WO2023115804A1 - 电池管理系统和供电设备 - Google Patents

电池管理系统和供电设备 Download PDF

Info

Publication number
WO2023115804A1
WO2023115804A1 PCT/CN2022/094473 CN2022094473W WO2023115804A1 WO 2023115804 A1 WO2023115804 A1 WO 2023115804A1 CN 2022094473 W CN2022094473 W CN 2022094473W WO 2023115804 A1 WO2023115804 A1 WO 2023115804A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery management
management module
channel
voltage
management system
Prior art date
Application number
PCT/CN2022/094473
Other languages
English (en)
French (fr)
Inventor
李佳莹
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022557161A priority Critical patent/JP2024505763A/ja
Priority to KR1020227034000A priority patent/KR20230098500A/ko
Priority to EP22785676.2A priority patent/EP4231410A4/en
Priority to US17/967,842 priority patent/US20230204683A1/en
Publication of WO2023115804A1 publication Critical patent/WO2023115804A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery management system and power supply equipment.
  • the battery management system (Battery Management System, BMS) is the link between the battery and the user.
  • the main object is the secondary battery.
  • the purpose is to improve the utilization rate of the battery, prevent the battery from overcharging and overdischarging, and extend the battery
  • the service life of the battery is monitored for the purpose of battery status.
  • the traditional method is to use a software serial coding scheme.
  • the master control unit sends coded signals to the slave control unit. Pass it to the next slave control unit. After all the slave control units complete the encoding, they will return the encoding completion flag and the current encoding number to the master control unit. If any problem occurs in any slave control unit during the encoding process, subsequent slave control units cannot continue to encode, and the management reliability is low.
  • a battery management system comprising:
  • a second battery management module communicatively connected to the first battery management module
  • the second battery management module includes a code detection circuit, and the code detection circuit includes a plurality of sampling channels;
  • the first battery management module is configured to determine coded data according to the voltage of at least one sampling channel among the multiple sampling channels, and perform identity authentication on the second battery management module according to the coded data.
  • an encoding detection circuit is set in the second battery management module, the first battery management module determines the encoding data according to the voltage of at least one sampling channel among the plurality of sampling channels, and then the first battery management module controls the second battery management module The encoded data is authenticated and the authentication result is obtained.
  • the coding detection circuit in the second battery management module the coding data is determined according to the voltage of the sampling channel in the coding detection circuit, when a battery management module fails, it does not affect the coding data collection of other battery management modules, and the management reliability is high.
  • the first battery management module is further configured to detect whether the coded data of the second battery management module is correct according to a preset limited range, and output fault prompt information when there is wrong coded data. When the encoded data is wrong, the fault prompt information is output, which is convenient for timely troubleshooting.
  • the first battery management module is further configured to judge whether the quantity of the received coded data is consistent with the preset value, and output fault prompt information when the quantity of the coded data is inconsistent with the preset value.
  • a fault prompt message is output, which is also convenient for timely troubleshooting.
  • the sampling channel of the code detection circuit includes a setting channel and an adjusting channel, and the setting channel is used to connect the power terminal or ground;
  • the piezoresistor is connected to the setup channel. Connect the setting channel of the encoding detection circuit to the power supply terminal or ground, and connect the adjusting channel to the setting channel through a wiring harness or a voltage divider resistor, and set the voltage of each channel by fixing the voltage of some channels and adjusting the voltage of the remaining channels to realize
  • the coding information of the battery management module is adjustable.
  • the second battery management module further includes a battery management unit (Battery Management Unit, BMU for short) low-voltage connector, and the BMU low-voltage connector is connected to the sampling channel of the corresponding coding detection circuit. Connect the BMU low-voltage connector to the sampling channel of the corresponding encoding detection circuit to facilitate voltage setting for unconfigured channels.
  • BMU Battery Management Unit
  • the BMU low-voltage connector is also connected to an external low-voltage connector.
  • the external low-voltage connector is used to connect the unconfigured channels in the code detection circuit to the configured channels, so as to realize the code configuration of the battery management module, and also reduce the volume of the battery management module.
  • the first battery management module communicates with the second battery management module serially. Serial communication is performed between the first battery management module and the second battery management module to facilitate the transmission and aggregation of coded data between the battery management modules.
  • the first battery management module and the second battery management module communicate serially through a Controller Area Network (CAN) interface, and the data communication is highly real-time.
  • CAN Controller Area Network
  • a power supply device includes a battery pack and the above-mentioned battery management system.
  • a coding detection circuit is set in the second battery management module, and the first battery management module determines the coding data according to the voltage of at least one sampling channel among the plurality of sampling channels, and then the first battery management module performs an operation on the second battery management module.
  • the encoded data is authenticated and the authentication result is obtained.
  • the encoding data is determined according to the voltage of the sampling channel in the encoding detection circuit.
  • each of the battery packs supplies power to an external load in parallel.
  • Each battery pack supplies power to external loads in parallel, and can provide high-voltage power supply for external loads.
  • a battery management method is applied to the battery management system described above, the method includes:
  • the first battery management module determines coded data according to the voltage of at least one sampling channel among the plurality of sampling channels, and performs identity authentication on the second battery management module according to the coded data. It can be seen that by setting the encoding detection circuit in the second battery management module, the first battery management module determines the encoding data according to the voltage of the sampling channel in the encoding detection circuit, and when a battery management module fails, it does not affect the encoding data of other battery management modules Collection and management are highly reliable.
  • the method also includes:
  • the first battery management module detects whether the coded data of the second battery management module is correct according to a preset limited range, and outputs fault prompt information when there is wrong coded data. When the encoded data is wrong, the fault prompt information is output, which is convenient for timely troubleshooting.
  • the method also includes:
  • the first battery management module judges whether the number of encoded data received is consistent with a preset value, and outputs fault prompt information when the amount of encoded data is inconsistent with the preset value.
  • the fault prompt information is output, which is also convenient for timely troubleshooting.
  • a battery management device the device is applied to the above-mentioned battery management system, the device includes: a determining unit, configured to determine coded data according to the voltage of at least one sampling channel among a plurality of sampling channels;
  • An authentication unit configured to authenticate the identity of the second battery management module according to the coded data.
  • the battery management device determines the code data according to the voltage of the sampling channel in the code detection circuit, and does not affect the codes of other battery management modules when a battery management module fails. Data collection and management are highly reliable.
  • the device also includes:
  • a detection unit configured to detect whether the encoded data of the second battery management module is correct according to a preset defined range
  • the first prompting unit is configured to output fault prompting information when the detection unit detects that there is erroneous encoded data. When the encoded data is wrong, the fault prompt information is output, which is convenient for timely troubleshooting.
  • the device also includes:
  • a judging unit configured to judge whether the quantity of the received encoded data is consistent with a preset value
  • the second prompting unit is configured to output fault prompting information when the judging unit detects that the number of encoded data is inconsistent with a preset value.
  • a fault prompt message is output, which is also convenient for timely troubleshooting.
  • FIG. 1 is a schematic diagram of connection of a battery management system in an embodiment
  • Fig. 2 is a schematic diagram of BMS sampling including an internal power supply and GND in an embodiment
  • Fig. 3 is a schematic diagram of BMS sampling for connection and coordination of external wiring harnesses in an embodiment.
  • the master control unit sends coded signals to the slave control unit, and the slave control unit performs coding after receiving the coded signals in turn, and transmits the current code and the coded signal to the next from the control unit.
  • the encoding completion flag and the current encoding number are returned to the master control unit. Because of serial encoding, it will take a long time when the number of slave control units is large. If there is a problem with any slave control unit during the encoding process, the subsequent slave control units cannot continue encoding.
  • a rapidly developing architecture is the master-slave BMS architecture, that is, the entire system is controlled and interacted with externally by a master BMS, and each battery pack or branch in the system is equipped with an additional slave BMS for data collection and Monitor and maintain communication with the main BMS in real time.
  • This architecture can effectively improve the controllability of multi-package systems and each monomer.
  • this solution aims to provide a simple and fast BMS based hard-wire coded detection and identification scheme for multi-electric box systems. Get the identity of all electrical boxes within 100 milliseconds (ms), and be able to diagnose the connection of each electrical box. The absence or connection failure of any electrical box does not affect the identification and diagnosis of the remaining electrical boxes at all.
  • the fixed wiring harness connection corresponds to a unique identity code, that is, if you know the code, you can immediately and accurately locate the corresponding electrical box, which provides convenience for troubleshooting, electrical box repair and maintenance.
  • identification can also provide the following identification: carrier classification: aircraft/vehicle/ship/energy storage; carrier type subdivision, for example, a project can have S/M/L models at the same time.
  • a battery management system is provided, and the battery can be used to supply power to a vehicle or other equipment.
  • the battery management system includes a first battery management module and a second battery management module, and the second battery management module communicates with the first battery management module.
  • the second battery management module includes an encoding detection circuit, and the encoding detection circuit includes a plurality of sampling channels; the first battery management module is used to determine the encoding data according to the voltage of at least one sampling channel in the plurality of sampling channels, and according to the encoding data to the second
  • the battery management module performs identity authentication.
  • both the first battery management module and the second battery management module can adopt a battery management system (BMS).
  • the first battery management module acts as the main BMS, and performs code detection and identity recognition on the second battery management module.
  • the number of the second battery management module may be one or more.
  • the first battery management module may also be provided with an encoding detection circuit including a plurality of sampling channels for identifying its own encoded data.
  • BMSs battery management system
  • Each electric box in the multi-electric box system is equipped with a battery pack and a BMS.
  • the battery pack can include one or more batteries connected in series, and the BMS is used to manage the charge and discharge of the battery pack.
  • the number of battery packs and BMSs is not unique.
  • a battery pack may include Battery Pack 1, Battery Pack 2, ..., Battery Pack N
  • a BMS may include BMS 1, BMS 2, ..., BMS N.
  • the battery packs supply power to external loads in parallel. Take the vehicle power supply as an example. After the battery packs are connected in series, they are connected to the high-voltage line of the vehicle, and output high-voltage power to supply power to the vehicle.
  • Each battery pack supplies power to external loads in parallel, and can provide high-voltage power supply for external loads.
  • Different BMSs can be connected in a serial or mixed manner.
  • the BMSs communicate serially. Serial communication between each BMS facilitates the transmission and summary of coded data between BMSs. Further, in one embodiment, the BMSs communicate serially through the CAN interface, and the data communication has strong real-time performance.
  • each BMS is connected to the Vehicle Control Unit (Vehicle Control Unit) for communication after being serialized through the CAN interface.
  • Vehicle Control Unit Vehicle Control Unit
  • the BMS in each electrical box acquires the voltages of some or all of the sampling channels in the encoding detection circuit, and determines the identity of the electrical box according to the voltage combination of each sampling channel.
  • the voltage of each sampling channel in the detection circuit can be set by connecting a power supply terminal, a ground terminal or a voltage dividing resistor. For example, it is possible to connect all sampling channels to the power terminal or ground terminal through circuit settings, or to connect some sampling channels to the ground terminal or ground terminal through circuit settings, and then connect other sampling channels to the channels that have been set. Voltage settings for all channels can also be implemented.
  • the sampling channel of the encoding detection circuit includes a setting channel and an adjusting channel
  • the setting channel is used to connect to the power terminal or ground
  • the adjusting channel is used to connect to the setting channel through a wire harness, or to connect to the setting channel through a voltage dividing resistor.
  • the coding information of the battery management module is adjustable.
  • the second battery management module further includes a BMU low voltage connector (BMU LV connector), and the BMU low voltage connector is connected to the sampling channel of the corresponding coding detection circuit.
  • the adopted channels include channel Channel 1, channel Channel 2, channel Channel 3, channel Channel 4, ..., channel Channel N, channel Channel 1 and channel Channel 5 can be used as setting channels, and the remaining channels can be used as adjustment channels.
  • Channel 1 is connected to the power supply terminal, specifically connected to 12 volts (V), and Channel 5 is grounded.
  • Connect the BMU low-voltage connector to the sampling channel of the corresponding encoding detection circuit to facilitate voltage setting for unconfigured channels.
  • the BMU low voltage connector is also connected to an external low voltage connector.
  • the external low-voltage connector is used to connect the unconfigured channels in the code detection circuit to the configured channels, so as to realize the code configuration of the battery management module, and also reduce the volume of the battery management module.
  • the external low-voltage connector is the Vehicle LV connector. Use the vehicle low-voltage connector to connect other sampling channels to Channel 1 or Channel 5 respectively. The sampling result of each channel is divided into high level 12V, or low level 0V, and the result is digitized as 1-high level, 0-low level.
  • the BMS will collect the corresponding voltage in each sampling channel, and then the BMS will process the collected voltage into a digital signal, then all the channels can be combined into a unique digital arrangement, and this arrangement also gives The unique coded identity of the electric box.
  • the processed number will be used as the encoded data; if the BMS collects the voltage of multiple sampling channels, the permutation and combination of the processed numbers will be used as the coded data. data.
  • the main BMS After the main BMS obtains the coded data of all BMSs, it performs identity authentication on the coded data and obtains the identity information of the corresponding electric box. Authentication result. Finally, the main BMS can also output the obtained authentication result to the vehicle control unit.
  • the first battery management module is further configured to detect whether the coded data of the second battery management module is correct according to a preset limited range, and output a fault prompt message when there is wrong coded data.
  • the fault prompt information is output, which is convenient for timely troubleshooting. Since the code of the multi-channel combination setting electric box identity is specified in advance, if the code value is not within the defined range, a response fault can be reported, for example, a fault prompt message is sent to the vehicle control unit to remind the need to detect and maintain hardware.
  • the first battery management module is also used to judge whether the quantity of the received coded data is consistent with the preset value, and output fault prompt information when the quantity of the coded data is inconsistent with the preset value.
  • a fault prompt message is output, which is also convenient for timely troubleshooting.
  • UDS Unified Diagnostic Services
  • the main BMS can collect the number of electric boxes currently collected in real time. Compare with the preset value; if there is any discrepancy, it can also output the fault prompt information to the vehicle control unit, and remind the whole vehicle to check the electric box and communication through the fault alarm.
  • an encoding detection circuit is set in the second battery management module, the first battery management module determines the encoding data according to the voltage of at least one sampling channel among the plurality of sampling channels, and then the first battery management module controls the second battery management module The encoded data is authenticated and the authentication result is obtained.
  • the encoding detection circuit is determined according to the voltage of the sampling channel in the encoding detection circuit.
  • a power supply device including a battery pack and the above-mentioned battery management system. Wherein, each battery pack supplies power to an external load in parallel. Each battery pack supplies power to external loads in parallel, and can provide high-voltage power supply for external loads.
  • the battery management system includes a first battery management module and a second battery management module, and the second battery management module communicates with the first battery management module.
  • the second battery management module includes an encoding detection circuit, and the encoding detection circuit includes a plurality of sampling channels; the first battery management module is used to determine the encoding data according to the voltage of at least one sampling channel in the plurality of sampling channels, and according to the encoding data to the second
  • the battery management module performs identity authentication.
  • the sampling channel of the encoding detection circuit includes a setting channel and an adjusting channel
  • the setting channel is used to connect to the power terminal or ground
  • the adjusting channel is used to connect to the setting channel through a wire harness, or to connect to the setting channel through a voltage dividing resistor.
  • the coding information of the battery management module is adjustable.
  • the second battery management module further includes a BMU low-voltage connector, and the BMU low-voltage connector is connected to the sampling channel of the corresponding code detection circuit. Connect the BMU low-voltage connector to the sampling channel of the corresponding encoding detection circuit to facilitate voltage setting for unconfigured channels.
  • the BMU low voltage connector is also connected to an external low voltage connector.
  • the external low-voltage connector is used to connect the unconfigured channels in the code detection circuit to the configured channels, so as to realize the code configuration of the battery management module, and also reduce the volume of the battery management module.
  • the first battery management module is further configured to detect whether the coded data of the second battery management module is correct according to a preset limited range, and output fault prompt information when there is wrong coded data. When the encoded data is wrong, the fault prompt information is output, which is convenient for timely troubleshooting.
  • the first battery management module is also used to judge whether the quantity of the received coded data is consistent with the preset value, and output fault prompt information when the quantity of the coded data is not consistent with the preset value.
  • a fault prompt message is output, which is also convenient for timely troubleshooting.
  • a coding detection circuit is set in the second battery management module, and the first battery management module determines the coding data according to the voltage of at least one sampling channel among the plurality of sampling channels, and then the first battery management module performs an operation on the second battery management module.
  • the encoded data is authenticated and the authentication result is obtained.
  • the encoding data is determined according to the voltage of the sampling channel in the encoding detection circuit.
  • the BMS coding detection and identification scheme uses the voltage sampling scheme after the BMS cooperates with the wiring harness to code and diagnose each electric box.
  • the unique identity code of each electrical box is derived from the unique combination of sampled values obtained from multiple sampling channels.
  • a fixed wiring harness scheme provides fixed sampling results, so the electrical box coding is also fixed. Regardless of the serial or parallel connection, the use of the remaining electrical boxes will not be limited due to the disconnection of any electrical box or communication problems.
  • connection diagram of the multi-branch (master-slave) electric box and the whole vehicle is shown in Figure 1.
  • the battery pack provides a parallel high-voltage solution and a serial CAN communication solution.
  • the electrical box encoding scheme used in this application is: the BMS in each electrical box provides an encoding detection circuit.
  • the circuit includes N sampling channels, preset pull-up power channels, pull-down ground channels, and additional divider resistors that can be added to each channel.
  • FIG. 2 A simplified internal circuit scheme is shown in Figure 2.
  • the BMS directly designs the sampling circuit corresponding to the fixed channel 2 on the circuit and has a built-in 12V pull-up power supply. Then the voltage that can be collected by the sampling channel 2 is fixed at 12V. (without considering any loss and accuracy). In the same way, the BMS has a built-in pull-down ground point in the sampling circuit of channel 5, so the voltage of channel 2 is fixed at 0V. Next, the external wiring harness needs to be short-circuited between different channels or connected with a voltage divider resistor. In this way, the BMS will collect the corresponding voltage in each sampling channel. Then the BMS processes the collected voltage into a digital signal, and all the channels can be combined into a unique digital arrangement, which also gives the electrical box a unique coded identity.
  • FIG. 3 A simplified mating design for the external harness can be shown in Figure 3. According to the scheme shown in Figure 3, without considering the voltage drop loss, etc., the sampling result of each channel can only be divided into high level 12V, or low level 0V. Therefore, the result is digitized as 1-high level and 0-low level. Define the meaning of each channel according to different requirements, such as:
  • Channel 1 carrier - 0-vehicle; 1-ship
  • Channel 2 Type - 0-BEV; 1-PHEV
  • Channel 3 Type - 0-Car; 1-Bus
  • Multi-channel combination identity code - electrical box 1/2/3...
  • channels 5-8 represent electrical box codes. According to the example scheme in Figure 1, channel 5 has been fixed to 0. Channels 6-8 can still be 0 or 1 respectively. Then these four channels can be combined according to the numbers of 0/1 to produce the following results, and each combination can be defined as a special electric box identity:
  • this solution can support the use of exactly the same electrical box, and only give unique identity information through different wiring harnesses, which can facilitate production management and after-sales service. At the same time, this solution can cooperate with the whole vehicle to detect the code of the electric box. If the detection result fails, it will pass a fault alarm, which has achieved the effect of foolproofing.
  • the code for multi-channel combination to set the identity of the electrical box can be specified in advance, so if the code value is not within the defined range, a response fault should be reported to remind the hardware to be tested and maintained.
  • the main control BMS can compare the number of electrical boxes collected in real time with the preset value. If there is a discrepancy, the vehicle will be reminded to check the electrical box and communication through a fault alarm.
  • a battery management method is also provided, the method is applied to the battery management system described in the above embodiment, and the method includes:
  • the first battery management module determines coded data according to the voltage of at least one sampling channel among the plurality of sampling channels, and performs identity authentication on the second battery management module according to the coded data.
  • the method also includes:
  • the first battery management module detects whether the coded data of the second battery management module is correct according to a preset limited range, and outputs fault prompt information when there is wrong coded data.
  • the method also includes:
  • the first battery management module judges whether the number of encoded data received is consistent with a preset value, and outputs fault prompt information when the amount of encoded data is inconsistent with the preset value.
  • a battery management device is also provided, the device is applied to the battery management system described in the above embodiments, and the device includes:
  • a determining unit configured to determine encoded data according to the voltage of at least one sampling channel among the plurality of sampling channels
  • An authentication unit configured to authenticate the identity of the second battery management module according to the coded data.
  • the device also includes:
  • a detection unit configured to detect whether the encoded data of the second battery management module is correct according to a preset defined range
  • the first prompting unit is configured to output fault prompting information when the detection unit detects that there is erroneous encoded data.
  • the device also includes:
  • a judging unit configured to judge whether the quantity of the received encoded data is consistent with a preset value
  • the second prompting unit is configured to output fault prompting information when the judging unit detects that the number of encoded data is inconsistent with a preset value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种电池管理系统和供电设备,电池管理系统包括第一电池管理模块和第二电池管理模块,第二电池管理模块与第一电池管理模块通讯连接,第二电池管理模块包括编码检测电路,编码检测电路包含多个采样通道;第一电池管理模块用于根据多个采样通道中的至少一个采样通道的电压确定编码数据,并根据编码数据对第二电池管理模块进行身份认证,通过在第二电池管理模块设置编码检测电路,根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不影响其他电池管理模块的编码数据采集,管理可靠性高。

Description

电池管理系统和供电设备
本申请引用于2021年12月24日递交的名称为“电池管理系统和供电设备”的第202111598891.1号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池管理系统和供电设备。
背景技术
电池管理系统(Battery Management System,BMS)是电池与用户之间的纽带,主要对象是二次电池,目的是为了能够提高电池的利用率,防止电池出现过度充电和过度放电的现象,达到延长电池的使用寿命,监控电池状态的目的。多个BMS之间为了进行身份识别,传统方式是使用软件串行编码方案,主控单元发送编码信号给从控单元,从控单元依次接收到编码信号后进行编码,并将当前编码和编码信号传给下一个从控单元,所有从控单元都完成编码后将编码完成标志和当前编码数返回给主控单元。如果编码过程中任意一个从控单元出现问题,则后续的从控单元也无法继续进行编码,管理可靠性低。
发明内容
基于此,有必要针对上述问题,提供一种可提高管理可靠性的电池管理系统和供电设备。
一种电池管理系统,包括:
第一电池管理模块;
与所述第一电池管理模块通讯连接的第二电池管理模块;
所述第二电池管理模块包括编码检测电路,所述编码检测电路包含多个采样通道;
所述第一电池管理模块用于根据所述多个采样通道中的至少一个采样通道的电压确定编码数据,并根据所述编码数据对所述第二电池管理模块进行身份认证。
上述电池管理系统,在第二电池管理模块设置编码检测电路,第一电池管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,然后第一电池管理模块对第二电池管理模块的编码数据进行身份认证,得到认证结果。通过在第二电池管理模块设置编码检测电路,根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不影响其他电池管理模块的编码数据采集,管理可靠性高。
在其中一个实施例中,所述第一电池管理模块还用于根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故障提示信息。当编码数据错误时输出故障提示信息,方便及时进行故障排查。
在其中一个实施例中,所述第一电池管理模块还用于判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时输出故障提示信息。当接收到的编码数据的数量与预设值不一致时输出故障提示信息,同样方便及时进行故障排查。
在其中一个实施例中,所述编码检测电路的采样通道包括设置通道和调节通道,所述设置通道用于接电源端或接地;所述调节通道用于通过线束与设置通道连接,或通过分压电阻与设置通道连接。将编码检测电路的设置通道接电源端或接地,调节通道通过线束或分压电阻的方式与设置通道连接,通过将部分通道的电压固定,剩余通道电压可调的方式设置各通道的电压,实现对电池管理模块的编码信息可调。
在其中一个实施例中,所述第二电池管理模块还包括电池管理单元(Battery Management Unit,简称BMU)低压连接器,所述BMU低压连接器与对应编码检测电路的采样通道连接。将BMU低压连接器与对应编码检测电路的采样通道连接,方便对未配置的通道进行电压设置。
在其中一个实施例中,所述BMU低压连接器还连接外部低压连接器。利用外部低压连接器将编码检测电路中未配置的通道与已经配置的通道进行连接,实现对电池管理模块的编码配置,且还可以减小电池管理模块的体积。
在其中一个实施例中,所述第一电池管理模块与所述第二电池管理模块之间串行通信。第一电池管理模块与第二电池管理模块之间进行串行通信,方便电池管理模块之间传输和汇总编码数据。
在其中一个实施例中,所述第一电池管理模块与所述第二电池管理模块之间通过控制器局域网络(Controller Area Network,简称CAN)接口串行通信,数据通信实时性强。
一种供电设备,包括电池包和上述的电池管理系统。
上述供电设备,在第二电池管理模块设置编码检测电路,第一电池 管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,然后第一电池管理模块对第二电池管理模块的编码数据进行身份认证,得到认证结果。通过在第二电池管理模块设置编码检测电路,根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不唯影响其他电池管理模块的编码数据采集,管理可靠性高。
在其中一个实施例中,各所述电池包并行对外部负载供电。各电池包采用并行方式对外部负载供电,可为外部负载提供高压供电。
一种电池管理方法,所述方法应用于上述所述的电池管理系统,所述方法包括:
所述第一电池管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,并根据所述编码数据对第二电池管理模块进行身份认证。可见,通过在第二电池管理模块设置编码检测电路,第一电池管理模块根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不影响其他电池管理模块的编码数据采集,管理可靠性高。
在其中一个实施例中,所述方法还包括:
所述第一电池管理模块根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故障提示信息。当编码数据错误时输出故障提示信息,方便及时进行故障排查。
在其中一个实施例中,所述方法还包括:
所述第一电池管理模块判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时输出故障提示信息。当接收到的编码数据的数量与预设值不一致时输出故障提示信息,同样方便及时进行故 障排查。
一种电池管理装置,所述装置应用于上述所述的电池管理系统,所述装置包括:确定单元,用于根据多个采样通道中的至少一个采样通道的电压确定编码数据;
认证单元,用于根据所述编码数据对第二电池管理模块进行身份认证。
上述电池管理装置,通过在第二电池管理模块设置编码检测电路,电池管理装置根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不影响其他电池管理模块的编码数据采集,管理可靠性高。
在其中一个实施例中,所述装置还包括:
检测单元,用于根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确;
第一提示单元,用于当所述检测单元检测到存在错误的编码数据时输出故障提示信息。当编码数据错误时输出故障提示信息,方便及时进行故障排查。
在其中一个实施例中,所述装置还包括:
判断单元,用于判断接收到的编码数据的数量与预设值是否一致;
第二提示单元,用于当所述判断单元检测到编码数据的数量与预设值不一致时输出故障提示信息。当接收到的编码数据的数量与预设值不一致时输出故障提示信息,同样方便及时进行故障排查。
附图说明
图1为一实施例中电池管理系统的连接示意图;
图2为一实施例中包含内接电源和GND的BMS采样示意图;
图3为一实施例中外接线束连接配合的BMS采样示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语包括相关所列项目的任何及所有组合。
正如背景技术所述,传统的使用软件的串行编码方案,主控单元发送编码信号给从控单元,从控单元依次接收到编码信号后进行编码,并将当前编码和编码信号传给下一个从控单元。所有从控单元都完成编码后将编码完成标志和当前编码数返回给主控单元。因为串行编码,所以当从控单元数量多会导致耗时长。编码过程中任意一个从控单元出现问题,则后续的从控单元也无法继续进行编码。
目前电动车的一大竞争力为续航里程,为达更大的续航里程,现在项目配备的电箱越来越多。除了电动车,还有电动船、储能系统等都是追求更多电箱以获得更多电量。随之而来的是电芯数量的骤增,带来的风险是BMU、SPI以及CAN-Bus的loading过高,单个BMU已经无法满足多个电箱信息处理需求。
所以现在正在快速发展的一种架构是主从BMS架构,即整个系统由一个主BMS进行主控和对外交互,系统中的每一个电池包或每一个支路额外配备一个从BMS采集数据以及进行监控,并与主BMS实时保持通信。该架构可以有效提高多包系统以及每个单体的可控性。
针对这种主从架构,多个BMS之间的身份识别是首要点。若无法识别各BMS身份,则无法准确定位具体故障包。另外,若没有身份识别和相关检测,还会存在电池包非预期断连、缺省甚至于多余的风险。基于此,本方案旨在针对多电箱系统,提供一种简单快速的BMS基于硬线编码检测和身份识别的方案,在多电箱系统中通过不同的线束连接,在唤醒后的极短时间内(100毫秒(ms)以内)获取所有电箱的身份,并能够诊断每一个电箱的连接情况。任意电箱的缺失或连接故障完全不影响其余电箱的身份识别和诊 断。固定的线束连接对应独特的身份编码,即得知编码就必定能够立刻精准定位到对应的电箱,为故障排查、电箱检修及维护提供便利。除开电箱之间的身份识别,还能够提供如下识别:载体分类:飞机/车辆/船/储能;载体类型细分,如一个项目可同时存在S/M/L型车型。
在一个实施例中,提供了一种电池管理系统,电池可以是用作进行车载或其他设备供电,为便于理解,以下均以电池用作车载供电为例进行解释说明。如图1所示,电池管理系统包括第一电池管理模块和第二电池管理模块,第二电池管理模块与第一电池管理模块通讯连接。第二电池管理模块包括编码检测电路,编码检测电路包含多个采样通道;第一电池管理模块用于根据多个采样通道中的至少一个采样通道的电压确定编码数据,并根据编码数据对第二电池管理模块进行身份认证。
其中,第一电池管理模块和第二电池管理模块都可采用电池管理系统(BMS)。第一电池管理模块作为主BMS,对第二电池管理模块进行编码检测和身份识别。第二电池管理模块的数量可以是一个,也可以是多个。此外,第一电池管理模块也可设置有包含多个采样通道的编码检测电路,用作识别自身编码数据。为便于理解,以下以第一电池管理模块和第二电池管理模块为BMS,且均设置有编码检测电路为例进行解释说明。
多电箱系统中每个电箱都对应配置有电池包和BMS,电池包可包括一个或多个串联的电池,BMS用作对电池包进行充放电管理。电池包和BMS的数量并不唯一,例如,如图1所示,电池包可包括Battery Pack 1、Battery Pack 2、…、Battery Pack N,BMS则包括BMS 1、BMS 2、…、BMS N。电池包之间并行对外部负载供电,以车载供电为例,电池包串行后连接车辆高压线 路,输出高压电给车辆供电。各电池包采用并行方式对外部负载供电,可为外部负载提供高压供电。不同BMS之间可以采用串行或混合的方式进行连接,本实施例中,BMS之间串行通信。各BMS之间进行串行通信,方便BMS之间传输和汇总编码数据。进一步地,在一个实施例中,各BMS之间通过CAN接口串行通信,数据通信实时性强。此外,各BMS通过CAN接口串行后还与车辆控制单元(Vehicle Control Unit)连接进行通信。
具体地,各电箱中的BMS在唤醒后获取编码检测电路中部分或全部采样通道的电压,根据各采样通道的电压组合方式确定电箱的身份。检测电路中各采样通道的电压可以是通过连接电源端、接地端或分压电阻来进行设置。例如,可以是通过电路设置将所有采样通道分别连接电源端或接地端,也可以是通过电路设置将部分采样通道连接接地端或接地端,然后将其他采样通道与已经设置好的通道进行连接,同样可以实现对所有通道的电压设置。
在一个实施例中,编码检测电路的采样通道包括设置通道和调节通道,设置通道用于接电源端或接地;调节通道用于通过线束与设置通道连接,或通过分压电阻与设置通道连接。将编码检测电路的设置通道接电源端或接地,调节通道通过线束或分压电阻的方式与设置通道连接,通过将部分通道的电压固定,剩余通道电压可调的方式设置各通道的电压,实现对电池管理模块的编码信息可调。
进一步地,在一个实施例中,如图2所示,第二电池管理模块还包括BMU低压连接器(BMU LV connector),BMU低压连接器与对应编码检测电路的采样通道连接。具体地,采用通道包括通道Channel 1、通道Channel 2、通道Channel 3、通道Channel 4、…、通道Channel N,可将通道Channel  1和通道Channel 5作为设置通道,其余通道作为调节通道。其中通道Channel 1连接电源端,具体接入12伏特(V)电压,通道Channel 5接地。将BMU低压连接器与对应编码检测电路的采样通道连接,方便对未配置的通道进行电压设置。
此外,在一个实施例中,BMU低压连接器还连接外部低压连接器。利用外部低压连接器将编码检测电路中未配置的通道与已经配置的通道进行连接,实现对电池管理模块的编码配置,且还可以减小电池管理模块的体积。如图3所示,以车载供电为例,则外部低压连接器为车辆低压连接器(Vehicle LV connector)。利用车辆低压连接器将其他采样通道分别与通道Channel 1或通道Channel 5连接,每个通道的采样结果分为高电平12V,或低电平0V,将结果数字化处理为1-高电平,0-低电平。这样,BMS在每一个采样通道都会采集到相应的电压,随后BMS将采集到的电压处理为数字信号,则所有的通道就能组合成一种独一的数字排列组合,这种排列也就赋予了电箱独特的编码身份。其中,如果BMS是对一个采样通道的电压进行采集,则将处理得到的一个数字作为编码数据;如果BMS是对多个采样通道的电压进行采集,则将处理得到的多个数字排列组合作为编码数据。
主BMS获取到所有BMS的编码数据后,对编码数据进行身份认证,获取相应电箱的身份信息,具体地,主BMS可根据编码数据分析得到电箱身份、载体分类和载体类型等信息,作为认证结果。最后,主BMS还可将得到的认证结果输出至车辆控制单元。
在一个实施例中,第一电池管理模块还用于根据预设的界定范围检测第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故 障提示信息。当编码数据错误时输出故障提示信息,方便及时进行故障排查。由于多通道组合设定电箱身份的编码是提前规定好的,所以若编码值不在界定范围内,则可以报出响应故障,例如提出故障提示信息至车辆控制单元,提醒需要检测和维护硬件。
进一步地,在一个实施例中,第一电池管理模块还用于判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时输出故障提示信息。当接收到的编码数据的数量与预设值不一致时输出故障提示信息,同样方便及时进行故障排查。具体地,可通过整车的配合,比如通过统一的诊断服务(Unified Diagnostic Services,简称UDS)在整车下线时输入规定的电箱数量,那么主BMS可以将当前实时收集到的电箱数量与预设值进行比较;若有出入,则同样可输出故障提示信息至车辆控制单元,通过故障告警的方式提醒整车排查电箱以及通讯。
上述电池管理系统,在第二电池管理模块设置编码检测电路,第一电池管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,然后第一电池管理模块对第二电池管理模块的编码数据进行身份认证,得到认证结果。通过在第二电池管理模块设置编码检测电路,根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不唯影响其他电池管理模块的编码数据采集,管理可靠性高。
在一个实施例中,还提供了一种供电设备,包括电池包和上述的电池管理系统。其中,各电池包并行对外部负载供电。各电池包采用并行方式对外部负载供电,可为外部负载提供高压供电。
具体地,电池管理系统包括第一电池管理模块和第二电池管理模块, 第二电池管理模块与第一电池管理模块通讯连接。第二电池管理模块包括编码检测电路,编码检测电路包含多个采样通道;第一电池管理模块用于根据多个采样通道中的至少一个采样通道的电压确定编码数据,并根据编码数据对第二电池管理模块进行身份认证。
在一个实施例中,编码检测电路的采样通道包括设置通道和调节通道,设置通道用于接电源端或接地;调节通道用于通过线束与设置通道连接,或通过分压电阻与设置通道连接。将编码检测电路的设置通道接电源端或接地,调节通道通过线束或分压电阻的方式与设置通道连接,通过将部分通道的电压固定,剩余通道电压可调的方式设置各通道的电压,实现对电池管理模块的编码信息可调。
进一步地,在一个实施例中,第二电池管理模块还包括BMU低压连接器,BMU低压连接器与对应编码检测电路的采样通道连接。将BMU低压连接器与对应编码检测电路的采样通道连接,方便对未配置的通道进行电压设置。
此外,在一个实施例中,BMU低压连接器还连接外部低压连接器。利用外部低压连接器将编码检测电路中未配置的通道与已经配置的通道进行连接,实现对电池管理模块的编码配置,且还可以减小电池管理模块的体积。
在一个实施例中,第一电池管理模块还用于根据预设的界定范围检测第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故障提示信息。当编码数据错误时输出故障提示信息,方便及时进行故障排查。
进一步地,在一个实施例中,第一电池管理模块还用于判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时 输出故障提示信息。当接收到的编码数据的数量与预设值不一致时输出故障提示信息,同样方便及时进行故障排查。
上述供电设备,在第二电池管理模块设置编码检测电路,第一电池管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,然后第一电池管理模块对第二电池管理模块的编码数据进行身份认证,得到认证结果。通过在第二电池管理模块设置编码检测电路,根据编码检测电路中采样通道的电压确定编码数据,在有电池管理模块出现故障时并不唯影响其他电池管理模块的编码数据采集,管理可靠性高。
为便于更好地理解上述电池管理系统和供电设备,下面结合具体实施例进行详细解释说明。
本申请提供的BMS编码检测和身份识别方案,采用BMS与线束配合后的电压采样方案来对每个电箱进行编码和对应诊断。每个电箱的独特身份编码来源于多个采样通道得到采样值的独特组合。固定的线束方案提供固定的采样结果,所以电箱编码也就固定下来。无论是串行还是并行的连接方式都不会因为任意电箱的掉线或者通讯问题导致其余电箱的使用受限。
具体地,多支路(主从)电箱与整车的连接简图如图1所示,电池包提供并行高压方案,串行CAN通信的方案。基于如上架构,本申请使用的电箱编码方案为:由每个电箱内的BMS提供编码检测电路。该电路包含了N路采样通道,预先设置好的拉高电源通道,拉低接地通道以及每个通道可以额外添加的分压电阻。
一种简化的内部电路方案如图2所示,BMS直接在电路上设计固定通道2对应的采样电路内置了一个12V的上拉电源,那么这个采样通道2能 够采集到的电压就已经固定为12V(不考虑任何损耗和精度的情况下)。同理,BMS在通道5的采样电路内置下拉接地点,那么通道2的电压也就被固定为0V。接下来就需要外部的线束通过不同通道之间的短接或者是带分压电阻的连接。这样,BMS就会在每一个采样通道都会采集到相应的电压。随后BMS将采集到的电压处理为数字信号,则所有的通道就能组合成一种独一的数字排列组合,这种排列也就赋予了该电箱独特的编码身份。
通过外部线束的配合来标定并区分每一个电箱的唯一编码身份,从而可以维持一款电池包和一款BMS的设计,为生产管理提供便利,也对售后服务具有一定的便携意义。此架构方案在使用中不会因为任意一个电箱的连接掉线,导致通信或者功能上的限制。
外部的线束一种简化的配合设计可以如图3所示。按照图3示例的方案,不考虑压降损耗等,那么每个通道的采样结果只能分为高电平12V,或低电平0V。故将结果数字化处理为1-高电平,0-低电平。按照不同需求来定义每一个通道的含义,比如:
1.通道一:载体——0-车;1-船
2.通道二:类型——0-BEV;1-PHEV
3.通道三:类型——0-Car;1-Bus
4.通道四:车/船规格——0-S;1-M
5.多通道组合:身份编码——电箱1/2/3…
举例:假设通道5-8代表电箱编码,按照图1的示例方案,通道5已经固定为0。通道6-8仍可以分别为0或者1。则这四个通道可以按照0/1的数字组合出如下结果,每一种组合都可以定义为专门的电箱身份:
0000——电箱1
0001——电箱2
0011——电箱3
0100——电箱4
0101——电箱5
0110——电箱6
0111——电箱7
故而,此方案可以支持使用完全一致的电箱,仅通过不同的线束来赋予独一无二的身份信息,能够为生产管理和售后服务提供便利。同时,该方案可以配合整车进行电箱编码的检测,若检测结果失败则通过故障告警,已达到防呆的效果。
基于上文的方案,多通道组合设定电箱身份的这个编码是可提前规定好的,所以若编码值不在界定范围内,则应报出响应故障,提醒需要检测和维护硬件。
此外,通过整车的配合,比如通过UDS在整车下线时输入规定的电箱数量,那么主控BMS就可以将当前实时收集到的电箱数量与预设值进行比较。若有出入,则通过故障告警的方式提醒整车排查电箱以及通讯。
上述方案的每一个通道只能存在两种可能,如果想要通过增加每一个通道的可能来减少通道数的话,可以选择在线束端或者BMS端增加电阻。这样连接后通过不同电阻组合的方式分压能够增加每一个通道采集到的电平阶梯,可以跳出0/1的限制。
在一个实施例中,还提供了一种电池管理方法,所述方法应用于上 述实施例中所述的电池管理系统,所述方法包括:
所述第一电池管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,并根据所述编码数据对第二电池管理模块进行身份认证。
进一步地,在一个实施例中,所述方法还包括:
所述第一电池管理模块根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故障提示信息。
进一步地,在一个实施例中,所述方法还包括:
所述第一电池管理模块判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时输出故障提示信息。
关于电池管理方法的具体限定可以参见本申请上述电池管理系统实施例中的相关内容,在此不再赘述。
在一个实施例中,还提供了一种电池管理装置,所述装置应用于上述实施例中所述的电池管理系统,所述装置包括:
确定单元,用于根据多个采样通道中的至少一个采样通道的电压确定编码数据;
认证单元,用于根据所述编码数据对第二电池管理模块进行身份认证。
进一步地,在一个实施例中,所述装置还包括:
检测单元,用于根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确;
第一提示单元,用于当所述检测单元检测到存在错误的编码数据时输出故障提示信息。
进一步地,在一个实施例中,所述装置还包括:
判断单元,用于判断接收到的编码数据的数量与预设值是否一致;
第二提示单元,用于当所述判断单元检测到编码数据的数量与预设值不一致时输出故障提示信息。
关于电池管理装置的具体限定可以参见本申请上述电池管理系统实施例中的相关内容,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种电池管理系统,其中,包括:
    第一电池管理模块;
    与所述第一电池管理模块通讯连接的第二电池管理模块;
    所述第二电池管理模块包括编码检测电路,所述编码检测电路包含多个采样通道;
    所述第一电池管理模块用于根据所述多个采样通道中的至少一个采样通道的电压确定编码数据,并根据所述编码数据对所述第二电池管理模块进行身份认证。
  2. 根据权利要求1所述的电池管理系统,其中,所述第一电池管理模块还用于根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故障提示信息。
  3. 根据权利要求1所述的电池管理系统,其中,所述第一电池管理模块还用于判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时输出故障提示信息。
  4. 根据权利要求1-3中任一项所述的电池管理系统,其中,所述编码检测电路的采样通道包括设置通道和调节通道,所述设置通道用于接电源端或接地;所述调节通道用于通过线束与设置通道连接,或通过分压电阻与设置通道连接。
  5. 根据权利要求1-3中任一项所述的电池管理系统,其中,所述第二电池管理模块还包括BMU低压连接器,所述BMU低压连接器与对应编码检测电路的采样通道连接。
  6. 根据权利要求5所述的电池管理系统,其中,所述BMU低压连接器还连接外部低压连接器。
  7. 根据权利要求1-6任意一项所述的电池管理系统,其中,所述第一电池管理模块与所述第二电池管理模块之间串行通信。
  8. 根据权利要求7所述的电池管理系统,其中,所述第一电池管理模块与所述第二电池管理模块之间通过CAN接口串行通信。
  9. 一种供电设备,其中,包括电池包和权利要求1-8任意一项所述的电池管理系统。
  10. 根据权利要求9所述的供电设备,其中,各所述电池包并行对外部负载供电。
  11. 一种电池管理方法,其中,所述方法应用于如权利要求1-8中任一项所述的电池管理系统,所述方法包括:
    所述第一电池管理模块根据多个采样通道中的至少一个采样通道的电压确定编码数据,并根据所述编码数据对第二电池管理模块进行身份认证。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述第一电池管理模块根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确,当存在错误的编码数据时输出故障提示信息。
  13. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述第一电池管理模块判断接收到的编码数据的数量与预设值是否一致,当编码数据的数量与预设值不一致时输出故障提示信息。
  14. 一种电池管理装置,其中,所述装置应用于如权利要求1-8中任一项所述的电池管理系统,所述装置包括:
    确定单元,用于根据多个采样通道中的至少一个采样通道的电压确定编码数据;
    认证单元,用于根据所述编码数据对第二电池管理模块进行身份认证。
  15. 根据权利要求14所述的装置,其中,所述装置还包括:
    检测单元,用于根据预设的界定范围检测所述第二电池管理模块的编码数据是否正确;
    第一提示单元,用于当所述检测单元检测到存在错误的编码数据时输出故障提示信息。
  16. 根据权利要求14所述的装置,其中,所述装置还包括:
    判断单元,用于判断接收到的编码数据的数量与预设值是否一致;
    第二提示单元,用于当所述判断单元检测到编码数据的数量与预设值不一致时输出故障提示信息。
PCT/CN2022/094473 2021-12-24 2022-05-23 电池管理系统和供电设备 WO2023115804A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022557161A JP2024505763A (ja) 2021-12-24 2022-05-23 電池管理システムと給電機器
KR1020227034000A KR20230098500A (ko) 2021-12-24 2022-05-23 배터리 관리 시스템 및 전원 공급 장비
EP22785676.2A EP4231410A4 (en) 2021-12-24 2022-05-23 BATTERY MANAGEMENT SYSTEM AND POWER SUPPLY DEVICE
US17/967,842 US20230204683A1 (en) 2021-12-24 2022-10-17 Battery management system and power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111598891.1A CN115811103B (zh) 2021-12-24 2021-12-24 电池管理系统和供电设备
CN202111598891.1 2021-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/967,842 Continuation US20230204683A1 (en) 2021-12-24 2022-10-17 Battery management system and power supply device

Publications (1)

Publication Number Publication Date
WO2023115804A1 true WO2023115804A1 (zh) 2023-06-29

Family

ID=84389288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094473 WO2023115804A1 (zh) 2021-12-24 2022-05-23 电池管理系统和供电设备

Country Status (2)

Country Link
CN (1) CN115811103B (zh)
WO (1) WO2023115804A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488309B (zh) * 2023-06-21 2024-02-27 深圳市华芯控股有限公司 开关信号串联传递和失效补偿电路及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130108898A1 (en) * 2011-10-26 2013-05-02 Eetrex, Inc. Modular battery control system architecture
CN105843763A (zh) * 2016-03-23 2016-08-10 上海航天测控通信研究所 Can总线动态设置装置及方法
CN206579487U (zh) * 2017-03-21 2017-10-24 北京新能源汽车股份有限公司 一种电池管理系统、电池包及电动汽车
CN109004292A (zh) * 2018-06-05 2018-12-14 安徽锐能科技有限公司 一种带有自动寻址装置的电池管理系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514498B (zh) * 2011-11-23 2014-11-12 湖南南车时代电动汽车股份有限公司 一种电池管理系统子模块识别方法及装置
DE102014102366B4 (de) * 2013-02-25 2021-03-04 Rp-Technik Gmbh Energieversorgungseinrichtung mit Batterieüberwachung und Batterieüberwachungsverfahren
CN106657427B (zh) * 2016-08-12 2022-07-22 上海火亮新能源科技有限公司 一种电池模组地址分配系统及方法
CN106931717B (zh) * 2017-03-21 2019-09-27 合肥美的电冰箱有限公司 档位转换装置及制冷装置
CN112578699A (zh) * 2019-09-27 2021-03-30 大陆汽车电子(连云港)有限公司 用于耦接控制器和线束的接口组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130108898A1 (en) * 2011-10-26 2013-05-02 Eetrex, Inc. Modular battery control system architecture
CN105843763A (zh) * 2016-03-23 2016-08-10 上海航天测控通信研究所 Can总线动态设置装置及方法
CN206579487U (zh) * 2017-03-21 2017-10-24 北京新能源汽车股份有限公司 一种电池管理系统、电池包及电动汽车
CN109004292A (zh) * 2018-06-05 2018-12-14 安徽锐能科技有限公司 一种带有自动寻址装置的电池管理系统

Also Published As

Publication number Publication date
CN115811103A (zh) 2023-03-17
CN115811103B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US8089248B2 (en) Battery monitoring and control system and method of use including redundant secondary communication interface
CN103683428B (zh) 一种用于电动汽车的电池管理系统以及电动汽车
CN108333527B (zh) 电池管理系统环路互锁及从控地址设置方法
CN109888864B (zh) 电池管理系统
CN102931713B (zh) 具有安全保护器的充电器系统
CN109541457A (zh) 动力电池高压继电器控制电路及故障诊断方法
EP3058616A1 (de) Batteriemanagementsystem zum überwachen und regeln des betriebs einer nachladbaren batterie und batteriesystem mit einem solchen batteriemanagementsystem
CN109302852A (zh) 管理装置和电源系统
CN104838522A (zh) 蓄电池管理系统和蓄电池系统
CN103827685A (zh) 用于确定蓄电池单池的充电状态的蓄电池管理系统和方法、具有蓄电池管理系统的蓄电池和机动车
US20120112701A1 (en) Telecommunication system
CN104838536A (zh) 蓄电池管理系统和蓄电池系统
WO2023115804A1 (zh) 电池管理系统和供电设备
US10070202B2 (en) Electromechanical adapter for communicating between interfaces
CN103419615A (zh) 接触器隔离方法和设备
CN114148206A (zh) 一种基于欧标充电桩的电动车辆充电系统及方法
CN111775706A (zh) 一种动力电池低压手动维护开关控制系统及车辆
CN112803509A (zh) 电池单体管理控制器及电池管理系统
CN208376571U (zh) 一种电池管理系统
CN113799611B (zh) 电动汽车电池诊断及控制方法、车载终端及可读存储介质
US9985321B2 (en) Battery system
KR20230098500A (ko) 배터리 관리 시스템 및 전원 공급 장비
CN110691019B (zh) 电路装置
CN106356912A (zh) 一种供电装置和汽车
CN211731115U (zh) 电动汽车的电池组系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022557161

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022785676

Country of ref document: EP

Effective date: 20221017