WO2023116850A1 - 一种利用光化学反应直接将二氧化碳转换为固态碳的方法 - Google Patents

一种利用光化学反应直接将二氧化碳转换为固态碳的方法 Download PDF

Info

Publication number
WO2023116850A1
WO2023116850A1 PCT/CN2022/141206 CN2022141206W WO2023116850A1 WO 2023116850 A1 WO2023116850 A1 WO 2023116850A1 CN 2022141206 W CN2022141206 W CN 2022141206W WO 2023116850 A1 WO2023116850 A1 WO 2023116850A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
carbon
solid carbon
photochemical reaction
directly converting
Prior art date
Application number
PCT/CN2022/141206
Other languages
English (en)
French (fr)
Inventor
李朝升
菅静睿
冯建勇
王骏
祝梅
邹志刚
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2023116850A1 publication Critical patent/WO2023116850A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the invention relates to the technical field of resource utilization of carbon dioxide, in particular to a method for directly converting carbon dioxide into solid carbon by photochemical reaction.
  • Solid carbon can be subdivided into various products, which have a wide range of industrial applications.
  • carbon nanotubes they have good mechanical, electrical conductivity, heat transfer, optical and other properties, and have been successfully applied to composite materials, electronic devices, hydrogen storage materials, electrochemical materials, carbon catalysis and other fields.
  • graphene it has excellent optical, electrical, and mechanical properties, and has important application prospects in materials science, micro-nano processing, energy, biomedicine, and drug delivery.
  • the resource utilization of carbon dioxide is generally to synthesize methane, methanol, dimethyl ether, etc. through the catalytic hydrogenation reaction of carbon dioxide, or to synthesize dimethyl carbonate through the esterification reaction of carbon dioxide, and to synthesize urea and cyanuric acid through the ammoniation reaction of carbon dioxide. Acid etc. If carbon dioxide can be converted into solid carbon, both in terms of environmental protection and energy utilization, it will have great research and application value. However, most of the existing methods for converting carbon dioxide into solid carbon suffer from harsh reaction conditions and low carbon yields, making it difficult to be widely used. How to convert carbon dioxide into solid carbon under milder conditions and increase the carbon yield has become an urgent problem to be solved.
  • the object of the present invention is to provide a method for directly converting carbon dioxide into solid carbon by using photochemical reaction, by using carbon dioxide and hydrogen as raw material gases, and using substances containing transition metal elements as catalysts, in a certain Using light to catalyze the reaction under a certain reaction pressure, carbon dioxide can be converted into solid carbon at room temperature, and a higher carbon yield can be achieved.
  • the present invention provides a method for directly converting carbon dioxide into solid carbon by photochemical reaction, comprising the steps of:
  • the catalyst is placed in the reaction device, the catalyst contains transition metal elements;
  • the raw material gas contains carbon dioxide and hydrogen in a predetermined molar ratio
  • step S2 the molar ratio of carbon dioxide and hydrogen in the raw material gas is 20:1 ⁇ 1:20.
  • the predetermined pressure is 0.01-10 MPa.
  • the catalyst is a compound containing a transition metal element.
  • step S3 the illumination is provided by a light source, and the light source is artificial light or natural light.
  • the light intensity of the light source is 0.01-20 W/cm 2 , and the wavelength of the light source is greater than 300 nm.
  • step S3 the illumination time is 2-30 hours.
  • step S3 when light is applied, the reaction device is closed or a mobile phase reactor is used.
  • step S2 before feeding the raw material gas, first adopt the mode of raw material gas purging, inert gas purging or vacuumizing to remove the oxygen in the reaction device.
  • step S2 the way of introducing raw material gas is:
  • carbon dioxide is fed into the reaction device first, and then hydrogen is fed into the reaction device during the reaction stage.
  • the method provided by the present invention to directly convert carbon dioxide into solid carbon by photochemical reaction is to introduce carbon dioxide and hydrogen into the reaction device as raw material gas, under the condition that the catalyst exists, based on certain reaction pressure and light conditions, introduce Light energy is used as energy input to carry out photochemical reaction and successfully convert carbon dioxide into solid carbon, which provides a new idea for resource utilization of carbon dioxide.
  • the method for directly converting carbon dioxide into solid carbon by photochemical reaction provided by the present invention has mild overall reaction conditions, is simple and easy to implement, and has wide applicability, and the selection range of catalysts is also wide, which can realize large-scale carbon dioxide fixation and Resource utilization has high research and application value.
  • FIG. 1 is a comparison chart of the X-ray diffraction (XRD) spectrum of the catalyst prepared in Example 1 and the standard spectrum of cobalt oxide (Co 3 O 4 ).
  • Example 2 is a scanning electron microscope (SEM) photo of the solid carbon product obtained in Example 1.
  • Example 3 is a transmission electron microscope (TEM) photo of the solid carbon product obtained in Example 1.
  • Example 4 is a Raman spectrum (Raman) spectrum of the solid carbon product obtained in Example 1.
  • Example 5 is a thermogravimetric analysis spectrum of the solid carbon product obtained in Example 1.
  • Fig. 6 is a comparison chart of Raman spectrum (Raman) spectra of solid carbon products obtained by catalysts containing different transition metal elements.
  • Fig. 7 is a comparison chart of Raman spectra of solid carbon products obtained from carbon dioxide and hydrogen in the raw material gas at different molar ratios.
  • Fig. 8 is a comparison chart of Raman spectrum (Raman) spectra of solid carbon products obtained by cobalt-based catalysts with different oxygen contents.
  • Fig. 9 is a comparison chart of Raman spectra of solid carbon products obtained under different pressures.
  • Fig. 10 is a comparison chart of Raman spectra of solid carbon products obtained under different illumination times.
  • Fig. 11 is a comparison of scanning electron microscope (SEM) photographs of solid carbon products obtained under different illumination times.
  • Fig. 12 is a comparison diagram of transmission electron microscope (TEM) photos of solid carbon products obtained under different illumination times.
  • Fig. 13 is a comparison chart of thermogravimetric analysis spectra of solid carbon products obtained under different illumination times.
  • Fig. 14 is a comparison chart of Raman spectrum (Raman) spectra of solid carbon products obtained under light conditions and heating conditions.
  • Figure 15 is a comparison of scanning electron microscope (SEM) photos of solid carbon products obtained under light conditions and heating conditions.
  • the invention provides a method for directly converting carbon dioxide into solid carbon by photochemical reaction, comprising the following steps:
  • the catalyst is placed in the reaction device, the catalyst contains transition metal elements;
  • the raw material gas contains carbon dioxide and hydrogen in a predetermined molar ratio
  • the catalyst may be a compound containing a transition metal element, or a simple substance of a transition metal, both of which can obtain a solid carbon product, preferably a compound containing a transition metal element.
  • the compound containing a transition metal element can be further preferably an oxide
  • the transition metal element can be further preferably iron element, cobalt element, nickel element, and copper element.
  • the catalyst can be directly purchased from commercially available products, or can be prepared by itself, which has a wide selection range and can be freely selected according to needs.
  • step S2 before feeding the raw material gas, the oxygen in the reaction device can be removed first, so as to avoid the influence of the presence of oxygen on the reaction.
  • the oxygen in the reaction device can be removed by raw material gas purging, inert gas purging or vacuuming, all of which can achieve the required oxygen removal effect.
  • the raw material gas can be introduced in the following two ways:
  • the first way is to mix carbon dioxide and hydrogen according to a molar ratio of 20:1 to 1:20, and then pass them into the reaction device together;
  • the second way is to first feed carbon dioxide into the reaction device to form a carbon dioxide atmosphere, and then feed hydrogen into the reaction device during the reaction stage; Injection or continuous inflow at a certain flow rate, so that the molar ratio of the initial carbon dioxide inflow to the total amount of hydrogen in the reaction stage is 20:1 to 1:20.
  • Carbon dioxide can be converted into a carbon source by the above two methods, which can be selected according to needs. Among them, after adopting the first method to mix carbon dioxide and hydrogen and pass them into the reaction device together, in the subsequent illumination process, the reaction device can be closed to make it react in a closed state; When hydrogen gas is fed in steps, a mobile phase reactor can be used as a reaction device so that hydrogen gas can be fed in during the light irradiation process.
  • the predetermined pressure is preferably 0.01-10 MPa, and the reaction can also be realized under normal pressure, the reaction conditions are mild, easy to realize, and the requirements for the reaction device are not high, which can meet the needs of practical applications.
  • the illumination in this step is provided by a light source, which is artificial light or natural light, which can be selected according to actual needs and has a wide range of options.
  • a light source which is artificial light or natural light, which can be selected according to actual needs and has a wide range of options.
  • carbon dioxide can also be converted into solid carbon, but there is a problem that the surface temperature of the catalyst is too low, so that most of the catalyst surface is covered with amorphous carbon, and graphite can be obtained as the light intensity increases. At the same time, the formation of carbon nanotubes was observed. If the light intensity is too high, the surface temperature of the catalyst will be too high. The water vapor generated by the reaction will decompose under the action of high temperature and metal to produce hydroxyl radicals, which are oxidizing.
  • the carbon nanotubes will be etched to hinder the growth of the carbon nanotubes; the light intensity of the light source is preferably 0.01-20W/cm 2 , the wavelength is preferably greater than 300nm, and the illumination time is preferably 2-30h to ensure The photochemical reaction is carried out effectively, and the carbon yield and product quality are improved.
  • the solid carbon prepared by the present invention can be in various forms such as graphite, carbon nanotubes, graphene, carbon fiber, etc., and graphite, Graphene (better with copper-based catalysts) and carbon fiber (better with cobalt-based and iron-based catalysts) products can adjust the form of solid carbon products.
  • the present embodiment provides a method for directly converting carbon dioxide into solid carbon by photochemical reaction, comprising the steps of:
  • Cobalt oxide (Co 3 O 4 ) powder was prepared as a catalyst, and 50 mg of the catalyst was weighed and placed in a reaction device.
  • the cobalt oxide (Co 3 O 4 ) powder used as the catalyst is prepared by the following method:
  • the solid carbon product obtained in this example was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy (Raman), and the results are shown in Figures 2, 3, and 4, respectively. According to the characterization results in Figures 2, 3, and 4, it can be concluded that the solid carbon product produced this time is mainly carbon nanotubes, which proves that the method provided in this example realizes the conversion of carbon dioxide to solid carbon.
  • the solid carbon product obtained in this example was collected and ground, and 30 mg was divided into 3 parts (to prevent measurement errors) for thermogravimetric analysis test, and the mass loss of the sample was heated in air as a function of temperature, and the results were shown in Figure 5.
  • Product molar weight ⁇ initial carbon dioxide molar weight (4.6mmol) calculate the one-way carbon yield in this implementation to be 17.5%, show that the method that this embodiment provides can reach higher carbon yield under the condition of mild normal temperature and pressure Rate.
  • Embodiments 2 to 4 respectively provide a method for directly converting carbon dioxide into solid carbon by photochemical reaction. Compared with Embodiment 1, the only difference is that the transition metal elements contained in the catalyst used are different, and the other steps are all the same as those in Embodiment 1. Example 1 is the same and will not be repeated here.
  • the catalysts used in Examples 1-4 and their reaction results are shown in Table 1, and the Raman spectrum (Raman) comparison chart of the obtained solid carbon products is shown in FIG. 6 .
  • Example 1 Co 3 O 4 Produces solid carbon ( ID / IG 1.233)
  • Example 2 Fe 3 O 4 Produces solid carbon ( ID / IG 1.155)
  • Example 3 NiO Produces solid carbon ( ID / IG 1.121)
  • Example 4 CuO Produces solid carbon ( ID / IG 1.114)
  • Embodiments 5 to 9 respectively provide a method for directly converting carbon dioxide into solid carbon by photochemical reaction. Compared with embodiment 1, the only difference is that the molar ratio of carbon dioxide and hydrogen in the raw material gas used is different, and the other steps are all It is consistent with Embodiment 1 and will not be repeated here.
  • the molar ratio of carbon dioxide and hydrogen and the reaction results thereof in Example 1 and Examples 5-9 are shown in Table 2, and the Raman spectrum (Raman) comparison chart of the obtained solid carbon product is shown in FIG. 7 .
  • Embodiments 10 to 12 respectively provide a method for directly converting carbon dioxide into solid carbon by photochemical reaction. Compared with Embodiment 1, the only difference lies in the content of metal cobalt and oxygen contained in the cobalt-based catalyst used. The proportions are different, and other steps are consistent with Example 1, and will not be repeated here.
  • the components and reaction results of the cobalt-based catalysts in Example 1 and Examples 10-12 are shown in Table 3, and the Raman spectrum (Raman) comparison chart of the obtained solid carbon product is shown in FIG. 8 .
  • Example 1 Co 3 O 4 Produces solid carbon ( ID / IG 1.226)
  • the catalyst CoO x in Example 12 is obtained by burning metal cobalt powder in air.
  • Embodiments 13-15 respectively provide a method for directly converting carbon dioxide into solid carbon by photochemical reaction. Compared with Embodiment 1, the only difference is that the pressure in step S3 is different, and other steps are consistent with Embodiment 1. In This will not be repeated here.
  • the pressure and reaction results of the reactions in Example 1 and Examples 13-15 are shown in Table 4, and the Raman spectrum (Raman) comparison chart of the obtained solid carbon product is shown in Figure 9 .
  • Embodiments 16-19 respectively provide a method for directly converting carbon dioxide into solid carbon by photochemical reaction. Compared with Embodiment 1, the only difference is that the time of illumination is different, and other steps are consistent with Embodiment 1. Let me repeat. The time of light irradiation and the reaction results thereof in Example 1 and Examples 13-16 are shown in Table 5, and the comparison chart of Raman spectrum (Raman) of the obtained solid carbon products is shown in FIG. 10 .
  • Example 16 0 hours not responding
  • This comparative example provides a method for directly converting carbon dioxide into solid carbon. Compared with Example 1, the difference lies in the form of providing energy. In Example 1, light energy is introduced as energy, while in this comparative example, energy is provided by heating, and other steps are consistent with Example 1, and will not be repeated here.
  • An infrared thermal imager is used to detect the temperature of the surface of the catalyst under light conditions in Example 1, and the measured temperature is about 400 ° C.
  • a thermocouple is used to detect the temperature of the gas in the reaction system in Example 1, and the temperature is measured. About 60°C.
  • the whole reaction device was heated to 400 ° C, and the obtained solid carbon product was characterized by Raman spectrum (Raman) and scanning electron microscope (SEM), and Compared with Example 1, the results are shown in Figure 14 and Figure 15 respectively.
  • the present invention provides a method for directly converting carbon dioxide into solid carbon using photochemical reactions.
  • the method includes placing a catalyst containing a transition metal element in a reaction device, and then feeding a raw material gas containing carbon dioxide and hydrogen in a predetermined molar ratio into the reaction device, and performing light under a predetermined pressure, that is, carbon dioxide can be used as a carbon source,
  • the photochemical reaction is used to make carbon dioxide form solid carbon through hydrogenation and reduction, which provides a new idea for the resource utilization of carbon dioxide.
  • the method provided by the present invention has mild reaction conditions, can be realized at normal temperature, and can achieve a higher carbon yield; and the overall operation steps are simple and easy, and have wide applicability, and can realize large-scale carbon dioxide production. Fixation and resource utilization have high research and application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种利用光化学反应直接将二氧化碳转换为固态碳的方法。该方法包括将含有过渡金属元素的催化剂放置在反应装置中,再向反应装置中通入含有预定摩尔比例的二氧化碳和氢气的原料气,在预定的压力下进行光照,即可以二氧化碳作为碳源,利用光化学反应使二氧化碳通过加氢还原的方式形成固态碳,为二氧化碳的资源化利用提供新的思路。该方法反应条件温和,在常温下即可实现,并能达到较高的碳收率;且整体操作步骤简单易行,可使用性广泛,能够实现大规模的二氧化碳的固定以及资源化利用,具有较高的研究和应用价值。

Description

一种利用光化学反应直接将二氧化碳转换为固态碳的方法 技术领域
本发明涉及二氧化碳的资源化利用技术领域,尤其涉及一种利用光化学反应直接将二氧化碳转换为固态碳的方法。
背景技术
随着社会的发展,能源需求不断增加,引发了煤炭、石油和天然气等化石燃料的快速消费。在此过程中,大气中二氧化碳的浓度增长迅猛。而二氧化碳作为温室气体的主要成分,它浓度的升高会带来全球变暖、极端气候变化等一系列环境问题,从而严重威胁到人类的生存。因此,捕获、转换和利用大气中的二氧化碳对人类的生存与可持续发展至关重要。
固态碳可以细分为多种产品,它们具有广泛的工业应用。如石墨:质软,有滑腻感,具有优良的导电性能,既可以作为润滑剂,又可以制作铅笔、电极、电车缆线等。再如碳纳米管:具有良好的力学、导电、传热、光学等性能,已经被成功地应用到复合材料、电子器件、储氢材料、电化学材料、碳催化等领域。再如石墨烯:具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景。
目前,二氧化碳的资源化利用一般是通过二氧化碳的催化加氢反应合成甲烷、甲醇、二甲醚等,或者通过二氧化碳的酯化反应合成碳酸二甲酯,二氧化碳的氨化反应合成尿素、三聚氰酸等。如果能够将二氧化碳转换成固态碳,无论是在环境保护方面还是在能源利用方面,都具有很大的研究与应用价值。然而,现有的将二氧化碳转换为固态碳的方法大多存在反应条件苛刻、碳收率低的问题,难以被广泛应用。如何以更温和的条件将二氧化碳转换为固态碳,并提高碳收率,已成为当前亟待解决的问题。
有鉴于此,有必要设计一种改进的将二氧化碳转换为固态碳的方法,以解决上述问题。
发明内容
针对上述现有技术的缺陷,本发明的目的在于提供一种利用光化学反应直接将二氧化碳转换为固态碳的方法,通过以二氧化碳和氢气作为原料气,以含有过渡金属元素的物质作为催化剂,在一定的反应压力下利用光进行催化反应,在常温条件下即可使二氧化碳转换为固态碳,并达到较高的碳收率。
为实现上述目的,本发明提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,包括如下步骤:
S1、将催化剂放置在反应装置中,所述催化剂中含有过渡金属元素;
S2、向所述反应装置中通入原料气,所述原料气中含有预定摩尔比例的二氧化碳和氢气;
S3、在预定的压力下进行光照,经光化学反应,得到固态碳。
作为本发明的进一步改进,在步骤S2中,所述原料气中,二氧化碳和氢气的摩尔比为20:1~1:20。
作为本发明的进一步改进,在步骤S3中,所述预定的压力为0.01~10Mpa。
作为本发明的进一步改进,在步骤S1中,所述催化剂为含有过渡金属元素的化合物。
作为本发明的进一步改进,在步骤S3中,所述光照由光源提供,所述光源为人造光或自然光。
作为本发明的进一步改进,所述光源的光强为0.01~20W/cm 2,所述光源的波长大于300nm。
作为本发明的进一步改进,在步骤S3中,所述光照的时间为2~30h。
作为本发明的进一步改进,在步骤S3中,进行光照时,将所述反应装置封闭或采用流动相反应器。
作为本发明的进一步改进,在步骤S2中,通入原料气之前,先采用原料 气吹扫、惰性气体吹扫或抽真空的方式除去所述反应装置中的氧气。
作为本发明的进一步改进,在步骤S2中,所述通入原料气的方式为:
将二氧化碳和氢气混合后一起通入所述反应装置中;
或者,先向所述反应装置中通入二氧化碳,在反应阶段再向所述反应装置中通入氢气。
与现有技术相比,本发明的有益效果是:
1、本发明提供的利用光化学反应直接将二氧化碳转换为固态碳的方法,通过将二氧化碳和氢气作为原料气通入反应装置中,在催化剂存在的条件下,基于一定的反应压力和光照条件,引入光能作为能量输入,进行光化学反应,成功将二氧化碳转换为固态碳,为二氧化碳的资源化利用提供了新的思路。
2、基于本发明提供的方法,在光化学反应过程中,二氧化碳作为碳源,通过加氢还原的方式制备固态碳,在常温条件下即可使固态碳产物的单程收率达到23%,具有较高的碳收率。
3、本发明提供的利用光化学反应直接将二氧化碳转换为固态碳的方法,整体反应条件温和、简单易行、可使用性广泛,催化剂的选择范围也较广,能够实现大规模的二氧化碳的固定以及资源化利用,具有较高的研究和应用价值。
附图说明
图1为实施例1中制备的催化剂的X射线衍射(XRD)图谱与氧化钴(Co 3O 4)标准图谱的对比图。
图2为实施例1中得到的固态碳产物的扫描电子显微镜(SEM)照片。
图3为实施例1中得到的固态碳产物的透射电子显微镜(TEM)照片。
图4为实施例1中得到的固态碳产物的拉曼光谱(Raman)图谱。
图5为实施例1中得到的固态碳产物的热重分析图谱。
图6为含有不同过渡金属元素的催化剂得到的固态碳产物的拉曼光谱(Raman)图谱对比图。
图7为原料气中的二氧化碳和氢气在不同的摩尔比下得到的固态碳产物的拉曼光谱(Raman)图谱对比图。
图8为含氧量不同的钴基催化剂得到的固态碳产物的拉曼光谱(Raman)图谱对比图。
图9为不同压力下得到的固态碳产物的拉曼光谱(Raman)图谱对比图。
图10为在不同的光照时间下得到的固态碳产物的拉曼光谱(Raman)图谱对比图。
图11为在不同的光照时间下得到的固态碳产物的扫描电子显微镜(SEM)照片对比图。
图12为在不同的光照时间下得到的固态碳产物的透射电子显微镜(TEM)照片对比图。
图13为在不同的光照时间下得到的固态碳产物的热重分析图谱对比图。
图14为光照条件与加热条件下得到的固态碳产物的拉曼光谱(Raman)图谱对比图。
图15为光照条件与加热条件下得到的固态碳产物的扫描电子显微镜(SEM)照片对比图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本发明提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,包括如下步骤:
S1、将催化剂放置在反应装置中,所述催化剂中含有过渡金属元素;
S2、向所述反应装置中通入原料气,所述原料气中含有预定摩尔比例的二氧化碳和氢气;
S3、在预定的压力下进行光照,经光化学反应,得到固态碳。
通过上述方式,能够引入光能作为能量输入,在催化剂的作用下以及预定的压力条件下,以二氧化碳作为碳源,利用光化学反应使二氧化碳通过加氢还原的方式形成固态碳,不仅为二氧化碳的资源化利用提供了新的思路,还能够以温和的反应条件获得较高的碳收率,能够实现大规模的二氧化碳的固定以及资源化利用,在一定程度上可以缓解能源危机,降低大气中的二氧化碳浓度,有利于环境保护和人类生存,具有较高的研究和应用价值。
在步骤S1中,所述催化剂可以是含有的过渡金属元素的化合物,也可以是过渡金属单质,均能够得到固态碳产物,优选为含有过渡金属元素的化合物。其中,含有过渡金属元素的化合物还可以进一步优选为氧化物,过渡金属元素可以进一步优选为铁元素、钴元素、镍元素、铜元素。并且,该催化剂可以直接购买市售商品,也可以自行制备,具有较广的选择范围,能够根据需要进行自由选择。
在步骤S2中,通入原料气之前,可以先除去反应装置中的氧气,以避免氧气的存在对反应造成影响。除去反应装置中的氧气可以采用原料气吹扫、惰性气体吹扫或抽真空的方式,均能够达到所需的除氧效果。
待除去反应装置中的氧气后,可以采用如下两种方式通入原料气:
第一种方式为将二氧化碳和氢气按照摩尔比20:1~1:20混合后,再一起通入所述反应装置中;
第二种方式为先向所述反应装置中通入二氧化碳,形成二氧化碳气氛后,在反应阶段再向所述反应装置中通入氢气;其中,氢气的通入可以是一次性通入、分次通入或者以一定的流速持续通入,使初始通入的二氧化碳与反应 阶段通入的氢气总量的摩尔比为20:1~1:20即可。
采用上述两种方式都可以将二氧化碳转化为碳源,可以根据需要进行选择。其中,采用第一种方式将二氧化碳和氢气混合后一起通入反应装置后,在后续的光照过程中,可以将反应装置封闭,使其在封闭状态下发生反应;采用第二种方式将二氧化碳和氢气分步通入时,可以采用流动相反应器作为反应装置,以便在光照过程中通入氢气。
在步骤S3中,所述预定的压力优选为0.01~10Mpa,在常压下反应也可实现,反应条件温和,易于实现,对反应装置的要求也不高,能够满足实际应用的需求。
该步骤中的光照由光源提供,所述光源为人造光或自然光,可以根据实际需要进行选择,具有较广的可选范围。其中,光源的光强较低时,二氧化碳也能够转换为固态碳,但存在催化剂表面温度过低的问题,使得大部分催化剂表面被无定型碳覆盖,随着光强的升高,能够获得石墨碳,同时观测到碳纳米管的生成,若光强过高,则存在催化剂表面温度过高的问题,反应生成的水蒸气在高温和金属的作用下分解产生羟基自由基,其具有氧化性,会对碳纳米管进行刻蚀,阻碍碳纳米管的生长;所述光源的光强优选为0.01~20W/cm 2,波长优选为大于300nm,所述光照的时间优选为2~30h,以保证光化学反应有效进行,并提高碳收率及产物质量。
本发明制得的固态碳可以是石墨、碳纳米管、石墨烯、碳纤维等多种形式,通过提高光强或者附加额外温场的情况下,使得催化剂表面温度达到1000℃的方式可以获得石墨、石墨烯(铜基催化剂更好)以及碳纤维(钴基与铁基催化剂更好)产品,可以调节固态碳产物的形式。
下面结合具体的实施例和对比例对本发明提供的利用光化学反应直接将二氧化碳转换为固态碳的方法进行具体说明。
实施例1
本实施例提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,包括如下步骤:
S1、制备氧化钴(Co 3O 4)粉末作为催化剂,并称取50mg该催化剂,放置在反应装置中。
其中,作为催化剂的氧化钴(Co 3O 4)粉末采用如下方法制备得到:
称取2g六水合硝酸钴(Co(NO 3) 3·6H 2O)于氧化铝舟中,将其放置在马弗炉中,以10℃/min的速率升温至450℃并在该温度下保温2h,降温后用研钵充分研磨,得到的即为氧化钴(Co 3O 4)粉末,该粉末的成分通过图1所示的X射线衍射(XRD)图谱对比图可以确认。
S2、将二氧化碳和氢气在常温下按照摩尔比1:2充分混合后,作为原料气;先通过原料气吹扫的方式将反应装置中的空气排尽,再通入待反应的原料气。
S3、以功率为300W的氙灯(光强2W/cm 2)作为光源,在常温常压(0.1Mpa)下进行光照5h,得到固态碳产物。
对本实施例得到的固态碳产物进行扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及拉曼光谱(Raman)的表征,结果分别如图2、3、4所示。根据图2、3、4的表征结果,可以得出本次制得的固态碳产物主要为碳纳米管,证明了本实施例提供的方法实现了二氧化碳到固态碳的转换。
将本实施例得到的固态碳产物收集研磨,取30mg分成3份(防止测量误差)进行热重分析测试,测量样品在空气中加热,随温度变化的质量损失,结果如图5所示。根据图5中绘制的固态产物质量损失(16.2%)、初始催化剂的用量(50mg),结合公式碳产物质量=初始催化剂质量×质量损失÷质量残值,计算得到碳产物质量约为9.67mg;再根据碳产物摩尔量=碳产物质量÷碳元素的摩尔质量(12mg/mmol),得到碳产物物质的量约为0.81mmol;然后根据碳收率(二氧化碳向碳纳米管的转化率)=碳产物摩尔量÷初始二氧化碳摩尔量(4.6mmol),计算得本实施中的单程碳收率为17.5%,表明本实施例提供的方法能够在温和的常温常压的条件下达到较高的碳收率。
实施例2~4
实施例2~4分别提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,与实施例1相比,区别仅在于所使用的催化剂中含有的过渡金属元素不同,其他步骤均与实施例1一致,在此不再赘述。实施例1~4中使用的催化剂及其反应结果如表1所示,其得到的固态碳产物的拉曼光谱(Raman)对比图如图6所示。
表1 实施例1~4中使用的催化剂及其反应结果
项目 催化剂 结果
实施例1 Co 3O 4 产生固态碳(I D/I G=1.233)
实施例2 Fe 3O 4 产生固态碳(I D/I G=1.155)
实施例3 NiO 产生固态碳(I D/I G=1.121)
实施例4 CuO 产生固态碳(I D/I G=1.114)
结合表1和图6可以看出,使用含有不同过渡金属元素的化合物作为催化剂均能够成功将二氧化碳转换为固态碳,但I D/I G值存在差异,表明产物质量存在一定差异。其中,I D是D峰的强度,D峰代表碳原子晶格的缺陷;I G是G峰的强度,G峰代表碳原子石墨化程度,一般来说,I D/I G值越低表明获得的固态碳产物的质量更高。
实施例5~9
实施例5~9分别提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,与实施例1相比,区别仅在于所使用的原料气中二氧化碳和氢气的摩尔比不同,其他步骤均与实施例1一致,在此不再赘述。实施例1及实施例5~9中二氧化碳和氢气的摩尔比及其反应结果如表2所示,其得到的固态碳产物的拉曼光谱(Raman)对比图如图7所示。
表2 实施例1及实施例5~9中二氧化碳和氢气的摩尔比及其反应结果
Figure PCTCN2022141206-appb-000001
Figure PCTCN2022141206-appb-000002
结合表2和图7可以看出,在一定范围内调整二氧化碳和氢气的摩尔比均能够成功将二氧化碳转换为固态碳,但产物质量存在一定差异。
实施例10~12
实施例10~12分别提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,与实施例1相比,区别仅在于所使用的钴基催化剂中含有的金属钴元素与氧元素含量的比例不同,其他步骤均与实施例1一致,在此不再赘述。实施例1及实施例10~12中钴基催化剂的成分及其反应结果如表3所示,其得到的固态碳产物的拉曼光谱(Raman)对比图如图8所示。
表3 实施例1及实施例10~12中钴基催化剂的成分及其反应结果
项目 催化剂 结果
实施例1 Co 3O 4 产生固态碳(I D/I G=1.226)
实施例10 Co 产生固态碳(I D/I G=1.344)
实施例11 CoO 产生固态碳(I D/I G=1.241)
实施例12 CoO x 产生固态碳(I D/I G=1.258)
其中,实施例12中的催化剂CoO x是由金属钴粉末在空气中灼烧得到的。
结合表3和图8可以看出,钴元素与氧元素按不同摩尔比形成的钴基催化剂均能够成功将二氧化碳转换为固态碳,但产物质量存在一定差异。
实施例13~15
实施例13~15分别提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,与实施例1相比,区别仅在于步骤S3中的压力不同,其他步骤均与实施例1一致,在此不再赘述。实施例1及实施例13~15中反应的压力 及其反应结果如表4所示,其得到的固态碳产物的拉曼光谱(Raman)对比图如图9所示。
表4 实施例1及实施例13~15中的压力及其反应结果
项目 压力 结果
实施例1 0.1Mpa 产生固态碳(I D/I G=1.215)
实施例13 0.05MPa 产生固态碳(I D/I G=1.226)
实施例14 0.5MPa 产生固态碳(I D/I G=1.233)
实施例15 1MPa 产生固态碳(I D/I G=1.217)
结合表4和图9可以看出,在一定的范围内调整压力大小,均能够成功将二氧化碳转换为固态碳,但产物质量存在微小差异,二氧化碳转化率则随压力升高略有提升。
实施例16~19
实施例16~19分别提供了一种利用光化学反应直接将二氧化碳转换为固态碳的方法,与实施例1相比,区别仅在于光照的时间不同,其他步骤均与实施例1一致,在此不再赘述。实施例1及实施例13~16中光照的时间及其反应结果如表5所示,其得到的固态碳产物的拉曼光谱(Raman)对比图如图10所示。
表5 实施例1及实施例16~19中光照的时间及其反应结果
项目 光照的时间 结果
实施例1 5小时 产生固态碳(I D/I G=1.229)
实施例16 0小时 未开始反应
实施例17 2小时 产生固态碳(I D/I G=1.368)
实施例18 10小时 产生固态碳(I D/I G=1.178)
实施例19 30小时 产生固态碳(I D/I G=1.172)
结合表5和图10可以看出,在光照时间为0时,光化学反应无法进行,也无法将二氧化碳转换为固态碳;当光照时间增加至2小时后,即可产生固 态碳,且光照时间进一步增加同样能够成功将二氧化碳转换为固态碳。
进一步对产生了固态碳的实施例1及实施例17~19得到的固态碳产物进行扫描电子显微镜(SEM)表征、透射电子显微镜(TEM)表征和热重分析,结果分别如图11、图12、图13所示。根据图13计算得光照时间为2h、5h、10h和30h时对应的碳收率分别为12.2%、17.5%、22.7%和23.9%,结合表5及图10~13可以看出,在光照时间较短时,形成的固态碳产物的碳收率和产物质量相对较低,随着光照时间的延长,碳收率和产物质量均逐渐提高,在光照时间达到一定程度后,再进一步延长光照时间对碳收率和产物质量的影响则不够明显。
对比例1
本对比例提供了一种直接将二氧化碳转换为固态碳的方法,与实施例1相比,区别及在于提供能量的形式不同。实施例1中是引入光能作为能量,而本对比例则通过加热的方式来提供能量,其他步骤均与实施例1一致,在此不再赘述。
采用红外热成像仪对实施例1中光照条件下催化剂表面的温度进行检测,测得温度约为400℃,同时采用热电偶对实施例1中反应体系中气体的温度进行检测,测得其温度约为60℃。本对比例则根据实施例1中光照条件下催化剂表面的温度,将反应装置整体加热至400℃,并对得到的固态碳产物进行拉曼光谱(Raman)和扫描电子显微镜(SEM)表征,并与实施例1进行对比,结果分别如图14、图15所示。
结合图14、图15可以看出,通过加热的方式提供能量虽然也能够将二氧化碳转换为固态碳,但这种方式需要将整个反应体系都升温,能耗相对更大;且最终得到的固态碳的形态存在明显差异,实施例1中通过光照方式获得的碳纳米管的I D/I G值比对比例1中通过加热方式获得的碳纳米管的I D/I G值更低,表明实施例1中通过光照方式获得的碳纳米管比加热方式获得的碳纳米管的质量更高。
综上所述,本发明提供了一种利用光化学反应直接将二氧化碳转换为固 态碳的方法。该方法包括将含有过渡金属元素的催化剂放置在反应装置中,再向反应装置中通入含有预定摩尔比例的二氧化碳和氢气的原料气,在预定的压力下进行光照,即可以二氧化碳作为碳源,利用光化学反应使二氧化碳通过加氢还原的方式形成固态碳,为二氧化碳的资源化利用提供新的思路。通过上述方式,本发明提供的方法反应条件温和,在常温下即可实现,并能达到较高的碳收率;且整体操作步骤简单易行,可使用性广泛,能够实现大规模的二氧化碳的固定以及资源化利用,具有较高的研究和应用价值。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于,包括如下步骤:
    S1、将催化剂放置在反应装置中,所述催化剂中含有过渡金属元素;
    S2、向所述反应装置中通入原料气,所述原料气中含有预定摩尔比例的二氧化碳和氢气;
    S3、在预定的压力下进行光照,经光化学反应,得到固态碳。
  2. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S2中,所述原料气中,二氧化碳和氢气的摩尔比为20:1~1:20。
  3. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S3中,所述预定的压力为0.01~10Mpa。
  4. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S1中,所述催化剂为含有过渡金属元素的化合物。
  5. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S3中,所述光照由光源提供,所述光源为人造光或自然光。
  6. 根据权利要求5所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:所述光源的光强为0.01~20W/cm2,所述光源的波长大于300nm。
  7. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S3中,所述光照的时间为2~30h。
  8. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S3中,进行光照时,将所述反应装置封闭或采用流动相反应器。
  9. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S2中,通入原料气之前,先采用原料气吹扫、惰性气体吹扫或抽真空的方式除去所述反应装置中的氧气。
  10. 根据权利要求1所述的一种利用光化学反应直接将二氧化碳转换为固态碳的方法,其特征在于:在步骤S2中,所述通入原料气的方式为:
    将二氧化碳和氢气混合后一起通入所述反应装置中;
    或者,先向所述反应装置中通入二氧化碳,在反应阶段再向所述反应装置中通入氢气。
PCT/CN2022/141206 2021-12-23 2022-12-23 一种利用光化学反应直接将二氧化碳转换为固态碳的方法 WO2023116850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111586547.0 2021-12-23
CN202111586547.0A CN114162813B (zh) 2021-12-23 2021-12-23 一种利用光化学反应直接将二氧化碳转换为固态碳的方法

Publications (1)

Publication Number Publication Date
WO2023116850A1 true WO2023116850A1 (zh) 2023-06-29

Family

ID=80488023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141206 WO2023116850A1 (zh) 2021-12-23 2022-12-23 一种利用光化学反应直接将二氧化碳转换为固态碳的方法

Country Status (2)

Country Link
CN (1) CN114162813B (zh)
WO (1) WO2023116850A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162813B (zh) * 2021-12-23 2023-12-26 南京大学 一种利用光化学反应直接将二氧化碳转换为固态碳的方法
CN116253607A (zh) * 2023-03-17 2023-06-13 华东师范大学 一种无催化剂172nm光化学反应体系的构建方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306963A (ja) * 2001-04-13 2002-10-22 Toshiba Corp 可視光吸収性光触媒物質、水分解方法および炭素固定化方法
CN102459727A (zh) * 2009-04-17 2012-05-16 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
US20140235736A1 (en) * 2011-10-24 2014-08-21 Sogang University Research Foundation Apparatus and method for reducing carbon dioxide using solar light
CN106629609A (zh) * 2016-11-30 2017-05-10 南京大学 一种基于光致缺陷反应的二氧化碳全分解方法
CN110817839A (zh) * 2019-12-06 2020-02-21 华南师范大学 一种将二氧化碳还原为多孔碳材料的方法及多孔碳材料和应用
CN114162813A (zh) * 2021-12-23 2022-03-11 南京大学 一种利用光化学反应直接将二氧化碳转换为固态碳的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819329B2 (ja) * 2002-06-14 2006-09-06 独立行政法人産業技術総合研究所 カーボンナノチューブの製造方法
CN1234604C (zh) * 2002-11-27 2006-01-04 清华大学 一种碳纳米管、其制备方法和制备装置
TWI403353B (zh) * 2008-07-10 2013-08-01 Shu Chin Chen 二氧化碳分解及(C4+nM)狀態碳回收裝置及方法
CN102459075A (zh) * 2009-06-18 2012-05-16 塔塔钢铁荷兰科技有限责任公司 碳纳米管(cnt)和纤维(cnf)在钢带上的直接生长方法
US8946112B2 (en) * 2009-10-30 2015-02-03 Empire Technology Development Llc Photocatalytic material for splitting oxides of carbon
KR101596439B1 (ko) * 2011-10-24 2016-02-22 서강대학교산학협력단 태양광을 이용한 이산화탄소의 환원 장치 및 환원 방법
CN104289082A (zh) * 2013-07-16 2015-01-21 陈树锦 分解二氧化碳减少地球温室气体的方法及装置
WO2018099709A1 (en) * 2016-11-29 2018-06-07 Climeworks Ag Methods for the removal of co2 from atmospheric air or other co2-containing gas in order to achieve co2 emissions reductions or negative co2 emissions
CN108339383B (zh) * 2018-01-30 2020-12-18 徐明好 一种二氧化碳碳氧分离方法及其专用装置
CN108404587A (zh) * 2018-02-13 2018-08-17 南京师范大学 一种耦合新能源利用二氧化碳的系统和方法
CN111715288A (zh) * 2020-07-22 2020-09-29 福州大学 一种用于催化还原二氧化碳的NCQDs/Ru光催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306963A (ja) * 2001-04-13 2002-10-22 Toshiba Corp 可視光吸収性光触媒物質、水分解方法および炭素固定化方法
CN102459727A (zh) * 2009-04-17 2012-05-16 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
US20140235736A1 (en) * 2011-10-24 2014-08-21 Sogang University Research Foundation Apparatus and method for reducing carbon dioxide using solar light
CN106629609A (zh) * 2016-11-30 2017-05-10 南京大学 一种基于光致缺陷反应的二氧化碳全分解方法
CN110817839A (zh) * 2019-12-06 2020-02-21 华南师范大学 一种将二氧化碳还原为多孔碳材料的方法及多孔碳材料和应用
CN114162813A (zh) * 2021-12-23 2022-03-11 南京大学 一种利用光化学反应直接将二氧化碳转换为固态碳的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG JUN, WANG JIAJIA, FENG JIANYONG, HU YINGFEI, HUANG HUITING, ZHANG NINGSI, ZHAO MINYUE, LIU CHANGHAO, ZHU ZHI, YAN SHICHENG, Y: "Direct photoconversion of CO2 to carbon nanotubes for oxygen recycling in extraterrestrial exploration", RESEARCH SQUARE, 5 December 2022 (2022-12-05), XP093073671, [retrieved on 20230815], DOI: 10.21203/rs.3.rs-2346019/v1 *

Also Published As

Publication number Publication date
CN114162813B (zh) 2023-12-26
CN114162813A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023116850A1 (zh) 一种利用光化学反应直接将二氧化碳转换为固态碳的方法
CN104941674B (zh) 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
Han et al. Highly active and anticoke Ni/CeO2 with ultralow Ni loading in chemical looping dry reforming via the strong metal–support interaction
Wu et al. Ni–Co–B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells
CN108588751B (zh) 氧族钴基催化剂、制备方法及电催化析氧应用
CN110075901B (zh) 多孔硫掺石墨相氮化碳-还原氧化石墨烯纳米片的制备
CN110404567B (zh) 一种光催化能源转化材料及其制备方法与应用
Ostad et al. The influence of different synthetic solvents on photocatalytic activity of ZIF-8 for methanol production from CO2
Baytar et al. Al2O3 supported Co-Cu-B (Co-Cu-B/Al2O3) catalyst for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions
KR20160010151A (ko) 개미산의 분해 및 재생용 촉매 및 이의 제조방법
CN112844403B (zh) 一种乙酸自热重整制氢的钇锰镍类钙钛矿结构催化剂
CN114471655B (zh) 可见光下不加牺牲剂高效生成过氧化氢的复合光催化剂的制备方法
Shao et al. Synthesis, characterization, and methanol steam reforming performance for hydrogen production on perovskite-type oxides SrCo1-xCuxO3-δ
CN109675606B (zh) 一种光催化剂及其制备方法
Pan et al. Robust crystalline aromatic imide-linked two-dimensional covalent organic frameworks confining ruthenium nanoparticles as efficient hydrogen evolution electrocatalyst
CN109701577B (zh) 一种利用碳纳米管作为硬模板制备多孔石墨相氮化碳的方法
Zhang et al. Natural reed-derived nanostructure SiC/CNOs for photocatalytic hydrogen evolution from water
Zheng et al. High-loaded sub-6 nm Cu catalyst with superior hydrothermal-stability and efficiency for aqueous phase reforming of methanol to hydrogen
Herrer et al. Hydrogen from synthetic biogas via SIP using NiAl2O4 catalyst: Reduction stage
Han et al. High-entropy spinel oxide (Fe0. 2Mg0. 2Mn0. 1Al0. 3Cr0. 2) 3O4 as a highly active and stable redox material for methane driven solar thermochemical water splitting
Yang et al. Flower-like superstructure of boron carbon nitride nanosheets with adjustable band gaps for photocatalytic hydrogen peroxide production
CN112853393A (zh) 一种用于电化学合成氨的四氧化三铁催化剂及其制备方法与应用
CN110350201A (zh) 一种水系电池用轻质高导电石墨烯集流体及其制备方法
CN109876813A (zh) 一种铜锌复合催化剂的制备方法及其应用
CN109261157A (zh) 一种Ni@LaCO3OH复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910161

Country of ref document: EP

Kind code of ref document: A1