EP4082046A1 - Assembly for covering a surface - Google Patents

Assembly for covering a surface

Info

Publication number
EP4082046A1
EP4082046A1 EP20824582.9A EP20824582A EP4082046A1 EP 4082046 A1 EP4082046 A1 EP 4082046A1 EP 20824582 A EP20824582 A EP 20824582A EP 4082046 A1 EP4082046 A1 EP 4082046A1
Authority
EP
European Patent Office
Prior art keywords
assembly
laminate
layer
support membrane
inertia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20824582.9A
Other languages
German (de)
French (fr)
Inventor
Valérick CASSAGNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Renewables SAS
Original Assignee
Total Renewables SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Renewables SAS filed Critical Total Renewables SAS
Publication of EP4082046A1 publication Critical patent/EP4082046A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of surface covers and in particular roof covers and in particular surface covers comprising photovoltaic modules.
  • the present invention relates to an assembly for surface covering, in particular a roof, comprising:
  • the assembly comprising the support membrane bonded to the laminate has a rigidity greater than 10 daN / mm.
  • the assembly comprising the support membrane bonded to the laminate has an inertia of at least 5 kg / m 2 .
  • the bonding surface represents at least 90% of an intermediate zone located between the support membrane and the laminate.
  • a portion of the intermediate zone devoid of glue has a length for the small dimension of less than 10 mm and a thickness of less than 1 mm.
  • the glue thickness is between 200 mhi and 1.5 mm.
  • the support membrane is a bituminous membrane.
  • the glass fibers are disposed in the front encapsulation layer.
  • the glass fibers are disposed in the back encapsulation layer.
  • the glass fibers are disposed in the front encapsulation layer and in the back encapsulation layer.
  • the front and rear encapsulation layers have a thickness of between 0.5 and 3mm.
  • the front and back encapsulation layers comprise a resin selected from ethylene-vinyl acetate "EVA” resins, epoxy resins and polyolefin resins.
  • EVA ethylene-vinyl acetate
  • the photovoltaic cells are made from crystalline silicon.
  • the laminate has a rigidity and an inertia such that the product of the rigidity and the inertia is less than 30,000 daN.kg.m 3 .
  • the present invention also relates to a method of assembling a roof covering assembly as described above comprising the following steps:
  • a layer of glue is placed on a rear face of the laminate and / or on the support membrane,
  • the laminate is assembled by gluing on the support membrane to obtain the roof covering assembly.
  • FIG. 1 represents a diagram of a photovoltaic assembly for roof covering
  • FIG.2 shows an exploded view of the different layers of an assembly for roof covering according to a first embodiment
  • FIG.3 shows an exploded view of the different layers of an assembly for roof covering according to a second embodiment
  • FIG.4 shows a sectional view of a roof covering assembly
  • FIG.5 represents a flowchart of the different stages of a process for assembling a roof covering assembly
  • FIG.6 represents a diagram of a local deformation of a surface under the effect of a point load.
  • front layer or front face in the following description, the surface of the laminate first exposed to sunlight in the installed state of the laminate.
  • rear layer or rear face is understood in the following description to mean the layer (or surface) opposite the front layer (front surface), that is to say the surface which is impacted last by the elements. solar rays as they pass through the laminate in the installed state of the laminate.
  • transparent in the following description, a material, through which light can pass with a transmittance of at least 80%, especially in wavelengths between 315 nm and 1200 nm.
  • film or laminate of soft or flexible material the fact that when applying a certain radius of curvature, the film and the photovoltaic cells do not crack.
  • the material should withstand a radius of curvature of 1 meter without damage.
  • FIG. 1 there is shown an assembly for surface coverage 1 comprising a support membrane 13 and a photovoltaic laminate 2.
  • the surface coverage 1 may correspond to a roof covering of a building. or a light structure, or even a vehicle.
  • the support membrane 13 is for example a bituminous membrane having a thickness e of between 2 and 10 mm, or a membrane made of polyvinyl chloride (PVC), of thermoplastic polyolefin (TPO) or of ethylene-propylene-diene monomer. (EPDM).
  • PVC polyvinyl chloride
  • TPO thermoplastic polyolefin
  • EPDM ethylene-propylene-diene monomer.
  • a roof covering beyond the support membrane 13, it is also possible to take into account for rigidity the possible insulation layer of 10 to 200 mm such as rock wool, expanded polystyrene, polyurethane, vapor barriers and support such as ribbed steel sheets, wood decking or a concrete slab.
  • the laminate 2 comprises a layer of photovoltaic cells 3 connected together, composed according to the particular representation of FIG. 1 by four columns of six photovoltaic cells 3.
  • the photovoltaic cells 3 forming the layer of photovoltaic cells 3 in this laminate 2 are for example cells based on monocrystalline or multicrystalline silicon.
  • monocrystalline silicon makes it possible to have good photovoltaic conversion yields per meter square which limits the area necessary for a specific energy requirement.
  • such a material also has good resistance to aging, which makes it possible to increase the longevity and reliability of this laminate 2.
  • the laminate 2 also comprises a front encapsulation layer 5 and a rear encapsulation layer 7.
  • the front 5 and rear 7 encapsulation layers are arranged on one side and the other of the cell layer.
  • photovoltaic 3 and sandwich the layer of photovoltaic cells 3.
  • the front 5 and rear 7 encapsulation layers are for example made respectively by layers of resin 50 and 70.
  • the encapsulation resin is for example made of epoxy or ethylene vinyl acetate "EVA" or polyolefin resin.
  • the back layer and / or the front encapsulating layer also comprises glass fibers 9.
  • the back encapsulating layer 7 comprises glass fibers 9 while on the other hand.
  • FIG. 3 the front layer 5 and the rear encapsulating layer 7 comprise glass fibers 9.
  • the rear encapsulating layer 7 can comprise glass fibers 9.
  • the front 5 and rear 7 encapsulation layers can for example each comprise a fabric of glass fibers 9 and an encapsulating resin 50, 70. More particularly, the encapsulating resin 50, 70 is disposed between the layer of photovoltaic cells 3 and the fabric of glass fibers 9 in order to ensure the cohesion between the fabric of glass fibers 9 and the layer of photovoltaic cells 3.
  • each of the two front 5 and rear 7 layers can be formed from a single layer of fiberglass fabric 9 impregnated with encapsulation resin 50, 70.
  • the front 5 and rear 7 encapsulation layers have, for example, a thickness E of between 0.5 and 3 mm.
  • the laminate 2 can also include additional layers shown in Figure 3 such as for example a protective layer 11, also called front layer, located on the front face of the front encapsulation layer 5.
  • a protective layer 11 also called front layer, located on the front face of the front encapsulation layer 5.
  • the laminate 2 can also comprise a rear protective layer 16 arranged on the rear face of the rear encapsulation layer 7 and configured in particular to protect the photovoltaic cells 3 and the electrical connections between them, which are for example made by means of metal bands.
  • the protective rear layer 16 can also include reflective properties to return the solar rays to the layer of photovoltaic cells 3.
  • Laminate 2 thus forms a photovoltaic module.
  • Laminate 2 can be a flexible laminate.
  • the flexibility of the laminate 1 is then obtained thanks to the constituent materials of the various layers composing this laminate 2.
  • the use of a flexible laminate 2 for such a panel or photovoltaic module makes it possible to facilitate its transport and its installation because the fragility of the latter is diminished.
  • the weight is reduced compared to a photovoltaic module comprising a glass pane and a metal structure.
  • At least the front encapsulation layer 5, and the possible protective layer 11 are transparent to allow the solar rays to reach the layer of photovoltaic cells 3 in order to allow their conversion into electrical energy via the photovoltaic effect. .
  • the laminate 2 is configured to be glued to the support membrane 13 to form the assembly for surface covering 1.
  • the assembly 1 has a rigidity and an inertia such as the product of the rigidity and the l inertia is greater than 30,000 daN.kg.m 3 .
  • the assembly also has a rigidity greater than 10 daN / mm.
  • At least the support membrane 13 can have a rigidity greater than 10 daN / mm.
  • the laminate 2 has for example a rigidity and an inertia such that the product of the rigidity and the inertia is less than 30,000 daN.kg.m 3 , the combination with the support membrane 13 then being necessary to obtain rigidity and an overall inertia such that the product of the stiffness times the inertia is greater than 30,000 daN.kg.m 3 .
  • the rigidity (or elasticity) of the assembly 1 is defined as the displacement D of the assembly 1 under a point load P at the point of application of the load with a reference surface corresponding to a circle having a diameter d between 10 cm and 15 cm around the point of application of the load P as shown in figure 6.
  • the rigidity is expressed in force per unit of length (N / m or in pragmatic unit in daN / mm).
  • the (vertical) inertia of assembly 1 can be reduced to the surface mass since it is the mass to be displaced during an impact, it is expressed in mass per unit of horizontal area ( kg / m 2 ).
  • the inertia of the assembly 1 is for example at least 5 kg / m 2 .
  • the mechanical coupling between the laminate 2 and the support membrane 13 is produced by a layer of adhesive 17 placed between the rear face of the laminate 2 (corresponding to the rear face of encapsulation 7 or, where appropriate, to the rear layer 16 ) and the support membrane 13.
  • the glue used is, for example, butyl deposited cold in the factory on the rear of the laminate 2 or else hot-deposited bitumen on the support membrane 13.
  • the thickness h of the adhesive layer 17 is, for example, between 200 ⁇ m and 1.5 mm.
  • the glue is distributed so that the bonding surface represents at least 90% of an intermediate zone located between the support membrane 13 and the laminate 2, that is to say that all the portions devoid of glue in the intermediate zone corresponds to an area less than 10% of the total area of the facing faces of the laminate 2 and of the support membrane 13.
  • a portion of this intermediate zone devoid of glue has, over the small dimension, of each of the portions a length less than L than 10 mm and a thickness I less than 1 mm as represented by the white rectangle. located in the adhesive layer 17 in FIG. 4.
  • length according to the small dimension is meant here the diameter of the largest circular surface that can be inserted in the zone devoid of adhesive.
  • the glue-free area has a rectangular shape, it will match the width of the rectangle, and if the glue-free area has an elliptical shape, it will match the small diameter of the ellipse.
  • the layer of glue 17 is shown oversized in relation to the other layers of the laminate 2 for the sake of clarity to represent a portion devoid of glue.
  • Such an arrangement of the adhesive makes it possible to obtain a good distribution of the forces on the various layers of the assembly for surface covering 1, which thus makes it possible to limit local deformations during an impact of hailstones.
  • the materials and thickness of the surface covering assembly 1 thus formed are chosen so that the surface covering assembly 1 has a rigidity and inertia such that the product of the stiffness and the inertia is greater than 30,000 daN.kg.m 3 .
  • the assembly 1 can also have an inertia of at least 5 kg / m 2 .
  • Such an assembly for surface coverage 1 comprising a photovoltaic laminate 2 bonded to a support membrane 13 as described above makes it possible to obtain an assembly for surface coverage 1 whose total weight is limited while having a limited deformation under the impact of hailstones so that the photovoltaic cells 3 are not damaged by hailstones producing, for example, a kinetic energy of 2.2 joules on impact.
  • This resistance to hail is obtained by the combination of the mechanical characteristics of the support membrane 13 and of the laminate 2 as well as by the quality of the bonding between the laminate 2 and the support membrane 13 allowing a distribution of the forces at the same time on the laminate 2 and on the support membrane during hail impacts, which makes it possible to limit the deformation of the laminate 2 and therefore of the photovoltaic cells 3.
  • the first step 101 relates to the assembly of the layer of photovoltaic cells 3, of the front 5 and rear 7 encapsulation layers and possibly of the rear protective layer 13.
  • This assembly is for example obtained by a lamination process. conventional, that is to say by raising the temperature, under vacuum or under an inert atmosphere for example, of a stack of the various layers forming the laminate 2 then by pressing on this stack for a determined period of time.
  • the front 5 and rear 7 encapsulation layers comprise an encapsulating resin 50, 70. at least one of the front 5 or rear 7 encapsulation layers comprises a fabric of glass fibers 9.
  • the second step 102 which is an optional step, concerns the deposition of a protective layer 11 on the front face of the front encapsulation layer 5.
  • the protective layer 11 protects the other layers of the laminate 2.
  • the protective layer 11 may for example comprise an optical film with high transparency (greater than 80 or 90%).
  • the third step 103 concerns the deposition of the adhesive layer 17 on the rear face of the laminate 2 and / or on the front face of the support membrane 13.
  • the adhesive is preferably distributed uniformly over the whole of the or surfaces facing the support membrane 13 and the laminate 2, that is to say at the level of the intermediate zone located between the support membrane 13 and the laminate 2.
  • the thickness h of the adhesive layer 17 is, for example, between 200 ⁇ m and 1.5 mm.
  • the glue is distributed so that the bonding surface represents at least 90% of an intermediate zone located between the support membrane 13 and the laminate 2.
  • the fourth step 104 concerns the assembly by gluing between the support membrane 13 and the laminate 2 to obtain the assembly for surface coverage 1.
  • the assembly can be done directly on site, the support membrane 13 being installed beforehand. , for example on a roof, and the laminate 2 being glued to the support membrane 13 or the assembly can be done beforehand and the assembly 1 is then installed on the surface, for example the roof of the building.
  • the manufacturing process described above allows, thanks to the bonding assembly of a photovoltaic laminate 2 and a support membrane 13, said assembly having a rigidity and an inertia such as the product of the rigidity and inertia is greater than 30,000 daN.kg.m 3 , to obtain an assembly for surface coverage 1 that can withstand bad weather and in particular hail.
  • the combination of photovoltaic modules formed by a laminate which can be flexible and light with a support membrane 13, in particular made of bitumen, which has for example a rigidity greater than 10 daN / mm makes it possible to provide an assembly for surface coverage 1 easy to manufacture and install.

Abstract

The present invention relates to an assembly (1) for covering a surface, in particular a roof, comprising: - a support membrane (13), - a laminate (2) comprising: - at least one layer of photovoltaic cells (3) connected to each other, - a front encapsulation layer (5) and a rear encapsulation layer (7) sandwiching the layer of photovoltaic cells (3), in which at least one of the encapsulation layers (5, 7) comprises glass fibres (9) and in which the assembly comprising the support membrane (13) bonded to the laminate (2) has a stiffness and an inertia such that the product of the stiffness and the inertia is greater than 30,000 daN.kg.m3.<sp />

Description

Description Description
Titre de l’invention : ENSEMBLE POUR COUVERTURE DE SURFACE Title of the invention: SET FOR SURFACE COVERING
[1] La présente invention concerne le domaine des couvertures de surface et notamment les couvertures de toit et en particulier des couvertures de surface comprenant des modules photovoltaïques. [1] The present invention relates to the field of surface covers and in particular roof covers and in particular surface covers comprising photovoltaic modules.
[2] De plus en plus de modules photovoltaïques sont disposés sur le toit des bâtiments ou structures urbaines, voire sur des véhicules ou structures légères, pour permettre de convertir l’énergie solaire en énergie électrique. [2] More and more photovoltaic modules are installed on the roofs of buildings or urban structures, even on vehicles or light structures, to convert solar energy into electrical energy.
[3] De manière à faciliter leur installation et limiter leur poids, il est également connu d’utiliser des modules photovoltaïques souples dépourvus de surfaces vitrées et de structure métallique. Leur faible poids leur permettant une installation facile. [3] In order to facilitate their installation and limit their weight, it is also known practice to use flexible photovoltaic modules without glass surfaces and metal structure. Their low weight allows them easy installation.
[4] Cependant, en cas de fortes intempéries et notamment de grêle, de tels modules photovoltaïques souples tendent à se déformer fortement sous l’impact des grêlons ce qui peut endommager les cellules photovoltaïques et provoquer un dysfonctionnement du module photovoltaïque lorsque la déformation locale du module est supérieure à un seuil limite de courbure admissible. [4] However, in the event of severe weather and in particular hail, such flexible photovoltaic modules tend to deform strongly under the impact of hailstones, which can damage the photovoltaic cells and cause the photovoltaic module to malfunction when the local deformation of the modulus is greater than an admissible curvature limit threshold.
[5] Afin de surmonter au moins partiellement ces problèmes techniques, il convient de fournir une solution permettant d’installer des couvertures de surface photovoltaïques comprenant des modules photovoltaïques ayant un poids réduit et résistant à des grêlons produisant une énergie cinétique allant jusqu’à 2,2 joules à l’impact selon la norme IEC 61215-2. [5] In order to at least partially overcome these technical problems, a solution should be provided for installing photovoltaic surface covers comprising photovoltaic modules having a reduced weight and resistant to hailstones producing a kinetic energy of up to 2 , 2 joules at impact according to standard IEC 61215-2.
[6] A cet effet, la présente invention concerne un ensemble pour couverture de surface, notamment de toit, comprenant : [6] To this end, the present invention relates to an assembly for surface covering, in particular a roof, comprising:
- une membrane support, - a support membrane,
- un laminât comprenant : - a laminate comprising:
- au moins une couche de cellules photovoltaïques connectées entre elles, - at least one layer of photovoltaic cells connected to each other,
- une couche frontale d’encapsulation et une couche arrière d’encapsulation prenant en sandwich la couche de cellules photovoltaïques, dans lequel au moins l’une des couches d’encapsulation comprend des fibres de verre et dans lequel l’ensemble comprenant la membrane support collée au laminât présente une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est supérieur à 30 000 daN.kg.m 3 a front encapsulation layer and a rear encapsulation layer sandwiching the layer of photovoltaic cells, in which at least one of the encapsulation layers comprises glass fibers and in which the assembly comprising the support membrane bonded to the laminate has a rigidity and an inertia such that the product of the rigidity and the inertia is greater than 30,000 daN.kg.m 3
[7] Selon un aspect de la présente invention, l’ensemble comprenant la membrane support collée au laminât présente une rigidité supérieure à 10 daN/mm. [7] According to one aspect of the present invention, the assembly comprising the support membrane bonded to the laminate has a rigidity greater than 10 daN / mm.
[8] Selon un aspect de la présente invention, l’ensemble comprenant la membrane support collée au laminât présente une inertie d’au moins 5 kg/m2. WO 2021/130112 PCT/EP2020/086999 [8] According to one aspect of the present invention, the assembly comprising the support membrane bonded to the laminate has an inertia of at least 5 kg / m 2 . WO 2021/130112 PCT / EP2020 / 086999
[9] Selon un mode de réalisation de la présente invention, la surface de collage représente au moins 90 % d’une zone intercalaire située entre la membrane support et le laminât. [9] According to one embodiment of the present invention, the bonding surface represents at least 90% of an intermediate zone located between the support membrane and the laminate.
[10] Selon un aspect de la présente invention, une portion de la zone intercalaire dépourvue de colle a une longueur pour la petite dimension inférieure à 10 mm et une épaisseur inférieure à 1 mm. [10] According to one aspect of the present invention, a portion of the intermediate zone devoid of glue has a length for the small dimension of less than 10 mm and a thickness of less than 1 mm.
[11] Selon un autre aspect de la présente invention, l’épaisseur de colle est comprise entre 200 mhi et 1 .5 mm. [11] According to another aspect of the present invention, the glue thickness is between 200 mhi and 1.5 mm.
[12] Selon un mode de réalisation de la présente invention, la membrane support est une membrane bitumineuse. [12] According to one embodiment of the present invention, the support membrane is a bituminous membrane.
[13] Selon un autre mode de réalisation de la présente invention, les fibres de verre sont disposées dans la couche frontale d’encapsulation. [13] According to another embodiment of the present invention, the glass fibers are disposed in the front encapsulation layer.
[14] Selon un autre mode de réalisation de la présente invention, les fibres de verre sont disposées dans la couche arrière d’encapsulation. [14] According to another embodiment of the present invention, the glass fibers are disposed in the back encapsulation layer.
[15] Selon un mode de réalisation de la présente invention, les fibres de verre sont disposées dans la couche frontale d’encapsulation et dans la couche arrière d’encapsulation. [15] According to one embodiment of the present invention, the glass fibers are disposed in the front encapsulation layer and in the back encapsulation layer.
[16] Selon un mode de réalisation de la présente invention, les couches frontale et arrière d’encapsulation présentent une épaisseur comprise entre 0.5 et 3mm. [16] According to one embodiment of the present invention, the front and rear encapsulation layers have a thickness of between 0.5 and 3mm.
[17] Selon un mode de réalisation de la présente invention, les couches frontale et arrière d’encapsulation comprennent une résine choisie parmi les résines éthylène-acétate de vinyle « EVA », les résines époxy et les résines polyoléfines. [17] According to one embodiment of the present invention, the front and back encapsulation layers comprise a resin selected from ethylene-vinyl acetate "EVA" resins, epoxy resins and polyolefin resins.
[18] Selon un mode de réalisation de la présente invention, les cellules photovoltaïques sont réalisées à base de silicium cristallin. [18] According to one embodiment of the present invention, the photovoltaic cells are made from crystalline silicon.
[19] Selon un aspect de la présente invention, le laminât présente une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est inférieur à 30 000 daN.kg.m 3. [19] According to one aspect of the present invention, the laminate has a rigidity and an inertia such that the product of the rigidity and the inertia is less than 30,000 daN.kg.m 3 .
[20] La présente invention concerne également un procédé d’assemblage d’un ensemble pour couverture de toit tel que décrit précédemment comprenant les étapes suivantes : [20] The present invention also relates to a method of assembling a roof covering assembly as described above comprising the following steps:
- on assemble les couches du laminât par un procédé de lamination, - the layers of the laminate are assembled by a lamination process,
- on dispose une couche de colle sur une face arrière du laminât et/ou sur la membrane support,- a layer of glue is placed on a rear face of the laminate and / or on the support membrane,
- on assemble par collage le laminât sur la membrane support pour obtenir l’ensemble pour couverture de toit. - the laminate is assembled by gluing on the support membrane to obtain the roof covering assembly.
[21] D’autres caractéristiques et avantages de l’invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d’exemple illustratif et non limitatif et des dessins annexés parmi lesquels : [21] Other characteristics and advantages of the invention will emerge more clearly on reading the following description, given by way of illustrative and non-limiting example and the accompanying drawings, among which:
[22] [Fig 1] représente un schéma d’un ensemble photovoltaïque pour couverture de toit; [22] [Fig 1] represents a diagram of a photovoltaic assembly for roof covering;
[23] [Fig.2] représente une vue éclatée des différentes couches d’un ensemble pour couverture de toit selon un premier mode de réalisation; [23] [Fig.2] shows an exploded view of the different layers of an assembly for roof covering according to a first embodiment;
[24] [Fig.3] représente une vue éclatée des différentes couches d’un ensemble pour couverture de toit selon un deuxième mode de réalisation; [24] [Fig.3] shows an exploded view of the different layers of an assembly for roof covering according to a second embodiment;
[25] [Fig.4] représente une vue en coupe d’un ensemble pour couverture de toit; [25] [Fig.4] shows a sectional view of a roof covering assembly;
[26] [Fig.5] représente un organigramme des différentes étapes d’un procédé d’assemblage d’un ensemble pour couverture de toit ; [27] [Fig.6] représente un schéma d’une déformation locale d’une surface sous l’effet d’une charge ponctuelle. [26] [Fig.5] represents a flowchart of the different stages of a process for assembling a roof covering assembly; [27] [Fig.6] represents a diagram of a local deformation of a surface under the effect of a point load.
[28] Dans ces figures, les éléments identiques portent les mêmes références. [28] In these figures, identical elements bear the same references.
[29] Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées ou interchangées pour fournir d'autres réalisations. [29] The following realizations are examples. Although the description refers to one or more embodiments, this does not necessarily mean that each reference relates to the same embodiment or that the characteristics apply only to one embodiment. Simple features of different embodiments can also be combined or interchanged to provide other embodiments.
[30] On entend par « couche frontale ou face avant » dans la description suivante, la surface du laminât exposée en premier aux rayons solaires à l’état installé du laminât. De même, on entend par « couche arrière ou face arrière» dans la description suivante, la couche (ou surface) opposée à la couche frontale (surface avant), c’est-à-dire la surface qui est impactée en dernier par les rayons solaires lors de leur passage à travers le laminât à l’état installé du laminât. [30] By "front layer or front face" in the following description, the surface of the laminate first exposed to sunlight in the installed state of the laminate. Likewise, the term “rear layer or rear face” is understood in the following description to mean the layer (or surface) opposite the front layer (front surface), that is to say the surface which is impacted last by the elements. solar rays as they pass through the laminate in the installed state of the laminate.
[31] Ensuite, on entend par « transparent » dans la description suivante, un matériau, à travers lequel la lumière peut passer avec une transmittance d'au moins 80 % notamment dans les longueurs d’ondes comprises entre 315 nm et 1200 nm. [31] Then, by "transparent" is meant in the following description, a material, through which light can pass with a transmittance of at least 80%, especially in wavelengths between 315 nm and 1200 nm.
[32] De plus, on entend dans la description suivante par « film ou laminât en matériau souple ou flexible » le fait que lors de l’application d’un certain rayon de courbure, le film et les cellules photovoltaïques ne se fissurent pas. Dans la présente invention le matériau devrait supporter sans dommage un rayon de courbure de 1 mètre. [32] In addition, in the following description is meant by "film or laminate of soft or flexible material" the fact that when applying a certain radius of curvature, the film and the photovoltaic cells do not crack. In the present invention the material should withstand a radius of curvature of 1 meter without damage.
[33] D’autre part, en référence aux figures 2 et 3 représentant les couches d’un laminât, les différentes couches sont espacées les unes des autres. Cette représentation est uniquement réalisée pour mieux identifier les différentes couches. A l’état livré du laminât, les différentes couches représentées sont en contact les unes avec les autres. [33] On the other hand, with reference to Figures 2 and 3 showing the layers of a laminate, the different layers are spaced from each other. This representation is only made to better identify the different layers. In the delivered state of the laminate, the various layers shown are in contact with each other.
[34] En référence aux figures 1 , 2 et 3, il est représenté un ensemble pour couverture de surface 1 comprenant une membrane support 13 et un laminât photovoltaïque 2. La couverture de surface 1 peut correspondre à une couverture de toit d’un bâtiment ou d’une structure légère, voire d’un véhicule. [34] Referring to Figures 1, 2 and 3, there is shown an assembly for surface coverage 1 comprising a support membrane 13 and a photovoltaic laminate 2. The surface coverage 1 may correspond to a roof covering of a building. or a light structure, or even a vehicle.
[35] La membrane support 13 est par exemple une membrane bitumineuse présentant une épaisseur e comprise entre 2 et 10 mm, ou encore une membrane en polychlorure de vinyle (PVC), en polyoléfine thermoplastique (TPO) ou en éthylène-propylène-diène monomère (EPDM). Dans le cas d’une couverture de toit, au-delà de la membrane support 13 on peut aussi prendre en compte pour la rigidité l’éventuelle couche d’isolation de 10 à 200 mm comme de la laine de roche, du polystyrène expansé, du polyuréthane, les pare-vapeurs et le support comme des tôles en acier nervurées, un platelage bois ou une dalle béton. [35] The support membrane 13 is for example a bituminous membrane having a thickness e of between 2 and 10 mm, or a membrane made of polyvinyl chloride (PVC), of thermoplastic polyolefin (TPO) or of ethylene-propylene-diene monomer. (EPDM). In the case of a roof covering, beyond the support membrane 13, it is also possible to take into account for rigidity the possible insulation layer of 10 to 200 mm such as rock wool, expanded polystyrene, polyurethane, vapor barriers and support such as ribbed steel sheets, wood decking or a concrete slab.
[36] Le laminât 2 comprend une couche de cellules photovoltaïques 3 connectées entre elles, composée selon la représentation particulière de la figure 1 par quatre colonnes de six cellules photovoltaïques 3. [36] The laminate 2 comprises a layer of photovoltaic cells 3 connected together, composed according to the particular representation of FIG. 1 by four columns of six photovoltaic cells 3.
[37] Les cellules photovoltaïques 3 formant la couche de cellules photovoltaïques 3 dans ce laminât 2 sont par exemple des cellules à base de silicium monocristallin ou multicristallin. L’utilisation de silicium monocristallin permet d’avoir de bons rendements de conversion photovoltaïque au mètre carré ce qui limite la surface nécessaire pour un besoin d’énergie déterminée. Par ailleurs, un tel matériau présente également une bonne résistance au vieillissement ce qui permet d’augmenter la longévité et la fiabilité de ce laminât 2. [37] The photovoltaic cells 3 forming the layer of photovoltaic cells 3 in this laminate 2 are for example cells based on monocrystalline or multicrystalline silicon. The use of monocrystalline silicon makes it possible to have good photovoltaic conversion yields per meter square which limits the area necessary for a specific energy requirement. Moreover, such a material also has good resistance to aging, which makes it possible to increase the longevity and reliability of this laminate 2.
[38] Le laminât 2 comprend également une couche frontale d’encapsulation 5 et une couche arrière d’encapsulation 7. Les couches frontales 5 et arrière 7 d’encapsulation sont disposées d’un côté et de l’autre de la couche de cellules photovoltaïques 3 et prennent en sandwich la couche de cellules photovoltaïques 3. Les couches frontale 5 et arrière 7 d’encapsulation sont par exemple réalisées respectivement par des couches de résine 50 et 70. La résine d'encapsulation est par exemple réalisée en époxy ou en éthylène-acétate de vinyle « EVA » ou en résine polyoléfine. [38] The laminate 2 also comprises a front encapsulation layer 5 and a rear encapsulation layer 7. The front 5 and rear 7 encapsulation layers are arranged on one side and the other of the cell layer. photovoltaic 3 and sandwich the layer of photovoltaic cells 3. The front 5 and rear 7 encapsulation layers are for example made respectively by layers of resin 50 and 70. The encapsulation resin is for example made of epoxy or ethylene vinyl acetate "EVA" or polyolefin resin.
[39] La couche arrière et/ou la couche frontale d’encapsulation comprend également des fibres de verre 9. Dans l’exemple de la figure 2, seule la couche arrière d’encapsulation 7 comprend des fibres de verre 9 tandis que sur la figure 3, la couche frontale 5 et la couche arrière 7 d’encapsulation comprennent des fibres de verre 9. Alternativement, seule la couche arrière d’encapsulation 7 peut comprendre des fibres de verre 9. [39] The back layer and / or the front encapsulating layer also comprises glass fibers 9. In the example of FIG. 2, only the back encapsulating layer 7 comprises glass fibers 9 while on the other hand. FIG. 3, the front layer 5 and the rear encapsulating layer 7 comprise glass fibers 9. Alternatively, only the rear encapsulating layer 7 can comprise glass fibers 9.
[40] Les couches frontale 5 et arrière 7 d’encapsulation peuvent par exemple comprendre chacune un tissu de fibres de verre 9 et une résine d’encapsulation 50, 70. Plus particulièrement, la résine d’encapsulation 50, 70 est disposée entre la couche de cellules photovoltaïques 3 et le tissu de fibres de verre 9 afin d’assurer la cohésion entre le tissu de fibres de verre 9 et la couche de cellules photovoltaïques 3. A titre de variante, chacune des deux couches frontales 5 et arrière 7 peut être formée d’une seule couche de tissu en fibre de verre 9 imprégnée de résine d'encapsulation 50, 70. Les couches frontale 5 et arrière 7 d’encapsulation présentent par exemple une épaisseur E comprise entre 0.5 et 3mm. [40] The front 5 and rear 7 encapsulation layers can for example each comprise a fabric of glass fibers 9 and an encapsulating resin 50, 70. More particularly, the encapsulating resin 50, 70 is disposed between the layer of photovoltaic cells 3 and the fabric of glass fibers 9 in order to ensure the cohesion between the fabric of glass fibers 9 and the layer of photovoltaic cells 3. Alternatively, each of the two front 5 and rear 7 layers can be formed from a single layer of fiberglass fabric 9 impregnated with encapsulation resin 50, 70. The front 5 and rear 7 encapsulation layers have, for example, a thickness E of between 0.5 and 3 mm.
[41] Le laminât 2 peut également comporter des couches supplémentaires représentées sur la figure 3 comme par exemple une couche de protection 11 , aussi appelée couche avant, située sur la face avant de la couche frontale d'encapsulation 5. [41] The laminate 2 can also include additional layers shown in Figure 3 such as for example a protective layer 11, also called front layer, located on the front face of the front encapsulation layer 5.
[42] Le laminât 2 peut aussi comprendre une couche arrière de protection 16 disposée sur la face arrière de la couche arrière d'encapsulation 7 et configurée notamment pour protéger les cellules photovoltaïques 3 et les liaisons électriques entre celles-ci, qui sont par exemple réalisées au moyen de bandes métalliques. La couche arrière de protection 16 peut également comprendre des propriétés réfléchissantes pour renvoyer les rayons solaires vers la couche de cellules photovoltaïques 3. [42] The laminate 2 can also comprise a rear protective layer 16 arranged on the rear face of the rear encapsulation layer 7 and configured in particular to protect the photovoltaic cells 3 and the electrical connections between them, which are for example made by means of metal bands. The protective rear layer 16 can also include reflective properties to return the solar rays to the layer of photovoltaic cells 3.
[43] D’autres couches supplémentaires peuvent également rentrées dans la composition du laminât 2. Le laminât 2 forme ainsi un module photovoltaïque. [43] Other additional layers can also be included in the composition of laminate 2. Laminate 2 thus forms a photovoltaic module.
[44] Le laminât 2 peut être un laminât souple. La flexibilité du laminât 1 est alors obtenue grâce aux matériaux constitutifs des différentes couches composant ce laminât 2. L’utilisation d’un laminât souple 2 pour un tel panneau ou module photovoltaïque permet de faciliter son transport et son installation car la fragilité de ce dernier est diminuée. De plus, le poids est réduit par rapport à un module photo voltaïque comprenant une vitre en verre et une structure métallique. [44] Laminate 2 can be a flexible laminate. The flexibility of the laminate 1 is then obtained thanks to the constituent materials of the various layers composing this laminate 2. The use of a flexible laminate 2 for such a panel or photovoltaic module makes it possible to facilitate its transport and its installation because the fragility of the latter is diminished. In addition, the weight is reduced compared to a photovoltaic module comprising a glass pane and a metal structure.
[45] Au moins la couche frontale d’encapsulation 5, et l’éventuelle couche de protection 11 sont transparents pour permettre aux rayons solaires d’atteindre la couche de cellules photovoltaïques 3 afin de permettre leur conversion en énergie électrique via l'effet photovoltaïque. [46] Le laminât 2 est configuré pour être collé sur la membrane support 13 pour former l’ensemble pour couverture de surface 1. De plus, l’ensemble 1 présente une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est supérieur à 30 000 daN.kg.m 3. L’ensemble présente également une rigidité supérieure à 10 daN/mm. Au moins la membrane support 13 peut présenter une rigidité supérieure à 10 daN/mm. Le laminât 2 présente par exemple une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est inférieur à 30 000 daN.kg.m 3, la combinaison avec la membrane support 13 étant alors nécessaire pour obtenir une rigidité et une inertie globale telles que le produit de la rigidité par l’inertie soit supérieur à 30 000 daN.kg.m 3. [45] At least the front encapsulation layer 5, and the possible protective layer 11 are transparent to allow the solar rays to reach the layer of photovoltaic cells 3 in order to allow their conversion into electrical energy via the photovoltaic effect. . [46] The laminate 2 is configured to be glued to the support membrane 13 to form the assembly for surface covering 1. In addition, the assembly 1 has a rigidity and an inertia such as the product of the rigidity and the l inertia is greater than 30,000 daN.kg.m 3 . The assembly also has a rigidity greater than 10 daN / mm. At least the support membrane 13 can have a rigidity greater than 10 daN / mm. The laminate 2 has for example a rigidity and an inertia such that the product of the rigidity and the inertia is less than 30,000 daN.kg.m 3 , the combination with the support membrane 13 then being necessary to obtain rigidity and an overall inertia such that the product of the stiffness times the inertia is greater than 30,000 daN.kg.m 3 .
[47] La rigidité (ou l’élasticité) de l’ensemble 1 comprenant la membrane support 13, la colle 17 et le laminât 2 est définie comme le déplacement D de l’ensemble 1 sous une charge ponctuelle P au point d’application de la charge avec une surface de référence correspondant à un cercle ayant un diamètre d compris entre 10 cm et 15 cm autour du point d’application de la charge P comme représenté sur la figure 6. La rigidité s’exprime en force par unité de longueur (N/m ou en unité pragmatique en daN/mm). [47] The rigidity (or elasticity) of the assembly 1 comprising the support membrane 13, the adhesive 17 and the laminate 2 is defined as the displacement D of the assembly 1 under a point load P at the point of application of the load with a reference surface corresponding to a circle having a diameter d between 10 cm and 15 cm around the point of application of the load P as shown in figure 6. The rigidity is expressed in force per unit of length (N / m or in pragmatic unit in daN / mm).
[48] L’inertie (verticale) de l’ensemble 1 peut être ramenée à la masse surfacique puisqu’il s’agit de la masse à déplacer lors d’un impact, elle s’exprime en masse par unité de surface horizontale (kg/m2). L’inertie de l’ensemble 1 est par exemple d’au moins 5 kg/m2. [48] The (vertical) inertia of assembly 1 can be reduced to the surface mass since it is the mass to be displaced during an impact, it is expressed in mass per unit of horizontal area ( kg / m 2 ). The inertia of the assembly 1 is for example at least 5 kg / m 2 .
[49] Le couplage mécanique entre le laminât 2 et la membrane support 13 est réalisé par une couche de colle 17 disposée entre la face arrière du laminât 2 (correspondant à la face arrière d’encapsulation 7 ou le cas échéant à la couche arrière 16) et la membrane support 13. La colle utilisée est par exemple du butyle déposé à froid en usine sur l’arrière du laminât 2 ou encore du bitume déposé à chaud sur la membrane support 13. [49] The mechanical coupling between the laminate 2 and the support membrane 13 is produced by a layer of adhesive 17 placed between the rear face of the laminate 2 (corresponding to the rear face of encapsulation 7 or, where appropriate, to the rear layer 16 ) and the support membrane 13. The glue used is, for example, butyl deposited cold in the factory on the rear of the laminate 2 or else hot-deposited bitumen on the support membrane 13.
[50] L’épaisseur h de la couche de colle 17 est par exemple comprise entre 200 pm et 1 .5 mm. De plus, la colle est répartie de sorte que la surface de collage représente au moins 90 % d’une zone intercalaire située entre la membrane support 13 et le laminât 2, c’est à-dire que l’ensemble des portions dépourvues de colle dans la zone intercalaire correspond à une surface inférieure à 10 % de la surface totale des faces en regard du laminât 2 et de la membrane support 13. [50] The thickness h of the adhesive layer 17 is, for example, between 200 μm and 1.5 mm. In addition, the glue is distributed so that the bonding surface represents at least 90% of an intermediate zone located between the support membrane 13 and the laminate 2, that is to say that all the portions devoid of glue in the intermediate zone corresponds to an area less than 10% of the total area of the facing faces of the laminate 2 and of the support membrane 13.
[51] De plus, de préférence, une portion de cette zone intercalaire dépourvue de colle a, sur la petite dimension, de chacune des portions une longueur inférieure L à 10 mm et une épaisseur I inférieure à 1 mm comme représenté par le rectangle blanc situé dans couche de colle 17 sur la figure 4. Par longueur selon la petite dimension, on entend ici le diamètre de la surface circulaire la plus grande que l’on peut insérer dans la zone dépourvue de colle. Par exemple, si la zone dépourvue de colle a une forme rectangulaire, cela correspondra à la largeur du rectangle et si la zone dépourvue de colle a une forme elliptique, cela correspondra au petit diamètre de l’ellipse. [51] In addition, preferably, a portion of this intermediate zone devoid of glue has, over the small dimension, of each of the portions a length less than L than 10 mm and a thickness I less than 1 mm as represented by the white rectangle. located in the adhesive layer 17 in FIG. 4. By length according to the small dimension is meant here the diameter of the largest circular surface that can be inserted in the zone devoid of adhesive. For example, if the glue-free area has a rectangular shape, it will match the width of the rectangle, and if the glue-free area has an elliptical shape, it will match the small diameter of the ellipse.
[52] Sur cette figure 4, la couche de colle 17 est représentée de manière surdimensionnée par rapport aux autres couches du laminât 2 par soucis de clarté pour représenter une portion dépourvue de colle. [52] In this figure 4, the layer of glue 17 is shown oversized in relation to the other layers of the laminate 2 for the sake of clarity to represent a portion devoid of glue.
[53] Une telle disposition de la colle permet d’obtenir une bonne répartition des efforts sur les différentes couches de l’ensemble pour couverture de surface 1 ce qui permet ainsi de limiter les déformations locales lors d’un impact de grêlons. [54] Les matériaux et épaisseur de l’ensemble pour couverture de surface 1 ainsi formée sont choisis de sorte que l’ensemble pour couverture de surface 1 présente une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est supérieur à 30000 daN.kg.m 3 . L’ensemble 1 peut également présenter une inertie d’au moins 5 kg/m2. [53] Such an arrangement of the adhesive makes it possible to obtain a good distribution of the forces on the various layers of the assembly for surface covering 1, which thus makes it possible to limit local deformations during an impact of hailstones. [54] The materials and thickness of the surface covering assembly 1 thus formed are chosen so that the surface covering assembly 1 has a rigidity and inertia such that the product of the stiffness and the inertia is greater than 30,000 daN.kg.m 3 . The assembly 1 can also have an inertia of at least 5 kg / m 2 .
[55] Un tel ensemble pour couverture de surface 1 comprenant un laminât photovoltaïque 2 collé sur une membrane support 13 tel que décrit précédemment permet d’obtenir un ensemble pour couverture de surface 1 dont le poids total est limité tout en ayant une déformation limitée sous l’impact de grêlons de sorte que les cellules photovoltaïques 3 ne sont pas détériorées par des grêlons produisant par exemple une énergie cinétique de 2,2 joules à l’impact. Cette résistance à la grêle est obtenue par la combinaison des caractéristiques mécaniques de la membrane support 13 et du laminât 2 ainsi que par la qualité du collage entre le laminât 2 et la membrane support 13 permettant une répartition des efforts à la fois sur le laminât 2 et sur la membrane support lors des impacts de grêle, ce qui permet de limiter la déformation du laminât 2 et donc des cellules photovoltaïques 3. [55] Such an assembly for surface coverage 1 comprising a photovoltaic laminate 2 bonded to a support membrane 13 as described above makes it possible to obtain an assembly for surface coverage 1 whose total weight is limited while having a limited deformation under the impact of hailstones so that the photovoltaic cells 3 are not damaged by hailstones producing, for example, a kinetic energy of 2.2 joules on impact. This resistance to hail is obtained by the combination of the mechanical characteristics of the support membrane 13 and of the laminate 2 as well as by the quality of the bonding between the laminate 2 and the support membrane 13 allowing a distribution of the forces at the same time on the laminate 2 and on the support membrane during hail impacts, which makes it possible to limit the deformation of the laminate 2 and therefore of the photovoltaic cells 3.
[56] Les étapes de fabrication d’un tel ensemble pour couverture de surface 1 vont maintenant être décrites à partir de l’organigramme de la figure 5. [56] The manufacturing steps of such an assembly for surface covering 1 will now be described from the flowchart of Figure 5.
[57] La première étape 101 concerne l'assemblage de la couche de cellules photovoltaïques 3, des couches frontale 5 et arrière 7 d'encapsulation et éventuellement de la couche arrière de protection 13. Cet assemblage est par exemple obtenu par un procédé de lamination classique, c’est-à-dire par élévation de la température, sous vide ou sous une atmosphère inerte par exemple, d’un empilement des différentes couches formant le laminât 2 puis par pression sur cet empilement pendant une durée déterminée. Comme indiqué précédemment, les couches frontale 5 et arrière 7 d’encapsulation comprennent une résine d’encapsulation 50, 70. au moins l’une des couches frontale 5 ou arrière 7 d’encapsulation comprend un tissu de fibres de verre 9. [57] The first step 101 relates to the assembly of the layer of photovoltaic cells 3, of the front 5 and rear 7 encapsulation layers and possibly of the rear protective layer 13. This assembly is for example obtained by a lamination process. conventional, that is to say by raising the temperature, under vacuum or under an inert atmosphere for example, of a stack of the various layers forming the laminate 2 then by pressing on this stack for a determined period of time. As previously indicated, the front 5 and rear 7 encapsulation layers comprise an encapsulating resin 50, 70. at least one of the front 5 or rear 7 encapsulation layers comprises a fabric of glass fibers 9.
[58] La deuxième étape 102 qui est une étape optionnelle concerne le dépôt d’une couche de protection 11 sur la face avant de la couche frontale d’encapsulation 5. La couche de protection 11 permet de protéger les autres couches du laminât 2. [58] The second step 102, which is an optional step, concerns the deposition of a protective layer 11 on the front face of the front encapsulation layer 5. The protective layer 11 protects the other layers of the laminate 2.
[59] La couche de protection 11 peut par exemple comporter un film optique à haute transparence (supérieure à 80 ou 90%). [59] The protective layer 11 may for example comprise an optical film with high transparency (greater than 80 or 90%).
[60] La troisième étape 103 concerne le dépôt de la couche de colle 17 sur la face arrière du laminât 2 et/ou sur la face avant de la membrane support 13. La colle est de préférence répartie uniformément sur l’ensemble de la ou des surfaces en regard de la membrane support 13 et du laminât 2, c’est-à-dire au niveau de la zone intercalaire située entre la membrane support 13 et le laminât 2. [60] The third step 103 concerns the deposition of the adhesive layer 17 on the rear face of the laminate 2 and / or on the front face of the support membrane 13. The adhesive is preferably distributed uniformly over the whole of the or surfaces facing the support membrane 13 and the laminate 2, that is to say at the level of the intermediate zone located between the support membrane 13 and the laminate 2.
[61 ] L’épaisseur h de la couche de colle 17 est par exemple comprise entre 200 pm et 1 .5 mm. De plus, la colle est répartie de sorte que la surface de collage représente au moins 90 % d’une zone intercalaire située entre la membrane support 13 et le laminât 2. [61] The thickness h of the adhesive layer 17 is, for example, between 200 μm and 1.5 mm. In addition, the glue is distributed so that the bonding surface represents at least 90% of an intermediate zone located between the support membrane 13 and the laminate 2.
[62] La quatrième étape 104 concerne l’assemblage par collage entre la membrane support 13 et le laminât 2 pour obtenir l’ensemble pour couverture de surface 1. L’assemblage peut se faire directement sur site, la membrane support 13 étant préalablement installée, par exemple sur un toit, et le laminât 2 étant collé sur la membrane support 13 ou l’assemblage peut être fait préalablement et l’ensemble 1 est ensuite installé sur la surface, par exemple le toit du bâtiment. [62] The fourth step 104 concerns the assembly by gluing between the support membrane 13 and the laminate 2 to obtain the assembly for surface coverage 1. The assembly can be done directly on site, the support membrane 13 being installed beforehand. , for example on a roof, and the laminate 2 being glued to the support membrane 13 or the assembly can be done beforehand and the assembly 1 is then installed on the surface, for example the roof of the building.
[63] Les exemples de réalisation développés ici sont des exemples fournis à titre illustratif et non limitatif. En effet, il est tout à fait possible pour l’homme de l’art d’utiliser d’autres cellules photovoltaïques 3 que des cellules à base de silicium monocristallin ou multicristallin comme par exemple des cellules organiques ou des couches minces inorganiques, sans sortir du cadre de la présente invention. [63] The exemplary embodiments developed here are examples provided by way of illustration and not by way of limitation. Indeed, it is quite possible for those skilled in the art to use photovoltaic cells 3 other than cells based on monocrystalline or multicrystalline silicon such as, for example, organic cells or inorganic thin layers, without leaving within the scope of the present invention.
[64] Ainsi, le procédé de fabrication décrit précédemment permet grâce à l’assemblage par collage d’un laminât photo voltaïque 2 et d’une membrane support 13, ledit assemblage ayant un rigidité et une inertie telles que le produit de la rigidité et de l’inertie est supérieur à 30 000 daN.kg.m 3, d’obtenir un ensemble pour couverture de surface 1 pouvant résister aux intempéries et notamment à la grêle. Ainsi, la combinaison de modules photovoltaïques formés par un laminât qui peut être souple et léger avec une membrane support 13, notamment en bitume, qui présente par exemple une rigidité supérieure à 10 daN/mm, permet de fournir un ensemble pour couverture de surface 1 facile à fabriquer et à installer. [64] Thus, the manufacturing process described above allows, thanks to the bonding assembly of a photovoltaic laminate 2 and a support membrane 13, said assembly having a rigidity and an inertia such as the product of the rigidity and inertia is greater than 30,000 daN.kg.m 3 , to obtain an assembly for surface coverage 1 that can withstand bad weather and in particular hail. Thus, the combination of photovoltaic modules formed by a laminate which can be flexible and light with a support membrane 13, in particular made of bitumen, which has for example a rigidity greater than 10 daN / mm, makes it possible to provide an assembly for surface coverage 1 easy to manufacture and install.

Claims

Revendications Claims
[Revendication 1] Ensemble pour couverture de surface (1), notamment de toit, comprenant : [Claim 1] Assembly for covering a surface (1), in particular a roof, comprising:
- une membrane support (13), - a support membrane (13),
- un laminât (2) comprenant : - a laminate (2) comprising:
- au moins une couche de cellules photovoltaïques (3) connectées entre elles,- at least one layer of photovoltaic cells (3) connected together,
- une couche frontale d’encapsulation (5) et une couche arrière d’encapsulation (7) prenant en sandwich la couche de cellules photovoltaïques (3), dans lequel au moins l’une des couches d’encapsulation (5, 7) comprend des fibres de verre (9) et dans lequel l’ensemble comprenant la membrane support- a front encapsulation layer (5) and a rear encapsulation layer (7) sandwiching the layer of photovoltaic cells (3), in which at least one of the encapsulation layers (5, 7) comprises glass fibers (9) and in which the assembly comprising the support membrane
(13) collée au laminât (2) présente une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est supérieur à 30 000 daN.kg.m 3 (13) bonded to the laminate (2) has a rigidity and an inertia such that the product of the rigidity and the inertia is greater than 30,000 daN.kg.m 3
[Revendication 2] Ensemble (1) selon la revendication 1 dans lequel l’ensemble comprenant la membrane support (13) collée au laminât (2) présente une rigidité supérieure à 10 daN/mm. [Claim 2] An assembly (1) according to claim 1 wherein the assembly comprising the support membrane (13) bonded to the laminate (2) has a rigidity greater than 10 daN / mm.
[Revendication 3] Ensemble (1) selon la revendication 1 ou 2 dans lequel l’ensemble comprenant la membrane support (13) collée au laminât (2) présente une inertie d’au moins 5 kg/m2. [Claim 3] An assembly (1) according to claim 1 or 2, in which the assembly comprising the support membrane (13) bonded to the laminate (2) has an inertia of at least 5 kg / m 2 .
[Revendication 4] Ensemble (1) selon l’une des revendications précédentes dans lequel la surface de collage représente au moins 90 % d’une zone intercalaire située entre la membrane support (13) et le laminât (2). [Claim 4] An assembly (1) according to one of the preceding claims in which the bonding surface represents at least 90% of an intermediate zone located between the support membrane (13) and the laminate (2).
[Revendication 5] Ensemble (1) selon la revendication 4 dans lequel les portions de la zone intercalaire dépourvue de colle a une longueur dans la petite dimension inférieure à 10 mm et une épaisseur inférieure à 1 mm. [Claim 5] An assembly (1) according to claim 4 wherein the portions of the glue-free intermediate zone has a length in the small dimension less than 10 mm and a thickness less than 1 mm.
[Revendication 6] Ensemble (1) selon l’une des revendications précédentes dans lequel l’épaisseur de la couche de colle (17) est comprise entre 200 pm et 1.5 mm. [Claim 6] An assembly (1) according to one of the preceding claims wherein the thickness of the adhesive layer (17) is between 200 µm and 1.5 mm.
[Revendication 7] Ensemble (1) selon l’une des revendications précédentes dans lequel la membrane support (13) est une membrane bitumineuse. [Claim 7] An assembly (1) according to one of the preceding claims, in which the support membrane (13) is a bituminous membrane.
[Revendication 8] Ensemble (1) selon l’une des revendications précédentes dans lequel des fibres de verre (9) sont disposées dans la couche frontale d’encapsulation (5). [Revendication 9] Ensemble (1) selon l’une des revendications précédentes dans lequel des fibres de verre [Claim 8] An assembly (1) according to one of the preceding claims in which glass fibers (9) are arranged in the front encapsulation layer (5). [Claim 9] An assembly (1) according to one of the preceding claims in which the glass fibers
(9) sont disposées dans la couche arrière d’encapsulation (7). (9) are arranged in the back encapsulation layer (7).
[Revendication 10] Ensemble (1) selon l’une des revendications précédentes dans lequel les couches frontale (5) et arrière (7) d’encapsulation présentent une épaisseur comprise entre 0.5 et 3mm. [Claim 10] An assembly (1) according to one of the preceding claims wherein the front (5) and rear (7) encapsulation layers have a thickness of between 0.5 and 3mm.
[Revendication 11] Ensemble (1) selon l’une des revendications précédentes dans lequel les couches frontale (5) et arrière (7) d’encapsulation comprennent une résine choisie parmi les résines éthylène-acétate de vinyle « EVA », les résines époxy et les résines polyoléfines. WO 2021/130112 PCT/EP2020/086999 [Claim 11] Assembly (1) according to one of the preceding claims, in which the front (5) and rear (7) encapsulation layers comprise a resin chosen from “EVA” ethylene-vinyl acetate resins, epoxy resins. and polyolefin resins. WO 2021/130112 PCT / EP2020 / 086999
[Revendication 12] Ensemble (1) selon l’une des revendications précédentes dans lequel les cellules photovoltaïques (3) sont réalisées à base de silicium cristallin.[Claim 12] An assembly (1) according to one of the preceding claims wherein the photovoltaic cells (3) are made from crystalline silicon.
[Revendication 13] Ensemble (1) selon l’une des revendications précédentes dans lequel le laminât présente une rigidité et une inertie telles que le produit de la rigidité et de l’inertie est inférieur à 30 000 daN.kg.m 3 [Claim 13] Assembly (1) according to one of the preceding claims, in which the laminate has a rigidity and an inertia such that the product of the rigidity and the inertia is less than 30,000 daN.kg.m 3
[Revendication 14] Procédé d’assemblage d’un ensemble pour couverture de surface (1), selon l’une des revendications précédentes comprenant les étapes suivantes : [Claim 14] A method of assembling a surface covering assembly (1), according to one of the preceding claims, comprising the following steps:
- on assemble les couches du laminât (2) par un procédé de lamination (101),- the layers of the laminate (2) are assembled by a lamination process (101),
- on dispose une couche de colle (17) sur une face arrière du laminât (2) et/ou sur la membrane support (13) (103), - a layer of adhesive (17) is placed on a rear face of the laminate (2) and / or on the support membrane (13) (103),
- on assemble par collage le laminât (2) sur la membrane support (13) pour obtenir l’ensemble pour couverture de surface (1) (104). - The laminate (2) is assembled by gluing on the support membrane (13) to obtain the assembly for surface coverage (1) (104).
EP20824582.9A 2019-12-24 2020-12-18 Assembly for covering a surface Pending EP4082046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915571A FR3105656B1 (en) 2019-12-24 2019-12-24 SURFACE COVER KIT
PCT/EP2020/086999 WO2021130112A1 (en) 2019-12-24 2020-12-18 Assembly for covering a surface

Publications (1)

Publication Number Publication Date
EP4082046A1 true EP4082046A1 (en) 2022-11-02

Family

ID=69811359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20824582.9A Pending EP4082046A1 (en) 2019-12-24 2020-12-18 Assembly for covering a surface

Country Status (4)

Country Link
US (1) US20220359777A1 (en)
EP (1) EP4082046A1 (en)
FR (1) FR3105656B1 (en)
WO (1) WO2021130112A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276383B (en) * 2023-11-21 2024-02-27 天合光能股份有限公司 Photovoltaic module and sealing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500066B1 (en) * 1991-02-20 1997-10-08 Canon Kabushiki Kaisha Modular solar cell with protective member
WO2009062106A1 (en) * 2007-11-07 2009-05-14 Ming-Liang Shiao Photovoltaic roofing elements and roofs using them
WO2009062178A2 (en) * 2007-11-08 2009-05-14 Ming-Liang Shiao Photovoltaic roofing panels, photovoltaic roofing assemblies, and roofs using them
ATE535026T1 (en) * 2008-06-13 2011-12-15 Imperbel N V Sa METHOD FOR PRODUCING A BITUMEN MEMBRANE
DE102009047906A1 (en) * 2009-10-01 2011-04-07 Bayer Materialscience Ag Production of solar modules
EP3168982A1 (en) * 2015-11-13 2017-05-17 S.A. Imperbel N.V. Flexible multilayer system
CN108604611A (en) * 2015-12-10 2018-09-28 松下知识产权经营株式会社 Solar cell module
FR3056827B1 (en) * 2016-09-29 2019-05-17 Total Solar International METHOD FOR ENCAPSULATING PHOTOVOLTAIC PANELS USING PRE-IMPREGNATED MATERIALS
FR3082377A1 (en) * 2018-06-08 2019-12-13 Total Sa PHOTOVOLTAIC SYSTEM AND METHOD FOR LAYING A PHOTOVOLTAIC SYSTEM

Also Published As

Publication number Publication date
FR3105656B1 (en) 2022-07-29
FR3105656A1 (en) 2021-06-25
WO2021130112A1 (en) 2021-07-01
US20220359777A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
EP3175547B1 (en) Assembly including a photovoltaic module applied to a circulable zone
EP3175488B1 (en) Photovoltaic module for a rigid carrier
EP3931396B1 (en) Functional device integrated into a traversable surface and method for producing a traversable surface with same
EP3646460A1 (en) Photovoltaic panel
EP4082046A1 (en) Assembly for covering a surface
FR3116650A1 (en) Improved lightweight and flexible photovoltaic module
WO2020058454A1 (en) Flexible laminate of photovoltaic cells and associated production method
WO2019077085A1 (en) Flexible laminate of photovoltaic cells and method for manufacturing such a flexible laminate
EP3657551B1 (en) Photovoltaic device comprising at least one coating layer on at least one photovoltaic module with wear indicator
FR3071357B1 (en) FLEXIBLE LAMINATE OF PHOTOVOLTAIC CELLS AND METHOD THEREOF
WO2020025461A1 (en) Method for producing a flexible laminate of photovoltaic cells
EP3657552B1 (en) Photovoltaic device comprising at least a coating layer which can be sanded on at least a photovoltaic module
EP3804120A1 (en) Photovoltaic facility and method for installing a photovoltaic facility
WO2020120712A1 (en) Moisture-resistant laminate of photovoltaic cells and process for producing such a laminate
FR3134919A1 (en) Lightweight, shock-resistant photovoltaic module
WO2021008947A1 (en) Laminate of photovoltaic cells and associated production method
WO2023041864A1 (en) Lightweight photovoltaic module comprising a glass and polymer front layer
WO2023118124A1 (en) Functional device in multilayer structure, of which one of the layers comprises a composite material comprising a thermosetting polyurethane resin and glass fibers, and method for manufacturing such a functional device
WO2020030522A1 (en) Photovoltaic module having a pattern

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)