WO2023115908A1 - 一种VOCs释放量检测气候室温湿度控制系统及方法 - Google Patents

一种VOCs释放量检测气候室温湿度控制系统及方法 Download PDF

Info

Publication number
WO2023115908A1
WO2023115908A1 PCT/CN2022/103819 CN2022103819W WO2023115908A1 WO 2023115908 A1 WO2023115908 A1 WO 2023115908A1 CN 2022103819 W CN2022103819 W CN 2022103819W WO 2023115908 A1 WO2023115908 A1 WO 2023115908A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
humidity
control
dew point
climate chamber
Prior art date
Application number
PCT/CN2022/103819
Other languages
English (en)
French (fr)
Inventor
刘存根
王焕清
赵雅静
刘晓平
孙钰龙
刘晓彤
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2023115908A1 publication Critical patent/WO2023115908A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of climate room temperature and humidity control, in particular to a climate room temperature and humidity control system for detecting VOCs release and a nonlinear control method based on the system.
  • Volatile Organic Compounds are the main factors affecting the quality of ambient air, seriously threatening human health, and have been identified as Class I carcinogens by the International Agency for Research on Cancer. At present, the climate chamber detection method of VOCs emission is accepted and recognized by administrative law enforcement, inspection agencies and related production enterprises, and gradually leads the development direction of VOCs emission detection in the future.
  • the precise control of temperature and humidity in the climate chamber is the key to realizing the detection of VOCs emission.
  • the technical problem to be solved by the present invention is to make up for the deficiencies of the prior art, and provide a VOCs emission detection climate room temperature humidity control system and a nonlinear control method based on the system.
  • the technical solution of the present invention is:
  • a VOCs emission detection climate room temperature humidity control system including a detection chamber, a climate chamber, a temperature control water tank, a surface cooler, a dew point humidity generator, an air compressor, an air purification device, multiple temperature sensors, a humidity sensor and a total
  • the controller, climate chamber, temperature control water tank and dew point humidity generator are all set in the detection room;
  • the climate chamber is equipped with a surface cooler and a humidity adjustment outlet, the surface cooler is connected to the water circulation port of the temperature control water tank through a water pipe, and the humidity adjustment outlet is connected to the air outlet of the dew point humidity generator through an air pipe;
  • the air compressor is used to deliver compressed air to the air inlet of the dew point humidity generator, and the air purification device is arranged between the air outlet of the air compressor and the air inlet of the dew point humidity generator;
  • the heating/refrigerating device of the temperature-controlled water tank is the first heating/refrigerating device, and the heating/refrigerating device of the dew point humidity generator is the second heating/refrigerating device;
  • the total controller includes a calculation module, a data input module and a data output module, the data input module and the data output module are connected to the calculation module; multiple temperature sensors and humidity sensors are connected to the data input module, the first heating/cooling device and the second The two heating/refrigerating devices are connected to the data output module;
  • the multiple temperature sensors are respectively: the first temperature sensor is used to measure the temperature in the climate chamber, the second temperature sensor is used to measure the water temperature in the temperature-controlled water tank, the third temperature sensor is used to measure the temperature of the outer surface of the climate chamber, and the fourth temperature sensor is used to measure the temperature of the climate chamber.
  • the temperature sensor is used to measure the ambient temperature outside the detection chamber, the fifth temperature sensor is used to measure the temperature inside the detection chamber, the sixth temperature sensor is used to measure the temperature inside the air compressor, and the seventh temperature sensor is used to measure the dew point humidity generator The air temperature at the air inlet, the eighth temperature sensor is used to measure the water temperature in the dew point humidity generator;
  • Humidity sensors are used to measure the humidity in the climate chamber.
  • the walls of the climate chamber are made of iron or stainless steel.
  • climate chamber has a volume of 30m 3 .
  • a control method based on the above-mentioned VOCs emission detection climate room temperature humidity control system comprising the steps of:
  • Step A1 The data input module of the general controller obtains the temperature x 1 in the climate chamber through the first temperature sensor; obtains the humidity x 2 in the climate chamber through the humidity sensor; obtains the water temperature in the temperature-controlled water tank x 3 through the second temperature sensor Obtain the water temperature x 4 in the dew point humidity generator through the eighth temperature sensor; obtain the ambient temperature d 1 through the fourth temperature sensor; obtain the external surface temperature d 2 of the climate chamber through the third temperature sensor; obtain the detection through the fifth temperature sensor Indoor temperature d 3 ; the real-time temperature in the air compressor is obtained through the sixth temperature sensor, and d 4 is obtained after calculation, and d 4 is the difference between the real-time temperature in the air compressor and the initial temperature; the dew point is obtained through the seventh temperature sensor Air temperature at the air inlet of the humidity generator
  • Step A2 Set the ideal temperature value y r1 and the ideal humidity value y r2 of the climate chamber through the data input module;
  • Step A3 The data input module sends the collected data to the computing module, and the computing module processes the data and sends the processing result to the data output module, and the data output module outputs the first control signal u 1 to the first heating/cooling of the temperature-controlled water tank device, the data output module outputs the second control signal u 2 to the second heating/cooling device of the dew point humidity generator; the first heating/cooling device controls the water temperature x 3 in the temperature-controlled water tank through the first control signal u 1 , and the second The heating/cooling device controls the water temperature x4 in the dew point humidity generator through the second control signal u2 ;
  • processing of data by the computing module includes the following steps:
  • Step B1 Build the control model
  • L 1 ⁇ L 10 , G 1 , G 2 , ⁇ f , ⁇ D are known parameters
  • Step B2 Transform the control model into a matrix form to obtain the control model matrix
  • Step B3 Coordinate transformation of the obtained control model matrix
  • l 11 and l 12 are positive design parameters
  • k is a positive design parameter
  • Step B4 Build the Controller
  • l 21 and l 22 are positive design parameters.
  • the value range of l 11 is 0.0008-0.0012
  • the value range of l 12 is 0.0007-0.0011
  • the value range of l 21 is 0.0008-0.0012
  • the value range of l 22 is 0.0004-0.0006
  • the value of k The value ranges from 7 5 to 9 5 .
  • the control method of the present application directly designs the controller based on the nonlinear mathematical model of the climate chamber, avoiding the process of model simplification and the decrease of control accuracy caused by simplification.
  • the control method of this application is aimed at the pure feedback structure of the system model, and uses the implicit function theorem to process the nonlinear items as a whole without decoupling the temperature and humidity.
  • control method of the present application does not use a fuzzy logic system, it effectively avoids the problem of a sharp increase in the computational complexity of the controller caused by the increase of fuzzy rules.
  • Fig. 1 is the structural representation of the embodiment of the present invention.
  • Fig. 2 is the temperature and humidity change curve in the climate room obtained by the embodiment of the present invention.
  • Fig. 3 is the climate room temperature and humidity control error curve obtained by the embodiment of the present invention.
  • Fig. 4 is the water temperature change curve in the temperature control water tank and the dew point humidity generator obtained in the embodiment of the present invention
  • Fig. 5 is the climate chamber humidity control curve that total controller outputs in the embodiment of the present invention.
  • Fig. 6 is the climate chamber temperature control curve that total controller outputs in the embodiment of the present invention.
  • 1-detection chamber 2-climate chamber, 3-surface cooler, 4-temperature control water tank, 5-first heating/cooling device, 6-second temperature sensor, 7-first temperature sensor, 8- Humidity sensor, 9-third temperature sensor, 10-operation module, 11-data input module, 12-data output module, 13-master controller, 14-fourth temperature sensor, 15-fifth temperature sensor, 16-the first Six temperature sensors, 17-air compressor, 18-air purification device, 19-seventh temperature sensor, 20-eighth temperature sensor, 21-second heating/cooling device, 22-dew point humidity generator.
  • a VOCs emission detection climate room temperature humidity control system including a detection chamber 1, a climate chamber 2, a temperature control water tank 4, a surface cooler 3, a dew point humidity generator 22, an air compressor 17, an air purification device 18, a plurality of The temperature sensor, the humidity sensor 8 and the general controller 13, the climate chamber 2, the temperature control water tank 4 and the dew point humidity generator 22 are all arranged in the detection chamber 1.
  • the walls of the climate room 2 are made of iron or stainless steel.
  • the volume of the waiting room 2 is 30m 3 .
  • the climate room 2 is equipped with a surface cooler 3 and a humidity adjustment outlet.
  • the surface cooler 3 is connected to the water circulation port of the temperature control water tank 4 through water pipes , the humidity regulating tuyere is connected with the air outlet of the dew point humidity generator 22 through the air duct.
  • the air compressor 17 is used to deliver compressed air to the air inlet of the dew point humidity generator 22
  • the air cleaning device 18 is arranged between the air outlet of the air compressor 17 and the air inlet of the dew point humidity generator 22 .
  • the controller of the temperature control water tank 4 is the first controller 5
  • the controller of the dew point humidity generator 22 is the second controller 21 .
  • General controller 13 comprises operation module 10, data input module 11 and data output module 12, and data input module 11 and data output module 12 are all connected with operation module 10; Multiple temperature sensors and humidity sensors 8 are all connected with data input module 11 , the first controller 5 and the second controller 21 are both connected to the data output module 12 .
  • a plurality of temperature sensors are respectively: the first temperature sensor 7 is used to measure the temperature in the climate chamber 2, the second temperature sensor 6 is used to measure the water temperature in the temperature control water tank 4, and the third temperature sensor 9 is used to measure the temperature of the climate chamber 2.
  • the fourth temperature sensor 14 is used to measure the ambient temperature outside the detection chamber 1
  • the fifth temperature sensor 15 is used to measure the temperature in the detection chamber 1
  • the sixth temperature sensor 16 is used to measure the temperature in the air compressor 17
  • the seventh temperature sensor 19 is used to measure the air temperature at the air inlet of the dew point humidity generator 22
  • the eighth temperature sensor 20 is used to measure the water temperature in the dew point humidity generator 22 .
  • the humidity sensor 8 is used to measure the humidity in the climate chamber 2 .
  • a control method based on the above-mentioned VOCs emission detection climate room temperature humidity control system comprising the steps of:
  • Step A1 The data input module 11 of the general controller 13 obtains the temperature x 1 in the climate chamber 2 through the first temperature sensor 7; obtains the humidity x 2 in the climate chamber 2 through the humidity sensor 8; obtains the temperature x 2 in the climate chamber 2 through the second temperature sensor 6;
  • the water temperature x 3 in the warm water tank 4; the water temperature x 4 in the dew point humidity generator 22 is obtained by the eighth temperature sensor 20;
  • the ambient temperature d 1 is obtained by the fourth temperature sensor 14;
  • the climate chamber 2 is obtained by the third temperature sensor 9 Surface temperature d 2 ;
  • the temperature d 3 in the detection chamber 1 is obtained by the fifth temperature sensor 15;
  • the real-time temperature in the air compressor 17 is obtained by the sixth temperature sensor 16, and d 4 is obtained after calculation, and d 4 is the air compressor
  • Step A2 Input the ideal temperature value y r1 and the ideal humidity value y r2 of the climate chamber 2 through the data input module 11;
  • Step A3 The data input module 11 sends the collected data to the computing module 10, and the computing module 10 sends the processing result to the data output module 12 after processing the data, and the data output module 12 outputs the first control signal u1 to the temperature control water tank 4
  • the first controller 5 of the data output module 12 outputs the second control signal u 2 to the second controller 21 of the dew point humidity generator 22;
  • the first heating/cooling device 5 controls the temperature-controlled water tank 4 through the first control signal u 1
  • the water temperature x 3 inside, the second heating/cooling device 21 controls the water temperature x 4 inside the dew point humidity generator 22 through the second control signal u 2 ;
  • the processing of the data by the computing module 10 includes the following steps:
  • Step B1 Build the control model
  • L 1 ⁇ L 10 , G 1 , G 2 , ⁇ f , ⁇ D are known parameters
  • u 1 is the control signal sent by the master controller 13 to the first controller 5 of the temperature-controlled water tank 4
  • u 2 is the signal sent by the master controller 13 to the second controller 21 of the dew point humidity generator 22 control signal.
  • the outdoor ambient temperature can be regarded as the temperature of the temperature-controlled water tank under the zero initial condition of the system.
  • Step B2 Transform the control model into a matrix form to obtain the control model matrix
  • Step B3 Coordinate transformation of the obtained control model matrix
  • y r1 is the ideal temperature value manually input (the ideal temperature value of input climate chamber 2 is 25°C), and y r2 is the ideal humidity value manually input (the ideal humidity value of input climate room 2 is 50%);
  • Step B4 Build the Controller
  • min ⁇ 2l 11 , 2l 12 , 2l 21 , 2l 22 ⁇ .
  • Lemma 1 For any and t ⁇ 0, if the system satisfies the following inequality relation:
  • function in the formula is a positive definite function
  • the functions ⁇ 1 and ⁇ 2 are k ⁇ functions. and is a normal amount.
  • Matlab is used for simulation.
  • the initial relative humidity in the climate chamber is set to 20%
  • the initial temperature is 20°C
  • the initial water temperature in the temperature-controlled water tank and dew point humidity generator is set to 20°C.
  • the preset values of relative humidity and temperature in the climate chamber were set to 50% and 25°C, respectively.
  • Figure 2 shows the control effect of the control method proposed in this embodiment on the temperature and humidity in the climate room
  • Figure 3 shows the temperature and humidity control error in the climate room, which can be clearly seen from the simulation figure
  • the control method proposed in this embodiment can make the temperature and humidity in the climate chamber reach a steady state in about 9300 seconds, and the temperature and humidity error ranges are [-0.1, 0.1] °C, [-0.1, 0.1]%, basically no overshoot phenomenon. Since this embodiment performs precise feedback compensation on nonlinear items, theoretically the control accuracy of temperature and humidity can be very high.
  • the time to reach a steady state is about 13500 seconds
  • the error of temperature and humidity is [-0.1,0.1]°C, [-0.1,0.1]%
  • the overshoots are 2.1% and 12.3% respectively
  • the H ⁇ control method in Document 3 takes about 14,000 seconds, and the temperature and humidity reach a steady state
  • the state observer control method in Document 3 the time is about 13,950 seconds, and the temperature and humidity reach a steady state.

Abstract

本发明涉及了一种VOCs释放量检测气候室温湿度控制系统,并给出了基于该控制系统的非线性控制方法,控制系统包括检测室、气候室、控温水箱、表冷器、露点湿度发生器、空气压缩机、空气净化装置、多个温度传感器、湿度传感器和总控制器,气候室、控温水箱和露点湿度发生器均设置于检测室中;本技术方案的控制方法直接针对气候室非线性数学模型进行控制器设计,避免了模型简化过程以及简化引起的控制精度下降问题,控制精度高,控制平稳。

Description

一种VOCs释放量检测气候室温湿度控制系统及方法 技术领域
本发明涉及气候室温湿度控制技术领域,具体涉及一种VOCs释放量检测气候室温湿度控制系统及基于该系统的非线性控制方法。
背景技术
挥发性有机化合物(Volatile Organic Compounds,VOCs)是影响环境空气质量的主要因素,严重威胁人类健康,己经被国际癌症研究机构确定为I类致癌物质。目前,VOCs释放量气候室检测法被行政执法、检验机构和相关生产企业所接受和认可,并逐渐主导未来检测VOCs释放量的发展方向。
气候室内温湿度的精确控制是实现VOCs释放量检测的关键。
已有气候室控制方法多采用PID控制,如文献1,申请号为201810966286.7、名称为“一种自动调节气候室湿度的控制方法”的发明专利,提出了一种30m 3气候室温湿度智能前馈PID控制方法,该类方法均没有精确考虑气候室温湿度控制中非线性因素,因此很难实现温湿度的精确控制。
有的气候室控制方法虽然考虑了温湿度控制中非线性因素,但具体控制过程中是将非线性模型简化为线性模型或直接建立线性模型,然后对线性模型进行控制器设计,并非真正的非线性控制。如文献2,名称为“基于模糊滑模变结构算法的大气候室控制研究”的博士学位论文,建立了气候室的非线性数学模型,并进行局部精确线性化,进而进行了模糊控制器设计。如文献3,名称为“人造板制品甲醛释放量检测用气候室高精度控制方法研究”的博士学位论文,建立了气候室的非线性数学模型,并分别利用精确反馈线性化、H 控制和状态观测器,提出了气候室温湿度控制方法。上述方法是将非线性模型进行线性化后,再进行控制器设计,而没有针对非线性模型直接进行控制设计,由于气候室模型不满足严格反馈结构,且温湿度之间具有强耦合的特点,难以利用backstepping(反步)方法设计非线性控制器。
另外,文献2中的模糊控制器,其计算量会随着模糊逻辑规则的增加按指数 规律增大,因此,当模糊规则较多时,容易造成计算爆炸;模糊规则较少时,近似的效果会变的较差。
发明内容
本发明要解决的技术问题是弥补现有技术的不足,提供一种VOCs释放量检测气候室温湿度控制系统及基于该系统的非线性控制方法。
要解决上述技术问题,本发明的技术方案为:
一种VOCs释放量检测气候室温湿度控制系统,包括检测室、气候室、控温水箱、表冷器、露点湿度发生器、空气压缩机、空气净化装置、多个温度传感器、湿度传感器和总控制器,气候室、控温水箱和露点湿度发生器均设置于检测室中;
气候室中设有表冷器和湿度调节风口,表冷器通过水管与控温水箱的水循环口相连,湿度调节风口通过风管与露点湿度发生器的出气口相连;
空气压缩机用于向露点湿度发生器的进风口输送压缩空气,空气净化装置设置在空气压缩机的出风口与露点湿度发生器的进风口之间;
控温水箱的加热/制冷装置为第一加热/制冷装置,露点湿度发生器的加热/制冷装置为第二加热/制冷装置;
总控制器包括运算模块、数据输入模块和数据输出模块,数据输入模块和数据输出模块均与运算模块相连;多个温度传感器和湿度传感器均与数据输入模块相连,第一加热/制冷装置和第二加热/制冷装置均与数据输出模块相连;
多个温度传感器分别为:第一温度传感器用于测量气候室中的温度,第二温度传感器用于测量控温水箱内的水温,第三温度传感器用于测量气候室的外表面温度,第四温度传感器用于测量检测室之外的环境温度,第五温度传感器用于测量检测室内的温度,第六温度传感器用于测量空气压缩机内的温度,第七温度传感器用于测量露点湿度发生器入风口的空气温度,第八温度传感器用于测量露点湿度发生器内的水温;
湿度传感器用于测量气候室中的湿度。
进一步地,所述气候室的墙壁为铁或不锈钢材质。
进一步地,所述气候室的体积为30m 3
一种基于上述VOCs释放量检测气候室温湿度控制系统的控制方法,包括如下步骤:
步骤A1:总控制器的数据输入模块通过第一温度传感器获得气候室中的温度x 1;通过湿度传感器获得气候室中的湿度x 2;通过第二温度传感器获得控温水箱内的水温x 3;通过第八温度传感器获得露点湿度发生器内的水温x 4;通过第四温度传感器获得环境温度d 1;通过第三温度传感器获得气候室的外表面温度d 2;通过第五温度传感器获得检测室内的温度d 3;通过第六温度传感器获得空气压缩机内的实时温度,通过计算后获得d 4,d 4为空气压缩机内的实时温度与初始温度之差;通过第七温度传感器获得露点湿度发生器入风口的空气温度
Figure PCTCN2022103819-appb-000001
步骤A2:通过数据输入模块设定气候室的理想温度值y r1和理想湿度值y r2
步骤A3:数据输入模块将所采集数据发送至运算模块,运算模块对数据处理之后将处理结果发送至数据输出模块,数据输出模块输出第一控制信号u 1给控温水箱的第一加热/制冷装置,数据输出模块输出第二控制信号u 2给露点湿度发生器的第二加热/制冷装置;第一加热/制冷装置通过第一控制信号u 1控制控温水箱内的水温x 3,第二加热/制冷装置通过第二控制信号u 2控制露点湿度发生器内的水温x 4
步骤四:重复步骤A1~步骤A3,致使x 1=y r1,x 2=y r2
进一步地,所述运算模块对数据的处理包括如下步骤:
步骤B1:构建控制模型
Figure PCTCN2022103819-appb-000002
其中,L 1~L 10、G 1、G 2、τ f、τ D
Figure PCTCN2022103819-appb-000003
均为已知参数;
步骤B2:将控制模型变换为矩阵形式,得控制模型矩阵
Figure PCTCN2022103819-appb-000004
其中,
Figure PCTCN2022103819-appb-000005
Figure PCTCN2022103819-appb-000006
步骤B3:将得控制模型矩阵进行坐标变换
进行第一坐标变换:
s 1=z 1-y r
其中,
Figure PCTCN2022103819-appb-000007
构建第一个李雅普诺夫函数:
Figure PCTCN2022103819-appb-000008
构建虚拟控制器:
Figure PCTCN2022103819-appb-000009
其中,l 11,l 12为正的设计参数;
进行第二坐标变换:
s 2=kΔ-α 1
其中,
Figure PCTCN2022103819-appb-000010
k为一个正的设计参数;
构建第二个李雅普诺夫函数:
Figure PCTCN2022103819-appb-000011
步骤B4:构建控制器
Figure PCTCN2022103819-appb-000012
其中,
Figure PCTCN2022103819-appb-000013
Figure PCTCN2022103819-appb-000014
Figure PCTCN2022103819-appb-000015
l 21,l 22为正的设计参数。
进一步地,l 11的取值范围为0.0008~0.0012,l 12的取值范围为0.0007~0.0011,l 21的取值范围为0.0008~0.0012,l 22的取值范围为0.0004~0.0006,k的取值范围为7 5~9 5
进一步地,l 11=0.001,l 12=0.0009,l 21=0.001,l 22=0.0005,k=8 5
本发明可以达到的有益效果为:
(1)本申请的控制方法直接针对气候室非线性数学模型进行控制器设计,避免了模型简化过程以及简化引起的控制精度下降问题。
(2)本申请的控制方法是针对系统模型的纯反馈结构,利用隐函数定理,将非线性项作为整体进行处理,无需进行温湿度解耦。
(3)采用本申请的控制方法可更快速地达到设定的温湿度,并获得较高的温湿度控制精度,且控制平稳。
(4)由于本申请的控制方法未采用模糊逻辑系统,故有效避免了因模糊规则的增加而造成的控制器计算复杂性急剧增大的问题。
附图说明
图1是本发明实施例的结构示意图;
图2是本发明实施例获得的气候室内温湿度变化曲线;
图3是本发明实施例获得的气候室内温湿度控制误差曲线;
图4是本发明实施例获得的控温水箱、露点湿度发生器内水温变化曲线;
图5是本发明实施例中总控制器输出的气候室湿度控制曲线;
图6是本发明实施例中总控制器输出的气候室温度控制曲线;
图中:1-检测室,2-气候室,3-表冷器,4-控温水箱,5-第一加热/制冷装置,6-第二温度传感器,7-第一温度传感器,8-湿度传感器,9-第三温度传感器,10-运算模块,11-数据输入模块,12-数据输出模块,13-总控制器,14-第四温度传感器,15-第五温度传感器,16-第六温度传感器,17-空气压缩机,18-空气净化装置,19-第七温度传感器,20-第八温度传感器,21-第二加热/制冷装置,22-露点湿度发生器。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
一种VOCs释放量检测气候室温湿度控制系统,包括检测室1、气候室2、控温水箱4、表冷器3、露点湿度发生器22、空气压缩机17、空气净化装置18、多个温度传感器、湿度传感器8和总控制器13,气候室2、控温水箱4和露点湿度发生器22均设置于检测室1中。
气候室2的墙壁为铁或不锈钢材质,候室2的体积为30m 3,气候室2中设有表冷器3和湿度调节风口,表冷器3通过水管与控温水箱4的水循环口相连,湿度调节风口通过风管与露点湿度发生器22的出气口相连。
空气压缩机17用于向露点湿度发生器22的进风口输送压缩空气,空气净化装置18设置在空气压缩机17的出风口与露点湿度发生器22的进风口之间。
控温水箱4的控制器为第一控制器5,露点湿度发生器22的控制器为第二控制器21。
总控制器13包括运算模块10、数据输入模块11和数据输出模块12,数据输入模块11和数据输出模块12均与运算模块10相连;多个温度传感器和湿度传感器8均与数据输入模块11相连,第一控制器5和第二控制器21均与数据输出模块12相连。
多个温度传感器分别为:第一温度传感器7用于测量气候室2中的温度,第二温度传感器6用于测量控温水箱4内的水温,第三温度传感器9用于测量气候室2的表面温度,第四温度传感器14用于测量检测室1之外的环境温度,第五温度传感器15用于测量检测室1内的温度,第六温度传感器16用于测量空气压缩机17内的温度,第七温度传感器19用于测量露点湿度发生器22入风口的空气温度,第八温度传感器20用于测量露点湿度发生器22内的水温。
湿度传感器8用于测量气候室2中的湿度。
一种基于上述的VOCs释放量检测气候室温湿度控制系统的控制方法,包括如下步骤:
步骤A1:总控制器13的数据输入模块11通过第一温度传感器7获得气候室2中的温度x 1;通过湿度传感器8获得气候室2中的湿度x 2;通过第二温度传感器6获得控温水箱4内的水温x 3;通过第八温度传感器20获得露点湿度发生 器22内的水温x 4;通过第四温度传感器14获得环境温度d 1;通过第三温度传感器9获得气候室2的表面温度d 2;通过第五温度传感器15获得检测室1内的温度d 3;通过第六温度传感器16获得空气压缩机17内的实时温度,通过计算后获得d 4,d 4为空气压缩机17内的实时温度与初始温度之差;通过第七温度传感器19获得露点湿度发生器22入风口的空气温度
Figure PCTCN2022103819-appb-000016
步骤A2:通过数据输入模块11输入气候室2的理想温度值y r1和理想湿度值y r2
步骤A3:数据输入模块11将所采集数据发送至运算模块10,运算模块10对数据处理之后将处理结果发送至数据输出模块12,数据输出模块12输出第一控制信号u 1给控温水箱4的第一控制器5,数据输出模块12输出第二控制信号u 2给露点湿度发生器22的第二控制器21;第一加热/制冷装置5通过第一控制信号u 1控制控温水箱4内的水温x 3,第二加热/制冷装置21通过第二控制信号u 2控制露点湿度发生器22内的水温x 4
步骤四:重复步骤A1~步骤A3,致使x 1=y r1,x 2=y r2
运算模块10对数据的处理包括如下步骤:
步骤B1:构建控制模型
Figure PCTCN2022103819-appb-000017
其中,L 1~L 10、G 1、G 2、τ f、τ D
Figure PCTCN2022103819-appb-000018
均为已知参数,u 1为总控制器13向控温水箱4的第一控制器5发送的控制信号,u 2是总控制器13向露点湿度发生器22的第二控制器21发送的控制信号。
Figure PCTCN2022103819-appb-000019
Figure PCTCN2022103819-appb-000020
Figure PCTCN2022103819-appb-000021
相关变量及参数取值在下表中给出:
Figure PCTCN2022103819-appb-000022
注:表中未有数值的变量,在计算时参考系统初始状态进行赋值,例如:室外环境温度可视为系统零初始条件下控温水箱的温度。
步骤B2:将控制模型变换为矩阵形式,得控制模型矩阵
Figure PCTCN2022103819-appb-000023
其中,
Figure PCTCN2022103819-appb-000024
Figure PCTCN2022103819-appb-000025
Figure PCTCN2022103819-appb-000026
步骤B3:将得控制模型矩阵进行坐标变换
进行第一坐标变换:
s 1=z 1-y r      (S3)
其中,
Figure PCTCN2022103819-appb-000027
y r1为手动输入的理想温度值(输入气候室2的理想温度值为25℃),y r2为手动输入的理想湿度值(输入气候室2的理想湿度值为50%);
构建第一个李雅普诺夫函数:
Figure PCTCN2022103819-appb-000028
构建虚拟控制器:
Figure PCTCN2022103819-appb-000029
其中,l 11=0.001,l 12=0.0009。
进行第二坐标变换:
s 2=kΔ-α 1   (S6)
其中,
Figure PCTCN2022103819-appb-000030
k=8 5
构建第二个李雅普诺夫函数:
Figure PCTCN2022103819-appb-000031
步骤B4:构建控制器
Figure PCTCN2022103819-appb-000032
其中,
Figure PCTCN2022103819-appb-000033
Figure PCTCN2022103819-appb-000034
Figure PCTCN2022103819-appb-000035
l 21=0.001,l 22=0.0005。
为证明本实施例的控制方法可保证闭环系统内所有信号有界,现进行如下证明:
对式(S4)求导,并结合(S2)和(S3),得:
Figure PCTCN2022103819-appb-000036
将式(S5)代入式(S10),可得:
Figure PCTCN2022103819-appb-000037
对式(S7)求导,并结合(S2)和(S6)得:
Figure PCTCN2022103819-appb-000038
将式(S8)、(S9)代入式(S12),得:
Figure PCTCN2022103819-appb-000039
其中,Φ=min{2l 11,2l 12,2l 21,2l 22}.
根据引理1,由式(S13)可知,本实施例的控制方法可保证闭环系统内所有信号有界。
引理1:对于任意的
Figure PCTCN2022103819-appb-000040
和t≥0,如果系统满足如下不等关系:
Figure PCTCN2022103819-appb-000041
则可保证系统V中的所有信号有界。式中函数
Figure PCTCN2022103819-appb-000042
为正定函数,函数γ 1、γ 2为k 函数。
Figure PCTCN2022103819-appb-000043
Figure PCTCN2022103819-appb-000044
为正常量。
仿真验证
为验证本实施例提出的控制方法的有效性,使用Matlab进行仿真。气候室初始相对湿度设定为20%,初始温度为20℃,控温水箱及露点湿度发生器内初始水温设为20℃。气候室内相对湿度及温度预设值分别设定为50%及25℃。控制相关参数设置如下:l 11=0.001,l 12=0.0009,l 21=0.001,l 22=0.0005,k=8 5
仿真结果如图2-6所示:图2给出了本实施例提出的控制方法对气候室内温湿度的控制效果,图3给出了气候室内温湿度控制误差,从仿真图中可以明显看出,本实施例所提出的控制方法可使气候室内温湿度平稳地在9300秒左右达到稳定状态,温湿度误差范围分别为[-0.1,0.1]℃、[-0.1,0.1]%,基本无超调现象。由于本实施例是对非线性项进行精确反馈补偿,理论上温湿度的控制精度可达很高。
由于文献3所述方法已经和PID控制方法进行了对比,结果验证了文献3所设计控制器优于PID控制器,故在此仅将本实施例的控制效果与文献3进行对比,对比如下:
采用文献3中的精确显性化控制方法,时间在13500秒左右达到稳定状态,温湿度误差为[-0.1,0.1]℃、[-0.1,0.1]%,且温湿度均存在明显超调,超调量分别为2.1%和12.3%;文献3中的H 控制方法,时间在14000秒左右,温湿度达到稳定状态;文献3中的状态观测器控制方法,时间在13950秒左右,温湿度达到稳定状态。
控温水箱及露点湿度发生器内的水温变化x 3、x 4在图4中给出,本实施例设计的湿度、温度控制输入分别在图5、6中给出,从图中可看出,控制信号在控制初期经历了轻微的波动后平稳地达到稳定;而文献3所设计控制器的控制输入在整个控制过程中都存在明显的振荡,从而对控制装置产生不利影响。
在本发明的描述中,“内”、“外”、“上”、“下”、“前”、“后”等指示方位或位置关系的词语,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述仅是本发明的其中一种实施方式,本发明的保护范围并不仅局限于上述实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明思路的前提下所做出的若干改进和润饰均为本发明的保护范围。

Claims (7)

  1. 一种VOCs释放量检测气候室温湿度控制系统,其特征是:包括检测室(1)、气候室(2)、控温水箱(4)、表冷器(3)、露点湿度发生器(22)、空气压缩机(17)、空气净化装置(18)、多个温度传感器、湿度传感器(8)和总控制器(13),气候室(2)、控温水箱(4)和露点湿度发生器(22)均设置于检测室(1)中;
    气候室(2)中设有表冷器(3)和湿度调节风口,表冷器(3)通过水管与控温水箱(4)的水循环口相连,湿度调节风口通过风管与露点湿度发生器(22)的出气口相连;
    空气压缩机(17)用于向露点湿度发生器(22)的进风口输送压缩空气,空气净化装置(18)设置在空气压缩机(17)的出风口与露点湿度发生器(22)的进风口之间;
    控温水箱(4)的加热/制冷装置为第一加热/制冷装置(5),露点湿度发生器(22)的加热/制冷装置为第二加热/制冷装置(21);
    总控制器(13)包括运算模块(10)、数据输入模块(11)和数据输出模块(12),数据输入模块(11)和数据输出模块(12)均与运算模块(10)相连;多个温度传感器和湿度传感器(8)均与数据输入模块(11)相连,第一加热/制冷装置(5)和第二加热/制冷装置(21)均与数据输出模块(12)相连;
    多个温度传感器分别为:第一温度传感器(7)用于测量气候室(2)中的温度,第二温度传感器(6)用于测量控温水箱(4)内的水温,第三温度传感器(9)用于测量气候室(2)的外表面温度,第四温度传感器(14)用于测量检测室(1)之外的环境温度,第五温度传感器(15)用于测量检测室(1)内的温度,第六温度传感器(16)用于测量空气压缩机(17)的温度,第七温度传感器(19)用于测量露点湿度发生器(22)入风口的空气温度,第八温度传感器(20)用于测量露点湿度发生器(22)内的水温;
    湿度传感器(8)用于测量气候室(2)中的湿度。
  2. 根据权利要求1所述的VOCs释放量检测气候室温湿度控制系统,其特征是:所述气候室(2)的墙壁为铁或不锈钢材质。
  3. 根据权利要求1所述的VOCs释放量检测气候室温湿度控制系统,其特征是:所述气候室(2)的体积为30m 3
  4. 一种基于权利要求1-3任一项所述的VOCs释放量检测气候室温湿度控制系统的控制方法,其特征是:包括如下步骤:
    步骤A1:总控制器(13)的数据输入模块(11)通过第一温度传感器(7)获得气候室(2)中的温度x 1;通过湿度传感器(8)获得气候室(2)中的湿度x 2;通过第二温度传感器(6)获得控温水箱(4)内的水温x 3;通过第八温度传感器(20)获得露点湿度发生器(22)内的水温x 4;通过第四温度传感器(14)获得环境温度d 1;通过第三温度传感器(9)获得气候室(2)的外表面温度d 2;通过第五温度传感器(15)获得检测室(1)内的温度d 3;通过第六温度传感器(16)获得空气压缩机(17)内的实时温度,通过计算后获得d 4,d 4为空气压缩机(17)内的实时温度与初始温度之差;通过第七温度传感器(19)获得露点湿度发生器(22)入风口的空气温度
    Figure PCTCN2022103819-appb-100001
    步骤A2:通过数据输入模块(11)设定气候室(2)的理想温度值y r1和理想湿度值y r2
    步骤A3:数据输入模块(11)将所采集数据发送至运算模块(10),运算模块(10)对数据处理之后将处理结果发送至数据输出模块(12),数据输出模块(12)输出第一控制信号u 1给控温水箱(4)的第一加热/制冷装置(5),数据输出模块(12)输出第二控制信号u 2给露点湿度发生器(22)的第二加热/制冷装置(21);第一加热/制冷装置(5)通过第一控制信号u 1控制控温水箱(4)内的水温x 3,第二加热/制冷装置(21)通过第二控制信号u 2控制露点湿度发生器(22)内的水温x 4
    步骤四:重复步骤A1~步骤A3,致使x 1=y r1,x 2=y r2
  5. 根据权利要求4所述的控制方法,其特征是:所述运算模块(10)对数据的处理包括如下步骤:
    步骤B1:构建控制模型
    Figure PCTCN2022103819-appb-100002
    其中,L 1~L 10、G 1、G 2、τ f、τ D
    Figure PCTCN2022103819-appb-100003
    均为已知参数;
    步骤B2:将控制模型变换为矩阵形式,得控制模型矩阵
    Figure PCTCN2022103819-appb-100004
    其中,
    Figure PCTCN2022103819-appb-100005
    Figure PCTCN2022103819-appb-100006
    Figure PCTCN2022103819-appb-100007
    Figure PCTCN2022103819-appb-100008
    Figure PCTCN2022103819-appb-100009
    步骤B3:将得控制模型矩阵进行坐标变换
    进行第一坐标变换:
    s 1=z 1-y r
    其中,
    Figure PCTCN2022103819-appb-100010
    构建第一个李雅普诺夫函数:
    Figure PCTCN2022103819-appb-100011
    构建虚拟控制器:
    Figure PCTCN2022103819-appb-100012
    其中,l 11,l 12为正的设计参数;
    进行第二坐标变换:
    s 2=kΔ-α 1
    其中,
    Figure PCTCN2022103819-appb-100013
    k为一个正的设计参数;
    构建第二个李雅普诺夫函数:
    Figure PCTCN2022103819-appb-100014
    步骤B4:构建控制器
    Figure PCTCN2022103819-appb-100015
    其中,
    Figure PCTCN2022103819-appb-100016
    Figure PCTCN2022103819-appb-100017
    Figure PCTCN2022103819-appb-100018
    l 21,l 22为正的设计参数。
  6. 根据权利要求5所述的控制方法,其特征是:l 11的取值范围为0.0008~0.0012,l 12的取值范围为0.0007~0.0011,l 21的取值范围为0.0008~0.0012,l 22的取值范围为0.0004~
    0.0006,k的取值范围为7 5~9 5
  7. 根据权利要求6所述的控制方法,其特征是:l 11=0.001,l 12=0.0009,l 21=0.001,l 22=0.0005,k=8 5
PCT/CN2022/103819 2021-12-21 2022-07-05 一种VOCs释放量检测气候室温湿度控制系统及方法 WO2023115908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111567377.1 2021-12-21
CN202111567377.1A CN115248609B (zh) 2021-12-21 2021-12-21 一种VOCs释放量检测气候室温湿度控制系统及方法

Publications (1)

Publication Number Publication Date
WO2023115908A1 true WO2023115908A1 (zh) 2023-06-29

Family

ID=83697814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103819 WO2023115908A1 (zh) 2021-12-21 2022-07-05 一种VOCs释放量检测气候室温湿度控制系统及方法

Country Status (2)

Country Link
CN (1) CN115248609B (zh)
WO (1) WO2023115908A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439943A (zh) * 2003-02-21 2003-09-03 周玉成 人工气候箱内气体温湿度的鲁棒跟踪控制方法
CN101025424A (zh) * 2007-04-09 2007-08-29 周玉成 大型voc检测用高精度动态检测用气候室及其检测设备
JP2013083564A (ja) * 2011-10-11 2013-05-09 Suga Test Instr Co Ltd 耐候性試験機の温度・湿度制御装置
CN111896682A (zh) * 2020-07-15 2020-11-06 上海怡骋工贸有限公司 一种多舱法voc释放量测定气候舱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034290B3 (de) * 2006-07-21 2008-02-28 Labotect Gmbh Verfahren und Vorrichtung zur Feuchteregelung in einer Klimakammer
US7874499B2 (en) * 2006-11-22 2011-01-25 Store-N-Stuff Llc System and method to control sensible and latent heat in a storage unit
CN101692025B (zh) * 2009-09-25 2012-03-21 东莞市升微机电设备科技有限公司 用于检测挥发性有机物的测试系统
CN101813954B (zh) * 2010-04-28 2011-06-29 中国人民解放军国防科学技术大学 一种高温变率温湿度环境试验控制方法及装置
GB201313444D0 (en) * 2013-07-29 2013-09-11 Ambi Labs Ltd Energy efficient indoor climate controller
CN103412036A (zh) * 2013-08-01 2013-11-27 浙江工商大学 一种气体类型的检测方法及系统
CN105955356B (zh) * 2016-05-05 2018-09-14 华南理工大学 基于人体热适应的室内环境控制系统及方法
CN106770945B (zh) * 2016-12-12 2024-01-23 山东省产品质量检验研究院 乘用车车内空气及家具有害物质释放量检测平台
CN106647898B (zh) * 2017-01-23 2019-03-05 东南大学 一种气体温度、湿度及voc浓度调节装置及方法
WO2019075272A1 (en) * 2017-10-11 2019-04-18 Assouad Bechara Philippe AUTOMATICALLY SWITCHED THERMOSTAT SYSTEM BASED ON RELATED TEMPERATURE AND METHOD FOR DETERMINING AND AUTOMATICALLY CONTROLLING THE APPARENT TEMPERATURE OF A CONDITIONED SPACE
CN109062295B (zh) * 2018-08-23 2021-04-02 山东建筑大学 一种自动调节气候室温湿度的控制系统及其控制方法
CN110751331B (zh) * 2019-10-21 2021-06-25 哈尔滨工业大学 基于河流水质模型的潮汐作用对河流水质的影响预测方法
CN111580583A (zh) * 2020-05-20 2020-08-25 北京易盛泰和科技有限公司 一种移动型植物环境气候室

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439943A (zh) * 2003-02-21 2003-09-03 周玉成 人工气候箱内气体温湿度的鲁棒跟踪控制方法
CN101025424A (zh) * 2007-04-09 2007-08-29 周玉成 大型voc检测用高精度动态检测用气候室及其检测设备
JP2013083564A (ja) * 2011-10-11 2013-05-09 Suga Test Instr Co Ltd 耐候性試験機の温度・湿度制御装置
CN111896682A (zh) * 2020-07-15 2020-11-06 上海怡骋工贸有限公司 一种多舱法voc释放量测定气候舱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑焕祺 (ZHENG, HUANQI): "人造板制品甲醛释放量检测用气候室高精度控制方法研究 (Study on High Precision Control Method of Formaldehyde Emission in Climate Chamber for Wood-based Panel Products)", 中国博士学位论文全文数据库 工程科技Ⅱ辑 (CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY II), no. 1, 1 June 2020 (2020-06-01), ISSN: 1674-022X, DOI: 10.27273/d.cnki.gsajc.2020.000612 *

Also Published As

Publication number Publication date
CN115248609A (zh) 2022-10-28
CN115248609B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN109945936B (zh) 一种基于节流装置测量的水及蒸汽流量计算方法
CN106438435A (zh) 温度控制方法及机柜
CN112947088B (zh) 一种基于密闭空间的温湿度系统的建模和控制方法
Liu et al. Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique
CN111006843A (zh) 一种暂冲式超声速风洞的连续变速压方法
CN112528569A (zh) 基于数字孪生的工业加热炉温度场预测方法
CN115773569A (zh) 基于自抗扰解耦的海洋平台通风系统风量控制方法
CN104865989B (zh) 一种用于温度场分区控制系统的解耦控制方法及系统
WO2023115908A1 (zh) 一种VOCs释放量检测气候室温湿度控制系统及方法
CN111413865A (zh) 一种扰动补偿的单回路过热汽温自抗扰控制方法
CN113299951B (zh) 一种质子交换膜燃料电池阴极压力及流量观测方法
CN211451229U (zh) 一种高精度恒温恒湿实验室节能控制装置
WO2006088072A1 (ja) モデル構造のパラメータ決定方法、パラメータ決定装置、制御装置および温度調節器
CN113110635B (zh) 半导体设备及外点火装置的温度控制系统、方法及控制器
CN111765776B (zh) 一种烧结机烟气罩内综合参数控制系统及方法
JP4521860B2 (ja) 空調方法及び空調装置
CN107038312B (zh) 一种低压降孔单元的流量计算方法
CN116336617A (zh) 空气处理机组非线性控制方法
CN117046856B (zh) 一种风量控制方法、排风柜及计算机存储介质
CN114518776B (zh) 一种VOCs释放量检测气候室温湿度非线性控制方法
CN109425699A (zh) 一种用于中小锅炉的烟气在线监测装置
CN103757609A (zh) 一种基于串级控制的微环境压力调度方法
CN215893691U (zh) 一种用于燃料电池阴极路的测试系统
CN109163131A (zh) 一种用于阀门的控制系统
CN220038709U (zh) 实验室温度及通风二合一控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909239

Country of ref document: EP

Kind code of ref document: A1