WO2023115617A1 - 一种气动式无水启动自吸装置 - Google Patents

一种气动式无水启动自吸装置 Download PDF

Info

Publication number
WO2023115617A1
WO2023115617A1 PCT/CN2021/142271 CN2021142271W WO2023115617A1 WO 2023115617 A1 WO2023115617 A1 WO 2023115617A1 CN 2021142271 W CN2021142271 W CN 2021142271W WO 2023115617 A1 WO2023115617 A1 WO 2023115617A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid separation
shaft
separation chamber
zoom
Prior art date
Application number
PCT/CN2021/142271
Other languages
English (en)
French (fr)
Inventor
彭光杰
杜佳霖
常浩
洪世明
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US18/021,187 priority Critical patent/US11739755B2/en
Priority to GB2302360.9A priority patent/GB2613092A/en
Publication of WO2023115617A1 publication Critical patent/WO2023115617A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/02Self-priming pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/007Details, component parts, or accessories especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/001Preventing vapour lock
    • F04D9/002Preventing vapour lock by means in the very pump
    • F04D9/003Preventing vapour lock by means in the very pump separating and removing the vapour

Definitions

  • the invention belongs to the field of fast self-priming devices, in particular to a pneumatic self-priming device starting without water.
  • Centrifugal pumps are widely used in agricultural irrigation, domestic drainage, industrial fluid transportation and other fields. Since the chamber is full of air before the centrifugal pump is started, the centrifugal force generated by the air is not enough for water delivery. Therefore, before starting the centrifugal pump, pump priming operation is required, and this operation is complicated and time-consuming, and the vacuum pumping by an external vacuum pump is noisy and consumes a lot of energy. Therefore, the present invention proposes a pneumatic self-priming device without water to solve the difficult problem of centrifugal pump priming.
  • the present invention provides a pneumatic self-priming device without water, which is different from the traditional electric drive, adopts the gas drive mode, consumes less energy, is easy to operate, and can use gas-liquid to start.
  • Separate the structure of the chamber to quickly complete the process of inhaling, exhausting, and filling the chamber with water.
  • layer-by-layer gas-liquid separation can also ensure that the air is completely discharged.
  • use its own structure to seal the water in the device. Inside, so that the device is always filled with water, when the centrifugal pump is started again, it can directly enter the normal operating condition, which significantly improves the working efficiency.
  • the present invention achieves the above-mentioned technical purpose through the following technical means.
  • a pneumatic self-priming device without water the device structure is a symmetrical cylinder structure, including a driving device, a gas-liquid separation chamber and a zoom-type gas-liquid separation chamber, a gas-liquid separation chamber and a zoom-type gas-liquid separation chamber
  • the chambers are respectively arranged on both sides of the driving device, and the gas acceleration channels are arranged symmetrically on both sides of the driving device;
  • the outlet is connected, and a vent valve is provided at the connection between the outlet of the gas acceleration channel and the gas-liquid flow channel;
  • a one-way valve is provided at the interface between the gas-liquid separation chamber and the zoom-type gas-liquid separation chamber and the gas-liquid flow channel.
  • the valve is arranged symmetrically about the central axis of the chamber;
  • the drive shafts on both sides of the drive device are respectively connected to the drive shafts of the gas-liquid separation chamber and the zoom-type gas-liquid separation chamber; the drive shafts on both sides do not interfere; the drive device uses high-speed gas to drive the drive disc to rotate, thereby driving the drive shaft to rotate ;
  • the gas-liquid separation chamber sucks in water through the pressure difference between the chamber and the outside world through the internal telescopic piston shaft to realize water absorption, gas-liquid separation and drainage;
  • the zoom-type gas-liquid separation chamber uses the volume of the inner and outer chambers to scale to generate a pressure difference to quickly suck in water to achieve water absorption, gas-liquid separation and drainage;
  • the driving device, the bottom of the gas-liquid separation chamber and the zoom-type gas-liquid separation chamber are equipped with fixed brackets;
  • the drive device is provided with the shell wall of the drive device, the top gas inlet, the gas acceleration channel inlet, the gas acceleration channel, the inner shell wall of the drive device, the tapered gas flow channel, the A-side gas drive plate, and the B-side gas drive plate , diamond-shaped splitter, gas inlet on side B at the bottom, gas inlet on side A at the bottom;
  • the top gas inlet passes through the outer casing wall of the driving device and the inner casing wall of the driving device, and connects with the top of the tapered gas flow channel.
  • the gas inlet on the side A of the bottom is set on the side of the gas drive plate on the A side, and it passes through the outer casing wall of the driving device.
  • the inner casing wall of the driving device is connected with the bottom of the tapered gas channel
  • the bottom B-side gas inlet is set on the side of the B-side gas drive plate, and it passes through the outer casing wall of the driving device and the inner casing wall of the driving device, and is connected with the gradual reduction
  • the bottom of the shrinking gas flow channel is connected, and the diamond-shaped flow divider is installed at the bottom of the shrinking gas flow channel to divide the bottom air into A and B sides;
  • the inlet of the gas acceleration channel is connected with the gas acceleration channel, and is symmetrically arranged on both sides of the driving device, and the gas acceleration channel is tapered from the bottom to the top;
  • the tapering gas channel is arranged symmetrically, and is tapered from the bottom to the top;
  • each B-side gas drive disk is equipped with A number of gas flow channels and corresponding gas outlets, each gas flow channel is provided with a number of gas passing holes, and the radius of the holes is reduced in a certain proportion along the gas outlet of the gas flow channel;
  • the B-side gas drive plate rotates forward under the action of the top gas inlet and the B-side gas inlet at the bottom.
  • the structure of the A-side gas drive plate is the same as that of the B-side gas drive plate.
  • the A-side gas drive plate and the B-side gas drive plate are placed on the top gas On both sides of the inlet, the A-side gas drive disc is reversed under the action of the top gas inlet and the bottom A-side gas inlet. When rotating, the A-side gas drive disc does not interfere with the B-side gas drive disc;
  • the gas acceleration channel is three-stage, and the radius is reduced by 0.5 times; the tapered gas flow channel is tapered from the bottom to the top, and the bottom radius is 5 times the top radius; there are 3 gas drive disks on the B side
  • the gas flow channel has an adjacent angle of 120°, wherein the gas passing hole is circular, and the radius of the gas passing hole is reduced several times by 0.8 times until the hole is close to the gas outlet; the gas outlet is square;
  • the one-way valve includes a first rotating shaft, a spring one and a first baffle, and the two sides of the spring one are respectively connected to the wall surface of the gas-liquid flow channel and the first baffle;
  • Vent valves include cusps, embedded moving blocks, wing shapes, fixed brackets for vent valves, telescopic shafts for vent valves, baffles for vent valves, pulleys for vent valves, vent baffles, solid blocks and slide rails for vent valves,
  • the apex is placed on the wall of the gas acceleration channel 1, and the placement position corresponds to the position of the embedded moving block.
  • the embedded moving block is placed inside the wing, and the number of the apex and the embedded moving block are both two; the initial position of the wing is placed on the ventilation valve.
  • the telescopic shaft rod of the ventilation valve is connected with the wing shape and the ventilation baffle
  • the ventilation baffle is connected with the solid block
  • the solid block is connected with the baffle of the ventilation valve and the pulley of the ventilation valve
  • the baffle of the ventilation valve is about the ventilation
  • the pulleys of the valve are arranged symmetrically up and down, the pulleys of the ventilation valve operate in the slide rail of the ventilation valve, and the slide rails of the ventilation valve are arranged in the wall of the gas-liquid flow channel.
  • the gas-liquid separation chamber is provided with the water inlet of the gas-liquid separation chamber, the shell wall of the gas-liquid separation chamber, the spiral gas-liquid separation device, the inner shell wall of the gas-liquid separation chamber, the telescopic piston shaft and the hexagonal bumps from the outside to the inside. impeller;
  • the spiral gas-liquid separation device includes a fixed spiral gas-liquid separation device and a first rotating spiral gas-liquid separation device.
  • the fixed spiral gas-liquid separation device is placed at the entrances on both sides, and penetrates the inner shell wall of the gas-liquid separation chamber, and its The second rotating shaft, the second baffle plate, the second spring, the first helical blade, the first rotating disc, the impeller and the rotating body of the fixed spiral gas-liquid separation device are arranged on the top;
  • the second rotating shaft connects the outer shell wall of the gas-liquid separation chamber with the
  • the second baffle and the second spring are connected to the second baffle and the rotating body, the first rotating disc is connected to the rotating body and the impeller of the fixed spiral gas-liquid separation device, and the first rotating disc is used for the rotation of the impeller of the fixed spiral gas-liquid separation device , the first helical blade is placed on the surface of the rotating body, and the number is several;
  • the first rotating spiral gas-liquid separation device penetrates the inner casing wall of the gas-liquid separation chamber, and several devices are arranged in total, which are provided with a second rotating wheel, a second spiral blade and the impeller of the first rotating spiral gas-liquid separation device;
  • the structure of the second rotating wheel is the same as that of the first rotating wheel, and it is used for the rotation of the first rotating spiral gas-liquid separation device and the impeller of the first rotating spiral gas-liquid separation device.
  • a total of several telescopic piston shafts are placed, which are equipped with balls for telescopic piston shafts, fixed shafts, moving shafts, springs three, first flow channels, glass tubes for telescopic piston shafts, pistons, springs four, telescopic piston shafts
  • the ball of the telescopic piston shaft is placed in the outer telescopic slide rail, which is connected with one end of the fixed shaft, and the moving shaft
  • the rod is connected with the fixed shaft, arranged symmetrically with respect to the spring three, and placed inside the glass tube of the telescopic piston shaft together with the spring three, the first flow channel is arranged outside the glass tube of the telescopic piston shaft, about the center line of the fixed shaft
  • the piston is connected to the other end of the fixed shaft, and piston baffles are provided at both ends, and several second flow channels are arranged on the piston baffles on both sides
  • the spring five is connected to the piston baffle and the third baffle, and the third rotating shaft is connected to the third baffle and the inner casing wall of the gas-liquid separation chamber, where the spring five, the third rotating shaft, and the third baffle are about
  • the center of the telescopic piston shaft is symmetrically arranged;
  • the hexagonal concave-convex impeller is equipped with an outer telescopic slide rail, a shaft bead, a shaft bead slide rail, an external drive shaft of the gas-liquid separation chamber and a telescopic shaft rod of the hexagonal concave-convex impeller;
  • the outer telescopic slide rail surrounds the impeller for a week, and It has a telescopic effect, the shaft ball is placed inside the shaft ball slide rail, and it surrounds the shaft ball slide rail for one week, the external drive shaft of the gas-liquid separation chamber is coaxial with the B-side gas drive disc, and drives the six-sided concave-convex impeller to rotate forward;
  • There are several telescopic shaft rods of the hexagonal concave-convex impeller which are arranged inside the hexagonal concave-convex impeller, one end is welded to the shaft ball slide rail, and the other end is connected to the ball of the telescopic piston shaft rod.
  • first rotating spiral gas-liquid separation devices are arranged symmetrically with respect to the gas-liquid separation chamber, and the interval between them is 60°.
  • 6 chambers are arranged symmetrically with respect to the gas-liquid separation chamber, and the adjacent intervals are 60°;
  • the zoom-type gas-liquid separation chamber is sequentially provided with the water inlet of the zoom-type gas-liquid separation chamber, the sliding one-way valve, the shell wall of the zoom-type gas-liquid separation chamber, the second rotating spiral gas-liquid separation device, and the zoom-type gas-liquid separation chamber.
  • the sliding one-way valve is set in the water inlet of the zoom-type gas-liquid separation chamber.
  • the device is a symmetrical structure.
  • the hollow slide plate is an internal hollow type, which is integrated with the secondary slide rail, and the water flows into its internal flow channel through the built-in water inlet , there are several built-in water inlets, the upper side baffle and the lower side baffle are connected with the first-level slide rail and the second-level slide rail, the upper side fixed block restricts the upper side baffle from moving to the top, and the lower side The lower side baffle cannot move to the bottom.
  • the outer cavity wall zooming device is provided with a plurality of zooming type gas-liquid separation chamber shell walls, which are provided with the glass tube of the outer cavity wall zooming device, the piston and spring seven of the outer cavity wall zooming device, and the piston of the outer cavity wall zooming device
  • the spring seven is arranged symmetrically, and the piston and the spring seven of the cavity wall scaling device are both placed inside the glass tube of the outer cavity wall scaling device;
  • the structure of the second rotating spiral gas-liquid separation device is the same as that of the first rotating spiral gas-liquid separation device, and several of them are arranged in total;
  • the baffle plate, the pulley of the magnetically telescopic shaft and the magnetic fixed shaft, and several springs are placed inside the magnetic sliding shaft, which are located in the outer cavity section of the zoom-type gas-liquid separation chamber; the magnetic sliding shaft is magnetically connected to the magnetic bump Rejection, the baffle plate of the magnetic telescopic shaft and the pulley of the magnetic telescopic shaft are placed inside the built-in slide rail, and the built-in slide rail is connected with the magnetic sliding shaft and the magnetic fixed shaft, and the magnetic fixed shaft is magnetically attracted to the magnetic concave point , the magnetic sliding shaft is connected to the shell wall of the zoom-type gas-liquid separation chamber, penetrates the inner shell wall of the zoom-type gas-liquid separation chamber, the magnetic fixed shaft is connected to the inner shell wall of the zoom-type gas-liquid separation chamber, and the magnetic telescopic shaft rod
  • the baffle is
  • the scaling device on the wall of the inner cavity has the same structure as the scaling device on the wall of the outer cavity, and is arranged on the inner shell wall of the scaling type gas-liquid separation chamber, and the number is several;
  • the variable opening sliding gas-liquid separation shaft is a symmetrical structure. There are 3 zoom-type gas-liquid separation chambers, and the adjacent angle is 120°. It is equipped with a primary ball, a connecting shaft, a secondary ball, and a zoom shaft. , the built-in impeller of the zoom shaft, spring ten, zoom flow channel, sliding block, the baffle plate of the variable opening sliding gas-liquid separation shaft, the pulley of the variable opening sliding gas-liquid separation shaft, the fourth rotating shaft, spring eleven And the fourth baffle; the primary ball operates in the peripheral slide rail, which is connected to the connecting shaft, the secondary ball is connected to the zoom shaft on both sides, for the zoom shaft on both sides to change the opening degree, and the built-in impeller of the zoom shaft Several springs are placed in the zoom shaft, spring ten is placed in the zoom flow channel, both ends are connected to the built-in impellers of the zoom shaft on both sides, spring eleven is connected to the zoom shaft and the fourth baffle, the fourth shaft is connected to the zoom type gas-liquid
  • the three-sided concave-convex impeller is equipped with peripheral slide rails, magnetic convex points, magnetic concave points and the drive shaft of the zoom-type gas-liquid separation chamber; the peripheral slide rails circle the impeller, and the drive shaft of the zoom-type gas-liquid separation chamber is connected to the
  • the A-side gas drive disk is coaxial, driving the three-sided concave-convex impeller to reverse;
  • two built-in water inlets are arranged symmetrically about the sliding one-way valve, and two second rotating spiral gas-liquid separation devices are arranged symmetrically about the center of the zoom-type gas-liquid separation chamber, and the included angle between them and the magnetic telescopic shaft is 60° ;
  • three outer cavity wall scaling devices are arranged symmetrically with respect to the shell wall of the scaling type gas-liquid separation chamber, and the adjacent included angle is 120°; three inner cavity wall scaling devices are evenly arranged on the inner shell wall of the scaling type gas-liquid separation chamber , the adjacent angle is 120°; three springs are arranged evenly.
  • the present invention adopts a gas drive device, which is different from the traditional electric drive.
  • the drive plate is blown by high-speed gas at the top and bottom, and the drive plate rotates to drive the drive shaft to rotate, which further drives the drive shaft of the corresponding side chamber to rotate.
  • the high-speed gas flowing out of the device is combined with the ventilation valve installed in the gas acceleration channel and the gas-liquid flow channel.
  • the ventilation valve has the effect of only passing the gas but not the liquid, reducing the outflow of unnecessary liquid, and the two chambers discharge the air faster. Filling with water significantly improves work efficiency and greatly simplifies the operation process.
  • the present invention adopts a gas-liquid separation chamber, which is provided with an outer chamber and an inner chamber gas-liquid separation device.
  • a fixed spiral gas-liquid separation device and a first rotating spiral gas-liquid separation device are used to realize gas-liquid separation.
  • the cavity is separated, and at the same time, a small part of gas and liquid can flow into the inner cavity through the device, and in the inner cavity, through the rotation of the drive shaft, the ball of the telescopic piston shaft switches back and forth at the concave and convex points of the six-sided concave-convex impeller, realizing the periodic scaling of the telescopic piston shaft , so as to pump the gas and liquid from the outer cavity to the inner cavity, and at the same time combine the gas-liquid separation function of the device to realize the gas-liquid separation in the inner cavity, reduce the gas content in the water, and reduce the probability of cavitation in the subsequent pump.
  • the present invention adopts a magnetic telescopic shaft and a three-sided concave-convex impeller, and uses the convex points and concave points of the three-sided concave-convex impeller to repel and attract each other with the magnetic telescopic shaft, and the drive shaft of the three-sided concave-convex impeller rotates to realize the inner cavity and
  • the periodic volume scaling of the outer cavity and the periodic pressure change in the cavity combined with the sliding one-way valve at the water inlet, the valve operates periodically up and down.
  • the valve has a built-in water inlet and a built-in impeller of the sliding one-way valve to realize water intake. Breath liquid separation.
  • the present invention adopts a zoom-type gas-liquid separation chamber, which is provided with an outer cavity and an inner cavity gas-liquid separation device.
  • a second rotating spiral gas-liquid separation device and a magnetic telescopic shaft built-in spring are used to realize gas-liquid separation.
  • Liquid separation, in the inner cavity, using the pressure change caused by the volume, the opening of the variable opening sliding gas-liquid separation shaft can be changed periodically, better combined with its built-in impeller and scaling flow channel to realize the inner cavity outer layer, middle layer and The gas-liquid separation in the inner layer fully reduces the gas content in the water.
  • Fig. 1 is a structural schematic diagram of the driving device of the present invention
  • Figure 2 is an enlarged view of the structure of the double-sided gas drive disk
  • Fig. 3 is a side view of the structure of a pneumatic anhydrous self-priming device according to the present invention
  • Figure 4 is an enlarged view of the vent valve structure
  • Figure 5 is an enlarged view of the one-way valve structure
  • Fig. 6 is a schematic structural diagram of the gas-liquid separation chamber of a pneumatic anhydrous self-priming device according to the present invention
  • Figure 7 is an enlarged view of the structure of the fixed spiral gas-liquid separation device
  • Fig. 8 is a schematic structural diagram of the first rotating wheel
  • Figure 9 is an enlarged view of the structure of the first rotating spiral gas-liquid separation device
  • Figure 10 is an enlarged view of the telescopic piston shaft structure
  • Figure 11 is an enlarged view of the hexagonal concave-convex impeller structure
  • Fig. 12 is a schematic structural diagram of a zoom-type gas-liquid separation chamber of a pneumatic anhydrous self-priming device according to the present invention.
  • Figure 13 is an enlarged view of the structure of the sliding one-way valve
  • Figure 14 is an enlarged view of the structure of the scaling device on the wall of the outer cavity
  • Figure 15 is an enlarged view of the structure of the second rotating spiral gas-liquid separation device
  • Figure 16 is an enlarged view of the structure of the magnetically telescopic shaft rod
  • Figure 17 is an enlarged view of the structure of the cavity wall scaling device
  • Figure 18 is an enlarged view of the structure of the sliding gas-liquid separation shaft with variable opening
  • Fig. 19 is an enlarged view of the three-sided concave-convex impeller structure.
  • 1-gas acceleration channel 2-top gas inlet; 3-gas acceleration channel inlet; 4-drive device shell wall; 5-drive device inner shell wall; 6-A side gas drive plate;
  • 8-rhombic splitter 9-tapering gas flow channel; 10-gas inlet on side A of the bottom; 11-gas inlet on side B of the bottom; 12-fixing bracket; 13-exit of gas acceleration channel;
  • 16-one-way valve 161-the first rotating shaft; 162-spring one; 163-the first baffle plate;
  • 21-Fixed spiral gas-liquid separation device 21-Fixed spiral gas-liquid separation device; 211-Second rotating shaft; 212-Second baffle; 213-Second spring; 214-First spiral blade; 215-First rotating disc; 216-Fixed spiral gas-liquid separation device
  • 25-hexagonal concave-convex impeller 251-outer telescopic slide rail; 252-axis ball; 253-axis ball slide rail; 254-external drive shaft of the gas-liquid separation chamber; 255-telescopic shaft rod of hexagonal concave-convex impeller;
  • 29-external cavity wall scaling device 291-the glass tube of the external cavity wall scaling device; 292-the piston of the external cavity wall scaling device; 293-spring seven;
  • 31-magnetic telescopic shaft 311-spring eight; 312-magnetic sliding shaft; 313-built-in slide rail; 314-baffle plate of magnetic telescopic shaft; 315-pulley of magnetic telescopic shaft; 316-magnetic fixed shaft ;
  • 35-three-sided concave-convex impeller 351-peripheral slide rail; 352-magnetic convex point; 353-magnetic concave point; 354-drive shaft of zoom-type gas-liquid separation chamber;
  • 36-variable opening sliding gas-liquid separation shaft 361-first-stage ball; 362-connecting shaft; 363-secondary ball; 364-zoom shaft; 365-built-in impeller of zoom shaft; 366-spring ten; 367 -Scaling channel; 368-Sliding block; 369-The baffle plate of the variable opening sliding gas-liquid separation shaft; 3610-The pulley of the variable opening sliding gas-liquid separation shaft; 3611-The fourth rotating shaft; 3612-Spring eleven ;3613-Fourth Bezel;
  • a pneumatic anhydrous self-priming device has a symmetrical cylindrical structure, including a driving device 19, a gas-liquid separation chamber 17 and a zoom-type gas-liquid separation chamber 18, the gas-liquid separation chamber 17 and the zoom-type gas-liquid separation chamber 18 are respectively arranged on both sides of the drive device 19, and the gas acceleration channels 1 are arranged symmetrically on both sides of the drive device 19;
  • the inner chamber of the liquid separation chamber 17 and the inner chamber of the zoom-type gas-liquid separation chamber 18 are respectively connected to the outlet 13 of the corresponding gas acceleration channel through the corresponding gas-liquid flow channel 15, and the outlet 13 of the gas acceleration channel is connected to the gas-liquid flow channel 15.
  • a vent valve 14 is provided at the connection;
  • a one-way valve 16 is provided at the interface between the gas-liquid separation chamber 17 and the zoom-type gas-liquid separation chamber 18 and the gas-liquid flow channel 15, and the one-way valve 16 is symmetrical about the central axis of the chamber set up;
  • the drive shafts on both sides of the drive device 19 are respectively connected to the drive shafts of the gas-liquid separation chamber 17 and the zoom-type gas-liquid separation chamber 18; the drive shafts on both sides do not interfere; the drive device 19 uses high-speed gas to drive the drive disk to rotate, thereby Drive the drive shaft to rotate;
  • the gas-liquid separation chamber 17 absorbs water through the pressure difference between the chamber and the outside world generated by the telescopic piston shaft 26 inside, so as to realize water absorption, gas-liquid separation and drainage;
  • the zoom-type gas-liquid separation chamber 18 uses the volume of the inner and outer chambers to scale to generate a pressure difference to quickly suck in water to achieve water absorption, gas-liquid separation and drainage;
  • the drive device 19 , the bottom of the gas-liquid separation chamber 17 and the zoom-type gas-liquid separation chamber 18 are provided with a fixed bracket 12 .
  • the drive device 19 is sequentially provided with a drive device shell wall 4, a top gas inlet 2, a gas acceleration channel inlet 3, a gas acceleration channel 1, and an inner shell wall 5 of the drive device from outside to inside.
  • the top gas inlet 2 passes through the outer casing wall 4 of the driving device and the inner casing wall 5 of the driving device, and connects with the top of the tapered gas flow channel 9, and the bottom A-side gas inlet 10 is arranged on the side of the A-side gas driving disk 6, and its Pass through the outer casing wall 4 of the driving device and the inner casing wall 5 of the driving device, and connect with the bottom of the tapered gas flow channel 9.
  • the gas inlet 11 on the side B of the bottom is set on the side of the gas driving disk 7 on the side B, and it passes through the driving device
  • the shell wall 4 and the inner shell wall 5 of the driving device are connected to the bottom of the tapered gas flow channel 9, and the diamond-shaped flow divider 8 is arranged at the bottom of the tapered gas flow channel 9 to divide the bottom air into two sides of A and B;
  • the inlet 3 of the gas acceleration channel is connected to the gas acceleration channel 1, and is symmetrically arranged on both sides of the driving device 19, and the gas acceleration channel 1 is tapered from the bottom to the top;
  • the tapering gas channel 9 is arranged symmetrically, and is tapered from the bottom to the top;
  • the drive shaft 74 on the B side is provided with a number of B side gas drive discs 7, from the gas inlet to the outlet direction, the drive discs are first sparse and then dense, and the dense point is close to the gas acceleration channel inlet 3;
  • each B-side gas drive plate 7 is provided with several gas passages 71 and corresponding gas outlets 73, and each gas passage 71 is provided with several gas passage holes 72, and the hole radius The gas outlet 73 along the gas channel 71 is reduced in a certain proportion;
  • the B-side gas drive plate 7 rotates forward under the action of the top gas inlet 2 and the bottom B-side gas inlet 11.
  • the A-side gas drive plate 6 has the same structure as the B-side gas drive plate 7.
  • the A-side gas drive plate 6 and the B-side gas drive plate have the same structure.
  • the driving disk 7 is placed on both sides of the top gas inlet 2, and the A-side gas driving disk 6 is reversed under the action of the top gas inlet 2 and the bottom A-side gas inlet 10. When rotating, the A-side gas driving disk 6 and the B-side gas driving disk Disc 7 does not interfere;
  • the gas acceleration channel 1 is a three-stage type, and the radius is reduced by 0.5 times;
  • the tapered gas flow channel 9 is tapered from the bottom to the top, and the bottom radius is 5 times the top radius;
  • the B-side gas drive disk 7 Three gas channels 71 are arranged on the top, and the adjacent included angle is 120°, wherein, the gas passing hole 72 is circular, and the radius of the gas passing hole 72 is reduced several times by 0.8 times until the hole is close to the gas outlet 73; the gas outlet 73 is square;
  • the one-way valve 16 includes a first rotating shaft 161, a spring one 162 and a first baffle 163, and the two sides of the spring one 162 are respectively connected to the wall surface of the gas-liquid flow channel 15 and the first baffle 163;
  • the ventilation valve 14 includes a pointed top 141, an embedded moving block 142, a wing shape 143, a fixed bracket 144 of the ventilation valve, a telescopic shaft rod 145 of the ventilation valve, a baffle plate 146 of the ventilation valve, and a pulley 147 of the ventilation valve.
  • the peak 141 is placed on the wall of the gas acceleration channel 1, and the placement position corresponds to the position of the embedded moving block 142, and the embedded moving block 142 is placed inside the wing 143,
  • the number of the peak 141 and the embedded moving block 142 is 2; the initial position of the wing 143 is placed on the fixed bracket 144 of the ventilation valve, and the telescopic shaft 145 of the ventilation valve is connected with the wing 143 and the ventilation baffle 148, and the ventilation baffle Plate 148 links to each other with solid block 149, and solid block 149 links to each other with the baffle plate 146 of vent valve and the pulley 147 of vent valve, and the baffle plate 146 of vent valve is arranged symmetrically up and down about the pulley 147 of vent valve, and the pulley 147 of vent valve is arranged on the pulley of vent valve.
  • the sliding rail 1410 of the ventilating valve is placed in the
  • the gas-liquid separation chamber 17 is sequentially provided with a gas-liquid separation chamber water inlet 20, a gas-liquid separation chamber shell wall 22, a spiral gas-liquid separation device, and an inner shell wall of the gas-liquid separation chamber from outside to inside. 24, telescopic piston shaft rod 26 and hexagonal concave-convex impeller 25;
  • the spiral gas-liquid separation device includes a fixed spiral gas-liquid separation device 21 and a first rotating spiral gas-liquid separation device 23, the fixed spiral gas-liquid separation device 21 is placed at the entrances on both sides, and penetrates the inner shell wall of the gas-liquid separation chamber 24, and it is provided with the second rotating shaft 211, the second baffle plate 212, spring two 213, the first helical blade 214, the first rotating disc 215, the impeller 216 and the rotating body 217 of the fixed helical gas-liquid separation device; As shown in FIG.
  • the second rotating shaft 211 connects the shell wall 22 of the gas-liquid separation chamber and the second baffle 212 , the second spring 213 is connected with the second baffle 212 and the rotating body 217 , and the first rotating wheel 215 is connected to the rotating body 217
  • the impeller 216 of the fixed spiral gas-liquid separation device the first rotating disc 215 is for the rotation of the impeller 216 of the fixed spiral gas-liquid separation device, the first spiral blade 214 is arranged on the surface of the rotating body 217, and the number is several; the first rotating wheel
  • the structure of the disc 215 is shown in Figure 8;
  • the first rotating spiral gas-liquid separation device 23 penetrates the inner casing wall 24 of the gas-liquid separation chamber.
  • the impeller 233 of device As shown in Figure 9, the structure of the second rotating wheel 231 is consistent with the first rotating wheel 215, for the impeller 233 of the first rotating spiral gas-liquid separation device 23 and the first rotating spiral gas-liquid separation device to rotate , several second helical blades 232 are arranged on the surface of the first rotating helical gas-liquid separation device 23;
  • a plurality of telescopic piston shaft rods 26 are arranged altogether, as shown in Figure 10, it is provided with the ball 261 of telescopic piston shaft rod, fixed shaft rod 262, moving shaft rod 263, spring three 264, first runner 265, telescopic piston shaft rod Glass tube 266, piston 267, spring four 268, impeller 269 of telescopic piston shaft, second runner 2610, piston baffle 2611, spring five 2612, third rotating shaft 2613 and third baffle 2614; telescopic piston shaft
  • the ball 261 is placed in the outer telescopic slide rail 251, which is connected to one end of the fixed shaft 262, and the moving shaft 263 is connected to the fixed shaft 262, and is symmetrically arranged with respect to the spring three 264, and is placed on the telescopic piston together with the spring three 264
  • the first flow channel 265 is placed outside the glass tube 266 of the telescopic piston shaft, and several of them are placed on the centerline of the fixed shaft 262.
  • the piston 267 is connected to the other end of the fixed shaft 262, and its two Piston baffles 2611 are provided at both ends, and several second runners 2610 are arranged on the piston baffles 2611 on both sides, and spring four 268 and impeller 269 of telescopic piston shaft are arranged inside the second runner 2610, spring five 2612 Connect the piston baffle plate 2611 and the third baffle plate 2614, the third rotating shaft 2613 connects the third baffle plate 2614 and the inner shell wall 24 of the gas-liquid separation chamber, where the spring five 2612, the third rotating shaft 2613, and the third baffle plate 2614 are about the retractable piston
  • the shaft rod 26 is placed symmetrically to the center;
  • the hexagonal concave-convex impeller 25 is provided with an outer telescopic slide rail 251, a shaft bead 252, a shaft bead slide rail 253, an external drive shaft 254 of the gas-liquid separation chamber and a telescopic shaft rod of the hexagonal concave-convex impeller.
  • the outer telescopic slide rail 251 surrounds the impeller for one week, and it has a telescopic effect.
  • the shaft ball 252 is placed inside the shaft ball slide rail 253, and it surrounds the shaft ball slide rail 253 for one week.
  • the external drive shaft 254 of the gas-liquid separation chamber Coaxial with the gas drive disk 7 on the B side, it drives the hexagonal concave-convex impeller 25 to rotate forward;
  • the telescopic shaft rods 255 of the hexagonal concave-convex impeller are arranged in total, and they are arranged inside the hexagonal concave-convex impeller 25, and one end is connected to the shaft bead slide rail 253 is welded as one, and the other end is connected to the ball 261 of the telescopic piston shaft;
  • two pieces of the first helical blade 214, two pieces of the second helical blade 232, three telescopic shafts 255 of the hexagonal concave-convex impeller, and the angle between the connected shafts are 120°, and the first flow channel 265 is arranged together 6, 3 on each side, evenly distributed, 6 in total in the second runner, 3 on each side, evenly distributed;
  • first rotating helical gas-liquid separation devices 23 are arranged symmetrically with respect to the gas-liquid separation chamber, with an interval of 60° between each other.
  • Six telescopic piston shafts 26 are arranged symmetrically with respect to the gas-liquid separation chamber, and the adjacent intervals are 60°;
  • the zoom-type gas-liquid separation chamber 18 is sequentially provided with the water inlet 27 of the zoom-type gas-liquid separation chamber, the sliding one-way valve 28, the casing wall 32 of the zoom-type gas-liquid separation chamber, The second rotating spiral gas-liquid separation device 30, the inner shell wall 37 of the zoom-type gas-liquid separation chamber, the variable opening sliding gas-liquid separation shaft 36 and the three-sided concave-convex impeller 35;
  • the sliding one-way valve 28 is arranged in the water inlet 27 of the zoom-type gas-liquid separation chamber.
  • hollow slide plate 281 is internal hollow type , connected with the secondary slide rail 287, the water flow enters its internal flow channel through the built-in water inlet 288, several built-in water inlets 288 are set, the upper side baffle plate 283 and the lower side baffle plate 286 are connected with the primary slide rail 284 and the secondary
  • the slide rail 287 is connected as one, the upper side fixing block 282 restricts the upper side baffle 283 from moving to the top, the lower side fixing block 2810 restricts the lower side baffle 286 from moving to the bottom, the upper side baffle 283 and the lower side baffle 286
  • the external cavity wall scaling device 29 is provided with several at the housing wall 32 of the scaling type gas-liquid separation chamber, which is provided with the glass tube 291 of the external cavity wall scaling device, the piston 292 and the external cavity wall scaling device.
  • Spring seven 293, the piston 292 of the outer cavity wall scaling device is arranged symmetrically with respect to the spring seven 293, and the piston 292 and spring seven 293 of the cavity wall scaling device are both placed inside the glass tube 291 of the outer cavity wall scaling device;
  • the second rotating spiral gas-liquid separation device 30 has the same structure as the first rotating spiral gas-liquid separation device 23, and several of them are arranged in total;
  • three magnetic telescopic shaft rods 31 are arranged symmetrically with respect to the zoom-type gas-liquid separation chamber 18, and the adjacent intervals are 120°.
  • a built-in slide rail 313, a baffle plate 314 of the magnetically telescopic shaft, a pulley 315 of the magnetically telescopic shaft and a magnetic fixed shaft 316, several springs 311 are placed inside the magnetic sliding shaft 312, and are in a zoom-type gas-liquid separation chamber
  • the outer cavity section of the chamber 18; the magnetic sliding shaft 312 is magnetically repulsed with the magnetic bump 352, the baffle plate 314 of the magnetic telescopic shaft and the pulley 315 of the magnetic telescopic shaft are arranged inside the built-in slide rail 313, and the built-in slide rail 313 Connected with the magnetic sliding shaft 312 and the magnetic fixed shaft 316, the magnetic fixed shaft 316 is magnetically attracted to the magnetic concave point 353, the magnetic sliding shaft 312 is connected with the shell wall 32 of the zoom-
  • the inner cavity wall scaling device 34 has the same structure as the outer cavity wall scaling device 29 , and is arranged at the inner shell wall 37 of the scaling type gas-liquid separation chamber, and the number is several;
  • variable opening sliding gas-liquid separation shaft 36 is a symmetrical structure, and there are three zoom-type gas-liquid separation chambers, and the adjacent angle is 120°.
  • the zoom shafts 364 on both sides are connected to allow the zoom shafts 364 on both sides to change the opening degree.
  • the built-in impellers 365 of the zoom shafts are arranged in several zoom shafts 364, and the spring ten 366 is arranged in the zoom flow channel 367.
  • the built-in impeller 365 connected to the scaling shaft on both sides, the spring eleven 3612 is connected to the scaling shaft 364 and the fourth baffle 3613, the fourth rotating shaft 3611 is connected to the inner shell wall 37 of the scaling type gas-liquid separation chamber and the fourth baffle 3613,
  • the sliding block 368 is connected with the baffle plate 369 of the variable opening sliding gas-liquid separation shaft and the pulley 3610 of the variable opening sliding gas-liquid separation shaft, and the variable opening sliding gas-liquid separation shaft baffle 369 and the variable opening sliding
  • the pulley 3610 of the gas-liquid separation shaft is arranged in the inner wall slide rail 33 of the zoom-type gas-liquid separation chamber, and the inner wall slide rail 33 of the zoom-type gas-liquid separation chamber is arranged in the casing wall 32 of the zoom-type gas-liquid separation chamber.
  • the three-sided concave-convex impeller 35 is provided with a peripheral slide rail 351, a magnetic convex point 352, a magnetic concave point 353 and a drive shaft 354 of a zoom-type gas-liquid separation chamber; the peripheral slide rail 351 circles the impeller, The drive shaft 354 of the zoom-type gas-liquid separation chamber is coaxial with the gas drive plate 6 on the A side, driving the three-sided concave-convex impeller 35 to reverse;
  • two built-in water inlets 288 are arranged symmetrically with respect to the sliding one-way valve 28, and two second rotating spiral gas-liquid separation devices 30 are arranged symmetrically with respect to the center of the zoom-type gas-liquid separation chamber, and they are connected with the magnetic telescopic shaft rod 31
  • the included angle is 60°;
  • three external cavity wall scaling devices 29 are arranged symmetrically with respect to the shell wall 32 of the scaling type gas-liquid separation chamber, and the adjacent angle is 120°; the inner cavity wall scaling device 34 is arranged on the inner shell wall of the scaling type gas-liquid separation chamber 37 are evenly arranged with 3, and the adjacent included angle is 120 °; spring eight 311 are evenly arranged with 3.
  • the ball 261 of the telescopic piston shaft is at the convex point of the hexagonal concave-convex impeller 25, the magnetic telescopic shaft rod 31 is above the convex point of the trilateral concave-convex impeller 35, all the baffles are in the closed state, and all the springs are in the initial state.
  • the outermost discs of the A-side gas-driven disk 6 and the B-side gas-driven disk 7 start to rotate, and the high-speed gas continues to move downward, and the two sides are divided by the diamond-shaped flow splitter 8, respectively, and the two sides from the bottom
  • the high-speed gas flowing in from the B-side gas inlet 11 and the bottom A-side gas inlet 10 merges to continue to drive the A-side gas drive plate 6 and the B-side gas drive plate 7. Due to the narrow tube effect of the tapered gas flow channel 9, the gas flow rate is further increased. Larger, the rotation speed of the outermost disc increases.
  • the disc near the outermost disc begins to rotate under the influence of the high-speed airflow, similar to the above process, and then its adjacent discs also start to rotate.
  • the drive shafts on both sides start to rotate, high-speed gas flows out from the gas outlet 73 of the last drive disc, and enters the gas acceleration channel 1, because the gas acceleration channel 1 is also tapered. Therefore, the gas flow rate in this process increases, and the high-speed gas will flow out from the outlet 3 of the gas acceleration channel to the atmosphere.
  • the ball 261 of the telescopic piston shaft rod of the gas-liquid separation chamber 17 will move from the convex point of the hexagonal concave-convex impeller 25 to the concave point, and the outer layer telescopic slide rail 251 is supported by the hexagonal concave-convex impeller.
  • the telescopic shaft 255 of the telescopic shaft 255 begins to shrink, and under the action of the fixed shaft 262, the piston 267 moves outward in a large scale, the third baffle 2613 opens, and the gas in the outer chamber begins to be drawn into the inner chamber through the second flow channel 2610, and the pressure in the inner chamber increases.
  • the above-mentioned high-speed gas will flow out from the outlet 3 of the gas acceleration channel to the atmosphere process, and the airfoil 143 will lift up due to the uneven pressure of the upper and lower sides of its structure. It is low pressure, so the air in the gas-liquid flow channel 15 will be carried and discharged with the high-speed gas, and the gas-liquid flow channel 15 will be at low pressure immediately.
  • the first baffle plate 163 of the one-way valve 16 will be opened immediately, and the gas in the inner cavity will It is quickly discharged out, and the spring one 162 is compressed. When the pressure difference is not enough to compress the spring one 162, the first baffle 163 is closed immediately.
  • the outer chamber is still at a low pressure state , the second baffle plate 212 is opened, the water flow enters the outer cavity, and the other part of the water flow is slid in by the fixed spiral gas-liquid separation device 21, and the impeller 216 of the fixed spiral gas-liquid separation device realizes the first layer of separation of the outer cavity, enters the inner cavity, and Part of the water flow is slid in by the first rotating spiral gas-liquid separation device 23, and the second layer of the outer chamber is separated by the impeller 233 of the first rotating spiral gas-liquid separation device, and the remaining water flow is placed on the bottom layer of the outer chamber.
  • the ball 261 of the telescopic piston shaft in the gas-liquid separation chamber 17 will move from the concave point of the hexagonal concave-convex impeller 25 to the convex point.
  • the telescopic shaft 255 of the impeller begins to expand, and the piston 267 returns to its original state. This process is a cycle.
  • the piston 267 changes from the original pure air extraction to the gas-liquid mixed extraction, and the second flow channel 2610 Take the lead in realizing the first layer of gas-liquid separation of the gas and liquid entering the inner cavity, and then realize the second layer of gas-liquid separation through the first flow channel 265, until the cavity is filled with water, and then the gas-liquid flow channel 15 starts to fill with water, as As the water level rises, the vent valve 14, which is floating under the action of high-speed gas, continues to move upwards under the action of buoyancy. The apex 141 pushes out the embedded moving block 142 and falls to the gap. The gas-liquid flow channel 15 is closed. This process avoids Excess fluid drains.
  • the magnetic sliding shaft 312 of the zoom-type gas-liquid separation chamber 18 and the convex points of the three-sided concave-convex impeller 35 mutually repel each other
  • the magnetic fixed shaft 316 and the convex points of the three-sided concave-convex impeller 35 mutually attract , transformed into, the magnetic sliding shaft 312 and the convex points of the three-sided concave-convex impeller 35 attract each other
  • the magnetic fixed shaft 316 and the convex points of the three-sided concave-convex impeller 35 mutually repel each other.
  • the pressure increases, the volume of the inner cavity is increased by the scaling device 34 on the inner cavity wall, the pressure decreases, the opening of the variable opening sliding gas-liquid separation shaft 36 increases, the fourth baffle 3613 opens, and the outer cavity faces the inner cavity
  • the lower side baffle 286 slides upwards
  • the built-in water inlet 288 moves upwards
  • the built-in impeller 289 of the sliding one-way valve realizes gas-liquid separation at the water inlet, and the water flows through the second rotation at any time.
  • the spiral gas-liquid separation device 30 realizes the first layer of gas-liquid separation in the outer cavity, and the magnetic telescopic shaft rod 31 has a built-in spring 8 311 to realize the second layer of gas-liquid separation in the outer cavity.
  • the fourth baffle 3613 is supported by the spring 11 3612 Close immediately, the sliding one-way valve 28 is restored to the original state by the spring six 285, and the water flow is placed on the bottom of the outer cavity.
  • the magnetic sliding shaft 312 and the trilateral concave-convex impeller 35 protruding points attract each other, and the magnetic fixed shaft rod 316 and the trilateral concavo-convex impeller 35 protruding points mutually repel each other, turning into the initial state.
  • the volume of the cavity is increased by using the scaling device 29 on the wall of the outer cavity, and the pressure is reduced.
  • the upper side baffle 283 slides downward, and the built-in water inlet 288 moves downward.
  • variable-opening sliding gas-liquid separation shaft 36 combines the built-in impeller 365 of the variable-opening sliding gas-liquid separation shaft and the scaling flow
  • the channel 367 realizes the gas-liquid separation of the outer layer, the middle layer and the inner layer of the inner cavity until the cavity is filled with water, and then the gas-liquid channel starts to be filled with water. This process is consistent with the gas-liquid separation chamber 17 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了一种气动式无水启动自吸装置,包括驱动装置、气液分离腔室和缩放型气液分离腔室,两腔室分别安置于驱动装置两侧;驱动装置利用高速气体带动驱动盘旋转,进而带动驱动轴旋转,气液分离腔室利用伸缩活塞轴杆产生腔室与外界压差将水吸入,实现吸水、气液分离以及排水,缩放型气液分离腔室利用内外腔体积进行缩放产生压差将水吸入,实现吸水、气液分离以及排水,同时两个腔室通过从驱动装置流出的高速气体,更快实现空气排出。本发明的装置安装在离心泵进口管上,实现了离心泵无水启动,直接进入正常运行工况,利用两腔室自身结构实现气液层层分离,并在高速气体作用下,两腔室更快将空气排出,腔内充水,提高工作效率,简化操作过程。

Description

一种气动式无水启动自吸装置 技术领域
本发明属于快速自吸装置领域,尤其涉及一种气动式无水启动自吸装置。
背景技术
离心泵在农业灌溉、生活排水、工业流体输送等领域应用广泛。由于离心泵启动前腔内充满空气,而空气产生的离心力不足以进行输水。因此,离心泵启动前需进行灌泵操作,而该操作复杂耗时,且外接真空泵进行抽真空噪声大、能耗高。因此,本发明提出一种气动式无水启动自吸装置解决离心泵启动灌水的难题。
发明内容
针对现有技术中存在不足,本发明提供了一种气动式无水启动自吸装置,该装置不同于传统电力驱动,采用气体驱动方式,耗能少,操作简便,且启动时可利用气液分离腔室自身结构,快速完成吸气、排气、腔内灌满水的过程,同时层层气液分离也可保证空气完全被排出,最后装置停止运行后,利用自身结构将水封闭在装置内,从而使得装置内始终充满水,当离心泵再次启动时,可直接进入正常运行工况,显著提高工作效率。
本发明是通过以下技术手段实现上述技术目的的。
一种气动式无水启动自吸装置,该装置结构为对称圆筒结构,包括驱动装置、气液分离腔室和缩放型气液分离腔室,气液分离腔室和缩放型气液分离腔室分别安置于驱动装置两侧,且驱动装置两侧对称安置有气体加速通道;气液分离腔室内腔和缩放型气液分离腔室内腔分别通过相应的气液流道与相应气体加速通道的出口的相连,气体加速通道的出口与气液流道连接处设有通气阀门;气液分离腔室和缩放型气液分离腔室内腔与气液流道接口处设有单向阀门,单向阀门关于腔室中心轴对称设置;
驱动装置两侧的驱动轴分别与气液分离腔室和缩放型气液分离腔室的驱动轴相连;两侧驱动轴不发生干涉;驱动装置利用高速气体带动驱动盘旋转,从而带动驱动轴旋转;
气液分离腔室通过内部的伸缩活塞轴杆产生腔室与外界压差将水吸入,实现吸水、气液分离以及排水;
缩放型气液分离腔室利用内外腔体积进行缩放产生压差快速将水吸入,实现吸水、气液分离以及排水;
驱动装置,气液分离腔室和缩放型气液分离腔室底部安置有固定支架;
驱动装置由外到内依次设有驱动装置外壳壁,顶部气体进口,气体加速通道进口,气体加速通道,驱动装置内壳壁,渐缩气体流道,A侧气体驱动盘,B侧气体驱动盘,菱形分流装置,底部B侧气体进口,底部A侧气体进口;
顶部气体进口穿过驱动装置外壳壁以及驱动装置内壳壁,与渐缩气体流道顶部相接通,底部A侧气体进口设置于A侧气体驱动盘一侧,且其穿过驱动装置外壳壁以及驱动装置内壳壁,与渐缩气体流道底部相接通,底部B侧气体进口设置于B侧气体驱动盘一侧,且其穿过驱动装置外壳壁以及驱动装置内壳壁,与渐缩气体流道底部相接通,菱形分流装置设置于渐缩气体流道底部,将底部进气分为A、B两侧;
气体加速通道进口与气体加速通道相连通,且对称安置于驱动装置两侧,气体加速通道由底部至顶部为渐缩型;
渐缩气体流道对称安置,且由底部至顶部为渐缩型;
B侧的驱动轴上设有若干B侧气体驱动盘,从气体进口到出口方向,驱动盘为先疏后密设置,密集点靠近气体加速通道进口;每个B侧气体驱动盘上均设有若干气体流道和相对应的气体出口,每个气体流道上均设有若干个气体穿过孔,且孔半径沿气体流道的气体出口以一定比例缩小;
B侧气体驱动盘在顶部气体进口以及底部B侧气体进口作用下呈正转,A侧气体驱动盘结构与B侧气体驱动盘结构一致,A侧气体驱动盘与B侧气体驱动盘安置于顶部气体进口两侧,A侧气体驱动盘在顶部气体进口以及底部A侧气体进口作用下呈反转,转动时,A侧气体驱动盘与B侧气体驱动盘不发生干涉;
进一步的,气体加速通道为三段式,半径以0.5倍缩小;渐缩气体流道的底部至顶部为渐缩型,且底部半径为顶部半径的5倍;B侧气体驱动盘上设置3个气体流道,相邻夹角120°,其中,述气体穿过孔呈圆形,气体穿过孔半径以0.8倍缩小若干次,直至孔接近气体出口;气体出口呈方形;
单向阀门包括第一转轴,弹簧一和第一挡板,弹簧一两侧分别连接气液流道的壁面和第一挡板;
通气阀门包括尖顶,内嵌移动块,翼形,通气阀门的固定支架,通气阀门的伸缩轴杆,通气阀门的挡板,通气阀门的滑轮,通气挡板,固体块和通气阀门的滑轨,尖顶安置于气体加速通道1壁面,安放位置与内嵌移动块位置对应,内嵌移动块安置于翼形内部,尖顶和内嵌移动块的数量均为2个;翼形初始位置安放于通气阀门的固定支架处,通气阀门的伸缩轴杆与翼形和通气挡板相连,通气挡板与固体块相连,固体块与通气阀门的挡板和通气阀门的滑轮相连,通气阀门的挡板关于通气阀门的滑轮上下对称设置,通气阀门的滑轮于通气阀门的滑轨内运作,通气阀门的滑轨安置于气液流道的壁面内。
气液分离腔室由外到内依次设有气液分离腔室进水口,气液分离腔室外壳壁,螺旋气液分离装置,气液分离腔室内壳壁,伸缩活塞轴杆和六边凹凸叶轮;
其中,螺旋气液分离装置包括固定螺旋气液分离装置和第一转动螺旋气液分离装置,固定螺旋气液分离装置安置于两侧进口处,同时穿透气液分离腔室内壳壁,且其上设有第二转轴,第二挡板,弹簧二,第一螺旋刀片,第一转动轮盘,固定螺旋气液分离装置的叶轮和旋转体;第二转轴连接气液分离腔室外壳壁与第二挡板,弹簧二与第二挡板和旋转体相连,第一转动轮盘连接旋转体以及固定螺旋气液分离装置的叶轮,第一转动轮盘供固定螺旋气液分离装置的叶轮旋转,第一螺旋刀片安置于旋转体表面,数量为若干个;
第一转动螺旋气液分离装置穿透气液分离腔室内壳壁,该装置共安置若干个,其设有第二转动轮盘,第二螺旋刀片和第一转动螺旋气液分离装置的叶轮;第二转动轮盘结构与第一转动轮盘一致,供第一转动螺旋气液分离装置以及第一转动螺旋气液分离装置的叶轮转动,第一转动螺旋气液分离装置表面安置有若干个第二螺旋刀片;
伸缩活塞轴杆共安置若干个,其设有伸缩活塞轴杆的滚珠,固定轴杆,移动轴杆,弹簧三,第一流道,伸缩活塞轴杆的玻璃管,活塞,弹簧四,伸缩活塞轴杆的叶轮,第二流道,活塞挡板,弹簧五,第三转轴和第三挡板;伸缩活塞轴杆的滚珠安置于外层伸缩滑轨内,其与固定轴杆一端相连,移动轴杆与固定轴杆相连,关于弹簧三对称安置,且与弹簧三一同安置于伸缩活塞轴杆的玻璃管内部,第一流道安置于伸缩活塞轴杆的玻璃管外部,关于固定轴杆中心线称安置若干个,活塞与固定轴杆另一端相连,且其两端均设有活塞挡 板,两侧的活塞挡板上均设置若干个第二流道,第二流道内部安置有弹簧四和伸缩活塞轴杆的叶轮,弹簧五连接活塞挡板和第三挡板,第三转轴连接第三挡板和气液分离腔室内壳壁,此处弹簧五,第三转轴,第三挡板关于伸缩活塞轴杆中心对称安置;
六边凹凸叶轮上设有外层伸缩滑轨,轴珠,轴珠滑轨,气液分离腔室的外接驱动轴和六边凹凸叶轮的伸缩轴杆;外层伸缩滑轨环绕叶轮一周,且其具有伸缩效果,轴珠安置于轴珠滑轨内部,且其环绕轴珠滑轨一周,气液分离腔室的外接驱动轴与B侧气体驱动盘共轴,带动六边凹凸叶轮正转;六边凹凸叶轮的伸缩轴杆共安置若干个,且其设于六边凹凸叶轮内部,一端与轴珠滑轨焊为一体,另一端连接伸缩活塞轴杆的滚珠。
进一步的,第一螺旋刀片安置2片,第二螺旋刀片安置2片,六边凹凸叶轮的伸缩轴杆安置三个,且相连轴杆间角度120°,第一流道共安置6个,每侧3个,均匀分布,第二流道共安置6个,每侧3个,均匀分布;
进一步的,第一转动螺旋气液分离装置关于气液分离腔室对称安置4个,相连间隔60°,第一转动螺旋气液分离装置与固定螺旋气液分离装置间隔60°,伸缩活塞轴杆关于气液分离腔室对称安置6个,相邻间隔60°;
缩放型气液分离腔室由外到内依次设有缩放型气液分离腔室的进水口,滑动单向阀门,缩放型气液分离腔室外壳壁,第二转动螺旋气液分离装置,缩放型气液分离腔室内壳壁,变开度滑行气液分离轴杆和三边凹凸叶轮;
滑动单向阀门设置于缩放型气液分离腔室的进水口内,该装置为对称结构,其设有中空滑板,上侧固定块,上侧挡板,一级滑轨,弹簧六,下侧挡板,二级滑轨,内置进水口,滑动单向阀门的内置叶轮和下侧固定块;中空滑板为内部镂空型,与二级滑轨连接一体,水流通过内置进水口进入其内部流道,内置进水口设置若干个,上侧挡板以及下侧挡板与一级滑轨和二级滑轨连为一体,上侧固定块限制上侧挡板无法向顶部运动,下侧固定块限制下侧挡板无法向底部运动,上侧挡板和下侧挡板中间设有弹簧六,一级滑轨安置于缩放型气液分离腔室的进水口壁面处,滑动单向阀门的内置叶轮安置于中空滑板内部,其对应底部水流可通过;
外腔壁面缩放装置于缩放型气液分离腔室外壳壁处设置若干个,其设有外腔壁面缩放装置的玻璃管,外腔壁面缩放装置的活塞和弹簧七,外腔壁面缩放装置的活塞关于弹簧七对称安置,且腔壁面缩放装置的活塞和弹簧七均安置于外腔壁面缩放装置的玻璃管内部;
第二转动螺旋气液分离装置与第一转动螺旋气液分离装置结构一致,共安置若干个;
磁性伸缩轴杆关于缩放型气液分离腔室对称安置3个,相邻间隔120°,该装置为对称装置,其上设有弹簧八,磁性滑动轴杆,内置滑轨,磁性伸缩轴杆的挡板,磁性伸缩轴杆的滑轮和磁性固定轴杆,若干个弹簧八安置于磁性滑动轴杆内部,处于缩放型气液分离腔室的外腔段;磁性滑动轴杆磁性与磁性凸点相斥,磁性伸缩轴杆的挡板与磁性伸缩轴杆的滑轮安置于内置滑轨内部,且内置滑轨与磁性滑动轴杆和磁性固定轴杆相连,磁性固定轴杆磁性与磁性凹点相吸,磁性滑动轴杆与缩放型气液分离腔室外壳壁相连,穿透缩放型气液分离腔室内壳壁,磁性固定轴杆与缩放型气液分离腔室内壳壁相连,磁性伸缩轴杆的挡板关于磁性伸缩轴杆的滑轮对称安置;
内腔壁面缩放装置与外腔壁面缩放装置结构一致,安置于缩放型气液分离腔室内壳壁处,数量为若干个;
变开度滑行气液分离轴杆为对称结构,关于缩放型气液分离腔室共设有3个,相邻夹角为120°其设有一级滚珠,连接轴,二级滚珠,缩放轴杆,缩放轴杆的内置叶轮,弹簧十,缩放流道,滑动块,变开度滑行气液分离轴杆的挡板,变开度滑行气液分离轴杆的滑轮,第四转轴,弹簧十一和第四挡板;一级滚珠于外围滑轨内运作,其与连接轴相连,二级滚珠与两侧的缩放轴杆相连,供两侧缩放轴杆变开度,缩放轴杆的内置叶轮安置于缩放轴杆内若干个,弹簧十安置于缩放流道内,两端连接两侧缩放轴杆的内置叶轮,弹簧十一连接缩放轴杆和第四挡板,第四转轴与缩放型气液分离腔室内壳壁以及第四挡板相连,滑动块与变开度滑行气液分离轴杆的挡板以及变开度滑行气液分离轴杆的滑轮相连,变开度滑行气液分离轴杆的挡板和变开度滑行气液分离轴杆的滑轮设于缩放型气液分离腔室内壁滑轨内,缩放型气液分离腔室内壁滑轨安置于缩放型气液分离腔室外壳壁内,变开度滑行气液分离轴杆的挡板关于变开度滑行气液分离轴杆的滑轮对称设置;
三边凹凸叶轮设有外围滑轨,磁性凸点,磁性凹点和缩放型气液分离腔室的驱动轴杆;外围滑轨环绕叶轮一圈,缩放型气液分离腔室的驱动轴杆与A侧气体驱动盘共轴,带动三边凹凸叶轮反转;
进一步的,内置进水口关于滑动单向阀门对称设置2个,第二转动螺旋气液分离装置关于缩放型气液分离腔室中心对称设置2个,且其与磁性伸缩轴杆夹角为60°;
进一步的,外腔壁面缩放装置关于缩放型气液分离腔室外壳壁对称设置3个,相邻夹角为120°;内腔壁面缩放装置于缩放型气液分离腔室内壳壁均匀设置3个,相邻夹角为120°;弹簧八均匀安置3个。
本发明的有益效果:
1、本发明采用气体驱动装置,该装置不同于传统电力驱动,采用顶部、底部高速气体吹动驱动盘,驱动盘转动从而带动驱动轴转动,进一步带动对应侧腔室驱动轴转动,此外由驱动装置流出的高速气体结合设置于气体加速通道和气液流道中的通气阀门,与此同时通气阀门,具有只通气体不通液体效果,减少不必要液体流出,两腔室更快将空气排出,腔内充水,显著提高工作效率,极大简化操作过程。
2、本发明采用气液分离腔室,该腔室设有外腔以及内腔气液分离装置,于外腔,利用固定螺旋气液分离装置以及第一转动螺旋气液分离装置实现气液外腔分离,同时小部分气液可通过该装置流入内腔,于内腔,通过驱动轴转动,伸缩活塞轴杆的滚珠于六边凹凸叶轮的凹凸点来回切换,实现伸缩活塞轴杆周期性缩放,从而将外腔气液抽至内腔,与此同时结合装置气液分离功能实现内腔气液分离,降低水中含气量,减少后续泵中空化概率。
3、本发明采用磁性伸缩轴杆以及三边凹凸叶轮,利用三边凹凸叶轮的凸点以及凹点分别与磁性伸缩轴杆相斥与相吸,三边凹凸叶轮的驱动轴旋转实现内腔与外腔的周期性体积缩放,腔内周期性压力变化,结合进水口处的滑动单向阀门,阀门周期性上滑下滑运作,该阀门内置进水口以及滑动单向阀门的内置叶轮,实现进水口气液分离。
4、本发明采用缩放型气液分离腔室,该腔室设有外腔以及内腔气液分离装置,于外腔,利用第二转动螺旋气液分离装置以及磁性伸缩轴杆内置弹簧实现气液分离,于内腔,利用体积引起的压力变化,变开度滑行气液分离轴杆的开度实现周期性变化,更好的结合其内置叶轮以及缩放流道实现内腔外层,中层以及内层气液分离,充分降低水中含气量。
附图说明
图1为本发明所述驱动装置结构示意图,
图2为双侧气体驱动盘结构放大图,
图3为本发明所述一种气动式无水启动自吸装置结构侧视图,
图4为通气阀门结构放大图,
图5为单向阀门结构放大图,
图6为本发明所述一种气动式无水启动自吸装置的气液分离腔室结构示意图,
图7为固定螺旋气液分离装置结构放大图,
图8为第一转动轮盘结构示意图,
图9为第一转动螺旋气液分离装置结构放大图,
图10为伸缩活塞轴杆结构放大图,
图11为六边凹凸叶轮结构放大图,
图12为本发明所述一种气动式无水启动自吸装置的缩放型气液分离腔室结构示意图,
图13为滑动单向阀门结构放大图,
图14为外腔壁面缩放装置结构放大图,
图15为第二转动螺旋气液分离装置结构放大图,
图16为磁性伸缩轴杆结构放大图,
图17为内腔壁面缩放装置结构放大图,
图18为变开度滑行气液分离轴杆结构放大图,
图19为三边凹凸叶轮结构放大图。
图中:
1-气体加速通道;2-顶部气体进口;3-气体加速通道进口;4-驱动装置外壳壁;5-驱动装置内壳壁;6-A侧气体驱动盘;
7-B侧气体驱动盘;71-气体流道;72-气体穿过孔;73-气体出口;74-驱动轴;
8-菱形分流装置;9-渐缩气体流道;10-底部A侧气体进口;11-底部B侧气体进口;12-固定支架;13-气体加速通道的出口;
14-通气阀门;141-尖顶;142-内嵌移动块;143-翼形;144-通气阀门的固定支架;145-通气阀门的伸缩轴杆;146-通气阀门的挡板;147-通气阀门的滑轮;148-通气挡板;149-固体块;1410通气阀门的滑轨;
15-气液流道;
16-单向阀门;161-第一转轴;162-弹簧一;163-第一挡板;
17-气液分离腔室;18-缩放型气液分离腔室;19-驱动装置;20-气液分离腔室进水口;
21-固定螺旋气液分离装置;211-第二转轴;212-第二挡板;213-弹簧二;214-第一螺旋刀片;215-第一转动轮盘;216-固定螺旋气液分离装置的叶轮;217-旋转体;
22-气液分离腔室外壳壁;
23-第一转动螺旋气液分离装置;231-第二转动轮盘;232-第二螺旋刀片;233-第一转动螺旋气液分离装置的叶轮;
24-气液分离腔室内壳壁;
25-六边凹凸叶轮;251-外层伸缩滑轨;252-轴珠;253-轴珠滑轨;254-气液分离腔室 的外接驱动轴;255-六边凹凸叶轮的伸缩轴杆;
26-伸缩活塞轴杆;261-伸缩活塞轴杆的滚珠;262-固定轴杆;263-移动轴杆;264-弹簧三;265-第一流道;266-伸缩活塞轴杆的玻璃管;267-活塞;268-弹簧四;269-伸缩活塞轴杆的叶轮;2610-第二流道;2611-活塞挡板;2612-弹簧五;2613-第三转轴;2614-第三挡板;
27-缩放型气液分离腔室的进水口;
28-滑动单向阀门;281-中空滑板;282-上侧固定块;283-上侧挡板;284-一级滑轨;285-弹簧六;286-下侧挡板;287-二级滑轨;288-内置进水口;289-滑动单向阀门的内置叶轮;2810-下侧固定块;
29-外腔壁面缩放装置;291-外腔壁面缩放装置的玻璃管;292-外腔壁面缩放装置的活塞;293-弹簧七;
30-第二转动螺旋气液分离装置;301-第三转动轮盘;302-第三螺旋刀片;303-第二转动螺旋气液分离装置的叶轮;
31-磁性伸缩轴杆;311-弹簧八;312-磁性滑动轴杆;313-内置滑轨;314-磁性伸缩轴杆的挡板;315-磁性伸缩轴杆的滑轮;316-磁性固定轴杆;
32-缩放型气液分离腔室外壳壁;33-缩放型气液分离腔室内壁滑轨;
34-内腔壁面缩放装置;341-内腔壁面缩放装置的活塞;342-弹簧九;343-内腔壁面缩放装置的玻璃管;
35-三边凹凸叶轮;351-外围滑轨;352-磁性凸点;353-磁性凹点;354-缩放型气液分离腔室的驱动轴杆;
36-变开度滑行气液分离轴杆;361-一级滚珠;362-连接轴;363-二级滚珠;364-缩放轴杆;365-缩放轴杆的内置叶轮;366-弹簧十;367-缩放流道;368-滑动块;369-变开度滑行气液分离轴杆的挡板;3610-变开度滑行气液分离轴杆的滑轮;3611-第四转轴;3612-弹簧十一;3613-第四挡板;
37-缩放型气液分离腔室内壳壁。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
如图1、图3、图6、图12所示,本发明所述的一种气动式无水启动自吸装置,该装置结构为对称圆筒结构,包括驱动装置19、气液分离腔室17和缩放型气液分离腔室18,气液分离腔室17和缩放型气液分离腔室18分别安置于驱动装置19两侧,且驱动装置19两侧对称安置有气体加速通道1;气液分离腔室17内腔和缩放型气液分离腔室18内腔分别通过相应的气液流道15与相应气体加速通道的出口13的相连,气体加速通道的出口13与气液流道15连接处设有通气阀门14;气液分离腔室17和缩放型气液分离腔室18内腔与气液流道15接口处设有单向阀门16,单向阀门16关于腔室中心轴对称设置;
驱动装置19两侧的驱动轴分别与气液分离腔室17和缩放型气液分离腔室18的驱动轴相连;两侧驱动轴不发生干涉;驱动装置19利用高速气体带动驱动盘旋转,从而带动驱动轴旋转;
气液分离腔室17通过内部的伸缩活塞轴杆26产生腔室与外界压差将水吸入,实现吸 水、气液分离以及排水;
缩放型气液分离腔室18利用内外腔体积进行缩放产生压差快速将水吸入,实现吸水、气液分离以及排水;
驱动装置19,气液分离腔室17和缩放型气液分离腔室18底部安置有固定支架12。
如图1和图2所示,驱动装置19由外到内依次设有驱动装置外壳壁4,顶部气体进口2,气体加速通道进口3,气体加速通道1,驱动装置内壳壁5,渐缩气体流道9,A侧气体驱动盘6,B侧气体驱动盘7,菱形分流装置8,底部B侧气体进口11,底部A侧气体进口10;
顶部气体进口2穿过驱动装置外壳壁4以及驱动装置内壳壁5,与渐缩气体流道9顶部相接通,底部A侧气体进口10设置于A侧气体驱动盘6一侧,且其穿过驱动装置外壳壁4以及驱动装置内壳壁5,与渐缩气体流道9底部相接通,底部B侧气体进口11设置于B侧气体驱动盘7一侧,且其穿过驱动装置外壳壁4以及驱动装置内壳壁5,与渐缩气体流道9底部相接通,菱形分流装置8设置于渐缩气体流道9底部,将底部进气分为A、B两侧;
气体加速通道进口3与气体加速通道1相连通,且对称安置于驱动装置19两侧,气体加速通道1由底部至顶部为渐缩型;
渐缩气体流道9对称安置,且由底部至顶部为渐缩型;
如图3所示,B侧的驱动轴74上设有若干B侧气体驱动盘7,从气体进口到出口方向,驱动盘为先疏后密设置,密集点靠近气体加速通道进口3;如图2所示,每个B侧气体驱动盘7上均设有若干气体流道71和相对应的气体出口73,每个气体流道71上均设有若干个气体穿过孔72,且孔半径沿气体流道71的气体出口73以一定比例缩小;
B侧气体驱动盘7在顶部气体进口2以及底部B侧气体进口11作用下呈正转,A侧气体驱动盘6结构与B侧气体驱动盘7结构一致,A侧气体驱动盘6与B侧气体驱动盘7安置于顶部气体进口2两侧,A侧气体驱动盘6在顶部气体进口2以及底部A侧气体进口10作用下呈反转,转动时,A侧气体驱动盘6与B侧气体驱动盘7不发生干涉;
可选的,气体加速通道1为三段式,半径以0.5倍缩小;渐缩气体流道9的底部至顶部为渐缩型,且底部半径为顶部半径的5倍;B侧气体驱动盘7上设置3个气体流道71,相邻夹角120°,其中,述气体穿过孔72呈圆形,气体穿过孔72半径以0.8倍缩小若干次,直至孔接近气体出口73;气体出口73呈方形;
如图5所示,单向阀门16包括第一转轴161,弹簧一162和第一挡板163,弹簧一162两侧分别连接气液流道15的壁面和第一挡板163;
如图4所示,通气阀门14包括尖顶141,内嵌移动块142,翼形143,通气阀门的固定支架144,通气阀门的伸缩轴杆145,通气阀门的挡板146,通气阀门的滑轮147,通气挡板148,固体块149和通气阀门的滑轨1410,尖顶141安置于气体加速通道1壁面,安放位置与内嵌移动块142位置对应,内嵌移动块142安置于翼形143内部,尖顶141和内嵌移动块142的数量均为2个;翼形143初始位置安放于通气阀门的固定支架144处,通气阀门的伸缩轴杆145与翼形143和通气挡板148相连,通气挡板148与固体块149相连,固体块149与通气阀门的挡板146和通气阀门的滑轮147相连,通气阀门的挡板146关于通气阀门的滑轮147上下对称设置,通气阀门的滑轮147于通气阀门的滑轨1410内运作, 通气阀门的滑轨1410安置于气液流道15的壁面内;
如图6所示,气液分离腔室17由外到内依次设有气液分离腔室进水口20,气液分离腔室外壳壁22,螺旋气液分离装置,气液分离腔室内壳壁24,伸缩活塞轴杆26和六边凹凸叶轮25;
其中,螺旋气液分离装置包括固定螺旋气液分离装置21和第一转动螺旋气液分离装置23,固定螺旋气液分离装置21安置于两侧进口处,同时穿透气液分离腔室内壳壁24,且其上设有第二转轴211,第二挡板212,弹簧二213,第一螺旋刀片214,第一转动轮盘215,固定螺旋气液分离装置的叶轮216和旋转体217;如图7所示,第二转轴211连接气液分离腔室外壳壁22与第二挡板212,弹簧二213与第二挡板212和旋转体217相连,第一转动轮盘215连接旋转体217以及固定螺旋气液分离装置的叶轮216,第一转动轮盘215供固定螺旋气液分离装置的叶轮216旋转,第一螺旋刀片214安置于旋转体217表面,数量为若干个;第一转动轮盘215的结构如图8所示;
第一转动螺旋气液分离装置23穿透气液分离腔室内壳壁24,该装置共安置若干个,其设有第二转动轮盘231,第二螺旋刀片232和第一转动螺旋气液分离装置的叶轮233;如图9所示,第二转动轮盘231结构与第一转动轮盘215一致,供第一转动螺旋气液分离装置23以及第一转动螺旋气液分离装置的叶轮233转动,第一转动螺旋气液分离装置23表面安置有若干个第二螺旋刀片232;
伸缩活塞轴杆26共安置若干个,如图10所示,其设有伸缩活塞轴杆的滚珠261,固定轴杆262,移动轴杆263,弹簧三264,第一流道265,伸缩活塞轴杆的玻璃管266,活塞267,弹簧四268,伸缩活塞轴杆的叶轮269,第二流道2610,活塞挡板2611,弹簧五2612,第三转轴2613和第三挡板2614;伸缩活塞轴杆的滚珠261安置于外层伸缩滑轨251内,其与固定轴杆262一端相连,移动轴杆263与固定轴杆262相连,关于弹簧三264对称安置,且与弹簧三264一同安置于伸缩活塞轴杆的玻璃管266内部,第一流道265安置于伸缩活塞轴杆的玻璃管266外部,关于固定轴杆262中心线称安置若干个,活塞267与固定轴杆262另一端相连,且其两端均设有活塞挡板2611,两侧的活塞挡板2611上均设置若干个第二流道2610,第二流道2610内部安置有弹簧四268和伸缩活塞轴杆的叶轮269,弹簧五2612连接活塞挡板2611和第三挡板2614,第三转轴2613连接第三挡板2614和气液分离腔室内壳壁24,此处弹簧五2612,第三转轴2613,第三挡板2614关于伸缩活塞轴杆26中心对称安置;
如图11所示,六边凹凸叶轮25上设有外层伸缩滑轨251,轴珠252,轴珠滑轨253,气液分离腔室的外接驱动轴254和六边凹凸叶轮的伸缩轴杆255;外层伸缩滑轨251环绕叶轮一周,且其具有伸缩效果,轴珠252安置于轴珠滑轨253内部,且其环绕轴珠滑轨253一周,气液分离腔室的外接驱动轴254与B侧气体驱动盘7共轴,带动六边凹凸叶轮25正转;六边凹凸叶轮的伸缩轴杆255共安置若干个,且其设于六边凹凸叶轮25内部,一端与轴珠滑轨253焊为一体,另一端连接伸缩活塞轴杆的滚珠261;
可选的,第一螺旋刀片214安置2片,第二螺旋刀片232安置2片,六边凹凸叶轮的伸缩轴杆255安置三个,且相连轴杆间角度120°,第一流道265共安置6个,每侧3个,均匀分布,第二流道共安置6个,每侧3个,均匀分布;
可选的,第一转动螺旋气液分离装置23关于气液分离腔室对称安置4个,相连间隔 60°,第一转动螺旋气液分离装置23与固定螺旋气液分离装置21间隔60°,伸缩活塞轴杆26关于气液分离腔室对称安置6个,相邻间隔60°;
如图12所示,缩放型气液分离腔室18由外到内依次设有缩放型气液分离腔室的进水口27,滑动单向阀门28,缩放型气液分离腔室外壳壁32,第二转动螺旋气液分离装置30,缩放型气液分离腔室内壳壁37,变开度滑行气液分离轴杆36和三边凹凸叶轮35;
如图13所示,滑动单向阀门28设置于缩放型气液分离腔室的进水口27内,该装置为对称结构,其设有中空滑板281,上侧固定块282,上侧挡板283,一级滑轨284,弹簧六285,下侧挡板286,二级滑轨287,内置进水口288,滑动单向阀门的内置叶轮289和下侧固定块2810;中空滑板281为内部镂空型,与二级滑轨287连接一体,水流通过内置进水口288进入其内部流道,内置进水口288设置若干个,上侧挡板283以及下侧挡板286与一级滑轨284和二级滑轨287连为一体,上侧固定块282限制上侧挡板283无法向顶部运动,下侧固定块2810限制下侧挡板286无法向底部运动,上侧挡板283和下侧挡板286中间设有弹簧六285,一级滑轨284安置于缩放型气液分离腔室的进水口27壁面处,滑动单向阀门的内置叶轮289安置于中空滑板281内部,其对应底部水流可通过;
如图14所示,外腔壁面缩放装置29于缩放型气液分离腔室外壳壁32处设置若干个,其设有外腔壁面缩放装置的玻璃管291,外腔壁面缩放装置的活塞292和弹簧七293,外腔壁面缩放装置的活塞292关于弹簧七293对称安置,且腔壁面缩放装置的活塞292和弹簧七293均安置于外腔壁面缩放装置的玻璃管291内部;
如图15所示,第二转动螺旋气液分离装置30与第一转动螺旋气液分离装置23结构一致,共安置若干个;
如图16所示,磁性伸缩轴杆31关于缩放型气液分离腔室18对称安置3个,相邻间隔120°,该装置为对称装置,其上设有弹簧八311,磁性滑动轴杆312,内置滑轨313,磁性伸缩轴杆的挡板314,磁性伸缩轴杆的滑轮315和磁性固定轴杆316,若干个弹簧八311安置于磁性滑动轴杆312内部,处于缩放型气液分离腔室18的外腔段;磁性滑动轴杆312磁性与磁性凸点352相斥,磁性伸缩轴杆的挡板314与磁性伸缩轴杆的滑轮315安置于内置滑轨313内部,且内置滑轨313与磁性滑动轴杆312和磁性固定轴杆316相连,磁性固定轴杆316磁性与磁性凹点353相吸,磁性滑动轴杆312与缩放型气液分离腔室外壳壁32相连,穿透缩放型气液分离腔室内壳壁37,磁性固定轴杆316与缩放型气液分离腔室内壳壁37相连,磁性伸缩轴杆的挡板314关于磁性伸缩轴杆的滑轮315对称安置;
如图17所示,内腔壁面缩放装置34与外腔壁面缩放装置29结构一致,安置于缩放型气液分离腔室内壳壁37处,数量为若干个;
如图18所示,变开度滑行气液分离轴杆36为对称结构,关于缩放型气液分离腔室共设有3个,相邻夹角为120°其设有一级滚珠361,连接轴362,二级滚珠363,缩放轴杆364,缩放轴杆的内置叶轮365,弹簧十366,缩放流道367,滑动块368,变开度滑行气液分离轴杆的挡板369,变开度滑行气液分离轴杆的滑轮3610,第四转轴3611,弹簧十一3612和第四挡板3613;一级滚珠361于外围滑轨351内运作,其与连接轴362相连,二级滚珠363与两侧的缩放轴杆364相连,供两侧缩放轴杆364变开度,缩放轴杆的内置叶轮365安置于缩放轴杆364内若干个,弹簧十366安置于缩放流道367内,两端连接两侧缩放轴杆的内置叶轮365,弹簧十一3612连接缩放轴杆364和第四挡板3613,第四转轴 3611与缩放型气液分离腔室内壳壁37以及第四挡板3613相连,滑动块368与变开度滑行气液分离轴杆的挡板369以及变开度滑行气液分离轴杆的滑轮3610相连,变开度滑行气液分离轴杆的挡板369和变开度滑行气液分离轴杆的滑轮3610设于缩放型气液分离腔室内壁滑轨33内,缩放型气液分离腔室内壁滑轨33安置于缩放型气液分离腔室外壳壁32内,变开度滑行气液分离轴杆的挡板369关于变开度滑行气液分离轴杆的滑轮3610对称设置;
如图19所示,三边凹凸叶轮35设有外围滑轨351,磁性凸点352,磁性凹点353和缩放型气液分离腔室的驱动轴杆354;外围滑轨351环绕叶轮一圈,缩放型气液分离腔室的驱动轴杆354与A侧气体驱动盘6共轴,带动三边凹凸叶轮35反转;
可选的,内置进水口288关于滑动单向阀门28对称设置2个,第二转动螺旋气液分离装置30关于缩放型气液分离腔室中心对称设置2个,且其与磁性伸缩轴杆31夹角为60°;
可选的,外腔壁面缩放装置29关于缩放型气液分离腔室外壳壁32对称设置3个,相邻夹角为120°;内腔壁面缩放装置34于缩放型气液分离腔室内壳壁37均匀设置3个,相邻夹角为120°;弹簧八311均匀安置3个。
本发明的工作过程如下:
装置启动前,伸缩活塞轴杆的滚珠261处于六边凹凸叶轮25凸点处,磁性伸缩轴杆31处于三边凹凸叶轮35凸点上方,所有挡板处于闭合状态,所有弹簧处于初始状态,随着高速气体从顶部气体进口2,A侧气体驱动盘6以及B侧气体驱动盘7的最外围圆盘开始转动,高速气体继续往下运动,被菱形分流装置8分割两侧,分别与从底部B侧气体进口11和底部A侧气体进口10流入的高速气体相融合,继续带动A侧气体驱动盘6以及B侧气体驱动盘7,由于渐缩气体流道9狭管效应,气体流速进一步增大,最外围圆盘转速增大,在气体流道71以及气体穿过孔72作用下,靠近最外围圆盘开始受高速气流影响转动,类同上述过程,紧接着其相邻圆盘也开始转动,随着大多数圆盘开始转动,两侧驱动轴开始转动,高速气体从最后一个驱动盘气体出口73流出,进入气体加速通道1,由于气体加速通道1也为渐缩型。因此,此过程气体流速增大,高速气体将从气体加速通道出口3流出至大气。
随着一侧驱动轴开始转动,气液分离腔室17的伸缩活塞轴杆的滚珠261将从六边凹凸叶轮25凸点处向凹点处移动,外层伸缩滑轨251受六边凹凸叶轮的伸缩轴杆255开始收缩,受固定轴杆262作用,活塞267大幅度往外运动,第三挡板2613开启,外腔气体通过第二流道2610开始抽入内腔,内腔压力增大,由于上述高速气体将从气体加速通道的出口3流出至大气过程,翼形143由于自身结构上下压力不均,往上抬起,由于气体流速大,气体加速通道1压力相较于气液流道15为低压,因此气液流道15的空气将随高速气体携带排出,气液流道15随即为低压,结合内腔压力增大,单向阀门16的第一挡板163立即开启,内腔气体迅速往外排出,弹簧一162被压缩,当压差不足以使弹簧一162压缩,第一挡板163立即关闭,由于气体从外腔进入内腔,此时虽然固定螺旋气液分离装置21以及第一转动螺旋气液分离装置23穿透气液分离腔室内壳壁24,少量气体自发从内腔流入外腔,但不足以维持内外腔室压力平衡,外腔相较于内腔依然为低压态,第二挡板212开启,水流进入外腔,另一部分水流由固定螺旋气液分离装置21滑入,受固定螺旋气液分离装置的叶轮216实现外腔第一层分离,进入内腔,另一部分水流由第一转动螺旋气液 分离装置23滑入,受第一转动螺旋气液分离装置的叶轮233实现外腔第而层气液分离,剩余水流置于外腔底层。
随着一侧驱动轴继续转动,气液分离腔室17内的伸缩活塞轴杆的滚珠261将从六边凹凸叶轮25凹点处向凸点处移动,外层伸缩滑轨251受六边凹凸叶轮的伸缩轴杆255开始扩张,活塞267恢复至原有状态,此过程为一个周期,随着外腔水增多,活塞267由原来纯空气抽取转变为气液混合抽取,由第二流道2610率先对进入气液实现内腔第一层气液分离,再由第一流道265对气液实现第二层气液分离,直至腔内充水,随即气液流道15开始充水,随着水位升高,由高速气体作用下浮动的通气阀门14,受浮力作用继续往上运动,尖顶141将内嵌移动块142顶出,掉落至缝隙口,气液流道15封闭,此过程避免多余液体流出。
随着另一侧驱动轴开始转动,缩放型气液分离腔室18的磁性滑动轴杆312与三边凹凸叶轮35凸点互斥、磁性固定轴杆316与三边凹凸叶轮35凸点互吸,转变为,磁性滑动轴杆312与三边凹凸叶轮35凸点互吸、磁性固定轴杆316与三边凹凸叶轮35凸点互斥,此过程外腔体积利用外腔壁面缩放装置29实现缩小,压力增大,内腔体积利用内腔壁面缩放装置34实现增大,压力减小,变开度滑行气液分离轴杆36开度增大,第四挡板3613开启,外腔向内腔排气,与此同时下侧挡板286向上滑动,内置进水口288与其向上,水进入中空滑板281,利用滑动单向阀门的内置叶轮289实现进水处气液分离,随时水流通过第二转动螺旋气液分离装置30实现外腔第一层气液分离,磁性伸缩轴杆31内置弹簧八311实现外腔第二层气液分离,待压差消失,第四挡板3613受弹簧十一3612立即关闭,滑动单向阀门28受弹簧六285恢复原样,水流置于外腔底层。
随着另一侧驱动轴继续转动,磁性滑动轴杆312与三边凹凸叶轮35凸点互吸、磁性固定轴杆316与三边凹凸叶轮35凸点互斥,转变为初始状态,此过程外腔体积利用外腔壁面缩放装置29实现增大,压力减小,上侧挡板283向下滑动,内置进水口288与其向下,水进入中空滑板281,利用滑动单向阀门的内置叶轮289实现进水处气液分离,随时水流通过第二转动螺旋气液分离装置30实现外腔第一层气液分离,磁性伸缩轴杆31内置弹簧八311实现外腔第二层气液分离,待压差消失,第四挡板3613受弹簧十一3612立即关闭,滑动单向阀门28受弹簧六285恢复原样,水流置于外腔底层,内腔体积利用内腔壁面缩放装置34实现缩小,压力增大,变开度滑行气液分离轴杆36开度减小,内腔开始向由气液流道排气,该过程同气液分离腔室一致,此过程为一个周期。
随着外腔水增多,由原来纯空气进入内腔转变为气液混合进入内腔,变开度滑行气液分离轴杆36结合变开度滑行气液分离轴杆的内置叶轮365以及缩放流道367实现内腔外层,中层以及内层气液分离,直至腔内充水,随即气液流道开始充水,该过程与气液分离腔室17一致。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种气动式无水启动自吸装置,其特征在于,该装置结构为对称圆筒结构,包括驱动装置(19)、气液分离腔室(17)和缩放型气液分离腔室(18),所述气液分离腔室(17)和缩放型气液分离腔室(18)分别安置于驱动装置(19)两侧,且驱动装置(19)两侧对称安置有气体加速通道(1);所述气液分离腔室(17)内腔和缩放型气液分离腔室(18)内腔分别通过相应的气液流道(15)与相应气体加速通道的出口(13)的相连,所述气体加速通道的出口(13)与气液流道(15)连接处设有通气阀门(14);所述气液分离腔室(17)和缩放型气液分离腔室(18)内腔与气液流道(15)接口处设有单向阀门(16),所述单向阀门(16)关于腔室中心轴对称设置;
    驱动装置(19)两侧的驱动轴分别与气液分离腔室(17)和缩放型气液分离腔室(18)的驱动轴相连;两侧驱动轴不发生干涉;驱动装置(19)利用高速气体带动驱动盘旋转,从而带动驱动轴旋转;
    气液分离腔室(17)通过内部的伸缩活塞轴杆(26)产生腔室与外界压差将水吸入,实现吸水、气液分离以及排水;
    缩放型气液分离腔室(18)利用内外腔体积进行缩放产生压差快速将水吸入,实现吸水、气液分离以及排水;
    所述驱动装置(19),气液分离腔室(17)和缩放型气液分离腔室(18)底部安置有固定支架(12)。
  2. 如权利要求1所述的一种气动式无水启动自吸装置,其特征在于,所述驱动装置(19)由外到内依次设有驱动装置外壳壁(4),顶部气体进口(2),气体加速通道进口(3),气体加速通道(1),驱动装置内壳壁(5),渐缩气体流道(9),A侧气体驱动盘(6),B侧气体驱动盘(7),菱形分流装置(8),底部B侧气体进口(11),底部A侧气体进口(10);
    所述顶部气体进口(2)穿过驱动装置外壳壁(4)以及驱动装置内壳壁(5),与渐缩气体流道(9)顶部相接通,所述底部A侧气体进口(10)设置于A侧气体驱动盘(6)一侧,且其穿过驱动装置外壳壁(4)以及驱动装置内壳壁(5),与渐缩气体流道(9)底部相接通,所述底部B侧气体进口(11)设置于B侧气体驱动盘(7)一侧,且其穿过驱动装置外壳壁(4)以及驱动装置内壳壁(5),与渐缩气体流道(9)底部相接通,所述菱形分流装置(8)设置于渐缩气体流道(9)底部,将底部进气分为A、B两侧;
    所述气体加速通道进口(3)与气体加速通道(1)相连通,且对称安置于驱动装置(19)两侧,气体加速通道(1)由底部至顶部为渐缩型;
    所述渐缩气体流道(9)对称安置,且由底部至顶部为渐缩型;
    所述B侧的驱动轴(74)上设有若干B侧气体驱动盘(7),从气体进口到出口方向,驱动盘为先疏后密设置,密集点靠近气体加速通道进口(3);每个B侧气体驱动盘(7)上均设有若干气体流道(71)和相对应的气体出口(73),每个气体流道(71)上均设有若干个气体穿过孔(72),且孔半径沿气体流道(71)的气体出口(73)以一定比例缩小;
    所述B侧气体驱动盘(7)在顶部气体进口(2)以及底部B侧气体进口(11)作用下呈正转,所述A侧气体驱动盘(6)结构与B侧气体驱动盘(7)结构一致,A侧气体驱动盘(6) 与B侧气体驱动盘(7)安置于顶部气体进口(2)两侧,A侧气体驱动盘(6)在顶部气体进口(2)以及底部A侧气体进口(10)作用下呈反转,转动时,A侧气体驱动盘(6)与B侧气体驱动盘(7)不发生干涉。
  3. 根据权利要求2所述的一种气动式无水启动自吸装置,其特征在于,所述气体加速通道(1)为三段式,半径以0.5倍缩小;渐缩气体流道(9)的底部至顶部为渐缩型,且底部半径为顶部半径的5倍;所述B侧气体驱动盘(7)上设置3个气体流道(71),相邻夹角120°,其中,所述述气体穿过孔(72)呈圆形,气体穿过孔(72)半径以0.8倍缩小若干次,直至孔接近气体出口(73);气体出口(73)呈方形。
  4. 如权利要求1所述的一种气动式无水启动自吸装置,其特征在于,单向阀门(16)包括第一转轴(161),弹簧一(162)和第一挡板(163),所述弹簧一(162)两侧分别连接气液流道(15)的壁面和第一挡板(163);
    所述通气阀门(14)包括尖顶(141),内嵌移动块(142),翼形(143),通气阀门的固定支架(144),通气阀门的伸缩轴杆(145),通气阀门的挡板(146),通气阀门的滑轮(147),通气挡板(148),固体块(149)和通气阀门的滑轨(1410),所述尖顶(141)安置于气体加速通道(1)壁面,安放位置与内嵌移动块(142)位置对应,所述内嵌移动块(142)安置于翼形(143)内部,尖顶(141)和内嵌移动块(142)的数量均为2个;所述翼形(143)初始位置安放于通气阀门的固定支架(144)处,所述通气阀门的伸缩轴杆(145)与翼形(143)和通气挡板(148)相连,所述通气挡板(148)与固体块(149)相连,所述固体块(149)与通气阀门的挡板(146)和通气阀门的滑轮(147)相连,所述通气阀门的挡板(146)关于通气阀门的滑轮(147)上下对称设置,所述通气阀门的滑轮(147)于通气阀门的滑轨(1410)内运作,所述通气阀门的滑轨(1410)安置于气液流道(15)的壁面内。
  5. 如权利要求1所述的一种气动式无水启动自吸装置,其特征在于,所述气液分离腔室(17)由外到内依次设有气液分离腔室进水口(20),气液分离腔室外壳壁(22),螺旋气液分离装置,气液分离腔室内壳壁(24),伸缩活塞轴杆(26)和六边凹凸叶轮(25);
    其中,螺旋气液分离装置包括固定螺旋气液分离装置(21)和第一转动螺旋气液分离装置(23),所述固定螺旋气液分离装置(21)安置于两侧进口处,同时穿透气液分离腔室内壳壁(24),且其上设有第二转轴(211),第二挡板(212),弹簧二(213),第一螺旋刀片(214),第一转动轮盘(215),固定螺旋气液分离装置的叶轮(216)和旋转体(217);所述第二转轴(211)连接气液分离腔室外壳壁(22)与第二挡板(212),所述弹簧二(213)与第二挡板(212)和旋转体(217)相连,所述第一转动轮盘(215)连接旋转体(217)以及固定螺旋气液分离装置的叶轮(216),所述第一转动轮盘(215)供固定螺旋气液分离装置的叶轮(216)旋转,所述第一螺旋刀片(214)安置于旋转体(217)表面,数量为若干个;
    所述第一转动螺旋气液分离装置(23)穿透气液分离腔室内壳壁(24),该装置共安置若干个,其设有第二转动轮盘(231),第二螺旋刀片(232)和第一转动螺旋气液分离装置的叶轮(233);所述第二转动轮盘(231)结构与第一转动轮盘(215)一致,供第一转动螺旋气液分离装置(23)以及第一转动螺旋气液分离装置的叶轮(233)转动,所述第一转动螺旋气 液分离装置(23)表面安置有若干个第二螺旋刀片(232);
    伸缩活塞轴杆(26)共安置若干个,其设有伸缩活塞轴杆的滚珠(261),固定轴杆(262),移动轴杆(263),弹簧三(264),第一流道(265),伸缩活塞轴杆的玻璃管(266),活塞(267),弹簧四(268),伸缩活塞轴杆的叶轮(269),第二流道(2610),活塞挡板(2611),弹簧五(2612),第三转轴(2613)和第三挡板(2614);所述伸缩活塞轴杆的滚珠(261)安置于外层伸缩滑轨(251)内,其与固定轴杆(262)一端相连,所述移动轴杆(263)与固定轴杆(262)相连,关于弹簧三(264)对称安置,且与弹簧三(264)一同安置于伸缩活塞轴杆的玻璃管(266)内部,所述第一流道(265)安置于伸缩活塞轴杆的玻璃管(266)外部,关于固定轴杆(262)中心线称安置若干个,所述活塞(267)与固定轴杆(262)另一端相连,且其两端均设有活塞挡板(2611),两侧的活塞挡板(2611)上均设置若干个第二流道(2610),所述第二流道(2610)内部安置有弹簧四(268)和伸缩活塞轴杆的叶轮(269),所述弹簧五(2612)连接活塞挡板(2611)和第三挡板(2614),第三转轴(2613)连接第三挡板(2614)和气液分离腔室内壳壁(24),此处弹簧五(2612),第三转轴(2613),第三挡板(2614)关于伸缩活塞轴杆(26)中心对称安置;
    所述六边凹凸叶轮(25)上设有外层伸缩滑轨(251),轴珠(252),轴珠滑轨(253),气液分离腔室的外接驱动轴(254)和六边凹凸叶轮的伸缩轴杆(255);所述外层伸缩滑轨(251)环绕叶轮一周,且其具有伸缩效果,所述轴珠(252)安置于轴珠滑轨(253)内部,且其环绕轴珠滑轨(253)一周,所述气液分离腔室的外接驱动轴(254)与B侧气体驱动盘(7)共轴,带动六边凹凸叶轮(25)正转;所述六边凹凸叶轮的伸缩轴杆(255)共安置若干个,且其设于六边凹凸叶轮(25)内部,一端与轴珠滑轨(253)焊为一体,另一端连接伸缩活塞轴杆的滚珠(261)。
  6. 根据权利要求5所述的一种气动式无水启动自吸装置,其特征在于,所述第一螺旋刀片(214)安置2片,第二螺旋刀片(232)安置2片,六边凹凸叶轮的伸缩轴杆(255)安置三个,且相连轴杆间角度120°,第一流道(265)共安置6个,每侧3个,均匀分布,第二流道共安置6个,每侧3个,均匀分布。
  7. 根据权利要求5所述的一种气动式无水启动自吸装置,其特征在于,所述第一转动螺旋气液分离装置(23)关于气液分离腔室对称安置4个,相连间隔60°,第一转动螺旋气液分离装置(23)与固定螺旋气液分离装置(21)间隔60°,伸缩活塞轴杆(26)关于气液分离腔室对称安置6个,相邻间隔60°。
  8. 如权利要求1所述的一种气动式无水启动自吸装置,其特征在于,所述缩放型气液分离腔室(18)由外到内依次设有缩放型气液分离腔室的进水口(27),滑动单向阀门(28),缩放型气液分离腔室外壳壁(32),第二转动螺旋气液分离装置(30),缩放型气液分离腔室内壳壁(37),变开度滑行气液分离轴杆(36)和三边凹凸叶轮(35);
    所述滑动单向阀门(28)设置于缩放型气液分离腔室的进水口(27)内,该装置为对称结构,其设有中空滑板(281),上侧固定块(282),上侧挡板(283),一级滑轨(284),弹簧六(285),下侧挡板(286),二级滑轨(287),内置进水口(288),滑动单向阀门的内置 叶轮(289)和下侧固定块(2810);所述中空滑板(281)为内部镂空型,与二级滑轨(287)连接一体,水流通过内置进水口(288)进入其内部流道,内置进水口(288)设置若干个,所述上侧挡板(283)以及下侧挡板(286)与一级滑轨(284)和二级滑轨(287)连为一体,上侧固定块(282)限制上侧挡板(283)无法向顶部运动,下侧固定块(2810)限制下侧挡板(286)无法向底部运动,上侧挡板(283)和下侧挡板(286)中间设有弹簧六(285),所述一级滑轨(284)安置于缩放型气液分离腔室的进水口(27)壁面处,所述滑动单向阀门的内置叶轮(289)安置于中空滑板(281)内部,其对应底部水流可通过;
    所述外腔壁面缩放装置(29)于缩放型气液分离腔室外壳壁(32)处设置若干个,其设有外腔壁面缩放装置的玻璃管(291),外腔壁面缩放装置的活塞(292)和弹簧七(293),外腔壁面缩放装置的活塞(292)关于弹簧七(293)对称安置,且腔壁面缩放装置的活塞(292)和弹簧七(293)均安置于外腔壁面缩放装置的玻璃管(291)内部;
    所述第二转动螺旋气液分离装置(30)与第一转动螺旋气液分离装置(23)结构一致,共安置若干个;
    所述磁性伸缩轴杆(31)关于缩放型气液分离腔室(18)对称安置3个,相邻间隔120°,该装置为对称装置,其上设有弹簧八(311),磁性滑动轴杆(312),内置滑轨(313),磁性伸缩轴杆的挡板(314),磁性伸缩轴杆的滑轮(315)和磁性固定轴杆(316),若干个弹簧八(311)安置于磁性滑动轴杆(312)内部,处于缩放型气液分离腔室(18)的外腔段;所述磁性滑动轴杆(312)磁性与磁性凸点(352)相斥,所述磁性伸缩轴杆的挡板(314)与磁性伸缩轴杆的滑轮(315)安置于内置滑轨(313)内部,且内置滑轨(313)与磁性滑动轴杆(312)和磁性固定轴杆(316)相连,所述磁性固定轴杆(316)磁性与磁性凹点(353)相吸,所述磁性滑动轴杆(312)与缩放型气液分离腔室外壳壁(32)相连,穿透缩放型气液分离腔室内壳壁(37),所述磁性固定轴杆(316)与缩放型气液分离腔室内壳壁(37)相连,所述磁性伸缩轴杆的挡板(314)关于磁性伸缩轴杆的滑轮(315)对称安置;
    所述内腔壁面缩放装置(34)与外腔壁面缩放装置(29)结构一致,安置于缩放型气液分离腔室内壳壁(37)处,数量为若干个;
    所述变开度滑行气液分离轴杆(36)为对称结构,关于缩放型气液分离腔室共设有3个,相邻夹角为120°其设有一级滚珠(361),连接轴(362),二级滚珠(363),缩放轴杆(364),缩放轴杆的内置叶轮(365),弹簧十(366),缩放流道(367),滑动块(368),变开度滑行气液分离轴杆的挡板(369),变开度滑行气液分离轴杆的滑轮(3610),第四转轴(3611),弹簧十一(3612)和第四挡板(3613);所述一级滚珠(361)于外围滑轨(351)内运作,其与连接轴(362)相连,所述二级滚珠(363)与两侧的缩放轴杆(364)相连,供两侧缩放轴杆(364)变开度,所述缩放轴杆的内置叶轮(365)安置于缩放轴杆(364)内若干个,所述弹簧十(366)安置于缩放流道(367)内,两端连接两侧缩放轴杆的内置叶轮(365),所述弹簧十一(3612)连接缩放轴杆(364)和第四挡板(3613),所述第四转轴(3611)与缩放型气液分离腔室内壳壁(37)以及第四挡板(3613)相连,所述滑动块(368)与变开度滑行气液分离轴杆的挡板(369)以及变开度滑行气液分离轴杆的滑轮(3610)相连,所述变开度 滑行气液分离轴杆的挡板(369)和变开度滑行气液分离轴杆的滑轮(3610)设于缩放型气液分离腔室内壁滑轨(33)内,缩放型气液分离腔室内壁滑轨(33)安置于缩放型气液分离腔室外壳壁(32)内,变开度滑行气液分离轴杆的挡板(369)关于变开度滑行气液分离轴杆的滑轮(3610)对称设置;
    所述三边凹凸叶轮(35)设有外围滑轨(351),磁性凸点(352),磁性凹点(353)和缩放型气液分离腔室的驱动轴杆(354);所述外围滑轨(351)环绕叶轮一圈,所述缩放型气液分离腔室的驱动轴杆(354)与A侧气体驱动盘(6)共轴,带动三边凹凸叶轮(35)反转。
  9. 如权利要求8所述的一种气动式无水启动自吸装置,其特征在于,所述内置进水口(288)关于滑动单向阀门(28)对称设置2个,第二转动螺旋气液分离装置(30)关于缩放型气液分离腔室中心对称设置2个,且其与磁性伸缩轴杆(31)夹角为60°。
  10. 如权利要求8所述的一种气动式无水启动自吸装置,其特征在于,所述外腔壁面缩放装置(29)关于缩放型气液分离腔室外壳壁(32)对称设置3个,相邻夹角为120°;内腔壁面缩放装置(34)于缩放型气液分离腔室内壳壁(37)均匀设置3个,相邻夹角为120°;弹簧八(311)均匀安置3个。
PCT/CN2021/142271 2021-12-23 2021-12-29 一种气动式无水启动自吸装置 WO2023115617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/021,187 US11739755B2 (en) 2021-12-23 2021-12-29 Pneumatic type water-free starting self-priming device
GB2302360.9A GB2613092A (en) 2021-12-23 2021-12-29 Pneumatic type water-free starting self-priming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111588098.3 2021-12-23
CN202111588098.3A CN114370404A (zh) 2021-12-23 2021-12-23 一种气动式无水启动自吸装置

Publications (1)

Publication Number Publication Date
WO2023115617A1 true WO2023115617A1 (zh) 2023-06-29

Family

ID=81139226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142271 WO2023115617A1 (zh) 2021-12-23 2021-12-29 一种气动式无水启动自吸装置

Country Status (2)

Country Link
CN (1) CN114370404A (zh)
WO (1) WO2023115617A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893409A (zh) * 2022-04-26 2022-08-12 江苏大学流体机械温岭研究院 一种船用破碎分离泵
GB2622453A (en) * 2022-06-17 2024-03-20 Univ Jiangsu Driven gas-liquid separation startup device
CN114934904A (zh) * 2022-06-17 2022-08-23 江苏大学 一种从动式气液分离启动装置
CN115163501A (zh) * 2022-07-13 2022-10-11 江苏大学镇江流体工程装备技术研究院 一种应用于离心泵的高效无水启动自吸装置
CN115182884A (zh) * 2022-07-13 2022-10-14 江苏大学镇江流体工程装备技术研究院 一种应用于离心渣浆泵的气动式快速无水启动自吸装置
CN115750380A (zh) * 2022-11-19 2023-03-07 江苏大学镇江流体工程装备技术研究院 一种应用于泡沫泵的快速启动装置
CN115750383A (zh) * 2022-11-19 2023-03-07 江苏大学镇江流体工程装备技术研究院 一种应用于泡沫泵的并联式多级驱动无水启动装置
CN116085271A (zh) * 2022-11-30 2023-05-09 江苏大学镇江流体工程装备技术研究院 一种容积压缩式无水启动自吸装置
CN116163962A (zh) * 2023-03-15 2023-05-26 江苏大学流体机械温岭研究院 一种高效无水启动的离心泵自吸装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536147A (en) * 1994-08-26 1996-07-16 Paco Pumps, Inc. Vacuum priming system for centrifugal pumps
CN103362826A (zh) * 2013-08-06 2013-10-23 中国人民解放军总后勤部油料研究所 一种无需灌液的内置式液环离心泵
CN107605744A (zh) * 2017-10-27 2018-01-19 江苏大学 一种由空压机驱动的自吸离心泵系统
CN108868890A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种特斯拉涡轮机及控制方法
CN108894992A (zh) * 2018-06-12 2018-11-27 江苏大学 一种新型无水启动自吸泵
CN110219808A (zh) * 2019-07-25 2019-09-10 安徽阿莫斯流体技术有限公司 一种可处理气液混合介质的自吸式离心泵
CN110397599A (zh) * 2019-07-19 2019-11-01 江苏大学 一种应用于离心泵的自吸启动装置
CN113464450A (zh) * 2021-07-14 2021-10-01 江苏大学 一种应用于离心泵的快速无水启动装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202746215U (zh) * 2012-08-30 2013-02-20 台州阳春机电有限公司 新型自吸泵
CN108591071B (zh) * 2018-03-26 2019-06-28 江苏大学 一种半球形卷吸式大流量自吸离心泵
CN113107858B (zh) * 2021-04-13 2022-05-13 江苏大学镇江流体工程装备技术研究院 一种应用于离心泵的快速启动装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536147A (en) * 1994-08-26 1996-07-16 Paco Pumps, Inc. Vacuum priming system for centrifugal pumps
CN103362826A (zh) * 2013-08-06 2013-10-23 中国人民解放军总后勤部油料研究所 一种无需灌液的内置式液环离心泵
CN107605744A (zh) * 2017-10-27 2018-01-19 江苏大学 一种由空压机驱动的自吸离心泵系统
CN108868890A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种特斯拉涡轮机及控制方法
CN108894992A (zh) * 2018-06-12 2018-11-27 江苏大学 一种新型无水启动自吸泵
CN110397599A (zh) * 2019-07-19 2019-11-01 江苏大学 一种应用于离心泵的自吸启动装置
CN110219808A (zh) * 2019-07-25 2019-09-10 安徽阿莫斯流体技术有限公司 一种可处理气液混合介质的自吸式离心泵
CN113464450A (zh) * 2021-07-14 2021-10-01 江苏大学 一种应用于离心泵的快速无水启动装置

Also Published As

Publication number Publication date
CN114370404A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023115617A1 (zh) 一种气动式无水启动自吸装置
CN108894992B (zh) 一种无水启动自吸泵
WO2023284038A1 (zh) 一种应用于离心泵的快速无水启动装置
WO2021012600A1 (zh) 一种应用于离心泵的自吸启动装置
CN113107858B (zh) 一种应用于离心泵的快速启动装置
CN207420882U (zh) 一种同心进水式双螺旋蜗壳自吸泵
WO2023240762A1 (zh) 一种从动式气液分离启动装置
CN106224249B (zh) 低噪音自吸复合泵
US11739755B2 (en) Pneumatic type water-free starting self-priming device
CN108591071A (zh) 一种半球形卷吸式大流量自吸离心泵
CN108050076A (zh) 具有变尺度分离网的自吸式多级离心泵
WO2015154624A1 (zh) 双转子回转式容积泵
CN109404296A (zh) 一种农田灌溉用离心泵
CN108661919A (zh) 具有气液分离装置的喷射泵
CN115182884A (zh) 一种应用于离心渣浆泵的气动式快速无水启动自吸装置
CN107503948B (zh) 一种同心进水式双螺旋蜗壳自吸泵
CN207539041U (zh) 一种加速自吸的多级离心泵
CN109098974A (zh) 一种可气液混输的高扬程多级侧流道泵
CN107859628A (zh) 一种加速自吸的多级离心泵
CN201090504Y (zh) 一种具有回流槽的单级单吸离心泵叶轮
CN113357159A (zh) 基于直流永磁电机的自吸式复合屏蔽泵
CN110025987A (zh) 增强自吸式多级离心泵自吸的气液分离装置
CN113586458B (zh) 自吸式多级复合屏蔽泵
CN108930655A (zh) 一种具有防堵塞功能的油田用离心泵
CN206221282U (zh) 一种液压传动的真空水泵设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202302360

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211229

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968742

Country of ref document: EP

Kind code of ref document: A1