WO2023118124A1 - Functional device in multilayer structure, of which one of the layers comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and method for manufacturing such a functional device - Google Patents

Functional device in multilayer structure, of which one of the layers comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and method for manufacturing such a functional device Download PDF

Info

Publication number
WO2023118124A1
WO2023118124A1 PCT/EP2022/086966 EP2022086966W WO2023118124A1 WO 2023118124 A1 WO2023118124 A1 WO 2023118124A1 EP 2022086966 W EP2022086966 W EP 2022086966W WO 2023118124 A1 WO2023118124 A1 WO 2023118124A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
functional device
glass fibers
glass
polyurethane resin
Prior art date
Application number
PCT/EP2022/086966
Other languages
French (fr)
Inventor
Marion VITE
Dick Heslinga
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Colas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Colas filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2023118124A1 publication Critical patent/WO2023118124A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/04Tiles for floors or walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings

Definitions

  • Functional device in multilayer structure one of the layers of which comprises a composite material comprising a thermosetting polyurethane resin and glass fibers and method of manufacturing such a functional device
  • the present invention relates to the technical field of functional devices with a multilayer structure, comprising electrically or optically active elements, such as photovoltaic cells, light-emitting diodes or resistive films.
  • the invention advantageously relates to any type of photovoltaic module.
  • the invention can, for example, be integrated into roadways used by pedestrians and/or vehicles, motorized or not, such as roadways or roads, cycle paths, industrial or airport platforms, squares, sidewalks or car parks.
  • the invention finds a privileged application in the field of functionalized pavements, in particular solar roads.
  • the invention also finds a preferred application in transport vehicles (for example car, truck, train or boat) or the envelope of a building, on which the functional device can be fixed.
  • transport vehicles for example car, truck, train or boat
  • the envelope of a building on which the functional device can be fixed.
  • Functionalized pavements are pavements comprising electrically or optically active elements such as photovoltaic cells, light-emitting diodes (LEDs), electric, electronic, optical, optoelectric, piezoelectric and/or thermoelectric elements. These elements can make it possible to generate, receive and/or communicate data, or to generate and transfer energy.
  • electrically or optically active elements such as photovoltaic cells, light-emitting diodes (LEDs), electric, electronic, optical, optoelectric, piezoelectric and/or thermoelectric elements. These elements can make it possible to generate, receive and/or communicate data, or to generate and transfer energy.
  • the principle of solar roads consists in using roads or pavements as means of producing electrical energy, from solar irradiation during the day.
  • solar modules are inserted into so-called circulatory pavements (roads, sidewalks, etc.), and covered with a transparent textured surface, resistant to the passage of vehicles, and meeting the grip requirements applicable to roads and other trafficked routes. .
  • photovoltaic modules include: - a transparent plate on the front of the module, generally made of glass; the front face being the one exposed to incident solar radiation during the installation of the modules on the ground,
  • -a plate on the rear face of the photovoltaic module generally made of glass or a "backsheet” formed of multi-layer polymers.
  • photovoltaic modules have a high weight, significant risks of breaking the glass and/or the cells inside under mechanical impact and an increased sensitivity to certain meteorological phenomena such as hailstorms, for example.
  • modules cannot be used for applications requiring reduced weight, such as, for example, installation on a roof with low carrying capacity or on vehicles.
  • This composite material cannot therefore be used as is on the front face of a photovoltaic module or any other type of functional device.
  • An additional layer must be added to protect the module from external conditions and to avoid possible damage.
  • the present invention proposes to improve the structure of functional devices, in order to make them more resistant to external conditions but also lighter so that they can be installed on different supports, some of which do not support heavy loads, while maintaining good optical, electrical and mechanical performance.
  • the invention thus relates to a functional device comprising a multilayer stack.
  • This multilayer stack successively comprises:
  • the first protective film comprises a composite material comprising a thermosetting polyurethane resin and glass fibers.
  • the thickness of the composite material of the first protective film is greater than or equal to 500 micrometers.
  • the use of the composite material according to the invention makes it possible to obtain a functional device that is more resistant to mechanical impacts (for example with better resistance to shocks, to bending and to puncturing) compared to the materials used conventionally. In addition, this makes it possible to obtain a lighter functional device, which can then be installed on vehicles or the roofs of buildings, for example.
  • the composite material gives great transparency to the first protective film of the functional device, which makes it possible to guarantee good optical and electrical performance.
  • the optical transmission is greater than 80% for a wavelength range extending between 400 and 1200 nm.
  • losses in optical transmission are less than 2% are observed after exposure of the composite material to a dose of ultraviolet radiation (between 280 and 400 nm) at 60 kWh/ m 2 or after 1000 hours of exposure to damp heat at 85% relative humidity and a temperature of 85 degrees Celsius.
  • the composite material in accordance with the invention also makes it possible to guarantee good properties of mechanical rigidity: indeed, no breakage of the photovoltaic cell appears following a punching test or following an impact test of up to 10 Joules ( J).
  • the glass fibers of the composite material comprise a type E glass or a type S2 glass or a quartz glass or a mixture of these (the mixture being for example carried out by taking the glasses of different types two to two ; for example a mixture of a type E glass and a type S2 glass, or a mixture of an E type glass and a quartz glass, or even a mixture of a type S2 glass and of a quartz glass. It can also be a mixture of a type E glass, a type S2 glass and a quartz glass);
  • the diameter of the glass fibers of the composite material is less than or equal to 25 micrometers
  • the diameter of the glass fibers of the composite material is less than or equal to 10 micrometers
  • the glass fibers of the composite material are in the form of at least one fabric (also called ply);
  • the weight of the fabric is between 200 and 600 g/m 2 ;
  • the fabric is of the satin weave type
  • the fabric is of the satin weave type of 8;
  • the fabric is of the twill type
  • the fabric is of the taffeta type
  • the glass fibers of the composite material are in the form of an arrangement formed by superimposing one to three plies of said fabric;
  • thermosetting polyurethane resin of the composite material has a viscosity of between 100 and 5000 mPa.s;
  • thermosetting polyurethane resin of the composite material has a glass transition temperature greater than 80 degrees Celsius
  • thermosetting polyurethane resin of between 25 and 50%
  • thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nanometers
  • the composite material comprises a volume content of glass fibers of between 40 and 60%, preferably of the order of 50%;
  • the thickness of the composite material of the first protective film is less than or equal to 900 micrometers
  • the thickness of the composite material of the first protective film is between 500 and 900 micrometers;
  • the second protective film comprises another composite material comprising a thermosetting polyurethane resin and glass fibers;
  • the thickness of said other composite material of the second protective film is greater than or equal to 500 micrometers
  • the thickness of said other composite material of the second protective film is between 500 micrometers and 3 millimeters, preferably between 500 micrometers and 1.5 millimeters;
  • the glass fibers of the other composite material comprise a type E glass or a type S2 glass or a quartz glass or a mixture of these (the mixture being for example carried out by taking the glasses of different types two two; for example a mixture of a type E glass and a type S2 glass, or a mixture of an E type glass and a quartz glass, or even a mixture of a type S2 and a quartz glass (it can also be a mixture of a type E glass, a type S2 glass and a quartz glass);
  • the diameter of the glass fibers of the other composite material is less than or equal to 50 micrometers
  • the diameter of the glass fibers of the other composite material is less than or equal to 30 micrometers
  • the glass fibers of the other composite material are roving-type fibers
  • the glass fibers of the other composite material are in the form of at least one fabric
  • the weight of the fabric is between 200 and 1000 g/m 2 ;
  • the fabric is of the satin weave type
  • the fabric is of the satin weave type of 8;
  • the fabric is of the twill type
  • the fabric is of the taffeta type
  • the glass fibers of the other composite material are in the form of an arrangement formed by superimposing one to twelve plies of said fabric;
  • the glass fibers of the other composite material are assembled in the form of a mat of continuous glass fibers or a mat of discontinuous glass fibers;
  • the glass fibers of the other composite material are assembled in the form of a multiaxial arrangement; - the weight of the glass fibers of the other composite material assembled is less than or equal to 1.5 kg/m 2 ;
  • thermosetting polyurethane resin of the other composite material has a viscosity of between 100 and 5000 mPa.s;
  • thermosetting polyurethane resin of the other composite material has a glass transition temperature greater than 80 degrees Celsius
  • thermosetting polyurethane resin of between 25 and 50%
  • the other composite material comprises a volume content of glass fibers of between 40 and 60%, preferably of the order of 50%;
  • thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nanometers and the glass fibers of the other composite material include S2 type glass.
  • the invention also relates to a method of manufacturing a functional device as defined previously.
  • the process includes:
  • thermosetting polyurethane resin of the composite material forming the first protective film being thermally polymerized before the implementation of a step of forming the multilayer stack
  • step forming the multilayer stack making it possible to coat the electrically or optically active element in the encapsulating assembly between the first protective film and the second protective film.
  • the invention also relates to a functionalized trafficable or pedestrian roadway, on which is fixed a functional device as defined previously.
  • the invention also relates to a transport vehicle comprising a functional device as described previously.
  • the invention finally relates to a building envelope comprising a functional device as described above.
  • the different features, variants and embodiments of the invention may be associated with each other in various combinations insofar as they are not incompatible or exclusive of each other.
  • FIG. 1 schematically shows a sectional view of a functional device according to the invention
  • FIG. 2 schematically shows a fabric used for the glass fibers of a first plate of the functional device according to the invention
  • FIG. 3 represents the evolution of the optical transmission as a function of the wavelength for several examples of first plates placed in parallel with the spectral response of a photovoltaic cell
  • FIG. 4 represents the evolution of dP losses at maximum power of several functional devices as a function of the dose of ultraviolet radiation applied.
  • FIG. 1 schematically represents a sectional view of a functional device 100.
  • This functional device 100 is for example integrated into a trafficable area such as a trafficable or pedestrian roadway.
  • the functional device 100 comprises a multilayer stack comprising successively: - a first plate also called first protective film 101, arranged on the front face of the functional device 100, transparent, having a first thickness ei, in a first material,
  • an encapsulating assembly 107 encasing at least one electrically or optically active element 110 (also called active element 110 in the remainder of this description), and
  • a second plate also called second protective film 105 arranged on the rear face of the functional device 100, transparent or not, having a second thickness es, in a second material.
  • the encapsulating assembly 107 is for example formed of an encapsulating material (FIG. 1), and in particular formed of a single encapsulating material.
  • the encapsulating assembly may be formed by two or more encapsulating materials.
  • the first plate 101 is an element of the functional device 100 in direct contact with the external environment.
  • the first plate 101 comprises a composite material comprising a thermosetting polyurethane resin and glass fibers.
  • composite material means a solid material resulting from the combination of at least two components and whose mechanical rigidity properties are better than those of each of its components taken separately.
  • thermosetting means a material which, under the effect of a rise in temperature, acquires an irreversible rigidity.
  • the composite material has properties of mechanical rigidity at least over the entire operating temperature range of the functional device 100 (from -40 degrees Celsius (°C) to +85°C).
  • the polyurethane resin for example a thermosetting polyurethane-urethane resin is formed from a base resin and a hardener.
  • the base resin is for example composed of polyalcohols or organic compounds of several alcohols (of synthetic or natural origin).
  • the hardener comprises for example isocyanate.
  • thermosetting polyurethane resin used in the present invention is not polymerizable under the effect of electromagnetic radiation (for example of the UltraViolet type). In particular, it is preferably devoid of photoinitiators.
  • thermosetting polyurethane resin is polymerized and crosslinked (i.e. solidified) under the effect of a rise in temperature.
  • thermosetting polyurethane resin is here polymerized and crosslinked (i.e. solidified) under the effect of a rise in temperature only.
  • this allows the polymerization and cross-linking of rather thick plates of material, for example thicknesses greater than 300 micrometers, with homogeneous properties.
  • the composite material comprises a mass content of thermosetting polyurethane resin of between 25 and 50%. Preferably, this mass content is between 30 and 40%.
  • thermosetting polyurethane resin has a viscosity of between 100 and 5000 mPa.s (measured for a temperature range between 25° C. and 100° C., corresponding to the implementation of the thermosetting polyurethane resin).
  • the glass transition temperature of the thermosetting polyurethane resin i.e. the temperature at which the resin changes from a rubbery state to a solid (rigid) glassy state, is here above 80°C.
  • thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nm.
  • thermosetting polyurethane resin used makes it possible to obtain high transparency, mechanical robustness and high environmental stability for the composite material.
  • the thermosetting polyurethane resin is mixed with glass fibers to form a reinforced composite material.
  • the glass fibers used to form the composite material comprise an E type glass, that is to say a glass comprising alumino-borosilicates with a very low content of alkali metal oxides or an S2 type glass, that is to say a glass of magnesium alumina silicate or else a mixture of a type E glass and a type S2 glass.
  • the term “mixture of glasses of different types” is understood to mean a superposition of a certain number of plies (as described below).
  • the glass fibers may comprise a quartz glass.
  • any other type of glass with high optical transparency can be used.
  • transparent is meant in this description a material allowing more than 70% of the incident radiation to pass, and preferably at least 80% of the incident radiation, in the visible spectrum.
  • the glass fibers used to form the composite material have a diameter less than or equal to 25 ⁇ m.
  • the diameter of these glass fibers is less than or equal to 10 ⁇ m.
  • the diameter of these glass fibers is of the order of 6 ⁇ m or 9 ⁇ m.
  • the glass fibers of the composite material represent from 60 to 70% by mass content of the composite material. Furthermore, the volume content of the glass fibers is between 40 and 60%, preferably of the order of 50%.
  • the glass fibers are in the form of a fabric, that is to say in the form of an arrangement obtained from a plurality of bundles of intersecting glass fibers. A fabric then appears in the form of a fold.
  • the composite material comprises between one and three plies of superimposed glass fibers.
  • the basis weight of the fabric (therefore of a ply) is for example between 200 and 600 g/m 2 .
  • the weaving used is of the satin weave type.
  • the fabric is of the 8 satin weave type, that is to say that the weft thread passes once below (black box in figure 2) and seven times above (white box in figure 2). 2), as shown in Figure 2.
  • the weave used may be twill or taffeta.
  • the composite material is here obtained by infusion of thermosetting polyurethane resin coupled with glass fibers.
  • the composite material can be formed by a CRTM (Compression Resin Transfer Molding) process.
  • the composite material can be obtained by resin transfer molding (or RTM for “Resin Transfer Molding”).
  • the composite material thus formed has noteworthy optical and mechanical properties.
  • the optical transmission between 400 and 1200 nanometers (nm) is greater than 85%.
  • optical transmission losses after aging for example by exposing the composite material to a dose of ultraviolet (UV) radiation at 60kWh/m 2 (over a wavelength range between 280 and 400 nm), less than 10% loss is observed for a wavelength of 400 nm. For a wavelength between 450 and 1200 nm, optical transmission losses are less than 2%.
  • UV radiation at 60kWh/m 2 (over a wavelength range between 280 and 400 nm)
  • optical transmission losses of less than 2% are observed following exposure for 1000 hours to damp heat at 85% relative humidity and a temperature of 85°C.
  • This composite material also has low sensitivity to water and various liquids. For example, in the case of immersion in water at ambient temperature for a period of 1000 hours, a caking of the composite material of less than 1% is observed.
  • the composite material also has notable properties regarding elasticity and breaking stress. These properties are highlighted here for a composite material with a thickness of 2 millimeters (mm) and formed of eight plies of fabric with glass fibers comprising an E-type glass.
  • this composite material has an elastic modulus greater than 15 GPa, more particularly between 15 and 20 GPa (this elastic modulus is evaluated according to standard NF EN ISO 14125). As regards the breaking stress of this composite material, it is here greater than 500 MPa (breaking stress evaluated according to standard NF EN ISO 14125).
  • the composite material used for the first plate 101 has a thickness greater than or equal to 500 micrometers ( ⁇ m). This characteristic makes it possible in particular to ensure sufficient rigidity for the mechanical strength of the functional device essential to its use in the various applications targeted. In other words, the lack of flexibility of the first plate 101 allows its optimal compatibility with the manufacturing requirements of the functional device 100, in particular with the manufacturing requirements of a photovoltaic module.
  • the thickness of the composite material of the first plate 101 is between 500 and 900 micrometers.
  • thermosetting polyurethane resin whose polymerization and crosslinking are only carried out with a rise in temperature (without the use of electromagnetic radiation).
  • the use of the composite material (only) in the first plate 101 makes it possible to ensure high transparency of the functional device 100 while guaranteeing a very high resistance to mechanical impacts of this functional device 100. moreover, it also makes it possible to reduce the overall weight of the functional device 100 compared to a device using a glass plate.
  • the mixture of thermosetting polyurethane resin and glass fibers conferring good intrinsic stability to external conditions (no degradation due to ultraviolet radiation, nor to variable conditions of temperature and/or humidity).
  • the functional device 100 whose first plate 101 comprises the composite material according to the invention has significant mechanical properties.
  • an impact resistance test of the functional device up to an energy of 10 Joules (J) (corresponding to five times the energy of the hail test associated with the IEC 61215 photovoltaic certification standard) did not lead to no breakage of electrically or optically active elements (eg a photovoltaic cell). This conclusion was obtained through electroluminescence observations. Furthermore, no loss of power of the functional device 100 was observed at the end of this test.
  • a puncture resistance test of the functional device 100 is also implemented using a hemispherical indentation device having a diameter of 15 mm applying a force of 1200 N and representing a pressure of the order of 100 MPa. Following this test, no breakage of electrically or optically active elements (for example a photovoltaic cell) is observed. This conclusion was reached through electroluminescence observations. No loss of power of the functional device was observed either at the end of this test.
  • the functional device was also subjected to a bending resistance test carried out by a charge/discharge test associated with the IEC 61215 standard. Following this test, no breakage of electrically or optically active elements (for example a photovoltaic cell). This conclusion was reached through electroluminescence observations. No loss of power of the functional device was observed either at the end of this test. Furthermore, no visual defect of the functional device was observed following this test.
  • Second plate 105
  • the second plate 105 is also an element of the functional device 100 in direct contact with the external environment.
  • the second plate 105 comprises another composite material comprising a thermosetting polyurethane resin and glass fibers.
  • This other composite material is similar to the composite material of the first plate 101 described above.
  • the other composite material of the second plate 105 has the same properties as the composite material included in the first plate 101.
  • the first plate 101 and the second plate 105 are made of the same composite material.
  • the functional device is said to be bifacial, that is to say that it can be used either with the first plate 101 or the second plate 105 on the front face.
  • the respective thicknesses of the composite material and of the other composite material are for example different. Alternatively, they can of course be equal.
  • the other composite material of the second plate 105 and the composite material of the first plate 101 have different properties. In the following, for this second embodiment, for the other composite material, only the differences with the composite material of the first plate 101 are described.
  • the glass fibers used to form the other composite material have a diameter less than or equal to 50 ⁇ m.
  • the diameter of the glass fibers of the other composite material is less than or equal to 30 ⁇ m. More preferably, the diameter of the glass fibers of the other composite material is less than or equal to 26 ⁇ m.
  • the diameter of the glass fibers used for the second plate 105 can be greater than that of the glass fibers used for the first plate 101. This makes it possible in particular to reduce the cost of forming the second plate 105, while while maintaining satisfactory optical and mechanical properties.
  • the glass fibers are for example of the roving type, that is to say glass fibers assembled in a weft without torsion.
  • the glass fibers are in the form of a fabric.
  • the other composite material comprises between one and twelve plies of superimposed fiberglass.
  • the weaving used is for example of the satin weave type.
  • the fabric is an 8 satin weave type.
  • the weave may be of the twill type.
  • the weave may be of the taffeta type.
  • the glass fibers can be assembled in a form different from a weave.
  • the glass fibers can be assembled in the form of a glass fiber mat, i.e. a assembly of the glass fibers without particular orientation. It may be a mat of continuous or discontinuous glass fibers.
  • the glass fibers of the other composite material can be assembled in the form of a multiaxial arrangement, that is to say formed of several unidirectional layers oriented in different directions and assembled by sewing threads (also called “Non Crimp Fabric” (NCF)).
  • NCF Non Crimp Fabric
  • the weight of the glass fibers of the other composite material assembled is for example less than or equal to 1.5 kg/m 2
  • the other composite material used for the second plate 105 also has a thickness greater than or equal to 500 micrometers ( ⁇ m).
  • the thickness of the other composite material of the second plate 105 is between 500 ⁇ m and 3 mm, preferably between 500 ⁇ m and 1.5 mm.
  • the thickness of the other composite material used for the second plate 105 is greater than the thickness of the composite material of the first plate 101. This makes it possible to confer better mechanical strength on the functional device. Indeed, knowing that the thickness of the first plate is limited in order to guarantee properties of transparency, the thickness of the second plate can be higher in order to guarantee a total thickness of the functional device sufficient to obtain a good mechanical resistance of all.
  • the two plates (or films) of protection 101, 105 are in contact with the external environment, they can also play the role of barriers to external influences (in particular to humidity). They advantageously have the following additional characteristics:
  • the encapsulating assembly 107 has a thickness greater than or equal to 900 ⁇ m.
  • Encapsulant assembly 107 includes polymeric encapsulant materials. These polymeric materials generally come in the form of films of a few hundred micrometers thick. These films are transformed, during the manufacture of the functional device, so as to coat the electrically or optically active elements 110 in order to protect them from mechanical and chemical impacts.
  • the polymer materials of the encapsulating assembly 107 are homopolymers or copolymers of ethylene vinyl acetate (EVA), ethylene methylacrylate (EMA), ethylene butylacrylate (EBA), ethylene propylene (EPDM), polyvinyl butyral (PVB ), polydimethylsiloxanes, polyurethanes (PU), crosslinkable polyolefins, thermoplastic polyolefins, or ionomers.
  • EVA ethylene vinyl acetate
  • EMA ethylene methylacrylate
  • EBA ethylene butylacrylate
  • EPDM ethylene propylene
  • PVB polyvinyl butyral
  • polydimethylsiloxanes polyurethanes
  • PU polyurethanes
  • thermoplastic polyolefins thermoplastic polyolefins
  • ionomers More generally, the encapsulant assembly comprises polymeric materials commonly used as encapsulants in photovoltaic modules.
  • the encapsulating assembly 107 is formed from at least two superimposed encapsulating films. These two encapsulating films are for example formed with the same polymer material. As a variant, the two encapsulating films can be in different materials.
  • the functional device 100 comprises at least one electrically or optically active element 110, and preferably, a plurality of electrically or optically active elements 110 as represented in FIG.
  • electrically active element means an element which transmits and/or receives electrical signals.
  • optical active element is understood to mean an element which transmits and/or receives optical signals, or an element which transforms optical signals into electrical signals or vice versa.
  • the electrically or optically active elements 110 are completely coated, being centered or not, in the thickness of the encapsulating assembly 107 (FIG. 1).
  • the optically active elements are for example light-emitting diodes, or a photosensitive sensor (such as a photodiode).
  • the active elements 110 are, for example, photovoltaic cells. They are, for example, based on silicon wafers, mono-crystalline, multi-crystalline or almost mono-crystalline also known by the Anglo-Saxon name of “mono-like”.
  • the photovoltaic cells are arranged next to each other.
  • the photovoltaic cells are regularly spaced.
  • the photovoltaic cells are generally interconnected with each other, by electrically conductive metal connections, intended to collect the electricity generated by the photovoltaic cells.
  • Electrically conductive connectors also called electrically conductive parts in this description, are metallic connections attached to the metallization of the cell. For example, these are flat ribbons or copper wires. The connection is made, for example, by welding or gluing.
  • the assembly formed by the photovoltaic cells and the connectors forms a skeleton of interconnected photovoltaic cells.
  • the manufacturing process of the functional device 100 comprises the following successive steps:
  • step forming the multilayer stack making it possible to coat the electrically or optically active element 110 in the encapsulating assembly 107 between the first protective film 101 and the second protective film 105, the first plate 101 comprising the material formed composite.
  • the method may also include a step of forming the other composite material comprising a thermosetting polyurethane resin and glass fibers, the second plate 105 comprising this other formed composite material.
  • thermosetting polyurethane resin is thermally polymerized before the implementation of the step of forming the multilayer stack. This polymerization is for example implemented with the application of pressure.
  • thermosetting polyurethane resin the polymerization of the thermosetting polyurethane resin is carried out, under the effect of a rise in temperature, before the implementation of the step of forming the multilayer stack.
  • the composite material and the other composite material are prepared in the form of a thin and rigid plate. Each thin and rigid plate is formed from a thermosetting polyurethane resin previously thermoset, and glass fibers.
  • the composite material is therefore obtained in the form of a thin and rigid plate with a thickness between 500 and 900 ⁇ m.
  • the other composite material is obtained in the form of a thin and rigid plate with a thickness of between 500 ⁇ m and 1.5 mm.
  • the step of forming the multilayer stack is for example carried out by hot lamination.
  • the hot lamination of the assembly (also called rolling) makes it possible not only to melt and then crosslink the polymer materials but also to constitute good adhesion between all the layers, the electrically or optically active elements and the element electrical connection, forming the whole structure.
  • the film encapsulating 107; as well as the protective plates or films 101 and 105; can be obtained from one or more stacked layers of the same material; in order to obtain the desired thickness for each film or plate in its final state; after lamination.
  • the lamination is carried out using equipment called a laminator (also called a laminator) which can be, for example, a membrane press or a double-plate press.
  • a laminator also called a laminator
  • a membrane press for example, a membrane press or a double-plate press.
  • the lamination process is carried out hot under vacuum and under mechanical pressure.
  • the lamination temperature is between 120°C and 200°C, and advantageously between 140 and 170°C, with an adjustable process time. This process time is for example between 15 and 30 minutes.
  • the pressure applied is typically of the order of one bar.
  • Test procedures have been implemented in order to highlight the advantages of a functional device according to the invention compared to a functional device according to the state of the art as described for example in document EP3006181.
  • the device A whose first plate comprises a composite material comprising an epoxy resin and glass fibers
  • the device B whose first plate comprises a composite material according to the invention comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type E glass,
  • the device C whose first plate comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type S2 glass, and
  • the first plate of which comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibres, the glass fibers comprising a mixture of type E and type S2 glass.
  • the structure of the fabric, as well as the grammage and the number of plies (2 plies) are identical.
  • Device A corresponds, in this description, to the known functional device of the state of the art (as described previously).
  • FIG. 3 represents the curves of the optical transmission T in % (left ordinate axis) as a function of the wavelength ⁇ in nanometers for each of the first corresponding plates respectively of the functional devices A, B, C, D considered before and after exposure to ultraviolet radiation.
  • the optical performances of the first plates alone of each of the devices A, B, C, D are therefore compared here.
  • Each curve a1, b1, c1, d1 corresponds to the optical transmission before exposure to ultraviolet radiation.
  • Each curve a2, b2, c2, d2 corresponds to the optical transmission after exposure to ultraviolet radiation.
  • FIG. 3 also represents a curve e illustrating the external quantum efficiency E in % (right ordinate axis) of a photovoltaic cell made of crystalline silicon and used in a functional device conforming to the invention as a function of the wavelength ⁇ .
  • This curve e then highlights the wavelength range of interest for the functional device, here between 350 and 1200 nm.
  • the photovoltaic cell has better performance for wavelengths between 500 and 1050 nm (optical transmission greater than 80%).
  • the optical performances of the respective first plates of the devices C (glass of type S2) and D (mixture of type E and S2) are better than those of the first plate of the device A (epoxy resin, known from the state of the art) whatever the wavelength.
  • the use of a type S2 glass significantly improves the optical performance of the first plate.
  • first plate of device A epoxy resin, known from the state of the art
  • first plates of the Devices C and D mixture of type E and S2 are insensitive to ultraviolet aging.
  • the first plate of device B (type E glass) has slightly lower optical performance than that of the first plate of device A (epoxy resin, known from the state of technology).
  • the first plate of device B (E-type glass) presents interesting optical performances because it is insensitive to ultraviolet ageing. More particularly, after exposure to ultraviolet radiation, this first plate of device B (type E glass) has better optical performance than the first plate of device A (epoxy resin, known from the state of the art) for lengths d wave between 400 and 500 nm.
  • the devices A, B and C introduced above are compared as well as a device F whose first plate comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type S2 lens and whose fabric structure includes 3 plies.
  • a device F whose first plate comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type S2 lens and whose fabric structure includes 3 plies.
  • Figure 4 represents the evolution curves a3, b3, c3, f3 of the dP losses at maximum power (in %) respectively of each functional device A, B, C, F as a function of the dose Puv of the ultraviolet radiation.
  • This test procedure focuses on the performance of devices A (epoxy resin, 2 ply), C (type S2 glass, 2 ply) and F (type S2 glass, 3 ply).
  • These functional devices each comprise crystalline silicon photovoltaic cells interconnected with one another by strips forming the electrically conductive metal connections. These connection strips constitute, from the point of view of mechanical protection, the most fragile zone of the functional device.
  • a hemispherical indentation device with a diameter of 15 mm is applied to the connection strips of each functional device positioned on a rigid support, exerting a force of 1200 Newtons (N).
  • the various functional devices undergo between 6 and 12 punching tests.
  • the present invention advantageously relates to functional devices such as photovoltaic modules of any type, including ground installations or installations on a roof. In particular, it applies advantageously for solar roads.
  • the invention also applies advantageously to functional devices intended to be positioned on a roadway and integrating other electrically or optically active or passive elements.
  • the functional device 100 can be integrated into the surface of circulating roads - for any means of rolling transport, motorized and/or non-motorized, and/or pedestrian. More details on the characteristics of such a pavement can be found in the document FR3093116.
  • the invention also applies advantageously to transport vehicles, such as motor vehicles, trains or boats.
  • the functional device according to the invention is for example integrated on an outer surface of a transport vehicle.
  • the invention also finds a preferred application in all the usual fields in which photovoltaic modules are included, including ground installations and installations on roofs.
  • the functional device according to the invention can be integrated into the surface of an envelope of a building.
  • envelope of a building we mean here the roof or the facade of a building.
  • the functional device according to the invention can advantageously be installed on a flat roof or an inclined roof.

Abstract

The invention relates to a functional device (100) having a multilayer stack, comprising in succession: - a first transparent protective film (101) arranged on the front face of said device, - an encapsulating assembly (107), - a second protective film (105) arranged on the rear face of the device, and - at least one electrically or optically active element (110) being embedded in the encapsulating assembly. According to the invention, the first protective film comprises a composite material having a thermosetting polyurethane resin and glass fibers, the thickness of the composite material of the first protective film being greater than or equal to 500 micrometers. This composite material has high optical performance and high mechanical strength properties.

Description

Dispositif fonctionnel en structure multicouche dont l’une des couches comprend un matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre et procédé de fabrication d’un tel dispositif fonctionnel Functional device in multilayer structure, one of the layers of which comprises a composite material comprising a thermosetting polyurethane resin and glass fibers and method of manufacturing such a functional device
Domaine technique de l'invention Technical field of the invention
La présente invention concerne le domaine technique des dispositifs fonctionnels à structure multicouches, comprenant des éléments électriquement ou optiquement actifs, tels que des cellules photovoltaïques, des diodes électroluminescentes ou des films résistifs. The present invention relates to the technical field of functional devices with a multilayer structure, comprising electrically or optically active elements, such as photovoltaic cells, light-emitting diodes or resistive films.
L’invention concerne de manière avantageuse tout type de module photovoltaïque. The invention advantageously relates to any type of photovoltaic module.
L’invention est par exemple intégrable dans des chaussées circulâmes par des piétons et/ou des véhicules, motorisés ou non, telles que des chaussées ou routes, des pistes cyclables, des plateformes industrielles ou aéroportuaires, des places, des trottoirs ou des parkings. L’invention trouve une application privilégiée dans le domaine des chaussées fonctionnalisées, notamment des routes solaires. The invention can, for example, be integrated into roadways used by pedestrians and/or vehicles, motorized or not, such as roadways or roads, cycle paths, industrial or airport platforms, squares, sidewalks or car parks. The invention finds a privileged application in the field of functionalized pavements, in particular solar roads.
L’invention trouve également une application privilégiée dans les véhicules de transport (par exemple voiture, camion, train ou bateau) ou l’enveloppe d’un bâtiment, sur lesquels le dispositif fonctionnel peut être fixé. The invention also finds a preferred application in transport vehicles (for example car, truck, train or boat) or the envelope of a building, on which the functional device can be fixed.
Etat de la technique State of the art
Les chaussées fonctionnalisées sont des chaussées comprenant des éléments électriquement ou optiquement actifs tels que des cellules photovoltaïques, des diodes électroluminescentes (LEDs), des éléments électriques, électroniques, optiques, opto-électriques, piézoélectriques et/ou thermoélectriques. Ces éléments peuvent permettre de générer, de recevoir et/ou de communiquer des données, ou encore de générer et transférer de l’énergie. Functionalized pavements are pavements comprising electrically or optically active elements such as photovoltaic cells, light-emitting diodes (LEDs), electric, electronic, optical, optoelectric, piezoelectric and/or thermoelectric elements. These elements can make it possible to generate, receive and/or communicate data, or to generate and transfer energy.
En particulier, le principe des routes solaires consiste à utiliser les routes ou chaussées comme moyens de production d’énergie électrique, à partir de l’irradiation solaire pendant la journée. In particular, the principle of solar roads consists in using roads or pavements as means of producing electrical energy, from solar irradiation during the day.
Pour cela, des modules solaires sont insérés dans des chaussées dites circulâmes (routes, trottoirs, etc.), et recouverts par une surface texturée transparente, résistante au passage des véhicules, et répondant aux exigences d’adhérence applicables aux routes et autres voies circulées. For this, solar modules are inserted into so-called circulatory pavements (roads, sidewalks, etc.), and covered with a transparent textured surface, resistant to the passage of vehicles, and meeting the grip requirements applicable to roads and other trafficked routes. .
Classiquement, les modules photovoltaïques comprennent : -une plaque transparente en face avant du module, généralement en verre ; la face avant étant celle exposée au rayonnement solaire incident lors de l'implantation des modules sur le terrain, Conventionally, photovoltaic modules include: - a transparent plate on the front of the module, generally made of glass; the front face being the one exposed to incident solar radiation during the installation of the modules on the ground,
-un ensemble de cellules photovoltaïques interconnectées, enrobées dans une couche d’encapsulation, -a set of interconnected photovoltaic cells, coated in an encapsulation layer,
-une plaque en face arrière du module photovoltaïque, généralement en verre ou en un « backsheet » formé de polymères multi-couches. -a plate on the rear face of the photovoltaic module, generally made of glass or a "backsheet" formed of multi-layer polymers.
Cependant, ces modules photovoltaïques présentent un poids élevé, des risques importants de casse du verre et/ou des cellules à l’intérieur sous impact mécanique et une sensibilité accrue à certains phénomènes météorologiques comme par exemple les tempêtes de grêle. However, these photovoltaic modules have a high weight, significant risks of breaking the glass and/or the cells inside under mechanical impact and an increased sensitivity to certain meteorological phenomena such as hailstorms, for example.
De plus, ces modules ne sont pas utilisables pour des applications nécessitant un poids réduit, comme par exemple une installation sur une toiture à faible capacité de portage ou sur des véhicules. In addition, these modules cannot be used for applications requiring reduced weight, such as, for example, installation on a roof with low carrying capacity or on vehicles.
Il est alors connu, par exemple du document EP3006181 , de remplacer le verre de la plaque en face avant par un matériau composite formé d’une résine époxy et de fibres de verre. Cependant, ce type de résine subit des dégradations lors de l’utilisation du module photovoltaïque en extérieur (en fonction par exemple des paramètres d’humidité et d’exposition au rayonnement ultraviolet). It is then known, for example from document EP3006181, to replace the glass of the plate on the front face with a composite material formed of an epoxy resin and glass fibers. However, this type of resin undergoes degradation when the photovoltaic module is used outdoors (depending, for example, on the parameters of humidity and exposure to ultraviolet radiation).
Ce matériau composite ne peut donc pas être utilisé tel quel en face avant d’un module photovoltaïque ou de tout autre type de dispositif fonctionnel. Une couche supplémentaire doit être ajoutée afin de protéger le module des conditions extérieures et d’éviter d’éventuelles dégradations. This composite material cannot therefore be used as is on the front face of a photovoltaic module or any other type of functional device. An additional layer must be added to protect the module from external conditions and to avoid possible damage.
Présentation de l'invention Presentation of the invention
Dans ce contexte, la présente invention propose d’améliorer la structure des dispositifs fonctionnels, afin de les rendre plus résistants aux conditions extérieures mais également plus légers pour qu’ils puissent être installés sur différents supports dont certains qui ne supportent pas de charges lourdes, tout en conservant de bonnes performances optiques, électriques et mécaniques. In this context, the present invention proposes to improve the structure of functional devices, in order to make them more resistant to external conditions but also lighter so that they can be installed on different supports, some of which do not support heavy loads, while maintaining good optical, electrical and mechanical performance.
L’invention concerne ainsi un dispositif fonctionnel comportant un empilement multicouche. Cet empilement multicouche comprend successivement : The invention thus relates to a functional device comprising a multilayer stack. This multilayer stack successively comprises:
- un premier film de protection transparent disposé en face avant dudit dispositif,- a first transparent protective film placed on the front face of said device,
- un ensemble encapsulant, - un deuxième film de protection disposé en face arrière du dispositif, et - an encapsulating assembly, - a second protective film placed on the rear face of the device, and
- au moins un élément électriquement ou optiquement actif étant enrobé dans l’ensemble encapsulant. - at least one electrically or optically active element being coated in the encapsulating assembly.
Selon l’invention, le premier film de protection comprend un matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre. De plus, l’épaisseur du matériau composite du premier film de protection est supérieure ou égale à 500 micromètres. According to the invention, the first protective film comprises a composite material comprising a thermosetting polyurethane resin and glass fibers. In addition, the thickness of the composite material of the first protective film is greater than or equal to 500 micrometers.
L’utilisation du matériau composite selon l’invention permet d’obtenir un dispositif fonctionnel plus résistant aux impacts mécaniques (par exemple avec une meilleure résistance aux chocs, à la flexion et au poinçonnement) par rapport aux matériaux utilisés classiquement. De plus, cela permet d’obtenir un dispositif fonctionnel plus léger, qui pourra alors être installé sur des véhicules ou des toitures de bâtiments par exemple. The use of the composite material according to the invention makes it possible to obtain a functional device that is more resistant to mechanical impacts (for example with better resistance to shocks, to bending and to puncturing) compared to the materials used conventionally. In addition, this makes it possible to obtain a lighter functional device, which can then be installed on vehicles or the roofs of buildings, for example.
Enfin, le matériau composite confère une grande transparence au premier film de protection du dispositif fonctionnel, ce qui permet de garantir de bonnes performances optiques et électriques. Par exemple, en ce qui concerne les performances optiques, la transmission optique est supérieure à 80% pour une plage de longueur d’onde s’étendant entre 400 et 1200 nm. Par ailleurs, pour une longueur d’onde comprise entre 450 et 1200 nm, des pertes en transmission optique sont inférieures à 2% sont observées après exposition du matériau composite à une dose de rayonnement ultraviolet (entre 280 et 400 nm) à 60 kWh/m2 ou après une exposition de 1000h à une chaleur humide à 85% d’humidité relative et une température de 85 degrés Celsius. Finally, the composite material gives great transparency to the first protective film of the functional device, which makes it possible to guarantee good optical and electrical performance. For example, with regard to optical performance, the optical transmission is greater than 80% for a wavelength range extending between 400 and 1200 nm. Moreover, for a wavelength between 450 and 1200 nm, losses in optical transmission are less than 2% are observed after exposure of the composite material to a dose of ultraviolet radiation (between 280 and 400 nm) at 60 kWh/ m 2 or after 1000 hours of exposure to damp heat at 85% relative humidity and a temperature of 85 degrees Celsius.
Le matériau composite conforme à l’invention permet également de garantir de bonnes propriétés de rigidité mécaniques : en effet, aucune casse de cellule photovoltaïque n’apparait suite à un test de poinçonnement ou suite à un test de choc allant jusqu’à 10 Joules (J). The composite material in accordance with the invention also makes it possible to guarantee good properties of mechanical rigidity: indeed, no breakage of the photovoltaic cell appears following a punching test or following an impact test of up to 10 Joules ( J).
D’autres caractéristiques non limitatives et avantageuses du dispositif fonctionnel conforme à l’invention, prises individuellement ou selon toutes les combinaisons techniquement possibles, sont les suivantes : Other non-limiting and advantageous characteristics of the functional device in accordance with the invention, taken individually or in all technically possible combinations, are as follows:
- les fibres de verre du matériau composite comprennent un verre de type E ou un verre de type S2 ou un verre de quartz ou d’un mélange de ceux-ci (le mélange étant par exemple effectué en prenant les verres de différents types deux à deux ; par exemple un mélange d’un verre de type E et d’un verre de type S2, ou un mélange d’un verre de type E et d’un verre de quartz, ou encore un mélange d’un verre de type S2 et d’un verre de quartz. Il peut également s’agir d’un mélange d’un verre de type E, d’un verre de type S2 et d’un verre de quartz) ; - the glass fibers of the composite material comprise a type E glass or a type S2 glass or a quartz glass or a mixture of these (the mixture being for example carried out by taking the glasses of different types two to two ; for example a mixture of a type E glass and a type S2 glass, or a mixture of an E type glass and a quartz glass, or even a mixture of a type S2 glass and of a quartz glass. It can also be a mixture of a type E glass, a type S2 glass and a quartz glass);
- le diamètre des fibres de verre du matériau composite est inférieur ou égal à 25 micromètres ; - the diameter of the glass fibers of the composite material is less than or equal to 25 micrometers;
- le diamètre des fibres de verre du matériau composite est inférieur ou égal à 10 micromètres ; - the diameter of the glass fibers of the composite material is less than or equal to 10 micrometers;
- les fibres de verre du matériau composite se présentent sous la forme d’au moins un tissu (également appelé pli) ; - the glass fibers of the composite material are in the form of at least one fabric (also called ply);
- le grammage du tissu est compris entre 200 et 600 g/m2 ; - the weight of the fabric is between 200 and 600 g/m 2 ;
- le tissu est de type armure de satin ; - the fabric is of the satin weave type;
- le tissu est de type armure de satin de 8 ; - the fabric is of the satin weave type of 8;
- le tissu est de type sergé ; - the fabric is of the twill type;
- le tissu est de type taffetas ; - the fabric is of the taffeta type;
- les fibres de verre du matériau composite se présentent sous la forme d’un arrangement formé par superposition d’un à trois plis dudit tissu ; - the glass fibers of the composite material are in the form of an arrangement formed by superimposing one to three plies of said fabric;
- la résine en polyuréthane thermodurcissable du matériau composite présente une viscosité comprise entre 100 et 5000 mPa.s ; - the thermosetting polyurethane resin of the composite material has a viscosity of between 100 and 5000 mPa.s;
- la résine en polyuréthane thermodurcissable du matériau composite présente une température de transition vitreuse supérieure à 80 degrés Celsius ; - the thermosetting polyurethane resin of the composite material has a glass transition temperature greater than 80 degrees Celsius;
- le matériau composite comprend une teneur massique de résine en polyuréthane thermodurcissable comprise entre 25 et 50% ; - the composite material comprises a mass content of thermosetting polyurethane resin of between 25 and 50%;
- la résine en polyuréthane thermodurcissable présente une transmission optique supérieure à 85% sur une plage de longueur d’onde comprise entre 400 et 1200 nanomètres ; - the thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nanometers;
- le matériau composite comprend une teneur volumique en fibres de verre comprise entre 40 et 60%, de préférence de l’ordre de 50% ; - the composite material comprises a volume content of glass fibers of between 40 and 60%, preferably of the order of 50%;
- l’épaisseur du matériau composite du premier film de protection est inférieure ou égale à 900 micromètres ; - the thickness of the composite material of the first protective film is less than or equal to 900 micrometers;
- l’épaisseur du matériau composite du premier film de protection est comprise entre 500 et 900 micromètres ; - le deuxième film de protection comprend un autre matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre ; - the thickness of the composite material of the first protective film is between 500 and 900 micrometers; - the second protective film comprises another composite material comprising a thermosetting polyurethane resin and glass fibers;
- l’épaisseur dudit autre matériau composite du deuxième film de protection est supérieure ou égale à 500 micromètres ; - the thickness of said other composite material of the second protective film is greater than or equal to 500 micrometers;
- l’épaisseur dudit autre matériau composite du deuxième film de protection est comprise entre 500 micromètres et 3 millimètres, de préférence comprise entre 500 micromètres et 1 ,5 millimètres ; - the thickness of said other composite material of the second protective film is between 500 micrometers and 3 millimeters, preferably between 500 micrometers and 1.5 millimeters;
- les fibres de verre de l’autre matériau composite comprennent un verre de type E ou un verre de type S2 ou un verre de quartz ou un mélange de ceux-ci (le mélange étant par exemple effectué en prenant les verres de différents types deux à deux ; par exemple un mélange d’un verre de type E et d’un verre de type S2, ou un mélange d’un verre de type E et d’un verre de quartz, ou encore un mélange d’un verre de type S2 et d’un verre de quartz. Il peut également s’agir d’un mélange d’un verre de type E, d’un verre de type S2 et d’un verre de quartz) ; - the glass fibers of the other composite material comprise a type E glass or a type S2 glass or a quartz glass or a mixture of these (the mixture being for example carried out by taking the glasses of different types two two; for example a mixture of a type E glass and a type S2 glass, or a mixture of an E type glass and a quartz glass, or even a mixture of a type S2 and a quartz glass (it can also be a mixture of a type E glass, a type S2 glass and a quartz glass);
- le diamètre des fibres de verre de l’autre matériau composite est inférieur ou égal à 50 micromètres ; - the diameter of the glass fibers of the other composite material is less than or equal to 50 micrometers;
- le diamètre des fibres de verre de l’autre matériau composite est inférieur ou égal à 30 micromètres ; - the diameter of the glass fibers of the other composite material is less than or equal to 30 micrometers;
- les fibres de verre de l’autre matériau composite sont des fibres de type roving ;- the glass fibers of the other composite material are roving-type fibers;
- les fibres de verre de l’autre matériau composite se présentent sous la forme d’au moins un tissu ; - the glass fibers of the other composite material are in the form of at least one fabric;
- le grammage du tissu est compris entre 200 et 1000 g/m2 ; - the weight of the fabric is between 200 and 1000 g/m 2 ;
- le tissu est de type armure de satin ; - the fabric is of the satin weave type;
- le tissu est de type armure de satin de 8 ; - the fabric is of the satin weave type of 8;
- le tissu est de type sergé ; - the fabric is of the twill type;
- le tissu est de type taffetas ; - the fabric is of the taffeta type;
- les fibres de verre de l’autre matériau composite se présentent sous la forme d’un arrangement formé par superposition d’un à douze plis dudit tissu ; - the glass fibers of the other composite material are in the form of an arrangement formed by superimposing one to twelve plies of said fabric;
- les fibres de verre de l’autre matériau composite sont assemblées sous la forme d’un mat de fibres de verre continues ou d’un mat de fibres de verre discontinues ;- the glass fibers of the other composite material are assembled in the form of a mat of continuous glass fibers or a mat of discontinuous glass fibers;
- les fibres de verre de l’autre matériau composite sont assemblées sous la forme d’un arrangement multiaxial ; - le grammage des fibres de verre de l’autre matériau composite assemblées est inférieur ou égal à 1 ,5 kg/m2 ; - The glass fibers of the other composite material are assembled in the form of a multiaxial arrangement; - the weight of the glass fibers of the other composite material assembled is less than or equal to 1.5 kg/m 2 ;
- la résine en polyuréthane thermodurcissable de l’autre matériau composite présente une viscosité comprise entre 100 et 5000 mPa.s ; - the thermosetting polyurethane resin of the other composite material has a viscosity of between 100 and 5000 mPa.s;
- la résine en polyuréthane thermodurcissable de l’autre matériau composite présente une température de transition vitreuse supérieure à 80 degrés Celsius ;- the thermosetting polyurethane resin of the other composite material has a glass transition temperature greater than 80 degrees Celsius;
- l’autre matériau composite comprend une teneur massique de résine en polyuréthane thermodurcissable comprise entre 25 et 50% ; - the other composite material comprises a mass content of thermosetting polyurethane resin of between 25 and 50%;
- l’autre matériau composite comprend une teneur volumique en fibres de verre comprise entre 40 et 60%, de préférence de l’ordre de 50% ; et - the other composite material comprises a volume content of glass fibers of between 40 and 60%, preferably of the order of 50%; And
- la résine en polyuréthane thermodurcissable présente une transmission optique supérieure à 85% sur une plage de longueur d’onde comprise entre 400 et 1200 nanomètres et les fibres de verre de l’autre matériau composite comprennent un verre de type S2. - the thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nanometers and the glass fibers of the other composite material include S2 type glass.
L’invention concerne également un procédé de fabrication d’un dispositif fonctionnel tel que défini précédemment. Le procédé comprend : The invention also relates to a method of manufacturing a functional device as defined previously. The process includes:
- une étape de formation du matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre, la résine en polyuréthane thermodurcissable du matériau composite formant le premier film de protection étant polymérisée thermiquement avant la mise en œuvre d’une étape de formation de l’empilement multicouche, et - a step of forming the composite material comprising a thermosetting polyurethane resin and glass fibers, the thermosetting polyurethane resin of the composite material forming the first protective film being thermally polymerized before the implementation of a step of forming the multilayer stack, and
- une étape de formation de l’empilement multicouche permettant d’enrober l’élément électriquement ou optiquement actif dans l’ensemble encapsulant entre le premier film de protection et le deuxième film de protection. - a step of forming the multilayer stack making it possible to coat the electrically or optically active element in the encapsulating assembly between the first protective film and the second protective film.
L’invention concerne également une chaussée circulable ou piétonne fonctionnalisée, sur laquelle est fixé un dispositif fonctionnel tel que défini précédemment. The invention also relates to a functionalized trafficable or pedestrian roadway, on which is fixed a functional device as defined previously.
L’invention concerne encore un véhicule de transport comprenant un dispositif fonctionnel tel que décrit précédemment. The invention also relates to a transport vehicle comprising a functional device as described previously.
L’invention concerne enfin une enveloppe de bâtiment comprenant un dispositif fonctionnel tel que décrit précédemment. Les différentes caractéristiques, variantes et formes de réalisation de l'invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. The invention finally relates to a building envelope comprising a functional device as described above. The different features, variants and embodiments of the invention may be associated with each other in various combinations insofar as they are not incompatible or exclusive of each other.
Description détaillée de l'invention Detailed description of the invention
La description qui va suivre en regard des dessins annexés, donnés à titre d’exemples non limitatifs, fera bien comprendre en quoi consiste l’invention et comment elle peut être réalisée. L'invention n'est pas limitée aux modes de réalisation illustrés sur les dessins. Par conséquent, il faut comprendre que, lorsque les caractéristiques mentionnées dans les revendications sont suivies de signes de référence, ces signes sont inclus uniquement dans le but d'améliorer l'intelligibilité des revendications et ne limitent aucunement la portée des revendications. The following description with reference to the accompanying drawings, given by way of non-limiting examples, will make it clear what the invention consists of and how it can be implemented. The invention is not limited to the embodiments illustrated in the drawings. Therefore, it should be understood that when the features mentioned in the claims are followed by reference signs, these signs are included only for the purpose of improving the intelligibility of the claims and in no way limit the scope of the claims.
Sur les dessins annexés : On the attached drawings:
- la figure 1 représente, de manière schématique, une vue en coupe d’un dispositif fonctionnel conforme à l’invention, - Figure 1 schematically shows a sectional view of a functional device according to the invention,
- la figure 2 représente, de manière schématique, un tissu utilisé pour les fibres de verre d’une première plaque du dispositif fonctionnel conforme à l’invention,- Figure 2 schematically shows a fabric used for the glass fibers of a first plate of the functional device according to the invention,
- la figure 3 représente l’évolution de la transmission optique en fonction de la longueur d’onde pour plusieurs exemples de premières plaques mis en parallèle de la réponse spectrale d’une cellule photovoltaïque, et - figure 3 represents the evolution of the optical transmission as a function of the wavelength for several examples of first plates placed in parallel with the spectral response of a photovoltaic cell, and
- la figure 4 représente l’évolution des pertes dP en puissance maximale de plusieurs dispositifs fonctionnels en fonction de la dose du rayonnement ultraviolet appliqué. - figure 4 represents the evolution of dP losses at maximum power of several functional devices as a function of the dose of ultraviolet radiation applied.
En préliminaire, on notera que les éléments identiques ou similaires des différents modes de réalisation de l’invention représentés sur les différentes figures seront, dans la mesure du possible, référencés par les mêmes signes de référence et ne seront pas décrits à chaque fois. As a preliminary, it will be noted that the identical or similar elements of the different embodiments of the invention shown in the different figures will, as far as possible, be referenced by the same reference signs and will not be described each time.
La figure 1 représente, de manière schématique, une vue en coupe d’un dispositif fonctionnel 100. Ce dispositif fonctionnel 100 est par exemple intégré sur une zone circulable telle qu’une chaussée circulable ou piétonne. FIG. 1 schematically represents a sectional view of a functional device 100. This functional device 100 is for example integrated into a trafficable area such as a trafficable or pedestrian roadway.
Comme le montre la figure 1 , le dispositif fonctionnel 100 comprend un empilement multicouche comprenant successivement : - une première plaque également appelée premier film de protection 101 , disposée en face avant du dispositif fonctionnel 100, transparente, ayant une première épaisseur ei , en un premier matériau, As shown in Figure 1, the functional device 100 comprises a multilayer stack comprising successively: - a first plate also called first protective film 101, arranged on the front face of the functional device 100, transparent, having a first thickness ei, in a first material,
- un ensemble encapsulant 107 enrobant au moins un élément électriquement ou optiquement actif 110 (également appelé élément actif 110 dans la suite de cette description), et - an encapsulating assembly 107 encasing at least one electrically or optically active element 110 (also called active element 110 in the remainder of this description), and
- une deuxième plaque également appelée deuxième film de protection 105, disposée en face arrière du dispositif fonctionnel 100, transparente ou non, ayant une deuxième épaisseur es, en un deuxième matériau. - A second plate also called second protective film 105, arranged on the rear face of the functional device 100, transparent or not, having a second thickness es, in a second material.
Ici, l’ensemble encapsulant 107 est par exemple formé d’un matériau encapsulant (figure 1 ), et notamment formé d’un unique matériau encapsulant. Here, the encapsulating assembly 107 is for example formed of an encapsulating material (FIG. 1), and in particular formed of a single encapsulating material.
En variante (non représentée), l’ensemble encapsulant peut être formé par deux matériaux encapsulants ou plus. Alternatively (not shown), the encapsulating assembly may be formed by two or more encapsulating materials.
Première plaque 101 First plate 101
La première plaque 101 est un élément du dispositif fonctionnel 100 en contact direct avec l’environnement extérieur. The first plate 101 is an element of the functional device 100 in direct contact with the external environment.
De manière avantageuse selon l’invention, la première plaque 101 comprend un matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre. Advantageously according to the invention, the first plate 101 comprises a composite material comprising a thermosetting polyurethane resin and glass fibers.
Dans cette description, on entend par « matériau composite » un matériau solide résultant de la combinaison d’au moins deux composants et dont les propriétés de rigidité mécanique sont meilleures que celles de chacun de ses composants pris séparément. In this description, “composite material” means a solid material resulting from the combination of at least two components and whose mechanical rigidity properties are better than those of each of its components taken separately.
Dans cette description, on entend par « thermodurcissable » un matériau qui, sous l’effet d’une élévation de température, acquiert une rigidité irréversible. En particulier ici, le matériau composite présente des propriétés de rigidité mécanique au moins sur toute la gamme de température de fonctionnement du dispositif fonctionnel 100 (de -40 degrés Celsius (°C) à +85°C). In this description, “thermosetting” means a material which, under the effect of a rise in temperature, acquires an irreversible rigidity. In particular here, the composite material has properties of mechanical rigidity at least over the entire operating temperature range of the functional device 100 (from -40 degrees Celsius (°C) to +85°C).
On s’intéresse dans ce qui suit au matériau composite en lui-même. In what follows, we are interested in the composite material itself.
La résine en polyuréthane, par exemple une résine polyurée- uréthane thermodurcissable est formée à partir d’une résine de base et d’un durcisseur. La résine de base est par exemple composée de polyalcools ou de composés organiques de plusieurs alcools (d’origine synthétique ou naturelle). Le durcisseur comprend par exemple de l’isocyanate. The polyurethane resin, for example a thermosetting polyurethane-urethane resin is formed from a base resin and a hardener. The base resin is for example composed of polyalcohols or organic compounds of several alcohols (of synthetic or natural origin). The hardener comprises for example isocyanate.
La résine en polyuréthane thermodurcissable utilisée dans la présente invention n’est pas polymérisable sous l’effet d’un rayonnement électromagnétique (par exemple de type UltraViolet). En particulier, elle est, de préférence, dépourvue de photo-initiateurs. The thermosetting polyurethane resin used in the present invention is not polymerizable under the effect of electromagnetic radiation (for example of the UltraViolet type). In particular, it is preferably devoid of photoinitiators.
On notera que, dans cette description, le terme « polymérisation » est utilisé pour indiquer que la résine en polyuréthane thermodurcissable est polymérisée et réticulée (c’est-à-dire solidifiée) sous l’effet d’une élévation de température. It will be noted that, in this description, the term “polymerization” is used to indicate that the thermosetting polyurethane resin is polymerized and crosslinked (i.e. solidified) under the effect of a rise in temperature.
En d’autres termes, dans la présente invention, la résine en polyuréthane thermodurcissable est ici polymérisée et réticulée (i.e. solidifiée) sous l’effet d’une élévation de température uniquement. De manière avantageuse, cela permet la polymérisation et réticulation de plaques de matériau assez épaisses, par exemple d’épaisseurs supérieures à 300 micromètres, avec des propriétés homogènes. In other words, in the present invention, the thermosetting polyurethane resin is here polymerized and crosslinked (i.e. solidified) under the effect of a rise in temperature only. Advantageously, this allows the polymerization and cross-linking of rather thick plates of material, for example thicknesses greater than 300 micrometers, with homogeneous properties.
Le matériau composite comprend une teneur massique en résine en polyuréthane thermodurcissable comprise entre 25 et 50%. De préférence, cette teneur massique est comprise entre 30 et 40%. The composite material comprises a mass content of thermosetting polyurethane resin of between 25 and 50%. Preferably, this mass content is between 30 and 40%.
La résine en polyuréthane thermodurcissable présente une viscosité comprise entre 100 et 5000 mPa.s (mesurées pour une plage de température entre 25°C et 100°C, correspondant à la mise en œuvre de la résine en polyuréthane thermodurcissable). The thermosetting polyurethane resin has a viscosity of between 100 and 5000 mPa.s (measured for a temperature range between 25° C. and 100° C., corresponding to the implementation of the thermosetting polyurethane resin).
La température de transition vitreuse de la résine en polyuréthane thermodurcissable, c’est-à-dire la température pour laquelle la résine passe d’un état caoutchouteux à un état vitreux solide (rigide), est ici supérieure à 80 °C. The glass transition temperature of the thermosetting polyurethane resin, i.e. the temperature at which the resin changes from a rubbery state to a solid (rigid) glassy state, is here above 80°C.
Le résine en polyuréthane thermodurcissable présente une transmission optique supérieure à 85% sur une plage de longueur d’onde comprise entre 400 et 1200 nm. The thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nm.
Ainsi, la résine en polyuréthane thermodurcissable utilisée permet d’obtenir une haute transparence, une robustesse mécanique et une grande stabilité environnementale pour le matériau composite. Thus, the thermosetting polyurethane resin used makes it possible to obtain high transparency, mechanical robustness and high environmental stability for the composite material.
La résine en polyuréthane thermodurcissable est mélangée à des fibres de verre de manière à former un matériau composite renforcé. De préférence, les fibres de verre utilisées pour former le matériau composite comprennent un verre de type E, c’est-à-dire un verre comprenant des alumino- borosilicates à très faible teneur en oxydes de métaux alcalins ou un verre de type S2, c’est-à-dire un verre de silicate alumine de magnésium ou encore un mélange d’un verre de type E et d’un verre de type S2. Dans cette description, on entend par mélange de verres de différents types, une superposition d’un certain nombre de plis (tels que décrits ci-après). En variante encore, les fibres de verre peuvent comprendre un verre de quartz. En variante encore, tout autre type de verre à haute transparence optique peut être utilisé. The thermosetting polyurethane resin is mixed with glass fibers to form a reinforced composite material. Preferably, the glass fibers used to form the composite material comprise an E type glass, that is to say a glass comprising alumino-borosilicates with a very low content of alkali metal oxides or an S2 type glass, that is to say a glass of magnesium alumina silicate or else a mixture of a type E glass and a type S2 glass. In this description, the term “mixture of glasses of different types” is understood to mean a superposition of a certain number of plies (as described below). As a further alternative, the glass fibers may comprise a quartz glass. As a further variant, any other type of glass with high optical transparency can be used.
Par transparent, on entend dans cette description un matériau laissant passer plus de 70% du rayonnement incident, et de préférence au moins 80% du rayonnement incident, dans le spectre visible. By transparent is meant in this description a material allowing more than 70% of the incident radiation to pass, and preferably at least 80% of the incident radiation, in the visible spectrum.
Les fibres de verre utilisées pour former le matériau composite présentent un diamètre inférieur ou égal à 25 pm. De préférence, le diamètre de ces fibres de verre est inférieur ou égal à 10 pm. De préférence encore, le diamètre de ces fibres de verre est de l’ordre de 6 pm ou de 9 pm. The glass fibers used to form the composite material have a diameter less than or equal to 25 μm. Preferably, the diameter of these glass fibers is less than or equal to 10 μm. Preferably again, the diameter of these glass fibers is of the order of 6 μm or 9 μm.
De manière avantageuse selon l’invention, les fibres de verre du matériau composite représentent de 60 à 70% en teneur massique du matériau composite. Par ailleurs, la teneur volumique des fibres de verre est comprise entre 40 et 60%, de préférence de l’ordre de 50%. Advantageously according to the invention, the glass fibers of the composite material represent from 60 to 70% by mass content of the composite material. Furthermore, the volume content of the glass fibers is between 40 and 60%, preferably of the order of 50%.
De préférence ici, les fibres de verre se présentent sous la forme d’un tissu c’est-à-dire sous la forme d’un arrangement obtenu à partir d’une pluralité de faisceaux de fibres de verre qui se croisent. Un tissu se présente alors sous la forme d’un pli. Preferably here, the glass fibers are in the form of a fabric, that is to say in the form of an arrangement obtained from a plurality of bundles of intersecting glass fibers. A fabric then appears in the form of a fold.
Pour atteindre les épaisseurs de matériau composite voulue, plusieurs plis de tissus peuvent être utilisés. Par exemple, le matériau composite comprend entre un et trois plis de fibres de verre superposés. To achieve the desired thicknesses of composite material, several plies of fabric can be used. For example, the composite material comprises between one and three plies of superimposed glass fibers.
Le grammage du tissu (donc d’un pli) est par exemple compris entre 200 et 600 g/m2. The basis weight of the fabric (therefore of a ply) is for example between 200 and 600 g/m 2 .
Ici, le tissage utilisé est de type armure de satin. De préférence, le tissu est de type armure de satin de 8, c’est-à-dire que le fil de trame passe une fois dessous (case noire sur la figure 2) et sept fois au-dessus (case blanche sur la figure 2), comme cela est représenté sur la figure 2. En variante, le tissage utilisé peut être de type sergé ou de type taffetas. Here, the weaving used is of the satin weave type. Preferably, the fabric is of the 8 satin weave type, that is to say that the weft thread passes once below (black box in figure 2) and seven times above (white box in figure 2). 2), as shown in Figure 2. Alternatively, the weave used may be twill or taffeta.
En pratique, le matériau composite est ici obtenu par infusion de la résine en polyuréthane thermodurcissable couplées avec les fibres de verre. En variante, le matériau composite peut être formé par un procédé CRTM (« Compression Resin Transfer Molding »). En variante encore, le matériau composite peut être obtenu par moulage par transfert de résine (ou RTM pour « Resin Transfer Molding »). In practice, the composite material is here obtained by infusion of thermosetting polyurethane resin coupled with glass fibers. As a variant, the composite material can be formed by a CRTM (Compression Resin Transfer Molding) process. As a further variant, the composite material can be obtained by resin transfer molding (or RTM for “Resin Transfer Molding”).
Le matériau composite ainsi formé présente des propriétés optiques et mécaniques notables. The composite material thus formed has noteworthy optical and mechanical properties.
Par exemple, pour un matériau composite d’épaisseur de l’ordre de 800 pm et formé de trois plis de tissu avec des fibres de verre comprenant un verre de type S2, la transmission optique entre 400 et 1200 nanomètres (nm) est supérieure à 85%. For example, for a composite material with a thickness of the order of 800 μm and formed of three plies of fabric with glass fibers comprising an S2 type glass, the optical transmission between 400 and 1200 nanometers (nm) is greater than 85%.
En ce qui concerne les pertes en transmission optique après vieillissement, par exemple en exposant le matériau composite à une dose de rayonnement ultraviolet (UV) à 60kWh/m2 (sur une plage de longueur d’onde comprise entre 280 et 400 nm), il est observé moins de 10% de pertes pour une longueur d’onde de 400 nm. Pour une longueur d’onde comprise entre 450 et 1200 nm, les pertes en transmission optique sont inférieures à 2%. With regard to optical transmission losses after aging, for example by exposing the composite material to a dose of ultraviolet (UV) radiation at 60kWh/m 2 (over a wavelength range between 280 and 400 nm), less than 10% loss is observed for a wavelength of 400 nm. For a wavelength between 450 and 1200 nm, optical transmission losses are less than 2%.
Par ailleurs, des pertes en transmission optique inférieures à 2% (pour une plage de longueur d’onde de 450 à 1200 nm) sont observées suite à une exposition de 1000h à une chaleur humide à 85% d’humidité relative et une température de 85°C. In addition, optical transmission losses of less than 2% (for a wavelength range of 450 to 1200 nm) are observed following exposure for 1000 hours to damp heat at 85% relative humidity and a temperature of 85°C.
Ce matériau composite présente également une faible sensibilité à l’eau et à différents liquides. Par exemple, dans le cas d’une immersion dans l’eau à température ambiante d’une durée de 1000 heures, une prise en masse du matériau composite inférieure à 1 % est observée. This composite material also has low sensitivity to water and various liquids. For example, in the case of immersion in water at ambient temperature for a period of 1000 hours, a caking of the composite material of less than 1% is observed.
Le matériau composite présente également des propriétés notables concernant l’élasticité et la contrainte à la rupture. Ces propriétés sont mises en évidence ici pour un matériau composite d’épaisseur 2 millimètres (mm) et formé de huit plis de tissu avec des fibres de verre comprenant un verre de type E. The composite material also has notable properties regarding elasticity and breaking stress. These properties are highlighted here for a composite material with a thickness of 2 millimeters (mm) and formed of eight plies of fabric with glass fibers comprising an E-type glass.
Ainsi, ce matériau composite présente un module élastique supérieur à 15 GPa, plus particulièrement compris entre 15 et 20 GPa (ce module élastique est évalué selon la norme NF EN ISO 14125). En ce qui concerne la contrainte à la rupture de ce matériau composite, elle est ici supérieure à 500 MPa (contrainte à la rupture évaluée selon la norme NF EN ISO 14125). Thus, this composite material has an elastic modulus greater than 15 GPa, more particularly between 15 and 20 GPa (this elastic modulus is evaluated according to standard NF EN ISO 14125). As regards the breaking stress of this composite material, it is here greater than 500 MPa (breaking stress evaluated according to standard NF EN ISO 14125).
De manière avantageuse ici, le matériau composite utilisé pour la première plaque 101 présente une épaisseur supérieure ou égale à 500 micromètres (pm). Cette caractéristique permet notamment d’assurer une rigidité suffisante pour la tenue mécanique du dispositif fonctionnel essentielle à l’utilisation de celui-ci dans les différentes applications visées. En d’autres termes, l’absence de flexibilité de la première plaque 101 permet sa compatibilité optimale avec les exigences de fabrication du dispositif fonctionnel 100, en particulier avec les exigences de fabrication d’un module photovoltaïque. Advantageously here, the composite material used for the first plate 101 has a thickness greater than or equal to 500 micrometers (μm). This characteristic makes it possible in particular to ensure sufficient rigidity for the mechanical strength of the functional device essential to its use in the various applications targeted. In other words, the lack of flexibility of the first plate 101 allows its optimal compatibility with the manufacturing requirements of the functional device 100, in particular with the manufacturing requirements of a photovoltaic module.
De préférence, l’épaisseur du matériau composite de la première plaque 101 est comprise entre 500 et 900 micromètres. Preferably, the thickness of the composite material of the first plate 101 is between 500 and 900 micrometers.
De telles plaques formées du matériau composite, présentant de telles épaisseurs et des propriétés homogènes, sont ici possibles à obtenir grâce à l’utilisation d’une résine en polyuréthane thermodurcissable dont la polymérisation et réticulation ne sont effectuées qu’avec une élévation de température (sans l’utilisation d’un rayonnement électromagnétique). Such plates formed from the composite material, having such thicknesses and homogeneous properties, are here possible to obtain thanks to the use of a thermosetting polyurethane resin whose polymerization and crosslinking are only carried out with a rise in temperature ( without the use of electromagnetic radiation).
De manière avantageuse selon l’invention, l’utilisation du matériau composite (uniquement) dans la première plaque 101 permet d’assurer une haute transparence du dispositif fonctionnel 100 tout en garantissant une très haute résistance aux impacts mécaniques de ce dispositif fonctionnel 100. De plus, cela permet également de réduire le poids global du dispositif fonctionnel 100 par rapport à un dispositif utilisant une plaque de verre. Enfin, aucune autre couche supplémentaire n’est nécessaire, le mélange résine en polyuréthane thermodurcissable et fibres de verre conférant une bonne stabilité intrinsèque aux conditions extérieures (pas de dégradation dues au rayonnement ultraviolet, ni à des conditions variables de températures et/ou d’humidité). Ces bonnes qualités du mélange résine en polyuréthane thermodurcissable et fibres de verre sont notamment obtenues grâce à la polymérisation et la réticulation de la résine en polyuréthane thermodurcissable sous l’effet d’une élévation de température uniquement. Advantageously according to the invention, the use of the composite material (only) in the first plate 101 makes it possible to ensure high transparency of the functional device 100 while guaranteeing a very high resistance to mechanical impacts of this functional device 100. moreover, it also makes it possible to reduce the overall weight of the functional device 100 compared to a device using a glass plate. Finally, no other additional layer is necessary, the mixture of thermosetting polyurethane resin and glass fibers conferring good intrinsic stability to external conditions (no degradation due to ultraviolet radiation, nor to variable conditions of temperature and/or humidity). These good qualities of the mixture of thermosetting polyurethane resin and glass fibers are obtained in particular thanks to the polymerization and cross-linking of the thermosetting polyurethane resin under the effect of a rise in temperature only.
Ainsi, le dispositif fonctionnel 100 dont la première plaque 101 comprend le matériau composite selon l’invention présente des propriétés mécaniques notables. En particulier, un test de tenue au choc du dispositif fonctionnel jusqu’à une énergie de 10 Joules (J) (correspondant à cinq fois l’énergie du test de grêle associé à la norme IEC 61215 de certification photovoltaïque) n’a conduit à aucune casse d’éléments électriquement ou optiquement actifs (par exemple une cellule photovoltaïque). Cette conclusion a été obtenue par l’intermédiaire d’observations par électroluminescence. Par ailleurs, aucune perte de puissance du dispositif fonctionnel 100 n’a été observée à l’issue de ce test. Thus, the functional device 100 whose first plate 101 comprises the composite material according to the invention has significant mechanical properties. In particular, an impact resistance test of the functional device up to an energy of 10 Joules (J) (corresponding to five times the energy of the hail test associated with the IEC 61215 photovoltaic certification standard) did not lead to no breakage of electrically or optically active elements (eg a photovoltaic cell). This conclusion was obtained through electroluminescence observations. Furthermore, no loss of power of the functional device 100 was observed at the end of this test.
Un test de tenue au poinçonnement du dispositif fonctionnel 100 est également mis en œuvre en utilisant un dispositif d’indentation hémisphérique présentant un diamètre de 15 mm appliquant une force de 1200N et représentant une pression de l’ordre de 100 MPa. Suite à ce test, aucune casse d’éléments électriquement ou optiquement actifs (par exemple une cellule photovoltaïque) n’est observée. Cette conclusion a été obtenue par l’intermédiaire d’observations par électroluminescence. Aucune perte de puissance du dispositif fonctionnel n’a été observée non plus à l’issue de ce test. A puncture resistance test of the functional device 100 is also implemented using a hemispherical indentation device having a diameter of 15 mm applying a force of 1200 N and representing a pressure of the order of 100 MPa. Following this test, no breakage of electrically or optically active elements (for example a photovoltaic cell) is observed. This conclusion was reached through electroluminescence observations. No loss of power of the functional device was observed either at the end of this test.
Enfin, le dispositif fonctionnel a également été soumis à un test de tenue à la flexion réalisé par un test de charge/décharge associé à la norme IEC 61215. Suite à ce test, aucune casse d’éléments électriquement ou optiquement actifs (par exemple une cellule photovoltaïque). Cette conclusion a été obtenue par l’intermédiaire d’observations par électroluminescence. Aucune perte de puissance du dispositif fonctionnel n’a été observée non plus à l’issue de ce test. Par ailleurs, aucun défaut visuel du dispositif fonctionnel n’a été observé à la suite de ce test. Finally, the functional device was also subjected to a bending resistance test carried out by a charge/discharge test associated with the IEC 61215 standard. Following this test, no breakage of electrically or optically active elements (for example a photovoltaic cell). This conclusion was reached through electroluminescence observations. No loss of power of the functional device was observed either at the end of this test. Furthermore, no visual defect of the functional device was observed following this test.
Deuxième plaque 105 : Second plate 105:
La deuxième plaque 105 est également un élément du dispositif fonctionnel 100 en contact direct avec l’environnement extérieur. The second plate 105 is also an element of the functional device 100 in direct contact with the external environment.
De manière avantageuse selon l’invention, la deuxième plaque 105 comprend un autre matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre. Cet autre matériau composite est semblable au matériau composite de la première plaque 101 décrit précédemment. Advantageously according to the invention, the second plate 105 comprises another composite material comprising a thermosetting polyurethane resin and glass fibers. This other composite material is similar to the composite material of the first plate 101 described above.
Selon un premier mode de réalisation, l’autre matériau composite de la deuxième plaque 105 présente les mêmes propriétés que le matériau composite compris dans la première plaque 101. En d’autres termes dans ce cas, la première plaque 101 et la deuxième plaque 105 sont formées du même matériau composite. Le dispositif fonctionnel est dit bifacial, c’est-à-dire qu’il peut être utilisé indifféremment avec la première plaque 101 ou la deuxième plaque 105 en face avant. According to a first embodiment, the other composite material of the second plate 105 has the same properties as the composite material included in the first plate 101. In other words in this case, the first plate 101 and the second plate 105 are made of the same composite material. The functional device is said to be bifacial, that is to say that it can be used either with the first plate 101 or the second plate 105 on the front face.
Dans ce mode de réalisation, les épaisseurs respectives du matériau composite et de l’autre matériau composite sont par exemple différentes. En variante, elles peuvent bien entendu être égales. Selon un deuxième mode de réalisation, l’autre matériau composite de la deuxième plaque 105 et le matériau composite de la première plaque 101 présentent des propriétés différentes. Dans la suite, pour ce deuxième mode de réalisation, pour l’autre matériau composite, seules les différences avec le matériau composite de la première plaque 101 sont décrites. In this embodiment, the respective thicknesses of the composite material and of the other composite material are for example different. Alternatively, they can of course be equal. According to a second embodiment, the other composite material of the second plate 105 and the composite material of the first plate 101 have different properties. In the following, for this second embodiment, for the other composite material, only the differences with the composite material of the first plate 101 are described.
Les fibres de verre utilisées pour former l’autre matériau composite présente un diamètre inférieur ou égal à 50 pm. De préférence, le diamètre des fibres de verre de l’autre matériau composite est inférieur ou égal à 30 pm. De préférence encore, le diamètre des fibres de verre de l’autre matériau composite est inférieur ou égal à 26 pm. The glass fibers used to form the other composite material have a diameter less than or equal to 50 μm. Preferably, the diameter of the glass fibers of the other composite material is less than or equal to 30 μm. More preferably, the diameter of the glass fibers of the other composite material is less than or equal to 26 μm.
En d’autres termes, le diamètre des fibres de verre utilisées pour la deuxième plaque 105 peut être supérieur à celui des fibres de verre utilisées pour la première plaque 101. Cela permet notamment de réduire le coût de formation de la deuxième plaque 105, tout en conservant des propriétés optiques et mécaniques satisfaisantes. In other words, the diameter of the glass fibers used for the second plate 105 can be greater than that of the glass fibers used for the first plate 101. This makes it possible in particular to reduce the cost of forming the second plate 105, while while maintaining satisfactory optical and mechanical properties.
Pour l’autre matériau composite, les fibres de verre sont par exemple de type roving, c’est-à-dire des fibres de verre assemblées en trame sans torsion. For the other composite material, the glass fibers are for example of the roving type, that is to say glass fibers assembled in a weft without torsion.
De préférence, les fibres de verre se présentent sous la forme d’un tissu. Preferably, the glass fibers are in the form of a fabric.
Pour atteindre les épaisseurs de l’autre matériau composite voulue, plusieurs plis de tissus peuvent être utilisés. Par exemple, l’autre matériau composite comprend entre un et douze plis de fibres de verre superposés. To achieve the desired thicknesses of the other composite material, several plies of fabric can be used. For example, the other composite material comprises between one and twelve plies of superimposed fiberglass.
Le tissage utilisé est par exemple de type armure de satin. De préférence, le tissu est de type armure de satin de 8. The weaving used is for example of the satin weave type. Preferably, the fabric is an 8 satin weave type.
En variante, le tissage peut être de type sergé. En variante encore, le tissage peut être de type taffetas. Alternatively, the weave may be of the twill type. As a further variant, the weave may be of the taffeta type.
En variante, pour la deuxième plaque 105, les fibres de verre peuvent être assemblées sous une forme différente d’un tissage. Par exemple, les fibres de verre peuvent être assemblées sous la forme d’un mat de fibres de verre, c’est-à-dire un assemblage des fibres de verre sans orientation particulière. Il peut s’agir d’un mat de fibres de verre continues ou discontinues. Alternatively, for the second plate 105, the glass fibers can be assembled in a form different from a weave. For example, the glass fibers can be assembled in the form of a glass fiber mat, i.e. a assembly of the glass fibers without particular orientation. It may be a mat of continuous or discontinuous glass fibers.
En variante, les fibres de verre de l’autre matériau composite peuvent être assemblées sous la forme d’un arrangement multiaxial c’est-à-dire formé de plusieurs couches unidirectionnelles orientées suivant des directions différentes et assemblées par des fils de couture (aussi appelé « Non Crimp Fabric » (NCF)). As a variant, the glass fibers of the other composite material can be assembled in the form of a multiaxial arrangement, that is to say formed of several unidirectional layers oriented in different directions and assembled by sewing threads (also called “Non Crimp Fabric” (NCF)).
Dans ces différents cas de fibres de verre non tissées, le grammage des fibres de verre de l’autre matériau composite assemblées est par exemple inférieur ou égal à 1 ,5 kg/m2 In these different cases of nonwoven glass fibers, the weight of the glass fibers of the other composite material assembled is for example less than or equal to 1.5 kg/m 2
De manière avantageuse ici, l’autre matériau composite utilisé pour la deuxième plaque 105 présente également une épaisseur supérieure ou égale à 500 micromètres (pm). De préférence, l’épaisseur de l’autre matériau composite de la deuxième plaque 105 est comprise entre 500 pm et 3 mm, de préférence comprise entre 500 pm et 1 ,5 mm. Advantageously here, the other composite material used for the second plate 105 also has a thickness greater than or equal to 500 micrometers (μm). Preferably, the thickness of the other composite material of the second plate 105 is between 500 μm and 3 mm, preferably between 500 μm and 1.5 mm.
En d’autres termes, l’épaisseur de l’autre matériau composite utilisé pour la deuxième plaque 105 est supérieure à l’épaisseur du matériau composite de la première plaque 101. Cela permet de conférer une meilleure tenue mécanique au dispositif fonctionnel. En effet, sachant que l’épaisseur de la première plaque est limitée afin de garantir des propriétés de transparence, l’épaisseur de la deuxième plaque peut être plus élevée afin de garantir une épaisseur totale du dispositif fonctionnel suffisante pour obtenir une bonne tenue mécanique de l’ensemble. In other words, the thickness of the other composite material used for the second plate 105 is greater than the thickness of the composite material of the first plate 101. This makes it possible to confer better mechanical strength on the functional device. Indeed, knowing that the thickness of the first plate is limited in order to guarantee properties of transparency, the thickness of the second plate can be higher in order to guarantee a total thickness of the functional device sufficient to obtain a good mechanical resistance of all.
De plus, comme les deux plaques (ou films) de protection 101 , 105 sont en contact avec l’environnement extérieur, elles peuvent jouer également le rôle de barrières aux influences externes (notamment à l’humidité). Elles présentent, avantageusement, les caractéristiques supplémentaires suivantes : Moreover, as the two plates (or films) of protection 101, 105 are in contact with the external environment, they can also play the role of barriers to external influences (in particular to humidity). They advantageously have the following additional characteristics:
- une grande résistance à la pénétration d’eau, - high resistance to water penetration,
- une stabilité intrinsèque contre la dégradation structurelle par molécules d’eau,- intrinsic stability against structural degradation by water molecules,
- une grande résistance à l’exposition aux fluides chimiques. - high resistance to exposure to chemical fluids.
Ensemble encapsulant 107 Encapsulating assembly 107
L’ensemble encapsulant 107 présente une épaisseur supérieure ou égale à 900 pm. The encapsulating assembly 107 has a thickness greater than or equal to 900 μm.
L'ensemble encapsulant 107 comprend des matériaux encapsulants polymères. Ces matériaux polymères se présentent généralement sous la forme de films de quelques centaines de micromètres d’épaisseur. Ces films sont transformés, pendant la fabrication du dispositif fonctionnel, de manière à enrober les éléments électriquement ou optiquement actifs 110 afin de les protéger des impacts mécaniques et chimiques. Encapsulant assembly 107 includes polymeric encapsulant materials. These polymeric materials generally come in the form of films of a few hundred micrometers thick. These films are transformed, during the manufacture of the functional device, so as to coat the electrically or optically active elements 110 in order to protect them from mechanical and chemical impacts.
Par exemple, les matériaux polymères de l’ensemble encapsulant 107 sont des homopolymères ou des copolymères d’éthylène acétate de vinyl (EVA), éthylène méthylacrylate (EMA), éthylène butylacrylate (EBA), éthylène propylène (EPDM), polyvinyl butyral (PVB), polydiméthylsiloxanes, polyuréthanes (PU), polyoléfines réticulables, polyoléfines thermoplastiques, ou des ionomères. De manière plus générale, l’ensemble encapsulant comprend des matériaux polymères couramment utilisés comme encapsulants dans des modules photovoltaïques. For example, the polymer materials of the encapsulating assembly 107 are homopolymers or copolymers of ethylene vinyl acetate (EVA), ethylene methylacrylate (EMA), ethylene butylacrylate (EBA), ethylene propylene (EPDM), polyvinyl butyral (PVB ), polydimethylsiloxanes, polyurethanes (PU), crosslinkable polyolefins, thermoplastic polyolefins, or ionomers. More generally, the encapsulant assembly comprises polymeric materials commonly used as encapsulants in photovoltaic modules.
En général, l’ensemble encapsulant 107 est formé à partir d’au moins deux films encapsulants superposés. Ces deux films encapsulants sont par exemple formés avec le même matériau polymère. En variante, les deux films encapsulants peuvent être dans des matériaux différents. In general, the encapsulating assembly 107 is formed from at least two superimposed encapsulating films. These two encapsulating films are for example formed with the same polymer material. As a variant, the two encapsulating films can be in different materials.
Eléments électriquement ou optiquement actifs 110 : Electrically or optically active elements 110:
Le dispositif fonctionnel 100 comprend au moins un élément électriquement ou optiquement actif 110, et de préférence, une pluralité d’éléments électriquement ou optiquement actifs 110 comme représenté sur la figure 1 . The functional device 100 comprises at least one electrically or optically active element 110, and preferably, a plurality of electrically or optically active elements 110 as represented in FIG.
Dans cette description, on entend par « élément électriquement actif » un élément qui transmet et/ou reçoit des signaux électriques. On entend par « élément optiquement actif » un élément qui transmet et/ou reçoit des signaux optiques, ou un élément qui transforme des signaux optiques en signaux électriques ou vice versa. In this description, the term "electrically active element" means an element which transmits and/or receives electrical signals. The term “optically active element” is understood to mean an element which transmits and/or receives optical signals, or an element which transforms optical signals into electrical signals or vice versa.
De préférence, les éléments électriquement ou optiquement actifs 110 sont complètement enrobés, en étant centrés ou non, dans l’épaisseur de l’ensemble encapsulant 107 (figure 1 ). Preferably, the electrically or optically active elements 110 are completely coated, being centered or not, in the thickness of the encapsulating assembly 107 (FIG. 1).
Les éléments optiquement actifs sont par exemple des diodes électroluminescentes, ou un capteur photosensible (comme une photodiode). The optically active elements are for example light-emitting diodes, or a photosensitive sensor (such as a photodiode).
Selon un mode de réalisation particulier ici, les éléments actifs 110 sont, par exemple, des cellules photovoltaïques. Elles sont, par exemple, à base de plaquettes de silicium, mono-cristallin, multi-cristallin ou quasi mono-cristallin également connu sous le nom anglo-saxon de « mono-like ». Les cellules photovoltaïques sont disposées les unes à côté des autres. De manière avantageuse ici, les cellules photovoltaïques sont régulièrement espacées. According to a particular embodiment here, the active elements 110 are, for example, photovoltaic cells. They are, for example, based on silicon wafers, mono-crystalline, multi-crystalline or almost mono-crystalline also known by the Anglo-Saxon name of “mono-like”. The photovoltaic cells are arranged next to each other. Advantageously here, the photovoltaic cells are regularly spaced.
Les cellules photovoltaïques sont généralement interconnectées entre elles, par des connections métalliques électriquement conductrices, destinées à collecter l'électricité générée par les cellules photovoltaïques. Les connecteurs électriquement conducteurs, également appelés parties électriquement conductrices dans cette description, sont des connections métalliques attachées à la métallisation de la cellule. Par exemple il s’agit de rubans plats ou de fils en cuivre. Le raccordement s’effectue par exemple par soudure ou collage. L'ensemble formé par les cellules photovoltaïques et les connecteurs forme un squelette de cellules photovoltaïques interconnectées. The photovoltaic cells are generally interconnected with each other, by electrically conductive metal connections, intended to collect the electricity generated by the photovoltaic cells. Electrically conductive connectors, also called electrically conductive parts in this description, are metallic connections attached to the metallization of the cell. For example, these are flat ribbons or copper wires. The connection is made, for example, by welding or gluing. The assembly formed by the photovoltaic cells and the connectors forms a skeleton of interconnected photovoltaic cells.
Procédé de fabrication du dispositif fonctionnel 100 : Method of manufacturing the functional device 100:
D’une manière générale, le procédé de fabrication du dispositif fonctionnel 100 comporte les étapes successives suivantes : In general, the manufacturing process of the functional device 100 comprises the following successive steps:
- une étape de formation du matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre ; et - a step of forming the composite material comprising a thermosetting polyurethane resin and glass fibers; And
- une étape de formation de l’empilement multicouche permettant d’enrober l’élément électriquement ou optiquement actif 110 dans l’ensemble encapsulant 107 entre le premier film de protection 101 et le deuxième film de protection 105, la première plaque 101 comprenant le matériau composite formé. - a step of forming the multilayer stack making it possible to coat the electrically or optically active element 110 in the encapsulating assembly 107 between the first protective film 101 and the second protective film 105, the first plate 101 comprising the material formed composite.
Le procédé peut également comprendre une étape de formation de l’autre matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre, la deuxième plaque 105 comprenant cet autre matériau composite formé. The method may also include a step of forming the other composite material comprising a thermosetting polyurethane resin and glass fibers, the second plate 105 comprising this other formed composite material.
Les étapes de formation du matériau composite et de l’autre matériau composite sont mises en œuvre avant l’étape de formation de l’empilement multicouche. En particulier, la résine en polyuréthane thermodurcissable est polymérisée thermiquement avant la mise en œuvre de l’étape de formation de l’empilement multicouche. Cette polymérisation est par exemple mise en œuvre avec application d’une pression. The steps for forming the composite material and the other composite material are implemented before the step for forming the multilayer stack. In particular, the thermosetting polyurethane resin is thermally polymerized before the implementation of the step of forming the multilayer stack. This polymerization is for example implemented with the application of pressure.
En d’autres termes ici, la polymérisation de la résine en polyuréthane thermodurcissable est effectuée, sous l’effet d’une élévation de température, avant la mise en œuvre de l’étape de formation de l’empilement multicouche. En pratique, le matériau composite et l’autre matériau composite sont préparés sous la forme d’une plaque mince et rigide. Chaque plaque mince et rigide est formée à partir d’une résine en polyuréthane thermodurcissable préalablement thermodurcie, et des fibres de verre. In other words here, the polymerization of the thermosetting polyurethane resin is carried out, under the effect of a rise in temperature, before the implementation of the step of forming the multilayer stack. In practice, the composite material and the other composite material are prepared in the form of a thin and rigid plate. Each thin and rigid plate is formed from a thermosetting polyurethane resin previously thermoset, and glass fibers.
Le matériau composite est donc obtenu sous la forme d’une plaque mince et rigide d’épaisseur comprise entre 500 et 900 pm. L’autre matériau composite est obtenu sous la forme d’une plaque mince et rigide d’épaisseur comprise entre 500 pm et 1 ,5 mm. The composite material is therefore obtained in the form of a thin and rigid plate with a thickness between 500 and 900 μm. The other composite material is obtained in the form of a thin and rigid plate with a thickness of between 500 μm and 1.5 mm.
L’étape de formation de l’empilement multicouche est par exemple réalisée par lamination à chaud. The step of forming the multilayer stack is for example carried out by hot lamination.
La lamination à chaud de l’ensemble (aussi appelée laminage) permet, non seulement, de faire fondre puis réticuler les matériaux polymères mais, également, de constituer une bonne adhérence entre toutes les couches, les éléments électriquement ou optiquement actifs et l’élément de connexion électrique, formant l'ensemble de la structure. The hot lamination of the assembly (also called rolling) makes it possible not only to melt and then crosslink the polymer materials but also to constitute good adhesion between all the layers, the electrically or optically active elements and the element electrical connection, forming the whole structure.
Le film encapsulant 107 ; ainsi que les plaques ou films de protection 101 et 105 ; peut être obtenu à partir d’une ou plusieurs couches empilées d’un même matériau ; afin d’obtenir l’épaisseur souhaitée pour chaque film ou plaque dans son état final ; après la lamination. The film encapsulating 107; as well as the protective plates or films 101 and 105; can be obtained from one or more stacked layers of the same material; in order to obtain the desired thickness for each film or plate in its final state; after lamination.
La lamination est exécutée à l'aide d'un équipement dit laminateur (aussi appelé laminoir) pouvant être, par exemple, une presse à membrane ou une presse double-plateaux. The lamination is carried out using equipment called a laminator (also called a laminator) which can be, for example, a membrane press or a double-plate press.
Le procédé de lamination est réalisé à chaud sous vide et sous pression mécanique. La température de lamination est entre 120°C et 200 °C, et avantageusement entre 140 et 170 °C, avec un temps de procédé ajustable. Ce temps de procédé est par exemple compris entre 15 et 30 minutes. La pression appliquée est typiquement de l’ordre d’un bar. The lamination process is carried out hot under vacuum and under mechanical pressure. The lamination temperature is between 120°C and 200°C, and advantageously between 140 and 170°C, with an adjustable process time. This process time is for example between 15 and 30 minutes. The pressure applied is typically of the order of one bar.
Exemples comparatifs Comparative examples
Des procédures d’essai ont été mises en œuvre afin de mettre en évidence les avantages d’un dispositif fonctionnel selon l’invention par rapport à un dispositif fonctionnel selon l’état de l’art tel que décrit par exemple dans le document EP3006181. Test procedures have been implemented in order to highlight the advantages of a functional device according to the invention compared to a functional device according to the state of the art as described for example in document EP3006181.
Performances optiques : Dans cette procédure d’essai, on compare les différents dispositifs fonctionnels suivants : Optical performance: In this test procedure, the following different functional devices are compared:
- le dispositif A dont la première plaque comprend un matériau composite comprenant une résine époxy et des fibres de verre, - the device A whose first plate comprises a composite material comprising an epoxy resin and glass fibers,
- le dispositif B dont la première plaque comprend un matériau composite selon l’invention comprenant une résine en polyuréthane thermodurcissable et des fibres de verre tissées, les fibres de verre comprenant un verre de type E, - the device B whose first plate comprises a composite material according to the invention comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type E glass,
- le dispositif C dont la première plaque comprend un matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre tissées, les fibres de verre comprenant un verre de type S2, et - the device C whose first plate comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type S2 glass, and
- le dispositif D dont la première plaque comprend un matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre tissées, les fibres de verre comprenant un mélange de verre de type E et de type S2. - Device D, the first plate of which comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibres, the glass fibers comprising a mixture of type E and type S2 glass.
Pour chacun des dispositifs fonctionnels considérés, la structure du tissu, ainsi que le grammage et le nombre de plis (2 plis) sont identiques. For each of the functional devices considered, the structure of the fabric, as well as the grammage and the number of plies (2 plies) are identical.
Le dispositif A correspond, dans cette description, au dispositif fonctionnel connu de l’état de la technique (comme décrit précédemment). Device A corresponds, in this description, to the known functional device of the state of the art (as described previously).
On s’intéresse, lors de ce test, aux transparences optiques de chacun des dispositifs fonctionnels avant et après l’exposition à un rayonnement ultraviolet d’une dose surfacique égale à 30 kWh/m2 pour des longueurs d’onde comprises entre 280 et 400 nm et sur une durée de 600 heures. During this test, we are interested in the optical transparencies of each of the functional devices before and after exposure to ultraviolet radiation with a surface dose equal to 30 kWh/m 2 for wavelengths between 280 and 400 nm and over a period of 600 hours.
La figure 3 représente les courbes de la transmission optique T en % (axe des ordonnées de gauche) en fonction de la longueur d’onde À en nanomètres pour chacune des premières plaques correspondantes respectivement des dispositifs fonctionnels A, B, C, D considérées avant et après l’exposition au rayonnement ultraviolet. On compare donc ici les performances optiques des premières plaques seules de chacun des dispositifs A, B, C, D. Chaque courbe a1 , b1 , c1 , d1 correspond à la transmission optique avant exposition au rayonnement ultraviolet. Chaque courbe a2, b2, c2, d2 correspond à la transmission optique après exposition au rayonnement ultraviolet. FIG. 3 represents the curves of the optical transmission T in % (left ordinate axis) as a function of the wavelength λ in nanometers for each of the first corresponding plates respectively of the functional devices A, B, C, D considered before and after exposure to ultraviolet radiation. The optical performances of the first plates alone of each of the devices A, B, C, D are therefore compared here. Each curve a1, b1, c1, d1 corresponds to the optical transmission before exposure to ultraviolet radiation. Each curve a2, b2, c2, d2 corresponds to the optical transmission after exposure to ultraviolet radiation.
La figure 3 représente également une courbe e illustrant le rendement quantique externe E en % (axe des ordonnées de droite) d’une cellule photovoltaïque en silicium cristallin et utilisée dans un dispositif fonctionnel conforme à l’invention en fonction de la longueur d’onde À. Cette courbe e met alors en évidence la plage de longueur d’onde d’intérêt pour le dispositif fonctionnel, ici comprise entre 350 et 1200 nm. En particulier, comme le montre la figure 3, la cellule photovoltaïque présente de meilleures performances pour des longueurs d’onde comprises entre 500 et 1050 nm (transmission optique supérieure à 80%). FIG. 3 also represents a curve e illustrating the external quantum efficiency E in % (right ordinate axis) of a photovoltaic cell made of crystalline silicon and used in a functional device conforming to the invention as a function of the wavelength λ. This curve e then highlights the wavelength range of interest for the functional device, here between 350 and 1200 nm. In particular, as shown in Figure 3, the photovoltaic cell has better performance for wavelengths between 500 and 1050 nm (optical transmission greater than 80%).
D’après la figure 3, on remarque alors, qu’avant exposition au rayonnement ultraviolet, les performances optiques des premières plaques respectives des dispositifs C (verre de type S2) et D (mélange de type E et S2) sont meilleures que celles de la première plaque du dispositif A (résine époxy, connu de l’état de la technique) quelle que soit la longueur d’onde. L’utilisation d’un verre de type S2 permet d’améliorer sensiblement les performances optiques de la première plaque. According to FIG. 3, it can then be seen that before exposure to ultraviolet radiation, the optical performances of the respective first plates of the devices C (glass of type S2) and D (mixture of type E and S2) are better than those of the first plate of the device A (epoxy resin, known from the state of the art) whatever the wavelength. The use of a type S2 glass significantly improves the optical performance of the first plate.
Après exposition au rayonnement ultraviolet, des pertes optiques sont observées pour la première plaque du dispositif A (résine époxy, connu de l’état de la technique) pour des longueurs d’onde comprises entre 350 et 800 nm tandis que les premières plaques respectives des dispositifs C (verre de type S2) et D (mélange de type E et S2) sont insensibles au vieillissement ultraviolet. After exposure to ultraviolet radiation, optical losses are observed for the first plate of device A (epoxy resin, known from the state of the art) for wavelengths between 350 and 800 nm while the respective first plates of the Devices C (type S2 glass) and D (mixture of type E and S2) are insensitive to ultraviolet aging.
D’une manière générale, avant exposition au rayonnement ultraviolet, la première plaque du dispositif B (verre de type E) présente des performances optiques un peu plus faibles que celles de la première plaque du dispositif A (résine époxy, connu de l’état de la technique). Toutefois, après exposition au rayonnement ultraviolet, la première plaque du dispositif B (verre de type E) présente des performances optiques intéressantes du fait qu’elle soit insensible au vieillissement ultraviolet. Plus particulièrement, après exposition au rayonnement ultraviolet, cette première plaque du dispositif B (verre de type E) présente de meilleures performances optiques que la première plaque du dispositif A (résine époxy, connu de l’état de la technique) pour des longueurs d’onde comprises entre 400 et 500 nm. In general, before exposure to ultraviolet radiation, the first plate of device B (type E glass) has slightly lower optical performance than that of the first plate of device A (epoxy resin, known from the state of technology). However, after exposure to ultraviolet radiation, the first plate of device B (E-type glass) presents interesting optical performances because it is insensitive to ultraviolet ageing. More particularly, after exposure to ultraviolet radiation, this first plate of device B (type E glass) has better optical performance than the first plate of device A (epoxy resin, known from the state of the art) for lengths d wave between 400 and 500 nm.
Performances électriques : Electrical performance:
Dans cette procédure d’essai, on compare les dispositifs A, B et C introduits précédemment ainsi qu’un dispositif F dont la première plaque comprend un matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre tissées, les fibres de verre comprenant un verre de type S2 et dont la structure de tissu comprend 3 plis. On s’intéresse, lors de ce test, aux performances électriques de chacun des dispositifs fonctionnels après l’exposition à un rayonnement ultraviolet de différentes doses surfaciques Puv (jusqu’à 60 kWh/m2) pour des longueurs d’onde comprises entre 280 et 400 nm et sur une durée allant jusqu’à 1200 heures. In this test procedure, the devices A, B and C introduced above are compared as well as a device F whose first plate comprises a composite material comprising a thermosetting polyurethane resin and woven glass fibers, the glass fibers comprising a type S2 lens and whose fabric structure includes 3 plies. During this test, we are interested in the electrical performance of each of the functional devices after exposure to ultraviolet radiation at different Puv surface doses (up to 60 kWh/m 2 ) for wavelengths between 280 and 400 nm and over a period of up to 1200 hours.
La figure 4 représente les courbes d’évolution a3, b3, c3, f3 des pertes dP en puissance maximale (en %) respectivement de chaque dispositif fonctionnel A, B, C, F en fonction de la dose Puv du rayonnement ultraviolet. Figure 4 represents the evolution curves a3, b3, c3, f3 of the dP losses at maximum power (in %) respectively of each functional device A, B, C, F as a function of the dose Puv of the ultraviolet radiation.
Comme le montre cette figure, pour les dispositifs B (verre de type E), C (verre de type S2, 2 plis) et F (verre de type D2, 3 plis), des pertes en puissance maximale inférieure à 1 % sont observées quelle que soit la dose surfacique du rayonnement ultraviolet. As shown in this figure, for devices B (type E glass), C (type S2 glass, 2 ply) and F (type D2 glass, 3 ply), maximum power losses of less than 1% are observed regardless of the surface dose of ultraviolet radiation.
En revanche, pour le dispositif A (résine époxy, connu de l’état de la technique), des pertes de l’ordre de 5% sont observées pour une dose surfacique du rayonnement ultraviolet de 15 kWh/m2 Ces pertes sont même plus importantes, de l’ordre de 7%, pour une dose surfacique du rayonnement ultraviolet de 60 kWh/m2. On the other hand, for device A (epoxy resin, known from the state of the art), losses of the order of 5% are observed for a surface dose of ultraviolet radiation of 15 kWh/m 2 These losses are even higher. significant, of the order of 7%, for a surface dose of ultraviolet radiation of 60 kWh/m 2 .
Ces résultats témoignent donc d’une quasi-insensibilité au vieillissement ultraviolet pour les dispositifs fonctionnels dont la première plaque comprend le matériau composite conforme à l’invention. These results therefore testify to a quasi-insensitivity to ultraviolet aging for the functional devices whose first plate comprises the composite material in accordance with the invention.
Tenue mécanique : Mechanical strength :
Dans cette procédure d’essai, on s’intéresse aux performances des dispositifs A (résine époxy, 2 plis), C (verre de type S2, 2 plis) et F (verre de type S2, 3 plis). This test procedure focuses on the performance of devices A (epoxy resin, 2 ply), C (type S2 glass, 2 ply) and F (type S2 glass, 3 ply).
Ces dispositifs fonctionnels comprennent chacun des cellules photovoltaïques en silicium cristallin interconnectées entre elles par des rubans formant les connexions métalliques électriquement conductrices. Ces rubans de connexion constituent, du point de vue de la protection mécanique, la zone la plus fragile du dispositif fonctionnel. These functional devices each comprise crystalline silicon photovoltaic cells interconnected with one another by strips forming the electrically conductive metal connections. These connection strips constitute, from the point of view of mechanical protection, the most fragile zone of the functional device.
Lors de ce test, dit test de poinçonnement, un dispositif d’indentation hémisphérique de diamètre 15 mm est appliqué au niveau des rubans de connexion de chaque dispositif fonctionnel positionné sur un support rigide, exerçant une force de 1200 Newtons (N). Les différents dispositifs fonctionnels subissent entre 6 et 12 tests de poinçonnement. During this test, known as the punching test, a hemispherical indentation device with a diameter of 15 mm is applied to the connection strips of each functional device positioned on a rigid support, exerting a force of 1200 Newtons (N). The various functional devices undergo between 6 and 12 punching tests.
D’éventuelles casses au niveau des cellules photovoltaïques sont observées ensuite par électroluminescence (car elles ne sont pas visibles à l’œil nu). Suite à ce test, pour le dispositif A (résine époxy, connu de l’état de la technique), une occurrence de 8% de casse de cellules photovoltaïques est observée. Aucune casse n’est observée concernant les dispositifs C (verre de type S2, 2 plis) et F (verre de type S2, 3 plis). Any breakage in the photovoltaic cells is then observed by electroluminescence (because they are not visible to the naked eye). Following this test, for device A (epoxy resin, known from the state of the art), an occurrence of 8% of breakage of photovoltaic cells is observed. No breakage is observed for devices C (type S2 glass, 2 ply) and F (type S2 glass, 3 ply).
Ces résultats illustrent donc la bonne résistance mécanique des dispositifs fonctionnels dont la première plaque comprend le matériau composite conforme à l’invention. Ces performances de tenue mécanique sont d’autant plus améliorées avec l’utilisation d’un verre de type S2. These results therefore illustrate the good mechanical resistance of the functional devices whose first plate comprises the composite material in accordance with the invention. These mechanical strength performances are all the more improved with the use of type S2 glass.
Applications Apps
La présente invention concerne de manière avantageuse les dispositifs fonctionnels tels que les modules photovoltaïques de tout type, dont les installations au sol ou les installations sur une toiture. En particulier, elle s’applique de manière avantageuse pour des routes solaires. The present invention advantageously relates to functional devices such as photovoltaic modules of any type, including ground installations or installations on a roof. In particular, it applies advantageously for solar roads.
L’invention s’applique également de manière avantageuse à des dispositifs fonctionnels destinés à être positionnés sur une chaussée et intégrant d’autres éléments électriquement ou optiquement actifs ou passifs. The invention also applies advantageously to functional devices intended to be positioned on a roadway and integrating other electrically or optically active or passive elements.
En particulier, le dispositif fonctionnel 100 est intégrable à la surface de chaussées circulâmes - pour tout moyen de transport roulant, motorisé et/ou non motorisé, et/ou piéton. Plus de détails sur les caractéristiques d’une telle chaussée peuvent être trouvés dans le document FR3093116. In particular, the functional device 100 can be integrated into the surface of circulating roads - for any means of rolling transport, motorized and/or non-motorized, and/or pedestrian. More details on the characteristics of such a pavement can be found in the document FR3093116.
L’invention s’applique également de manière avantageuse aux véhicules de transport, tels que les véhicules automobiles, les trains ou les bateaux. Le dispositif fonctionnel selon l’invention est par exemple intégré sur une surface extérieure d’un véhicule de transport. The invention also applies advantageously to transport vehicles, such as motor vehicles, trains or boats. The functional device according to the invention is for example integrated on an outer surface of a transport vehicle.
Enfin, l’invention trouve également une application privilégiée dans tous les domaines usuels dans lesquels des modules photovoltaïques sont inclus, dont les installations au sol et les installations sur des toitures. En particulier, le dispositif fonctionnel selon l’invention est intégrable à la surface d’une enveloppe d’un bâtiment. Par enveloppe d’un bâtiment, on entend ici la toiture ou la façade d’un bâtiment. Le dispositif fonctionnel selon l’invention peut avantageusement être installé sur une toiture plane ou une toiture inclinée. Finally, the invention also finds a preferred application in all the usual fields in which photovoltaic modules are included, including ground installations and installations on roofs. In particular, the functional device according to the invention can be integrated into the surface of an envelope of a building. By envelope of a building, we mean here the roof or the facade of a building. The functional device according to the invention can advantageously be installed on a flat roof or an inclined roof.

Claims

23 Revendications 23 Claims
1. Dispositif fonctionnel (100) comportant un empilement multicouche comprenant successivement : 1. Functional device (100) comprising a multilayer stack successively comprising:
- un premier film de protection (101 ) transparent disposé en face avant dudit dispositif (100), - a first transparent protective film (101) arranged on the front face of said device (100),
- un ensemble encapsulant (107), - an encapsulating assembly (107),
- un deuxième film de protection (105) disposé en face arrière du dispositif, et - a second protective film (105) arranged on the rear face of the device, and
- au moins un élément électriquement ou optiquement actif (110) enrobé dans l’ensemble encapsulant (107), caractérisé en ce que le premier film de protection (101 ) comprend un matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre, et en ce que l’épaisseur du matériau composite du premier film de protection (101 ) est supérieure ou égale à 500 micromètres. - at least one electrically or optically active element (110) coated in the encapsulating assembly (107), characterized in that the first protective film (101) comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and in that the thickness of the composite material of the first protective film (101) is greater than or equal to 500 micrometers.
2. Dispositif fonctionnel (100) selon la revendication 1 , dans lequel les fibres de verre du matériau composite comprennent un verre de type E ou un verre de type S2 ou un verre de quartz ou un mélange de ceux-ci. 2. Functional device (100) according to claim 1, in which the glass fibers of the composite material comprise an E-type glass or an S2-type glass or a quartz glass or a mixture thereof.
3. Dispositif fonctionnel (100) selon la revendication 1 ou 2, dans lequel le diamètre des fibres de verre du matériau composite est inférieur à 25 micromètres, de préférence inférieur à 10 pm. 3. Functional device (100) according to claim 1 or 2, in which the diameter of the glass fibers of the composite material is less than 25 micrometers, preferably less than 10 μm.
4. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 3, dans lequel les fibres de verre du matériau composite se présentent sous la forme d’au moins un tissu. 4. Functional device (100) according to any one of claims 1 to 3, in which the glass fibers of the composite material are in the form of at least one fabric.
5. Dispositif fonctionnel (100) selon la revendication 4, dans lequel le grammage du tissu est compris entre 200 et 600 g/m2. 5. Functional device (100) according to claim 4, in which the basis weight of the fabric is between 200 and 600 g/m 2 .
6. Dispositif fonctionnel (100) selon la revendication 4 ou 5, dans lequel le tissu est de type armure de satin. 6. Functional device (100) according to claim 4 or 5, in which the fabric is of the satin weave type.
7. Dispositif fonctionnel (100) selon l’une des revendications 4 à 6, dans lequel le tissu est de type armure de satin de 8. 7. Functional device (100) according to one of claims 4 to 6, in which the fabric is of the 8 satin weave type.
8. Dispositif fonctionnel (100) selon l’une quelconque des revendications 4 à 7, dans lequel les fibres de verre du matériau composite se présentent sous la forme d’un arrangement formé par superposition d’un à trois plis dudit tissu. 8. Functional device (100) according to any one of claims 4 to 7, in which the glass fibers of the composite material are in the form of an arrangement formed by superimposing one to three plies of said fabric.
9. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 8, dans lequel la résine en polyuréthane thermodurcissable du matériau composite présente une viscosité comprise entre 100 et 5000 mPa.s. 9. Functional device (100) according to any one of claims 1 to 8, in which the thermosetting polyurethane resin of the composite material has a viscosity of between 100 and 5000 mPa.s.
10. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 9, dans lequel la résine en polyuréthane thermodurcissable du matériau composite présente une température de transition vitreuse supérieure à 80 degrés Celsius. 10. Functional device (100) according to any one of claims 1 to 9, in which the thermosetting polyurethane resin of the composite material has a glass transition temperature greater than 80 degrees Celsius.
11. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 10, dans lequel le matériau composite comprend une teneur massique de résine en polyuréthane thermodurcissable comprise entre 25 et 50%. 11. Functional device (100) according to any one of claims 1 to 10, in which the composite material comprises a mass content of thermosetting polyurethane resin of between 25 and 50%.
12. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 11 , dans lequel la résine en polyuréthane thermodurcissable présente une transmission optique supérieure à 85% sur une plage de longueur d’onde comprise entre 400 et 1200 nanomètres. 12. Functional device (100) according to any one of claims 1 to 11, in which the thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nanometers.
13. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 12, dans lequel le deuxième film de protection (105) comprend un autre matériau composite comportant une résine en polyuréthane thermodurcissable et des fibres de verre. 13. Functional device (100) according to any one of claims 1 to 12, in which the second protective film (105) comprises another composite material comprising a thermosetting polyurethane resin and glass fibres.
14. Dispositif fonctionnel (100) selon la revendication 13, dans lequel l’épaisseur dudit autre matériau composite du deuxième film de protection (105) est supérieure ou égale à 500 micromètres. 14. Functional device (100) according to claim 13, wherein the thickness of said other composite material of the second protective film (105) is greater than or equal to 500 micrometers.
15. Dispositif fonctionnel (100) selon la revendication 13 ou 14, dans lequel les fibres de verre de l’autre matériau composite comprennent un verre de type E ou un verre de type S2 ou un verre de quartz ou un mélange de ceux-ci. 15. A functional device (100) according to claim 13 or 14, wherein the glass fibers of the other composite material comprise an E-type glass or an S2-type glass or a quartz glass or a mixture thereof. .
16. Dispositif fonctionnel (100) selon l’une quelconque des revendications 14 à 16, dans lequel le diamètre des fibres de verre de l’autre matériau composite est inférieur ou égal à 50 micromètres, de préférence inférieur ou égal à 30 pm. 16. Functional device (100) according to any one of claims 14 to 16, in which the diameter of the glass fibers of the other composite material is less than or equal to 50 micrometers, preferably less than or equal to 30 μm.
17. Dispositif fonctionnel (100) selon l’une quelconque des revendications 14 à 17, dans lequel les fibres de verre de l’autre matériau composite sont des fibres de type roving. 17. Functional device (100) according to any one of claims 14 to 17, in which the glass fibers of the other composite material are fibers of the roving type.
18. Dispositif fonctionnel (100) selon l’une quelconque des revendications 14 à 18, dans lequel les fibres de verre de l’autre matériau composite se présentent sous la forme d’au moins un tissu. 18. Functional device (100) according to any one of claims 14 to 18, in which the glass fibers of the other composite material are in the form of at least one fabric.
19. Dispositif fonctionnel (100) selon la revendication 18, dans lequel le grammage du tissu est compris entre 200 et 1000 g/m2. 19. Functional device (100) according to claim 18, in which the basis weight of the fabric is between 200 and 1000 g/m 2 .
20. Dispositif fonctionnel (100) selon la revendication 18 ou 19, dans lequel le tissu est de type armure de satin ou de type armure de satin de 8 ou de type sergé ou de type taffetas. 20. A functional device (100) according to claim 18 or 19, wherein the fabric is satin weave type or 8 satin weave type or twill type or taffeta type.
21. Dispositif fonctionnel (100) selon la revendication 18 ou 19, dans lequel les fibres de verre de l’autre matériau composite sont assemblées sous la forme d’un mat de fibres de verre continues, d’un mat de fibres de verre discontinues ou d’un arrangement de type multiaxial. 21. Functional device (100) according to claim 18 or 19, wherein the glass fibers of the other composite material are assembled in the form of a mat of continuous glass fibers, a mat of discontinuous glass fibers or a multiaxial type arrangement.
22. Dispositif fonctionnel (100) selon l’une quelconque des revendications 13 à 21 , dans lequel la résine en polyuréthane thermodurcissable de l’autre matériau composite présente une viscosité comprise entre 100 et 5000 mPa.s. 22. Functional device (100) according to any one of claims 13 to 21, in which the thermosetting polyurethane resin of the other composite material has a viscosity of between 100 and 5000 mPa.s.
23. Dispositif fonctionnel (100) selon l’une quelconque des revendications 13 à 22, dans lequel la résine en polyuréthane thermodurcissable de l’autre matériau composite présente une température de transition vitreuse supérieure à 80 degrés Celsius. 23. Functional device (100) according to any one of claims 13 to 22, wherein the thermosetting polyurethane resin of the other composite material has a glass transition temperature greater than 80 degrees Celsius.
24. Dispositif fonctionnel (100) selon l’une quelconque des revendications 13 à 23, dans lequel l’autre matériau composite comprend une teneur massique de résine en polyuréthane thermodurcissable comprise entre 25 et 50%. 24. Functional device (100) according to any one of claims 13 to 23, in which the other composite material comprises a mass content of thermosetting polyurethane resin of between 25 and 50%.
25. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 24, dans lequel l’épaisseur du matériau composite du premier film de protection (101) est comprise entre 500 et 900 micromètres. 25. Functional device (100) according to any one of claims 1 to 24, in which the thickness of the composite material of the first protective film (101) is between 500 and 900 micrometers.
26. Dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 25, dans lequel la résine en polyuréthane thermodurcissable présente une transmission optique supérieure à 85% sur une plage de longueur d’onde comprise entre 400 et 1200 nanomètres et dans lequel les fibres de verre du matériau composite comprennent un verre de type S2. 26 26. Functional device (100) according to any one of claims 1 to 25, in which the thermosetting polyurethane resin has an optical transmission greater than 85% over a wavelength range between 400 and 1200 nanometers and in which the glass fibers of the composite material comprise an S2 type glass. 26
27. Chaussée circulable ou piétonne fonctionnalisée, comprenant une chaussée circulable ou piétonne sur laquelle est fixé un dispositif fonctionnel (100) tel que défini dans l’une quelconque des revendications 1 à 26. 27. Functionalized trafficable or pedestrian roadway, comprising a trafficable or pedestrian roadway on which is fixed a functional device (100) as defined in any one of claims 1 to 26.
28. Procédé de fabrication d’un dispositif fonctionnel (100) selon l’une quelconque des revendications 1 à 26, ledit procédé comprenant : 28. A method of manufacturing a functional device (100) according to any one of claims 1 to 26, said method comprising:
- une étape de formation du matériau composite comprenant une résine en polyuréthane thermodurcissable et des fibres de verre, la résine en polyuréthane thermodurcissable du matériau composite formant le premier film de protection (101 ) étant polymérisée thermiquement avant la mise en œuvre d’une étape de formation de l’empilement multicouche, et - a step of forming the composite material comprising a thermosetting polyurethane resin and glass fibers, the thermosetting polyurethane resin of the composite material forming the first protective film (101) being thermally polymerized before the implementation of a step of formation of the multilayer stack, and
- une étape de formation de l’empilement multicouche permettant d’enrober l’élément électriquement ou optiquement actif (110) dans l’ensemble encapsulant (107) entre le premier film de protection (101 ) et le deuxième film de protection (105). - a step of forming the multilayer stack making it possible to coat the electrically or optically active element (110) in the encapsulating assembly (107) between the first protective film (101) and the second protective film (105) .
PCT/EP2022/086966 2021-12-20 2022-12-20 Functional device in multilayer structure, of which one of the layers comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and method for manufacturing such a functional device WO2023118124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2114007A FR3130687A1 (en) 2021-12-20 2021-12-20 Functional device in multilayer structure, one of the layers of which comprises a composite material comprising a thermosetting polyurethane resin and glass fibers and method of manufacturing such a functional device
FRFR2114007 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023118124A1 true WO2023118124A1 (en) 2023-06-29

Family

ID=80786777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/086966 WO2023118124A1 (en) 2021-12-20 2022-12-20 Functional device in multilayer structure, of which one of the layers comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and method for manufacturing such a functional device

Country Status (2)

Country Link
FR (1) FR3130687A1 (en)
WO (1) WO2023118124A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209171A1 (en) * 2011-08-26 2014-07-31 Bayer Intellectual Property Gmbh Solar module and process for production thereof
EP3006181A2 (en) 2014-09-08 2016-04-13 Fundacíon Tecnalia Research & Innovation Method of encapsulating photovoltaic cells and encapsulated modules
FR3093116A1 (en) 2019-02-26 2020-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives FUNCTIONAL DEVICE INTEGRATED IN A TRAFFIC PAVEMENT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209171A1 (en) * 2011-08-26 2014-07-31 Bayer Intellectual Property Gmbh Solar module and process for production thereof
EP3006181A2 (en) 2014-09-08 2016-04-13 Fundacíon Tecnalia Research & Innovation Method of encapsulating photovoltaic cells and encapsulated modules
FR3093116A1 (en) 2019-02-26 2020-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives FUNCTIONAL DEVICE INTEGRATED IN A TRAFFIC PAVEMENT

Also Published As

Publication number Publication date
FR3130687A1 (en) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3175547B1 (en) Assembly including a photovoltaic module applied to a circulable zone
EP3931396B1 (en) Functional device integrated into a traversable surface and method for producing a traversable surface with same
EP3175488B1 (en) Photovoltaic module for a rigid carrier
WO2011083282A1 (en) Radiation collection device
FR2988222A1 (en) PHOTOVOLTAIC MODULE COMPRISING LOCALIZED SPECTRAL CONVERSION ELEMENTS AND METHOD OF MAKING SAME
EP3859793B1 (en) Light photovoltaic module comprising a front layer and a rear layer made of composite materials
WO2023118124A1 (en) Functional device in multilayer structure, of which one of the layers comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and method for manufacturing such a functional device
FR3116650A1 (en) Improved lightweight and flexible photovoltaic module
EP3895221A1 (en) Method for manufacturing a photovoltaic module
EP3853910A1 (en) Flexible laminate of photovoltaic cells and associated production method
FR3107990A1 (en) LIGHTWEIGHT PHOTOVOLTAIC MODULE FEATURING FRONT AND BACK POLYMER LAYERS AND FIBER REINFORCEMENTS
EP3657551B1 (en) Photovoltaic device comprising at least one coating layer on at least one photovoltaic module with wear indicator
EP3698411A1 (en) Flexible laminate of photovoltaic cells and method for manufacturing such a flexible laminate
EP4082046A1 (en) Assembly for covering a surface
WO2020120712A1 (en) Moisture-resistant laminate of photovoltaic cells and process for producing such a laminate
WO2023089161A1 (en) Functional device with direct electrical outputs and process for fabricating such a functional device
EP3657552B1 (en) Photovoltaic device comprising at least a coating layer which can be sanded on at least a photovoltaic module
WO2021008947A1 (en) Laminate of photovoltaic cells and associated production method
WO2023203289A1 (en) Lightweight, impact-resistant photovoltaic module
CA3231617A1 (en) Lightweight photovoltaic module comprising a glass and polymer front layer
OA18719A (en) Assembly comprising a photovoltaic module applied to a trafficable area.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840710

Country of ref document: EP

Kind code of ref document: A1