブを示す構成図である。
【図7】本発明の第7の実施の形態にかかる真空バルブを示す構成図である。
【図8】本発明の第8の実施の形態にかかる真空バルブを示す構成図である。
【図9】本発明の第9の実施の形態にかかる真空バルブを示す構成図である。
【図10】本発明の第10の実施の形態にかかる真空バルブを示す構成図である。
【図11】従来の真空バルブの一例を示す構成図である。
【図12】従来の真空バルブの一例を示す構成図である。
【符号の説明】
60 絶縁筒
61 固定側フランジ
62 可動側フランジ
63 固定側引出し端子
64 可動側引出し端子
65a 固定電極
65b 中間固定電極
65c 可動電極
651 支持板
652,653 接触子
66 固定通電軸
67 可動通電軸
68 ベローズ
69 操作軸
70 絶縁部材
71 可撓導体
72 残留ガス吸着材
73 本体アダプタ
74 補強支持板
75,76,77 金属シールド
78 絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum valve, which is devised to improve insulation performance and excellent reliability, and to have not only simple connection / release but also a disconnection function. The vacuum valve of the present invention can be applied to a vacuum circuit breaker, a vacuum disconnector, a vacuum ground disconnector, a vacuum switching disconnector, and a power receiving and distributing device configured to house these devices.
[0002]
[Prior art]
The power received from the bus is distributed to various load devices and other electrical rooms using a power distribution device. This power distribution device is connected to busbars and cables, connected to the grounding circuit, each switchgear for connecting and disconnecting the circuit, an operating device for driving it, and internal devices such as control devices necessary for monitoring control Are appropriately arranged in an outer box made of ground metal.
[0003]
As a switchgear used in this type of power distribution device, there is a vacuum valve disclosed in Japanese Patent Laid-Open No. 2000-188046 and a vacuum valve disclosed in Japanese Patent Laid-Open No. 11-041726.
[0004]
Here, a vacuum valve disclosed in Japanese Patent Laid-Open No. 2000-188046 will be described with reference to FIG. In FIG. 11, both end openings of a cylindrical vacuum vessel 1 made of ceramic or glass are hermetically sealed with a fixed-side lid plate 3 a and a movable-side lid plate 3 b, and a movable-side extraction electrode 8 b is placed in the middle of the vacuum vessel 1. I have. Inside the vacuum vessel 1, a fixed side electrode 5a provided with a contact 6a and a movable side electrode 5b provided with a contact 6b so as to face the fixed side electrode 5a are arranged. The fixed-side electrode 5a is connected to a fixed-side energizing shaft 4a supported and fixed to the fixed-side cover plate 3a, and is connected to an external conductor of a vacuum valve (not shown) by a fixed-side extraction electrode 8a. Further, the movable side electrode 5b is connected to a movable side energizing shaft 4b connected to a flexible conductor, a conductor 7 having a stretchability such as a flat wire, and the movable side extraction electrode 8b disposed on the side surface of the vacuum vessel 1. And connected to the outer conductor of a vacuum valve (not shown).
[0005]
Furthermore, an insulating rod 9 made of an insulating material such as ceramic is connected between the movable side energizing shaft 4b and the operation rod 12, and a bellows is interposed between the insulating rod 9 and the movable side cover plate 3b. A bellows 11 provided with a cover 10 is provided. Then, by operating the operating rod 12 in the axial direction by an operating mechanism provided outside the vacuum valve, the pair of electrodes including the fixed side electrode 5a and the movable side electrode 5b in the vacuum vessel 1 can be freely contacted and separated. Yes.
[0006]
In the vacuum valve configured as described above, the insulating rod 9 is inserted between the movable side energizing shaft 4b and the bellows 11 in the vacuum vessel 1, and the movable extraction electrode 8b disposed on the side surface of the vacuum vessel 1 is flexible. By connecting with the conductor 7 such as a conductor, the current flowing from the fixed-side extraction electrode 8a into the vacuum valve flows to the movable-side conductive shaft 4b via the fixed-side electrode 5a and the movable-side electrode 5b. 7 can be pulled out of the vacuum valve from a movable-side extraction electrode 8 b disposed on the side surface of the vacuum vessel 1. As a result, the bellows 11, the movable side cover plate 3b, and the operation rod 12 are at ground potential.
[0007]
As described above, the insulating rod that has been conventionally provided between the operation mechanism for driving the movable electrode 5b and the vacuum vessel 1 is not necessary, and the vacuum valve can be directly operated. Further, since the insulating medium of the operating rod 12 is in a vacuum having an insulating characteristic superior to that in the air, the insulating distance of the operating rod 12 can be greatly shortened, and thus a circuit breaker for operating the vacuum valve or It becomes the structure which aims at miniaturization of disconnector itself.
[0008]
Next, a vacuum valve disclosed in Japanese Patent Application Laid-Open No. 11-041726 will be described with reference to FIG. In FIG. 12, the phase switch gear is an assembly of a breaking function, a disconnecting function, a grounding function, and a bus bar. That is, the phase switch gear is mainly composed of the movable electrode 07 that moves between the fixed electrode 05 and the grounding device 06. Fixed electrode 05 is connected to internal bus 08. The movable electrode 07 is connected to a load-side conductor 09, and the load-side conductor 09 is connected to a cable head that extends outside the vacuum vessel. The movable electrode 07 is mechanically connected to the movable blade, and is rotated in the vertical direction or the horizontal direction by the rotation of the movable blade driven by an operation mechanism (not shown). The movable electrode 07 moves from the fixed electrode 05 to the ground device 06 and stops at the 4 position.
[0009]
That is, according to the rotation of the movable electrode 07, the movable electrode 07 is energized at the closing position Y1 where it contacts the fixed electrode 05, rotates downward from the closing position Y1, and the movable electrode 07 is moved at the blocking position Y2. The current away from the fixed electrode 05 is cut off. Further, the movable electrode 07 is moved downward and the movable electrode 07 is separated from the fixed electrode 05 at the disconnection position Y3, so that an insulation distance is secured so that no electrical breakdown occurs due to lightning or the like and an operator does not receive an electric shock on the load conductor side. Further, the movable electrode 07 rotates downward, and the movable electrode 07 comes into contact with the grounding device 06 at the ground position Y4. Even if the disconnection position Y3 is omitted and moved from the blocking position Y2 to the grounding position Y4, the following effects of the present apparatus are not impaired.
[0010]
In this device, since the movable electrode 07 can rotate continuously from one stationary electrode 05 to the grounding device 06 in a vacuum that is a high insulator, it can have four positions or functions continuously by one operation. Easy to use and easy to use. Further, since the movable electrode 07, the fixed electrode 05, and the grounding device 06 are gathered in one place, the size can be further reduced. In addition, when the disconnection position Y3 is provided, in a two-line power reception with two different power sources, for example, when one of the phase switch gears is operating at the closing position Y1, and the other line is at the disconnection position Y3. When waiting, it is safe even if an operator contacts the load side conductor 09 of this circuit. In addition, even when switching from standby to driving or from driving to standby, the operation can be performed continuously, so the work speed is fast and the operation is easy.
[0011]
In this apparatus, the movable electrode 07 is connected by a flexible conductor 022 between the load-side conductor 09 and the movable electrode 07, so that the welding of the movable electrode 07 and the load-side conductor 09 does not occur, and the rotational force of the operation mechanism section is increased. The operating mechanism can be reduced in size, and the life of the movable electrode 07 and the load-side conductor 09 is increased, which is economically advantageous. In addition, the flexible conductor 022 connects the load-side conductor 09 and the movable electrode 07, so that metal fine particles are not generated when the movable electrode 07 slides on the load-side conductor 09, and the insulation performance is greatly improved. Thus, the vacuum container 04 can be reduced in size.
[0012]
Furthermore, it can be used even if the grounding device and the disconnecting position are removed, and when removed, the vacuum vessel and the operating mechanism can be further miniaturized, so that the circuit switch gear can also be miniaturized.
[0013]
[Problems to be solved by the invention]
In the above-described conventional vacuum valve and the power distribution device configured using the same, the open / close unit has only a single function of “ON” and “OFF”, and the circuit constituting the power distribution device required by the market The structure cannot be easily adapted, and a combination of devices having other functions made of an insulating medium other than a vacuum is unavoidable. For this reason, problems such as the versatility of the circuit and the inability to easily insulate the connection portions between the devices remain, and the reduction in size is limited even when incorporated as a power distribution device.
[0014]
In addition to the closing position and the shut-off position for the opening / closing part, having a grounding position / disconnection position further complicates the operation mechanism, increases the load in terms of strength, and decreases the life and reliability. In addition, rotating the movable electrode by the blade method reduces the reliability of the electrode contact accuracy, further complicates the structure of the vacuum vessel that requires a high degree of airtightness, reduces the reliability and safety, and reduces the cost. Raise. In addition, it is possible to reduce the size of the main circuit opening / closing part and grounding opening / closing part in the same container, including the busbars. On the other hand, some accidents and problems are spread to all the elements in the container. This may reduce the performance and make it difficult to expand and recover from accidents.
[0015]
An object of the present invention is to provide a vacuum valve with improved insulation performance, excellent reliability, and compactness. If the vacuum valve of the present invention is used, a highly safe and compact vacuum circuit breaker and power distribution device can be provided at low cost.
[0016]
[Means for Solving the Problems]
  In the configuration of the present invention that solves the above problems, a pair of detachable electrodes including a fixed electrode and a movable electrode are disposed inside a vacuum vessel formed by closing both end faces of an insulating cylinder,
  An insulating member is inserted between a movable energizing shaft connected to the movable electrode and a bellows that supports the movable energizing shaft in an axial direction,
  And in the vacuum valve constituted by connecting the movable side lead terminal arranged on the side surface of the vacuum vessel and the movable energizing shaft with a flexible conductor,
  The insulating member inserted between the movable energizing shaft and the bellows is fixed by an operation shaft connected to the bellows and the movable energizing shaft,
  An intermediate fixed electrode is disposed between the movable electrode and the bellows, and the movable electrode connected to the movable energizing shaft disposed through the intermediate fixed electrode so as not to contact the intermediate fixed electrode It is possible to move between the electrode and the intermediate fixed electrode so as to be freely switched and separated,
  The intermediate fixed electrode is connected to a fixed side lead terminal arranged on the side surface of the vacuum vessel.And
The vacuum vessel is formed by connecting a plurality of ceramic insulating cylinders, and the lower ceramic insulating cylinder connecting the fixed extraction terminal arranged on the side surface of the vacuum container supports the lower part of the fixed extraction terminal. And a ceramic insulating cylinder with a cross section formed into a gate shapeIt is characterized by doing.
[0017]
  The configuration of the present invention is as follows.Inside the vacuum vessel formed by closing both end faces of the insulating cylinder, a pair of electrodes that can be contacted / separated consisting of a fixed electrode and a movable electrode are disposed,
An insulating member is inserted between a movable energizing shaft connected to the movable electrode and a bellows that supports the movable energizing shaft in an axial direction,
And in the vacuum valve constituted by connecting the movable side lead terminal arranged on the side surface of the vacuum vessel and the movable energizing shaft with a flexible conductor,
The insulating member inserted between the movable energizing shaft and the bellows is fixed by an operation shaft connected to the bellows and the movable energizing shaft,
An intermediate fixed electrode is disposed between the movable electrode and the bellows, and the movable electrode connected to the movable energizing shaft disposed through the intermediate fixed electrode so as not to contact the intermediate fixed electrode It is possible to move between the electrode and the intermediate fixed electrode so as to be freely switched and separated,
The intermediate fixed electrode is connected to a fixed side lead terminal disposed on a side surface of the vacuum vessel,
  The movable electrode can be located at a position between the fixed electrode and the intermediate fixed electrode and at a disconnect position not in contact with the fixed electrode and the intermediate fixed electrode.And
The vacuum vessel is formed by connecting a plurality of ceramic insulating cylinders, and the lower ceramic insulating cylinder connecting the fixed extraction terminal arranged on the side surface of the vacuum container supports the lower part of the fixed extraction terminal. A ceramic insulating cylinder with a cross section formed into a gate shapeIt is characterized by that.
[0018]
  The configuration of the present invention is as follows.By moving the inner diameter of the reinforcing support plate arranged to support the fixed-side drawer terminal arranged on the side surface of the vacuum vessel to the outer diameter of the movable current-carrying shaft that passes through the reinforcing support plate, the axial movement is possible. The movable energizing shaft is guided by the reinforcing support plateIt is characterized by that.
[0020]
  The configuration of the present invention is as follows.Inside the vacuum vessel, a metal shield having a cylindrical shape, a base end connected to the fixed-side extraction terminal, and a rounded end is disposed so as to surround the fixed electrode and the movable electrode.It is characterized by that.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0027]
[First Embodiment]
FIG. 1 shows a vacuum valve according to a first embodiment of the present invention. As shown in the drawing, both end surfaces of an insulating cylinder 60 made of a cylindrical insulating member are hermetically sealed (closed) with a movable flange 62 connected to a fixed flange 61 and a body adapter 73 to form a vacuum container. ing. In this example, three insulating cylinders 60 made of ceramic are connected, and the end surfaces of the three insulating cylinders 60 connected are closed with a fixed side flange 61 and a movable side flange 62 to thereby close the vacuum container. Forming. A residual gas adsorbent 72 such as a getter is sealed inside the vacuum vessel. Further, inside the vacuum vessel, a fixed electrode 65a supported by a fixed energizing shaft 66 fixed to the fixed side flange 61, and an intermediate fixed electrode supported by a fixed side lead terminal 63 fixed to the insulating cylinder 60 on the side surface. The movable electrode 65c is disposed at a position between the fixed electrode 65a and the intermediate fixed electrode 65b.
[0028]
Further, the movable electrode 65 c is supported by a movable energizing shaft 67 that is disposed so as not to contact the intermediate fixed electrode 65 b supported by the fixed-side lead terminal 63. A movable energizing shaft 67 that supports the movable electrode 65c is connected to an operating shaft 69 supported by a bellows 68 hermetically sealed to the movable flange 62 via an insulating member 70, and is an operating device outside the vacuum vessel (not shown). Driven by. As a result, the movable electrode 65c is switched and separated between the fixed electrode 65a and the intermediate fixed electrode 65b that are arranged to face each other.
[0029]
The movable energizing shaft 67 is connected to the movable-side lead terminal 64 fixed to the insulating cylinder 60 on the side surface by a flexible conductor 71 that absorbs driving such as a copper strip and energizes. The fixed energizing shaft 66, the fixed side lead terminal 63, and the movable side lead terminal 64 are connected to an external conductor (not shown) outside the vacuum vessel.
[0030]
Further, the movable electrode 65c can be moved by an operating device (not shown) so as to contact the fixed electrode 65a or the intermediate fixed electrode 65b, and the electric connection with the movable-side lead terminal 64 can be made in two systems ( The fixed electrode 65a system and the intermediate fixed electrode 65c system) can be switched and connected.
[0031]
In the vacuum valve according to the first embodiment configured as described above, the movable energizing shaft 67 in the vacuum vessel is connected to the operation shaft 69 via the insulating member 70 and is disposed on the side surface. The lead terminal 64 is connected by a flexible conductor 71. For this reason, when the movable electrode 65c is in contact with the fixed electrode 65a, the current flowing into the vacuum valve from the movable side lead terminal 64 disposed on the side surface flows to the movable energizing shaft 67 via the flexible conductor 71. Further, it can be drawn out of the vacuum valve from the fixed energizing shaft 66 through the movable electrode 65c and the fixed electrode 65a. Similarly, when the movable electrode 65c is in contact with the intermediate fixed electrode 65b, the current flowing into the vacuum valve from the movable side lead terminal 64 disposed on the side surface is transferred to the movable energizing shaft 67 via the flexible conductor 71. Through the flow, the movable electrode 65c and the intermediate fixed electrode 65b can be drawn out from the fixed side lead terminal 63 to the outside of the vacuum valve. As a result, the operating shaft 69, the bellows 68, the main body adapter 73, and the movable flange 62 that are electrically separated through the insulating cylinder 60 and the insulating member 70 can be set to the ground potential.
[0032]
In the first embodiment, the following effects can be obtained. That is, the insulating member 70 inserted between the movable energizing shaft 67 and the bellows 68 is fixed by the operation shaft 69 and the movable energizing shaft 67 connected to the bellows 68, thereby facilitating the fixing. Airtight connection reliability is also improved.
[0033]
In addition, the operation shaft 69 is connected to the energization path (charging portion) together with the connection between the movable side lead terminal 64 and the movable energization shaft 67 by a flexible conductor 71 having flexibility such as a copper strip that absorbs driving. The operating shaft 69, the bellows 68, the main body adapter 73, and the movable flange 62 can be set to the ground potential. This eliminates the need for the insulating rod provided between the operating mechanism for driving the movable electrode 65c and the vacuum vessel, so that the vacuum valve can be operated directly, and the movable side flange 62 can also be used for fixing the vacuum valve. Can be directly fixed to the ground metal fixing frame, and an insulating frame or the like for floating and connecting from the ground metal fixing frame becomes unnecessary.
[0034]
In addition, since the insulating medium of the operation shaft 69 is in a vacuum having an insulation characteristic superior to that of air or an insulating gas, the insulation distance of the operation shaft 69 can be greatly shortened, and this vacuum valve is applied. The switching device or the disconnecting device and the power receiving / distributing device can be greatly reduced in size and cost.
[0035]
Further, a switching device for switching the power source or load to two systems by switching the contact between the fixed electrode 65a, the intermediate fixed electrode 65b and the movable electrode 65c, or grounding for switching the power source side or the load side to the main circuit or grounding, etc. The present invention can be applied as a disconnecting device, can easily cope with many requests for a circuit configuration constituting the power receiving / distributing device, and can simplify the device configuration of the power receiving / distributing device.
[0036]
[Second Embodiment]
A vacuum valve according to the second embodiment of the present invention is shown in FIG. In this vacuum valve, the movable electrode 65c can be occupied by an operating device (not shown) at an intermediate position between the fixed electrode 65a and the intermediate fixed electrode 65b so as to be disconnected from the fixed electrode 65a and the intermediate fixed electrode 65b. I have to. By having the disconnection position in this way, the present vacuum valve has three positions, and the electrical connection with the movable-side drawer terminal 64 can be switched and connected together with the disconnection position between the two systems. The configuration of the other parts is the same as that of the first embodiment shown in FIG.
[0037]
In the second embodiment, the following effects can be obtained. In other words, it is possible to disconnect the power supply or load, and having the disconnect position improves the operational safety of the circuit. From the stand-by state, operation and grounding can be switched continuously in one set of electrodes. In addition to simplification, the power distribution device can be reduced.
[0038]
[Third Embodiment]
FIG. 3 shows a vacuum valve according to the third embodiment of the present invention. In this vacuum valve, a reinforcing support plate 74 is brazed and connected to the lower portion of the fixed-side lead terminal 63 to fix and support the intermediate fixed electrode 65b. The configuration of the other parts is the same as that of the first embodiment shown in FIG.
[0039]
In this third embodiment, the strength of the electrode part whose strength has been reduced after the heating and exhausting process is maintained, and the electrode is not deformed even during the pressure welding of the movable electrode, so that the specified pressure welding force is not lowered and reliable. A highly efficient vacuum valve is obtained.
[0040]
[Fourth Embodiment]
A vacuum valve according to a fourth embodiment of the present invention is shown in FIG. Even in this vacuum valve, an insulating cylinder is formed by a plurality of ceramic insulating cylinders 60. In the cylindrical insulating tube 60 having a gate-shaped cross section connected on the lower side of the fixed side lead terminal 63, the intermediate fixed electrode 65b is reinforced and supported on the lower side of the fixed side lead terminal 63. The configuration of the other parts is the same as that of the first embodiment shown in FIG.
[0041]
In the fourth embodiment, the strength of the electrode portion whose strength has been reduced after the heating and exhausting process is maintained, and the electrode is not deformed and the specified pressure contact force is not reduced even when the movable electrode is pressed. The strengthened support portion can further improve the strength, improve the assembly productivity and the reliability of the brazing process, and provide a vacuum valve with a long life and high reliability.
[0042]
[Fifth Embodiment]
A vacuum valve according to a fifth embodiment of the present invention is shown in FIG. In this vacuum valve, a reinforcing support plate 74 made of ceramic is connected to the lower part of the fixed side lead terminal 63 to fix and support the intermediate fixed electrode 65b. Moreover, the inner diameter of the reinforcing support plate 74 is matched with the outer diameter of the movable energizing shaft 67 that penetrates the reinforcing support plate 74. That is, the reinforcing support plate 74 is extended to the movable energizing shaft 67, and the inner diameter of the reinforcing support plate 74 and the outer diameter of the movable energizing shaft 67 are brought into contact with each other. For this reason, the movable energizing shaft 67 movable in the axial direction can be guided by the reinforcing support plate 74. The configuration of the other parts is the same as that of the first embodiment shown in FIG.
[0043]
In the fifth embodiment, the core of the movable movable current-carrying shaft 67 can be fixed even when an electromagnetic force and an external force such as a driving method are applied, so that the electromagnetic surface can always be contacted uniformly. A highly reliable vacuum valve can be obtained.
[0044]
[Sixth Embodiment]
FIG. 6 shows a vacuum valve according to a sixth embodiment of the present invention. In this vacuum valve, the intermediate fixed electrode 65b is reinforced and supported on the lower side of the fixed-side extraction terminal 63 in the cylindrical insulating cylinder 60 whose cross-sectional shape connected to the lower side of the fixed-side extraction terminal 63 is formed in a gate shape. . Moreover, the inner diameter of the insulating cylinder 60 whose section is formed in a gate shape is matched with the outer diameter of the movable energizing shaft 67. That is, the inner diameter of the insulating cylinder 60 extends to the movable energizing shaft 67, and the inner diameter of the insulating cylinder 60 and the outer diameter of the movable energizing shaft 67 are brought into contact with each other. For this reason, the movable energizing shaft 67 movable in the axial direction can be guided by the insulating cylinder 60. The configuration of the other parts is the same as that of the first embodiment shown in FIG.
[0045]
In the sixth embodiment, the core of the movable movable energizing shaft 67 can be fixed even when an electromagnetic force and an external force such as a driving method are applied, so that the electromagnetic surface can always be contacted uniformly. A highly reliable vacuum valve can be obtained.
[0046]
[Seventh Embodiment]
FIG. 7 shows a vacuum valve according to a seventh embodiment of the present invention. In this vacuum valve, the movable electrode 65c is configured by connecting contacts 652 and 653 having a high melting point and high mechanical strength to a disk-like support plate 651 having a high electrical conductivity connected to the movable energizing shaft 67. ing. The contact 652 is disposed at a portion that contacts the fixed electrode 65a, and the contact 653 is disposed at a portion that contacts the intermediate fixed electrode 65b.
The fixed electrode 65a supported by the fixed energizing shaft 66 is a metal contact having a diameter equivalent to that of the contact 652 and having a high melting point and high mechanical strength.
In addition, the intermediate fixed electrode 65b supported by the fixed-side lead terminal 63 is a metal contact having a high melting point and high mechanical strength that is in contact with the contact 653.
The configuration of the other parts is the same as that of the first embodiment shown in FIG.
[0047]
In the seventh embodiment, the dielectric strength between the electrode surfaces can be improved by the contacts 652, 653, 65a and 65b provided in the contact portion, and the current-carrying performance can be improved by the conductive disc. Further, the surface area exposed to a high electric field can be reduced and the reliability can be improved.
[0048]
[Eighth Embodiment]
FIG. 8 shows a vacuum valve according to an eighth embodiment of the present invention. In this vacuum valve, a cylindrical metal shield 75 is connected to a fixed-side flange 61 that closes one end surface of the insulating cylinder 60 inside the insulating cylinder 60. The metal shield 75 surrounds the fixed energizing shaft 66, and has a base end (upper end in FIG. 8) fixed to the fixed-side flange 61, and a tip end (lower end in FIG. 8) is rounded. Yes. The tip of the metal shield 75 is disposed so as to extend to the vicinity of the connection portion between the fixed flange 61 and the insulating cylinder 60. The configuration of the other parts is the same as that of the seventh embodiment shown in FIG.
[0049]
In the eighth embodiment, the metal shield 75 having the same potential as that of the fixed side flange 61 reduces the electric field concentrated on the connection portion between the fixed side flange 61 and the ceramic insulating cylinder 60, and By rounding, the electric field concentrated on the tip of the metal shield 75 is relaxed.
[0050]
[Ninth Embodiment]
A vacuum valve according to a ninth embodiment of the present invention is shown in FIG. In this vacuum valve, the base end of a cup-shaped metal shield 76 is connected to the fixed energizing shaft 66. The cup-shaped metal shield 76 is disposed so as to extend from the vicinity of the connection portion between the fixed-side flange 61 and the insulating tube 60 to the vicinity of the end surface on the fixed side.
For this reason, the electric field concentrated on the connection part of the fixed side flange 61 and the ceramic insulating cylinder 60 can be relieved by the metal shield 76 having the same potential as that of the fixed side flange 61, and the insulation performance can be improved.
[0051]
The base end of a cylindrical metal shield 77 is connected to the upper part of the fixed-side lead terminal 63, and the tip (upper end) of the metal shield 77 is rounded. Moreover, the metal shield 77 is disposed so as to surround the fixed electrode 65a, the movable electrode 65c, and the intermediate fixed electrode 65b.
For this reason, the metal shield 77 that rounds the tip and relaxes the electric field concentrated on the tip captures the metal particles generated between the electrodes, so that the metal particles do not adhere to the creeping surface of the insulating cylinder 60 for a long time. Even after use, there is little deterioration in the insulation performance of the creeping surface of the ceramic insulating cylinder 60, and a long-life and highly reliable vacuum valve can be obtained.
[0052]
[Tenth embodiment]
FIG. 10 shows a vacuum valve according to a tenth embodiment of the present invention. In this vacuum valve, the upper part from the middle part of the main body adapter 73 in the vacuum vessel is insulated with an insulating layer except for the fixed energizing shaft 66, the fixed side lead terminal 63, and the movable side lead terminal 64 that form an external connection. It is cast and molded at 78.
[0053]
As described above, the periphery of the vacuum valve body in which the insulating member 70 is inserted between the movable energizing shaft 67 and the operation shaft 69 is cast and molded with the insulating layer 78, thereby forming the external insulation creepage distance of the vacuum valve body. The device itself can be shortened, and the vacuum valve body can be downsized. Further, since the movable flange 62 and the operation shaft 69 are at ground potential, an operation mechanism can be directly connected to the operation shaft 69, and the switching or ground disconnection device itself can be greatly reduced in size.
[0054]
【The invention's effect】
As specifically described with the above embodiments, in the present invention, the operation shaft or the like can be set to the ground potential, and the insulation performance can be improved and the reliability can be increased. Further, by positioning the movable electrode at the disconnection position, it is possible not only to simply connect / release but also to have a disconnection function. By providing the intermediate fixed electrode, the system can be switched.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a vacuum valve according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing a vacuum valve according to a second embodiment of the present invention.
FIG. 3 is a block diagram showing a vacuum valve according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram showing a vacuum valve according to a fourth embodiment of the present invention.
FIG. 5 is a block diagram showing a vacuum valve according to a fifth embodiment of the present invention.
FIG. 6 is a configuration diagram showing a vacuum valve according to a sixth embodiment of the present invention.
FIG. 7 is a block diagram showing a vacuum valve according to a seventh embodiment of the present invention.
FIG. 8 is a configuration diagram showing a vacuum valve according to an eighth embodiment of the present invention.
FIG. 9 is a configuration diagram showing a vacuum valve according to a ninth embodiment of the present invention.
FIG. 10 is a configuration diagram showing a vacuum valve according to a tenth embodiment of the present invention.
FIG. 11 is a block diagram showing an example of a conventional vacuum valve.
FIG. 12 is a block diagram showing an example of a conventional vacuum valve.
[Explanation of symbols]
60 Insulating cylinder
61 Fixed flange
62 Movable flange
63 Fixed side lead terminal
64 Movable side drawer terminal
65a fixed electrode
65b Intermediate fixed electrode
65c movable electrode
651 support plate
652, 653 contact
66 Fixed conducting shaft
67 Movable conducting shaft
68 Bellows
69 Operation axis
70 Insulating material
71 Flexible conductor
72 Residual gas adsorbent
73 Body Adapter
74 Reinforced support plate
75, 76, 77 Metal shield
78 Insulation layer

Claims (4)

絶縁筒の両端面を閉塞してなる真空容器の内部に、固定電極および可動電極からなる接離自在な一対の電極を配設し、
前記可動電極に接続した可動通電軸と当該可動通電軸を軸方向に可動自在に支持するベローズとの間に、絶縁部材を挿入し、
かつ前記真空容器の側面に配置した可動側引出し端子と前記可動通電軸との間を、可撓性を有する導体で接続して構成される真空バルブにおいて、
前記可動通電軸と前記ベローズとの間に挿入した前記絶縁部材は、前記ベローズに接続された操作軸と前記可動通電軸とで固定してあり、
前記可動電極と前記ベローズとの間に中間固定電極を配置し、前記中間固定電極と接しないように前記中間固定電極を貫通して配置した前記可動通電軸に接続した前記可動電極を、前記固定電極と前記中間固定電極との間で切換接離自在に可動する様になし、
前記中間固定電極は前記真空容器の側面に配置した固定側引出し端子と接続し、
前記真空容器は複数のセラミック絶縁筒を接続してなり、前記真空容器の側面に配置した前記固定側引出し端子を接続する下部側のセラミック絶縁筒において、前記固定側引出し端子の下部を支持するように断面を門型に成形したセラミック絶縁筒とすることを特徴とする真空バルブ。
Inside the vacuum vessel formed by closing both end faces of the insulating cylinder, a pair of electrodes that can be contacted / separated consisting of a fixed electrode and a movable electrode are disposed,
An insulating member is inserted between a movable energizing shaft connected to the movable electrode and a bellows that supports the movable energizing shaft in an axial direction,
And in the vacuum valve constituted by connecting the movable side lead terminal arranged on the side surface of the vacuum vessel and the movable energizing shaft with a flexible conductor,
The insulating member inserted between the movable energizing shaft and the bellows is fixed by an operation shaft connected to the bellows and the movable energizing shaft,
An intermediate fixed electrode is disposed between the movable electrode and the bellows, and the movable electrode connected to the movable energizing shaft disposed through the intermediate fixed electrode so as not to contact the intermediate fixed electrode It is possible to move between the electrode and the intermediate fixed electrode so as to be freely switched and separated,
The intermediate fixed electrode is connected to a fixed side lead terminal disposed on a side surface of the vacuum vessel,
The vacuum vessel is formed by connecting a plurality of ceramic insulating cylinders, and the lower ceramic insulating cylinder connecting the fixed extraction terminal arranged on the side surface of the vacuum container supports the lower part of the fixed extraction terminal. A vacuum valve characterized in that it is a ceramic insulating cylinder whose section is formed in a gate shape.
絶縁筒の両端面を閉塞してなる真空容器の内部に、固定電極および可動電極からなる接離自在な一対の電極を配設し、
前記可動電極に接続した可動通電軸と当該可動通電軸を軸方向に可動自在に支持するベローズとの間に、絶縁部材を挿入し、
かつ前記真空容器の側面に配置した可動側引出し端子と前記可動通電軸との間を、可撓性を有する導体で接続して構成される真空バルブにおいて、
前記可動通電軸と前記ベローズとの間に挿入した前記絶縁部材は、前記ベローズに接続された操作軸と前記可動通電軸とで固定してあり、
前記可動電極と前記ベローズとの間に中間固定電極を配置し、前記中間固定電極と接しないように前記中間固定電極を貫通して配置した前記可動通電軸に接続した前記可動電極を、前記固定電極と前記中間固定電極との間で切換接離自在に可動する様になし、
前記中間固定電極は前記真空容器の側面に配置した固定側引出し端子と接続し、
前記可動電極は、前記固定電極と前記中間固定電極との間の位置で且つ前記固定電極及び前記中間固定電極に接しない断路位置に占位することができるようにし、
前記真空容器は複数のセラミック絶縁筒を接続してなり、前記真空容器の側面に配置した前記固定側引出し端子を接続する下部側のセラミック絶縁筒において、前記固定側引出し端子の下部を支持するように断面を門型に成形したセラミック絶縁筒とすることを特徴とする真空バルブ。
Inside the vacuum vessel formed by closing both end faces of the insulating cylinder, a pair of electrodes that can be contacted / separated consisting of a fixed electrode and a movable electrode are disposed,
An insulating member is inserted between a movable energizing shaft connected to the movable electrode and a bellows that supports the movable energizing shaft in an axial direction,
And in the vacuum valve constituted by connecting the movable side lead terminal arranged on the side surface of the vacuum vessel and the movable energizing shaft with a flexible conductor,
The insulating member inserted between the movable energizing shaft and the bellows is fixed by an operation shaft connected to the bellows and the movable energizing shaft,
An intermediate fixed electrode is disposed between the movable electrode and the bellows, and the movable electrode connected to the movable energizing shaft disposed through the intermediate fixed electrode so as not to contact the intermediate fixed electrode It is possible to move between the electrode and the intermediate fixed electrode so as to be freely switched and separated,
The intermediate fixed electrode is connected to a fixed side lead terminal disposed on a side surface of the vacuum vessel,
The movable electrode can be located at a position between the fixed electrode and the intermediate fixed electrode and at a disconnect position not in contact with the fixed electrode and the intermediate fixed electrode;
The vacuum vessel is formed by connecting a plurality of ceramic insulating cylinders, and the lower ceramic insulating cylinder connecting the fixed extraction terminal arranged on the side surface of the vacuum container supports the lower part of the fixed extraction terminal. A vacuum valve characterized in that it is a ceramic insulating cylinder whose section is formed in a gate shape.
請求項2において、
前記真空容器の側面に配置した固定側引出し端子を支持するために配置された補強支持板の内径を、この補強支持板を貫通する前記可動通電軸の外径に合わせることにより、軸方向に可動する前記可動通電軸を前記補強支持板によりガイドすることを特徴とする真空バルブ。
In claim 2,
By moving the inner diameter of the reinforcing support plate arranged to support the fixed-side drawer terminal arranged on the side surface of the vacuum vessel to the outer diameter of the movable current-carrying shaft that passes through the reinforcing support plate, the axial movement is possible. A vacuum valve characterized in that the movable energizing shaft is guided by the reinforcing support plate.
請求項1乃至請求項3の何れか一項において、
前記真空容器の内部には、円筒形をなすと共に基端が固定側引出し端子に接続され先端に丸みをつけた金属シールドが、固定電極及び可動電極を包囲するように配設されていることを特徴とする真空バルブ。
In any one of Claims 1 thru | or 3,
Inside the vacuum vessel, a metal shield having a cylindrical shape and a base end connected to the fixed-side extraction terminal and a rounded end is disposed so as to surround the fixed electrode and the movable electrode. Features a vacuum valve.
JP2001117797A 2001-04-17 2001-04-17 Vacuum valve Expired - Fee Related JP4048728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117797A JP4048728B2 (en) 2001-04-17 2001-04-17 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117797A JP4048728B2 (en) 2001-04-17 2001-04-17 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2002313197A JP2002313197A (en) 2002-10-25
JP4048728B2 true JP4048728B2 (en) 2008-02-20

Family

ID=18968281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117797A Expired - Fee Related JP4048728B2 (en) 2001-04-17 2001-04-17 Vacuum valve

Country Status (1)

Country Link
JP (1) JP4048728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136597B2 (en) 2013-06-06 2017-05-31 株式会社明電舎 Sealed relay
JP6136598B2 (en) * 2013-06-06 2017-05-31 株式会社明電舎 Sealed relay

Also Published As

Publication number Publication date
JP2002313197A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
US6259051B1 (en) Vacuum switch and a vacuum switchgear using the same
TWI501492B (en) Switch unit and switch device
US20090078681A1 (en) Vacuum circuit interrupter grounding assembly
KR101072518B1 (en) Disconnecting switch
KR20080023091A (en) Vacuum switching device for medium and high voltage
JP4073623B2 (en) Switchgear
TW201015605A (en) Vacuum switch gear
CN103608884B (en) Switching device and switch cubicle
JP3577247B2 (en) Switchgear
WO2005062325A1 (en) Disconnector
KR100846223B1 (en) Medium Voltage Switch-gear
CN104319165A (en) Three-position vacuum switch for achieving load-side external grounding by adopting bridge switch
WO2002060027A1 (en) Gas-insulated switchgear
WO2011145749A1 (en) Cubicle-type gas-insulated switching apparatus
JP4048728B2 (en) Vacuum valve
CN113012975A (en) Switching device
CN103282991A (en) A switching device and a switchgear
JPH11162303A (en) Switch gear
JP3891680B2 (en) Switchgear
JP2003168351A (en) Vacuum valve
JPH099431A (en) Gas insulated switchgear
WO2023119453A1 (en) Switch
JP3502555B2 (en) Vacuum valves, vacuum circuit breakers and power distribution equipment
CN210607077U (en) Circuit breaker
JP3402135B2 (en) Vacuum switch and vacuum switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Ref document number: 4048728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees