WO2023115281A1 - 确定高压管汇发生的故障的方法及装置、高压管汇系统 - Google Patents

确定高压管汇发生的故障的方法及装置、高压管汇系统 Download PDF

Info

Publication number
WO2023115281A1
WO2023115281A1 PCT/CN2021/139783 CN2021139783W WO2023115281A1 WO 2023115281 A1 WO2023115281 A1 WO 2023115281A1 CN 2021139783 W CN2021139783 W CN 2021139783W WO 2023115281 A1 WO2023115281 A1 WO 2023115281A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
data
target
pressure manifold
determining
Prior art date
Application number
PCT/CN2021/139783
Other languages
English (en)
French (fr)
Inventor
左文龙
姜一博
李海龙
王红星
Original Assignee
烟台杰瑞石油服务集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油服务集团股份有限公司 filed Critical 烟台杰瑞石油服务集团股份有限公司
Priority to CN202180102210.XA priority Critical patent/CN117940932A/zh
Priority to PCT/CN2021/139783 priority patent/WO2023115281A1/zh
Publication of WO2023115281A1 publication Critical patent/WO2023115281A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]

Definitions

  • the present disclosure relates to the field of oil and gas field construction operations, in particular, to a method and device for determining a failure of a high-pressure manifold, and a high-pressure manifold system.
  • the high-pressure manifold plays the role of transmitting fracturing fluid and controlling the flow direction of the fluid during fracturing operations.
  • the high-pressure manifold mainly includes components such as plug valves, check valves, swivel elbows, and straight pipelines; the transmission process is The fracturing vehicle sucks the low-pressure liquid or sand-carrying fluid into the fracturing pump, and after being pressurized by the fracturing pump, passes through the high-pressure manifold and then re-collects to the high-pressure manifold skid high-pressure channel, then passes through the ground high-pressure manifold and injects it into the bottom of the well.
  • the working conditions of fracturing operations have become more and more severe, and the life and damage of high-pressure manifolds have changed;
  • the main purpose of the present disclosure is to provide a method and device for determining the failure of the high-pressure manifold, and a high-pressure manifold system, so as to solve problems such as failure of the seal of the connection point, failure of the manifold, etc.
  • Technical problems such as cracks and other problems are predicted in advance.
  • a Z method includes: real-time collection of operation data corresponding to multiple target parts, the target parts include at least the following parts: the joints of two high-pressure manifold parts, and the joints corresponding to swivel elbows; the operation data is analyzed to determine the target Whether there is a fault in the part; in the case of determining that at least one target part has a fault, determine the fault information corresponding to the fault, wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault .
  • the target part is correspondingly provided with a vibration sensor
  • the real-time collection of operating data corresponding to a plurality of target parts includes: obtaining a plurality of vibration data corresponding to the target part collected by the vibration sensor, and determining a plurality of vibration data as the operating data, wherein,
  • the multiple vibration data include at least the following data: the vibration frequency corresponding to the target part, the vibration period corresponding to the target part, the acceleration of the target part during operation, and the displacement of the target part during operation.
  • analyzing the operation data to determine whether the target part is faulty includes: judging whether the vibration data contains abnormal data; if the vibration data contains abnormal data, determining that the target part corresponding to the vibration data is faulty.
  • judging whether the vibration data contains abnormal data includes: separately judging whether multiple items of vibration data are within the preset value range corresponding to multiple items of vibration data; when any item of vibration data is not within the corresponding preset value range Next, make sure that the running data contains abnormal data.
  • determining fault information corresponding to the fault includes: performing feature extraction on the vibration data to obtain target data features; and determining fault information corresponding to the fault according to the target data features.
  • the method further includes: displaying fault information, and triggering and displaying fault alarm information according to the fault information to prompt the fault.
  • a device for determining a fault in a high pressure manifold includes: a data acquisition unit configured to collect operating data corresponding to a plurality of target parts in real time, and the target parts include at least the following parts: the connection of two high-pressure manifold components, the joint corresponding to the swivel elbow; the processor , configured to analyze the operating data to determine whether a fault occurs in the target part; the processor is configured to determine the fault information corresponding to the fault when at least one target part is determined to be faulty, wherein the fault information includes at least the fault The location information of the corresponding target part, the fault type corresponding to the fault, and the damage degree corresponding to the fault.
  • a high-pressure manifold system includes: a plurality of high-pressure manifold components, and the plurality of high-pressure manifold components are sealed in pairs to form a plurality of connection positions a plurality of vibration sensors arranged on a plurality of connecting parts and a plurality of components of the high-pressure manifold; the device for determining the failure of the high-pressure manifold is configured to perform the above-mentioned method for determining the failure of the high-pressure manifold.
  • the target parts include at least the following parts: the connection of two high-pressure manifold parts, the joint corresponding to the swivel elbow; and analyzing the operating data , to determine whether there is a fault in the target part; in the case of determining that at least one target part has a fault, determine the fault information corresponding to the fault, wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the fault.
  • the corresponding damage degree solves the technical problem that there is no effective monitoring method in the related technology to predict the problems of the high-pressure manifold such as the sealing failure of the connection point and the crack of the manifold in advance, so as to minimize the cost and maximize the economic benefit technical effects.
  • FIG. 1 is a flow chart of a method for determining a fault in a high-pressure manifold according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the connection layout of multiple high-pressure manifold components provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a device for determining a fault in a high pressure manifold according to an embodiment of the present disclosure.
  • a method of determining a failure of a high pressure manifold is provided.
  • Fig. 1 is a flow chart of a method for determining a fault in a high pressure manifold according to an embodiment of the present disclosure. As shown in Figure 1, the invention comprises the following steps:
  • Step S101 real-time collection of operating data corresponding to a plurality of target parts
  • the target parts include at least the following parts: the joints of two high-pressure manifold components, and the joints corresponding to swivel elbows;
  • Step S102 analyzing the operation data to determine whether the target part is faulty
  • Step S103 when it is determined that at least one target part is faulty, determine fault information corresponding to the fault, wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault.
  • FIG. 2 is a schematic diagram of the connection layout of multiple high-pressure manifold components, 1-13 are the following components: 1. The liquid end of the plunger pump 2. The discharge flange behind the pump head 3. Swivel elbow 4 .Straight pipeline 5. Swivel elbow 6. Straight pipeline 7. Swivel elbow 8. Straight pipeline 9. Swivel elbow 10. Plug valve 11. Check valve 12. Union flange 13. Four-way, of which, 2- 13 is each high-pressure manifold component. As can be seen from FIG. 2 , multiple high-pressure manifold components are connected in pairs to form multiple target locations. Meanwhile, the slipknot corresponding to the swivel elbow also constitutes another type of target location.
  • the disclosure collects and analyzes the operation data of the target part to determine the target part where the fault occurs, and determines the fault information by analyzing the data.
  • the embodiment of the present disclosure provides a method for determining the failure of a high-pressure manifold, through real-time collection of operating data corresponding to multiple target parts, the target parts include at least the following parts: the connection of two high-pressure manifold components, the swivel elbow at the corresponding joint; analyze the operating data to determine whether the target part is faulty; if at least one target part is determined to be faulty, determine the fault information corresponding to the fault, wherein the fault information includes at least the target part corresponding to the fault.
  • the position information of the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault solve the technical problem that there is no effective monitoring method in the related technology to predict the problems such as the failure of the seal of the connection point and the crack of the manifold in advance. Further, the technical effect of minimizing cost usage and maximizing economic benefits is achieved.
  • the target site is correspondingly provided with a vibration sensor
  • the operation data corresponding to multiple target sites is collected in real time, including: acquiring multiple vibration data corresponding to the target site collected by the vibration sensor, and storing the multiple vibration data Determined as operating data, wherein the multi-item vibration data includes at least the following data: the vibration frequency corresponding to the target part, the vibration period corresponding to the target part, the acceleration of the target part during operation, and the displacement of the target part during operation.
  • the sensor set at the target part is a vibration sensor, wherein, in addition to the part where the high-pressure manifold is connected in pairs, the target part also includes the swivel elbow slipknot and the parts prone to sealing failure and fatigue cracks , through the vibration sensor to collect data such as the vibration frequency, vibration period, acceleration and displacement of the target part during operation in real time to obtain the operating data of the target part during the operation.
  • analyzing the operation data to determine whether a fault occurs at the target part includes: determining whether the vibration data contains abnormal data; if the vibration data contains abnormal data, determining whether the vibration data corresponds to The target part is malfunctioning.
  • judging whether the vibration data contains abnormal data includes: respectively judging whether multiple items of vibration data are within the preset value ranges corresponding to multiple items of vibration data; In the case of the preset value range, it is determined that the operation data contains abnormal data.
  • the collected operating data of the target part is within a stable value range, and there is no at least one of sudden large changes and slight changes.
  • the vibration data is detected When at least one item of data suddenly appears beyond the corresponding value range, it is determined that at least one of the target parts is faulty.
  • the detected abnormal data is generally at least one set of data.
  • determining the fault information corresponding to the fault includes: performing feature extraction on the vibration data to obtain the target data feature; determining the fault according to the target data feature Corresponding fault information.
  • feature extraction is performed on the vibration data to determine the corresponding fault part and at least one of the faulty parts through the extracted data features. information, the type of failure, and at least one of the degree of damage to the component and the degree of damage to the fault location.
  • the method when it is determined that a fault occurs in at least one target part, after determining the fault information corresponding to the fault, the method further includes: displaying the fault information, and triggering and displaying the fault alarm information according to the fault information to Prompt for faults.
  • the fault information is displayed, and an alarm prompt is triggered according to the fault information.
  • the alarm prompt and fault information are displayed on the corresponding display screen for the operator to determine whether to Troubleshooting in time, and troubleshooting means.
  • the present disclosure also provides a high-pressure manifold system, which includes: a plurality of high-pressure manifold parts, which are sealed and connected in pairs to form a plurality of connection parts; On the connection site and on the plurality of high pressure manifold components; the means for determining the failure of the high pressure manifold configured to perform the above-mentioned method of determining the failure of the high pressure manifold.
  • the embodiment of the present disclosure also provides a device for determining the fault of the high-pressure manifold. It should be noted that the device for determining the fault of the high-pressure manifold in the embodiment of the present disclosure can be configured to execute the Provided is configured as a method of identifying failures occurring in high pressure manifolds. A device for determining a fault in a high-pressure manifold provided by an embodiment of the present disclosure is introduced below.
  • Fig. 3 is a schematic diagram of a device for determining a fault in a high pressure manifold according to an embodiment of the present disclosure.
  • the device includes: a data acquisition unit 301 configured to collect operating data corresponding to a plurality of target parts in real time. the joints; the processor 302 is configured to analyze the operating data to determine whether a fault occurs in the target part; the processor 302 is configured to determine the fault corresponding to the fault in the case of determining that at least one target part is faulty information, wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault.
  • the data acquisition unit 301 includes: a determination subunit configured to acquire multiple items of vibration data corresponding to the target site collected by the vibration sensor, and determine multiple items of vibration data as operating data, wherein, The multiple vibration data include at least the following data: the vibration frequency corresponding to the target part, the vibration period corresponding to the target part, the acceleration of the target part during operation, and the displacement of the target part during operation.
  • the processor 302 includes: a judging subunit configured to judge whether the vibration data contains abnormal data; a first determination subunit configured to determine whether the vibration data contains abnormal data Next, it is determined that the target part corresponding to the vibration data is faulty.
  • the judging subunit includes: a judging module configured to judge whether multiple items of vibration data are within a preset value range corresponding to multiple items of vibration data; If one piece of vibration data is not within the corresponding preset value range, it is determined that the operation data contains abnormal data.
  • the processor 302 includes: an extraction subunit configured to perform feature extraction on the vibration data to obtain target data features; a data analysis module configured to determine the fault corresponding fault information.
  • the device further includes: a data and fault display unit, configured to display the fault information after determining the fault information corresponding to the fault when at least one target part is determined to be faulty, and according to The fault information triggers and displays the fault alarm information to prompt the fault.
  • a data and fault display unit configured to display the fault information after determining the fault information corresponding to the fault when at least one target part is determined to be faulty, and according to The fault information triggers and displays the fault alarm information to prompt the fault.
  • a device for determining a fault in a high-pressure manifold is configured to collect operating data corresponding to multiple target parts in real time through the data acquisition unit 301.
  • the target parts include at least the following parts: two pairs of high-pressure manifolds The joints of the components and the joints corresponding to the movable elbow; the processor 302 is configured to analyze the operation data to determine whether the target part is faulty; the processor 302 is configured to determine that at least one target part is faulty In the case of the fault, determine the fault information corresponding to the fault, wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault, which solves the problem that there is no effective monitoring method in the related technology for high voltage
  • the technical problems that occur in the manifold, such as the sealing failure of the connection point and the crack of the manifold, are predicted in advance, and then the technical effect of minimizing the cost and maximizing the economic benefit is achieved.
  • a device for determining a fault in a high-pressure manifold includes a processor and a memory.
  • the above-mentioned data acquisition unit 301 is stored in the memory as a program unit, and the processor executes the above-mentioned program unit stored in the memory to realize corresponding functions.
  • the processor includes a kernel, and the kernel fetches corresponding program units from the memory.
  • One or more cores can be set, and by adjusting the core parameters to solve the technical problems in related technologies that there is no effective monitoring means to predict in advance the problems of high-pressure manifolds, such as joint point sealing failure and manifold cracks.
  • Memory may include non-permanent memory in computer-readable media, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM), memory including at least one memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a program is stored.
  • a program is stored.
  • the program is executed by a processor, a method for determining a fault of a high-voltage manifold is realized.
  • An embodiment of the present disclosure provides a processor configured to run a program, wherein a method for determining a fault of a high-voltage manifold is executed when the program is running.
  • An embodiment of the present disclosure provides a device.
  • the device includes a processor, a memory, and a program stored on the memory and operable on the processor.
  • the processor executes the program, the following steps are implemented: real-time collection of operating data corresponding to multiple target parts , the target parts include at least the following parts: the connection of two high-pressure manifold parts, the joints corresponding to the swivel elbow; analyze the operation data to determine whether the target part is faulty; when at least one target part is determined to be faulty
  • the fault information corresponding to the fault is determined, wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault.
  • the target site is correspondingly provided with a vibration sensor
  • the real-time collection of operating data corresponding to multiple target sites includes: obtaining multiple vibration data corresponding to the target site collected by the vibration sensor, and determining multiple vibration data as the operational data, wherein , the multi-item vibration data includes at least the following data: the vibration frequency corresponding to the target part, the vibration period corresponding to the target part, the acceleration of the target part during operation, and the displacement of the target part during operation.
  • analyzing the operation data to determine whether the target part is faulty includes: judging whether the vibration data contains abnormal data; if the vibration data contains abnormal data, determining that the target part corresponding to the vibration data is faulty.
  • judging whether the vibration data contains abnormal data includes: separately judging whether multiple items of vibration data are within the preset value range corresponding to multiple items of vibration data; if any item of vibration data is not within the corresponding preset value range In this case, it is determined that the operating data contains abnormal data.
  • determining fault information corresponding to the fault includes: performing feature extraction on vibration data to obtain target data features; and determining fault information corresponding to the fault according to the target data features.
  • the method further includes: displaying fault information, and triggering and displaying fault alarm information according to the fault information to prompt the fault.
  • the devices in this article can be servers, PCs, PADs, mobile phones, etc.
  • the present disclosure also provides a computer program product, which, when executed on a data processing device, is suitable for executing a program whose initialization includes the following method steps: real-time collection of operating data corresponding to multiple target parts, and the target parts include at least the following parts: two The connection of two high-pressure manifold parts and the joint corresponding to the swivel elbow; analyze the operation data to determine whether the target part is faulty; if at least one target part is faulty, determine the fault information corresponding to the fault , wherein the fault information includes at least the location information of the target part corresponding to the fault, the fault type corresponding to the fault, and the damage degree corresponding to the fault.
  • the target site is correspondingly provided with a vibration sensor
  • the real-time collection of operating data corresponding to multiple target sites includes: obtaining multiple vibration data corresponding to the target site collected by the vibration sensor, and determining multiple vibration data as the operational data, wherein , the multi-item vibration data includes at least the following data: the vibration frequency corresponding to the target part, the vibration period corresponding to the target part, the acceleration of the target part during operation, and the displacement of the target part during operation.
  • analyzing the operation data to determine whether the target part is faulty includes: judging whether the vibration data contains abnormal data; if the vibration data contains abnormal data, determining that the target part corresponding to the vibration data is faulty.
  • judging whether the vibration data contains abnormal data includes: separately judging whether multiple items of vibration data are within the preset value range corresponding to multiple items of vibration data; if any item of vibration data is not within the corresponding preset value range In this case, it is determined that the operating data contains abnormal data.
  • determining fault information corresponding to the fault includes: performing feature extraction on vibration data to obtain target data features; and determining fault information corresponding to the fault according to the target data features.
  • the method further includes: displaying fault information, and triggering and displaying fault alarm information according to the fault information to prompt the fault.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby
  • the instructions provide steps configured to implement the functions specified in the flow diagram procedure or procedures and/or block diagram procedures or blocks.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read only memory (ROM) or flash RAM.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash random access memory
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, A magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device, or any other non-transmission medium, that may be configured to store information that may be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present disclosure may be provided as methods, systems or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本公开公开了一种确定高压管汇发生的故障的方法及装置、高压管汇系统。该发明包括:实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;对运行数据进行分析,以确定目标部位是否发生故障;在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。通过本公开,解决了相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题。

Description

确定高压管汇发生的故障的方法及装置、高压管汇系统 技术领域
本公开涉及油气田施工作业领域,具体而言,涉及一种确定高压管汇发生的故障的方法及装置、高压管汇系统。
背景技术
相关技术中,高压管汇在压裂作业中起到传输压裂液和控制液体流动方向的作用,高压管汇主要包括旋塞阀、单流阀、活动弯头、直管线等部件;传输过程为压裂车将低压液体或携砂液吸入压裂泵中,经压裂泵增压后经过高压管汇再重新汇集到高低压管汇橇高压通道后通过地面高压管汇后注入井底。随着深层油气井开发量的增加,压裂作业工况变得越来越恶劣,对高压管汇来说其寿命和损伤程度均有所改变;
发明人知晓的一些方案中,目前高压管汇没有相应的在线监测手段,如连接点密封失效,管汇裂纹等早期均无法发现,只有出现泄漏或爆裂时,才会被发现,无法提前预判,提前处理,若是作业过程中出现该情况,则会对作业安全和作业效率产生非常大的影响。
针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。
发明内容
本公开的主要目的在于提供一种确定高压管汇发生的故障的方法及装置、高压管汇系统,以解决相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题。
为了实现上述目的,根据本公开的一个方面,提供了一种Z方法。该发明包括:实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;对运行数据进行分析,以确定目标部位是否发生故障;在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故 障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。
进一步地,目标部位对应设置有振动传感器,实时采集多个目标部位对应的运行数据,包括:获取振动传感器采集目标部位对应的多项振动数据,并将多项振动数据确定为运行数据,其中,多项振动数据至少包括以下数据:目标部位对应的振动频率、目标部位对应的振动周期、目标部位在运行过程中的加速度、目标部位在运行过程中的位移。
进一步地,对运行数据进行分析,以确定目标部位是否发生故障,包括:判断振动数据中是否包含异常数据;在振动数据中包含异常数据的情况下,确定振动数据对应的目标部位发生故障。
进一步地,判断振动数据中是否包含异常数据,包括:分别判断多项振动数据是否处于多项振动数据对应的预设数值范围内;在任意一项振动数据未处于对应的预设数值范围的情况下,确定运行数据中包含异常数据。
进一步地,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,包括:对振动数据进行特征提取以获得目标数据特征;依据目标数据特征,确定故障对应的故障信息。
进一步地,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息之后,该方法还包括:显示故障信息,并依据故障信息触发并显示故障报警信息以对故障进行提示。
为了实现上述目的,根据本公开的另一方面,提供了一种确定高压管汇发生的故障的装置。该装置包括:数据采集单元,被配置为实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;处理器,被配置为对运行数据进行分析,以确定目标部位是否发生故障;处理器,被配置为在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。
为了实现上述目的,根据本公开的另一方面,提供了一种高压管汇系统,该系统包括:多个高压管汇部件,多个高压管汇部件之间两两密封连接构成多个连接部位;多个振动传感器,设置在多个连接部位以及多个高压管汇部件上;确定高压管汇发生的故障的装置,被配置为执行上述一种确定高压管汇发生的故障的方法。
通过本公开,采用以下步骤:实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;对运行数据进行分析,以确定目标部位是否发生故障;在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度,解决了相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题,进而达到了成本使用最小化、经济效益最大化的技术效果。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例提供的一种确定高压管汇发生的故障的方法的流程图;以及
图2为本公开实施例提供的多个高压管汇部件连接布局示意图;
图3是根据本公开实施例提供的一种确定高压管汇发生的故障的装置的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开 实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是被配置为区别类似的对象,而不必被配置为描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本公开的实施例,提供了一种确定高压管汇发生的故障的方法。
图1是根据本公开实施例提供的一种确定高压管汇发生的故障的方法的流程图。如图1所示,该发明包括以下步骤:
步骤S101,实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;
步骤S102,对运行数据进行分析,以确定目标部位是否发生故障;
步骤S103,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。
如图2所示,图2为多个高压管汇部件连接布局示意图,1-13分别为以下部件:1.柱塞泵液力端2.泵头之后的排出法兰3.活动弯头4.直管线5.活动弯头6.直管线7.活动弯头8.直管线9.活动弯头10.旋塞阀11.单流阀12.由壬法兰13.四通,其中,2-13为各个高压管汇部件,通过图2所示可知,多个高压管汇部件两两连接以构成多个目标部位,同时,活动弯头对应的活结处也构成另一种形式的目标部位。
本公开通过采集目标部位的运行数据并对运行数据进行分析,以确定发生故障的目标部位,并通过对数据分析确定故障的信息。
本公开实施例提供的一种确定高压管汇发生的故障的方法,通过实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;对运行数据进行分析,以确定目标部位是否发生故障;在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度,解决了相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题,进而达到了成本使用最小化、经济效益最大化的技术效果。
在一种可选的实施例中,目标部位对应设置有振动传感器,实时采集多个目标部位对应的运行数据,包括:获取振动传感器采集目标部位对应的多项振动数据,并将多项振动数据确定为运行数据,其中,多项振动数据至少包括以下数据:目标部位对应的振动频率、目标部位对应的振动周期、目标部位在运行过程中的加速度、目标部位在运行过程中的位移。
在一种可选的实施例中,设置在目标部位的传感器为振动传感器,其中,目标部位除了高压管汇两两连接的部位,还包括活动弯头活结以及容易发生密封失败和疲劳裂纹的部位,通过振动传感器实时采集目标部位的振动频率、振动周期、目标部位在作业时的加速度、位移等数据以获取目标部位的在作业过程中的运行数据。
在一种可选的实施例中,对运行数据进行分析,以确定目标部位是否发生故障,包括:判断振动数据中是否包含异常数据;在振动数据中包含异常数据的情况下,确定振动数据对应的目标部位发生故障。
本公开中通过确定振动数据是否包含异常数据来判断目标部位中是否有发生故障的部位。
在一种可选的实施例中,判断振动数据中是否包含异常数据,包括:分别判断多项振动数据是否处于多项振动数据对应的预设数值范围内;在 任意一项振动数据未处于对应的预设数值范围的情况下,确定运行数据中包含异常数据。
上述地,在目标部位没有发生故障的情况下,采集的目标部位的运行数据均处于一个稳定的数值范围内,没有突然的较大的变化和轻微的变化中的至少一个,在检测到振动数据中的至少一项数据突然出现超出对应的数值范围的情况下,确定目标部位中有至少一个部位发生故障。
需要说明的是,振动数据中的振动频率、振动周期、加速度、位移,几项数据之间均存在一定的关系,通常情况下,有一项数据发生异常的情况下,另外几项也会发生异常,因此,在本公开提供的实施例中,检测到的异常数据一般是至少一组数据。
在一种可选的实施例中,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,包括:对振动数据进行特征提取以获得目标数据特征;依据目标数据特征,确定故障对应的故障信息。
具体地,在检测到异常数据,并确定有至少一个目标部位发生故障的情况下,对振动数据进行特征提取以通过提取的数据特征确定故障对应的故障部位和故障部件中的至少一个对应的位置信息、发生故障的类型、以及发生的故障对部件的损伤程度和对故障部位的损伤程度中的至少一个。
在一种可选的实施例中,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息之后,该方法还包括:显示故障信息,并依据故障信息触发并显示故障报警信息以对故障进行提示。
具体地,在确定故障信息后,对故障信息进行显示,并依据故障信息触发报警提示,在报警提示触发后,报警提示以及故障信息均显示在对应的显示屏上以供作业人员确定是否需要对故障及时处理,以及故障处理手段。
通过上述方法,够及时准确发现和预判设备故障,使各部件运行在最佳状态;根据所监测高压管汇的情况自主适时安排维保更换,而不是定时按计划检验维修;同时,预防事故的发生。使设备的使用成本最小化,使 生产经济效益最大化。
本公开还提供了一种高压管汇系统,该系统包括:多个高压管汇部件,多个高压管汇部件之间两两密封连接构成多个连接部位;多个振动传感器,设置在多个连接部位以及多个高压管汇部件上;确定高压管汇发生的故障的装置,被配置为执行上述权一种确定高压管汇发生的故障的方法。
通过本系统,解决了相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题,进而达到了成本使用最小化、经济效益最大化的技术效果
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本公开实施例还提供了一种确定高压管汇发生的故障的装置,需要说明的是,本公开实施例的一种确定高压管汇发生的故障的装置可以被配置为执行本公开实施例所提供的被配置为一种确定高压管汇发生的故障的方法。以下对本公开实施例提供的一种确定高压管汇发生的故障的装置进行介绍。
图3是根据本公开实施例提供的一种确定高压管汇发生的故障的装置的示意图。如图3所示,该装置包括:数据采集单元301,被配置为实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;处理器302,被配置为对运行数据进行分析,以确定目标部位是否发生故障;处理器302,被配置为在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。
在一种可选的实施例中,数据采集单元301,包括:确定子单元,被配置为获取振动传感器采集目标部位对应的多项振动数据,并将多项振动数据确定为运行数据,其中,多项振动数据至少包括以下数据:目标部位对应的振动频率、目标部位对应的振动周期、目标部位在运行过程中的加 速度、目标部位在运行过程中的位移。
在一种可选的实施例中,处理器302,包括:判断子单元,被配置为判断振动数据中是否包含异常数据;第一确定子单元,被配置为在振动数据中包含异常数据的情况下,确定振动数据对应的目标部位发生故障。
在一种可选的实施例中,判断子单元,包括:判断模块,被配置为分别判断多项振动数据是否处于多项振动数据对应的预设数值范围内;确定模块,被配置为在任意一项振动数据未处于对应的预设数值范围的情况下,确定运行数据中包含异常数据。
在一种可选的实施例中,处理器302,包括:提取子单元,被配置为对振动数据进行特征提取以获得目标数据特征;数据分析模块,被配置为依据目标数据特征,确定故障对应的故障信息。
在一种可选的实施例中,该装置还包括:数据及故障显示单元,被配置为在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息之后,显示故障信息,并依据故障信息触发并显示故障报警信息以对故障进行提示。
本公开实施例提供的一种确定高压管汇发生的故障的装置,通过数据采集单元301,被配置为实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;处理器302,被配置为对运行数据进行分析,以确定目标部位是否发生故障;处理器302,被配置为在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度,解决了相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题,进而达到了成本使用最小化、经济效益最大化的技术效果。
一种确定高压管汇发生的故障的装置包括处理器和存储器,上述数据采集单元301等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来解决相关技术中没有有效的监测手段对高压管汇发生的如连接点密封失败、管汇裂纹等问题进行提前预知的技术问题。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本公开实施例提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现一种确定高压管汇发生的故障的方法。
本公开实施例提供了一种处理器,处理器被配置为运行程序,其中,程序运行时执行一种确定高压管汇发生的故障的方法。
本公开实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现以下步骤:实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;对运行数据进行分析,以确定目标部位是否发生故障;在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。
可选地,目标部位对应设置有振动传感器,实时采集多个目标部位对应的运行数据,包括:获取振动传感器采集目标部位对应的多项振动数据,并将多项振动数据确定为运行数据,其中,多项振动数据至少包括以下数据:目标部位对应的振动频率、目标部位对应的振动周期、目标部位在运行过程中的加速度、目标部位在运行过程中的位移。
可选地,对运行数据进行分析,以确定目标部位是否发生故障,包括:判断振动数据中是否包含异常数据;在振动数据中包含异常数据的情况下,确定振动数据对应的目标部位发生故障。
可选地,判断振动数据中是否包含异常数据,包括:分别判断多项振 动数据是否处于多项振动数据对应的预设数值范围内;在任意一项振动数据未处于对应的预设数值范围的情况下,确定运行数据中包含异常数据。
可选地,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,包括:对振动数据进行特征提取以获得目标数据特征;依据目标数据特征,确定故障对应的故障信息。
可选地,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息之后,该方法还包括:显示故障信息,并依据故障信息触发并显示故障报警信息以对故障进行提示。本文中的设备可以是服务器、PC、PAD、手机等。
本公开还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:实时采集多个目标部位对应的运行数据,目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;对运行数据进行分析,以确定目标部位是否发生故障;在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,其中,故障信息至少包括故障对应的目标部位的位置信息、故障对应的故障类型以及故障对应的损伤程度。
可选地,目标部位对应设置有振动传感器,实时采集多个目标部位对应的运行数据,包括:获取振动传感器采集目标部位对应的多项振动数据,并将多项振动数据确定为运行数据,其中,多项振动数据至少包括以下数据:目标部位对应的振动频率、目标部位对应的振动周期、目标部位在运行过程中的加速度、目标部位在运行过程中的位移。
可选地,对运行数据进行分析,以确定目标部位是否发生故障,包括:判断振动数据中是否包含异常数据;在振动数据中包含异常数据的情况下,确定振动数据对应的目标部位发生故障。
可选地,判断振动数据中是否包含异常数据,包括:分别判断多项振动数据是否处于多项振动数据对应的预设数值范围内;在任意一项振动数据未处于对应的预设数值范围的情况下,确定运行数据中包含异常数据。
可选地,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息,包括:对振动数据进行特征提取以获得目标数据特征;依据目标数据特征,确定故障对应的故障信息。
可选地,在确定至少一个目标部位发生故障的情况下,确定故障对应的故障信息之后,该方法还包括:显示故障信息,并依据故障信息触发并显示故障报警信息以对故障进行提示。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中 指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可被配置为存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本公开的实施例可提供为方法、系统或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本公开的实施例而已,并不被配置为限制本公开。对于本领域技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (9)

  1. 一种确定高压管汇发生的故障的方法,其中,包括:
    实时采集多个目标部位对应的运行数据,所述目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;
    对所述运行数据进行分析,以确定所述目标部位是否发生故障;
    在确定至少一个所述目标部位发生故障的情况下,确定所述故障对应的故障信息,其中,所述故障信息至少包括所述故障对应的所述目标部位的位置信息、所述故障对应的故障类型以及所述故障对应的损伤程度。
  2. 根据权利要求1所述的方法,其中,所述目标部位对应设置有振动传感器,实时采集多个目标部位对应的运行数据,包括:
    获取所述振动传感器采集所述目标部位对应的多项振动数据,并将多项所述振动数据确定为所述运行数据,其中,多项所述振动数据至少包括以下数据:所述目标部位对应的振动频率、所述目标部位对应的振动周期、所述目标部位在运行过程中的加速度、所述目标部位在所述运行过程中的位移。
  3. 根据权利要求2所述的方法,其中,对所述运行数据进行分析,以确定所述目标部位是否发生故障,包括:
    判断所述振动数据中是否包含异常数据;
    在所述振动数据中包含异常数据的情况下,确定所述振动数据对应的所述目标部位发生所述故障。
  4. 根据权利要求3所述的方法,其中,判断所述振动数据中是否包含异常数据,包括:
    分别判断多项所述振动数据是否处于多项所述振动数据对应的预设数值范围内;
    在任意一项所述振动数据未处于对应的所述预设数值范围的情况下,确定所述运行数据中包含所述异常数据。
  5. 根据权利要求2所述的方法,其中,在确定至少一个所述目标部位发生故障的情况下,确定所述故障对应的故障信息,包括:
    对所述振动数据进行特征提取以获得目标数据特征;
    依据所述目标数据特征,确定所述故障对应的所述故障信息。
  6. 根据权利要求1至5中任一项所述的方法,其中,在确定至少一个所述目标部位发生故障的情况下,确定所述故障对应的故障信息之后,所述方法还包括:
    显示所述故障信息,并依据所述故障信息触发并显示故障报警信息以对所述故障进行提示。
  7. 一种确定高压管汇发生的故障的装置,其中,包括:
    数据采集单元,被配置为实时采集多个目标部位对应的运行数据,所述目标部位至少包括以下部位:两两高压管汇部件的连接处、活动弯头对应的活节处;
    处理器,被配置为对所述运行数据进行分析,以确定所述目标部位是否发生故障;
    所述处理器,被配置为在确定至少一个所述目标部位发生故障的情况下,确定所述故障对应的故障信息,其中,所述故障信息至少包括所述故障对应的所述目标部位的位置信息、所述故障对应的故障类型以及所述故障对应的损伤程度。
  8. 一种高压管汇系统,其中,包括:
    多个高压管汇部件,多个所述高压管汇部件之间两两密封连接构成多个连接部位;
    多个振动传感器,设置在多个所述连接部位以及多个所述高压管汇部件上;
    确定高压管汇发生的故障的装置,被配置为执行上述权利要求1至6中任意一种确定高压管汇发生的故障的方法。
  9. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机可读存储介质所在设备执行权利要求1至6中任意一项所述的一种确定高压管汇发生的故障的方法。
PCT/CN2021/139783 2021-12-20 2021-12-20 确定高压管汇发生的故障的方法及装置、高压管汇系统 WO2023115281A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102210.XA CN117940932A (zh) 2021-12-20 2021-12-20 确定高压管汇发生的故障的方法及装置、高压管汇系统
PCT/CN2021/139783 WO2023115281A1 (zh) 2021-12-20 2021-12-20 确定高压管汇发生的故障的方法及装置、高压管汇系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139783 WO2023115281A1 (zh) 2021-12-20 2021-12-20 确定高压管汇发生的故障的方法及装置、高压管汇系统

Publications (1)

Publication Number Publication Date
WO2023115281A1 true WO2023115281A1 (zh) 2023-06-29

Family

ID=86900947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139783 WO2023115281A1 (zh) 2021-12-20 2021-12-20 确定高压管汇发生的故障的方法及装置、高压管汇系统

Country Status (2)

Country Link
CN (1) CN117940932A (zh)
WO (1) WO2023115281A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870089A (zh) * 2018-07-19 2018-11-23 荆州市世纪派创石油机械检测有限公司 一种高压管汇件检测方法
US20180356365A1 (en) * 2015-12-09 2018-12-13 Schlumberger Technology Corporation Fatigue life assessment
US20190187678A1 (en) * 2017-12-20 2019-06-20 Suncor Energy Inc. Piping Monitoring and Analysis System
CN110700810A (zh) * 2019-09-16 2020-01-17 中海艾普油气测试(天津)有限公司 一种测试用钻井平台安全系统及其监测方法
CN111077281A (zh) * 2019-12-30 2020-04-28 中国石油集团川庆钻探工程有限公司 一种在役压裂高压管汇检测方法及检测系统
CN111198525A (zh) * 2020-01-03 2020-05-26 扬州海铭石油工程技术有限公司 一种基于油田现场设备运转音频监控系统及故障检测方法
CN111609890A (zh) * 2020-06-17 2020-09-01 西南石油大学 一种压裂管汇工况监测与寿命预测及反馈调控系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180356365A1 (en) * 2015-12-09 2018-12-13 Schlumberger Technology Corporation Fatigue life assessment
US20190187678A1 (en) * 2017-12-20 2019-06-20 Suncor Energy Inc. Piping Monitoring and Analysis System
CN108870089A (zh) * 2018-07-19 2018-11-23 荆州市世纪派创石油机械检测有限公司 一种高压管汇件检测方法
CN110700810A (zh) * 2019-09-16 2020-01-17 中海艾普油气测试(天津)有限公司 一种测试用钻井平台安全系统及其监测方法
CN111077281A (zh) * 2019-12-30 2020-04-28 中国石油集团川庆钻探工程有限公司 一种在役压裂高压管汇检测方法及检测系统
CN111198525A (zh) * 2020-01-03 2020-05-26 扬州海铭石油工程技术有限公司 一种基于油田现场设备运转音频监控系统及故障检测方法
CN111609890A (zh) * 2020-06-17 2020-09-01 西南石油大学 一种压裂管汇工况监测与寿命预测及反馈调控系统

Also Published As

Publication number Publication date
CN117940932A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US20160168979A1 (en) System and method for identifying a mode of failure in a pump used in hydraulic fracturing
US5720598A (en) Method and a system for early detection of defects in multiplex positive displacement pumps
US10401250B2 (en) Leakage detection and leakage location in supply networks
CN103576640B (zh) 用于监测泵气蚀的系统和方法
US7918126B2 (en) Intelligent underwater leak detection system
US20170091358A1 (en) Model-based prognosis of machine health
US20160168976A1 (en) System for detecting leakage in a pump used in hydraulic fracturing
TW201235970A (en) System and method for identifying likely geographical locations of anomalies in a water utility network
JP2019525076A (ja) スマート高保全性保護システム
CN205538101U (zh) 一种卡箍式法兰泄漏监测装置
EA024606B1 (ru) Система защиты и испытания магистрального трубопровода группы устьев скважин с регулятором скорости эпн и аварийным запорным клапаном
CN110360461A (zh) 压力管道监测系统、方法、装置和计算机可读存储介质
CN105628386A (zh) 一种发动机试验台系统及试验方法
CN109344983A (zh) 故障检测方法、装置及计算机可读存储介质
JP2016188756A (ja) 流体使用設備管理方法、又は、流体使用設備管理システム
CN114550336B (zh) 设备巡检方法、装置、计算机设备和存储介质
Schultheis et al. Reciprocating Compressor Condition Monitoring.
WO2023115281A1 (zh) 确定高压管汇发生的故障的方法及装置、高压管汇系统
US20130173181A1 (en) System and method for detecting combustion hardware damage
Eriksson et al. Subsea processing systems: Optimising the maintenance, maximising the production
GB2536567A (en) System for supporting operation during plant accidents and method for supporting operation during plant accidents
CN104533882B (zh) 油缸泄漏故障诊断方法及系统
Zhang et al. Development of low-cost air-based hydraulic leakage detection system through real-time pressure decay data acquisition technology
KR20210021857A (ko) 해양구조물의 동적 시뮬레이터에 의한 설비 및 장비운전의 지능형 진단 시스템
US10801914B2 (en) Method for detecting deterioration defect of structural part using structural unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102210.X

Country of ref document: CN