WO2023116112A1 - 风力发电机组的发电机冷却控制方法及装置 - Google Patents

风力发电机组的发电机冷却控制方法及装置 Download PDF

Info

Publication number
WO2023116112A1
WO2023116112A1 PCT/CN2022/122423 CN2022122423W WO2023116112A1 WO 2023116112 A1 WO2023116112 A1 WO 2023116112A1 CN 2022122423 W CN2022122423 W CN 2022122423W WO 2023116112 A1 WO2023116112 A1 WO 2023116112A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
cooling
frequency converter
equipment
control
Prior art date
Application number
PCT/CN2022/122423
Other languages
English (en)
French (fr)
Inventor
陈立权
吕梁年
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to KR1020247000812A priority Critical patent/KR20240018640A/ko
Priority to AU2022419730A priority patent/AU2022419730A1/en
Priority to EP22909430.5A priority patent/EP4345287A1/en
Publication of WO2023116112A1 publication Critical patent/WO2023116112A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/009Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose
    • F03D17/018Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/303Temperature
    • F05B2270/3032Temperature excessive temperatures, e.g. caused by overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure generally relates to the technical field of wind power generation, and more specifically, relates to a generator cooling control method and device for a wind power generating set.
  • the direct-drive and semi-direct-drive wind turbines adopt the following four driving schemes of generator cooling and yaw driving: the first one is the driving scheme of generator cooling and yaw
  • the driving schemes of the two adopt the method of direct connection to the grid (that is, directly connected to the distribution transformer (connected to the grid)); the second one, the driving scheme of the generator cooling adopts the method of direct connection to the grid and the driving scheme of the yaw adopts the use of Inverter (that is, connected to the distribution transformer via the inverter); third, the driving scheme of generator cooling adopts the method of using the inverter and the driving scheme of the yaw adopts the method of direct connection to the power grid; the fourth, Both the drive scheme for generator cooling and the drive scheme for yaw use frequency converters.
  • the characteristics of the above four schemes are as follows: for the first scheme, the cost is relatively low, the start-up impact is large, the capacity of the distribution transformer is large, there is a problem of yaw tripping, the self-consumption is high, and the temperature fluctuation of the generator is large;
  • the second scheme has relatively low cost, large start-up impact, large distribution transformer capacity, high self-consumption, and large temperature fluctuation of the generator;
  • for the third scheme relatively low cost, large start-up impact, and power distribution The capacity of the transformer is large, and there is a problem of yaw tripping; for the fourth solution, the cost is relatively high, there is no impact at startup, and the capacity of the distribution transformer is small.
  • the scheme of direct connection to the power grid has the following disadvantages: large start-up impact, large capacity of distribution transformer, high self-consumption, large temperature fluctuation of generator, yaw tripping;
  • the device solution has the disadvantage of high cost.
  • Exemplary embodiments of the present disclosure provide a generator cooling control method and device for a wind power generating set, so as to achieve the purpose of jointly controlling the generator cooling device and the yaw motor by using the same frequency converter.
  • a generator cooling control method for a wind power generating set is provided.
  • the cooling equipment of the generator and the intermittent operation equipment of the wind power generating set are connected to the same frequency converter, and the frequency converters do not simultaneously control
  • the cooling equipment and the intermittently operating equipment are started, and the generator cooling control method includes: when it is determined according to the operation data of the wind power generating set that the start-up condition of the intermittently operating equipment is satisfied, calculating The inverter controls the predicted temperature of the generator after the time required for the intermittent operation equipment to start to perform predetermined related actions; when the predicted temperature is less than or equal to the predetermined threshold temperature, the intermittent operation is controlled by the frequency converter
  • the operating equipment is started to perform predetermined related actions; after the intermittently operated equipment performs predetermined related actions, the frequency converter is used to control the cooling equipment to start to cool the generator.
  • a generator cooling control device for a wind power generating set
  • the cooling equipment of the generator is connected to the same frequency converter as the intermittent operation equipment of the wind power generating set, and the frequency converter does not Simultaneously control the start of the cooling equipment and the intermittently operating equipment
  • the generator cooling control device includes: a temperature determination module, configured to: determine the requirements of the intermittently operating equipment according to the operating data of the wind power generating set When starting conditions, calculate the predicted temperature of the generator after using the frequency converter to control the start of the intermittent operation equipment to perform the required time for predetermined related actions;
  • the intermittent action execution module is configured to: when the predicted When the temperature is less than or equal to the predetermined threshold temperature, the frequency converter is used to control the startup of the intermittent operation equipment to perform predetermined related actions;
  • the cooling function execution module is configured to: after the intermittent operation equipment performs predetermined related actions, The frequency converter is used to control the start of the cooling device to cool the generator.
  • a computer-readable storage medium storing a computer program
  • the generator cooling control method as described above is implemented.
  • a computing device which includes: a processor; and a memory storing a computer program.
  • the computer program is executed by the processor, the above-mentioned Generator cooling control method.
  • a wind power generating set includes: a frequency converter; a cooling device for a generator; a yaw motor; computing device described above.
  • the generator cooling control method and device of the wind power generating set in the exemplary embodiment of the present disclosure by using the same frequency converter to jointly control the cooling equipment of the generator and the yaw motor, it is realized that the relatively low cost can be achieved while ensuring a relatively low cost.
  • the scheme has the beneficial effects of small distribution transformer capacity, small start-up impact, low self-consumption, small generator temperature fluctuation, and no tripping when yawing.
  • Fig. 1 is a flowchart illustrating a generator cooling control method for a wind power generating set according to an embodiment of the present disclosure
  • Fig. 2 is a system structural diagram illustrating an example of implementing a generator cooling control method for a wind power generating set according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart illustrating an example of implementing a generator cooling control method for a wind power generating set according to an embodiment of the present disclosure
  • Fig. 4 is a block diagram illustrating a generator cooling control device of a wind power generating set according to an embodiment of the present disclosure
  • Fig. 5 is a block diagram illustrating a wind park according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram illustrating a computing device according to an embodiment of the present disclosure.
  • Fig. 1 is a flow chart illustrating a generator cooling control method 100 for a wind power generating set according to an embodiment of the present disclosure.
  • the cooling equipment of the generator and the intermittent operation equipment of the wind power generating set are connected to the same frequency converter, and the frequency converter does not simultaneously control the cooling equipment and the intermittent operation equipment to start.
  • step S101 when it is determined according to the operation data of the wind power generating set that the start-up condition of the intermittently-operated equipment is satisfied, the power-generating period after the start-up of the intermittently-operated equipment is controlled by the frequency converter to perform predetermined related actions is calculated. machine's predicted temperature.
  • step S102 when the predicted temperature is less than or equal to the predetermined threshold temperature, the frequency converter is used to control the intermittent operation equipment to start to perform predetermined related actions.
  • the following step may be further included: using the frequency converter to control the start of the cooling equipment based on the first opening degree to cool the generator.
  • the opening degree involved in the present disclosure is a percentage of the rated output power of the frequency converter.
  • the value of the first opening degree is greater than 0 and less than 1.
  • step S103 after the intermittent operation equipment performs predetermined related actions, the frequency converter is used to control the cooling equipment to start to cool the generator.
  • the step of using the frequency converter to control the start of the cooling device to cool the generator in step S103 may include: after the intermittent operation device performs a predetermined related action, using the frequency converter to control the cooling device based on the second opening degree Start to cool the generator.
  • the value of the second opening degree is greater than 0 and less than 1.1.
  • the first opening degree is smaller than the second opening degree.
  • the following step may be further included: when the temperature of the wind power generating set reaches the static thermal equilibrium temperature, using the frequency converter based on the first The opening control cooling device is activated to cool the generator.
  • the generator cooling control method 100 may further include the following step: when the predicted temperature is greater than a predetermined threshold temperature, control to reduce the output power of the wind power generating set, and then execute the operation according to the wind power generating set data, the step of determining whether the start-up conditions for intermittently operating equipment are met.
  • the above-mentioned intermittent operation equipment may be a yaw motor of a wind power generating set.
  • the calculation formula for the predicted temperature can be the following formula (1):
  • T 2 represents the predicted temperature
  • T 1 represents the static heat balance temperature
  • ⁇ 1 represents the first opening degree
  • P f represents the heat dissipation power of the generator when the value of the first opening degree is 1
  • S 1 represents the yaw Speed
  • ⁇ 1 represents the windward angle
  • C1 represents the heat capacity of the generator.
  • the calculation formula of the interval time ⁇ t required for cooling the generator by using the frequency converter to control the start of the cooling device based on the second opening degree can be as the following formula (2):
  • ⁇ 2 represents the second opening degree
  • Fig. 2 is a system structure schematic diagram 200 showing an example of implementing a generator cooling control method for a wind power generating set according to an embodiment of the present disclosure
  • Fig. 3 is a diagram illustrating implementing generator cooling for a wind generating set according to an embodiment of the present disclosure
  • Flowchart 300 of an example of a control method As an example, in this example, the cooling device of the generator is a motor cooling fan, and the intermittent operation device is a yaw motor.
  • an exemplary system structure implementing a generator cooling control method for a wind power generating set includes a distribution transformer T1 , a frequency converter C1 , a motor cooling fan G1 and a yaw motor G2 .
  • one end of the distribution transformer is connected to the power grid (for example, an external high-voltage power grid), and the other end is connected to the frequency converter.
  • the input terminal IN1 of the frequency converter is connected to a distribution transformer, and the output terminal OUT1 is connected to a contactor Q1 (eg, pin 1 of the contactor Q1 ) and a contactor Q2 (eg, pin 1 of the contactor Q2 ).
  • the motor cooling fan is connectably connected to the frequency converter via contactor Q1 (eg, pin 2 of contactor Q1 ).
  • the yaw motor is connectably connected to the frequency converter via contactor Q2 (eg, pin 2 of contactor Q2). Contactors Q1 and Q2 are not turned on simultaneously.
  • step S301 the contactor Q1 is kept on, and the frequency converter C1 controls the motor cooling fan G1 to cool the generator. At this time, the wind power generating set is in a normal operation state.
  • step S302 the frequency converter C1 keeps controlling the motor cooling fan G1 based on the first opening degree ⁇ 1 , so that the temperature of the generator reaches the thermal equilibrium temperature T0.
  • step S303 it is judged whether the wind-facing angle ⁇ 1 of the wind power generation unit (hereinafter referred to as the unit) is greater than or equal to the design value ⁇ 0 of the yaw action. If the value of ⁇ 1 is greater than or equal to the yaw action design value ⁇ 0 , it is determined that a yaw action (for example, yaw against the wind) may be required, otherwise return to step S301 to maintain the normal operation state of the unit.
  • the wind-facing angle ⁇ 1 of the wind power generation unit hereinafter referred to as the unit
  • step S304 according to the formula (1) mentioned above, the predicted temperature T2 of the generator after the yaw action is completed is calculated, and T2 is compared with the maximum allowable temperature T max of the generator.
  • T2 is greater than T max , reduce the unit power in step S305, and then return to step S302.
  • step S306 the contactor Q1 is turned off and the contactor Q2 is turned on, so that the inverter C1 is used to control the yaw motor to perform the yaw action.
  • step S307 the frequency converter C1 performs yaw according to the parameters of the yaw motor and the prescribed yaw rate S1, and finally completes the yaw action.
  • step S308 after the yaw action is completed, the temperature ⁇ T (ie, T2-T0) to be lowered by the generator is calculated according to the temperature of the generator before and after the yaw.
  • step S309 the contactor Q2 is turned off and the contactor Q1 is turned on, so that the motor cooling fan G1 is controlled by the frequency converter C1.
  • step S310 the inverter is made to control the motor cooling fan G1 based on the second opening degree ⁇ 2 , and the interval time ⁇ t required for the generator temperature to recover from T2 to T1 is calculated (calculated according to the above-mentioned formula (2)).
  • step S311 the yaw action is prohibited within the time period ⁇ t, and the temperature of the generator is monitored.
  • the inverter C1 is controlled to control the motor cooling fan G1 based on the first opening degree ⁇ 1 .
  • the wind power generating set returns to the normal operation state.
  • the cooling device may include a heat dissipation device capable of realizing multiple cooling methods, for example, an air-to-air cooling heat dissipation device (including a fan), an air-to-water cooling heat dissipation device (including a fan and a water pump), a water-to-air cooling heat dissipation device Equipment (including fans and pumps), etc.
  • a heat dissipation device capable of realizing multiple cooling methods, for example, an air-to-air cooling heat dissipation device (including a fan), an air-to-water cooling heat dissipation device (including a fan and a water pump), a water-to-air cooling heat dissipation device Equipment (including fans and pumps), etc.
  • the control evaluation in the dynamic heat balance state is realized in addition to the traditional control evaluation in the static heat balance state.
  • the same frequency converter to jointly control the cooling equipment of the generator and the intermittent operation equipment (for example, yaw motor)
  • the invention has the beneficial effects of low self-consumption, small temperature fluctuation of the generator, and no tripping of yaw.
  • Fig. 4 is a block diagram illustrating a generator cooling control device 400 of a wind power generating set according to an embodiment of the present disclosure.
  • the cooling equipment of the generator and the intermittent operation equipment of the wind power generating set are connected to the same frequency converter, and the frequency converter does not simultaneously control the cooling equipment and the intermittent operation equipment to start.
  • a generator cooling control device 400 for a wind power generating set includes a temperature determination module 401 , an intermittent action execution module 402 and a cooling function execution module 403 .
  • the temperature determination module 401 is configured to: when it is determined according to the operation data of the wind power generating set that the start-up condition of the intermittently-operated equipment is met, calculate the starting condition of the intermittently-operated equipment by using a frequency converter to control the Predicted temperature of the generator after the desired time period of performing the predetermined associated action.
  • the intermittent action execution module 402 is configured to: when the predicted temperature is less than or equal to a predetermined threshold temperature, use the frequency converter to control the start of the intermittent operation equipment to perform predetermined related actions.
  • the cooling function execution module 403 may also perform the following operations: use the frequency converter to control the start of the cooling equipment based on the first opening degree to cool the power generation machine.
  • the cooling function execution module 403 is configured to: use the frequency converter to control the start of the cooling device to cool the generator after the intermittent operation device performs a predetermined related action.
  • the operation of the cooling function execution module 403 using the frequency converter to control the start of the cooling equipment to cool the generator after the intermittent operation equipment performs predetermined related actions may include: after the intermittent operation equipment performs predetermined related actions, using the The frequency converter controls the cooling device to start based on the second opening degree to cool the generator.
  • the cooling function execution module 403 utilizes the frequency converter to control the start-up of the cooling device based on the second opening degree to cool the generator
  • the following operations may also be performed: when the temperature of the wind power generating set reaches When the static heat balance temperature is reached, the frequency converter is used to control the start of the cooling device based on the first opening degree to cool the generator.
  • the generator cooling control device 400 may further include a power control module (not shown).
  • the power control module is configured to: when the predicted temperature is greater than a predetermined threshold temperature, control to reduce the output power of the wind generating set, and then perform the step of determining whether the start-up condition of the intermittently operating equipment is met according to the operation data of the wind generating set.
  • the intermittently operating device may be a yaw motor of a wind power generating set. It should be understood that the calculation formula of the predicted temperature in this case and the interval time ⁇ t required by using the frequency converter to control the start of the cooling device to cool the generator based on the second opening degree has been described with reference to FIG. 1 , and will not be repeated here.
  • the generator cooling control device may be set in the main controller of the wind power generating set.
  • Fig. 5 is a block diagram illustrating a wind park 500 according to an embodiment of the present disclosure.
  • a wind power generating set 500 includes a frequency converter 501 , a generator cooling device 502 , a yaw motor 503 and a controller 504 .
  • the cooling device 502 and the yaw motor 503 are connected to the same frequency converter 501 , and the frequency converter 501 does not control the cooling device 502 and the yaw motor 503 to start at the same time.
  • controller 504 may be a generator cooling control device (eg, generator cooling control device 400 ) as described above or a computing device (eg, computing device 600 ) as will be described with reference to FIG. 6 . ).
  • generator cooling control device eg, generator cooling control device 400
  • computing device eg, computing device 600
  • the controller 504 is configured to perform the following operations: when it is determined that the start-up condition of the yaw motor 503 is met according to the operation data of the wind power generating set 500 , calculate and control the start-up of the yaw motor 503 by using the frequency converter 501 to execute the yaw
  • the predicted temperature of the generator after the required duration of the action when the predicted temperature is less than or equal to the predetermined threshold temperature, the frequency converter 501 is used to control the start of the yaw motor to perform the yaw action; after the yaw motor 503 performs the yaw action, use
  • the frequency converter 501 controls the cooling device 502 to start to cool the generator.
  • controller 504 may also perform various steps and operations as set forth in FIG. 1 , which will not be repeated here to avoid repetition.
  • FIG. 6 is a block diagram illustrating a computing device according to an embodiment of the present disclosure.
  • a computing device 600 may include a processor 610 and a memory 620 .
  • the processor 610 may include, but is not limited to, a central processing unit (CPU), a digital signal processor (DSP), a microcomputer, a field programmable gate array (FPGA), a system on a chip (SoC), a microprocessor, an application specific integrated circuit (ASIC) and so on.
  • the memory 620 may store computer programs to be executed by the processor 610 .
  • Memory 620 includes high-speed random access memory and/or non-volatile computer-readable storage media.
  • the generator cooling control method can be written as a computer program and stored on a computer-readable storage medium.
  • the generator cooling control method as described above can be realized.
  • Examples of computer readable storage media include: Read Only Memory (ROM), Random Access Programmable Read Only Memory (PROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Random Access Memory (RAM), Dynamic Random Access Memory (DRAM), Static Random Access Memory (SRAM), Flash Memory, Nonvolatile Memory, CD-ROM, CD-R, CD+R, CD-RW, CD+RW, DVD-ROM, DVD -R, DVD+R, DVD-RW, DVD+RW, DVD-RAM, BD-ROM, BD-R, BD-R LTH, BD-RE, Blu-ray or Disc storage, Hard Disk Drive (HDD), Solid State Drive ( SSD), memory cards (such as Multimedia Cards, Secure Digital (SD) or Extreme Digital (XD) cards), magnetic tapes, floppy disks,
  • SD Secure Digital
  • XD Extreme Digital
  • the computer program and any associated data, data files and data structures are distributed over a networked computer system such that the computer program and any associated data, data files and data structures are processed by one or more processors or Computers store, access and execute in a distributed fashion.
  • the generator cooling control method and device of the embodiments of the present disclosure by using the same frequency converter to jointly control the cooling equipment and the yaw motor of the generator, it is realized that the solution has a distribution transformer while ensuring a relatively low cost Small capacity, small start-up impact, low self-consumption, small generator temperature fluctuation, and no tripping when yawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本公开提供一种风力发电机组的发电机冷却控制方法及装置,所述发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,所述变频器不同时控制所述冷却设备以及所述间歇性运行设备启动,所述发电机冷却控制方法包括:在根据风力发电机组的运行数据,确定满足所述间歇性运行设备的启动条件时,计算在利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作的所需时长之后所述发电机的预测温度;当所述预测温度小于或等于预定阈值温度时,利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作;在所述间歇性运行设备执行预定相关动作之后,利用所述变频器控制所述冷却设备启动以冷却发电机。

Description

风力发电机组的发电机冷却控制方法及装置 技术领域
本公开总体说来涉及风力发电技术领域,更具体地讲,涉及一种风力发电机组的发电机冷却控制方法及装置。
背景技术
在当前的风力发电行业内,直驱及半直驱的风力发电机组采取的发电机冷却的驱动方案和偏航的驱动方案包括以下四种:第一种,发电机冷却的驱动方案和偏航的驱动方案均采用电网直挂(即,直接连接到配电变压器(连接到电网))的方式;第二种,发电机冷却的驱动方案采用电网直挂的方式且偏航的驱动方案采用利用变频器(即,经由变频器连接到配电变压器)的方式;第三种,发电机冷却的驱动方案采用利用变频器的方式和偏航的驱动方案采用电网直挂的方式;第四种,发电机冷却的驱动方案和偏航的驱动方案均采用利用变频器的方式。
上述这四种方案各自的特点如下:针对第一种方案,成本相对最低、启动冲击大、配电变压器容量大、存在偏航跳闸的问题、自耗电高并且发电机温度波动大;针对第二种方案,成本相对较低、启动冲击较大、配电变压器容量较大、自耗电高、发电机温度波动大;针对第三种方案,成本相对较低、启动冲击较大、配电变压器容量较大、存在偏航跳闸的问题;针对第四种方案,成本相对高、启动无冲击、配电变压器容量小。
综上,可以得出,在现有方案中,采用电网直挂的方案存在以下缺点:启动冲击大、配电变压器容量大、自耗电高、发电机温度波动大、偏航跳闸;采用变频器的方案存在成本高的缺点。
发明内容
本公开的示例性实施例在于提供一种风力发电机组的发电机冷却控制方法及装置,以实现利用同一变频器对发电机的冷却设备和偏航电机进行联合控制的目的。
根据本公开的示例性实施例,提供一种风力发电机组的发电机冷却控制方法,所述发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,所述变频器不同时控制所述冷却设备以及所述间歇性运行设备启动,所述发电机冷却控制方法包括:在根据风力发电机组的运行数据,确定满足所述间歇性运行设备的启动条件时,计算在利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作的所需时长之后所述发电机的预测温度;当所述预测温度小于或等于预定阈值温度时,利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作;在所述间歇性运行设备执行预定相关动作之后,利用所述变频器控制所述冷却设备启动以冷却发电机。
根据本公开的另一示例性实施例,提供一种风力发电机组的发电机冷却控制装置,所述发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,所述变频器不同时控制所述冷却设备以及所述间歇性运行设备启动,所述发电机冷却控制装置包括:温度确定模块,被配置为:在根据风力发电机组的运行数据,确定满足所述间歇性运行设备的启动条件时,计算在利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作的所需时长之后所述发电机的预测温度;间歇动作执行模块,被配置为:当所述预测温度小于或等于预定阈值温度时,利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作;冷却功能执行模块,被配置为:在所述间歇性运行设备执行预定相关动作之后,利用所述变频器控制所述冷却设备启动以冷却发电机。
根据本公开的另一示例性实施例,提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时,实现如上所述的发电机冷却控制方法。
根据本公开的另一示例性实施例,提供一种计算装置,所述计算装置包括:处理器;和存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如上所述的发电机冷却控制方法。
根据本公开的另一示例性实施例,提供一种风力发电机组,所述风力发电机组包括:变频器;发电机的冷却设备;偏航电机;如上所述的发电机冷却控制装置或者如上所述的计算装置。
根据本公开示例性实施例的风力发电机组的发电机冷却控制方法及装置,通过利用同一变频器对发电机的冷却设备和偏航电机进行联合控制,实现了 在保证相对低的成本同时使得该方案具有配电变压器容量小、启动冲击小、自耗电低、发电机温度波动小、偏航无跳闸的有益效果。
将在接下来的描述中部分阐述本公开总体构思另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本公开总体构思的实施而得知。
附图说明
通过下面结合示例性地示出实施例的附图进行的描述,本公开示例性实施例的上述和其他目的和特点将会变得更加清楚,其中:
图1是示出根据本公开的实施例的风力发电机组的发电机冷却控制方法的流程图;
图2是示出根据本公开的实施例的实现风力发电机组的发电机冷却控制方法的示例的系统结构示意图;
图3是示出根据本公开的实施例的实现风力发电机组的发电机冷却控制方法的示例的流程图;
图4是示出根据本公开的实施例的风力发电机组的发电机冷却控制装置的框图;
图5是示出根据本公开的实施例的风力发电机组的框图;
图6是示出根据本公开的实施例的计算装置的框图。
具体实施方式
提供下面的具体实施方式以帮助读者获得对在此描述的方法、设备和/或系统的全面理解。然而,在理解本申请的公开之后,在此描述的方法、设备和/或系统的各种改变、修改和等同物将是清楚的。例如,在此描述的操作的顺序仅是示例,并且不限于在此阐述的那些顺序,而是除了必须以特定的顺序发生的操作之外,可如在理解本申请的公开之后将是清楚的那样被改变。此外,为了更加清楚和简明,本领域已知的特征的描述可被省略。
在此描述的特征可以以不同的形式来实现,而不应被解释为限于在此描述的示例。相反,已提供在此描述的示例,以仅示出实现在此描述的方法、设备和/或系统的许多可行方式中的一些可行方式,所述许多可行方式在理解本申请的公开之后将是清楚的。
如在此使用的,术语“和/或”包括相关联的所列项中的任何一个以及任 何两个或更多个的任何组合。
在此使用的术语仅用于描述各种示例,并不将用于限制公开。除非上下文另外清楚地指示,否则单数形式也意在包括复数形式。术语“包含”、“包括”和“具有”说明存在叙述的特征、数量、操作、构件、元件和/或它们的组合,但不排除存在或添加一个或多个其他特征、数量、操作、构件、元件和/或它们的组合。
除非另有定义,否则在此使用的所有术语(包括技术术语和科学术语)具有与由本公开所属领域的普通技术人员在理解本公开之后通常理解的含义相同的含义。除非在此明确地如此定义,否则术语(诸如,在通用词典中定义的术语)应被解释为具有与它们在相关领域的上下文和本公开中的含义一致的含义,并且不应被理想化或过于形式化地解释。
此外,在示例的描述中,当认为公知的相关结构或功能的详细描述将引起对本公开的模糊解释时,将省略这样的详细描述。
现将详细参照本公开的实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本公开。
图1是示出根据本公开的实施例的风力发电机组的发电机冷却控制方法100的流程图。根据本公开的实施例,发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,该变频器不同时控制冷却设备以及间歇性运行设备启动。
参照图1,在步骤S101,在根据风力发电机组的运行数据,确定满足间歇性运行设备的启动条件时,计算在利用变频器控制间歇性运行设备启动以执行预定相关动作的所需时长之后发电机的预测温度。
在步骤S102,当预测温度小于或等于预定阈值温度时,利用该变频器控制间歇性运行设备启动以执行预定相关动作。
根据本公开的实施例,在执行上述利用该变频器控制间歇性运行设备启动之前,还可包括以下步骤:利用该变频器基于第一开度控制冷却设备启动以冷却发电机。
根据本公开的实施例,本公开所涉及的开度(例如,如上所述的第一开度以及稍后涉及的第二开度)是变频器的额定输出功率的百分比。可选地,第一开度的值大于0且小于1。
在步骤S103,在间歇性运行设备执行预定相关动作之后,利用该变频器控制冷却设备启动以冷却发电机。
根据本公开的实施例,在步骤S103利用该变频器控制冷却设备启动以冷却发电机的步骤可包括:在间歇性运行设备执行预定相关动作之后,利用该变频器基于第二开度控制冷却设备启动以冷却发电机。
作为示例,第二开度的值大于0且小于1.1。
可选地,第一开度小于第二开度。
可选地,在利用该变频器基于第二开度控制冷却设备启动以冷却发电机的步骤之后还可包括以下步骤:当风力发电机组的温度达到静态热平衡温度时,利用该变频器基于第一开度控制冷却设备启动以冷却发电机。
根据本公开的实施例,可选地,发电机冷却控制方法100还可包括以下步骤:当预测温度大于预定阈值温度时,控制降低风力发电机组的输出功率,之后再执行根据风力发电机组的运行数据,确定是否满足间歇性运行设备的启动条件的步骤。
根据本公开的实施例,上述间歇性运行设备可以是风力发电机组的偏航电机。在这种情况下,预测温度的计算公式可为下面的式(1):
Figure PCTCN2022122423-appb-000001
其中,T 2表示所述预测温度,T 1表示静态热平衡温度,β 1表示第一开度,P f表示当第一开度的值为1时的发电机的散热功率,S 1表示偏航速度,θ 1表示对风角度,C 1表示所述发电机的热容。
根据本公开的实施例,利用该变频器基于第二开度控制冷却设备启动以冷却发电机所需要的间隔时间Δt的计算公式可如下面的式(2):
Figure PCTCN2022122423-appb-000002
其中,β 2表示第二开度。
下面参照图2和图3来详细说明实现发电机冷却控制方法100的系统结构和流程图。图2是示出根据本公开的实施例的实现风力发电机组的发电机冷却控制方法的示例的系统结构示意图200,图3是示出根据本公开的实施例的实现风力发电机组的发电机冷却控制方法的示例的流程图300。作为示例,在该示例中,发电机的冷却设备为电机冷却风扇,间歇性运行设备为偏航电机。
参照图2,根据本公开的实施例的实现风力发电机组的发电机冷却控制方法的示例的系统结构包括配电变压器T1、变频器C1、电机冷却风扇G1和 偏航电机G2。
具体地,配电变压器的一端连接到电网(例如,外部高压电网),另一端连接到变频器。变频器的输入端IN1连接到配电变压器,输出端OUT1连接到接触器Q1(例如,接触器Q1的引脚1)和接触器Q2(例如,接触器Q2的引脚1)。电机冷却风扇经由接触器Q1(例如,接触器Q1的引脚2)可连接地连接到变频器。偏航电机经由接触器Q2(例如,接触器Q2的引脚2)可连接地连接到变频器。接触器Q1和Q2不同时导通。
参照图3,在步骤S301,接触器Q1保持导通,变频器C1控制电机冷却风扇G1对发电机进行冷却。此时,风力发电机组处于正常运行状态。
在步骤S302,变频器C1保持基于第一开度β 1控制电机冷却风扇G1,使得发电机的温度达到热平衡温度T0。
在步骤S303,判断风力发电机组(以下简称为机组)的对风角度θ 1是否大于等于偏航动作设计值θ 0。如果θ 1的值大于等于偏航动作设计值θ 0,则确定可能需要进行偏航动作(例如,偏航对风),否则返回步骤S301保持机组正常运行状态。
在步骤S304,根据上面提到的公式(1),计算偏航动作完成后发电机的预测温度T2,并将T2与发电机的最高允许温度T max进行比较。
如果T2大于T max,则在步骤S305降低机组功率,并随后返回执行步骤S302。
如果T2小于或等于T max则执行偏航动作,则在步骤S306,使接触器Q1断开且使接触器Q2导通,从而利用变频器C1控制偏航电机以执行偏航动作。
在步骤S307,变频器C1按照偏航电机的参数和规定的偏航速率S1进行偏航,最终完成本次偏航动作。
在步骤S308,在偏航动作完成后,根据偏航前后发电机温度计算发电机需要降低的温度△T(即,T2-T0)。
在步骤S309,使接触器Q2断开且接触器Q1导通,从而利用变频器C1控制电机冷却风扇G1。
在步骤S310,使得变频器基于第二开度β 2控制电机冷却风扇G1,并计算发电机温度从T2恢复到T1所需的间隔时间△t(根据上面提到的公式(2)计算)。
在步骤S311,在△t时间内禁止执行偏航动作,监测发电机温度,当发 电机温度恢复为T0后,使得将变频器C1基于第一开度β 1控制电机冷却风扇G1。此时,风力发电机组恢复正常运行状态。
应注意,本发明的上述实施方式仅是示例而已,而本发明并不限于此。
可选地,根据本公开的实施例的冷却设备可包括能够实现多种冷却方式的散热设备,例如,空空冷散热设备(包括风扇)、空水冷散热设备(包括风扇和水泵)、水空冷散热设备(包括风扇和水泵)等。
通过采用本公开的发电机冷却控制方法,实现了除了传统的静态热平衡状态下的控制评估之外的动态热平衡状态下的控制评估。通过利用同一变频器对发电机的冷却设备和间歇性运行设备(例如,偏航电机)进行联合控制,实现了在保证相对低的成本同时使得该方案具有配电变压器容量小、启动冲击小、自耗电低、发电机温度波动小、偏航无跳闸的有益效果。
图4是示出根据本公开的实施例的风力发电机组的发电机冷却控制装置400的框图。根据本公开的实施例,发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,该变频器不同时控制冷却设备以及间歇性运行设备启动。
参照图4,根据本公开的实施例的风力发电机组的发电机冷却控制装置400包括温度确定模块401、间歇动作执行模块402和冷却功能执行模块403。
具体地,根据本公开的实施例,温度确定模块401被配置为:在根据风力发电机组的运行数据,确定满足间歇性运行设备的启动条件时,计算在利用变频器控制间歇性运行设备启动以执行预定相关动作的所需时长之后发电机的预测温度。
根据本公开的实施例,间歇动作执行模块402被配置为:当预测温度小于或等于预定阈值温度时,利用该变频器控制间歇性运行设备启动以执行预定相关动作。可选地,在间歇动作执行模块402执行利用该变频器控制间歇性运行设备启动之前,冷却功能执行模块403还可执行以下操作:利用该变频器基于第一开度控制冷却设备启动以冷却发电机。
根据本公开的实施例,冷却功能执行模块403被配置为:在间歇性运行设备执行预定相关动作之后,利用该变频器控制冷却设备启动以冷却发电机。可选地,冷却功能执行模块403在间歇性运行设备执行预定相关动作之后,利用该变频器控制冷却设备启动以冷却发电机的操作可包括:在间歇性运行设备执行预定相关动作之后,利用该变频器基于第二开度控制冷却设备启动 以冷却发电机。
应理解,上面已经参照图1阐述了关于第一开度和第二开度的具体说明,为了避免重复,这里将不再赘述。
根据本公开的实施例,可选地,在冷却功能执行模块403利用该变频器基于第二开度控制冷却设备启动以冷却发电机的操作之后还可执行以下操作:当风力发电机组的温度达到静态热平衡温度时,利用该变频器基于第一开度控制冷却设备启动以冷却发电机。
根据本公开的实施例,发电机冷却控制装置400还可包括功率控制模块(未示出)。该功率控制模块被配置为:当预测温度大于预定阈值温度时,控制降低风力发电机组的输出功率,之后再执行根据风力发电机组的运行数据,确定是否满足间歇性运行设备的启动条件的步骤。
根据本公开的实施例,间歇性运行设备可以是风力发电机组的偏航电机。应理解,已经参照图1阐述了在这种情况下的预测温度以及利用变频器基于第二开度控制冷却设备启动以冷却发电机所需要的间隔时间Δt的计算公式,这里将不再赘述。
可选地,根据本公开的实施例的发电机冷却控制装置可设置在风力发电机组的主控制器中。
图5是示出根据本公开的实施例的风力发电机组500的框图。
参照图5,根据本公开的实施例的风力发电机组500包括变频器501、发电机的冷却设备502、偏航电机503和控制器504。根据本公开的实施例,冷却设备502与偏航电机503连接同一变频器501,并且变频器501不同时控制冷却设备502以及偏航电机503启动。
可选地,根据本公开的实施例的控制器504可以是如上所述的发电机冷却控制装置(例如,发电机冷却控制装置400)或者将参照图6描述的计算装置(例如,计算装置600)。
具体地,控制器504被配置为执行以下操作:在根据风力发电机组500的运行数据,确定满足偏航电机503的启动条件时,计算在利用变频器501控制偏航电机503启动以执行偏航动作的所需时长之后发电机的预测温度;当预测温度小于或等于预定阈值温度时,利用变频器501控制偏航电机启动以执行偏航动作;在偏航电机503执行偏航动作之后,利用变频器501控制冷却设备502启动以冷却发电机。
应理解,控制器504还可以执行如在图1中阐述的各种步骤和操作,为了避免重复,这里将不再赘述。
图6是示出根据本公开的实施例的计算装置的框图。
参照图6,根据本公开的实施例的计算装置600可包括可处理器610和存储器620。处理器610可包括(但不限于)中央处理器(CPU)、数字信号处理器(DSP)、微型计算机、现场可编程门阵列(FPGA)、片上系统(SoC)、微处理器、专用集成电路(ASIC)等。存储器620可存储将由处理器610执行的计算机程序。存储器620包括高速随机存取存储器和/或非易失性计算机可读存储介质。当处理器610执行存储器620中存储的计算机程序时,可实现如上所述的发电机冷却控制方法。根据本公开的实施例的计算装置600可设置在风力发电机组的主控制器中。
根据本公开的实施例的发电机冷却控制方法可被编写为计算机程序并被存储在计算机可读存储介质上。当所述计算机程序被处理器执行时,可实现如上所述的发电机冷却控制方法。计算机可读存储介质的示例包括:只读存储器(ROM)、随机存取可编程只读存储器(PROM)、电可擦除可编程只读存储器(EEPROM)、随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存、非易失性存储器、CD-ROM、CD-R、CD+R、CD-RW、CD+RW、DVD-ROM、DVD-R、DVD+R、DVD-RW、DVD+RW、DVD-RAM、BD-ROM、BD-R、BD-R LTH、BD-RE、蓝光或光盘存储器、硬盘驱动器(HDD)、固态硬盘(SSD)、卡式存储器(诸如,多媒体卡、安全数字(SD)卡或极速数字(XD)卡)、磁带、软盘、磁光数据存储装置、光学数据存储装置、硬盘、固态盘以及任何其他装置,所述任何其他装置被配置为以非暂时性方式存储计算机程序以及任何相关联的数据、数据文件和数据结构并将所述计算机程序以及任何相关联的数据、数据文件和数据结构提供给处理器或计算机使得处理器或计算机能执行所述计算机程序。在一个示例中,计算机程序以及任何相关联的数据、数据文件和数据结构分布在联网的计算机系统上,使得计算机程序以及任何相关联的数据、数据文件和数据结构通过一个或多个处理器或计算机以分布式方式存储、访问和执行。
根据本公开的实施例的发电机冷却控制方法及装置,通过利用同一变频器对发电机的冷却设备和偏航电机进行联合控制,实现了在保证相对低的成本同时使得该方案具有配电变压器容量小、启动冲击小、自耗电低、发电机 温度波动小、偏航无跳闸的有益效果。
虽然已表示和描述了本公开的一些示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同方案限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行修改和变型。

Claims (11)

  1. 一种风力发电机组的发电机冷却控制方法,其特征在于,所述发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,所述变频器不同时控制所述冷却设备以及所述间歇性运行设备启动,所述发电机冷却控制方法包括:
    在根据风力发电机组的运行数据,确定满足所述间歇性运行设备的启动条件时,计算在利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作的所需时长之后所述发电机的预测温度;
    当所述预测温度小于或等于预定阈值温度时,利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作;
    在所述间歇性运行设备执行预定相关动作之后,利用所述变频器控制所述冷却设备启动以冷却发电机。
  2. 如权利要求1所述的控制方法,其特征在于,在执行所述利用所述变频器控制所述间歇性运行设备启动之前,还包括:
    利用所述变频器基于第一开度控制所述冷却设备启动以冷却发电机;
    所述在所述间歇性运行设备执行预定相关动作之后,利用所述变频器控制所述冷却设备启动以冷却发电机的步骤包括:
    在所述间歇性运行设备执行预定相关动作之后,利用所述变频器基于第二开度控制所述冷却设备启动以冷却发电机,
    其中,所述第一开度和所述第二开度是所述变频器的额定输出功率的百分比,且所述第一开度小于所述第二开度。
  3. 如权利要求2所述的控制方法,其特征在于,在利用所述变频器基于第二开度控制所述冷却设备启动以冷却发电机的步骤之后还包括:
    当风力发电机组的温度达到静态热平衡温度时,利用所述变频器基于第一开度控制所述冷却设备启动以冷却发电机。
  4. 如权利要求1-3中任一项所述的控制方法,其特征在于,还包括:
    当所述预测温度大于预定阈值温度时,控制降低风力发电机组的输出功率,之后再执行根据风力发电机组的运行数据,确定是否满足所述间歇性运行设备的启动条件的步骤。
  5. 如权利要求4所述的控制方法,其特征在于,所述间歇性运行设备是 风力发电机组的偏航电机。
  6. 一种风力发电机组的发电机冷却控制装置,其特征在于,所述发电机的冷却设备与风力发电机组的间歇性运行设备连接同一变频器,所述变频器不同时控制所述冷却设备以及所述间歇性运行设备启动,所述发电机冷却控制装置包括:
    温度确定模块,被配置为:在根据风力发电机组的运行数据,确定满足所述间歇性运行设备的启动条件时,计算在利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作的所需时长之后所述发电机的预测温度;
    间歇动作执行模块,被配置为:当所述预测温度小于或等于预定阈值温度时,利用所述变频器控制所述间歇性运行设备启动以执行预定相关动作;
    冷却功能执行模块,被配置为:在所述间歇性运行设备执行预定相关动作之后,利用所述变频器控制所述冷却设备启动以冷却发电机。
  7. 如权利要求6所述的发电机冷却控制装置,其特征在于,所述发电机冷却控制装置设置在风力发电机组的主控制器中。
  8. 一种存储有计算机程序的计算机可读存储介质,其特征在于,当所述计算机程序被处理器执行时,实现如权利要求1至5中任意一项所述的发电机冷却控制方法。
  9. 一种计算装置,其特征在于,所述计算装置包括:
    处理器;和
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至5中任意一项所述的发电机冷却控制方法。
  10. 如权利要求9所述的计算装置,其特征在于,所述计算装置设置在风力发电机组的主控制器中。
  11. 一种风力发电机组,其特征在于,所述风力发电机组包括:
    变频器;
    发电机的冷却设备;
    偏航电机;
    如权利要求6或者7所述的发电机冷却控制装置或者如权利要求9或者10所述的计算装置。
PCT/CN2022/122423 2021-12-24 2022-09-29 风力发电机组的发电机冷却控制方法及装置 WO2023116112A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247000812A KR20240018640A (ko) 2021-12-24 2022-09-29 풍력 터빈의 발전기 냉각 제어 방법 및 장치
AU2022419730A AU2022419730A1 (en) 2021-12-24 2022-09-29 Cooling control method and apparatus for generator of wind turbine generator set
EP22909430.5A EP4345287A1 (en) 2021-12-24 2022-09-29 Cooling control method and apparatus for generator of wind turbine generator set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111597027.XA CN116335898A (zh) 2021-12-24 2021-12-24 风力发电机组的发电机冷却控制方法及装置
CN202111597027.X 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116112A1 true WO2023116112A1 (zh) 2023-06-29

Family

ID=86877685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122423 WO2023116112A1 (zh) 2021-12-24 2022-09-29 风力发电机组的发电机冷却控制方法及装置

Country Status (5)

Country Link
EP (1) EP4345287A1 (zh)
KR (1) KR20240018640A (zh)
CN (1) CN116335898A (zh)
AU (1) AU2022419730A1 (zh)
WO (1) WO2023116112A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410669A (zh) * 2002-11-13 2003-04-16 沈阳工业大学 兆瓦级风电机组变速、变距控制系统
CN201243209Y (zh) * 2008-05-06 2009-05-20 成都阜特科技有限公司 风力发电机组控制系统
US20100270798A1 (en) * 2007-12-14 2010-10-28 Vestas Wind Systems A/S Lifetime optimization of a wind turbine generator by controlling the generator temperature
CN201918743U (zh) * 2011-02-15 2011-08-03 黑龙江瑞好科技集团有限公司 双馈风力发电机组的控制系统
CN106523282A (zh) * 2016-12-22 2017-03-22 江苏金风科技有限公司 风力发电机组的环境控制系统及其控制方法
CN110360064A (zh) * 2019-07-17 2019-10-22 中国船舶重工集团海装风电股份有限公司 风力发电机组控制方法和风力发电机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410669A (zh) * 2002-11-13 2003-04-16 沈阳工业大学 兆瓦级风电机组变速、变距控制系统
US20100270798A1 (en) * 2007-12-14 2010-10-28 Vestas Wind Systems A/S Lifetime optimization of a wind turbine generator by controlling the generator temperature
CN201243209Y (zh) * 2008-05-06 2009-05-20 成都阜特科技有限公司 风力发电机组控制系统
CN201918743U (zh) * 2011-02-15 2011-08-03 黑龙江瑞好科技集团有限公司 双馈风力发电机组的控制系统
CN106523282A (zh) * 2016-12-22 2017-03-22 江苏金风科技有限公司 风力发电机组的环境控制系统及其控制方法
CN110360064A (zh) * 2019-07-17 2019-10-22 中国船舶重工集团海装风电股份有限公司 风力发电机组控制方法和风力发电机组

Also Published As

Publication number Publication date
CN116335898A (zh) 2023-06-27
EP4345287A1 (en) 2024-04-03
KR20240018640A (ko) 2024-02-13
AU2022419730A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2023045273A1 (zh) 风储联合惯量响应方法和惯量响应装置
US9223325B2 (en) Temperature estimation based on a fan control signal
US8108697B2 (en) Controlling the power utilization of a computer system by adjusting a cooling fan speed
JP7023680B2 (ja) 発電装置、制御装置および制御プログラム
JP2010539610A (ja) 電圧レギュレータ通信のためのシステムおよび方法
BR102015011276B1 (pt) Aparelho para recuperação de calor e controle de temperatura, e, método para recuperação de calor e controle de temperatura
US10278304B2 (en) Fan control of a computer system based on power ratio
JP2019133635A (ja) 分類可能な熱放散調節を有する電子デバイス
JP2017072894A (ja) 回転制御方法、回転制御プログラム、及び情報処理装置
WO2023116112A1 (zh) 风力发电机组的发电机冷却控制方法及装置
US11058027B2 (en) Systems and methods for controlling air distribution to electronic components
CN110873069B (zh) 风扇参数的控制方法及装置
TWI609268B (zh) 快速週邊組件互連(pcie)裝置的電力狀態控制技術
CN116301282B (zh) 一种多核处理器芯片的低功耗控制方法和装置
WO2023045272A1 (zh) 风储联合调频方法和风储联合调频装置
US20090271649A1 (en) Voltage regulator phase shedding
CN116265734B (zh) 变流器制动控制方法、控制器及风力发电机组
CN112752471A (zh) 一种数据中心散热设备的控制方法和装置、及散热设备
CN115492674A (zh) 电动水泵和散热风扇的控制方法及装置
JP2015026295A (ja) 信号制御回路、情報処理装置及びデューティ算出方法
CN106762771B (zh) 风扇控制系统、散热系统以及风扇控制方法
CN115189058A (zh) 在低温下具有增强性能的电池
CN116292131B (zh) 风力发电机组的控制方法、控制器和风力发电机组
CN110304502A (zh) 一种用于别墅电梯控制柜的散热器风扇的控制方法和系统
CN114335602B (zh) 水热管理方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022909430

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247000812

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000812

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022909430

Country of ref document: EP

Effective date: 20231229

WWE Wipo information: entry into national phase

Ref document number: 2022419730

Country of ref document: AU

Ref document number: AU2022419730

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024000941

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022419730

Country of ref document: AU

Date of ref document: 20220929

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112024000941

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240117