WO2023115950A1 - 用于控制空调的方法、装置和多联机空调 - Google Patents

用于控制空调的方法、装置和多联机空调 Download PDF

Info

Publication number
WO2023115950A1
WO2023115950A1 PCT/CN2022/108784 CN2022108784W WO2023115950A1 WO 2023115950 A1 WO2023115950 A1 WO 2023115950A1 CN 2022108784 W CN2022108784 W CN 2022108784W WO 2023115950 A1 WO2023115950 A1 WO 2023115950A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
room
air conditioner
rate
threshold
Prior art date
Application number
PCT/CN2022/108784
Other languages
English (en)
French (fr)
Inventor
王文博
郝本华
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023115950A1 publication Critical patent/WO2023115950A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of intelligent air conditioners, for example, to a method and device for controlling an air conditioner, and a multi-connected air conditioner.
  • air conditioners can be installed in different rooms in a family. These air conditioners can be multi-connected air conditioners or split-type air conditioners. Each air conditioner can adjust the temperature of the room where it is located. In the process of adjusting the temperature in the home, a set temperature can be set, and the room whose indoor temperature is higher than the set temperature is determined as a cooling room. If the air conditioner in the cooling room is in the heating mode, the air conditioner in the cooling room will The operating mode of the system is switched to cooling mode, so that the temperature of multiple rooms in the home can be adjusted to the target temperature.
  • the controller with the function of eliminating deviation is used for control, that is, firstly determine the temperature difference between the indoor temperature and the set temperature, and then determine the cooling power or heating power of the air conditioner according to the temperature difference, and , the greater the temperature difference, the greater the cooling power or heating power.
  • the first room is in a cooling state, and the second room is in a heating state. If the temperature difference is greater, the cooling power of the first air conditioner in the first room is increased, and the second The greater the heating power of the second air conditioner in the second room, the smaller the heat flow in the two rooms is likely to be, which increases the energy consumption of the air conditioner.
  • Embodiments of the present application provide a method and device for controlling an air conditioner, and a multi-connected air conditioner, so as to reduce the energy consumption of the air conditioner in the process of cooling a first room and heating a second room that has heat exchange with the first room.
  • the method for controlling an air conditioner includes: obtaining a first indoor temperature of the first room and a second indoor temperature of the second room in the case of cooling the first room and raising the temperature of the second room; There is heat exchange between the first room and the second room; according to the first indoor temperature and the second indoor temperature, the current temperature adjustment phase is determined in the preset temperature adjustment phase; the preset temperature adjustment phase includes The first temperature adjustment stage and the second temperature adjustment stage, the first temperature reduction rate of the first room corresponding to the first temperature adjustment stage is greater than the second temperature reduction rate of the first room corresponding to the second temperature adjustment , the first temperature rise rate corresponding to the second room in the first temperature regulation stage is greater than the second temperature drop rate in the second room corresponding to the second temperature regulation stage; in the current temperature regulation stage, the In the case of the first temperature adjustment stage, obtain the cooling energy efficiency ratio of the first air conditioner in the first room and the heating energy efficiency ratio of the second air conditioner in the second room; if the cooling energy efficiency ratio is greater than the heating energy efficiency ratio, then reduce the
  • reducing the first temperature increase rate includes: reducing the first temperature increase rate and maintaining the first temperature decrease rate; or reducing the first temperature increase rate and increasing the first temperature decrease rate; Alternatively, reduce the first temperature increase rate, reduce the first temperature decrease rate, so that the decrease value of the first temperature increase rate is greater than the decrease value of the first temperature decrease rate.
  • reducing the first cooling rate includes: cooling the first cooling rate and maintaining the first heating rate; or reducing the first cooling rate and increasing the first heating rate; Or, reduce the first temperature drop rate, reduce the first temperature rise rate, so that the decrease value of the first temperature drop rate is greater than the decrease value of the first temperature increase rate.
  • determining the current temperature adjustment stage in the preset temperature adjustment stage includes: when the first indoor temperature is greater than or equal to a first temperature threshold, and When the second indoor temperature is less than or equal to the second temperature threshold, the first temperature adjustment stage is determined as the current temperature adjustment stage; when the first indoor temperature is less than the first temperature threshold, and the When the second indoor temperature is greater than the second temperature threshold, the second temperature adjustment stage is determined as the current temperature adjustment stage.
  • the preset temperature adjustment stage further includes a third temperature adjustment stage, and the third temperature reduction rate of the first room corresponding to the third temperature adjustment stage is smaller than the second temperature reduction rate; the third temperature adjustment The third heating rate of the second room corresponding to the stage is less than the second heating rate;
  • determining the current temperature adjustment stage further includes: when the first indoor temperature is less than a third temperature threshold, and the second indoor temperature When the temperature is greater than the fourth temperature threshold, the third temperature adjustment stage is determined as the current temperature adjustment stage; the third temperature threshold is smaller than the first temperature threshold, and the fourth temperature threshold is greater than the A second temperature threshold; wherein, the third temperature threshold and the fourth temperature threshold are known values.
  • the method for controlling the air conditioner further includes: when the current temperature adjustment stage is the second temperature adjustment stage, controlling the first air conditioner in the first room and the second air conditioner in the second room.
  • An air conditioner such that the cooling rate of the first room is the second cooling rate, and the heating rate of the second room is the second heating rate.
  • the determination of the preset temperature adjustment stage includes: when the method is executed for the first time, obtaining the first temperature difference between the third indoor temperature of the first room and the set temperature, and the difference between the set temperature and the set temperature. A second temperature difference of the fourth indoor temperature of the second room; obtaining a first product of the first temperature difference and a set ratio, and a second product of the second temperature difference and the set ratio ; According to the size relationship between the first product and the second product, determine a first temperature threshold and a second temperature threshold; divide the cooling process of the first room into the first temperature threshold according to the first temperature threshold A cooling phase and the second cooling phase: dividing the heating process of the second room into the first heating phase and the second heating phase according to the second temperature threshold.
  • determining the first temperature threshold and the second temperature threshold according to the size relationship between the first product and the second product includes: when the first product is smaller than the second product , determining the sum of the first product and the set temperature as the first temperature threshold; determining the second temperature threshold according to the first temperature threshold, so that within the same duration, the first A room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room is raised to the set temperature from the second temperature threshold under the control of the second air conditioner;
  • the difference between the set temperature and the second product is determined as the second temperature threshold; the first temperature is determined according to the second temperature threshold threshold, so that within the same period of time, the first room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room is lowered from the second temperature threshold under the control of the second air conditioner. raised to the set temperature.
  • the apparatus for controlling an air conditioner includes a first obtaining module, a determining module, a second obtaining module, a first control module, and a second control module;
  • the first obtaining module is configured to In the case of cooling down and heating up the second room, the first indoor temperature of the first room and the second indoor temperature of the second room are obtained; there is heat exchange between the first room and the second room;
  • the determination module is It is configured to determine a current temperature regulation stage in a preset temperature regulation stage according to the first indoor temperature and the second indoor temperature;
  • the preset temperature regulation stage includes a first temperature regulation stage and a second temperature regulation stage, The first temperature drop rate of the first room corresponding to the first temperature adjustment stage is greater than the second temperature drop rate of the first room corresponding to the second temperature adjustment, and the first temperature adjustment stage corresponds to the second temperature drop rate of the first room.
  • the first temperature rise rate of the second room is greater than the second temperature drop rate of the second room corresponding to the second temperature adjustment stage;
  • the second obtaining module is configured to In the warm phase, obtain the cooling energy efficiency ratio of the first air conditioner in the first room and the heating energy efficiency ratio of the second air conditioner in the second room;
  • the first control module is configured to if the cooling energy efficiency ratio is greater than the heating energy efficiency ratio, then reduce the first heating rate, and control the second air conditioner in the second room, so that the heating rate of the second room is the reduced first heating rate;
  • the The second control module is configured to reduce the first cooling rate if the cooling energy efficiency ratio is smaller than the heating energy efficiency ratio, and control the first air conditioner in the first room to lower the temperature of the first room The rate is the first cooling rate after the reduction.
  • the device for controlling an air conditioner includes a processor and a memory storing program instructions, and the processor is configured to execute the method for controlling an air conditioner provided in the foregoing embodiments when executing the program instructions. .
  • the multi-connected air conditioner includes the device for controlling the air conditioner provided in the foregoing embodiments.
  • the method, device, and multi-connected air conditioner provided in the embodiments of the present application can achieve the following technical effects:
  • the first cooling rate of the first room corresponding to the first temperature adjustment stage is smaller than the second cooling rate of the first room corresponding to the second temperature adjustment stage, and the first temperature increase rate of the second room corresponding to the second temperature adjustment stage is smaller than the second temperature increase rate of the second room corresponding to the second temperature adjustment stage
  • the second temperature rise rate of the second room corresponding to the temperature adjustment stage thus, in the second temperature adjustment stage, the temperature difference between the first indoor temperature of the first room and the second indoor temperature of the second room decreases rapidly , it is beneficial to adjust the first indoor temperature and the second indoor temperature to the set temperature at a faster speed; in the first temperature adjustment stage, the difference between the first indoor temperature of the first room and the second indoor temperature of the second room Maintaining a large temperature difference between rooms is conducive to the heat flow from the first room to the second room, using passive heat flow to cool down the first room and heat up the second room, and, in the first temperature adjustment stage, if cooling If the energy efficiency ratio is greater than the heating energy efficiency ratio, then reduce the first heating rate, so
  • FIG. 1 is a schematic diagram of an implementation scenario of a method for controlling an air conditioner provided in an embodiment of the present application
  • Fig. 2 is a schematic flowchart of a method for controlling an air conditioner provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a process for determining a preset temperature adjustment stage provided by an embodiment of the present application
  • Fig. 4 is a schematic flowchart of a method for controlling an air conditioner provided in an embodiment of the present application
  • Fig. 5 is a schematic diagram of a device for controlling an air conditioner provided in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present application.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • Fig. 1 is a schematic diagram of an implementation scenario of a method for controlling an air conditioner provided by an embodiment of the present application.
  • This implementation scenario includes a first room RM1 and a second room RM2.
  • a first air conditioner K1 is installed in the first room RM1.
  • the first air conditioner K1 can adjust the first indoor temperature T1 in the first room RM1.
  • There is a second air conditioner K2 the second air conditioner K2 can adjust the second indoor temperature T2 in the second room RM2, the first room RM1 and the second room RM2 can conduct heat exchange through the passage P, which can be an open door, Or open windows, or open doors and windows.
  • Whether the channel P is opened can be detected by the door and/or window opening state detection device. Whether there is heat exchange between the first room RM1 and the second room RM2.
  • the method for controlling the air conditioner provided in the embodiment of the present application is suitable for a scene where the temperature difference between the first indoor temperature T1 of the first room RM1 and the second indoor temperature T2 of the second room RM2 is large.
  • the first room RM1 such as the room where infants are
  • the second room RM2 such as the room where young people are
  • the required set temperatures are all different, and the first indoor temperature T1 and the second indoor temperature T2 of the first room RM1 and the second room T2 have reached their respective set temperatures; thus, in the first room RM1 and the second room After RM2 switches from the state of no heat exchange to the state of heat exchange, the temperature difference between the first indoor temperature T1 of the first room RM1 and the second indoor temperature T2 of the second room RM2 is relatively large; After the heat exchange between the room RM1 and the second room RM2, the set temperature shared by the first
  • the first cooling rate of the first room RM1 is lower, and the first heating rate of the second room RM2 is lower, so that the temperature between the first room RM1 and the second room RM2 Maintaining a relatively high temperature difference between the two rooms is conducive to the heat flow between the first room RM1 and the second room RM2, and the heat flow between the two rooms is conducive to reducing the first indoor temperature T1 of the first room RM1 and is conducive to increasing the second room RM1.
  • the second indoor temperature T2 of the second room RM2 which will reduce the total energy consumption of the first air conditioner K1 and the second air conditioner K2; in the second temperature adjustment stage, the first room RM1 and the second cooling rate are higher, and the second room The second heating rate of RM2 is relatively high, so that both the first room RM1 and the second room RM2 can reach the set temperature relatively quickly.
  • the total energy consumption of the air conditioner and the temperature adjustment speed (the speed at which the temperature of the two rooms reach the set temperature) can be balanced.
  • Fig. 2 is a schematic flowchart of a method for controlling an air conditioner provided by an embodiment of the present application.
  • the method for controlling the air conditioner may be executed by a controller of the air conditioner, or by a control panel or a remote controller communicatively connected with the air conditioner, or by a server of a smart home system.
  • the method for controlling the air conditioner is exemplarily described by taking the method for controlling the air conditioner to control the first air conditioner and the second air conditioner shown in FIG. 1 as an example.
  • the method for controlling the air conditioner includes:
  • the temperature of the first room is higher than the temperature of the second room, and heat can flow from the first room to the second room.
  • the first room temperature is higher than the set temperature, and the first room needs to be cooled; the second room temperature is lower than the set temperature, and the second room needs to be cooled.
  • the room is warmed up.
  • the preset temperature adjustment stage is set before performing the above steps.
  • the preset temperature adjustment stage includes the first temperature adjustment stage and the second temperature adjustment stage.
  • the first temperature reduction rate of the first room corresponding to the first temperature adjustment stage is greater than the second
  • the second cooling rate of the first room corresponding to the adjusted temperature is greater than the second cooling rate of the second room corresponding to the second temperature adjustment stage.
  • the temperature drop rate (including the above-mentioned first temperature drop rate, the second temperature drop rate and the third temperature drop rate hereinafter) and the temperature rise rate (including the above-mentioned first temperature rise rate, the second temperature rise rate and The third heating rate) in the following texts are all represented by positive numbers; of course, in the specific application process, for the convenience of calculation, the cooling rate and the heating rate can have positive and negative signs.
  • the cooling rate is positively correlated with the cooling power of the first air conditioner in the first room, and the cooling power of the first air conditioner corresponding to the second cooling rate does not exceed the rated cooling power of the first air conditioner;
  • the heating rate is positively correlated with the heating power of the second air conditioner , the heating power of the second air conditioner corresponding to the second heating rate does not exceed the rated heating power of the second air conditioner.
  • determining the current temperature adjustment stage in the preset temperature adjustment stage includes: the first indoor temperature is greater than or equal to the first temperature threshold, and the second indoor temperature is less than or equal to In the case of the second temperature threshold, the first temperature adjustment stage is determined as the current temperature adjustment stage; when the first indoor temperature is less than the first temperature threshold, and the second indoor temperature is greater than the second temperature threshold, the second The temperature stage is determined as the current temperature regulation stage.
  • the first temperature threshold and the second temperature threshold may be preset, the first temperature threshold is greater than the set temperature of the first room, and the second temperature threshold is less than the set temperature of the second room.
  • the solution provided by the embodiment of the present application is suitable for the first indoor temperature of the first room to gradually decrease from greater than the first temperature threshold to the set temperature, and the second indoor temperature of the second room is lower than the second temperature Thresholds are raised to set temperature conditions.
  • the current temperature adjustment stage is the first temperature adjustment stage, and as time goes by, the first indoor temperature
  • the temperature in the first room will be greater than or equal to the first temperature threshold
  • the temperature in the second room will be greater than the second temperature threshold, or the temperature in the first room will be lower than the first temperature threshold
  • the second indoor temperature is less than or equal to the second temperature threshold
  • the first temperature adjustment stage is still determined as the current temperature adjustment stage until the first indoor temperature is lower than the first temperature threshold and the second indoor temperature is greater than the second temperature threshold.
  • the second temperature regulation stage is determined as the current temperature regulation stage.
  • the preset temperature adjustment stage may also include a third temperature adjustment stage, the third temperature reduction rate of the first room corresponding to the third temperature adjustment stage is smaller than the second temperature reduction rate, and the third temperature adjustment stage corresponds to the third temperature reduction rate of the second room.
  • the third temperature rise rate is less than the second temperature rise rate
  • the confirmation of the third temperature adjustment stage may include: when the first indoor temperature is less than the third temperature threshold, and the second indoor temperature is greater than the fourth temperature threshold, the third temperature adjustment The stage is determined as the current temperature adjustment stage; the third temperature threshold is less than the first temperature threshold, and the fourth temperature threshold is greater than the second temperature threshold; wherein, the third temperature threshold and the fourth temperature threshold are known values, and the third temperature threshold is greater than the first temperature threshold The set temperature of the first room, the fourth temperature threshold is smaller than the set temperature of the second room.
  • the confirmation of the second temperature adjustment stage may include: the first indoor temperature is less than the first temperature threshold and greater than or equal to the third temperature threshold, and the second indoor temperature is greater than the second temperature threshold and less than or equal to the fourth temperature In the case of the threshold value, the second temperature regulation stage is determined as the current temperature regulation stage.
  • the first indoor temperature of the first room gradually drops, and the second indoor temperature of the second room gradually rises. It may happen that the first indoor temperature is lower than the third temperature threshold, but the second indoor temperature is not greater than the fourth temperature threshold, or the first indoor temperature is not less than the third temperature threshold, but the second indoor temperature is greater than the fourth temperature threshold, at this time the second temperature adjustment stage is still determined as the current temperature adjustment
  • the third temperature adjustment stage is determined as the current temperature adjustment stage until the first indoor temperature is less than the third temperature threshold and the second indoor temperature is greater than the second indoor temperature is greater than the fourth temperature threshold.
  • the third heating rate is less than the second heating rate, and the third cooling rate is lower than the second cooling rate, which is conducive to the stable reduction of the first indoor temperature of the first room to the set temperature, and the stable reduction of the second indoor temperature of the second room to the set temperature. set temperature.
  • the first air conditioner in the first room can be controlled according to the cooling rate corresponding to the current temperature adjustment stage, and the second air conditioner in the second room can be controlled according to the temperature increase rate corresponding to the current temperature adjustment stage.
  • the energy efficiency ratio is used to express the ratio of energy conversion efficiency.
  • the cooling energy efficiency ratio is the cooling performance coefficient of the air conditioner, indicating the cooling capacity of the air conditioner under the unit power;
  • the heating energy efficiency ratio is the heating performance coefficient of the air conditioner, indicating the heating capacity of the air conditioner under the unit power .
  • cooling energy efficiency ratio is greater than the heating energy efficiency ratio, reduce the first heating rate, and control the second air conditioner in the second room, so that the temperature increasing rate of the second room is the reduced first heating rate.
  • reducing the first heating rate may include: reducing the first heating rate and maintaining the first cooling rate; or reducing the first heating rate and increasing the first cooling rate; or reducing the first heating rate and reducing the first heating rate.
  • the cooling rate is such that the lowering value of the first heating rate is greater than the lowering value of the first cooling rate.
  • the first heating rate is positively correlated with the heating power of the second air conditioner. If the first heating rate is reduced, the heating power of the second air conditioner will also be adaptively reduced. At this time, for the second room, the heating power of the second air conditioner
  • the effect of thermal effect on the temperature increase of the second room is weakened, and correspondingly, the effect of heat flow between the first room and the second room on the temperature increase of the second room is enhanced, which is beneficial to reduce the second air conditioner in the second room energy consumption.
  • the cooling energy efficiency ratio of the first air conditioner is greater than the heating energy efficiency ratio of the second air conditioner, reducing the heating power of the second air conditioner is also conducive to improving the energy efficiency ratio of the first air conditioner and the second air conditioner as a whole.
  • the cooling energy efficiency ratio of the first air conditioner is greater than the heating energy efficiency ratio of the second air conditioner, the increase value of the first cooling rate and When the reduction value of the first heating rate is the same, the energy consumption reduced by the second air conditioner is greater than the energy consumption increased by the first air conditioner, which is also beneficial to reduce the total energy consumption of the first air conditioner and the second air conditioner.
  • controlling the second air conditioner in the second room so that the temperature rise rate of the second room is the reduced first temperature rise rate may include: determining the corresponding first temperature rise rate according to the volume of the second room and the reduced first temperature rise rate.
  • the heating power of the second air conditioner is used to control the operation of the second air conditioner according to the determined heating power of the second air conditioner. The larger the volume of the first room, the greater the heating power of the second air conditioner, and the greater the first heating rate, the greater the heating power of the second air conditioner.
  • cooling energy efficiency ratio is lower than the heating energy efficiency ratio, reduce the first cooling rate, and control the first air conditioner in the first room, so that the cooling rate of the first room is the reduced first cooling rate.
  • reducing the first cooling rate may include: lowering the first cooling rate and maintaining the first heating rate unchanged; or reducing the first cooling rate and increasing the first heating rate; or reducing the first cooling rate and reducing the first heating rate.
  • the temperature increase rate is such that the decrease value of the first temperature decrease rate is greater than the decrease value of the first temperature increase rate.
  • the cooling effect of the first air conditioner, and the heat flow between the first room and the second room both contribute to the temperature reduction of the first room.
  • the first cooling rate is positively correlated with the cooling power of the first air conditioner. If the first cooling rate is reduced, the cooling power of the first air conditioner will also be adaptively reduced.
  • the cooling effect of the first air conditioner is The temperature-lowering effect of the second room is weakened, and correspondingly, the heat flow between the first room and the second room has a stronger effect on the temperature-lowering effect of the first room, which is beneficial to reduce the energy consumption of the first air conditioner in the first room.
  • the cooling energy efficiency ratio of the first air conditioner is lower than the heating energy efficiency ratio of the second air conditioner, reducing the cooling power of the first air conditioner is also conducive to improving the energy efficiency ratio of the first air conditioner and the second air conditioner as a whole.
  • the volume of the first room and the second room are the same, even if the first heating rate is increased at the same time, since the cooling energy efficiency ratio of the first air conditioner is smaller than the heating energy efficiency ratio of the second air conditioner, the increase value of the first heating rate and Under the condition that the reduction value of the first cooling rate is the same, the energy consumption reduced by the first air conditioner is greater than the energy consumption increased by the second air conditioner, which is also beneficial to reduce the total energy consumption of the first air conditioner and the second air conditioner.
  • controlling the first air conditioner in the first room so that the cooling rate of the first room is the reduced first cooling rate may include: determining the corresponding first cooling rate according to the volume of the first room and the reduced first cooling power. A cooling power of the air conditioner, and the operation of the first air conditioner is controlled according to the determined cooling power of the first air conditioner.
  • the first air conditioner and the second air conditioner can be controlled so that the cooling rate of the first room is the first cooling rate corresponding to the first temperature adjustment stage, and the heating rate of the second room is is the first temperature rise rate corresponding to the first temperature adjustment stage.
  • the first cooling rate of the first room corresponding to the first temperature adjustment stage is smaller than the second cooling rate of the first room corresponding to the second temperature adjustment stage, and the first temperature increase rate of the second room corresponding to the second temperature adjustment stage is smaller than the second temperature increase rate of the second room corresponding to the second temperature adjustment stage
  • the second temperature rise rate of the second room corresponding to the temperature adjustment stage thus, in the second temperature adjustment stage, the temperature difference between the first indoor temperature of the first room and the second indoor temperature of the second room decreases rapidly , it is beneficial to adjust the first indoor temperature and the second indoor temperature to the set temperature at a faster speed; in the first temperature adjustment stage, the difference between the first indoor temperature of the first room and the second indoor temperature of the second room Maintaining a large temperature difference between rooms is conducive to the heat flow from the first room to the second room, using passive heat flow to cool down the first room and heat up the second room, and, in the first temperature adjustment stage, if cooling If the energy efficiency ratio is greater than the heating energy efficiency ratio, then reduce the first heating rate, so
  • the preset temperature regulation stage may include a first temperature regulation stage and a second temperature regulation stage, and if the current temperature regulation stage is the second temperature regulation stage, the first air conditioner in the first room and the second air conditioner in the second room are controlled , so that the cooling rate of the first room is the second cooling rate, and the heating rate of the second room is the second heating rate.
  • the first room can be cooled at an equal rate, and the second room can be heated at an equal rate;
  • Unequal rate temperature adjustment for example, use the existing temperature controller (such as PID controller) to control the first indoor temperature and the second indoor temperature, so that the first indoor temperature and the second indoor temperature are close to the set temperature .
  • the preset temperature regulation stage may also include a third temperature regulation stage.
  • the current temperature regulation stage is the third temperature regulation stage
  • the first air conditioner in the first room and the second air conditioner in the second room are controlled so that the first room
  • the cooling rate of the room is the third cooling rate
  • the heating rate of the second room is the third heating rate.
  • the first room in the first temperature adjustment stage, can be cooled at an equal rate, and the second room can be heated at an equal rate; in the second temperature adjustment stage, the first room can be cooled at an equal rate, The temperature of the second room is increased at a constant rate; in the third temperature adjustment stage, unequal rate temperature adjustment can be performed between the first room and the second room, for example, using an existing temperature controller (such as a PID controller) to control the temperature of the first room.
  • the indoor temperature and the second indoor temperature are controlled so that both the first indoor temperature and the second indoor temperature approach the set temperature.
  • the decrease value of the first indoor temperature is small, and the increase value of the second indoor temperature is small, It is more conducive to reducing the overshoot when the two reach the set temperature, and is conducive to making both the first indoor temperature and the second indoor temperature reach the set temperature stably.
  • the method for controlling the air conditioner provided in the embodiment of the present application is more suitable for the case where the difference between the initial temperature of the first room and the set temperature is relatively large, and the difference between the initial temperature of the second room and the set temperature is relatively large. and, if the cooling energy efficiency ratio is greater than the heating energy efficiency ratio, then the method may To achieve better results, if the cooling energy efficiency ratio is lower than the heating energy efficiency ratio, the difference between the initial temperature and the set temperature of the first room is smaller than the difference between the initial temperature and the set temperature of the second room, this method can achieve better results.
  • Fig. 3 is a schematic diagram of a process for determining a preset temperature adjustment stage provided by an embodiment of the present application. As shown in Figure 3, the determination of the preset temperature adjustment stage includes:
  • the preset temperature adjustment stage is determined according to the third indoor temperature of the first room, the fourth set temperature and the set temperature of the second room at that time.
  • the first room and the second room are switched from the state without heat exchange to the state with heat exchange, it is the first time to execute the method; or, after the set temperature is changed, it is the first time to execute the method.
  • the set temperature here refers to the set temperature shared by the first room and the second room.
  • the first temperature difference and the second temperature difference are positive values
  • the third indoor temperature is used to subtract the set temperature to obtain the first temperature difference
  • the set temperature is used
  • the second temperature difference is obtained by subtracting the fourth indoor temperature.
  • both the first temperature difference and the second temperature difference may have a sign.
  • the set ratio here may be greater than or equal to 1/2, for example, the set ratio may be 1/2, 2/3, 3/4 or 4/5.
  • the setting ratio is too large, it will take too long for the first indoor temperature and the second indoor temperature to reach the set temperature; if the setting ratio is too small, it will cause the energy consumption of the first air conditioner and the second air conditioner to increase .
  • the set ratio that meets the actual needs based on this, and details will not be repeated here.
  • the first product may be determined as the first temperature threshold; if the first product is greater than or equal to the second product, the second product may be determined as the second temperature threshold.
  • determining the first temperature threshold and the second temperature threshold may include: when the first product is smaller than the second product, combining the first product with the set temperature and, determined as the first temperature threshold; determine the second temperature threshold according to the first temperature threshold, so that within the same period of time, the first room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room Under the control of the second air conditioner, the temperature is increased from the second temperature threshold to the set temperature.
  • the difference between the set temperature and the second product is determined as the second temperature threshold; the first temperature threshold is determined according to the second temperature threshold, so that within the same duration, The first room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room is raised to the set temperature from the second temperature threshold under the control of the second air conditioner.
  • the first room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room is lowered to the set temperature under the control of the second air conditioner.
  • the lower temperature rises from the second temperature threshold to the set temperature.
  • the first temperature threshold is negatively correlated with the volume of the first room, and the first temperature threshold is positively correlated with the cooling power of the first air conditioner; the second temperature threshold is positively correlated with the volume of the first room, and the second temperature threshold is positively correlated with the cooling power of the second air conditioner. Thermal power is negatively correlated.
  • the first temperature threshold and the second temperature threshold can be obtained through experiments.
  • the longer the above-mentioned same time length the longer the time for the first room to cool down quickly, and the shorter the time for the first room to reach the set temperature from the initial temperature.
  • the time required for the second room to reach the set temperature from the initial temperature The shorter the above-mentioned same time, the shorter the time for the first room to quickly cool down, and the longer it takes for the first room to reach the set temperature from the initial temperature. It takes longer.
  • Those skilled in the art can adaptively adjust the above-mentioned same duration according to the expected duration of the first room from the initial temperature to the set temperature and the expected duration of the second room from the initial temperature to the set temperature, which is not specifically limited here.
  • the above solution for determining the first temperature threshold and the second temperature threshold is applicable to the case where the preset temperature adjustment stage includes two temperature adjustment stages: the first temperature adjustment stage and the second temperature adjustment stage.
  • determining the first temperature threshold and the second temperature threshold includes: when the first product is less than the second product In the case of , the first product is determined as the first temperature threshold; the first threshold difference between the first temperature threshold and the third temperature threshold is obtained; the second threshold difference corresponding to the first threshold difference is obtained; The sum of the difference between the fourth temperature threshold and the second threshold is determined as the second temperature threshold.
  • determining the first temperature threshold and the third temperature threshold according to the size relationship between the first product and the second product may include: when the first product is greater than or equal to the second product, determining the second product as the second temperature threshold; obtain the second threshold difference between the second temperature threshold and the fourth temperature threshold; obtain the first threshold difference corresponding to the second threshold difference; determine the sum of the third temperature threshold and the first threshold difference is the first temperature threshold.
  • the above-mentioned third temperature threshold is related to the stability ability of the first air conditioner when it adjusts the temperature of the first room. The stronger the stability ability of the first air conditioner, the smaller the third temperature threshold value, the weaker the stability ability of the first air conditioner, and the weaker the stability ability of the third air conditioner.
  • the temperature threshold needs to be larger; the above-mentioned fourth temperature threshold is related to the stability ability of the second air conditioner to adjust the temperature of the second room. The stronger the stability ability of the second air conditioner, the smaller the fourth temperature threshold can be. The stability of the second air conditioner The weaker the capability, the larger the fourth temperature threshold needs to be.
  • the stability ability of the first air conditioner when it adjusts the temperature of the first room can be represented by the time required for the temperature in the first room to reach the set temperature for the first time until the difference between the temperature in the first room and the set temperature stabilizes within the range of the dead zone , the longer the duration is, the weaker the stability capability of the first air conditioner is, and the shorter the duration is, the stronger the stability capability of the first air conditioner is.
  • the stability of the second air conditioner when it adjusts the temperature of the second room can be expressed by the time required for the temperature of the second room to reach the set temperature for the first time until the difference between the temperature of the second room and the set temperature stabilizes within the range of the dead zone , the longer the duration is, the weaker the stability capability of the second air conditioner is, and the shorter the duration is, the stronger the stability capability of the second air conditioner is.
  • the above correspondence between the first threshold difference and the second threshold difference may include: when there is no heat exchange between the first room and the second room, controlling the first air conditioner to run for the first set time according to the set cooling power , determine the falling temperature of the first room as the first threshold difference; control the second air conditioner to run according to the set heating power for the first set time, and determine the rising temperature of the second room as the second temperature threshold.
  • first set time length based on the expected time length for the first room to reach the set temperature from the initial temperature, and the expected time length for the second room to reach the set temperature from the initial temperature, which will not be done here Specific limits.
  • the set cooling power here may be the rated cooling power of the first air conditioner, and the set heating power may be the rated heating power of the second air conditioner; or, the ratio of the set cooling power to the rated cooling power of the first air conditioner, and The ratio of the set heating power to the rated heating power of the second air conditioner is the same.
  • the ratio can be 5/6, 4/5, 3/4, etc.
  • the first temperature threshold and the second temperature threshold can be determined in the above manner.
  • the temperature interval greater than or equal to the first temperature threshold is determined as the first temperature-reducing stage, and the temperature interval less than the first temperature threshold and greater than the set temperature is determined as the second temperature-reducing stage.
  • the cooling process of the first room can be divided into the first cooling stage, the second cooling stage and the third cooling stage according to the first temperature threshold and the third temperature threshold stage.
  • the temperature interval greater than or equal to the first temperature threshold is determined as the first cooling stage
  • the temperature interval less than the first temperature threshold and greater than or equal to the third temperature threshold is determined as the second cooling stage
  • the temperature interval less than the third temperature threshold and greater than The temperature range of the set temperature is determined as the third cooling stage.
  • the temperature range less than or equal to the second temperature threshold is determined as the first temperature rise stage, and the temperature range greater than the second temperature threshold and lower than the set temperature is determined as the second temperature rise stage.
  • the temperature rise process of the second room can be divided into the first temperature rise stage, the second temperature rise stage and the third temperature rise stage according to the second temperature threshold and the fourth temperature threshold stage.
  • the above process is a process of dividing two or three temperature adjustment stages. According to the dividing rules, the moment when the temperature of the first room reaches the first temperature threshold and the moment when the temperature of the second room reaches the third temperature threshold is the same; the temperature of the first room reaches the third temperature threshold; The second temperature threshold is the same as the moment when the temperature of the second room reaches the fourth temperature threshold.
  • the specific temperature adjustment stage is still determined according to the above-mentioned first temperature difference value and the second temperature difference value.
  • the preset temperature regulation stage includes the first temperature regulation stage and the second temperature regulation stage:
  • both the first air conditioner and the second air conditioner can use the existing control method with the function of eliminating deviation, the room temperature drop rate of the first room (second temperature drop rate) and the room temperature rise rate of the second room (second temperature drop rate) Two heating rates) can be controlled by the corresponding control method.
  • the corresponding relationship between the temperature adjustment stage and the room temperature change rate can be determined in the following manner: obtain the temperature drop value from the third temperature difference to the first temperature threshold; The quotient determines the first cooling rate of the first room corresponding to the first temperature adjustment stage; obtains the temperature increase value from the fourth temperature difference to the third temperature threshold; according to the quotient of the temperature increase value and the second set duration , to determine the first heating rate of the second room corresponding to the first temperature adjustment stage.
  • the second set duration is generally greater than the aforementioned first set duration, and the second set duration may be 2 times, 2.5 times, 3 times or more of the first set duration.
  • the preset temperature regulation stage includes the first temperature regulation stage, the second temperature regulation stage and the third temperature regulation stage:
  • both the first air conditioner and the second air conditioner can use the existing control method with the function of eliminating deviation, the room temperature drop rate of the first room (the third temperature drop rate) and the room temperature rise rate of the second room (the first room temperature increase rate) Three heating rates) can be controlled by the corresponding control method.
  • the room temperature drop rate (second temperature drop rate) of the first room corresponds to the set cooling power of the first air conditioner; the room temperature rise rate (second temperature increase rate) of the second room corresponds to the set cooling power of the second air conditioner Customized thermal power correspondence.
  • the set cooling power can be 5/6, 4/5 or 3/4 of the rated cooling power of the first air conditioner, and the set heating power can be 5/6, 4/5 or 3/4 of the rated heating power of the second air conditioner 3/4; the ratio of the set cooling power to the rated cooling power of the first air conditioner may be equal to the ratio of the set heating power to the rated heating power of the second air conditioner.
  • the corresponding relationship between the temperature adjustment stage and the room temperature change rate can be determined in the following manner: obtain the temperature drop value from the third temperature difference to the first temperature threshold; The quotient determines the first cooling rate of the first room corresponding to the first temperature adjustment stage; obtains the temperature increase value from the fourth temperature difference to the third temperature threshold; according to the quotient of the temperature increase value and the second set duration , to determine the first heating rate of the second room corresponding to the first temperature adjustment stage.
  • the second set duration is generally greater than the aforementioned first set duration, and the second set duration may be 2 times, 2.5 times, 3 times or more of the first set duration.
  • the corresponding relationship between the temperature adjustment stage and the room temperature change rate can be obtained, and then the current temperature adjustment stage can be determined according to the first temperature difference and the second temperature difference, and the first air conditioner and the second air conditioner can be adjusted according to the current temperature adjustment stage. Take control.
  • Fig. 4 is a schematic flowchart of a method for controlling an air conditioner provided by an embodiment of the present application.
  • the method for controlling the air conditioner may be executed by a controller of the air conditioner, or by a control panel or a remote controller communicatively connected with the air conditioner, or by a server of a smart home system.
  • the method for controlling the air conditioner is exemplarily described by taking the method for controlling the air conditioner to control the first air conditioner and the second air conditioner shown in FIG. 1 as an example.
  • the method for controlling the air conditioner includes:
  • S403. Determine a first temperature threshold and a second temperature threshold according to the magnitude relationship between the first product and the second product.
  • the first indoor temperature When the first indoor temperature reaches the set temperature, it may be that the temperature difference between the first set temperature and the set temperature is within the range of the dead zone; when the second indoor temperature reaches the set temperature, it may be that the second set temperature is within the range of the set temperature. The temperature difference is within the dead zone range.
  • Fig. 5 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present application.
  • the device for controlling the air conditioner can be implemented in the form of software, hardware, or a combination of hardware and software.
  • a control module 54 and a second control module 55; the first obtaining module 51 is configured to obtain the first indoor temperature of the first room and the second indoor temperature of the second room when the temperature of the first room is lowered and the temperature of the second room is raised.
  • the determination module 52 is configured to determine the current temperature adjustment stage in the preset temperature adjustment stage according to the first indoor temperature and the second indoor temperature; the preset temperature adjustment stage Including the first temperature regulation stage and the second temperature regulation stage, the first temperature drop rate of the first room corresponding to the first temperature regulation stage is greater than the second temperature drop rate of the first room corresponding to the second temperature regulation, the first temperature regulation stage corresponds to The first temperature rise rate of the second room is greater than the second temperature drop rate of the second room corresponding to the second temperature adjustment stage; the second obtaining module 53 is configured to obtain the first temperature adjustment stage when the current temperature adjustment stage is the first temperature adjustment stage The cooling energy efficiency ratio of the first air conditioner in one room and the heating energy efficiency ratio of the second air conditioner in the second room; the first control module 54 is configured to reduce the first heating rate if the cooling energy efficiency ratio is greater than the heating energy efficiency ratio, and Control the second air conditioner in the second room so that the temperature increase rate of the second room is the first temperature increase rate
  • reducing the first heating rate includes: reducing the first heating rate and maintaining the first cooling rate; or reducing the first heating rate and increasing the first cooling rate; or reducing the first heating rate and reducing the first heating rate.
  • a cooling rate so that the lowering value of the first heating rate is greater than the lowering value of the first cooling rate.
  • reducing the first cooling rate includes: lowering the first cooling rate and maintaining the first heating rate unchanged; or reducing the first cooling rate and increasing the first heating rate; or reducing the first cooling rate and reducing the second A temperature raising rate, so that the lowering value of the first cooling rate is greater than the lowering value of the first heating rate.
  • the determination module 52 includes a first determination unit and a second determination unit; the first determination unit is configured to be greater than or equal to a first temperature threshold in the first indoor temperature, and less than or equal to a second temperature threshold in the second indoor temperature In the case of , determine the first temperature adjustment stage as the current temperature adjustment stage; the second determination unit is configured to set the The second temperature regulation stage is determined as the current temperature regulation stage.
  • the preset temperature regulation stage also includes a third temperature regulation stage, the third temperature drop rate of the first room corresponding to the third temperature regulation stage is smaller than the second temperature drop rate; the third temperature regulation stage corresponds to the third temperature drop rate of the second room The third heating rate is less than the second heating rate.
  • the determination module 52 also includes a third determination unit, the third determination unit is configured to adjust the third temperature The stage is determined as the current temperature adjustment stage; the third temperature threshold is smaller than the first temperature threshold, and the fourth temperature threshold is greater than the second temperature threshold; wherein, the third temperature threshold and the fourth temperature threshold are known values.
  • the device for controlling the air conditioner further includes a third control module, and the third control module is configured to control the first air conditioner and the second air conditioner in the first room when the current temperature regulation stage is the second temperature regulation stage.
  • the second air conditioner in the room makes the cooling rate of the first room be the second cooling rate, and the heating rate of the second room is the second heating rate.
  • the determination of the preset temperature adjustment stage includes: when the method is executed for the first time, obtaining the first temperature difference between the third indoor temperature of the first room and the set temperature, and the difference between the set temperature and the second room The second temperature difference of the fourth indoor temperature; obtain the first product of the first temperature difference and the set ratio, and the second product of the second temperature difference and the set ratio; according to the first product and the second product Size relationship, determine the first temperature threshold and the second temperature threshold; divide the cooling process of the first room into the first cooling stage and the second cooling stage according to the first temperature threshold; divide the heating process of the second room into Divided into the first heating stage and the second heating stage.
  • determining the first temperature threshold and the second temperature threshold according to the size relationship between the first product and the second product includes: when the first product is smaller than the second product, combining the first product with the set temperature and, determined as the first temperature threshold; determine the second temperature threshold according to the first temperature threshold, so that within the same period of time, the first room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room Under the control of the second air conditioner, the second temperature threshold is raised to the set temperature; when the second product is less than the first product, the difference between the set temperature and the second product is determined as the second temperature threshold; according to The second temperature threshold determines the first temperature threshold so that within the same period of time, the first room is lowered from the first temperature threshold to the set temperature under the control of the first air conditioner, and the second room is cooled by the second temperature under the control of the second air conditioner.
  • the temperature threshold is raised to the set temperature.
  • the device for controlling the air conditioner includes a processor and a memory storing program instructions, and the processor is configured to execute the method for controlling the air conditioner provided in the foregoing embodiments when executing the program instructions.
  • Fig. 6 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present application.
  • the device for controlling the air conditioner includes:
  • a processor (processor) 61 and a memory (memory) 62 may also include a communication interface (Communication Interface) 63 and a bus 64. Wherein, the processor 61 , the communication interface 63 , and the memory 62 can communicate with each other through the bus 64 .
  • the communication interface 63 can be used for information transmission.
  • the processor 61 can call the logic instructions in the memory 62 to execute the method for controlling the air conditioner provided in the foregoing embodiments.
  • logic instructions in the memory 62 can be implemented in the form of software function units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 62 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 61 executes the function application and data processing by running the software programs, instructions and modules stored in the memory 62, that is, implements the methods in the above method embodiments.
  • the memory 62 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 62 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present application provides a multi-connected air conditioner, including the device for controlling the air conditioner provided in the foregoing embodiments.
  • An embodiment of the present application provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the method for controlling an air conditioner provided in the foregoing embodiments.
  • An embodiment of the present application provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by the computer, the computer is made to execute the information provided in the foregoing embodiments.
  • the method used to control the air conditioner includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by the computer, the computer is made to execute the information provided in the foregoing embodiments.
  • the method used to control the air conditioner is not limited to control the air conditioner.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to execute all or part of the steps of the methods in the embodiments of the present application.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the statement “comprising a " does not preclude the presence of additional identical elements in the process, method or apparatus comprising the element.
  • what each embodiment focuses on may be the difference from other embodiments, and the same and similar parts of the various embodiments may refer to each other.
  • the relevant part can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units may only be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement this embodiment.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more executable instruction.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • Each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Abstract

一种用于控制空调的方法、装置和多联机空调,涉及智能空调技术领域。该方法包括:获得第一房间的第一室内温度以及第二房间的第二室内温度;根据第一室内温度和第二室内温度在预设调温阶段中确定当前调温阶段;在当前调温阶段为第一调温阶段的情况下,获得第一房间的第一空调的制冷能效比和第二房间的第二空调的制热能效比;如果制冷能效比大于制热能效比,则降低第一升温速率,并据此控制第二空调;如果制冷能效比小于制热能效比,则降低第一降温速率,并据此控制第一空调。采用该方法可在第一房间的降温过程和第二房间的升温过程中,降低第一空调和第二空调的总能耗。

Description

用于控制空调的方法、装置和多联机空调
本申请基于申请号为202111561473.5、申请日为2021年12月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及一种用于控制空调的方法、装置和多联机空调。
背景技术
目前,一个家庭中的不同房间均可安装空调,这些空调可以是多联机空调,还可以分体式空调,每个空调可调节其所处房间的温度。在调节家庭内温度的过程中,可设定一个设定温度,将室内温度高于设定温度的房间确定为制冷房间,如果制冷房间中的空调处于制热模式,则将制冷房间中的空调的运行模式切换为制冷模式,这样,可以将家庭中多个房间的温度均调节至目标温度。
对于每个房间的空调,采用具有消除偏差功能的控制器进行控制,即,首先确定室内温度与设定温度的温度差值,再依据该温度差值确定空调的制冷功率或制热功率,并且,温度差值越大,则制冷功率或制热功率越大。
在实现本申请实施例的过程中,发现相关技术中至少存在如下问题:
对于存在热交换的第一房间和第二房间,第一房间处于降温状态,第二房间处于升温状态,如果温度差值越大,使第一房间中第一空调的制冷功率越大,使第二房间的第二空调的制热功率越大,则容易导致两个房间的热量流量较少,提高了空调能耗。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本申请实施例提供了一种用于控制空调的方法、装置和多联机空调,以在对第一房间降温,与第一房间存在热交换的第二房间升温的过程中,降低空调能耗。
在一些实施例中,用于控制空调的方法包括:在对第一房间降温、对第二房间升温的情况下,获得第一房间的第一室内温度以及第二房间的第二室内温度;所述第一房间和所述第二房间存在热交换;根据所述第一室内温度和所述第二室内温度,在预设调温阶段中确定当前调温阶段;所述预设调温阶段包括第一调温阶段和第二调温阶段,所述第一调温阶段对应的所述第一房间的第一降温速率大于所述第二调节温度对应的所述第一房间的第二降温速率,所述第一调温阶段对应所述第二房间的第一升温速率大于所述第二调温阶段对应的所述第二房间的第二降温速率;在所述当前调温阶段为所述第一调温阶段的情况下,获得所述第一房间的第一空调的制冷能效比以及所述第二房间的第二空调的制热能效比;如果所述制冷能效比大于所述制热能效比,则降低所述第一升温速率,并控制所述第二房间的第二空调,使所述第二房间的升温速率为降低后的第一升温速率;如果所述制冷能效比小于所述制热能效比,则降低所述第一降温速率,并控制所述第一房间的第一空调,使所述第一房间的降温速率为降低后的第一降 温速率。
可选地,降低所述第一升温速率,包括:降低所述第一升温速率,维持所述第一降温速率不变;或者,降低所述第一升温速率,提高所述第一降温速率;或者,降低所述第一升温速率,降低所述第一降温速率,使所述第一升温速率的降低值大于所述第一降温速率的降低值。
可选地,降低所述第一降温速率,包括:降温所述第一降温速率,维持所述第一升温速率不变;或者,降低所述第一降温速率,提高所述第一升温速率;或者,降低所述第一降温速率,降低所述第一升温速率,使所述第一降温速率的降低值大于所述第一升温速率的降低值。
可选地,根据所述第一室内温度和所述第二室内温度,在预设调温阶段中确定当前调温阶段,包括:在所述第一室内温度大于或等于第一温度阈值,且所述第二室内温度小于或等于第二温度阈值的情况下,将所述第一调温阶段确定为所述当前调温阶段;在所述第一室内温度小于第一温度阈值,且所述第二室内温度大于所述第二温度阈值的情况下,将所述第二调温阶段确定为所述当前调温阶段。
可选地,所述预设调温阶段还包括第三调温阶段,所述第三调温阶段对应的第一房间的第三降温速率小于所述第二降温速率;所述第三调温阶段对应的第二房间的第三升温速率小于所述第二升温速率;
根据所述第一室内温度和所述第二室内温度在预设调温阶段中,确定当前调温阶段,还包括:在所述第一室内温度小于第三温度阈值,且所述第二室内温度大于第四温度阈值的情况下,将所述第三调温阶段确定为所述当前调温阶段;所述第三温度阈值小于所述第一温度阈值,所述第四温度阈值大于所述第二温度阈值;其中,所述第三温度阈值和所述第四温度阈值为已知值。
可选地,用于控制空调的方法还包括:在所述当前调温阶段为所述第二调温阶段的情况下,控制所述第一房间的第一空调和所述第二房间的第二空调,使所述第一房间的降温速率为所述第二降温速率,所述第二房间的升温速率为所述第二升温速率。
可选地,预设调温阶段的确定,包括:在首次执行本方法时,获得所述第一房间的第三室内温度与设定温度的第一温度差值,以及所述设定温度与所述第二房间的第四室内温度的第二温度差值;获得第一温度差值与设定比值的第一乘积,以及所述第二温度差值与所述设定比值的第二乘积;根据所述第一乘积与所述第二乘积的大小关系,确定第一温度阈值和第二温度阈值;根据所述第一温度阈值将所述第一房间的降温过程划分为所述第一降温阶段和所述第二降温阶段;根据所述第二温度阈值将所述第二房间的升温过程划分为所述第一升温阶段和所述第二升温阶段。
可选地,根据所述第一乘积与所述第二乘积的大小关系,确定所述第一温度阈值和第二温度阈值,包括:在所述第一乘积小于所述第二乘积的情况下,将所述第一乘积与所述设定温度的和,确定为所述第一温度阈值;根据所述第一温度阈值确定所述第二温度阈值,以在相同时长内,使所述第一房间在第一空调控制下由第一温度阈值降低至所述设定温度,所述第二房间在第二空调的控制下由第二温度阈值升高至所述设定温度;在所述第二乘积小于所述第一乘积的情况下,将所述设定温度与所述第二乘积的差,确定为所述第二温度阈值;根据所述第二温度阈值确定所述第一温度阈值,以在相同时长内,使所述第一房间在第一空调控制下由第一温度阈值降低至所述设定温度,所述第二房间在第二空调的控制下由第二温度阈值升高至所述设定温度。
在一些实施例中,用于控制空调的装置包括第一获得模块、确定模块、第二获得模块、第一控制模块和第二控制模块;所述第一获得模块被配置为在对第一房间降温、对第二房间升温的情况下,获得第一房间的第一室内温度以及第二房间的第二室内温度;所述第一房间和所述第二房间存在热交换;所述确定模块被配置为根据所述第一室内温度和所述第二室内温度,在预设调温阶段中确定当前调温阶段;所述预设调温阶段包括第一调温阶段和第二调温阶段,所述第一调温阶段对应的所述第一房间的第一降温速率大于所述第二调节温度对应的所述第一房间的第二降温速率,所述第一调温阶段对应所述第二房间的第一升温速率大于所述第二调温阶段对应的所述第二房间的第二降温速率;所述第二获得模块被配置为在所述当前调温阶段为所述第一调温阶段的情况下,获得所述第一房间的第一空调的制冷能效比以及所述第二房间的第二空调的制热能效比;所述第一控制模块被配置为如果所述制冷能效比大于所述制热能效比,则降低所述第一升温速率,并控制所述第二房间的第二空调,使所述第二房间的升温速率为降低后的第一升温速率;所述第二控制模块被配置为如果所述制冷能效比小于所述制热能效比,则降低所述第一降温速率,并控制所述第一房间的第一空调,使所述第一房间的降温速率为降低后的第一降温速率。
在一些实施例中,用于控制空调的装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行前述实施例提供的用于控制空调的方法。
在一些实施例中,多联机空调包括前述实施例提供的用于控制空调的装置。
本申请实施例提供的用于控制空调的方法、装置和多联机空调,可以实现以下技术效果:
第一调温阶段对应的第一房间的第一降温速率小于第二调温阶段对应的第一房间的第二降温速率,第二调温阶段对应的第二房间的第一升温速率小于第二调温阶段对应的第二房间的第二升温速率;这样,在第二调温阶段中,第一房间的第一室内温度和第二房间的第二室内温度之间的温度差值迅速减小,有利于以较快的速度将第一室内温度和第二室内温度调整至设定温度;在第一调温阶段中,第一房间的第一室内温度和第二房间的第二室内温度之间维持较大的温度差值,有利于第一房间的热量流向第二房间,利用被动的热量流动为第一房间降温以及为第二房间升温,并且,在第一调温阶段中,如果制冷能效比大于制热能效比,则降低第一升温速率,使两个房间的热量流动对第二房间的升温影响更大,以降低第二房间的第二空调的能耗;如果制冷能效比小于制热能效比,则降低第一降温速率,使两个房间的热量流动对第一房间的降温影响更大,以降低第一房间的第一空调的能耗,最终在第一房间的降温过程和第二房间的升温过程中,降低了第一空调和第二空调的总能耗。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或一个以上实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件视为类似的元件,并且其中:
图1是本申请实施例提供的一种用于控制空调的方法的实施场景的示意图;
图2是本申请实施例提供的一种用于控制空调的方法的流程示意图;
图3是本申请实施例提供的一种用于确定预设调温阶段的过程的示意图;
图4是本申请实施例提供的一种用于控制空调的方法的流程示意图;
图5是本申请实施例提供的一种用于控制空调的装置的示意图;
图6是本申请实施例提供的一种用于控制空调的装置的示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个以上。
本申请实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
图1是本申请实施例提供的一种用于控制空调的方法的实施场景的示意图。该实施场景包括第一房间RM1和第二房间RM2,第一房间RM1中安装有第一空调K1,第一空调K1可调节第一房间RM1内的第一室内温度T1,第二房间RM2中安装有第二空调K2,第二空调K2可调节第二房间RM2内的第二室内温度T2,第一房间RM1和第二房间RM2可通过通道P进行热交换,该通道P可以是打开的门,或者是打开的窗户,或者是打开的门和窗户。在第一室内温度T1高于第二室内温度T2的情况下,热量由第一房间RM1经过通道P流向第二房间RM2,使第一室内温度T1具有降低趋势,使第二室内温度T2具有升高趋势;在第一室内温度T1低于第二室内温度T2的情况下,热量由第二房间RM2经过通道P流向第一房间RM1,使第一室内温度T1具有降低趋势,使第二室内温度T2具有升高趋势。
可通过门和/或窗开启状态检测装置检测通道P是否打开,例如,在门和/或窗上安装关到位传感器,利用关到位传感器的检测信号确定门和/或窗的开启状态,以判断第一房间RM1和第二房间RM2是否存在热交换。
本申请实施例中提供的用于控制空调的方法,适合应用于第一房间RM1第一室内温度T1和第二房间RM2的第二室内温度T2之间的温度差值较大的场景。例如第一房间RM1和第二房间RM2由不存在热交换的状态切换至存在热交换的状态之前,第一房间RM1(例如婴幼儿所在房间)和第二房间RM2(例如青年所在房间)各自所需的设定温度均不相同,且第一房间RM1和第二房间T2的第一室内温度T1和第二室内温度T2均达到了各自设定温度;这样,在第一房间RM1和第二房间RM2由不存在热交换的状态切换至存在热交换的状态后,第一房间RM1的第一室内温度T1和第二房间RM2的第二室内温度T2之间的温度差值较大;在第一房间RM1和第二房间RM2存在热交换之后,第一房间 RM1和第二房间RM2共用的设定温度需要在各成员最适温度之间取平衡,此时,通常会出现第一房间RM1需要降温,第二房间RM2需要升温的情况。
在第一房间RM1和第二房间RM2存在热交换之后,如果使第一空调K1和第二空调K2均停机,在自然热交换的情况下,使两个房间的温度趋于平衡,显然将会导致耗时过长;如果使第一空调K1和第二空调K2均按照常规的控制方法进行制冷和制热,例如采用比例-积分-微分(Proportion Integral Differential,PID),则在第一房间RM1和第二房间RM2之间的温度差值较大时,第一空调K1和第二空调K2均快速降低,相当于在第一房间RM1和第二房间RM2之间的热量流量最大时进行了快速降温或升温,最大程度地降低了第一房间RM1和第二房间RM2之间的热量流动对第一室内温度T1的降温影响以及对第二室内温度T2的升温影响,使得能耗较高。
在本申请实施例中,在第一调温阶段使第一房间RM1的第一降温速率较低,第二房间RM2的第一升温速率较低,可以使第一房间RM1和第二房间RM2之间维持较高的温度差值,有利于第一房间RM1和第二房间RM2之间的热量流动,两个房间的热量流动有利于降低第一房间RM1的第一室内温度T1,有利于提高第二房间RM2的第二室内温度T2,这会降低第一空调K1和第二空调K2的总能耗;在第二调温阶段,使第一房间RM1和第二降温速率较高,第二房间RM2的第二升温速率较高,可以使第一房间RM1和第二房间RM2均比较快速地达到设定温度。通过设置两个不同调温阶段,可以平衡空调总能耗和调温速度(两个房间的温度达到设定温度的速度)。
图2是本申请实施例提供的一种用于控制空调的方法的流程示意图。该用于控制空调的方法可由空调的控制器执行,或者,由与空调通信连接的控制面板或遥控器执行,或者,由智能家居系统的服务器执行。本申请实施例以将该用于控制空调的方法控制图1中所示的第一空调和第二空调为例,对该用于控制空调的方法进行示例性说明。
结合图2所示,用于控制空调的方法包括:
S201、在对第一房间降温、对第二房间升温的情况下,获得第一房间的第一室内温度以及第二房间的第二室内温度。
第一房间和第二房间存在热交换,第一室内温度高于第二室内温度,热量可由第一房间流向第二房间。
在家庭或办公室场景中,通常需要平衡各个房间的温度,即,将各个房间的室内温度均调整至同一个设定温度,以满足各个用户的舒适度需求。
在第一房间和第二房间共用一个设定温度的情况下,第一室内温度高于设定温度,需要对第一房间进行降温处理;第二室内温度低于设定温度,需要对第二房间进行升温处理。
S202、根据第一室内温度和第二室内温度,在预设调温阶段中确定当前调温阶段。
预设调温阶段是在执行上述步骤之前设置的,预设调温阶段包括第一调温阶段和第二调温阶段,第一调温阶段对应的第一房间的第一降温速率大于第二调节温度对应的第一房间的第二降温速率,第一调温阶段对应第二房间的第一升温速率大于第二调温阶段对应的第二房间的第二降温速率。
在本申请实施例中,为便于说明,降温速率(包含上述第一降温速率、第二降温速率以及后文的第三降温速率)以及升温速率(包含上述第一升温速率、第二升温速率以及后文的第三升温速率)均采 用正数表示;当然,在具体应用过程中,为便于计算,可以使降温速率以及升温速率带有正负号。
降温速率与第一房间的第一空调的制冷功率正相关,第二降温速率对应的第一空调的制冷功率不超过第一空调的额定制冷功率;升温速率与第二空调的制热功率正相关,第二升温速率对应的第二空调的制热功率不超过第二空调的额定制热功率。
具体地,根据第一室内温度和第二室内温度,在预设调温阶段中确定当前调温阶段,包括:在第一室内温度大于或等于第一温度阈值,且第二室内温度小于或等于第二温度阈值的情况下,将第一调温阶段确定为当前调温阶段;在第一室内温度小于第一温度阈值,且第二室内温度大于第二温度阈值的情况下,将第二调温阶段确定为当前调温阶段。
其中,第一温度阈值和第二温度阈值可以是预先设置的,第一温度阈值大于第一房间的设定温度,第二温度阈值小于第二房间的设定温度。在此基础上,本申请实施例提供的方案,适用于第一房间的第一室内温度由大于第一温度阈值逐渐降低至设定温度,且第二房间的第二室内温度由小于第二温度阈值之间提高至设定温度的情况。
当然,第一温度阈值和第二温度阈值还有其他设置方式,在后文中将详细说明。
在第一室内温度大于或等于第一温度阈值,且,第二室内温度小于或等于第二温度阈值的情况下,当前调温阶段为第一调温阶段,随着时间的推移,第一室内温度下降,第二室内温度上升,会出现第一室内温度大于或等于第一温度阈值,且第二室内温度大于第二温度阈值的情况,或者,出现第一室内温度小于第一温度阈值,且第二室内温度小于或等于第二温度阈值的情况,此时仍将第一调温阶段确定为当前调温阶段,直至出现第一室内温度小于第一温度阈值,且第二室内温度大于第二温度阈值的情况,再将第二调温阶段确定为当前调温阶段。
进一步地,预设调温阶段还可包括第三调温阶段,第三调温阶段对应的第一房间的第三降温速率小于第二降温速率,第三调温阶段对应的第二房间的第三升温速率小于第二升温速率,第三调温阶段的确认,可包括:在第一室内温度小于第三温度阈值,且第二室内温度大于第四温度阈值的情况下,将第三调温阶段确定为当前调温阶段;第三温度阈值小于第一温度阈值,第四温度阈值大于第二温度阈值;其中,第三温度阈值和第四温度阈值为已知值,第三温度阈值大于第一房间的设定温度,第四温度阈值小于第二房间的设定温度。
此时第二调温阶段的确认,可包括:在第一室内温度小于第一温度阈值且大于或等于第三温度阈值,且,第二室内温度大于第二温度阈值且小于或等于第四温度阈值的情况下,将第二调温阶段确定为当前调温阶段。
当然,在第二调温阶段中,第一房间的第一室内温度逐渐下降,第二房间的第二室内温度逐渐上升,会出现第一室内温度小于第三温度阈值,但第二室内温度不大于第四温度阈值的情况,或者,会出现第一室内温度不小于第三温度阈值,但第二室内温度大于第四温度阈值的情况,此时仍将第二调温阶段确定为当前调温阶段,直至在第一室内温度小于第三温度阈值且第二室内温度大于第二室内温度大于第四温度阈值的情况下,将第三调温阶段确定为当前调温阶段。
第三升温速率小于第二升温速率,第三降温速率小于第二降温速率,有利于第一房间的第一室内温度稳定地降低至设定温度,第二房间的第二室内温度稳定地降低至设定温度。
在确定当前调温阶段后,即可依据当前调温阶段对应的降温速率控制第一房间的第一空调,依据当前调温阶段对应的升温速率控制第二房间的第二空调。
S203、在当前调温阶段为第一调温阶段的情况下,获得第一房间的第一空调的制冷能效比以及第二房间的第二空调的制热能效比。
能效比用于表示能源转换效率之比,制冷能效比是空调的制冷性能系数,表示空调单位功率下的制冷量;制热能效比是空调的制热性能系数,表示空调单位功率下的制热量。
S204、如果制冷能效比大于制热能效比,则降低第一升温速率,并控制第二房间的第二空调,使第二房间的升温速率为降低后的第一升温速率。
其中,降低第一升温速率,可包括:降低第一升温速率,维持第一降温速率不变;或者,降低第一升温速率,提高第一降温速率;或者,降低第一升温速率,降低第一降温速率,使第一升温速率的降低值大于第一降温速率的降低值。
第二空调的制热效果,以及第一房间和第二房间之间的热量流动,均对第二房间的温度升高起作用。第一升温速率与第二空调的制热功率正相关,降低第一升温速率,那么第二空调的制热功率也会适应性的降低,此时对于第二房间而言,第二空调的制热效果对第二房间的温度升高作用减弱,对应地,第一房间和第二房间之间的热量流动对第二房间的温度升高作用增强,这有利于降低第二房间的第二空调的能耗。并且,第一空调的制冷能效比大于第二空调的制热能效比,降低第二空调的制热功率,还有利于在整体上提高第一空调和第二空调的能效比。
在第一房间和第二房间的体积相同的情况下,即使同时提高第一降温速率,由于第一空调的制冷能效比大于第二空调的制热能效比,在第一降温速率的提高值与第一升温速率的降低值相同的情况下,第二空调所减少的能耗也大于第一空调所增加的能耗,也有利于降低第一空调和第二空调的总能耗。
具体地,控制第二房间的第二空调,使第二房间的升温速率为降低后的第一升温速率,可包括:根据第二房间的体积以及降低后的第一升温速率,确定对应的第二空调的制热功率,根据确定的第二空调的制热功率控制第二空调运行。第一房间的体积越大,则第二空调的制热功率越大,第一升温速率越大,则第二空调的制热功率越大。
S205、如果制冷能效比小于制热能效比,则降低第一降温速率,并控制第一房间的第一空调,使第一房间的降温速率为降低后的第一降温速率。
其中,降低第一降温速率,可包括:降温第一降温速率,维持第一升温速率不变;或者,降低第一降温速率,提高第一升温速率;或者,降低第一降温速率,降低第一升温速率,使第一降温速率的降低值大于第一升温速率的降低值。
第一空调的制冷效果,以及第一房间和第二房间之间的热量流动,均对第一房间的温度降低起作用。第一降温速率与第一空调的制冷功率正相关,降低第一降温速率,那么第一空调的制冷功率也会适应性的降低,此时对于第一房间而言,第一空调的制冷效果对第二房间的温度降低作用减弱,对应地,第一房间和第二房间之间的热量流动对第一房间的温度降低作用增强,这有利于降低第一房间的第一空调的能耗。并且,第一空调的制冷能效比小于第二空调的制热能效比,降低第一空调的制冷功率,还有利于在整体上提高第一空调和第二空调的能效比。
在第一房间和第二房间的体积相同的情况下,即使同时提高第一升温速率,由于第一空调的制冷能效比小于第二空调的制热能效比,在第一升温速率的提高值与第一降温速率的降低值相同的情况下,第一空调所减小的能耗也大于第二空调所增加的能耗,也有利于降低第一空调和第二空调的总能耗。
具体地,控制第一房间的第一空调,使第一房间的降温速率为降低后的第一降温速率,可包括:根据第一房间的体积以及降低后的第一降温功率,确定对应的第一空调的制冷功率,根据确定的第一空调的制冷功率控制第一空调运行。
在制冷能效比等于制热能效比的情况下,可控制第一空调和第二空调,使第一房间的降温速率为第一调温阶段对应的第一降温速率,使第二房间的升温速率为第一调温阶段对应的第一升温速率。
第一调温阶段对应的第一房间的第一降温速率小于第二调温阶段对应的第一房间的第二降温速率,第二调温阶段对应的第二房间的第一升温速率小于第二调温阶段对应的第二房间的第二升温速率;这样,在第二调温阶段中,第一房间的第一室内温度和第二房间的第二室内温度之间的温度差值迅速减小,有利于以较快的速度将第一室内温度和第二室内温度调整至设定温度;在第一调温阶段中,第一房间的第一室内温度和第二房间的第二室内温度之间维持较大的温度差值,有利于第一房间的热量流向第二房间,利用被动的热量流动为第一房间降温以及为第二房间升温,并且,在第一调温阶段中,如果制冷能效比大于制热能效比,则降低第一升温速率,使两个房间的热量流动对第二房间的升温影响更大,以降低第二房间的第二空调的能耗;如果制冷能效比小于制热能效比,则降低第一降温速率,使两个房间的热量流动对第一房间的降温影响更大,以降低第一房间的第一空调的能耗,最终在第一房间的降温过程和第二房间的升温过程中,降低了第一空调和第二空调的总能耗。
预设调温阶段可包括第一调温阶段和第二调温阶段,在当前调温阶段为第二调温阶段的情况下,控制第一房间的第一空调和第二房间的第二空调,使第一房间的降温速率为第二降温速率,第二房间的升温速率为第二升温速率。
在上述情况下,在第一调温阶段中,可以使第一房间实现等速率降温,使第二房间实现等速率升温;在第二调温阶段中,可以在第一房间和第二房间进行不等速率调温,例如利用现有的温度控制器(例如PID控制器)对第一室内温度和第二室内温度进行控制,使第一室内温度和第二室内温度均趋近于设定温度。
预设调温阶段还可包括第三调温阶段,在当前调温阶段为第三调温接的情况下,控制第一房间的第一空调和第二房间的第二空调,使第一房间的降温速率为第三降温速率,第二房间的升温速率为第三升温速率。
在上述情况下,在第一调温阶段中,可以使第一房间实现等速率降温,使第二房间实现等速率升温;在第二调温阶段中,可以使第一房间实现等速率降温,使第二房间实现等速率升温;在第三调温阶段中,可以在第一房间和第二房间进行不等速率调温,例如利用现有的温度控制器(例如PID控制器)对第一室内温度和第二室内温度进行控制,使第一室内温度和第二室内温度均趋近于设定温度。这样,在利用现有的温度控制器将第一室内温度和第二室内温度调节至设定温度的过程中,第一室内温度的降低值较小,第二室内温度的升高值较小,更有利于降低二者达到设定温度时的超调量,有利于使第一室内温度和第二室内温度均稳定地达到设定温度。
本申请实施例中提供的用于控制空调的方法,比较适于第一房间的初始温度与设定温度的差值较大,且第二房间的初始温度与设定温度的差值较大的情况;并且,如果制冷能效比大于制热能效比,则在第一房间的初始温度与设定温度的差值大于第二房间的初始温度与设定温度的差值的情况下,本方法可取得较佳的效果,如果制冷能效比小于制热能效比,则在第一房间的初始温度与设定温度的差值小于第二房间的初始温度与设定温度的差值的情况下,本方法可取得较佳的效果。
图3是本申请实施例提供的一种用于确定预设调温阶段的过程的示意图。结合图3所示,预设调温阶段的确定,包括:
S301、在首次执行本方法时,获得第一房间的第三室内温度与设定温度的第一温度差值,以及设定温度与第二房间的第四室内温度的第二温度差值。
在首次执行本方法时,依据当时第一房间的第三室内温度、第二房间的第四设定温度以及设定温度,对预设调温阶段进行确定。
在第一房间和第二房间由不存在热交换状态切换至存在热交换状态后,属于首次执行本方法的情况;或者,在设定温度改变后,属于首次执行本方法的情况。
这里的设定温度指的是第一房间和第二房间共用的设定温度。
在本申请实施例中,为便于说明,这里的第一温度差值以及第二温度差值为正值,利用第三室内温度减去设定温度,获得第一温度差值,利用设定温度减去第四室内温度,获得第二温度差值。在实际应用中,第一温度差值与第二温度差值均可带正负号。
S302、获得第一温度差值与设定比值的第一乘积,以及第二温度差值与设定比值的第二乘积。
这里的设定比值可大于或等于1/2,例如,设定比值可为1/2、2/3、3/4或4/5。
如果设定比值过大,则会导致第一室内温度和第二室内温度达到设定温度所需时长过长;如果设定比值过小,则会导致第一空调和第二空调的能耗增加。本领域技术人员可据此确定符合实际需要的设定比值,这里不再一一赘述。
S303、根据第一乘积与第二乘积的大小关系,确定第一温度阈值和第二温度阈值。
如果第一乘积小于第二乘积,则可将第一乘积确定为第一温度阈值;如果第一乘积大于或等于第二乘积,则可将第二乘积确定为第二温度阈值。
具体地,根据第一乘积与第二乘积的大小关系,确定第一温度阈值和第二温度阈值,可包括:在第一乘积小于第二乘积的情况下,将第一乘积与设定温度的和,确定为第一温度阈值;根据第一温度阈值确定第二温度阈值,以在相同时长内,使第一房间在第一空调控制下由第一温度阈值降低至设定温度,第二房间在第二空调的控制下由第二温度阈值升高至设定温度。
或者,在第二乘积小于第一乘积的情况下,将设定温度与第二乘积的差,确定为第二温度阈值;根据第二温度阈值确定第一温度阈值,以在相同时长内,使第一房间在第一空调控制下由第一温度阈值降低至设定温度,第二房间在第二空调的控制下由第二温度阈值升高至设定温度。
在第一房间和第二房间不存在热交换的情况下,在相同时长内,第一房间在第一空调控制下由第一温度阈值降低至设定温度,第二房间在第二空调的控制下由第二温度阈值升高至设定温度。第一温度阈值与第一房间的体积负相关,第一温度阈值与第一空调的制冷功率正相关;第二温度阈值与第一房间 的体积正相关,第二温度阈值与第二空调的制热功率负相关。在上述相同时长确定的情况下,第一温度阈值和第二温度阈值可通过试验的方式获得。
上述相同时长的时长越长,则第一房间快速降温的时长越长,第一房间由初始温度达到设定温度所需时长越短,同样,第二房间由初始温度达到设定温度所需时长越短;上述相同时长越短,则第一房间快速降温的时长越短,第一房间由初始温度达到设定温度所需的时长越长,同样,第二房间由初始温度达到设定温度所需时长越长。本领域技术人员可依据对第一房间由初始温度达到设定温度的预期时长,以及对第二房间由初始温度达到设定温度的预期时长,适应性调整上述相同时长,这里不做具体限定。
上述确定第一温度阈值和第二温度阈值的方案,适用于预设调温阶段包括第一调温阶段和第二调温阶段两个调温阶段情况。
在预设调温阶段还包括第三调温阶段的情况下,根据第一乘积和第二乘积的大小关系,确定第一温度阈值和第二温度阈值,包括:在第一乘积小于第二乘积的情况下,将第一乘积确定为第一温度阈值;获得第一温度阈值与第三温度阈值之间的第一阈值差值;获得与第一阈值差值对应的第二阈值差值;将第四温度阈值和第二阈值差值的和,确定为第二温度阈值。
或者,根据第一乘积和第二乘积的大小关系,确定第一温度阈值和第三温度阈值,可包括:在第一乘积大于或等于第二乘积的情况下,将第二乘积确定为第二温度阈值;获得第二温度阈值与第四温度阈值的第二阈值差值;获得与第二阈值差值对应的第一阈值差值;将第三温度阈值与第一阈值差值的和,确定为第一温度阈值。
上述第三温度阈值和第四温度阈值均为已知值。上述第三温度阈值与第一空调对第一房间进行温度调节时的稳定能力相关,第一空调的稳定能力越强,第三温度阈值可越小,第一空调的稳定能力越弱,第三温度阈值需越大;上述第四温度阈值与第二空调对第二房间进行温度调节时的稳定能力相关,第二空调的稳定能力越强,第四温度阈值可越小,第二空调的稳定能力越弱,第四温度阈值需越大。
第一空调对第一房间进行温度调节时的稳定能力,可用第一室内温度首次达到设定温度,至第一室内温度与设定温度的差值稳定在死区范围内所需的时长进行表示,该时长越长,第一空调的稳定能力越弱,该时长越短,第一空调的稳定能力越强。
第二空调对第二房间进行温度调节时的稳定能力,可用第二室内温度首次达到设定温度,至第二室内温度与设定温度的差值稳定在死区范围内所需的时长进行表示,该时长越长,第二空调的稳定能力越弱,该时长越短,第二空调的稳定能力越强。
上述第一阈值差值与第二阈值差值的对应关系,可包括:在第一房间和第二房间不存在热交换的情况下,控制第一空调按照设定制冷功率运行第一设定时长,将第一房间的下降温度确定为第一阈值差值;控制第二空调按照设定制热功率运行第一设定时长,将第二房间的上升温度确定为第二温度阈值。
上述第一设定时长的时长越长,则第一房间快速降温的时长越长,第一房间由初始温度达到设定温度所需时长越短,同样,第二房间由初始温度达到设定温度所需时长越短;上述第一设定时长越短,则第一房间快速降温的时长越短,第一房间由初始温度达到设定温度所需的时长越长,同样,第二房间由初始温度达到设定温度所需时长越长。本领域技术人员可依据对第一房间由初始温度达到设定温度的 预期时长,以及对第二房间由初始温度达到设定温度的预期时长,适应性调整上述第一设定时长,这里不做具体限定。
这里的设定制冷功率可以是第一空调的额定制冷功率,设定制热功率可以是第二空调的额定制热功率;或者,设定制冷功率与第一空调的额定制冷功率的比值,与设定制热功率与第二空调的额定制热功率的比值相同。该比值可以是5/6、4/5、3/4等。
在预设调温阶段包括三个调温阶段的情况下,按照上述方式即可确定出第一温度阈值与第二温度阈值。
S304、根据第一温度阈值将第一房间的降温过程划分为第一降温阶段和第二降温阶段。
将大于或等于第一温度阈值的温度区间确定为第一降温阶段,将小于第一温度阈值且大于设定温度的温度区间确定为第二降温阶段。
在预设调温阶段还包括第三调温阶段的情况下,可根据第一温度阈值和第三温度阈值将第一房间的降温过程划分为第一降温阶段、第二降温阶段和第三降温阶段。
将大于或等于第一温度阈值的温度区间确定为第一降温阶段,将小于第一温度阈值且大于或等于第三温度阈值的温度区间确定为第二降温阶段,将小于第三温度阈值且大于设定温度的温度区间确定为第三降温阶段。
S305、根据第二温度阈值将第二房间的升温过程划分为第一升温阶段和第二升温阶段。
将小于或等于第二温度阈值的温度区间确定为第一升温阶段,将大于第二温度阈值且小于设定温度的温度区间确定为第二升温阶段。
在预设调温阶段还包括第三调温阶段的情况下,可根据第二温度阈值和第四温度阈值将第二房间的升温过程划分为第一升温阶段、第二升温阶段和第三升温阶段。
将小于或等于第二温度阈值的温度区间确定为第一升温阶段,将大于第二温度阈值且小于或等于第四温度阈值的温度区间确定为第二升温阶段,将大于第四温度阈值且小于设定温度的温度区间确定为第三升温阶段。
S304和S305不区分先后。
上述过程为划分两个或三个调温阶段的过程,按照划分规则,第一房间的温度达到第一温度阈值和第二房间的温度达到第三温度阈值的时刻相同;第一房间的温度达到第二温度阈值和第二房间的温度达到第四温度阈值的时刻相同。在具体应用中,仍按照前述的根据第一温度差值和第二温度差值来确定具体的调温阶段。
以下对各个调温阶段对应的室温变化速率进行详细说明:
对于预设调温阶段包括第一调温阶段和第二调温阶段的情况:
在第二调温阶段,第一空调和第二空调均可采用现有具有消除偏差功能的控制方法,第一房间的室温下降速率(第二降温速率)以及第二房间的室温上升速率(第二升温速率)均可由对应的控制方法进行控制。
在第一调温阶段,可通过如下方式确定调温阶段与室温变化速率的对应关系:获得第三温度差值至第一温度阈值的温度降低值;根据温度降低值与第二设定时长的商,确定与第一调温阶段对应的第一 房间的第一降温速率;获得第四温度差值至第三温度阈值的温度升高值;根据温度升高值与第二设定时长的商,确定与第一调温阶段对应的第二房间的第一升温速率。第二设定时长通常大于前述第一设定时长,第二设定时长可以是第一设定时长的2倍、2.5倍、3倍或更多。
对于预设调温阶段包括第一调温阶段、第二调温阶段和第三调温阶段的情况:
在第三调温阶段,第一空调和第二空调均可采用现有具有消除偏差功能的控制方法,第一房间的室温下降速率(第三降温速率)以及第二房间的室温上升速率(第三升温速率)均可由对应的控制方法进行控制。
在第二调温阶段,第一房间的室温下降速率(第二降温速率)与第一空调的设定制冷功率对应;第二房间的室温上升速率(第二升温速率)与第二空调的设定制热功率对应。设定制冷功率可以是第一空调的额定制冷功率的5/6、4/5或3/4,设定制热功率可以是第二空调的额定制热功率的5/6、4/5或3/4;设定制冷功率与第一空调的额定制冷功率的比值,可以与设定制热功率与第二空调的额定制热功率的比值相等。
在第一调温阶段,可通过如下方式确定调温阶段与室温变化速率的对应关系:获得第三温度差值至第一温度阈值的温度降低值;根据温度降低值与第二设定时长的商,确定与第一调温阶段对应的第一房间的第一降温速率;获得第四温度差值至第三温度阈值的温度升高值;根据温度升高值与第二设定时长的商,确定与第一调温阶段对应的第二房间的第一升温速率。第二设定时长通常大于前述第一设定时长,第二设定时长可以是第一设定时长的2倍、2.5倍、3倍或更多。
按照上述方式可获得调温阶段与室温变化速率的对应关系,之后可依据第一温度差值以及第二温度差值确定当前调温阶段,并根据当前调温阶段对第一空调和第二空调进行控制。
图4是本申请实施例提供的一种用于控制空调的方法的流程示意图。该用于控制空调的方法可由空调的控制器执行,或者,由与空调通信连接的控制面板或遥控器执行,或者,由智能家居系统的服务器执行。本申请实施例以将该用于控制空调的方法控制图1中所示的第一空调和第二空调为例,对该用于控制空调的方法进行示例性说明。
结合图4所示,用于控制空调的方法包括:
S401、在首次执行本方法时,获得第一房间的第三室内温度与设定温度的第一温度差值,以及设定温度与第二房间的第四室内温度的第二温度差值。
S402、获得第一温度差值与设定比值的第一乘积,以及第二温度差值与设定比值的第二乘积。
S403、根据第一乘积与第二乘积的大小关系,确定第一温度阈值和第二温度阈值。
S404、根据第一温度阈值和第二温度阈值划分两个预设调温阶段。
S405、获得第一房间的第一室内温度以及第二房间的第二室内温度。
S406、根据第一室内温度和第二室内温度,在预设调温阶段中确定当前调温阶段。
S407、根据当前调温阶段对应的第一房间的降温速率控制第一房间的第一空调,根据当前调温阶段对应的第二房间的升温速率控制第二房间的第二空调。
S408、判断第一室内温度和第二室内温度是否达到设定温度:若是,则结束,否则执行S405。
第一室内温度达到设定温度,可以是第一设定温度与设定温度的温度差值在死区范围内;第二室 内温度达到设定温度,可以是第二设定温度与设定温度的温度差值在死区范围内。
图5是本申请实施例提供的一种用于控制空调的装置的示意图。该用于控制空调的装置可通过软件、硬件或软硬结合的形式实现,结合图8所示,用于控制空调的装置包括第一获得模块51、确定模块52、第二获得模块53、第一控制模块54和第二控制模块55;第一获得模块51被配置为在对第一房间降温、对第二房间升温的情况下,获得第一房间的第一室内温度以及第二房间的第二室内温度;第一房间和第二房间存在热交换;确定模块52被配置为根据第一室内温度和第二室内温度,在预设调温阶段中确定当前调温阶段;预设调温阶段包括第一调温阶段和第二调温阶段,第一调温阶段对应的第一房间的第一降温速率大于第二调节温度对应的第一房间的第二降温速率,第一调温阶段对应第二房间的第一升温速率大于第二调温阶段对应的第二房间的第二降温速率;第二获得模块53被配置为在当前调温阶段为第一调温阶段的情况下,获得第一房间的第一空调的制冷能效比以及第二房间的第二空调的制热能效比;第一控制模块54被配置为如果制冷能效比大于制热能效比,则降低第一升温速率,并控制第二房间的第二空调,使第二房间的升温速率为降低后的第一升温速率;第二控制模块55被配置为如果制冷能效比小于制热能效比,则降低第一降温速率,并控制第一房间的第一空调,使第一房间的降温速率为降低后的第一降温速率。
可选地,降低第一升温速率,包括:降低第一升温速率,维持第一降温速率不变;或者,降低第一升温速率,提高第一降温速率;或者,降低第一升温速率,降低第一降温速率,使第一升温速率的降低值大于第一降温速率的降低值。
可选地,降低第一降温速率,包括:降温第一降温速率,维持第一升温速率不变;或者,降低第一降温速率,提高第一升温速率;或者,降低第一降温速率,降低第一升温速率,使第一降温速率的降低值大于第一升温速率的降低值。
可选地,确定模块52包括第一确定单元和第二确定单元;第一确定单元被配置为在第一室内温度大于或等于第一温度阈值,且第二室内温度小于或等于第二温度阈值的情况下,将第一调温阶段确定为当前调温阶段;第二确定单元被配置为在第一室内温度小于第一温度阈值,且第二室内温度大于第二温度阈值的情况下,将第二调温阶段确定为当前调温阶段。
可选地,预设调温阶段还包括第三调温阶段,第三调温阶段对应的第一房间的第三降温速率小于第二降温速率;第三调温阶段对应的第二房间的第三升温速率小于第二升温速率。
进一步地,确定模块52还包括第三确定单元,第三确定单元被配置为在第一室内温度小于第三温度阈值,且第二室内温度大于第四温度阈值的情况下,将第三调温阶段确定为当前调温阶段;第三温度阈值小于第一温度阈值,第四温度阈值大于第二温度阈值;其中,第三温度阈值和第四温度阈值为已知值。
可选地,用于控制空调的装置还包括第三控制模块,第三控制模块被配置为在当前调温阶段为第二调温阶段的情况下,控制第一房间的第一空调和第二房间的第二空调,使第一房间的降温速率为第二降温速率,第二房间的升温速率为第二升温速率。
可选地,预设调温阶段的确定,包括:在首次执行本方法时,获得第一房间的第三室内温度与设定温度的第一温度差值,以及设定温度与第二房间的第四室内温度的第二温度差值;获得第一温度差值 与设定比值的第一乘积,以及第二温度差值与设定比值的第二乘积;根据第一乘积与第二乘积的大小关系,确定第一温度阈值和第二温度阈值;根据第一温度阈值将第一房间的降温过程划分为第一降温阶段和第二降温阶段;根据第二温度阈值将第二房间的升温过程划分为第一升温阶段和第二升温阶段。
可选地,根据第一乘积与第二乘积的大小关系,确定第一温度阈值和第二温度阈值,包括:在第一乘积小于第二乘积的情况下,将第一乘积与设定温度的和,确定为第一温度阈值;根据第一温度阈值确定第二温度阈值,以在相同时长内,使第一房间在第一空调控制下由第一温度阈值降低至设定温度,第二房间在第二空调的控制下由第二温度阈值升高至设定温度;在第二乘积小于第一乘积的情况下,将设定温度与第二乘积的差,确定为第二温度阈值;根据第二温度阈值确定第一温度阈值,以在相同时长内,使第一房间在第一空调控制下由第一温度阈值降低至设定温度,第二房间在第二空调的控制下由第二温度阈值升高至设定温度。
在一些实施例中,用于控制空调的装置包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行前述实施例提供的用于控制空调的方法。
图6是本申请实施例提供的一种用于控制空调的装置的示意图。结合图6所示,用于控制空调的装置包括:
处理器(processor)61和存储器(memory)62,还可以包括通信接口(Communication Interface)63和总线64。其中,处理器61、通信接口63、存储器62可以通过总线64完成相互间的通信。通信接口63可以用于信息传输。处理器61可以调用存储器62中的逻辑指令,以执行前述实施例提供的用于控制空调的方法。
此外,上述的存储器62中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器62作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本申请实施例中的方法对应的程序指令/模块。处理器61通过运行存储在存储器62中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器62可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器62可以包括高速随机存取存储器,还可以包括非易失性存储器。
本申请实施例提供了一种多联机空调,包含前述实施例提供的用于控制空调的装置。
本申请实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行前述实施例提供的用于控制空调的方法。
本申请实施例提供了一种计算机程序产品,计算机程序产品包括存储在计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行前述实施例提供的用于控制空调的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本申请实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介 质中,包括一个或一个以上指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例中方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机读取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本申请的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本申请实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或一个以上用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的 方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于控制空调的方法,其特征在于,包括:
    在对第一房间降温、对第二房间升温的情况下,获得第一房间的第一室内温度以及第二房间的第二室内温度;所述第一房间和所述第二房间存在热交换;
    根据所述第一室内温度和所述第二室内温度,在预设调温阶段中确定当前调温阶段;所述预设调温阶段包括第一调温阶段和第二调温阶段,所述第一调温阶段对应的所述第一房间的第一降温速率大于所述第二调节温度对应的所述第一房间的第二降温速率,所述第一调温阶段对应所述第二房间的第一升温速率大于所述第二调温阶段对应的所述第二房间的第二降温速率;
    在所述当前调温阶段为所述第一调温阶段的情况下,获得所述第一房间的第一空调的制冷能效比以及所述第二房间的第二空调的制热能效比;
    如果所述制冷能效比大于所述制热能效比,则降低所述第一升温速率,并控制所述第二房间的第二空调,使所述第二房间的升温速率为降低后的第一升温速率;
    如果所述制冷能效比小于所述制热能效比,则降低所述第一降温速率,并控制所述第一房间的第一空调,使所述第一房间的降温速率为降低后的第一降温速率。
  2. 根据权利要求1所述的方法,其特征在于,
    降低所述第一升温速率,包括:降低所述第一升温速率,维持所述第一降温速率不变;或者,降低所述第一升温速率,提高所述第一降温速率;或者,降低所述第一升温速率,降低所述第一降温速率,使所述第一升温速率的降低值大于所述第一降温速率的降低值;
    降低所述第一降温速率,包括:降温所述第一降温速率,维持所述第一升温速率不变;或者,降低所述第一降温速率,提高所述第一升温速率;或者,降低所述第一降温速率,降低所述第一升温速率,使所述第一降温速率的降低值大于所述第一升温速率的降低值。
  3. 根据权利要求1所述的方法,其特征在于,根据所述第一室内温度和所述第二室内温度,在预设调温阶段中确定当前调温阶段,包括:
    在所述第一室内温度大于或等于第一温度阈值,且所述第二室内温度小于或等于第二温度阈值的情况下,将所述第一调温阶段确定为所述当前调温阶段;
    在所述第一室内温度小于第一温度阈值,且所述第二室内温度大于所述第二温度阈值的情况下,将所述第二调温阶段确定为所述当前调温阶段。
  4. 根据权利要求3所述的方法,其特征在于,所述预设调温阶段还包括第三调温阶段,所述第三调温阶段对应的第一房间的第三降温速率小于所述第二降温速率;所述第三调温阶段对应的第二房间的第三升温速率小于所述第二升温速率;
    根据所述第一室内温度和所述第二室内温度在预设调温阶段中,确定当前调温阶段,还包括:在所述第一室内温度小于第三温度阈值,且所述第二室内温度大于第四温度阈值的情况下,将所述第三调温阶段确定为所述当前调温阶段;所述第三温度阈值小于所述第一温度阈值,所述第四温度阈值大于所述第二温度阈值;
    其中,所述第三温度阈值和所述第四温度阈值为已知值。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述当前调温阶段为所述第二调温阶段的情况下,控制所述第一房间的第一空调和所述第二房间的第二空调,使所述第一房间的降温速率为所述第二降温速率,所述第二房间的升温速率为所述第二升温速率。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,预设调温阶段的确定,包括:
    在首次执行本方法时,获得所述第一房间的第三室内温度与设定温度的第一温度差值,以及所述设定温度与所述第二房间的第四室内温度的第二温度差值;
    获得第一温度差值与设定比值的第一乘积,以及所述第二温度差值与所述设定比值的第二乘积;
    根据所述第一乘积与所述第二乘积的大小关系,确定第一温度阈值和第二温度阈值;
    根据所述第一温度阈值将所述第一房间的降温过程划分为所述第一降温阶段和所述第二降温阶段;
    根据所述第二温度阈值将所述第二房间的升温过程划分为所述第一升温阶段和所述第二升温阶段。
  7. 根据权利要求6所述的方法,其特征在于,根据所述第一乘积与所述第二乘积的大小关系,确定所述第一温度阈值和第二温度阈值,包括:
    在所述第一乘积小于所述第二乘积的情况下,将所述第一乘积与所述设定温度的和,确定为所述第一温度阈值;根据所述第一温度阈值确定所述第二温度阈值,以在相同时长内,使所述第一房间在第一空调控制下由第一温度阈值降低至所述设定温度,所述第二房间在第二空调的控制下由第二温度阈值升高至所述设定温度;
    在所述第二乘积小于所述第一乘积的情况下,将所述设定温度与所述第二乘积的差,确定为所述第二温度阈值;根据所述第二温度阈值确定所述第一温度阈值,以在相同时长内,使所述第一房间在第一空调控制下由第一温度阈值降低至所述设定温度,所述第二房间在第二空调的控制下由第二温度阈值升高至所述设定温度。
  8. 一种用于控制空调的装置,其特征在于,包括:
    第一获得模块,被配置为在对第一房间降温、对第二房间升温的情况下,获得第一房间的第一室内温度以及第二房间的第二室内温度;所述第一房间和所述第二房间存在热交换;
    确定模块,被配置为根据所述第一室内温度和所述第二室内温度,在预设调温阶段中确定当前调温阶段;所述预设调温阶段包括第一调温阶段和第二调温阶段,所述第一调温阶段对应的所述第一房间的第一降温速率大于所述第二调节温度对应的所述第一房间的第二降温速率,所述第一调温阶段对应所述第二房间的第一升温速率大于所述第二调温阶段对应的所述第二房间的第二降温速率;
    第二获得模块,被配置为在所述当前调温阶段为所述第一调温阶段的情况下,获得所述第一房间的第一空调的制冷能效比以及所述第二房间的第二空调的制热能效比;
    第一控制模块,被配置为如果所述制冷能效比大于所述制热能效比,则降低所述第一升温速 率,并控制所述第二房间的第二空调,使所述第二房间的升温速率为降低后的第一升温速率;
    第二控制模块,被配置为如果所述制冷能效比小于所述制热能效比,则降低所述第一降温速率,并控制所述第一房间的第一空调,使所述第一房间的降温速率为降低后的第一降温速率。
  9. 一种用于控制空调的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的用于控制空调的方法。
  10. 一种多联机空调,其特征在于,包括如权利要求8或9所述的用于控制空调的装置。
PCT/CN2022/108784 2021-12-20 2022-07-29 用于控制空调的方法、装置和多联机空调 WO2023115950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111561473.5 2021-12-20
CN202111561473.5A CN114322251B (zh) 2021-12-20 2021-12-20 用于控制空调的方法、装置和多联机空调

Publications (1)

Publication Number Publication Date
WO2023115950A1 true WO2023115950A1 (zh) 2023-06-29

Family

ID=81051825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108784 WO2023115950A1 (zh) 2021-12-20 2022-07-29 用于控制空调的方法、装置和多联机空调

Country Status (2)

Country Link
CN (1) CN114322251B (zh)
WO (1) WO2023115950A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322251B (zh) * 2021-12-20 2023-04-14 青岛海尔空调器有限总公司 用于控制空调的方法、装置和多联机空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783491A (ja) * 1993-09-10 1995-03-28 Mitsubishi Heavy Ind Ltd 空気調和機の送風機制御装置
JP2006098017A (ja) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd 換気システム
JP2019002645A (ja) * 2017-06-16 2019-01-10 三菱電機株式会社 コントローラ、温度調節システム、温度調節方法、プログラムおよび住宅
CN110296508A (zh) * 2019-07-01 2019-10-01 宁波奥克斯电气股份有限公司 一种空调器温度舒适性控制方法、装置及空调器
CN113251602A (zh) * 2021-04-27 2021-08-13 青岛海尔空调器有限总公司 用于控制空调的方法、装置和智能空调
CN113418280A (zh) * 2021-06-04 2021-09-21 重庆海尔空调器有限公司 用于控制空调的方法、装置和智能空调
CN114322251A (zh) * 2021-12-20 2022-04-12 青岛海尔空调器有限总公司 用于控制空调的方法、装置和多联机空调

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783491B2 (ja) * 1988-12-05 1995-09-06 日本ビクター株式会社 輝度信号・色信号分離回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783491A (ja) * 1993-09-10 1995-03-28 Mitsubishi Heavy Ind Ltd 空気調和機の送風機制御装置
JP2006098017A (ja) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd 換気システム
JP2019002645A (ja) * 2017-06-16 2019-01-10 三菱電機株式会社 コントローラ、温度調節システム、温度調節方法、プログラムおよび住宅
CN110296508A (zh) * 2019-07-01 2019-10-01 宁波奥克斯电气股份有限公司 一种空调器温度舒适性控制方法、装置及空调器
CN113251602A (zh) * 2021-04-27 2021-08-13 青岛海尔空调器有限总公司 用于控制空调的方法、装置和智能空调
CN113418280A (zh) * 2021-06-04 2021-09-21 重庆海尔空调器有限公司 用于控制空调的方法、装置和智能空调
CN114322251A (zh) * 2021-12-20 2022-04-12 青岛海尔空调器有限总公司 用于控制空调的方法、装置和多联机空调

Also Published As

Publication number Publication date
CN114322251A (zh) 2022-04-12
CN114322251B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2023115951A1 (zh) 用于控制空调的方法、装置和多联机空调
CN107514743B (zh) 一种空调器控制方法、控制装置及空调器
WO2022257485A1 (zh) 用于控制空调的方法、装置和多联机空调
CN203671837U (zh) 空调器
WO2023115973A1 (zh) 用于控制空调的方法、装置和多联机空调
CN103528134A (zh) 空调器及其加热控制方法
WO2023071200A1 (zh) 用于控制空调的方法、装置和多联机空调
WO2023115950A1 (zh) 用于控制空调的方法、装置和多联机空调
WO2022227606A1 (zh) 用于控制空调的方法、装置和智能空调
WO2022252667A1 (zh) 用于控制空调的方法、装置和智能空调
CN113251630A (zh) 一种空调智能控制方法、控制装置及空调系统
CN114061073B (zh) 用于控制空调的方法、装置和多联机空调
CN104566782A (zh) 空调器的控制方法、空调器的控制装置和空调器
WO2023138095A1 (zh) 用于控制空调横摆叶的方法及装置、空调、存储介质
CN108278729B (zh) 空调控制方法、装置及空调
WO2022252719A1 (zh) 用于空调的控制方法及装置、空调
WO2022198979A1 (zh) 用于空调的控制方法、装置及空调
WO2023115972A1 (zh) 用于控制空调的方法、装置和多联机空调
WO2021103959A1 (zh) 窗户控制方法、装置及窗户
CN113137701B (zh) 用于空调控制的方法、装置和空调
WO2024077994A1 (zh) 联动新风装置的控制方法、装置及智能家居系统
WO2024077985A1 (zh) 联动新风装置的控制方法、装置及智能家居系统
CN113932406B (zh) 用于调节室内环境的方法、装置及系统
WO2023159955A1 (zh) 空调的控制方法、控制装置和空调
CN109757057B (zh) 一种数据中心机柜的温度控制方法及对应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909280

Country of ref document: EP

Kind code of ref document: A1