WO2023115607A1 - 一种重金属污染废水的处理装置及方法 - Google Patents

一种重金属污染废水的处理装置及方法 Download PDF

Info

Publication number
WO2023115607A1
WO2023115607A1 PCT/CN2021/141907 CN2021141907W WO2023115607A1 WO 2023115607 A1 WO2023115607 A1 WO 2023115607A1 CN 2021141907 W CN2021141907 W CN 2021141907W WO 2023115607 A1 WO2023115607 A1 WO 2023115607A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
green algae
electrophoresis chamber
solution
concentration
Prior art date
Application number
PCT/CN2021/141907
Other languages
English (en)
French (fr)
Inventor
路延笃
艾赫迈德费亚兹
艾斯茹弗瑙润
陈玉婷
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2023115607A1 publication Critical patent/WO2023115607A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4696Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the technical field of waste water treatment and heavy metal recovery, in particular to a treatment device and method for heavy metal polluted waste water.
  • the technical problem to be solved by the present invention is to provide a treatment device and method for heavy metal-contaminated wastewater.
  • the treatment device of the present invention is used to treat heavy metal-contaminated wastewater, and the removal rate of heavy metal ions in the treated water is relatively high.
  • the invention provides a treatment device for heavy metal polluted wastewater, comprising:
  • the first photobioreactor the first photobioreactor is provided with a glass tube; one end of the glass tube is connected with an air pump for providing air to the green algae culture solution in the first photobioreactor ;
  • An electrophoresis chamber is provided with an anode and a cathode; the electrophoresis chamber is provided with a water inlet and a water outlet; the bottom of the electrophoresis chamber is provided with a precipitation outlet; the water inlet of the electrophoresis chamber Connected with the water outlet of the second photobioreactor;
  • a first sedimentation tank connected to the water outlet of the electrophoresis chamber; the first sedimentation tank is provided with a water outlet; the treated water is discharged from the water outlet of the first sedimentation tank;
  • a collection tank the collection tank is provided with a first precipitation inlet; the first precipitation inlet of the collection tank is connected with the precipitation outlet of the electrophoresis chamber.
  • the processing device also includes a solar panel and a voltage controller;
  • the air pump receives the required electric energy from the solar panel through the voltage controller;
  • the anode and cathode in the electrophoresis chamber are connected to the voltage controller, and the electrophoresis chamber receives required electric energy from the solar panel through the voltage controller.
  • a stirrer is arranged in the second photobioreactor
  • the stirrer is connected with an electric motor; the electric motor receives required electric energy from a solar panel through a voltage controller.
  • the bottom of the electrophoresis chamber is a conical bottom.
  • the bottom of the first sedimentation tank is a conical bottom.
  • the present invention also provides a method for treating heavy metal-polluted wastewater by the treatment device described above, comprising the following steps:
  • the luminous intensity of the light source is 95-105 ⁇ mol m -2 s -1 ;
  • the concentration of lead ions is 0.01-200ppm, and the concentration of copper ions is 0.01-120ppm;
  • the pH value of the heavy metal polluted wastewater is 5-10.
  • the green algae culture solution is prepared according to the following method:
  • green algae are cultured in a sterilized liquid medium at 25-40°C to the logarithmic phase of green algae growth to obtain a green algae culture solution; the luminous intensity of the light is 95-105 ⁇ mol m - 2 s -1 ;
  • the green algae in the green algae culture solution is the green algae whose preservation number is CCTCC No: M20211083 and/or the green algae whose preservation number is CCTCC No: M20211084.
  • the liquid culture medium is prepared according to the following method:
  • a1) sea salt solution is mixed with tris to obtain the first mixed solution; in the first mixed solution, the concentration of sea salt is 35g/L, and the concentration of tris is 1.21g/L;
  • Sodium nitrate, sodium dihydrogen phosphate monohydrate and trace element solutions are mixed, sterilized at 120-122° C. for 13-17 minutes, and then added to the second mixed solution to obtain a third mixed solution;
  • the addition of sodium nitrate is 5g/L
  • the addition of sodium dihydrogen phosphate monohydrate is 5g/L
  • the addition of trace element solution is 1g/L;
  • the trace element solution is mixed with raw materials including copper sulfate pentahydrate, sodium molybdate dihydrate, zinc sulfate heptahydrate, cobalt chloride hexahydrate and manganese chloride tetrahydrate, and then sterilized at 120-122°C for 18-22 minutes get;
  • the concentration of copper sulfate pentahydrate is 19.6g/L
  • the concentration of sodium molybdate dihydrate is 12.6g/L
  • the concentration of zinc sulfate heptahydrate is 44.0g/L
  • the concentration of cobalt chloride hexahydrate The concentration is 10.92g/L
  • the concentration of manganese chloride tetrahydrate is 360g/L.
  • the OD 750 of the mixed solution after the heavy metal polluted wastewater is mixed with the green algae culture solution is 0.3-0.5;
  • the cultivation is carried out under the condition of agitation, and the rotation speed of the agitation is 18-22rpm;
  • the temperature of the cultivation is 24-35° C., and the time is 168-192 hours.
  • the invention provides a treatment device for heavy metal polluted wastewater, comprising: a reservoir; a first photobioreactor; a glass tube is arranged in the first photobioreactor; one end of the glass tube is connected with an air pump , used to provide air to the green algae culture solution in the first photobioreactor; the heavy metal polluted wastewater discharged from the water outlet of the reservoir and the green algae culture solution outlet from the first photobioreactor After the discharged green algae culture solution is mixed, it enters the second photobioreactor; the electrophoresis chamber; the electrophoresis chamber is provided with an anode and a cathode; the electrophoresis chamber is provided with a water inlet and a water outlet; The bottom of the chamber is provided with a precipitation outlet; the water inlet of the electrophoresis chamber is connected with the water outlet of the second photobioreactor; the first sedimentation tank is connected with the water outlet of the electrophoresis chamber; the second A sedimentation tank is provided with a water outlet; the
  • microalgae and their extracellular secretions interact with heavy metal ions to reduce heavy metal ions to zero-valent heavy metal particles, which can attach to the cell surface or penetrate the cell membrane to reach the cell surface
  • the cytoplasmic fraction eventually forms a precipitate.
  • the heavy metal nanoparticles formed by the interaction with extracellular secretions they can be enriched by electrophoresis and removed from the water body.
  • the water discharged from the electrophoresis chamber enters the first sedimentation tank, and is deposited in the first sedimentation tank.
  • the obtained supernatant is the treated water.
  • the removal rate of heavy metal ions in the treated water is relatively high.
  • heavy metals can be recovered by collecting the sediment at the bottom of the electrophoresis chamber and the first sedimentation tank.
  • the treatment device provided by the invention can be used for the treatment and repair of multiple water bodies such as fresh water, sea water, industrial waste water and urban waste water, so as to realize the recycling of water resources.
  • the heavy metals enriched by electrophoresis can be recovered.
  • the finally obtained mixture of microalgae and heavy metals can further recover heavy metals through the development of biodiesel, and realize the resource utilization of algae.
  • Chlorella MEM-A-403 classified as: Clorella sorokiniana MEM-A-403, was deposited in the China Center for Type Culture Collection on August 25, 2021, the address is: China. Wuhan. Wuhan University, and the preservation number is CCTCC No: M20211083.
  • Chlorella MEM-A-404 classified as: Micractinium sp.MEM-A-404, was deposited in the China Center for Type Culture Collection on August 25, 2021, the address is: China. Wuhan. Wuhan University, and the preservation number is CCTCC No: M20211084.
  • Fig. 1 is a treatment device for heavy metal polluted wastewater provided by an embodiment of the present invention.
  • the invention provides a treatment device for heavy metal polluted wastewater, comprising:
  • the first photobioreactor the first photobioreactor is provided with a glass tube; one end of the glass tube is connected with an air pump for providing air to the green algae culture solution in the first photobioreactor ;
  • An electrophoresis chamber is provided with an anode and a cathode; the electrophoresis chamber is provided with a water inlet and a water outlet; the bottom of the electrophoresis chamber is provided with a precipitation outlet; the water inlet of the electrophoresis chamber Connected with the water outlet of the second photobioreactor;
  • a first sedimentation tank connected to the water outlet of the electrophoresis chamber; the first sedimentation tank is provided with a water outlet; the treated water is discharged from the water outlet of the first sedimentation tank;
  • a collection tank the collection tank is provided with a first precipitation inlet and a second precipitation inlet; the first precipitation inlet of the collection tank is connected with the precipitation outlet of the electrophoresis chamber, and the second precipitation inlet of the collection tank is connected with the precipitation inlet of the electrophoresis chamber
  • the sedimentation outlet of the first sedimentation tank mentioned above is connected.
  • Fig. 1 is a treatment device for heavy metal polluted wastewater provided by an embodiment of the present invention.
  • the treatment device for heavy metal polluted wastewater provided by the present invention includes a reservoir 1 .
  • the reservoir is used to store heavy metal polluted wastewater.
  • the present invention has no special restrictions on the structure, material and source of the reservoir, and the reservoir well known to those skilled in the art can be used.
  • the shape of the reservoir It is a cylinder with a bottom diameter of 9cm and a height of 24cm.
  • the water storage tank is provided with a water outlet.
  • a first valve 2 is provided at the water outlet of the reservoir.
  • the treatment device for heavy metal polluted wastewater provided by the present invention also includes a first photobioreactor 3 .
  • the first photobioreactor is used for the cultivation of microalgae, and then prepares the green algae culture solution.
  • a glass tube 4 is arranged in the first photobioreactor; one end of the glass tube is connected with an air pump 6 for supplying air to the green algae culture solution in the first photobioreactor.
  • one end of the glass tube is connected to an air pump 6 through a first pipeline 5 .
  • the air pump may be a general commercially available air pump.
  • the material of the first pipe is quartz glass.
  • the structure and source of the first photobioreactor there is no special limitation on the structure and source of the first photobioreactor, and it can be a general commercially available photobioreactor.
  • a second valve 11 is provided at the outlet of the green algae culture solution of the first photobioreactor.
  • the processing device further includes a solar panel 10 and a voltage controller 8 .
  • the air pump receives required power from solar panels through a voltage controller.
  • the air pump and the voltage controller are connected through a first wire 7 .
  • the voltage controller and the solar panel are connected through a second wire 9 .
  • the treatment device for heavy metal polluted wastewater provided by the present invention also includes a second photobioreactor 16 .
  • the second photobioreactor is used for the treatment of heavy metal polluted wastewater.
  • the second photobioreactor is provided with an agitator 17; the agitator is connected to an electric motor; the electric motor receives the required voltage from the solar panel through a voltage controller electrical energy.
  • the electric motor and the voltage controller are connected by a third electrical line 19 .
  • the structure and source of the second photobioreactor which may be a general commercially available photobioreactor.
  • the second photobioreactor can be placed on the second support platform 15 , and the electric motor can be fixed on the second support platform through the first adjustable clamp 12 .
  • the first photobioreactor can be placed on the first support platform 14 , and the first support platform is fixed on the second support platform by the second adjustable clamp 13 .
  • the second photobioreactor is fixed on the second support platform through a third adjustable clamp.
  • the treatment device for heavy metal polluted wastewater provided by the present invention also includes an electrophoresis chamber 23 .
  • the wastewater discharged from the water outlet of the second photobioreactor enters the electrophoresis chamber, and the metal particles in the wastewater will adhere to the electrode surface under the action of electrophoresis, and finally settle at the bottom of the electrophoresis chamber.
  • the electrophoresis chamber is provided with an anode 24 and a cathode 25 .
  • the anode and cathode in the electrophoresis chamber are connected to the voltage controller 8, and the electrophoresis chamber receives the required electric energy from the solar panel through the voltage controller.
  • the anode and the cathode are connected to the voltage controller 8 through a fourth wire 26 .
  • the material of the anode includes but is not limited to ruthenium-iridium-titanium alloy.
  • the material of the cathode includes but not limited to ruthenium iridium titanium alloy.
  • the electrophoresis chamber is provided with a water inlet and a water outlet; the water inlet of the electrophoresis chamber is connected with the water outlet of the plant growth chamber.
  • the water inlet of the electrophoresis chamber is provided with a fifth valve 22 for controlling the outlet water in the second photobioreactor to enter the electrophoresis chamber.
  • a sixth valve 30 is provided at the water outlet of the electrophoresis chamber.
  • a precipitation outlet is provided at the bottom of the electrophoresis chamber.
  • the bottom of the electrophoresis chamber is a conical bottom 27 .
  • the conical bottom of the electrophoresis chamber is very helpful for the recovery of reduced and precipitated metals.
  • a fourth valve 21 is provided at the precipitation outlet of the electrophoresis chamber.
  • the electrophoresis chamber is obtained by welding a rectangular parallelepiped frame and a conical base, and the conical base is a tank of the electrophoresis chamber.
  • the length of the rectangular parallelepiped frame is 9.5 cm, the width is 6.0 cm, and the height is 6 cm.
  • the material of the rectangular parallelepiped frame is acrylic, and the tapered base is plexiglass.
  • a single pair of electrodes is used in the electrophoresis chamber, which can reduce the installation cost of the system.
  • the voltage applied between the anode and the cathode is 12V and maintained for 24 hours.
  • the treatment device for heavy metal polluted wastewater provided by the present invention also includes a collecting tank 29 .
  • the collection tank is provided with a first sedimentation inlet.
  • the first precipitation inlet of the collecting tank is connected with the precipitation outlet of the electrophoresis chamber.
  • the first precipitation inlet of the collection tank is connected with the precipitation outlet of the electrophoresis chamber through a second pipeline 28 .
  • the precipitate deposited on the bottom of the electrophoresis chamber can enter the collection tank through the second pipe.
  • the second conduit is a silicone tube.
  • the collection tank is further provided with a second sedimentation inlet, and the second sedimentation inlet of the collection tank is connected with the sedimentation outlet of the first sedimentation tank.
  • the collection tank is a cuboid box with a cover, the length of the box is 12cm, the width is 6cm, and the height is 6cm, and the cover of the box with a cover can be disassembled.
  • the collection tank is made of polyvinyl chloride (PVC).
  • the treatment device for heavy metal polluted wastewater provided by the present invention also includes a first sedimentation tank 31 .
  • the water body discharged from the electrophoresis chamber enters the first sedimentation tank, and settles in the first sedimentation tank.
  • the first sedimentation tank is provided with a water inlet and a water outlet.
  • the water inlet of the first sedimentation tank is connected with the water outlet of the electrophoresis chamber.
  • the first sedimentation tank is also provided with a sedimentation outlet.
  • the sedimentation outlet of the first sedimentation tank is connected with the second sedimentation inlet of the collection tank.
  • the first sedimentation tank there are three water outlets in the first sedimentation tank. Specifically include: the first water outlet, the second water outlet and the third water outlet.
  • the first water outlet of the first sedimentation tank is provided with a seventh valve 32
  • the second water outlet of the first sedimentation tank is provided with an eighth valve 33
  • the first sedimentation tank A ninth valve 34 is arranged at the third water outlet of the pond. The purpose of having 3 outlets is: 1) to drain clean water (if any) without disturbing the precipitated metal; Effectively recover heavy metals in the precipitate.
  • the bottom of the first sedimentation tank is a conical bottom.
  • the present invention has no special limitation on the structure and source of the first sedimentation tank, which may be a general commercially available sedimentation tank.
  • the treatment device for heavy metal polluted wastewater further includes a second sedimentation tank 36 .
  • the water inlet of the second sedimentation tank is connected with the water outlet of the first sedimentation tank.
  • the second sedimentation tank is provided with three water inlets, specifically including: a first water inlet, a second water inlet and a third water inlet.
  • the first water inlet of the second sedimentation tank is connected with the first water outlet of the first sedimentation tank
  • the second water inlet of the second sedimentation tank is connected with the second water outlet of the first sedimentation tank
  • the third water inlet of the second sedimentation tank is connected with the third water outlet of the first sedimentation tank.
  • an eleventh valve 37 is provided at the water outlet of the second sedimentation tank.
  • the water body discharged from the water outlet of the second sedimentation tank is the treated water body.
  • the present invention has no special limitation on the structure and source of the second sedimentation tank, which may be a general commercially available sedimentation tank.
  • the present invention has no special limitation on the types and sources of all the valves mentioned above, and they can be generally commercially available valves.
  • the present invention has no special limitation on the types and sources of all the above-mentioned electric wires, which may be general commercially available electric wires.
  • the invention provides a novel treatment device for purifying heavy metal polluted water and enriching and recovering heavy metals.
  • the device has the characteristics of simple operation and low maintenance cost.
  • the present invention also provides a method for treating heavy metal-polluted wastewater using the treatment device described above, comprising the following steps:
  • the luminous intensity of the light source is 95-105 ⁇ mol m -2 s -1 ;
  • the heavy metal polluted waste water is first mixed with the green algae culture liquid, and then cultivated under the irradiation of a light source to obtain the treatment liquid; the luminous intensity of the light source is 95-105 ⁇ mol m -2 s -1 .
  • the concentration of lead ions in the heavy metal polluted wastewater, is 0.01-200 ppm, and the concentration of copper ions is 0.01-120 ppm. In some embodiments, in the heavy metal polluted wastewater, the concentration of lead ions is 150 ppm, and the concentration of copper ions is 150 ppm. In some embodiments of the present invention, the pH value of the heavy metal polluted wastewater is 5-10. In some embodiments, the pH value of the heavy metal polluted wastewater is 7-8 or 8.
  • the green algae in the green algae culture solution is the green algae whose preservation number is CCTCC No: M20211083 and/or the green algae whose preservation number is CCTCC No: M20211084.
  • the green algae culture solution is prepared according to the following method:
  • green algae are cultured in a sterilized liquid medium at 25-40°C to the logarithmic phase of green algae growth to obtain a green algae culture solution; the luminous intensity of the light is 95-105 ⁇ mol m - 2 s -1 .
  • the culture time is 8-12 days. In some embodiments, the temperature of the cultivation is 25° C., and the time is 10 days. In some embodiments of the present invention, the luminous intensity of the light is 100 ⁇ mol m -2 s -1 .
  • the optical density (OD) of the green algae culture solution is 0.3-0.5.
  • the liquid culture medium is prepared according to the following method:
  • a1) sea salt solution is mixed with tris to obtain the first mixed solution; in the first mixed solution, the concentration of sea salt is 35g/L, and the concentration of tris is 1.21g/L;
  • Sodium nitrate, sodium dihydrogen phosphate monohydrate and trace element solutions are mixed, sterilized at 120-122° C. for 13-17 minutes, and then added to the second mixed solution to obtain a third mixed solution;
  • the addition of sodium nitrate is 5g/L
  • the addition of sodium dihydrogen phosphate monohydrate is 5g/L
  • the addition of trace element solution is 1g/L;
  • the trace element solution is mixed with raw materials including copper sulfate pentahydrate, sodium molybdate dihydrate, zinc sulfate heptahydrate, cobalt chloride hexahydrate and manganese chloride tetrahydrate, and then sterilized at 120-122°C for 18-22 minutes get;
  • the concentration of copper sulfate pentahydrate is 19.6g/L
  • the concentration of sodium molybdate dihydrate is 12.6g/L
  • the concentration of zinc sulfate heptahydrate is 44.0g/L
  • the concentration of cobalt chloride hexahydrate The concentration is 10.92g/L
  • the concentration of manganese chloride tetrahydrate is 360g/L.
  • step a1)
  • the sea salt solution is prepared according to the following method:
  • the sea salt was dissolved in distilled water, and vacuum-filtered with filter paper with a pore size of 0.45 ⁇ m to obtain a sea salt solution.
  • the ratio of sea salt to distilled water is 30-40g:900-1100mL. In some embodiments, the ratio of sea salt to distilled water is 35g:1000mL.
  • the reagent used to adjust the pH value of the first mixed solution is hydrochloric acid.
  • the sterilization pressure is 0.05-0.15 MPa.
  • the sterilization temperature is 121° C.
  • the pressure is 0.1 MPa
  • the sterilization time is 20 minutes.
  • sodium nitrate, sodium dihydrogen phosphate monohydrate and trace element solutions are mixed, and the sterilization pressure is 0.05-0.15 MPa.
  • sodium nitrate, sodium dihydrogen phosphate monohydrate and trace element solutions are mixed and sterilized at 121° C. for 15 minutes, and the sterilization pressure is 0.1 MPa.
  • the sterilization pressure is 0.05-0.15 MPa.
  • the sterilization temperature is 121° C.
  • the sterilization time is 20 minutes
  • the sterilization pressure is 0.1 MPa.
  • the heavy metal polluted waste water is mixed with the green algae culture solution, and then cultivated under the irradiation of a light source to obtain a treatment solution; the luminous intensity of the light source is 95-105 ⁇ mol m -2 s -1 .
  • the volume ratio of the heavy metal polluted wastewater to the green algae culture solution is 750-850:80-120. In some embodiments, the volume ratio of the heavy metal polluted wastewater to the green algae culture solution is 800:100.
  • the OD 750 of the mixed liquid after the heavy metal polluted wastewater is mixed with the green algae culture liquid is 0.3-0.5. In some embodiments, the OD 750 of the mixed liquid after the heavy metal polluted wastewater is mixed with the green algae culture liquid is 0.4.
  • the cultivation is carried out under the condition of agitation, and the rotation speed of the agitation is 18-22 rpm. In some embodiments, the stirring speed is 20 rpm.
  • the culture temperature is 24-35° C., and the time is 168-192 hours. In some embodiments, the temperature of the cultivation is 25° C., and the time is 168 hours.
  • the luminous intensity of the light source is 100 ⁇ mol m -2 s -1 .
  • the voltage is 12V
  • the treatment time is 18-24h or 24h.
  • the first precipitate is transferred to the collection tank, the first supernatant is transferred to the first sedimentation tank, and the second precipitate obtained is left to stand for 46 to 50 hours.
  • the supernatant is the treated water.
  • the standing time is 48 hours.
  • the second precipitate obtained by standing still is transferred to a collection tank, and the second supernatant is transferred to a second sedimentation tank. After standing still, the obtained third supernatant
  • the liquid is the treated water body; in some embodiments, the standing time is 24-48h or 24h.
  • the present invention has no special limitation on the sources of raw materials used above, and may be generally commercially available.
  • the sources of raw materials used in the examples are generally commercially available.
  • the green algae in the examples include the green algae whose preservation number is CCTCC No: M20211083 and the green algae whose preservation number is CCTCC No: M20211084.
  • Adopt the treatment device of heavy metal polluted waste water shown in Fig. 1 carry out the treatment of heavy metal polluted waste water, comprise the following steps:
  • Liquid culture medium is prepared according to the following method:
  • a1 35g of sea salt was dissolved in 1000mL of distilled water, and vacuum-filtered with a filter paper of 0.45 ⁇ m pore size to obtain a sea salt solution; the sea salt solution was mixed with Tris to obtain a first mixed solution; in the first mixed solution , the concentration of sea salt is 35g/L, and the concentration of tris is 1.21g/L;
  • the trace element solution is obtained by mixing raw materials including copper sulfate pentahydrate, sodium molybdate dihydrate, zinc sulfate heptahydrate, cobalt chloride hexahydrate and manganese chloride tetrahydrate, and then sterilized under high pressure at 0.1 MPa at 121°C for 20 minutes;
  • the concentration of copper sulfate pentahydrate is 19.6g/L
  • the concentration of sodium molybdate dihydrate is 12.6g/L
  • the concentration of zinc sulfate heptahydrate is 44.0g/L
  • the concentration of cobalt chloride hexahydrate The concentration is 10.92g/L
  • the concentration of manganese chloride tetrahydrate is 360g/L.
  • Chlorella culture solution is prepared according to the following method:
  • the green algae were cultured in the sterilized liquid medium at 25°C for 10 days to obtain a green algae culture solution; the luminous intensity of the light was 100 ⁇ mol m -2 s -1 .
  • the concentration of lead ions is 150ppm, the concentration of copper ions is 150ppm; the pH value of heavy metal polluted wastewater is 8;
  • the OD 750 of the mixed solution is 0.4, and cultured at 25°C for 7d under light source irradiation, and the stirring speed during the culture is 20rpm, to obtain treatment liquid; the luminous intensity of the light source is 100 ⁇ mol m -2 s -1 ;
  • the treated water was detected by plasma mass spectrometry (ICP-MS), and the experimental results showed that the removal efficiency of lead ions in the treated water was 99.2%, and the removal efficiency of copper ions was 98.2%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种重金属污染废水的处理装置及方法,第二光生物反应器(16)中,微藻及其胞外分泌物与重金属离子相互作用,将重金属离子还原为零价重金属颗粒,零价重金属颗粒可附着在细胞表面或穿透细胞膜到达细胞的胞质部分,最终形成沉淀。对于与胞外分泌物作用形成的重金属纳米颗粒,可以通过电泳富集并清除出水体。从电泳腔室(23)排出的水体进入第一沉淀池(31),在第一沉淀池(31)中进行沉淀,得到的上清液即为处理后的水体,经检测,处理后的水体中重金属离子的去除率较高。同时,收集电泳腔室(23)和第一沉淀池(31)底部的沉淀,可以回收重金属。

Description

一种重金属污染废水的处理装置及方法
本申请要求于2021年12月21日提交中国专利局、申请号为202111574776.0、发明名称为“一种重金属污染废水的处理装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及废水处理及重金属回收技术领域,尤其涉及一种重金属污染废水的处理装置及方法。
背景技术
随着工业化进展的推进,人类对重金属的需求不断增加。采矿和含重金属的工业废水产生的速度也在不断增加。在这些过程中,污水中的重金属被直接或间接的释放至周围的水体,进入河流和大海。重金属污染对生物体健康具有严重的威胁。由于重金属的高毒性、不可降解性和在食物链和生物体中的积累性,导致环境日益恶化。另一方面,重金属属于不可再生资源。对其的回收和再利用对于发展循环经济具有重要意义。同时,净化后的水资源也可以被重新利用,节约了水资源。常规的基于物理化学方法的重金属污染水体的治理方法,往往使重金属与固体颗粒(有机物)相互作用形成沉淀,最终沉积在水底。为了实现水体的再利用,开发了包括基于膜过滤系统、化学方法、物理方法和生物学方法的循环水处理系统。在这些方法中,生物学方法因其温和、高效、无二次污染成为重金属治理的研究热点。尽管如此,目前尚没有任何系统/方法可以同时实现污染水体的重金属去除(水体净化)和回收。因此,亟需开发一种即可以有效地清除污染水体重金属又可以实现重金属回收利用的技术装置体系。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种重金属污染废水的处理装置及方法,采用本发明的处理装置处理重金属污染废水,处理后的水体中重金属离子的去除率较高。
本发明提供了一种重金属污染废水的处理装置,包括:
蓄水池;
第一光生物反应器;所述第一光生物反应器中设置有玻璃管;所述玻璃管的一端与空气泵相连,用于向第一光生物反应器中的绿藻培养液中提供空气;
从所述蓄水池的出水口排出的重金属污染废水与从所述第一光生物反应器的绿藻培养液出口排出的绿藻培养液混合后,进入第二光生物反应器;
电泳腔室;所述电泳腔室中设置有阳极和阴极;所述电泳腔室设置有进水口和出水口;在所述电泳腔室的底部设置有沉淀出口;所述电泳腔室的进水口与所述第二光生物反应器的出水口相连;
与所述电泳腔室的出水口相连的第一沉淀池;所述第一沉淀池设置有出水口;处理后的水体由所述第一沉淀池的出水口排出;
收集罐,所述收集罐设置有第一沉淀进口;所述收集罐的第一沉淀进口与所述电泳腔室的沉淀出口相连。
优选的,所述处理装置还包括太阳能电池板和电压控制器;
所述空气泵通过电压控制器从太阳能电池板接收所需的电能;
所述电泳腔室中的阳极和阴极与所述电压控制器相连,所述电泳腔室通过电压控制器从太阳能电池板接收所需的电能。
优选的,所述第二光生物反应器中设置有搅拌器;
所述搅拌器与电动马达相连;所述电动马达通过电压控制器从太阳能电池板接收所需的电能。
优选的,所述电泳腔室的底部为锥形底部。
优选的,所述第一沉淀池的底部为锥形底部。
本发明还提供了一种上文所述的处理装置处理重金属污染废水的方法,包括以下步骤:
A)将重金属污染废水与绿藻培养液混合后,在光源照射下进行培养,得到处理液;所述光源的发光强度为95~105μmol m -2s -1
B)将所述处理液转移至电泳腔室;在阳极和阴极之间施加电压4~20V,处理18~48h,得到第一沉淀物和第一上清液;
C)将所述第一沉淀物转移至收集罐,将所述第一上清液转移至第一沉淀 池,静置46~50h,得到的第二上清液即为处理后的水体。
优选的,所述重金属污染废水中,铅离子的浓度为0.01~200ppm,铜离子的浓度为0.01~120ppm;
所述重金属污染废水的pH值为5~10。
优选的,所述绿藻培养液按照以下方法制备:
在光照下,将绿藻在灭菌后的液体培养基中,25~40℃下培养至绿藻生长的对数期,得到绿藻培养液;所述光照的发光强度为95~105μmol m -2s -1
所述绿藻培养液中的绿藻为保藏编号为CCTCC No:M20211083的绿藻和/或保藏编号为CCTCC No:M20211084的绿藻。
优选的,所述液体培养基按照以下方法制备:
a1)将海盐溶液与三羟甲基氨基甲烷混合,得到第一混合液;所述第一混合液中,海盐的浓度为35g/L,三羟甲基氨基甲烷浓度为1.21g/L;
a2)将所述第一混合液的pH值调节至7.5~8,在120~122℃下灭菌18~22min,得到第二混合液;
a3)将硝酸钠、磷酸二氢钠单水合物和微量元素溶液混合,在120~122℃下灭菌13~17min后,添加至所述第二混合液中,得到第三混合液;所述第二混合液中,硝酸钠的添加量为5g/L,磷酸二氢钠单水合物的添加量为5g/L,微量元素溶液的添加量为1g/L;
所述微量元素溶液由包括五水硫酸铜、二水钼酸钠、七水硫酸锌、六水氯化钴和四水合氯化锰的原料混合后,在120~122℃下灭菌18~22min得到;
所述微量元素溶液中,五水硫酸铜的浓度为19.6g/L,二水钼酸钠的浓度为12.6g/L,七水硫酸锌的浓度为44.0g/L,六水氯化钴的浓度为10.92g/L,四水合氯化锰的浓度为360g/L。
优选的,步骤A)中,重金属污染废水与绿藻培养液混合后的混合液的OD 750为0.3~0.5;
所述培养在搅拌的条件下进行,所述搅拌的转速为18~22rpm;
所述培养的温度为24~35℃,时间为168~192h。
本发明提供了一种重金属污染废水的处理装置,包括:蓄水池;第一光生物反应器;所述第一光生物反应器中设置有玻璃管;所述玻璃管的一端与空气 泵相连,用于向第一光生物反应器中的绿藻培养液中提供空气;从所述蓄水池的出水口排出的重金属污染废水与从所述第一光生物反应器的绿藻培养液出口排出的绿藻培养液混合后,进入第二光生物反应器;电泳腔室;所述电泳腔室中设置有阳极和阴极;所述电泳腔室设置有进水口和出水口;在所述电泳腔室的底部设置有沉淀出口;所述电泳腔室的进水口与所述第二光生物反应器的出水口相连;与所述电泳腔室的出水口相连的第一沉淀池;所述第一沉淀池设置有出水口;处理后的水体由所述第一沉淀池的出水口排出;收集罐,所述收集罐设置有第一沉淀进口和第二沉淀进口;所述收集罐的第一沉淀进口与所述电泳腔室的沉淀出口相连,所述收集罐的第二沉淀进口与所述第一沉淀池的沉淀出口相连。
本发明的第二光生物反应器中,微藻及其胞外分泌物与重金属离子相互作用,将重金属离子还原为零价重金属颗粒,零价重金属颗粒可附着在细胞表面或穿透细胞膜到达细胞的胞质部分,最终形成沉淀。对于与胞外分泌物作用形成的重金属纳米颗粒,可以通过电泳富集并清除出水体。从电泳腔室排出的水体进入第一沉淀池,在第一沉淀池中进行沉淀,得到的上清液即为处理后的水体,经检测,处理后的水体中重金属离子的去除率较高。同时,收集电泳腔室和第一沉淀池底部的沉淀,可以回收重金属。
本发明提供的处理装置可用于淡水、海水、工业废水和城市废水等多元水体的处理修复,从而实现水资源的循环利用。同时,对于电泳富集的重金属可以实现回收。最后获得的微藻和重金属混合物,可通过开发生物柴油,进一步回收重金属,实现藻体资源化利用。
生物保藏说明
绿藻MEM-A-403,分类命名为:Clorella sorokiniana MEM-A-403,于2021年08月25日保藏于中国典型培养物保藏中心,地址为:中国.武汉.武汉大学,保藏编号为CCTCC No:M20211083。
绿藻MEM-A-404,分类命名为:Micractinium sp.MEM-A-404,于2021年08月25日保藏于中国典型培养物保藏中心,地址为:中国.武汉.武汉大学,保藏编号为CCTCC No:M20211084。
附图说明
图1为本发明的一个实施例提供的重金属污染废水的处理装置。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种重金属污染废水的处理装置,包括:
蓄水池;
第一光生物反应器;所述第一光生物反应器中设置有玻璃管;所述玻璃管的一端与空气泵相连,用于向第一光生物反应器中的绿藻培养液中提供空气;
从所述蓄水池的出水口排出的重金属污染废水与从所述第一光生物反应器的绿藻培养液出口排出的绿藻培养液混合后,进入第二光生物反应器;
电泳腔室;所述电泳腔室中设置有阳极和阴极;所述电泳腔室设置有进水口和出水口;在所述电泳腔室的底部设置有沉淀出口;所述电泳腔室的进水口与所述第二光生物反应器的出水口相连;
与所述电泳腔室的出水口相连的第一沉淀池;所述第一沉淀池设置有出水口;处理后的水体由所述第一沉淀池的出水口排出;
收集罐,所述收集罐设置有第一沉淀进口和第二沉淀进口;所述收集罐的第一沉淀进口与所述电泳腔室的沉淀出口相连,所述收集罐的第二沉淀进口与所述第一沉淀池的沉淀出口相连。
图1为本发明的一个实施例提供的重金属污染废水的处理装置。其中,1为蓄水池;2为第一阀门;3为第一光生物反应器;4为玻璃管;5、第一管道;6为空气泵;7为第一电线;8为电压控制器;9为第二电线;10为太阳能电池板;11为第二阀门;12为第一可调夹头;13为第二可调夹头;14为第一支架台;15为第二支架台;16为第二光生物反应器;17为搅拌器;18为第三阀门;19为第三电线;20为电动马达;21为第四阀门;22为第五阀门;23为 电泳腔室;24为阳极;25为阴极;26为第四电线;27为电泳腔室的锥形底部;28为第二管道;29为收集罐;30为第六阀门;31为第一沉淀池;32为第七阀门;33为第八阀门;34为第九阀门;35为第十阀门;36为第二沉淀池;37为第十一阀门。
本发明提供的重金属污染废水的处理装置包括蓄水池1。所述蓄水池用于存放重金属污染废水。本发明对所述蓄水池的结构、材质和来源并无特殊的限制,采用本领域技术人员熟知的蓄水池即可,在本发明的某些实施例中,所述蓄水池的形状为柱体,池底直径为9cm,高为24cm。
所述蓄水池设置有出水口。在本发明的某些实施例中,所述蓄水池的出水口处设置有第一阀门2。
本发明提供的重金属污染废水的处理装置还包括第一光生物反应器3。所述第一光生物反应器用于微藻的培养,进而制得绿藻培养液。
本发明中,所述第一光生物反应器中设置有玻璃管4;所述玻璃管的一端与空气泵6相连,用于向第一光生物反应器中的绿藻培养液中提供空气。在本发明的某些实施例中,所述玻璃管的一端通过第一管道5与空气泵6相连。在本发明的某些实施例中,所述空气泵可以为一般市售的空气泵。在本发明的某些实施例中,所述第一管道的材质是石英玻璃。
本发明对所述第一光生物反应器的结构和来源并无特殊的限制,可以为一般市售的光生物反应器。
在本发明的某些实施例中,所述第一光生物反应器的绿藻培养液出口处设置有第二阀门11。
在本发明的某些实施例中,所述处理装置还包括太阳能电池板10和电压控制器8。
在本发明的某些实施例中,所述空气泵通过电压控制器从太阳能电池板接收所需的电能。在某些实施例中,所述空气泵和电压控制器通过第一电线7相连。在某些实施例中,所述电压控制器和太阳能电池板通过第二电线9相连。
本发明提供的重金属污染废水的处理装置还包括第二光生物反应器16。所述第二光生物反应器用于重金属污染废水的处理。
从所述蓄水池的出水口排出的重金属污染废水与从所述第一光生物反应 器的绿藻培养液出口排出的绿藻培养液混合后,进入第二光生物反应器。
在本发明的某些实施例中,所述第二光生物反应器中设置有搅拌器17;所述搅拌器与电动马达相连;所述电动马达通过电压控制器从太阳能电池板接收所需的电能。在某些实施例中,所述电动马达和电压控制器通过第三电线19相连。
本发明对所述第二光生物反应器的结构和来源并无特殊的限制,可以为一般市售的光生物反应器。
在本发明的某些实施例中,可以将第二光生物反应器放置在第二支架台15上,通过第一可调夹头12将电动马达固定在第二支架台上。在本发明的某些实施例中,可以将第一光生物反应器放置在第一支架台14上,所述第一支架台通过第二可调夹头13固定在第二支架台上。在本发明的某些实施例中,所述第二光生物反应器通过第三可调夹头固定在第二支架台上。
本发明提供的重金属污染废水的处理装置还包括电泳腔室23。从第二光生物反应器的出水口排出的废水进入电泳腔室,废水中的金属粒子会在电泳的作用下附着在电极表面,最终沉降在电泳腔室的底部。
所述电泳腔室中设置有阳极24和阴极25。所述电泳腔室中的阳极和阴极与所述电压控制器8相连,所述电泳腔室通过电压控制器从太阳能电池板接收所需的电能。在本发明的某些实施例中,所述阳极和阴极通过第四电线26与所述电压控制器8相连。在本发明的某些实施例中,所述阳极的材质包括但不限于钌铱钛合金。在本发明的某些实施例中,所述阴极的材质包括但不限于钌铱钛合金。
所述电泳腔室设置有进水口和出水口;所述电泳腔室的进水口与所述植物生长室的出水口相连。在本发明的某些实施例中,所述电泳腔室的进水口处设置有第五阀门22,用于控制第二光生物反应器中的出水进入电泳腔室。在本发明的某些实施例中,所述电泳腔室的出水口处设置有第六阀门30。
在所述电泳腔室的底部设置有沉淀出口。在本发明的某些实施例中,所述电泳腔室的底部为锥形底部27。电泳腔室的锥形底部非常有助于还原和沉淀的金属的回收。在本发明的某些实施例中,所述电泳腔室的沉淀出口处设置有第四阀门21。
在本发明的某些实施例中,所述电泳腔室由长方体框与锥形底座焊接得到,所述锥形底座为电泳腔室的槽体。在某些实施例中,所述长方体框的长为9.5cm,宽为6.0cm,高为6cm。在本发明的某些实施例中,所述长方体框的材质为丙烯酸,锥形底座为有机玻璃。
所述电泳腔室中,安装多对电极可以减少电泳回收还原金属的时间,这可能是因为更多的电极提供了更大的表面积以与还原的金属相互作用。
在本发明的某些实施例中,所述电泳腔室中采用单对电极,可以降低系统的安装成本。在某些实施例中,所述单对电极中,阳极和阴极之间施加的电压为12V,维持24h。
本发明提供的重金属污染废水的处理装置还包括收集罐29。所述收集罐设置有第一沉淀进口。所述收集罐的第一沉淀进口与所述电泳腔室的沉淀出口相连。
在本发明的某些实施例中,所述收集罐的第一沉淀进口通过第二管道28与所述电泳腔室的沉淀出口相连。沉积在电泳腔室底部的沉淀可以通过第二管道进入收集罐。在本发明的某些实施例中,所述第二管道为硅胶管。
在本发明的某些实施例中,所述收集罐还设置有第二沉淀进口,所述收集罐的第二沉淀进口与所述第一沉淀池的沉淀出口相连。
在本发明的某些实施例中,所述收集罐为长方体型的带盖箱体,所述箱体的长为12cm,宽为6cm,高为6cm,所述带盖箱体的盖子可以拆卸。在本发明的某些实施例中,所述收集罐的材质为聚氯乙烯(PVC)。
本发明提供的重金属污染废水的处理装置还包括第一沉淀池31。从电泳腔室排出的水体进入第一沉淀池,在第一沉淀池中进行沉淀。
所述第一沉淀池设置有进水口和出水口。所述第一沉淀池的进水口与所述电泳腔室的出水口相连。
在本发明的某些实施例中,所述第一沉淀池还设置有沉淀出口。所述第一沉淀池的沉淀出口与所述收集罐的第二沉淀进口相连。
在本发明的某些实施例中,所述第一沉淀池的出水口为3个。具体包括:第一出水口、第二出水口和第三出水口。在某些实施例中,所述第一沉淀池的第一出水口处设置有第七阀门32,所述第一沉淀池的第二出水口处设置有第 八阀门33,所述第一沉淀池的第三出水口处设置有第九阀门34。设置3个出水口的作用是:1)在不干扰沉淀金属的情况下排出干净的水(如果有的话);2)根据水位和沉淀物的水平,使用最合适的出口将有助于更有效地回收沉淀中的重金属。
在本发明的某些实施例中,所述第一沉淀池的底部为锥形底部。
本发明对所述第一沉淀池的结构和来源并无特殊的限制,可以为一般市售的沉淀池。
在本发明的某些实施例中,所述重金属污染废水的处理装置还包括第二沉淀池36。所述第二沉淀池的进水口与所述第一沉淀池的出水口相连。
在本发明的某些实施例中,所述第二沉淀池设置有3个进水口,具体包括:第一进水口、第二进水口和第三进水口。所述第二沉淀池的第一进水口与所述第一沉淀池的第一出水口相连,所述第二沉淀池的第二进水口与所述第一沉淀池的第二出水口相连,所述第二沉淀池的第三进水口与所述第一沉淀池的第三出水口相连。
在本发明的某些实施例中,所述第二沉淀池的出水口处设置有第十一阀门37。
在本发明的某些实施例中,从所述第二沉淀池的出水口排出的水体即为处理后的水体。
本发明对所述第二沉淀池的结构和来源并无特殊的限制,可以为一般市售的沉淀池。
本发明对上述所有阀门的种类和来源并无特殊的限制,可以为一般市售的阀门。
本发明对上述所有电线的种类和来源并无特殊的限制,可以为一般市售的电线。
本发明提供了一种新的、用于重金属污染水体净化和重金属富集回收的处理装置。该装置具有操作简单、维护成本低的特点。
本发明还提供了一种采用上文所述的处理装置处理重金属污染废水的方法,包括以下步骤:
A)将重金属污染废水与绿藻培养液混合后,在光源照射下进行培养,得 到处理液;所述光源的发光强度为95~105μmol m -2s -1
B)将所述处理液转移至电泳腔室;在阳极和阴极之间施加电压4~20V,处理18~48h,得到第一沉淀物和第一上清液;
C)将所述第一沉淀物转移至收集罐,将所述第一上清液转移至第一沉淀池,静置46~50h,得到的第二上清液即为处理后的水体。
本发明先将重金属污染废水与绿藻培养液混合后,在光源照射下进行培养,得到处理液;所述光源的发光强度为95~105μmol m -2s -1
在本发明的某些实施例中,所述重金属污染废水中,铅离子的浓度为0.01~200ppm,铜离子的浓度为0.01~120ppm。在某些实施例中,所述重金属污染废水中,铅离子的浓度为150ppm,铜离子的浓度为150ppm。在本发明的某些实施例中,所述重金属污染废水的pH值为5~10。在某些实施例中,所述重金属污染废水的pH值为7~8或8。
在本发明的某些实施例中,所述绿藻培养液中的绿藻为保藏编号为CCTCC No:M20211083的绿藻和/或保藏编号为CCTCC No:M20211084的绿藻。
在本发明的某些实施例中,所述绿藻培养液按照以下方法制备:
在光照下,将绿藻在灭菌后的液体培养基中,25~40℃下培养至绿藻生长的对数期,得到绿藻培养液;所述光照的发光强度为95~105μmol m -2s -1
在本发明的某些实施例中,所述培养的时间为8~12d。在某些实施例中,所述培养的温度为25℃,时间为10d。在本发明的某些实施例中,所述光照的发光强度为100μmol m -2s -1
在本发明的某些实施例中,所述绿藻培养液的光密度(OD)为0.3~0.5。
在本发明的某些实施例中,所述液体培养基按照以下方法制备:
a1)将海盐溶液与三羟甲基氨基甲烷混合,得到第一混合液;所述第一混合液中,海盐的浓度为35g/L,三羟甲基氨基甲烷浓度为1.21g/L;
a2)将所述第一混合液的pH值调节至7.5~8,在120~122℃下灭菌18~22min,得到第二混合液;
a3)将硝酸钠、磷酸二氢钠单水合物和微量元素溶液混合,在120~122℃下灭菌13~17min后,添加至所述第二混合液中,得到第三混合液;所述第二 混合液中,硝酸钠的添加量为5g/L,磷酸二氢钠单水合物的添加量为5g/L,微量元素溶液的添加量为1g/L;
所述微量元素溶液由包括五水硫酸铜、二水钼酸钠、七水硫酸锌、六水氯化钴和四水合氯化锰的原料混合后,在120~122℃下灭菌18~22min得到;
所述微量元素溶液中,五水硫酸铜的浓度为19.6g/L,二水钼酸钠的浓度为12.6g/L,七水硫酸锌的浓度为44.0g/L,六水氯化钴的浓度为10.92g/L,四水合氯化锰的浓度为360g/L。
步骤a1)中:
在本发明的某些实施例中,所述海盐溶液按照以下方法进行制备:
将海盐溶于蒸馏水中,并用0.45μm孔径的滤纸进行真空过滤,得到海盐溶液。
在本发明的某些实施例中,所述海盐与蒸馏水的用量比为30~40g:900~1100mL。在某些实施例中,所述海盐与蒸馏水的用量比为35g:1000mL。
步骤a2)中:
在本发明的某些实施例中,调节所述第一混合液的pH值采用的试剂为盐酸。
在本发明的某些实施例中,灭菌的压强为0.05~0.15MPa。
在本发明的某些实施例中,灭菌的温度为121℃,压强为0.1MPa,时间为20min。
步骤a3)中:
在本发明的某些实施例中,将硝酸钠、磷酸二氢钠单水合物和微量元素溶液混合,灭菌的压强为0.05~0.15MPa。
在本发明的某些实施例中,将硝酸钠、磷酸二氢钠单水合物和微量元素溶液混合,在121℃下灭菌15min,所述灭菌的压强为0.1MPa。
在本发明的某些实施例中,制备微量元素溶液的过程中,灭菌的压强为0.05~0.15MPa。
在本发明的某些实施例中,制备微量元素溶液的过程中,灭菌的温度为121℃,时间为20min,所述灭菌的压强为0.1MPa。
得到绿藻培养液后,将重金属污染废水与绿藻培养液混合后,在光源照射 下进行培养,得到处理液;所述光源的发光强度为95~105μmol m -2s -1
在本发明的某些实施例中,所述重金属污染废水与绿藻培养液的体积比为750~850:80~120。在某些实施例中,所述重金属污染废水与绿藻培养液的体积比为800:100。
在本发明的某些实施例中,重金属污染废水与绿藻培养液混合后的混合液的OD 750为0.3~0.5。在某些实施例中,重金属污染废水与绿藻培养液混合后的混合液的OD 750为0.4。
在本发明的某些实施例中,所述培养在搅拌的条件下进行,所述搅拌的转速为18~22rpm。在某些实施例中,所述搅拌的转速为20rpm。
在本发明的某些实施例中,所述培养的温度为24~35℃,时间为168~192h。在某些实施例中,所述培养的温度为25℃,时间为168h。
在本发明的某些实施例中,所述光源的发光强度为100μmol m -2s -1
得到处理液后,将所述处理液转移至电泳腔室;在阳极和阴极之间施加电压4~20V,处理18~48h,得到第一沉淀物和第一上清液。
在本发明的某些实施例中,所述电压的大小为12V,处理时间为18~24h或24h。
得到第一沉淀物和第一上清液后,将所述第一沉淀物转移至收集罐,将所述第一上清液转移至第一沉淀池,静置46~50h,得到的第二上清液即为处理后的水体。
在本发明的某些实施例中,所述静置的时间为48h。
在本发明的某些实施例中,所述静置得到的第二沉淀物转移至收集罐,将所述第二上清液转移至第二沉淀池,静置后,得到的第三上清液即为处理后的水体;在某些实施例中,所述静置的时间为24~48h或24h。
本发明对上文采用的原料来源并无特殊的限制,可以为一般市售。
为了进一步说明本发明,以下结合实施例对本发明提供的一种重金属污染废水的处理装置及方法进行详细描述,但不能将其理解为对本发明保护范围的限定。
实施例中采用的原料来源为一般市售。
实施例中的绿藻包括保藏编号为CCTCC No:M20211083的绿藻和保藏编 号为CCTCC No:M20211084的绿藻。
实施例1
采用图1所示的重金属污染废水的处理装置,进行重金属污染废水的处理,包括以下步骤:
1、液体培养基按照以下方法制备:
a1)将35g海盐溶于1000mL蒸馏水中,并用0.45μm孔径的滤纸进行真空过滤,得到海盐溶液;将海盐溶液与三羟甲基氨基甲烷混合,得到第一混合液;所述第一混合液中,海盐的浓度为35g/L,三羟甲基氨基甲烷浓度为1.21g/L;
a2)采用盐酸将所述第一混合液的pH值调节至8,在121℃高压0.1MPa下灭菌20min,得到第二混合液;
a3)将硝酸钠、磷酸二氢钠单水合物和微量元素溶液混合,在121℃高压0.1MPa下灭菌15min后,添加至所述第二混合液中,得到第三混合液;所述第二混合液中,硝酸钠的添加量为5g/L,磷酸二氢钠单水合物的添加量为5g/L,微量元素溶液的添加量为1g/L;
所述微量元素溶液由包括五水硫酸铜、二水钼酸钠、七水硫酸锌、六水氯化钴和四水合氯化锰的原料混合后,在121℃高压0.1MPa灭菌20min得到;
所述微量元素溶液中,五水硫酸铜的浓度为19.6g/L,二水钼酸钠的浓度为12.6g/L,七水硫酸锌的浓度为44.0g/L,六水氯化钴的浓度为10.92g/L,四水合氯化锰的浓度为360g/L。
2、绿藻培养液按照以下方法制备:
在光照下,将绿藻在灭菌后的所述液体培养基中,25℃下培养10d,得到绿藻培养液;所述光照的发光强度为100μmol m -2s -1
3、重金属污染废水的处理方法:
重金属污染废水中,铅离子的浓度为150ppm,铜离子的浓度为150ppm;重金属污染废水的pH值为8;
3-1)将800mL重金属污染废水与100mL所述绿藻培养液混合后,混合液的OD 750为0.4,在光源照射下25℃培养7d,所述培养的过程中搅拌的转速为20rpm,得到处理液;所述光源的发光强度为100μmol m -2s -1
3-2)得到处理液后,将所述处理液转移至电泳腔室;在阳极和阴极之间施加电压12V,处理24h,得到第一沉淀物和第一上清液;
3-3)将所述第一沉淀物转移至收集罐,将所述第一上清液转移至第一沉淀池,静置48h,得到的第二上清液和第二沉淀物;
3-4)将所述第二沉淀物转移至收集罐,将所述第二上清液转移至第二沉淀池,静置24h后,得到的第三上清液即为处理后的水体。
使用等离子体质谱法(ICP-MS)对处理后的水体进行检测,实验结果表明,处理后的水体中铅离子的去除效率为99.2%,铜离子的去除效率为98.2%。
实验结果表明,采用本发明的处理装置和方法处理重金属污染废水,处理后的水体中重金属离子的去除率较高。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种重金属污染废水的处理装置,包括:
    蓄水池;
    第一光生物反应器;所述第一光生物反应器中设置有玻璃管;所述玻璃管的一端与空气泵相连,用于向第一光生物反应器中的绿藻培养液中提供空气;
    从所述蓄水池的出水口排出的重金属污染废水与从所述第一光生物反应器的绿藻培养液出口排出的绿藻培养液混合后,进入第二光生物反应器;
    电泳腔室;所述电泳腔室中设置有阳极和阴极;所述电泳腔室设置有进水口和出水口;在所述电泳腔室的底部设置有沉淀出口;所述电泳腔室的进水口与所述第二光生物反应器的出水口相连;
    与所述电泳腔室的出水口相连的第一沉淀池;所述第一沉淀池设置有出水口;处理后的水体由所述第一沉淀池的出水口排出;
    收集罐,所述收集罐设置有第一沉淀进口;所述收集罐的第一沉淀进口与所述电泳腔室的沉淀出口相连。
  2. 根据权利要求1所述的处理装置,其特征在于,所述处理装置还包括太阳能电池板和电压控制器;
    所述空气泵通过电压控制器从太阳能电池板接收所需的电能;
    所述电泳腔室中的阳极和阴极与所述电压控制器相连,所述电泳腔室通过电压控制器从太阳能电池板接收所需的电能。
  3. 根据权利要求1所述的处理装置,其特征在于,所述第二光生物反应器中设置有搅拌器;
    所述搅拌器与电动马达相连;所述电动马达通过电压控制器从太阳能电池板接收所需的电能。
  4. 根据权利要求1所述的处理装置,其特征在于,所述电泳腔室的底部为锥形底部。
  5. 根据权利要求1所述的处理装置,其特征在于,所述第一沉淀池的底部为锥形底部。
  6. 采用权利要求1所述的处理装置处理重金属污染废水的方法,包括以 下步骤:
    A)将重金属污染废水与绿藻培养液混合后,在光源照射下进行培养,得到处理液;所述光源的发光强度为95~105μmol m -2s -1
    B)将所述处理液转移至电泳腔室;在阳极和阴极之间施加电压4~20V,处理18~48h,得到第一沉淀物和第一上清液;
    C)将所述第一沉淀物转移至收集罐,将所述第一上清液转移至第一沉淀池,静置46~50h,得到的第二上清液即为处理后的水体。
  7. 根据权利要求6所述的方法,其特征在于,所述重金属污染废水中,铅离子的浓度为0.01~200ppm,铜离子的浓度为0.01~120ppm;
    所述重金属污染废水的pH值为5~10。
  8. 根据权利要求6所述的方法,其特征在于,所述绿藻培养液按照以下方法制备:
    在光照下,将绿藻在灭菌后的液体培养基中,25~40℃下培养至绿藻生长的对数期,得到绿藻培养液;所述光照的发光强度为95~105μmol m -2s -1
    所述绿藻培养液中的绿藻为保藏编号为CCTCC No:M20211083的绿藻和/或保藏编号为CCTCC No:M20211084的绿藻。
  9. 根据权利要求8所述的方法,其特征在于,所述液体培养基按照以下方法制备:
    a1)将海盐溶液与三羟甲基氨基甲烷混合,得到第一混合液;所述第一混合液中,海盐的浓度为35g/L,三羟甲基氨基甲烷浓度为1.21g/L;
    a2)将所述第一混合液的pH值调节至7.5~8,在120~122℃下灭菌18~22min,得到第二混合液;
    a3)将硝酸钠、磷酸二氢钠单水合物和微量元素溶液混合,在120~122℃下灭菌13~17min后,添加至所述第二混合液中,得到第三混合液;所述第二混合液中,硝酸钠的添加量为5g/L,磷酸二氢钠单水合物的添加量为5g/L,微量元素溶液的添加量为1g/L;
    所述微量元素溶液由包括五水硫酸铜、二水钼酸钠、七水硫酸锌、六水氯化钴和四水合氯化锰的原料混合后,在120~122℃下灭菌18~22min得到;
    所述微量元素溶液中,五水硫酸铜的浓度为19.6g/L,二水钼酸钠的浓度 为12.6g/L,七水硫酸锌的浓度为44.0g/L,六水氯化钴的浓度为10.92g/L,四水合氯化锰的浓度为360g/L。
  10. 根据权利要求6所述的方法,其特征在于,步骤A)中,重金属污染废水与绿藻培养液混合后的混合液的OD 750为0.3~0.5;
    所述培养在搅拌的条件下进行,所述搅拌的转速为18~22rpm;
    所述培养的温度为24~35℃,时间为168~192h。
PCT/CN2021/141907 2021-12-21 2021-12-28 一种重金属污染废水的处理装置及方法 WO2023115607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111574776.0 2021-12-21
CN202111574776.0A CN114163086B (zh) 2021-12-21 2021-12-21 一种重金属污染废水的处理装置及方法

Publications (1)

Publication Number Publication Date
WO2023115607A1 true WO2023115607A1 (zh) 2023-06-29

Family

ID=80487715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141907 WO2023115607A1 (zh) 2021-12-21 2021-12-28 一种重金属污染废水的处理装置及方法

Country Status (2)

Country Link
CN (1) CN114163086B (zh)
WO (1) WO2023115607A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118497100A (zh) * 2024-07-16 2024-08-16 山东春帆环境科技有限责任公司 一种金属废物重金属电泳提取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130134A (zh) * 2007-07-17 2008-02-27 四川大学 利用蕈菌处理高富集重金属植物的技术
CN101835887A (zh) * 2007-06-29 2010-09-15 美国亚利桑那州之亚利桑那州立大学董事会 新颖拟绿球藻属(Pseudochlorococcum)物种及其用途
US9315403B1 (en) * 2012-12-04 2016-04-19 Eldorado Biofuels, LLC System for algae-based treatment of water
CN106892529A (zh) * 2015-12-18 2017-06-27 王冰 一种基于微藻的多技术耦合净化高盐水系统
CN110699252A (zh) * 2019-11-08 2020-01-17 安徽德宝生物科技有限公司 一种藻类连续培养反应系统
CN112707509A (zh) * 2020-11-10 2021-04-27 烟台大学 利用海洋微藻去除水体重金属的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591350A (en) * 1968-06-17 1971-07-06 M & T Chemicals Inc Novel plating process
CN103833144B (zh) * 2014-01-06 2015-08-12 东北大学 一种利用产絮菌发酵液去除水中重金属离子的方法
CN109576160B (zh) * 2017-09-29 2021-08-31 武汉藻优生物科技有限公司 一种能去除高重金属含量水体中的重金属的小球藻w3及其应用
CN113264617A (zh) * 2021-05-28 2021-08-17 大连海事大学 一种介电泳辅助的放射性海洋污水微藻清洁装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835887A (zh) * 2007-06-29 2010-09-15 美国亚利桑那州之亚利桑那州立大学董事会 新颖拟绿球藻属(Pseudochlorococcum)物种及其用途
CN101130134A (zh) * 2007-07-17 2008-02-27 四川大学 利用蕈菌处理高富集重金属植物的技术
US9315403B1 (en) * 2012-12-04 2016-04-19 Eldorado Biofuels, LLC System for algae-based treatment of water
CN106892529A (zh) * 2015-12-18 2017-06-27 王冰 一种基于微藻的多技术耦合净化高盐水系统
CN110699252A (zh) * 2019-11-08 2020-01-17 安徽德宝生物科技有限公司 一种藻类连续培养反应系统
CN112707509A (zh) * 2020-11-10 2021-04-27 烟台大学 利用海洋微藻去除水体重金属的方法

Also Published As

Publication number Publication date
CN114163086A (zh) 2022-03-11
CN114163086B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN101269863B (zh) 电絮凝膜生物反应器去除污水中磷和有机物的装置及方法
CN101781001A (zh) 一种两段式电解法处理废水的方法及其装置
CN102260013A (zh) 一种基于电解和双膜技术的再生水制造装置及其方法
CN1392865A (zh) 水净化装置和水净化方法
CN110240367B (zh) 一种碳氮磷同步高效去除的污水处理系统及方法
CN102329048B (zh) 一种化学合成维生素b6废水的处理方法
WO2023115607A1 (zh) 一种重金属污染废水的处理装置及方法
CN105129979B (zh) Abr厌氧折流板反应器及高盐高cod浓度废水的处理方法
CN105060411A (zh) 一种内电解-电絮凝法处理含磷废水的方法
CN107285435A (zh) 双电解法去除有机磷农药生产废水中的磷的方法及设备
CN102001800A (zh) 含有机硅废水的净化处理方法
CN102887606A (zh) 一种直流电絮凝-mbr处理垃圾渗滤液的方法
CN103570136A (zh) 一种生物浓缩去除水体污染物、产生能源的方法
CN202890231U (zh) 一种用于水产养殖的水循环处理系统
Jwa et al. Recycling of nutrient medium to improve productivity in large-scale microalgal culture using a hybrid electrochemical water treatment system
CN202449955U (zh) 一种垃圾渗滤液的集成处理装置
CN105776684B (zh) 一种城镇污水处理及资源化循环利用的方法
CN108751601A (zh) 一种农业养殖污水处理装置及其处理方法
CN104773924A (zh) 一种微电流强化染料类废水生物降解的装置和方法
KR101778259B1 (ko) 나노촉매 양극판과 인제거용 음극판을 포함하는 전기분해 부상 응집방식의 방류수 처리장치 및 처리방법
KR102015446B1 (ko) 미세조류, 세포외 중합물질 및 시안계 화합물질을 제거하는 폐수처리방법
CN102249465B (zh) 一种电化学法废水处理系统及其方法
CN201240894Y (zh) 一种电化学废水处理装置
CN210150777U (zh) 一种电场除藻构筑物
US10160669B2 (en) Methods and devices for the treatment of fluids

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE