WO2023116160A1 - 用于校准晶圆对准的方法及系统 - Google Patents

用于校准晶圆对准的方法及系统 Download PDF

Info

Publication number
WO2023116160A1
WO2023116160A1 PCT/CN2022/126488 CN2022126488W WO2023116160A1 WO 2023116160 A1 WO2023116160 A1 WO 2023116160A1 CN 2022126488 W CN2022126488 W CN 2022126488W WO 2023116160 A1 WO2023116160 A1 WO 2023116160A1
Authority
WO
WIPO (PCT)
Prior art keywords
microscope
plate
focal length
logo
identification
Prior art date
Application number
PCT/CN2022/126488
Other languages
English (en)
French (fr)
Inventor
王晨
马双义
Original Assignee
拓荆键科(海宁)半导体设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓荆键科(海宁)半导体设备有限公司 filed Critical 拓荆键科(海宁)半导体设备有限公司
Publication of WO2023116160A1 publication Critical patent/WO2023116160A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Definitions

  • the present application relates generally to the field of semiconductor processing equipment, and more particularly, to a method and system for calibrating wafer alignment.
  • Wafer bonding technology is to combine two homogeneous or heterogeneous wafers under the action of external force to generate molecular force between them to combine the two wafers into a whole.
  • wafer bonding technology its alignment accuracy is an important parameter.
  • the integration of chips is getting higher and higher, and the requirements for the alignment accuracy of wafer bonding are gradually increasing.
  • the upper and lower microscopes collect images of the alignment marks prepared on the surfaces of the two wafers, and the wafers are aligned by analyzing the images collected by the two sets of microscopes.
  • the systematic error caused by the upper and lower microscopes is inherent, which will reduce the wafer alignment accuracy.
  • the current method mainly uses thin film for confocal calibration, but this method does not compensate for the thin film thickness, which will reduce the confocal calibration effect.
  • the present application provides a method and system for calibrating wafer alignment, which uses a transparent identification plate for confocal calibration, and compensates the thickness of the transparent identification plate, which can reduce the systematic error caused by the upper and lower microscopes and improve Confocal calibration effect of upper and lower microscopes.
  • the present application provides a method for calibrating wafer alignment, comprising: providing a first identification plate having a first surface and a second surface opposite to the first surface, and having a first An identification, the first identification is located on the first surface of the first identification plate; a second identification plate is provided, which has a first surface and a second surface opposite to the first surface, and has a second identification , the second logo is located on the first surface of the second logo plate; the first surface of the first logo plate is placed face to face with the first surface of the second logo plate; a microscope is provided to make the The microscope focuses on the first mark above the second surface of the first mark plate, and obtains the first focal length Z1; takes out the first mark plate, and makes the microscope focus on the first mark of the second mark plate. focusing on the second mark above the surface, and obtaining a second focal length Z2; and determining a compensation parameter ⁇ Z, which is the second focal length Z2 minus the first focal length Z1.
  • placing the first surface of the first signage plate and the first surface of the second signage plate face to face includes: providing a platform; and placing the second signage plate placed on the platform so that the second mark is exposed on the focusing path of the microscope.
  • the method further includes: moving the platform on the focusing path of the microscope so that the microscope focuses on the first mark or the second mark.
  • the first identification plate includes transparent glass or quartz.
  • the method further includes performing the following operations after determining the compensation parameter ⁇ Z: providing a first microscope, and making the first microscope observe the The first mark is focused, and the focal length Z3 is obtained; and the first microscope is compensated, so that the compensated focal length ZC is the focal length Z3 plus the compensation parameter ⁇ Z.
  • the method further includes: providing a second microscope, enabling the second microscope to focus on the first marker under the first surface of the first marker plate.
  • the present application also provides a system for calibrating wafer alignment, which includes: a processor; and a compensation measurement device, which includes: a first identification plate with a first identification; a second identification a plate having a second marker, wherein the first marker and the second marker are placed face-to-face; and a microscope, under the control of the processor, on a focusing path over the first marker plate for the first marker
  • the first logo is focused to obtain a first focal length Z1
  • the second logo is focused on the focusing path above the second logo plate to obtain a second focal length Z2, wherein the processor is based on the The first focal length Z1 and the second focal length Z2 determine a compensation parameter ⁇ Z, which is the second focal length Z2 minus the first focal length Z1.
  • the first identification plate has a first surface and a second surface opposite to the first surface, wherein the first identification is located on the first surface of the first identification plate, and
  • the second identification plate has a first surface and a second surface opposite to the first surface, wherein the second identification is located on the first surface of the second identification plate.
  • the system further includes a platform that moves on the focusing path under the control of the processor.
  • the system further includes a wafer alignment calibration device, and the wafer alignment calibration device includes: a first microscope, under the control of the processor, focus on the first mark to obtain the focal length Z3, wherein the processor determines the compensation focal length ZC of the first microscope based on the focal length Z3 and the compensation parameter ⁇ Z, which is the focal length Z3 plus The compensation parameter ⁇ Z mentioned above.
  • the wafer alignment calibration device further includes: a second microscope, under the control of the processor, focuses on the first mark under the first mark plate.
  • FIG. 1 is a schematic diagram of a system for calibrating wafer alignment according to some embodiments of the present application.
  • FIG. 1 are schematic diagrams of operations performed by the compensation measurement device in FIG. 1 according to some embodiments of the present application;
  • 3A, 3B and 3C are schematic diagrams of operations performed by the wafer alignment calibration apparatus in FIG. 1 according to some embodiments of the present application;
  • FIG. 4 is a flowchart of a method for calibrating wafer alignment according to some embodiments of the present application.
  • FIG. 1 is a schematic diagram of a system 100 for calibrating wafer alignment according to some embodiments of the present application.
  • the system 100 includes a compensation measurement device 101 , a wafer alignment calibration device 102 and a processor 103 .
  • the compensation measurement device 101 performs operations related to compensation, and generates data Z1 and Z2 related to compensation.
  • the processor 103 determines a compensation parameter ⁇ Z based on the data Z1 and Z2 related to compensation.
  • the wafer alignment and calibration device 102 performs calibration-related operations based on the compensation parameter ⁇ Z, and generates data ZC and ZL of the heights of the upper and lower microscopes after calibration.
  • the processor 103 has related hardware and computer programs to support the operation of the compensation measurement device 101 and the wafer alignment calibration device 102 .
  • the components and operation of the compensation measurement device 101 will be discussed in detail below with reference to FIGS. 2A and 2B , while the components and operation of the wafer alignment calibration device 102 will be discussed in detail below with reference to FIGS. 3A , 3B and 3C. discuss.
  • FIG. 2A and 2B are schematic diagrams of operations performed by the compensation measurement device 101 in FIG. 1 according to some embodiments of the present application.
  • the compensation measurement device 101 includes a microscope 10 , a first identification plate 30 and a second identification plate 50 .
  • the microscope 10 has an objective lens 102 .
  • the first logo plate 30 has a first surface 30a and a second surface 30b opposite to the first surface 30a, and has a first logo M1 on the first surface 30a.
  • the first identification plate 30 includes transparent glass or quartz.
  • the first identification plate 30 is rectangular in shape, its length and width are about 10 to 20 mm, and its thickness is about 1 mm.
  • the first identification plate 30 is circular, with a diameter of about 10 to 20 mm and a thickness of about 1 mm.
  • the second logo plate 50 has a first surface 50a and a second surface 50b opposite to the first surface 50a, and has a second logo M2 on the first surface 50a.
  • the first marking plate 30 and the second marking plate 50 are placed on the movable platform 70 in such a manner that the first marking M1 and the second marking M2 face each other, wherein the first marking M1 and the second marking M2 may not necessarily be aligned with each other.
  • the movable platform 70 and the microscope 10 can move relatively on the focusing path P of the microscope 10 so that the first mark M1 and the second mark M2 enter the field of view of the microscope 10 to facilitate the focus of the microscope 10 .
  • the movable platform 70 under the control of the processor 103, the movable platform 70 is moved in the direction of the focusing path P, so that the microscope 10 is positioned above the second surface 30b of the first identification plate 30 on the first identification plate 30.
  • the first marker M1 at 30 is focused, and a first focal length Z1 is obtained, which is the distance between the objective lens 102 of the microscope 10 and the first marker M1 .
  • the first identification plate 30 is taken out from the movable platform 70 .
  • the movable platform 70 is moved in the direction of the focusing path P, so that the microscope 10 focuses on the second mark M2 above the first surface 50a of the second mark plate 50, And obtain the second focal length Z2, which is the distance between the objective lens 102 of the microscope 10 and the second mark M2 after the first mark plate 30 is taken out.
  • ⁇ Z is the compensation amount for the thickness of the first marker plate 30 when the first marker plate 30 is used for confocal calibration. This offset will be used to calibrate the wafer alignment.
  • 3A , 3B and 3C are schematic diagrams of operations performed by the wafer alignment calibration apparatus 102 in FIG. 1 according to some embodiments of the present application.
  • the wafer alignment device 102 includes a first microscope 81 , a second microscope 82 and a first identification plate 30 .
  • the first microscope 81 has a first objective lens 812
  • the second microscope 82 has a second objective lens 822 .
  • the first microscope 81 focus on the first mark M1 above the second surface 30b of the first mark plate 30 to obtain the focal length Z3, which is the first objective lens 812 of the first microscope 81 and the first mark M1.
  • a distance from the mark M1, wherein the focus path P1 of the first microscope 81 is determined by the first mark M1 and the center of the first objective lens 812 of the first microscope 81 .
  • the first marker plate 30 is moved relative to the first microscope 81 in the direction of the focusing path P1, so that the first marker M1 of the first marker plate 30 is aligned with the first microscope
  • the distance of the first objective lens 812 of 81 is the compensation focal length ZC.
  • the second microscope 82 is made to focus on the first mark M1 under the first surface 30a of the first mark plate 30 to obtain a focal length ZL, which is the second microscope 82 The distance between the second objective lens 822 and the first mark M1.
  • the focal length ZC and focal length ZL can be used to align the upper and lower wafers during wafer bonding.
  • the microscope 10 in FIG. 2A and FIG. 2B and the first microscope 81 and the second microscope 82 in FIG. 3A , FIG. 3B and FIG. 3C have the same magnification.
  • FIG. 4 is a flowchart of a method for calibrating wafer alignment according to some embodiments of the present application.
  • a first identification plate is provided, which has a first identification.
  • a second logo plate having a second logo is provided.
  • the first marker and the second marker are placed face-to-face.
  • a microscope is provided, the microscope is brought into focus on the first marking on the focus path, and a first focus distance Z1 is achieved.
  • the microscope is brought into focus on the second marker on the focus path, and a second focus distance Z2 is achieved.
  • a compensation parameter ⁇ Z is determined, which is the second focal length Z2 minus the first focal length Z1.
  • a first microscope is provided, the first microscope is focused on the first logo above the first logo plate, and a focal length Z3 is obtained.
  • the first microscope is compensated so that the compensated focal length ZC is the focal length Z3 plus the compensation parameter ⁇ Z.
  • a second microscope is provided, and the second microscope is focused on the first logo under the first logo plate to obtain a focal length ZL.
  • the focal length ZC and focal length ZL can be used for the alignment of the upper and lower wafers during wafer bonding.
  • the confocal calibration is not compensated for the thickness of the film, resulting in a reduced effect of the confocal calibration.
  • the method and system for calibrating wafer alignment of the present application uses a transparent marking plate for confocal calibration, and compensates the thickness of the transparent marking plate, which can reduce the systematic error caused by the upper and lower microscopes, and improve the accuracy of the upper and lower microscopes. Microscope confocal calibration effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本申请涉及一种用于校准晶圆对准的方法。在本申请的一实施例中,所述用于校准晶圆对准的方法包括:提供第一标识板,其具有第一表面及与所述第一表面相对的第二表面,且具有第一标识,所述第一标识位于所述第一标识板的第一表面上;提供第二标识板,其具有第一表面及与所述第一表面相对的第二表面,且具有第二标识,所述第二标识位于所述第二标识板的第一表面上;将所述第一标识板的第一表面与所述第二标识板的第一表面面对面放置;提供显微镜,使所述显微镜在所述第一标识板的第二表面上方对所述第一标识聚焦,并取得第一焦距Z1;取出所述第一标识板,使所述显微镜在所述第二标识板的第一表面上方对所述第二标识聚焦,并取得第二焦距Z2;及确定补偿参数ΔZ,其为所述第二焦距Z2减去所述第一焦距Z1。

Description

用于校准晶圆对准的方法及系统 技术领域
本申请大体上涉及半导体加工设备领域,且更具体来说,涉及一种用于校准晶圆对准的方法及系统。
背景技术
晶圆键合技术是将两片同质或异质晶圆,在外力的作用下使它们之间产生分子力将两片晶圆结合为一个整体。晶圆键合技术中,其对准精度是一个重要参数。
随着芯片技术的发展,芯片的集成度越来越高,对于晶圆键合对准精度的要求也逐渐提高。晶圆对准过程是由上、下两个显微镜分别对两片晶圆表面制备的对准标识进行图像采集,通过对两组显微镜采集的图片进行分析从而将晶圆进行对准。其中上、下显微镜带来的系统误差是固有存在的,会降低晶圆对准精度。当前的方法主要采用薄膜来进行共焦校准,但该方法不对薄膜厚度进行补偿,这会降低共焦校准效果。
发明内容
本申请提供了一种用于校准晶圆对准的方法及系统,其采用透明标识板来进行共焦校准,且对透明标识板的厚度进行补偿,可以减少上下显微镜带来的系统误差,提高上、下显微镜共焦校准效果。
在一方面,本申请提供了一种用于校准晶圆对准的方法,其包括:提供第一标识板,其具有第一表面及与所述第一表面相对的第二表面,且具有第一标识,所述第一标识位于所述第一标识板的第一表面上;提供第二标识板,其具有第一表面及与所述第一表面相对的第二表面,且具有第二标识,所述第二标识位于所述第二标识板的第一表面上;将所述第一标识板的第一表面与所述第二标识板的第一表面面对面放置;提供显微镜,使所述显微镜在所述第一标识板的第二表面上方对所述第一标识聚焦,并取得第一焦距Z1;取出所述第一标识板,使所述显微镜在所述第二标识板的第一表面上方对所述第二标识聚焦,并取得第二焦距Z2;及确定补偿参数ΔZ,其为所述第二 焦距Z2减去所述第一焦距Z1。
根据本申请的实施例,在所述方法中,将所述第一标识板的第一表面与所述第二标识板的第一表面面对面放置包括:提供平台;及将所述第二标识板放置于所述平台上,使所述第二标识暴露于所述显微镜的聚焦路径上。
根据本申请的实施例,所述方法进一步包括:将所述平台在所述显微镜的所述聚焦路径上移动以使所述显微镜对所述第一标识或所述第二标识聚焦。
根据本申请的实施例,所述第一标识板包含透明玻璃或石英。
根据本申请的实施例,所述方法进一步包括在确定所述补偿参数ΔZ后执行以下操作:提供第一显微镜,使所述第一显微镜在所述第一标识板的第二表面上方对所述第一标识聚焦,并取得焦距Z3;及对所述第一显微镜进行补偿,使其补偿后的焦距ZC为所述焦距Z3加上所述补偿参数ΔZ。
根据本申请的实施例,所述方法进一步包括:提供第二显微镜,使所述第二显微镜在所述第一标识板的第一表面下方对所述第一标识聚焦。
在另一方面,本申请还提供了一种用于校准晶圆对准的系统,其包括:处理器;及补偿测量装置,其包括:第一标识板,其具有第一标识;第二标识板,其具有第二标识,其中所述第一标识与所述第二标识面对面放置;及显微镜,其在所述处理器的控制下,于聚焦路径上在所述第一标识板上方对所述第一标识聚焦以取得第一焦距Z1,之后于所述聚焦路径上在所述第二标识板上方对所述第二标识聚焦以取得第二焦距Z2,其中,所述处理器基于所述第一焦距Z1与所述第二焦距Z2,确定补偿参数ΔZ,其为所述第二焦距Z2减去所述第一焦距Z1。
根据本申请的实施例,所述第一标识板具有第一表面及与所述第一表面相对的第二表面,其中所述第一标识位于所述第一标识板的第一表面上,且所述第二标识板具有第一表面及与所述第一表面相对的第二表面,其中所述第二标识位于所述第二标识板的第一表面上。
根据本申请的实施例,所述系统进一步包括平台,所述平台在所述处理器的控制下于所述聚焦路径上移动。
根据本申请的实施例,所述系统进一步包括晶圆对准校准装置,所述晶圆对准校准装置包括:第一显微镜,其在所述处理器的控制下,于所述第一标识板的上方对所述第一标识聚焦以取得焦距Z3,其中,所述处理器基于所述焦距Z3与所述补偿参数ΔZ,确定所述第一显微镜的补偿焦距ZC,其为所述焦距Z3加上所述补偿参数ΔZ。
根据本申请的实施例,所述晶圆对准校准装置进一步包括:第二显微镜,其在所 述处理器的控制下,于所述第一标识板的下方对所述第一标识聚焦。
在以下附图及描述中阐述本申请的一或多个实例的细节。其他特征、目标及优势将根据所述描述及附图以及权利要求书而显而易见。
附图说明
本说明书中的公开内容提及且包含以下各图:
图1是根据本申请的一些实施例的用于校准晶圆对准的系统的示意图;
图2A与图2B是根据本申请的一些实施例,由图1中的补偿测量装置所执行的操作的示意图;
图3A、图3B与图3C是根据本申请的一些实施例,由图1中的晶圆对准校准装置所执行的操作的示意图;
图4是根据本申请的一些实施例的用于校准晶圆对准的方法的流程图。
根据惯例,图示中所说明的各种特征可能并非按比例绘制。因此,为了清晰起见,可任意扩大或减小各种特征的尺寸。图示中所说明的各部件的形状仅为示例性形状,并非限定部件的实际形状。另外,为了清楚起见,可简化图示中所说明的实施方案。因此,图示可能并未说明给定设备或装置的全部组件。最后,可贯穿说明书和图示使用相同参考标号来表示相同特征。
具体实施方式
为更好地理解本发明的精神,以下结合本发明的部分实施例对其作进一步说明。
本说明书内使用的词汇“在一实施例”或“根据一实施例”并不必要参照相同具体实施例,且本说明书内使用的“在其他(一些/某些)实施例”或“根据其他(一些/某些)实施例”并不必要参照不同的具体实施例。其目的在于例如主张的主题包括全部或部分范例具体实施例的组合。本文所指“上”和“下”的意义并不限于图式所直接呈现的关系,其应包含具有明确对应关系的描述,例如“左”和“右”,或者是“上”和“下”的相反。本文所称的“连接”应理解为涵盖“直接连接”以及“经由一或多个中间部件连接”。本说明书中所使用的各种部件的名称仅出于说明的目的,并不具备限定作用,不同厂商可使用不同的名称来指代具备相同功能的部件。
以下详细地讨论本发明的各种实施方式。尽管讨论了具体的实施,但是应当理解,这些实施方式仅用于示出的目的。相关领域中的技术人员将认识到,在不偏离本 发明的精神和保护范围的情况下,可以使用其他部件和配置。
图1是根据本申请的一些实施例的用于校准晶圆对准的系统100的示意图。
请参阅图1,系统100包括补偿测量装置101、晶圆对准校准装置102及处理器103。补偿测量装置101在处理器103控制下,进行与补偿相关的操作,并产生与补偿相关的数据Z1及Z2。处理器103基于与补偿相关的数据Z1及Z2,确定补偿参数ΔZ。晶圆对准校准装置102则在处理器103控制下,基于补偿参数ΔZ,进行与校准相关的操作,并产生校准后上、下显微镜在高度上的数据ZC及ZL。处理器103具有相关的硬件与电脑程序,用以支持补偿测量装置101及晶圆对准校准装置102的操作。补偿测量装置101的组件及操作将于下文中参阅图2A与图2B详细地讨论,而晶圆对准校准装置102的组件及操作则将于下文中参阅图3A、图3B与图3C详细地讨论。
图2A与图2B是根据本申请的一些实施例,由图1中的补偿测量装置101所执行的操作的示意图。
请参阅图2A,补偿测量装置101包括显微镜10、第一标识板30及第二标识板50。显微镜10具有物镜102。第一标识板30具有第一表面30a及与第一表面30a相对的第二表面30b,且具有位于第一表面30a上的第一标识M1。根据本申请的实施例,第一标识板30包含透明玻璃或石英。根据本申请的一实施例,第一标识板30呈矩形,其长、宽约为10至20毫米,厚度约为1毫米。根据本申请的另一实施例,第一标识板30呈圆形,其直径约为10至20毫米,厚度约为1毫米。第二标识板50具有第一表面50a及与第一表面50a相对的第二表面50b,且具有位于第一表面50a上的第二标识M2。第一标识板30与第二标识板50以第一标识M1与第二标识M2面对面的方式放置于可移动平台70上,其中,第一标识M1与第二标识M2可以不必相互对齐。可移动平台70与显微镜10可以在显微镜10的聚焦路径P上相对移动使第一标识M1与第二标识M2进入显微镜10的视野,以利显微镜10聚焦。
根据本申请的实施例,在处理器103的控制下,使可移动平台70在聚焦路径P的方向上移动,以使显微镜10在第一标识板30的第二表面30b上方对第一标识板30的第一标识M1聚焦,并取得第一焦距Z1,其为显微镜10的物镜102与第一标识M1的距离。之后,自可移动平台70上取出第一标识板30。
请参阅图2B,在处理器103的控制下,使可移动平台70在聚焦路径P的方向上移动,以使显微镜10在第二标识板50的第一表面50a上方对第二标识M2聚焦,并取得第二焦距Z2,其为取出第一标识板30后,显微镜10的物镜102与第二标识M2的距离。
处理器103基于第一焦距Z1及第二焦距Z2,确定补偿参数ΔZ,其为第二焦距Z2减 去第一焦距Z1,亦即ΔZ=Z2-Z1。ΔZ为利用第一标识板30来进行共焦校准时,对第一标识板30的厚度的补偿量。此补偿量将用于校准晶圆对准。
图3A、图3B与图3C是根据本申请的一些实施例,由图1中的晶圆对准校准装置102所执行的操作的示意图。
请参阅图3A,晶圆对准校准装置102包括第一显微镜81、第二显微镜82及第一标识板30。第一显微镜81具有第一物镜812,第二显微镜82具有第二物镜822。在处理器103的控制下,使第一显微镜81于第一标识板30的第二表面30b上方对第一标识M1聚焦,以取得焦距Z3,其为第一显微镜81的第一物镜812与第一标识M1的距离,其中,由第一标识M1与第一显微镜81的第一物镜812的中心确定第一显微镜81的聚焦路径P1。之后,处理器103基于焦距Z3与补偿参数ΔZ,确定第一显微镜81的补偿焦距ZC,其为焦距Z3加上补偿参数ΔZ,亦即ZC=Z3+ΔZ。
请参阅图3B,在处理器103的控制下,使第一标识板30在聚焦路径P1的方向上相对于第一显微镜81移动,以使第一标识板30的第一标识M1与第一显微镜81的第一物镜812的距离为补偿焦距ZC。
之后,请参阅图3C,在处理器103的控制下,使第二显微镜82于第一标识板30的第一表面30a下方对第一标识M1聚焦,以取得焦距ZL,其为第二显微镜82的第二物镜822与第一标识M1的距离。之后,焦距ZC与焦距ZL可用于晶圆键合时上、下两片晶圆的对准。
根据本申请的实施例,图2A与图2B的显微镜10及图3A、图3B与图3C的第一显微镜81及第二显微镜82具有相同的放大倍率。
图4是根据本申请的一些实施例的用于校准晶圆对准的方法的流程图。
请参阅图4,在操作412中,提供第一标识板,其具有第一标识。
在操作414中,提供第二标识板,其具有第二标识。
在操作416中,将第一标识与第二标识面对面放置。
在操作418中,提供显微镜,使显微镜在聚焦路径上对第一标识聚焦,并取得第一焦距Z1。
在操作420中,取出第一标识板。
在操作422中,使显微镜在聚焦路径上对第二标识聚焦,并取得第二焦距Z2。
在操作424中,确定补偿参数ΔZ,其为第二焦距Z2减去第一焦距Z1。
在操作426中,提供第一显微镜,使第一显微镜在第一标识板的上方对第一标识聚焦,并取得焦距Z3。
在操作428中,对第一显微镜进行补偿,使其补偿后的焦距ZC为焦距Z3加上补偿参数ΔZ。
在操作430中,提供第二显微镜,使第二显微镜在第一标识板的下方对第一标识聚焦,以取得焦距ZL。
焦距ZC与焦距ZL可用于晶圆键合时上、下两片晶圆的对准。
相较于当前的方法并未对进行共焦校准的薄膜厚度进行补偿而导致共焦校准效果降低。本申请的用于校准晶圆对准的方法及系统采用透明标识板来进行共焦校准,且对透明标识板的厚度进行补偿,可以减少上、下显微镜带来的系统误差,提高上、下显微镜共焦校准效果。
本文中的描述经提供以使所述领域的技术人员能够进行或使用本发明。所属领域的技术人员将易于显而易见对本发明的各种修改,且本文中所定义的一般原理可应用于其它变化形式而不会脱离本发明的精神或范围。因此,本发明不限于本文所述的实例和设计,而是被赋予与本文所揭示的原理和新颖特征一致的最宽范围。

Claims (13)

  1. 一种用于校准晶圆对准的方法,其包括:
    提供第一标识板,其具有第一表面及与所述第一表面相对的第二表面,且具有第一标识,所述第一标识位于所述第一标识板的第一表面上;
    提供第二标识板,其具有第一表面及与所述第一表面相对的第二表面,且具有第二标识,所述第二标识位于所述第二标识板的第一表面上;
    将所述第一标识板的第一表面与所述第二标识板的第一表面面对面放置;
    提供显微镜,使所述显微镜在所述第一标识板的第二表面上方对所述第一标识聚焦,并取得第一焦距Z1;
    取出所述第一标识板,使所述显微镜在所述第二标识板的第一表面上方对所述第二标识聚焦,并取得第二焦距Z2;及
    确定补偿参数ΔZ,其为所述第二焦距Z2减去所述第一焦距Z1。
  2. 根据权利要求1所述的方法,其中将所述第一标识板的第一表面与所述第二标识板的第一表面面对面放置包括:
    提供平台;及
    将所述第二标识板放置于所述平台上,使所述第二标识暴露于所述显微镜的聚焦路径上。
  3. 根据权利要求2所述的方法,其进一步包括:
    将所述平台在所述显微镜的所述聚焦路径上移动以使所述显微镜对所述第一标识或所述第二标识聚焦。
  4. 根据权利要求1所述的方法,其中所述第一标识板包含透明玻璃或石英。
  5. 根据权利要求1所述的方法,其进一步包括在确定所述补偿参数ΔZ后执行以下操作:
    提供第一显微镜,使所述第一显微镜在所述第一标识板的第二表面上方对所述第一标识聚焦,并取得焦距Z3;及
    对所述第一显微镜进行补偿,使其补偿后的焦距ZC为所述焦距Z3加上所述补偿 参数ΔZ。
  6. 根据权利要求5所述的方法,其进一步包括:
    提供第二显微镜,使所述第二显微镜在所述第一标识板的第一表面下方对所述第一标识聚焦。
  7. 一种用于校准晶圆对准的系统,其包括:
    处理器;及
    补偿测量装置,其包括:
    第一标识板,其具有第一标识;
    第二标识板,其具有第二标识,其中所述第一标识与所述第二标识面对面放置;及
    显微镜,其在所述处理器的控制下,于聚焦路径上在所述第一标识板上方对所述第一标识聚焦以取得第一焦距Z1,之后于所述聚焦路径上在所述第二标识板上方对所述第二标识聚焦以取得第二焦距Z2,
    其中,所述处理器基于所述第一焦距Z1与所述第二焦距Z2,确定补偿参数ΔZ,其为所述第二焦距Z2减去所述第一焦距Z1。
  8. 根据权利要求7所述的系统,其中所述第一标识板具有第一表面及与所述第一表面相对的第二表面,其中所述第一标识位于所述第一标识板的第一表面上,且所述第二标识板具有第一表面及与所述第一表面相对的第二表面,其中所述第二标识位于所述第二标识板的第一表面上。
  9. 根据权利要求7所述的系统,其中所述第一标识板包含透明玻璃或石英。
  10. 根据权利要求7所述的系统,其进一步包括平台,所述平台在所述处理器的控制下于所述聚焦路径上移动。
  11. 根据权利要求7所述的系统,其进一步包括晶圆对准校准装置,所述晶圆对准校准装置包括:
    第一显微镜,其在所述处理器的控制下,于所述第一标识板的上方对所述第一 标识聚焦以取得焦距Z3,
    其中,所述处理器基于所述焦距Z3与所述补偿参数ΔZ,确定所述第一显微镜的补偿焦距ZC,其为所述焦距Z3加上所述补偿参数ΔZ。
  12. 根据权利要求11所述的系统,其中所述晶圆对准校准装置进一步包括:
    第二显微镜,其在所述处理器的控制下,于所述第一标识板的下方对所述第一标识聚焦。
  13. 根据权利要求12所述的系统,其中所述显微镜、所述第一显微镜及所述第二显微镜具有相同的放大倍率。
PCT/CN2022/126488 2021-12-22 2022-10-20 用于校准晶圆对准的方法及系统 WO2023116160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111578785.7 2021-12-22
CN202111578785.7A CN116387220A (zh) 2021-12-22 2021-12-22 用于校准晶圆对准的方法及系统

Publications (1)

Publication Number Publication Date
WO2023116160A1 true WO2023116160A1 (zh) 2023-06-29

Family

ID=86901224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126488 WO2023116160A1 (zh) 2021-12-22 2022-10-20 用于校准晶圆对准的方法及系统

Country Status (3)

Country Link
CN (1) CN116387220A (zh)
TW (1) TW202333284A (zh)
WO (1) WO2023116160A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214692B1 (en) * 1998-01-13 2001-04-10 Erich Thallner Method and apparatus for the aligned joining of disk-shaped semiconductor substrates
WO2010023935A1 (ja) * 2008-08-29 2010-03-04 株式会社ニコン 基板位置合わせ装置、基板位置合わせ方法および積層型半導体の製造方法
CN101779270A (zh) * 2007-08-10 2010-07-14 株式会社尼康 基板贴合装置及基板贴合方法
JP2011216788A (ja) * 2010-04-01 2011-10-27 Nikon Corp 基板貼り合わせ装置および基板貼り合わせ方法
JP2011222659A (ja) * 2010-04-07 2011-11-04 Nikon Corp 基板観察装置およびデバイスの製造方法
WO2018062129A1 (ja) * 2016-09-29 2018-04-05 株式会社新川 半導体装置の製造方法、及び実装装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214692B1 (en) * 1998-01-13 2001-04-10 Erich Thallner Method and apparatus for the aligned joining of disk-shaped semiconductor substrates
CN101779270A (zh) * 2007-08-10 2010-07-14 株式会社尼康 基板贴合装置及基板贴合方法
WO2010023935A1 (ja) * 2008-08-29 2010-03-04 株式会社ニコン 基板位置合わせ装置、基板位置合わせ方法および積層型半導体の製造方法
JP2011216788A (ja) * 2010-04-01 2011-10-27 Nikon Corp 基板貼り合わせ装置および基板貼り合わせ方法
JP2011222659A (ja) * 2010-04-07 2011-11-04 Nikon Corp 基板観察装置およびデバイスの製造方法
WO2018062129A1 (ja) * 2016-09-29 2018-04-05 株式会社新川 半導体装置の製造方法、及び実装装置

Also Published As

Publication number Publication date
TW202333284A (zh) 2023-08-16
CN116387220A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US8139219B2 (en) Apparatus and method for semiconductor wafer alignment
US7417748B2 (en) Method and apparatus for measuring dimensional changes in transparent substrates
US5905266A (en) Charged particle beam system with optical microscope
TW201126638A (en) Device for alignment of two substrates
CN1751378A (zh) 最佳位置检测式的检测方法、对位方法、曝光方法、元器件制造方法及元器件
JPWO2009153926A1 (ja) テンプレートの製造方法、テンプレートの検査方法及び検査装置、ナノインプリント装置、ナノインプリントシステム、並びにデバイス製造方法
JP6502846B2 (ja) 位置合わせ誤差を求めるための装置と方法
EP3761350A1 (en) High-precision bond head positioning method and apparatus
US20100321678A1 (en) Solid immersion lens optics assembly
TW201743400A (zh) 採用雙攝像鏡頭為對位平台上的物件進行對位的方法、顯示面板之基板對位上膠的方法和顯示面板之上下基板的對位方法
WO2023116160A1 (zh) 用于校准晶圆对准的方法及系统
Zandiatashbar et al. High-throughput automatic defect review for 300mm blank wafers with atomic force microscope
JP2008185338A (ja) 微小試料台、その作成方法、微小試料台集合体、および試料ホルダ
US20070035731A1 (en) Direct alignment in mask aligners
JP3936873B2 (ja) 欠陥撮像装置及び撮像方法
KR102629523B1 (ko) 측정 방법 및 측정 장치
JP2004325217A (ja) 搬送装置
TWI730851B (zh) 獲取探針與由晶圓探針台所承托的晶圓之間的距離的方法
TWI717668B (zh) 一種雙面曝光的對準裝置、方法及設備
Lin et al. Optical alignment and compensation control of die bonder for chips containing through-silicon vias
JP2009177166A (ja) 検査装置
JPH09139337A (ja) 荷電ビーム描画装置
JPH0897271A (ja) オートフォーカス方法
TW202338359A (zh) 針位校正片治具以及用於探針卡之探針校正裝置
CN117894728A (zh) 一种晶圆键合对准方法、装置及晶圆键合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909478

Country of ref document: EP

Kind code of ref document: A1