WO2023116337A1 - 储液装置及电镀设备 - Google Patents

储液装置及电镀设备 Download PDF

Info

Publication number
WO2023116337A1
WO2023116337A1 PCT/CN2022/134116 CN2022134116W WO2023116337A1 WO 2023116337 A1 WO2023116337 A1 WO 2023116337A1 CN 2022134116 W CN2022134116 W CN 2022134116W WO 2023116337 A1 WO2023116337 A1 WO 2023116337A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
liquid
working
storage tank
side wall
Prior art date
Application number
PCT/CN2022/134116
Other languages
English (en)
French (fr)
Inventor
王晖
王坚
于洁
杨宏超
贾照伟
Original Assignee
盛美半导体设备(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛美半导体设备(上海)股份有限公司 filed Critical 盛美半导体设备(上海)股份有限公司
Publication of WO2023116337A1 publication Critical patent/WO2023116337A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/02Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors

Definitions

  • the invention relates to the field of semiconductor equipment, in particular to a liquid storage device and electroplating equipment.
  • the liquid storage tank is the most basic equipment in the electroplating equipment. Its main function is to install the solution, which is used for galvanizing, copper plating, nickel plating, gold plating, etc. During electroplating, the flow rate and temperature of the solution are important factors affecting the quality of electroplating.
  • the temperature of the solution at each working cycle drain port position will vary depending on the temperature of the liquid storage tank body.
  • the temperature distribution of the internal solution is uneven and different, resulting in different temperatures of the solutions passing into different working chambers, thereby affecting the coating of the wafer.
  • crystallization may occur, resulting in contamination of the working chamber and even contamination of the wafer.
  • the purpose of the present invention is to solve the problem in the prior art that the temperature of the solution supplied by a single liquid storage tank to different working chambers is different. Therefore, the present invention provides a liquid storage device and electroplating equipment, which has the advantage that the temperatures of the solutions supplied by a single liquid storage tank to different working chambers tend to be equal.
  • an embodiment of the present invention provides a liquid storage device, which includes a liquid storage tank body, and the liquid storage tank body includes a plurality of working cycle liquid outlets for supplying liquid to a plurality of working chambers and for The heated solution is passed into the heat cycle liquid injection port in the liquid storage tank body, and the two side walls of the liquid storage tank body are provided with a working cycle liquid discharge port, and the side wall connecting the two side walls is provided with a heat cycle
  • the liquid injection port is close to or located in the middle of the length of the side wall.
  • the liquid storage device also includes a deflector.
  • the deflector is arranged in the liquid storage tank body.
  • the deflector communicates with the thermal cycle liquid injection port.
  • the solution entering from the thermal cycle liquid injection port passes through the deflector into the liquid storage tank body. Inside, and flow to each working cycle drain.
  • the liquid storage tank body includes a top and a bottom, and a first side wall connecting the top and the bottom and sequentially connected along the circumference of the liquid storage tank body, the second side wall, the third side wall and the fourth side wall, the first side wall is opposite to the third side wall, and the second side wall is opposite to the fourth side wall;
  • the liquid storage device also includes a cooling coil, which is located in the liquid storage tank body and fixed at the bottom to exchange heat with the solution in the liquid storage tank body.
  • another embodiment of the present invention provides a liquid storage device, the first side wall and the third side wall are provided with a working cycle liquid outlet, and the thermal cycle liquid injection port is provided on the second side wall, and near or at the middle of the length of the second side wall.
  • another embodiment of the present invention provides a liquid storage device, where the thermal cycle liquid injection port is close to the middle of the length of the second side wall, and the end of the guide member away from the thermal cycle liquid injection port faces the fourth side wall.
  • the side wall extends to form an outlet for the solution to flow out.
  • another embodiment of the present invention provides a liquid storage device, at least one diversion opening is opened on the side wall of the flow guide, and the solution in the flow guide is passed into the body of the liquid storage tank through the diversion opening.
  • another embodiment of the present invention provides a liquid storage device, the heat circulation liquid injection port is located at the middle position of the length of the second side wall, and the cooling coil is fixed at the center position of the bottom, and the flow guide The end of the component away from the thermal cycle liquid injection port extends upward to form an upper outlet, and the upper outlet is located on the inside of the cooling coil;
  • one end of the guide member away from the thermal cycle liquid injection port extends upwards and downwards to form an upper outlet and a lower outlet, and the upper outlet and the lower outlet are located inside the cooling coil.
  • another embodiment of the present invention provides a liquid storage device, the first side wall and the third side wall are provided with a working cycle liquid outlet, and the thermal cycle liquid injection port is located at the top and located at the top At the center position of , the end of the deflector away from the thermal cycle liquid injection port extends to the bottom to form a lower outlet; wherein,
  • the cooling coil is fixed at the center of the bottom, and the end of the flow guide away from the heat cycle liquid injection port is located inside the cooling coil.
  • the cooling coil includes a coil body, a base, and a plurality of supports vertically arranged on the base.
  • the plurality of supports are arranged at intervals along the circumference of the base.
  • a plurality of installation holes are evenly arranged at intervals along the height direction of each bracket, and the coil body is in a spiral shape and is clamped in the plurality of installation holes.
  • Another embodiment of the present invention provides a liquid storage device, and each bracket is provided with multiple sets of mounting holes in parallel. .
  • the liquid storage tank body includes three working cycle drain ports, namely the first liquid drain port, the second liquid drain port and the third liquid drain port.
  • the liquid discharge port, the first liquid discharge port and the second liquid discharge port are arranged on the first side wall at intervals, and the third liquid discharge port is provided on the third side wall.
  • another embodiment of the present invention provides a liquid storage device.
  • the body of the liquid storage tank also includes a working cycle liquid injection port and a thermal cycle liquid discharge port.
  • the working cycle liquid injection port is used to make multiple working chambers
  • the outflowing solution is passed into the liquid storage tank body, and the heat circulation outlet is used to make the solution in the liquid storage tank body flow out for heating;
  • the working cycle liquid injection port is located at the top of the liquid storage tank body, and the thermal cycle liquid discharge port is located at the bottom of the liquid storage tank body.
  • Another embodiment of the present invention provides an electroplating device, which includes a liquid storage device, and the liquid storage device adopts the above-mentioned liquid storage device.
  • yet another embodiment of the present invention provides an electroplating equipment, the electroplating equipment also includes a plurality of working chambers and a plurality of working pumps for plating a metal layer on the surface of the substrate, the plurality of working chambers and The plurality of working pumps are connected in one-to-one correspondence, and the plurality of working pumps are connected in one-to-one correspondence with the plurality of working cycle liquid outlets, so as to pass the solution in the liquid storage tank body into the corresponding working chamber.
  • yet another embodiment of the present invention provides an electroplating equipment, when the liquid storage tank body includes three working cycle drain ports, which are respectively the first drain port, the second drain port and the third row liquid port, and the liquid storage tank body also includes a working cycle liquid injection port and a thermal cycle liquid discharge port,
  • the multiple working chambers include a first working chamber, a second working chamber and a third working chamber, and the multiple working pumps include a first working pump, a second working pump and a third working pump;
  • the first working pump and the first working chamber are sequentially connected between the first liquid discharge port and the working cycle liquid injection port to form a first working cycle loop;
  • the second working pump and the second working chamber are sequentially connected between the second liquid discharge port and the working cycle liquid injection port to form a second working cycle loop;
  • the third working pump and the third working chamber are sequentially connected between the third liquid discharge port and the working cycle liquid injection port to form a third working cycle loop.
  • yet another embodiment of the present invention provides an electroplating equipment, the electroplating equipment also includes a heat circulation pump and a heating device, and the heat circulation pump and the heating device are sequentially connected to the heat circulation liquid injection port and the heat circulation liquid discharge port between to form a thermal cycle.
  • liquid storage device and electroplating equipment of the present invention have the following advantages:
  • a liquid storage tank body includes a plurality of working cycle drains, by making the thermal cycle liquid injection port close to or at the middle of the length of the side wall, and providing a guide at the thermal cycle liquid injection port
  • the solution temperature and solution flow rate in the liquid storage tank body can be evenly distributed, and the solution temperature and solution temperature at each working cycle liquid outlet
  • the solution flow rate tends to be equal, and the solution temperature and solution flow rate from each working cycle outlet to the corresponding working chamber also tend to be equal, which can not only avoid the impact on the coating of the substrate in the working chamber, but also avoid passing through
  • the temperature of the solution entering each working chamber is inconsistent with each other, resulting in the situation that the temperature of the solution in one of the working chambers is too low.
  • Fig. 1 is a schematic diagram of the three-dimensional structure of the liquid storage device provided in Example 1 of the present invention; wherein, the body of the liquid storage tank is shown in a transparent structure to show the schematic structure of its internal flow guide;
  • Fig. 2 is a schematic perspective view of the three-dimensional structure of the liquid storage device provided by Embodiment 1 of the present invention
  • FIG. 3 is a schematic perspective view of the three-dimensional structure of the liquid storage device provided by Embodiment 1 of the present invention from another perspective;
  • Embodiment 4 is a schematic structural view of the liquid storage device provided in Embodiment 1 of the present invention in a top view;
  • Fig. 5 is a schematic diagram of the local structure when the flow guide of the liquid storage device provided by Embodiment 1 of the present invention has a diversion port;
  • Fig. 6 is a schematic diagram of the local structure when the flow guide of the liquid storage device provided by Embodiment 1 of the present invention has four diversion ports;
  • FIG. 7 is a schematic perspective view of the three-dimensional structure of the liquid storage device provided by Embodiment 1 of the present invention; wherein, the body of the liquid storage tank is shown in a transparent structure to show the schematic structure of its internal flow guides and cooling coils;
  • FIG. 8 is a schematic perspective view of the three-dimensional structure of the cooling coil of the liquid storage device provided in Embodiment 1 of the present invention.
  • Fig. 9 is a schematic perspective view of the three-dimensional structure of the liquid storage device provided by Embodiment 2 of the present invention; wherein, the body of the liquid storage tank is shown in a transparent structure to show the schematic structure of its internal flow guide and coil body;
  • FIG. 10 is a schematic structural view of the liquid storage device provided in Embodiment 2 of the present invention in a top view;
  • Fig. 11 is a schematic perspective view of the three-dimensional structure of the liquid storage device provided by Embodiment 3 of the present invention; wherein, the body of the liquid storage tank is shown in a transparent structure to show the schematic structure of its internal flow guide and coil body;
  • Figure 12 is a schematic perspective view of the three-dimensional structure of the liquid storage device provided by Embodiment 4 of the present invention; wherein, the body of the liquid storage tank is shown in a transparent structure to show the schematic structure of its internal flow guide and coil body; and
  • Fig. 13 is a schematic diagram of the working principle of the electroplating equipment provided by Embodiment 5 of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the liquid storage device 10 provided by Embodiment 1 of the present invention includes a liquid storage tank body 100, and the liquid storage tank body 100 includes a working cycle liquid injection port 110 and a plurality of working cycle liquid discharge ports, and a plurality of working cycle liquid discharge ports
  • the ports are used to supply liquid to multiple working chambers (such as the first working chamber 310 , the second working chamber 320 and the third working chamber 330 in FIG. 13 ), which are usually used for electroplating the substrate.
  • the working cycle liquid injection port 110 is used to return the solutions flowing out of the multiple working chambers into the liquid storage tank body 100 .
  • the solution in the liquid storage tank body 100 may be a solution for gold plating, zinc plating, copper plating or nickel plating.
  • the liquid storage tank body 100 also includes a thermal cycle liquid injection port 130 and a thermal cycle liquid discharge port 140.
  • the solution in the liquid storage tank body 100 flows out from the thermal cycle liquid discharge port 140. After being heated, it passes through the thermal cycle liquid injection port 130. into the reservoir body 100.
  • Both side walls of the liquid storage tank body 100 are provided with work cycle drains to make full use of the space of the liquid storage tank body 100 .
  • a thermal cycle liquid injection port 130 is provided on the side wall connected to the opposite two side walls, and the thermal cycle liquid injection port 130 is close to or located in the middle of the length of the side wall.
  • the liquid storage device 10 also includes a flow guide 200, which is arranged in the liquid storage tank body 100, and the flow guide 200 communicates with the thermal cycle liquid injection port 130, and the solution entering from the thermal cycle liquid injection port 130 passes through the flow guide
  • the member 200 leads into the reservoir body 100 and flows to each working cycle drain.
  • the flow guide 200 is hollow and has a channel for the solution to flow through.
  • the heated solution enters from the thermal cycle liquid injection port 130 and passes into the liquid storage tank body 100 through the flow guide 200
  • the temperature distribution of the solution in the liquid storage tank body 100 can be evenly distributed, and the temperature of the solution at the liquid outlet of each working cycle tends to be equal, so the temperature of the solution passing into different working chambers from the liquid outlet of each working cycle is also will tend to be equal, so as to avoid the impact on the plating layer of the substrate due to different solution temperatures.
  • the liquid storage device 10 since the temperature distribution of the solution in the liquid storage tank body 100 is uniform, the temperature of the solution at the liquid outlet of each working cycle tends to be equal, and the temperature of the solution passing into a certain working chamber is not too low to cause crystallization. problems, avoid contamination of the working chamber and substrate. Therefore, the liquid storage device 10 has the advantage of making the temperatures of the solutions passing into different working chambers tend to be equal.
  • the flow velocity distribution of the solution in the liquid storage tank body 100 can also be made uniform, and each working cycle liquid outlet The solution flow rate tends to be equal, so as to prevent the solution flow rate at the working cycle drain on one side of the reservoir body 100 from being higher than that at the working cycle drain on the other side, thereby affecting the plating quality. Therefore, the liquid storage device 10 not only has the advantage of making the temperatures of the solutions passing into different working chambers tend to be equal, but also has the advantage of making the speeds of the solutions passing into different working chambers tend to be equal.
  • the reservoir body 100 includes a top 105 and a bottom that are opposite, and a first side wall 101 and a second side wall 102 that connect the top 105 and the bottom and are sequentially connected along the circumference of the reservoir body 100 , the third side wall 103 and the fourth side wall 104 , the first side wall 101 is opposite to the third side wall 103 , and the second side wall 102 is opposite to the fourth side wall 104 .
  • the first side wall 101 and the third side wall 103 are opposite in the width direction W of the liquid storage tank body 100
  • the second side wall 102 and the fourth side wall 104 are in the length direction of the liquid storage tank body 100 Relative on L.
  • the working cycle liquid injection port 110 is located at the top 105 of the liquid storage tank body 100
  • the thermal cycle liquid discharge port 140 is located at the bottom of the liquid storage tank body 100 .
  • the liquid storage tank body 100 includes three working cycle drains, the three working cycle drains are respectively the first drain 121, the second drain 122 and the third drain 123, the first drain 121
  • the second liquid discharge port 122 is spaced apart from the first side wall 101
  • the third liquid discharge port 123 is disposed on the third side wall 103 .
  • the heat cycle liquid injection port 130 is arranged on the second side wall 102 and is close to the middle position of the length of the second side wall 102. Outlet 202 where the solution flows out. Wherein, the length direction of the second side wall 102 is also the length direction L of the reservoir body 100 .
  • the first liquid outlet 121 , the second liquid outlet 122 , the third liquid outlet 123 and the thermal cycle liquid injection port 130 are all close to the bottom of the liquid storage tank body 100 .
  • the liquid storage tank body 100 with three working cycle drains can meet the requirements of supplying three working chambers.
  • the third liquid discharge port 123 is set at On the opposite side of the first liquid discharge port 121 and the second liquid discharge port 122, that is, the third liquid discharge port 123 is located on the third side wall 103, and the heated solution is passed into the storage tank from the heat cycle liquid injection port 130 through the flow guide 200.
  • the solution temperature and the solution flow rate at the three working cycle liquid discharge ports tend to be equal In this way, under the condition that one liquid storage device 10 supplies three working chambers, the ultimate goal of supplying liquid at a steady flow and temperature for the three working chambers can be met at the same time.
  • cross section of the hollow air guide 200 is circular.
  • the cross section of the hollow air guide 200 may also be square, triangular, rhombus, fan, or polygon with more than four sides.
  • the projection of the end of the deflector 200 away from the heat cycle liquid injection port 130 on the first side wall 101 is located between the first liquid discharge port 121 and the second liquid discharge port 122 , so as to Ensure that the temperature and flow rate of the solution in the regions on both sides of the guide member 200 are close, so that the temperature and flow rate of the solution at the first liquid discharge port 121 , the second liquid discharge port 122 and the third liquid discharge port 123 tend to be equal.
  • the first liquid discharge port 121 and the second liquid discharge port 122 are sequentially arranged at intervals, and the distance between the third liquid discharge port 123 and the second side wall 102 The distance is less than or equal to the distance between the second liquid outlet 122 and the second side wall 102 . That is to say, the first liquid outlet 121 is closer to the second side wall 102 than the second liquid outlet 122 .
  • the temperature of the solution near the fourth side wall 104 may be higher than the temperature of the solution near the second side wall 102.
  • the distance between the two side walls 102 is less than or equal to the distance between the second liquid discharge port 122 and the second side wall 102, which can avoid the inconsistent temperature of the solution at the third liquid discharge port 123 and the second liquid discharge port 122 .
  • At least one diversion opening 210 is opened on the side wall of the deflector 200 , and the solution in the deflector 200 enters the liquid storage tank body 100 through the diversion opening 210 . That is to say, the solution passing into the flow guide 200 not only enters the liquid storage tank body 100 from the outlet 202 of the flow guide 200 , but also enters the liquid storage tank body 100 from the diversion port 210 .
  • the side wall of the deflector 200 is provided with four diversion ports 210, and the four diversion ports 210 are evenly arranged, and the solution in the deflector 200 enters the liquid storage tank body 100 through the four diversion ports 210.
  • the four flow openings 210 may be arranged on the same side of the air guide 200 , or may be arranged alternately on different sides of the air guide 200 .
  • the side wall of the flow guiding member 200 can be selected according to actual needs whether to provide the diversion ports 210 , and to select the number of the diversion ports 210 .
  • the size of the split port 210 can be set according to actual needs.
  • the solution entering from the thermal cycle injection port 130 is the supply solution
  • the supply temperature of the supply solution is a variable, such as the temperature of the supply solution when it is initially heated and the temperature of the thermal cycle during stable operation. Therefore, this In the embodiment, the value of the supply temperature is not limited, and the actual supply temperature is determined according to the actual demand.
  • the liquid storage device 10 further includes a cooling coil 700 , and the cooling coil 700 is located in the liquid storage tank body 100 and fixed at the bottom.
  • the cooling coil 700 is used to cool the solution entering the liquid storage tank body 100 to balance the temperature of the solution.
  • the liquid storage device 10 further includes a temperature sensor 800 installed on the top 105 of the liquid storage tank body 100 for detecting the temperature of the solution in the liquid storage tank body 100 .
  • the installation position and quantity of the temperature sensors 800 and the sensor types of the temperature sensors 800 may be determined according to specific actual conditions, which are not limited in this embodiment.
  • the cooling coil 700 includes a coil body 710, a base 720, and a plurality of brackets 730 vertically arranged on the base 720.
  • the plurality of brackets 730 are arranged at intervals along the circumference of the base 720, and the plurality of brackets 730 are evenly spaced along the height direction H of the bracket 730.
  • a plurality of installation holes 731 are provided, and the coil body 710 is in a spiral shape, and is clamped in the plurality of installation holes 731 .
  • the coil body 710 is set upright, the number of mounting holes 731 is the same as the number of circles of the coil body 710, and the centers of the mounting holes 731 on each bracket 730 are located on the same straight line .
  • each bracket 730 is provided with a plurality of sets of mounting holes 731 in parallel to fix coiled pipe bodies 710 of different diameters.
  • there are four brackets 730 and each bracket 730 is provided with two sets of multiple installation holes 731 .
  • beams 750 are also provided between two adjacent brackets 730 of the four brackets 730, and support beams can also be bridged between any two beams 750 to ensure that the four brackets 730 are all vertically arranged, and at the same time play a role of reinforcement. effect.
  • FIG. 9 and FIG. 10 respectively show only the coil body 710 of the cooling coil (see the cooling coil 700 shown in FIG. 8 ).
  • the difference between the liquid storage device 10 provided in Embodiment 2 of the present invention and the liquid storage device 10 provided in Embodiment 1 is that the heat cycle liquid injection port 130 is located in the middle of the length of the second side wall 102, and the cooling plate The tube is fixed at the center of the bottom.
  • the end of the deflector 200A away from the thermal cycle liquid injection port 130 extends upwards to form an upper outlet 203, and the upper outlet 203 is located inside the coil body 710 of the cooling coil, so that after the heated solution flows out from the upper outlet 203, it first enters The inner side of the coil body 710 to better balance the temperature of the solution.
  • the thermal cycle liquid injection port 130 is centrally set in the length direction of the second side wall 102, and the cooling coil is fixed at the center of the bottom, and the upper outlet 203 of the deflector 200A is placed on the coil body 710, so that the distances between the upper outlet 203 of the flow guide 200A and the first liquid discharge port 121, the second liquid discharge port 122 and the third liquid discharge port 123 are close to the same, and the second liquid discharge port 123 is achieved.
  • the solution temperature and solution flow rate at the first liquid discharge port 121 , the second liquid discharge port 122 and the third liquid discharge port 123 are all close to the same effect.
  • FIG. 11 only shows the coil body 710 of the cooling coil (see cooling coil 700 shown in FIG. 8 ).
  • the difference between the liquid storage device 10 provided in Embodiment 3 of the present invention and the liquid storage device 10 provided in Embodiment 2 is that the end of the flow guide 200B away from the thermal cycle liquid injection port 130 extends upward and downward respectively to form an upper outlet. 204 and the lower outlet 205, the deflector 200B is in the shape of a "T".
  • the heated solution enters the flow guide 200B from the thermal circulation injection port 130, flows out from the upper outlet 204 and the lower outlet 205, and exchanges heat with the coil body 710, so as to better balance the temperature of the solution and at the same time make the second
  • the solution temperature and solution flow rate at the first liquid discharge port 121 , the second liquid discharge port 122 and the third liquid discharge port 123 tend to be equal.
  • FIG. 12 only shows the coil body 710 of the cooling coil (see cooling coil 700 shown in FIG. 8 ).
  • the liquid storage device 10 provided in Embodiment 4 of the present invention differs in that the thermal cycle liquid injection port 130 is arranged on the top 105 and is located at the center of the top 105, and the flow guide The end of the member 200C away from the heat cycle liquid injection port 130 extends to the bottom to form a lower outlet 206 .
  • the cooling coil is fixed at the center of the bottom, and the lower outlet 206 of the air guide 200C is located inside the coil body 710 of the cooling coil.
  • the heated solution enters the flow guide 200C from the heat circulation injection port 130 at the center of the top 105, flows out from the lower outlet 206, and exchanges heat with the coil body 710, so as to better balance the temperature of the solution, and at the same time Make the solution temperature and solution flow rate at the first liquid discharge port 121 , the second liquid discharge port 122 and the third liquid discharge port 123 approach to be equal.
  • the electroplating equipment 1000 provided in Embodiment 5 of the present invention adopts the liquid storage device 10 in Embodiment 1. It should be noted that the positions of the thermal cycle liquid injection port 130, the first liquid discharge port 121, the second liquid discharge port 122 and the third liquid discharge port 123 in Fig. 13 are only for illustration and do not represent their actual location.
  • the electroplating equipment 1000 also includes a plurality of working chambers and a plurality of working pumps for plating a metal layer on the surface of the substrate.
  • the liquid outlets are connected one by one, so that the solution in the liquid storage tank body 100 is passed into the corresponding working chamber, and the working chamber is used for electroplating the substrate.
  • the working cycle liquid injection port 110 communicates with multiple working chambers, so that after the substrate is electroplated, the solutions discharged from the multiple working chambers can pass into the liquid storage tank body 100 through the working cycle liquid filling port 110 .
  • the distribution of the solution temperature and solution flow rate in the liquid storage tank body 100 is more uniform Therefore, in the electroplating equipment 1000 with the liquid storage device 10, the solution temperature and solution flow rate in the corresponding working chamber from each working cycle drain port of the liquid storage tank body 100 also tend to be equal, so that the electroplating equipment 1000 satisfies the effect of one liquid storage device 10 simultaneously supplying liquid with stable flow and temperature for multiple working chambers.
  • the temperature distribution of the solution in the liquid storage tank body 100 is uniform, the temperature of the solution at the outlet of each working cycle tends to be equal, and the temperature of the solution passing into a certain working chamber of the electroplating equipment 1000 will not be too low. resulting in crystallization.
  • the liquid storage tank body 100 of the liquid storage device 10 in Embodiment 1 includes three working cycle drains.
  • the multiple working chambers of the electroplating equipment 1000 include a first working chamber 310, a second working chamber 320 and The third working chamber 330
  • the plurality of working pumps include a first working pump 410 , a second working pump 420 and a third working pump 430 .
  • the first working pump 410 and the first working chamber 310 are sequentially connected between the first liquid discharge port 121 and the working cycle liquid injection port 110 to form a first working cycle loop, and the liquid storage device 10 is fed by the first working pump 410
  • the first working chamber 310 supplies liquid.
  • the second working pump 420 and the second working chamber 320 are sequentially connected between the second liquid discharge port 122 and the working cycle liquid injection port 110 to form a second working cycle loop, and the liquid storage device 10 is fed by the second working pump 420
  • the second working chamber 320 is supplied with liquid.
  • the third working pump 430 and the third working chamber 330 are sequentially connected between the third liquid discharge port 123 and the working cycle liquid injection port 110 to form a third working cycle circuit, and the liquid storage device 10 is fed by the third working pump 430
  • the third working chamber 330 supplies liquid.
  • there is one working cycle liquid injection port 110 and the main pipeline connected to the working cycle liquid injection port 110 is connected with three branch pipelines, and each branch pipeline is connected to a working chamber.
  • the electroplating equipment 1000 with the liquid storage device 10 because the liquid storage device 10 can make the solution temperature distribution in the liquid storage tank body 100 uniform, the solution temperature and solution flow rate at the outlet of each working cycle tend to Therefore, the solution temperature and solution flow rate of the multiple working pumps of the electroplating equipment 1000 tend to be equal, and then the solution temperature and solution flow rate passed into different working chambers tend to be equal.
  • the electroplating equipment 1000 also includes a heating device 500 and a thermal circulation pump 600 , and the thermal circulation pump 600 and the heating device 500 are sequentially connected between the thermal circulation liquid injection port 130 and the thermal circulation liquid discharge port 140 to form a thermal circulation circuit.
  • the thermal cycle pump 600 sucks out the lower temperature solution from the liquid storage tank body 100 through the thermal cycle liquid outlet 140, and the lower temperature solution is heated by the external heating device 500, and then pumped back to the liquid storage tank through the thermal cycle liquid injection port 130 Inside the main body 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开了一种储液装置及电镀设备,储液装置包括储液槽本体,储液槽本体包括用于向多个工作腔室供液的多个工作循环排液口以及用于使加热后的溶液通入储液槽本体内的热循环注液口,储液槽本体相对的两侧壁上均设有工作循环排液口,连接两侧壁的一侧壁设有热循环注液口,且热循环注液口靠近该一侧壁的长度的中间位置处,储液装置还包括导流件,导流件设置于储液槽本体内,导流件与热循环注液口连通,从热循环注液口进入的溶液通过导流件通入储液槽本体内,并流向各个工作循环排液口处。本发明具有单个储液装置通入不同工作腔室的溶液的温度和流速趋于相等的优点。

Description

储液装置及电镀设备 技术领域
本发明涉及半导体设备领域,尤其涉及一种储液装置及电镀设备。
背景技术
储液槽是电镀设备中最基础的设备,主要功能是装置溶液,用于镀锌、镀铜、镀镍、镀金等。进行电镀时,溶液的流动速度、温度是影响电镀质量的重要因素。
现有的单腔晶圆电镀设备,为了节省成本,会有一个储液槽供给不同电镀工作腔室的情况,储液槽通过不同的工作循环排液口向不同的电镀工作腔室提供溶液。
当储液槽本体包括多个工作循环排液口,且多个工作循环排液口设置在储液槽本体的不同位置时,各个工作循环排液口位置处的溶液温度会因为储液槽本体内溶液温度分布不均匀而有所差异,导致通入不同工作腔室的溶液的温度不同,从而对晶圆的镀层产生影响。而且,若通入工作腔室内的溶液的温度过低,可能会产生结晶现象,导致污染该工作腔室,甚至污染晶圆。
发明内容
本发明的目的在于解决现有技术中单个储液槽向不同工作腔室供应的溶液的温度不同的问题。因此,本发明提供一种储液装置及电镀设备,具有单个储液槽向不同工作腔室供应的溶液的温度趋于相等的优点。
为解决上述问题,本发明的实施方式提供了一种储液装置,包括储液槽本体,储液槽本体包括用于向多个工作腔室供液的多个工作循环排液口以及用于使加热后的溶液通入储液槽本体内的热循环注液口,储液槽本体相对的两侧壁上均设有工作循环排液口,连接两侧壁的一侧壁设有热循环注液口,且热循环注液口靠近或位于一侧壁的长度的中间位置处。
储液装置还包括导流件,导流件设置于储液槽本体内,导流件与热循环注液口连通,从热循环注液口进入的溶液通过导流件通入储液槽本体内,并流向 各个工作循环排液口处。
进一步地,本发明的另一种实施方式提供了一种储液装置,储液槽本体包括顶部和底部,以及连接顶部和底部并沿储液槽本体的周向依次连接的第一侧壁、第二侧壁、第三侧壁和第四侧壁,第一侧壁与第三侧壁相对,第二侧壁与第四侧壁相对;
储液装置还包括冷却盘管,冷却盘管位于储液槽本体内,并固定于底部,以与储液槽本体内的溶液进行热交换。
进一步地,本发明的另一种实施方式提供了一种储液装置,第一侧壁和第三侧壁上均设有工作循环排液口,热循环注液口设于第二侧壁,并靠近或位于第二侧壁的长度的中间位置处。
进一步地,本发明的另一种实施方式提供了一种储液装置,热循环注液口靠近第二侧壁的长度的中间位置处,导流件远离热循环注液口的一端朝向第四侧壁延伸形成用于溶液流出的出口。
进一步地,本发明的另一种实施方式提供了一种储液装置,导流件的侧壁开设有至少一个分流口,导流件内的溶液通过分流口通入储液槽本体内。
进一步地,本发明的另一种实施方式提供了一种储液装置,热循环注液口位于第二侧壁的长度的中间位置处,且冷却盘管固定于底部的中心位置处,导流件远离热循环注液口的一端向上延伸形成上出口,且上出口位于冷却盘管的内侧;
或者,导流件远离热循环注液口的一端向上下分别延伸形成上出口和下出口,且上出口和下出口位于冷却盘管的内侧。
进一步地,本发明的另一种实施方式提供了一种储液装置,第一侧壁和第三侧壁上均设有工作循环排液口,热循环注液口设于顶部,并位于顶部的中心位置处,导流件远离热循环注液口的一端向底部延伸形成下出口;其中,
冷却盘管固定于底部的中心位置处,导流件远离热循环注液口的一端位于冷却盘管的内侧。
进一步地,本发明的另一种实施方式提供了一种储液装置,冷却盘管包括盘管本体、底座以及垂直设置于底座的多个支架,多个支架沿底座的周向间隔设置,多个支架沿支架的高度方向均间隔设置有多个安装孔,盘管本体呈螺旋 状,并卡设在多个安装孔内。
进一步地,本发明的另一种实施方式提供了一种储液装置,每个支架并列设置有多组多个安装孔。。
进一步地,本发明的另一种实施方式提供了一种均温储液装置,储液槽本体包括三个工作循环排液口,分别为第一排液口、第二排液口和第三排液口,第一排液口和第二排液口间隔设于第一侧壁,第三排液口设于第三侧壁。
进一步地,本发明的另一种实施方式提供了一种储液装置,储液槽本体还包括工作循环注液口和热循环排液口,工作循环注液口用于使多个工作腔室流出的溶液通入储液槽本体内,热循环排液口用于使储液槽本体内的溶液流出,以进行加热;其中,
工作循环注液口位于储液槽本体的顶部,热循环排液口位于储液槽本体的底部。
本发明的另一种实施方式提供了一种电镀设备,包括储液装置,该储液装置采用上述的储液装置。
进一步地,本发明的又另一种实施方式提供了一种电镀设备,电镀设备还包括多个用于在基板表面镀覆金属层的工作腔室和多个工作泵,多个工作腔室与多个工作泵一一对应连接,多个工作泵与多个工作循环排液口一一对应连接,以将储液槽本体内的溶液通入对应的工作腔室内。
进一步地,本发明的又另一种实施方式提供了一种电镀设备,当储液槽本体包括三个工作循环排液口,分别为第一排液口、第二排液口和第三排液口,且储液槽本体还包括工作循环注液口和热循环排液口时,
多个工作腔室包括第一工作腔室、第二工作腔室和第三工作腔室,多个工作泵包括第一工作泵、第二工作泵和第三工作泵;
第一工作泵和第一工作腔室依次连通于第一排液口和工作循环注液口之间,以形成第一工作循环回路;
第二工作泵和第二工作腔室依次连通于第二排液口和工作循环注液口之间,以形成第二工作循环回路;
第三工作泵和第三工作腔室依次连通于第三排液口和工作循环注液口之间,以形成第三工作循环回路。
进一步地,本发明的又另一种实施方式提供了一种电镀设备,电镀设备还包括热循环泵和加热装置,热循环泵和加热装置依次连通于热循环注液口和热循环排液口之间,以形成热循环回路。
如上,本发明的储液装置及电镀设备具有以下优点:
在一个储液槽本体包括多个工作循环排液口的情况下,通过使热循环注液口靠近或位于一侧壁的长度的中间位置处,并且,在热循环注液口处设置导流件,当加热后的溶液从热循环注液口进入,并经导流件流出后,能够使得储液槽本体内的溶液温度和溶液流速分布均匀,各个工作循环排液口处的溶液温度和溶液流速均趋于相等,从各个工作循环排液口通向对应工作腔室的溶液温度和溶液流速也因此趋于相等,不仅能避免对工作腔室中基板的镀层产生影响,还能避免通入各个工作腔室内的溶液温度互相不一致,而造成其中一个工作腔室内的溶液温度过低的情况。
本发明其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本发明说明书中的记载变的显而易见。
附图概述
图1为本发明实施例1提供的储液装置的立体结构示意图;其中,储液槽本体以透明结构示意,以显示其内部导流件的示意结构;
图2为本发明实施例1提供的储液装置另一视角的立体结构示意图;
图3为本发明实施例1提供的储液装置另一视角的立体结构示意图;
图4为本发明实施例1提供的储液装置在俯视状态下的结构示意图;
图5为本发明实施例1提供的储液装置的导流件开设一个分流口时的局部结构示意图;
图6为本发明实施例1提供的储液装置的导流件开设四个分流口时的局部结构示意图;
图7为本发明实施例1提供的储液装置另一视角的立体结构示意图;其中,储液槽本体以透明结构示意,以显示其内部导流件和冷却盘管的示意结构;
图8为本发明实施例1提供的储液装置的冷却盘管的立体结构示意图;
图9为本发明实施例2提供的储液装置的立体结构示意图;其中,储液槽 本体以透明结构示意,以显示其内部导流件和盘管本体的示意结构;
图10为本发明实施例2提供的储液装置在俯视状态下的结构示意图;
图11为本发明实施例3提供的储液装置的立体结构示意图;其中,储液槽本体以透明结构示意,以显示其内部导流件和盘管本体的示意结构;
图12为本发明实施例4提供的储液装置的立体结构示意图;其中,储液槽本体以透明结构示意,以显示其内部导流件和盘管本体的示意结构;以及
图13为本发明实施例5提供的电镀设备的工作原理示意图。
本发明的较佳实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三” 仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
实施例1:
参见图1,本发明实施例1提供的储液装置10,包括储液槽本体100,储液槽本体100包括工作循环注液口110和多个工作循环排液口,多个工作循环排液口用于向多个工作腔室(如图13中的第一工作腔室310、第二工作腔室320和第三工作腔室330)供液,工作腔室通常用来对基板进行电镀。工作循环注液口110用于使多个工作腔室流出的溶液回流至储液槽本体100内。本实施方式中,储液槽本体100内的溶液可以是用于镀金、镀锌、镀铜或镀镍等的溶液。
储液槽本体100还包括热循环注液口130和热循环排液口140,储液槽本体100内的溶液从热循环排液口140流出,经过加热后,通过热循环注液口130通入储液槽本体100内。
储液槽本体100相对的两侧壁上均设有工作循环排液口,以充分利用储液槽本体100的空间位置。与该相对的两侧壁相连的一侧壁上设有热循环注液口130,且热循环注液口130靠近或位于该一侧壁的长度的中间位置处。
储液装置10还包括导流件200,导流件200设置于储液槽本体100内,导流件200与热循环注液口130连通,从热循环注液口130进入的溶液通过导流件200通入储液槽本体100内,并流向各个工作循环排液口。其中,导流件200为中空的,具有溶液流通的通道。
本实施方式中,在一个储液槽本体100包括多个工作循环排液口的情况下,加热后的溶液从热循环注液口130进入,并经导流件200通入储液槽本体100内,能够达到使储液槽本体100内溶液温度分布均匀,各个工作循环排液口处 的溶液温度趋于相等的效果,因此从各个工作循环排液口通入不同工作腔室的溶液温度也将趋于相等,从而避免因溶液温度不同对基板的镀层产生影响。而且,由于储液槽本体100内的溶液温度分布均匀,各个工作循环排液口处的溶液温度趋于相等,不会出现通入某一工作腔室的溶液的温度过低而产生结晶现象的问题,避免污染该工作腔室及基板。因此,该储液装置10具有使通入不同工作腔室的溶液的温度趋于相等的优点。
另外,通过将热循环注液口130设于与相对的两侧壁相连的一侧壁的中间位置处,还能够使得储液槽本体100内的溶液流速分布均匀,各个工作循环排液口处的溶液流速趋于相等,避免储液槽本体100一侧的工作循环排液口处的溶液流速比另一侧的工作循环排液口处的溶液流速高,而影响电镀质量。故,该储液装置10具有使通入不同工作腔室的溶液的温度趋于相等的优点的同时,还具有使通入不同工作腔室的溶液的速度趋于相等的优点。
结合图1至图3,储液槽本体100包括相对的顶部105和底部,以及连接顶部105和底部并沿储液槽本体100的周向依次连接的第一侧壁101、第二侧壁102、第三侧壁103和第四侧壁104,第一侧壁101与第三侧壁103相对,第二侧壁102与第四侧壁104相对。在本实施方式中,第一侧壁101与第三侧壁103在储液槽本体100的宽度方向W上相对,第二侧壁102与第四侧壁104在储液槽本体100的长度方向L上相对。
工作循环注液口110位于储液槽本体100的顶部105,热循环排液口140位于储液槽本体100的底部。
储液槽本体100包括三个工作循环排液口,三个工作循环排液口分别为第一排液口121、第二排液口122和第三排液口123,第一排液口121和第二排液口122间隔设置于第一侧壁101,第三排液口123设置于第三侧壁103。
热循环注液口130设于第二侧壁102,并靠近第二侧壁102的长度的中间位置处,导流件200远离热循环注液口130的一端朝向第四侧壁104延伸形成用于溶液流出的出口202。其中,第二侧壁102的长度方向也为储液槽本体100的长度方向L。第一排液口121、第二排液口122、第三排液口123以及热循环注液口130均靠近储液槽本体100的底部。
本实施方式中,具有三个工作循环排液口的储液槽本体100,可满足供给 三个工作腔室的需求,考虑储液槽本体100的空间因素,将第三排液口123设置在第一排液口121和第二排液口122的对面,即第三排液口123设于第三侧壁103,加热后的溶液从热循环注液口130经导流件200通入储液槽本体100内,直至流向第一排液口121、第二排液口122和第三排液口123处,使这三个工作循环排液口处的溶液温度和溶液流速均趋于相等,以此实现在一个储液装置10供给三个工作腔室的情况下,同时满足为三个工作腔室进行稳流、稳温供液的最终目的。
另外,中空的导流件200的横截面呈圆形,在可替代的实施方式中,中空的导流件200的横截面也可以呈方形、三角形、菱形、扇形或四条边以上的多边形等。
参见图4,在本实施方式中,导流件200远离热循环注液口130的一端在第一侧壁101上的投影位于第一排液口121和第二排液口122之间,以保证导流件200两侧区域的溶液温度、流速相接近,进而使第一排液口121、第二排液口122和第三排液口123处的溶液温度和溶液流速趋于相等。
其次,沿从第二侧壁102到第四侧壁104的方向,第一排液口121和第二排液口122依次间隔设置,第三排液口123与第二侧壁102之间的距离小于或等于第二排液口122与第二侧壁102之间的距离。也就是说,第一排液口121相较于第二排液口122更加靠近第二侧壁102。
由于加热后的溶液从导流件200流出后,有可能会使第四侧壁104附近的溶液温度高于第二侧壁102附近的溶液温度,故,通过设置第三排液口123与第二侧壁102之间的距离小于或等于第二排液口122与第二侧壁102之间的距离,可避免第三排液口123和第二排液口122处的溶液温度不一致的情况。
当导流件200的侧壁上无分流口210时,从热循环注液口130通入的溶液全部由导流件200的出口202进入储液槽本体100内。
可选地,导流件200的侧壁开设有至少一个分流口210,导流件200内的溶液通过分流口210进入储液槽本体100内。也就是说,通入导流件200内的溶液既从导流件200的出口202进入储液槽本体100内,也从分流口210进入储液槽本体100内。
可选地,导流件200的侧壁开设有四个分流口210,四个分流口210均匀 布置,导流件200内的溶液通过四个分流口210进入储液槽本体100内。四个分流口210可以设置在导流件200的同一侧,也可以交错设置在导流件200的不同侧。
综上,本发明提供的储液装置10,其导流件200的侧壁可按实际需求选择是否设置分流口210,以及选择设置分流口210的个数。分流口210的尺寸可根据实际需求设定。
此外,从热循环注液口130进入的溶液即为供给溶液,供给溶液的供给温度为变量,比如供给溶液经初始加热时的温度与稳定工作时的热循环温度会有所不同,因此,本实施方式中对供给温度的数值不作限定,实际供给温度根据实际需求而定。
结合图4、图7和图8,储液装置10还包括冷却盘管700,冷却盘管700位于储液槽本体100内,并固定于底部。冷却盘管700用于冷却进入储液槽本体100内的溶液,起到平衡溶液温度的作用。
储液装置10还包括温度传感器800,温度传感器800安装于储液槽本体100的顶部105,用于检测储液槽本体100内的溶液温度。其中,温度传感器800的安装位置、安装数量以及温度传感器800的传感器类型可根据具体实际情况确定,本实施方式对此不作限定。冷却盘管700包括盘管本体710、底座720以及垂直设置于底座720的多个支架730,多个支架730沿底座720的周向间隔设置,多个支架730沿支架730的高度方向H均间隔设置有多个安装孔731,盘管本体710呈螺旋状,并卡设在多个安装孔731内。在本实施方式中,盘管本体710竖立设置,多个安装孔731的个数与盘管本体710盘旋的环数相同,并且每个支架730上的多个安装孔731的中心位于同一条直线。
参见图8,每个支架730并列设置有多组多个安装孔731,以固定不同直径的盘管本体710。本实施方式中,支架730具有四个,每个支架730设置有两组多个安装孔731。
另外,四个支架730的相邻两个支架730之间还设有横梁750,任意两个横梁750之间还可桥接支撑梁,以确保四个支架730均为垂直设置,同时起到加固的作用。
实施例2
结合图9和图10,图9和图10分别仅示出了冷却盘管(参见图8所示的冷却盘管700)的盘管本体710。本发明实施例2提供的储液装置10,与实施例1提供的储液装置10相比,区别在于,热循环注液口130位于第二侧壁102的长度的中间位置处,且冷却盘管固定于底部的中心位置处。
导流件200A远离热循环注液口130的一端向上延伸形成上出口203,上出口203位于冷却盘管的盘管本体710的内侧,以使加热后的溶液从上出口203流出后,首先进入盘管本体710的内侧,以此更好地平衡溶液温度。
本实施例中,热循环注液口130在第二侧壁102的长度方向居中设置,同时冷却盘管固定于底部的中心位置处,并且使导流件200A的上出口203置于盘管本体710的内侧,以此达到导流件200A的上出口203分别与第一排液口121、第二排液口122和第三排液口123之间的距离趋近于相等的目的,实现第一排液口121、第二排液口122和第三排液口123处的溶液温度、溶液流速均趋近于相等的效果。
实施例3
参见图11,图11仅示出了冷却盘管(参见图8所示的冷却盘管700)的盘管本体710。本发明实施例3提供的储液装置10,与实施例2提供的储液装置10相比,区别在于,导流件200B远离热循环注液口130的一端向上和向下分别延伸形成上出口204和下出口205,导流件200B呈“T”字型。
加热后的溶液从热循环注液口130进入导流件200B内,从上出口204和下出口205流出,并与盘管本体710进行热交换,以此更好地平衡溶液温度,同时使第一排液口121、第二排液口122和第三排液口123处的溶液温度、溶液流速均趋近于相等。
实施例4
参见图12,图12仅示出了冷却盘管(参见图8所示的冷却盘管700)的盘管本体710。本发明实施例4提供的储液装置10,与实施例1提供的储液装置10相比,区别在于,热循环注液口130设于顶部105,并位于顶部105的中心位置处,导流件200C远离热循环注液口130的一端向底部延伸形成下出口206。
冷却盘管固定于底部的中心位置处,导流件200C的下出口206位于冷却 盘管的盘管本体710的内侧。加热后的溶液从顶部105中心位置处的热循环注液口130进入导流件200C内,从下出口206流出,并与盘管本体710进行热交换,以此更好地平衡溶液温度,同时使第一排液口121、第二排液口122和第三排液口123处的溶液温度、溶液流速均趋近于相等。
实施例5
参见图13,本发明实施例5提供的电镀设备1000,采用实施例1中的储液装置10。需要特别说明的是,图13中的热循环注液口130、第一排液口121、第二排液口122和第三排液口123所处的位置仅为示意,并不代表它们的实际位置。
电镀设备1000还包括多个用于在基板表面镀覆金属层的工作腔室和多个工作泵,多个工作腔室与多个工作泵一一对应连接,多个工作泵与多个工作循环排液口一一对应连接,以将储液槽本体100内的溶液通入对应的工作腔室内,工作腔室用来对基板进行电镀。工作循环注液口110与多个工作腔室连通,以使在基板完成电镀后,多个工作腔室排出的溶液能通过工作循环注液口110通入储液槽本体100内。
本实施方式中,由于对实施例1中储液装置的热循环注液口130和多个工作循环排液口的布局进行优化设计,得到储液槽本体100内溶液温度、溶液流速分布更均匀的效果,因此,具有该储液装置10的电镀设备1000,从储液槽本体100各个工作循环排液口通入对应的工作腔室内的溶液温度、溶液流速也趋于相等,使该电镀设备1000满足一个储液装置10同时为多个工作腔室进行稳流、稳温供液的效果。而且,由于储液槽本体100内的溶液温度分布均匀,各个工作循环排液口处的溶液温度趋于相等,不会出现通入电镀设备1000的某一工作腔室的溶液的温度过低,而产生结晶现象。
实施例1中储液装置10的储液槽本体100包括三个工作循环排液口,对应地,电镀设备1000的多个工作腔室包括第一工作腔室310、第二工作腔室320和第三工作腔室330,多个工作泵包括第一工作泵410、第二工作泵420和第三工作泵430。
第一工作泵410和第一工作腔室310依次连通于第一排液口121和工作循环注液口110之间,以形成第一工作循环回路,储液装置10通过第一工作泵 410给第一工作腔室310供液。
第二工作泵420和第二工作腔室320依次连通于第二排液口122和工作循环注液口110之间,以形成第二工作循环回路,储液装置10通过第二工作泵420给第二工作腔室320供液。
第三工作泵430和第三工作腔室330依次连通于第三排液口123和工作循环注液口110之间,以形成第三工作循环回路,储液装置10通过第三工作泵430给第三工作腔室330供液。本实施方式中,工作循环注液口110具有一个,连接工作循环注液口110的总管路上连通有三个分支管路,每个分支管路连接一个工作腔室。
本实施方式中,具有该储液装置10的电镀设备1000,因该储液装置10能够使得储液槽本体100内的溶液温度分布均匀,各个工作循环排液口处的溶液温度、溶液流速趋于相等,故电镀设备1000的多个工作泵的溶液温度、溶液流速趋于相等,进而通入不同工作腔室的溶液温度、溶液流速趋于相等。
电镀设备1000还包括加热装置500和热循环泵600,热循环泵600和加热装置500依次连通于热循环注液口130和热循环排液口140之间,以形成热循环回路。热循环泵600通过热循环排液口140从储液槽本体100内吸出较低温的溶液,较低温的溶液经过外置的加热装置500加热后,通过热循环注液口130泵回储液槽本体100内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种储液装置,包括储液槽本体,所述储液槽本体包括用于向多个工作腔室供液的多个工作循环排液口以及用于使加热后的溶液通入所述储液槽本体内的热循环注液口,其特征在于,所述储液槽本体相对的两侧壁上均设有所述工作循环排液口,连接所述两侧壁的一侧壁设有所述热循环注液口,且所述热循环注液口靠近或位于所述一侧壁的长度的中间位置处;
    所述储液装置还包括导流件,所述导流件设置于所述储液槽本体内,所述导流件与所述热循环注液口连通,从所述热循环注液口进入的溶液通过所述导流件通入所述储液槽本体内,并流向各个所述工作循环排液口处。
  2. 如权利要求1所述的储液装置,其特征在于,所述储液槽本体包括顶部和底部,以及连接所述顶部和所述底部并沿所述储液槽本体的周向依次连接的第一侧壁、第二侧壁、第三侧壁和第四侧壁,所述第一侧壁与所述第三侧壁相对,所述第二侧壁与所述第四侧壁相对;
    所述储液装置还包括冷却盘管,所述冷却盘管位于所述储液槽本体内,并固定于所述底部,以与所述储液槽本体内的溶液进行热交换。
  3. 如权利要求2所述的储液装置,其特征在于,所述第一侧壁和所述第三侧壁上均设有所述工作循环排液口,所述热循环注液口设于所述第二侧壁,并靠近或位于所述第二侧壁的长度的中间位置处。
  4. 如权利要求3所述的储液装置,其特征在于,所述热循环注液口靠近所述第二侧壁的长度的中间位置处,所述导流件远离所述热循环注液口的一端朝向所述第四侧壁延伸形成用于溶液流出的出口。
  5. 如权利要求4所述的储液装置,其特征在于,所述导流件的侧壁开设有至少一个分流口,所述导流件内的溶液通过所述分流口通入所述储液槽本体内。
  6. 如权利要求3所述的储液装置,其特征在于,所述热循环注液口位于所述第二侧壁的长度的中间位置处,且所述冷却盘管固定于所述底部的中心位置处;
    所述导流件远离所述热循环注液口的一端向上延伸形成上出口,且所述上出口位于所述冷却盘管的内侧;
    或者,所述导流件远离所述热循环注液口的一端向上下分别延伸形成上出口和下出口,且所述上出口和下出口位于所述冷却盘管的内侧。
  7. 如权利要求2所述的储液装置,其特征在于,所述第一侧壁和所述第三侧壁上均设有所述工作循环排液口,所述热循环注液口设于所述顶部,并位于所述顶部的中心位置处,所述导流件远离所述热循环注液口的一端向所述底部延伸形成下出口;其中,
    所述冷却盘管固定于所述底部的中心位置处,所述导流件远离所述热循环注液口的一端位于所述冷却盘管的内侧。
  8. 如权利要求2~7任一项所述的储液装置,其特征在于,所述冷却盘管包括盘管本体、底座以及垂直设置于所述底座的多个支架,所述多个支架沿所述底座的周向间隔设置,所述多个支架沿支架的高度方向均间隔设置有多个安装孔,所述盘管本体呈螺旋状,并卡设在所述多个安装孔内。
  9. 如权利要求8所述的储液装置,其特征在于,每个所述支架并列设置有多组所述多个安装孔。
  10. 如权利要求3~7任一项所述的储液装置,其特征在于,所述储液槽本体包括三个所述工作循环排液口,分别为第一排液口、第二排液口和第三排液口,所述第一排液口和所述第二排液口间隔设于所述第一侧壁,所述第三排液口设于所述第三侧壁。
  11. 如权利要求10所述的储液装置,其特征在于,所述储液槽本体还包括工作循环注液口和热循环排液口,所述工作循环注液口用于使多个工作腔室流出的溶 液通入所述储液槽本体内,所述热循环排液口用于使储液槽本体内的溶液流出,以进行加热;其中,
    所述工作循环注液口位于所述储液槽本体的顶部,所述热循环排液口位于所述储液槽本体的底部。
  12. 一种电镀设备,包括储液装置,其特征在于,所述储液装置采用如权利要求1~11任一项所述的储液装置。
  13. 如权利要求12所述的电镀设备,其特征在于,所述电镀设备还包括用于在基板表面镀覆金属层的多个工作腔室和多个工作泵,所述多个工作腔室与所述多个工作泵一一对应连接,所述多个工作泵与所述多个工作循环排液口一一对应连接,以将所述储液槽本体内的溶液通入对应的所述工作腔室内。
  14. 如权利要求13所述的电镀设备,其特征在于,当所述储液槽本体包括三个所述工作循环排液口,分别为所述第一排液口、所述第二排液口和所述第三排液口,且所述储液槽本体还包括所述工作循环注液口和所述热循环排液口时,
    所述多个工作腔室包括第一工作腔室、第二工作腔室和第三工作腔室,所述多个工作泵包括第一工作泵、第二工作泵和第三工作泵;
    所述第一工作泵和所述第一工作腔室依次连通于所述第一排液口和所述工作循环注液口之间,以形成第一工作循环回路;
    所述第二工作泵和所述第二工作腔室依次连通于所述第二排液口和所述工作循环注液口之间,以形成第二工作循环回路;
    所述第三工作泵和所述第三工作腔室依次连通于所述第三排液口和所述工作循环注液口之间,以形成第三工作循环回路。
  15. 如权利要求14所述的电镀设备,其特征在于,所述电镀设备还包括热循环泵和加热装置,所述热循环泵和所述加热装置依次连通于所述热循环注液口和所述热循环排液口之间,以形成热循环回路。
PCT/CN2022/134116 2021-12-21 2022-11-24 储液装置及电镀设备 WO2023116337A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111572890.XA CN116288607A (zh) 2021-12-21 2021-12-21 储液装置及电镀设备
CN202111572890.X 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116337A1 true WO2023116337A1 (zh) 2023-06-29

Family

ID=86836383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134116 WO2023116337A1 (zh) 2021-12-21 2022-11-24 储液装置及电镀设备

Country Status (3)

Country Link
CN (1) CN116288607A (zh)
TW (1) TW202342830A (zh)
WO (1) WO2023116337A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312532A (en) * 1993-01-15 1994-05-17 International Business Machines Corporation Multi-compartment eletroplating system
JPH11350148A (ja) * 1998-06-09 1999-12-21 Hitachi Cable Ltd 無電解めっき装置
JP2007270313A (ja) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The 電気めっき装置
CN104695002A (zh) * 2013-12-05 2015-06-10 应用材料公司 闭合回路电解液分析器
CN205171009U (zh) * 2015-11-30 2016-04-20 北大方正集团有限公司 一种药水循环装置及具有该装置的沉铜系统、电镀系统
CN107893247A (zh) * 2017-12-11 2018-04-10 淮海工学院 一种高压自动循环供液系统
CN209759583U (zh) * 2018-12-11 2019-12-10 华夏易能(广东)新能源科技有限公司 一种镀膜装置
CN113122902A (zh) * 2019-12-31 2021-07-16 盛美半导体设备(上海)股份有限公司 电镀设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312532A (en) * 1993-01-15 1994-05-17 International Business Machines Corporation Multi-compartment eletroplating system
JPH11350148A (ja) * 1998-06-09 1999-12-21 Hitachi Cable Ltd 無電解めっき装置
JP2007270313A (ja) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The 電気めっき装置
CN104695002A (zh) * 2013-12-05 2015-06-10 应用材料公司 闭合回路电解液分析器
CN205171009U (zh) * 2015-11-30 2016-04-20 北大方正集团有限公司 一种药水循环装置及具有该装置的沉铜系统、电镀系统
CN107893247A (zh) * 2017-12-11 2018-04-10 淮海工学院 一种高压自动循环供液系统
CN209759583U (zh) * 2018-12-11 2019-12-10 华夏易能(广东)新能源科技有限公司 一种镀膜装置
CN113122902A (zh) * 2019-12-31 2021-07-16 盛美半导体设备(上海)股份有限公司 电镀设备

Also Published As

Publication number Publication date
CN116288607A (zh) 2023-06-23
TW202342830A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2019061722A1 (zh) 一种服务器机柜和服务器机柜组
JP3879032B2 (ja) 冷却装置
JP5934845B2 (ja) 熱交換器の構造
KR20010033394A (ko) 기판 온도 제어 장치
JP3958400B2 (ja) 分配ヘッダー
US20190281727A1 (en) Cooling apparatus
WO2023116337A1 (zh) 储液装置及电镀设备
US20150114560A1 (en) Substrate processing apparatus and liquid supply apparatus
CN105651077A (zh) 改进的热交换装置
JP2004278935A (ja) 蒸発器
TW202340545A (zh) 電鍍設備
TWI780361B (zh) 氣化裝置
KR20110124935A (ko) 샤워헤드 및 이를 포함하는 반도체 기판 가공 장치
CN207589380U (zh) 一种服务器机柜和服务器机柜组
KR20230127232A (ko) 인라인 히터
CN109041530A (zh) 分布式服务器液冷系统
CN218568991U (zh) 电池模组及电池包
CN115341197B (zh) 喷淋冷却一体板及用于金属有机化学气相沉积的喷淋系统
CN85104195A (zh) 换热器
CN105803497B (zh) 新型电镀装置
JP2021148206A (ja) オープンラック式の気化装置
CN112984902A (zh) 一种卧式风冷冷柜
CN220327275U (zh) 一种蒸盘及具有蒸功能的烹饪设备
KR101969498B1 (ko) 서포터가 구비된 열교환기
CN113028857A (zh) 热交换器和包括该热交换器的热交换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909652

Country of ref document: EP

Kind code of ref document: A1