WO2023113327A1 - Hot rolled steel sheet for ground reinforcement and steel pipe for ground reinforcement, and manufacturing methods thereof - Google Patents

Hot rolled steel sheet for ground reinforcement and steel pipe for ground reinforcement, and manufacturing methods thereof Download PDF

Info

Publication number
WO2023113327A1
WO2023113327A1 PCT/KR2022/019505 KR2022019505W WO2023113327A1 WO 2023113327 A1 WO2023113327 A1 WO 2023113327A1 KR 2022019505 W KR2022019505 W KR 2022019505W WO 2023113327 A1 WO2023113327 A1 WO 2023113327A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
hot
ground reinforcement
steel sheet
Prior art date
Application number
PCT/KR2022/019505
Other languages
French (fr)
Korean (ko)
Inventor
권윤익
김학준
박경수
서석종
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023113327A1 publication Critical patent/WO2023113327A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • B21B21/02Rollers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a hot-rolled steel sheet and steel pipe for ground reinforcement having excellent strength and formability and a manufacturing method thereof.
  • the structure Although it is easy to obtain high strength by using a low-temperature structure such as bainite or martensite, the structure has the disadvantage of impairing the physical properties of the welded part by causing a softening of the welded part due to a slow cooling rate after welding.
  • One aspect of the present invention is to provide a hot-rolled steel sheet and steel pipe for ground reinforcement with excellent strength and formability and a manufacturing method thereof.
  • C 0.05 ⁇ 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 ⁇ 1.9%, Ti: 0.05 ⁇ 0.15%, Nb: 0.03 ⁇ 0.1% , Mo: 0.03 ⁇ 0.1%, P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the rest is Fe and unavoidable impurities It contains, satisfies the following relational expressions 1 and 2, has a microstructure containing 90% or more of ferrite in area%, the crystal grains of the ferrite have an average size of 15 ⁇ m or less, and Ti, Nb, Mo alone or 0.05% by weight or more of carbides contained in a composite, and the carbides provide a hot-rolled steel sheet for ground reinforcement having excellent strength and formability having an average size of 20 nm or less.
  • Another embodiment of the present invention provides a steel pipe for ground reinforcement having excellent strength and formability manufactured using the hot-rolled steel sheet.
  • Another embodiment of the present invention is, in weight percent, C: 0.05 to 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 to 1.9%, Ti: 0.05 to 0.15%, Nb: 0.03 to 0.1 %, Mo: 0.03 ⁇ 0.1%, P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the rest is Fe and unavoidable Reheating a steel slab containing impurities and satisfying the following relations 1 and 2 in a temperature range of 1150 to 1300 ° C; Obtaining a hot-rolled steel sheet by finish hot-rolling the reheated steel slab at a temperature range of 800 to 950° C.; and winding the hot-rolled steel sheet in a temperature range of 550 to 700° C.
  • Another embodiment of the present invention provides a method for manufacturing a steel pipe for ground reinforcement with excellent strength and formability, including the step of obtaining a steel pipe by manufacturing a hot-rolled steel sheet manufactured by the above manufacturing method.
  • the content of C is preferably in the range of 0.05 to 0.1%.
  • the lower limit of the C content is more preferably 0.06%, even more preferably 0.065%, and most preferably 0.07%.
  • the upper limit of the C content is more preferably 0.09%, even more preferably 0.085%, and most preferably 0.08%.
  • Si 0.1% or less (excluding 0%)
  • Si is not only useful for deoxidation of steel, but also effective for securing strength through solid solution strengthening. However, when the Si content exceeds 0.1%, silicon oxide is formed, which makes plating difficult. Therefore, the Si content is preferably 0.1% or less.
  • the Si content is more preferably 0.08% or less, more preferably 0.065% or less, and most preferably 0.05% or less.
  • Mn is added to secure the solid solution strengthening effect and the hardenability of the welded part during cooling after welding. In order to obtain the above effects, it is preferable that 1.5% or more is added. However, if it exceeds 1.9%, Mn segregation increases and defects and material deviations may occur during continuous casting. Therefore, the Mn content is preferably in the range of 1.5 to 1.9%.
  • the lower limit of the Mn content is more preferably 1.55%, even more preferably 1.6%, and most preferably 1.65%.
  • the upper limit of the Mn content is more preferably 1.85%, even more preferably 1.8%, and most preferably 1.75%.
  • Ti is added for precipitation strengthening effect and grain coarsening suppression.
  • the Ti content is preferably in the range of 0.05 to 0.15%.
  • the lower limit of the Ti content is more preferably 0.07%, even more preferably 0.08%, and most preferably 0.09%.
  • the upper limit of the Ti content is more preferably 0.14%, more preferably 0.13%, and most preferably 0.12%.
  • Nb is added to obtain a finer grain size by inhibiting recrystallization during hot rolling in addition to the precipitation strengthening effect.
  • the Nb content is preferably in the range of 0.03 to 0.1%.
  • the lower limit of the Nb content is more preferably 0.035%, even more preferably 0.038%, and most preferably 0.04%.
  • the upper limit of the Nb content is more preferably 0.08%, more preferably 0.07%, and most preferably 0.06%.
  • Mo is added to suppress precipitate growth. In addition, by delaying the formation of ferrite so that ferrite is formed at a low temperature, it contributes to crystal grain refinement. When the content of Mo is less than 0.03%, it may be difficult to sufficiently obtain the above effect. On the other hand, if it exceeds 0.1%, economic feasibility may decrease. Therefore, the Mo content is preferably in the range of 0.03 to 0.1%.
  • the lower limit of the Mo content is more preferably 0.035%, more preferably 0.04%, and most preferably 0.045%.
  • the upper limit of the Mo content is more preferably 0.09%, even more preferably 0.08%, and most preferably 0.07%.
  • P as an impurity element, is segregated at grain boundaries and deteriorates toughness, it is preferable not to include P as much as possible, and in the present invention, the upper limit is limited to 0.02%.
  • the P content is more preferably 0.018% or less, even more preferably 0.017% or less, and most preferably 0.015% or less.
  • S is a major element that forms MnS as an impurity element, and since toughness is lowered due to the formation of coarse MnS, its content is limited to 0.02% or less in the present invention.
  • the S content is more preferably 0.015% or less, even more preferably 0.01% or less, and most preferably 0.005% or less.
  • N is an impurity element, and when its content exceeds 0.01%, it reacts with Ti and Nb at high temperatures to form nitrides. there is. Therefore, the N content is preferably 0.01% or less.
  • the N content is more preferably 0.008% or less, even more preferably 0.007% or less, and most preferably 0.006% or less.
  • the hot-rolled steel sheet of the present invention preferably satisfies the following relational expressions 1 and 2.
  • the relational expression 1 is a parameter for improving strength by controlling the contents of Ti, Mo, and Nb, which are precipitation hardening elements.
  • Ti, Mo, and Nb which are precipitation hardening elements.
  • the value of (Ti/48 + Mo/96 + Nb/93) is less than 0.002, the amount of precipitates is too small to be effective in improving strength.
  • the value of (Ti/48 + Mo/96 + Nb/93) exceeds 0.004, an effective precipitation hardening effect may not be obtained due to coarsening of the precipitate.
  • the relational expression 2 is a parameter representing the content of C used for the solid solution strengthening effect excluding the content of C used for the precipitation hardening effect.
  • the value of (C/12) - (Ti/48 + Mo/96 + Nb/93) is less than 0.002
  • the high strength targeted by the present invention cannot be achieved because the ferrite phase cannot obtain sufficient strength.
  • the value of (C/12) - (Ti/48 + Mo/96 + Nb/93) exceeds 0.006, the remaining C content excessively increases, making the precipitate easily coarse to obtain the target strength.
  • the fraction of pearlite increases, it is difficult to obtain ferrite of 90% or more, which is the target of the present invention.
  • the rest may include Fe and unavoidable impurities. Inevitable impurities can be unintentionally mixed in the normal steel manufacturing process, and cannot be completely excluded, and those skilled in the ordinary steel manufacturing field can easily understand the meaning. Further, the present invention does not entirely exclude the addition of other compositions than the aforementioned steel composition.
  • the hot-rolled steel sheet of the present invention preferably has a microstructure containing 90% or more of ferrite in terms of area%.
  • the microstructure of the present invention is theoretically preferably a single phase of ferrite, but one or more of pearlite, retained austenite, bainite and martensite may be formed inevitably in the manufacturing process.
  • the low-temperature transformation phase such as bainite or martensite increases, formability deteriorates.
  • the remaining tissue is as small as possible.
  • the fraction of the ferrite is more preferably 93% or more, and even more preferably 95% or more.
  • the ferrite may be one or more of polygonal ferrite, bainitic ferrite, and acicular ferrite.
  • the crystal grains of the ferrite preferably have an average size of 15 ⁇ m or less.
  • the crystal grain size of the ferrite is more preferably 12 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the hot-rolled steel sheet of the present invention preferably contains 0.05% by weight or more of carbides containing Ti, Nb, and Mo alone or in combination, and the carbides preferably have an average size of 20 nm or less.
  • the fraction of the carbide is more preferably 0.07% by weight or more, and even more preferably 0.08% by weight or more.
  • the average size of the carbide is more preferably 15 nm or less, and even more preferably 10 nm or less.
  • the upper limit is not particularly limited, but considering the contents of Ti, Nb, and Mo included in the steel, it is difficult to exceed 0.2% by weight.
  • the hot-rolled steel sheet of the present invention provided as described above has yield strength (YS): 700 MPa or more, tensile strength (TS): 750 MPa or more, and elongation (EL): 15% or more, so that excellent strength and formability can be secured.
  • a steel pipe manufactured using the hot-rolled steel sheet may be provided.
  • the steel pipe of the present invention has yield strength (YS): 800 MPa or more, tensile strength (TS): 860 MPa or more, and elongation (EL): 10% or more, so that excellent strength and formability can be secured.
  • the hardness deviation is from each hardness value measured at 0.5 mm, t / 4, t / 2 points (t: steel pipe thickness) in the thickness direction from the surface of the steel pipe [(maximum hardness value-minimum hardness value) / maximum hardness value ⁇ 100].
  • a steel slab satisfying the aforementioned alloy composition and relational expressions 1 and 2 is reheated in a temperature range of 1150 to 1300 ° C. Reheating the steel slab at a temperature range of 1150 to 1300 ° C is to make the alloy composition and microstructure uniform.
  • the reheating temperature is less than 1150 ° C., the precipitate formed on the slab is not dissolved, so that the optimum precipitation strengthening effect cannot be obtained in the subsequent process.
  • the reheating temperature exceeds 1300 ° C., excessive crystal grain growth occurs, making it difficult to secure the target material and quality. Therefore, the reheating temperature of the steel slab is preferably in the range of 1150 to 1300 °C.
  • the lower limit of the reheating temperature is more preferably 1170°C, even more preferably 1180°C, and most preferably 1200°C.
  • the upper limit of the reheating temperature is more preferably 1290°C, even more preferably 1270°C, and most preferably 1250°C.
  • the reheated steel slab is finished hot-rolled at a temperature range of 800 to 950° C. to obtain a hot-rolled steel sheet.
  • the finish hot rolling temperature preferably has a range of 800 ⁇ 950 °C.
  • the lower limit of the finish hot rolling temperature is more preferably 820°C, even more preferably 825°C, and most preferably 850°C.
  • the upper limit of the finish hot rolling temperature is more preferably 940°C, even more preferably 920°C, and most preferably 900°C.
  • the hot-rolled steel sheet is wound in a temperature range of 550 to 700 °C.
  • the winding temperature is preferably in the range of 550 ⁇ 700 °C.
  • the lower limit of the coiling temperature is more preferably 600°C, even more preferably 620°C, and most preferably 640°C.
  • the upper limit of the coiling temperature is more preferably 680°C, even more preferably 665°C, and most preferably 650°C. Meanwhile, cooling from the finish hot rolling to winding may be performed on a run-out table.
  • a steel pipe may be obtained by forming the hot-rolled steel sheet into a pipe.
  • electric resistance welding EW or the like may be used as a welding method when manufacturing the pipe.
  • the present invention may further include the step of rolling the steel pipe after the step of obtaining the steel pipe.
  • the type and fraction of microstructures were measured using an optical microscope (OM).
  • OM optical microscope
  • SEM scanning electron microscope
  • the size of the precipitate was measured by collecting the precipitate from the specimen using the carbon replica method and using a transmission electron microscope (TEM).
  • the fraction of the precipitate was obtained by measuring the contents of Ti, Nb, and Mo using the residue extraction method.
  • Yield strength (YS), tensile strength (TS) and elongation (EL) were measured by performing a tensile test according to the tensile test method of KS B 0802 standard.
  • YS Yield strength
  • TS tensile strength
  • EL elongation
  • the hardness at each position in the thickness direction was measured with a 1 kg load using a Vickers hardness tester at 0.5 mm, t/4, and t/2 points (t: steel pipe thickness) in the thickness direction from the outer surface of the steel pipe. At this time, 5 points were measured at each location and the average value was obtained.
  • the hardness deviation described in Table 3 below was calculated as [(maximum hardness value-minimum hardness value) / maximum hardness value ⁇ 100] from each hardness value measured for each location.

Abstract

The present invention relates to: a hot rolled steel sheet for ground reinforcement and a steel pipe for ground reinforcement, which have excellent strength and formability; and manufacturing methods thereof.

Description

지반보강용 열연강판 및 강관과 이들의 제조방법Hot-rolled steel sheet and steel pipe for ground reinforcement and their manufacturing method
본 발명은 강도 및 성형성이 우수한 지반보강용 열연강판 및 강관과 이들의 제조방법에 관한 것이다.The present invention relates to a hot-rolled steel sheet and steel pipe for ground reinforcement having excellent strength and formability and a manufacturing method thereof.
도로의 지하화를 위한 지하 터널, 지하 환승 센터 및 지하 쇼핑 센터 등의 시설이 늘어남에 따라, 그 시설물의 기반이 되는 지반 보강재의 필요성이 증대되고 있다. 이에 따라, 지반보강용 강관 규격(KS D 3872)이 신규 제정되었다. 토목, 건축 등의 지반 구조물 보강에 사용되는 지반보강용 강관은 길이방향으로 YS: 800 MPa, TS: 860 MPa, EL: 10% 이상을 만족해야 한다. 해당 물성을 만족하기 위해 열연강판에서는 YS: 700 MPa 이상, TS: 750 MPa 이상의 고강도와 EL: 15% 이상의 성형성이 요구된다. 베이나이트, 마르텐사이트 등의 저온 조직을 활용하면 고강도를 얻기는 용이하나, 해당 조직은 용접 후 느린 냉각속도로 인해 용접부 연화를 발생시켜 용접부의 물성을 저해하는 불리한 측면이 있다. As facilities such as underground tunnels for undergrounding roads, underground transit centers, and underground shopping centers increase, the need for ground reinforcing materials that are the basis of the facilities is increasing. Accordingly, the steel pipe standard for ground reinforcement (KS D 3872) was newly enacted. Steel pipes for ground reinforcement used for ground structure reinforcement in civil engineering and construction must satisfy YS: 800 MPa, TS: 860 MPa, EL: 10% or more in the longitudinal direction. In order to satisfy the corresponding physical properties, hot-rolled steel sheet requires YS: 700 MPa or more, TS: 750 MPa or more, and formability of EL: 15% or more. Although it is easy to obtain high strength by using a low-temperature structure such as bainite or martensite, the structure has the disadvantage of impairing the physical properties of the welded part by causing a softening of the welded part due to a slow cooling rate after welding.
한편, 지반보강용으로 적합한 소구경 강관을 제조하기 위해서는, 강관의 작은 직경으로 인해 조관시 가공 경화를 많이 받게 되기 때문에 성형성이 우수해야 하고, 형상 불량없이 조관이 가능하기 위해서는 미세조직이 균일해야 한다.On the other hand, in order to manufacture a small-diameter steel pipe suitable for ground reinforcement, formability must be excellent because it undergoes a lot of work hardening during pipe manufacturing due to the small diameter of the steel pipe, and the microstructure must be uniform to enable pipe manufacturing without shape defects. do.
본 발명의 일측면은, 강도 및 성형성이 우수한 지반보강용 열연강판 및 강관과 이들의 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a hot-rolled steel sheet and steel pipe for ground reinforcement with excellent strength and formability and a manufacturing method thereof.
본 발명의 일 실시형태는 중량%로, C: 0.05~0.1%, Si: 0.1% 이하(0%는 제외), Mn: 1.5~1.9%, Ti: 0.05~0.15%, Nb: 0.03~0.1%, Mo: 0.03~0.1%, P: 0.02% 이하(0%는 제외), S: 0.02% 이하(0%는 제외), N: 0.01% 이하(0%는 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1 및 2를 만족하며, 면적%로, 90% 이상의 페라이트를 포함하는 미세조직을 가지고, 상기 페라이트의 결정립은 15㎛ 이하의 평균 크기를 가지며, Ti, Nb, Mo를 단독 혹은 복합으로 함유하는 탄화물을 0.05중량% 이상 포함하고, 상기 탄화물은 20nm 이하의 평균 크기를 가지는 강도 및 성형성이 우수한 지반보강용 열연강판을 제공한다.One embodiment of the present invention, in weight%, C: 0.05 ~ 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 ~ 1.9%, Ti: 0.05 ~ 0.15%, Nb: 0.03 ~ 0.1% , Mo: 0.03~0.1%, P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the rest is Fe and unavoidable impurities It contains, satisfies the following relational expressions 1 and 2, has a microstructure containing 90% or more of ferrite in area%, the crystal grains of the ferrite have an average size of 15 μm or less, and Ti, Nb, Mo alone or 0.05% by weight or more of carbides contained in a composite, and the carbides provide a hot-rolled steel sheet for ground reinforcement having excellent strength and formability having an average size of 20 nm or less.
[관계식 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004[Relational Expression 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004
[관계식 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006[Relational Expression 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006
(단, 상기 관계식 1 및 2에서 각 합금원소의 함량은 중량%를 의미함.)(However, in the relational expressions 1 and 2, the content of each alloy element means % by weight.)
본 발명의 다른 실시형태는 상기 열연강판을 이용하여 제조된 강도 및 성형성이 우수한 지반보강용 강관을 제공한다.Another embodiment of the present invention provides a steel pipe for ground reinforcement having excellent strength and formability manufactured using the hot-rolled steel sheet.
본 발명의 또 다른 실시형태는 중량%로, C: 0.05~0.1%, Si: 0.1% 이하(0%는 제외), Mn: 1.5~1.9%, Ti: 0.05~0.15%, Nb: 0.03~0.1%, Mo: 0.03~0.1%, P: 0.02% 이하(0%는 제외), S: 0.02% 이하(0%는 제외), N: 0.01% 이하(0%는 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1 및 2를 만족하는 강 슬라브를 1150~1300℃의 온도 범위에서 재가열하는 단계; 상기 재가열된 강 슬라브를 800~950℃의 온도 범위에서 마무리 열간 압연하여 열연강판을 얻는 단계; 및 상기 열연강판을 550~700℃의 온도 범위에서 권취하는 단계;를 포함하는 강도 및 성형성이 우수한 지반보강용 열연강판의 제조방법을 제공한다.Another embodiment of the present invention is, in weight percent, C: 0.05 to 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 to 1.9%, Ti: 0.05 to 0.15%, Nb: 0.03 to 0.1 %, Mo: 0.03~0.1%, P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the rest is Fe and unavoidable Reheating a steel slab containing impurities and satisfying the following relations 1 and 2 in a temperature range of 1150 to 1300 ° C; Obtaining a hot-rolled steel sheet by finish hot-rolling the reheated steel slab at a temperature range of 800 to 950° C.; and winding the hot-rolled steel sheet in a temperature range of 550 to 700° C.
[관계식 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004[Relational Expression 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004
[관계식 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006[Relational Expression 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006
(단, 상기 관계식 1 및 2에서 각 합금원소의 함량은 중량%를 의미함.)(However, in the relational expressions 1 and 2, the content of each alloy element means % by weight.)
본 발명의 또 다른 실시형태는 상기 제조방법에 의해 제조된 열연강판을 조관하여 강관을 얻는 단계를 포함하는 강도 및 성형성이 우수한 지반보강용 강관의 제조방법을 제공한다.Another embodiment of the present invention provides a method for manufacturing a steel pipe for ground reinforcement with excellent strength and formability, including the step of obtaining a steel pipe by manufacturing a hot-rolled steel sheet manufactured by the above manufacturing method.
본 발명의 일측면에 따르면, 강도 및 성형성이 우수한 지반보강용 열연강판 및 강관과 이들의 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a hot-rolled steel sheet and steel pipe for ground reinforcement with excellent strength and formability and a manufacturing method thereof.
이하, 본 발명의 일 실시형태에 따른 열연강판에 대하여 설명한다. 먼저, 본 발명의 합금조성에 대해서 설명한다. 하기 설명되는 합금조성의 함량은 중량%이다.Hereinafter, a hot-rolled steel sheet according to an embodiment of the present invention will be described. First, the alloy composition of the present invention will be described. The content of the alloy composition described below is % by weight.
C: 0.05~0.1%C: 0.05 to 0.1%
C는 고용강화 효과뿐만 아니라 Ti, Nb, Mo와의 탄화물 형성을 위해 첨가되며, 인장강도 확보를 위한 원소이다. 상기 효과를 얻기 위해서는 0.05% 이상 첨가되는 것이 바람직하다. 다만, 0.1%를 초과하는 경우 탄화물 조대화가 일어나 석출강화효과를 충분히 확보할 수 없고, 미세조직에서 펄라이트 분율이 증가하여, 본 발명에서 얻고자 하는 90% 이상의 페라이트를 확보할 수 없다. 따라서, 상기 C의 함량은 0.05~0.1%의 범위를 갖는 것이 바람직하다. 상기 C 함량의 하한은 0.06%인 것이 보다 바람직하고, 0.065%인 것이 보다 더 바람직하며, 0.07%인 것이 가장 바람직하다. 상기 C 함량의 상한은 0.09%인 것이 보다 바람직하고, 0.085%인 것이 보다 더 바람직하며, 0.08%인 것이 가장 바람직하다.C is added to form carbides with Ti, Nb, and Mo as well as the solid solution strengthening effect, and is an element for securing tensile strength. In order to obtain the above effect, it is preferable to add 0.05% or more. However, if it exceeds 0.1%, carbide coarsening occurs and precipitation strengthening effect cannot be sufficiently secured, and the pearlite fraction in the microstructure increases, making it impossible to secure 90% or more ferrite to be obtained in the present invention. Therefore, the content of C is preferably in the range of 0.05 to 0.1%. The lower limit of the C content is more preferably 0.06%, even more preferably 0.065%, and most preferably 0.07%. The upper limit of the C content is more preferably 0.09%, even more preferably 0.085%, and most preferably 0.08%.
Si: 0.1% 이하(0%는 제외)Si: 0.1% or less (excluding 0%)
Si은 강의 탈산에 유용할 뿐만 아니라, 고용강화를 통한 강도 확보에 효과적이다. 다만, 상기 Si의 함량이 0.1%를 초과하는 경우에는 실리콘 산화물을 형성하여 도금을 어렵게 하는 단점이 있다. 따라서, 상기 Si의 함량은 0.1% 이하인 것이 바람직하다. 상기 Si 함량은 0.08%이하인 것이 보다 바람직하고, 0.065%이하인 것이 보다 더 바람직하며, 0.05%이하인 것이 가장 바람직하다.Si is not only useful for deoxidation of steel, but also effective for securing strength through solid solution strengthening. However, when the Si content exceeds 0.1%, silicon oxide is formed, which makes plating difficult. Therefore, the Si content is preferably 0.1% or less. The Si content is more preferably 0.08% or less, more preferably 0.065% or less, and most preferably 0.05% or less.
Mn: 1.5~1.9%Mn: 1.5 to 1.9%
Mn은 고용강화 효과 및 용접 후 냉각시 용접부의 경화능을 확보하기 위해 첨가된다. 상기 효과를 얻기 위해서 1.5% 이상인 것이 첨가되는 것이 바람직하다. 다만, 1.9%를 초과하는 경우 Mn 편석이 증가하여 연속주조시 불량 및 재질 편차가 발생할 수 있다. 따라서, 상기 Mn의 함량은 1.5~1.9%의 범위를 갖는 것이 바람직하다. 상기 Mn 함량의 하한은 1.55%인 것이 보다 바람직하고, 1.6%인 것이 보다 더 바람직하며, 1.65%인 것이 가장 바람직하다. 상기 Mn 함량의 상한은 1.85%인 것이 보다 바람직하고, 1.8%인 것이 보다 더 바람직하며, 1.75%인 것이 가장 바람직하다.Mn is added to secure the solid solution strengthening effect and the hardenability of the welded part during cooling after welding. In order to obtain the above effects, it is preferable that 1.5% or more is added. However, if it exceeds 1.9%, Mn segregation increases and defects and material deviations may occur during continuous casting. Therefore, the Mn content is preferably in the range of 1.5 to 1.9%. The lower limit of the Mn content is more preferably 1.55%, even more preferably 1.6%, and most preferably 1.65%. The upper limit of the Mn content is more preferably 1.85%, even more preferably 1.8%, and most preferably 1.75%.
Ti: 0.05~0.15%Ti: 0.05 to 0.15%
Ti는 석출강화 효과 및 결정립 조대화 억제를 위해 첨가한다. 상기 Ti의 함량이 0.05% 미만인 경우 본 발명에서 목표로 하는 고강도를 얻기 힘들며, 0.15%를 초과하는 경우에는 조대한 탄화물이 형성되어 석출강화에 효과적이지 않게 된다. 따라서, 상기 Ti의 함량은 0.05~0.15%의 범위를 갖는 것이 바람직하다. 상기 Ti 함량의 하한은 0.07%인 것이 보다 바람직하고, 0.08%인 것이 보다 더 바람직하며, 0.09%인 것이 가장 바람직하다. 상기 Ti 함량의 상한은 0.14%인 것이 보다 바람직하고, 0.13%인 것이 보다 더 바람직하며, 0.12%인 것이 가장 바람직하다.Ti is added for precipitation strengthening effect and grain coarsening suppression. When the content of Ti is less than 0.05%, it is difficult to obtain high strength targeted in the present invention, and when it exceeds 0.15%, coarse carbides are formed, making precipitation hardening ineffective. Therefore, the Ti content is preferably in the range of 0.05 to 0.15%. The lower limit of the Ti content is more preferably 0.07%, even more preferably 0.08%, and most preferably 0.09%. The upper limit of the Ti content is more preferably 0.14%, more preferably 0.13%, and most preferably 0.12%.
Nb: 0.03~0.1%Nb: 0.03~0.1%
Nb은 석출강화 효과와 더불어 열간압연 중 재결정을 억제하여 보다 미세한 결정립 크기를 얻기 위해 첨가한다. 상기 Nb의 함량이 0.03% 미만인 경우 충분한 석출강화 효과를 얻기 어렵고, 0.1%를 초과하는 경우 조대한 석출물 형성으로 인해 강도가 하락할 수 있다. 따라서, 상기 Nb의 함량은 0.03~0.1%의 범위를 갖는 것이 바람직하다. 상기 Nb 함량의 하한은 0.035%인 것이 보다 바람직하고, 0.038%인 것이 보다 더 바람직하며, 0.04%인 것이 가장 바람직하다. 상기 Nb 함량의 상한은 0.08%인 것이 보다 바람직하고, 0.07%인 것이 보다 더 바람직하며, 0.06%인 것이 가장 바람직하다.Nb is added to obtain a finer grain size by inhibiting recrystallization during hot rolling in addition to the precipitation strengthening effect. When the content of Nb is less than 0.03%, it is difficult to obtain a sufficient precipitation strengthening effect, and when it exceeds 0.1%, strength may decrease due to the formation of coarse precipitates. Therefore, the Nb content is preferably in the range of 0.03 to 0.1%. The lower limit of the Nb content is more preferably 0.035%, even more preferably 0.038%, and most preferably 0.04%. The upper limit of the Nb content is more preferably 0.08%, more preferably 0.07%, and most preferably 0.06%.
Mo: 0.03~0.1%Mo: 0.03~0.1%
Mo는 석출물 성장을 억제하기 위해 첨가된다. 또한, 페라이트의 형성을 지연시켜 낮은 온도에서 페라이트가 형성되도록 하여 결정립 미세화에도 기여한다. 상기 Mo의 함량이 0.03% 미만인 경우 상기 효과를 충분히 얻기 힘들 수 있다. 반면, 0.1% 초과하는 경우 경제성이 떨어질 수 있다. 따라서, 상기 Mo의 함량은 0.03~0.1%의 범위를 갖는 것이 바람직하다. 상기 Mo 함량의 하한은 0.035%인 것이 보다 바람직하고, 0.04%인 것이 보다 더 바람직하며, 0.045%인 것이 가장 바람직하다. 상기 Mo 함량의 상한은 0.09%인 것이 보다 바람직하고, 0.08%인 것이 보다 더 바람직하며, 0.07%인 것이 가장 바람직하다.Mo is added to suppress precipitate growth. In addition, by delaying the formation of ferrite so that ferrite is formed at a low temperature, it contributes to crystal grain refinement. When the content of Mo is less than 0.03%, it may be difficult to sufficiently obtain the above effect. On the other hand, if it exceeds 0.1%, economic feasibility may decrease. Therefore, the Mo content is preferably in the range of 0.03 to 0.1%. The lower limit of the Mo content is more preferably 0.035%, more preferably 0.04%, and most preferably 0.045%. The upper limit of the Mo content is more preferably 0.09%, even more preferably 0.08%, and most preferably 0.07%.
P: 0.02% 이하(0%는 제외)P: 0.02% or less (excluding 0%)
P는 불순물 원소로서 결정립계에 편석되어 인성을 떨어뜨리므로 가능한 포함하지 않는 것이 바람직하며, 본 발명에서는 그 상한을 0.02%로 제한한다. 상기 P 함량은 0.018% 이하인 것이 보다 바람직하고, 0.017% 이하인 것이 보다 더 바람직하며, 0.015% 이하인 것이 가장 바람직하다.Since P, as an impurity element, is segregated at grain boundaries and deteriorates toughness, it is preferable not to include P as much as possible, and in the present invention, the upper limit is limited to 0.02%. The P content is more preferably 0.018% or less, even more preferably 0.017% or less, and most preferably 0.015% or less.
S: 0.02% 이하(0%는 제외)S: 0.02% or less (excluding 0%)
S는 불순물 원소로서 MnS를 형성시키는 주요 원소이며, 조대한 MnS의 형성으로 인해 인성을 저하시키므로, 본 발명에서는 그 함량을 0.02% 이하로 제한한다. 상기 S 함량은 0.015% 이하인 것이 보다 바람직하고, 0.01% 이하인 것이 보다 더 바람직하며, 0.005% 이하인 것이 가장 바람직하다.S is a major element that forms MnS as an impurity element, and since toughness is lowered due to the formation of coarse MnS, its content is limited to 0.02% or less in the present invention. The S content is more preferably 0.015% or less, even more preferably 0.01% or less, and most preferably 0.005% or less.
N: 0.01% 이하(0%는 제외)N: 0.01% or less (excluding 0%)
N은 불순물 원소로서 그 함량이 0.01%를 초과하는 경우 고온에서 Ti, Nb와 반응하여 질화물을 형성하기 때문에 실질적으로 석출강화에 기여하는 Ti, Nb의 함량을 저감시켜 강재의 강도를 저하시키는 단점이 있다. 따라서, 상기 N의 함량은 0.01% 이하인 것이 바람직하다. 상기 N 함량은 0.008% 이하인 것이 보다 바람직하고, 0.007% 이하인 것이 보다 더 바람직하며, 0.006% 이하인 것이 가장 바람직하다.N is an impurity element, and when its content exceeds 0.01%, it reacts with Ti and Nb at high temperatures to form nitrides. there is. Therefore, the N content is preferably 0.01% or less. The N content is more preferably 0.008% or less, even more preferably 0.007% or less, and most preferably 0.006% or less.
또한, 본 발명의 열연강판은 하기 관계식 1 및 2를 만족하는 것이 바람직하다. In addition, the hot-rolled steel sheet of the present invention preferably satisfies the following relational expressions 1 and 2.
[관계식 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004[Relational Expression 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004
상기 관계식 1은 석출강화원소인 Ti, Mo, Nb의 함량을 제어함으로써 강도를 향상시키기 위한 파라미터이다. 상기 (Ti/48 + Mo/96 + Nb/93)의 값이 0.002 미만인 경우에는 석출물 양이 너무 적어 강도 향상에 효과적이지 못하다. 반면, 상기 (Ti/48 + Mo/96 + Nb/93)의 값이 0.004를 초과하는 경우에는 석출물의 조대화로 인해 효과적인 석출강화 효과를 얻지 못할 수 있다.The relational expression 1 is a parameter for improving strength by controlling the contents of Ti, Mo, and Nb, which are precipitation hardening elements. When the value of (Ti/48 + Mo/96 + Nb/93) is less than 0.002, the amount of precipitates is too small to be effective in improving strength. On the other hand, when the value of (Ti/48 + Mo/96 + Nb/93) exceeds 0.004, an effective precipitation hardening effect may not be obtained due to coarsening of the precipitate.
[관계식 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006[Relational Expression 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006
상기 관계식 2는 석출강화 효과에 사용되는 C의 함량을 제외한 고용강화 효과에 사용되는 C의 함량을 나타내는 파라미터이다. 상기 (C/12) - (Ti/48 + Mo/96 + Nb/93)의 값이 0.002 미만인 경우에는 페라이트 상이 충분한 강도를 얻지 못하기 때문에 본 발명에서 목표로 하는 고강도를 달성할 수 없다. 반면, 상기 (C/12) - (Ti/48 + Mo/96 + Nb/93)의 값이 0.006를 초과할 경우 잔존하는 C의 함량이 과도하게 증가함에 따라 석출물이 쉽게 조대해져 목표 강도를 얻을 수 없고, 펄라이트 분율이 증가하여 본 발명에서 목표로 하는 90% 이상의 페라이트를 얻기 어렵다. 또한, 상대적으로 냉각속도가 느린 강판의 중심부에서 펄라이트의 형성이 촉진됨에 따라 표면과 내부의 경도차가 크게 발생하게 된다. 이로 인해, 강관에서도 두께방향으로 경도차가 발생하게 된다. 아울러, 전조 가공 시에 특정 부분이 가공을 많이 받아 형상 불량, 크랙 발생 등의 문제를 야기할 수 있다. 전조 가공이란 강관 표면에 돌기를 형성하는 공정을 의미한다.The relational expression 2 is a parameter representing the content of C used for the solid solution strengthening effect excluding the content of C used for the precipitation hardening effect. When the value of (C/12) - (Ti/48 + Mo/96 + Nb/93) is less than 0.002, the high strength targeted by the present invention cannot be achieved because the ferrite phase cannot obtain sufficient strength. On the other hand, when the value of (C/12) - (Ti/48 + Mo/96 + Nb/93) exceeds 0.006, the remaining C content excessively increases, making the precipitate easily coarse to obtain the target strength. However, since the fraction of pearlite increases, it is difficult to obtain ferrite of 90% or more, which is the target of the present invention. In addition, as the formation of pearlite is promoted at the center of the steel sheet where the cooling rate is relatively slow, a large difference in hardness between the surface and the inside occurs. Due to this, a difference in hardness occurs in the thickness direction in the steel pipe as well. In addition, during rolling processing, a specific part receives a lot of processing, which may cause problems such as shape defects and cracks. Rolling refers to a process of forming protrusions on the surface of a steel pipe.
상술한 강 조성 이외에 나머지는 Fe 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 철강 제조공정에서 의도되지 않게 혼입될 수 있는 것으로, 이를 전면 배제할 수는 없으며, 통상의 철강제조 분야의 기술자라면 그 의미를 쉽게 이해할 수 있다. 또한, 본 발명은, 앞서 언급한 강 조성 이외의 다른 조성의 첨가를 전면적으로 배제하는 것은 아니다.In addition to the above-described steel composition, the rest may include Fe and unavoidable impurities. Inevitable impurities can be unintentionally mixed in the normal steel manufacturing process, and cannot be completely excluded, and those skilled in the ordinary steel manufacturing field can easily understand the meaning. Further, the present invention does not entirely exclude the addition of other compositions than the aforementioned steel composition.
본 발명의 열연강판은 면적%로, 90% 이상의 페라이트를 포함하는 미세조직을 갖는 것이 바람직하다. 본 발명에서는 우수한 성형성을 확보하기 위하여 90% 이상의 페라이트를 확보하는 것이 중요하다. 본 발명의 미세조직은 이론적으로는 페라이트 단상인 것이 바람직하나, 제조공정 상 불가피하게 펄라이트, 잔류 오스테나이트, 베이나이트 및 마르텐사이트 중 하나 이상이 형성될 수 있다. 다만, 베이나이트 또는 마르텐사이트와 같은 저온변태상이 많아지게 되면 성형성이 저하된다. 또한, 강관 표면에 펄라이트가 존재하게 되면 경질상인 시멘타이트에 의해 전조 가공 중 크랙이 발생하기 쉽다. 따라서, 상기 잔부 조직은 가능한 적을수록 바람직하다. 상기 페라이트의 분율은 93% 이상인 것이 보다 바람직하고, 95% 이상인 것이 보다 더 바람직하다. 한편, 상기 페라이트는 폴리고날 페라이트, 베이니틱 페라이트 및 애시큘러 페라이트 중 하나 이상일 수 있다. The hot-rolled steel sheet of the present invention preferably has a microstructure containing 90% or more of ferrite in terms of area%. In the present invention, it is important to secure 90% or more of ferrite in order to secure excellent formability. The microstructure of the present invention is theoretically preferably a single phase of ferrite, but one or more of pearlite, retained austenite, bainite and martensite may be formed inevitably in the manufacturing process. However, when the low-temperature transformation phase such as bainite or martensite increases, formability deteriorates. In addition, when pearlite is present on the surface of the steel pipe, cracks are likely to occur during rolling due to hard cementite. Therefore, it is preferable that the remaining tissue is as small as possible. The fraction of the ferrite is more preferably 93% or more, and even more preferably 95% or more. Meanwhile, the ferrite may be one or more of polygonal ferrite, bainitic ferrite, and acicular ferrite.
이 때, 상기 페라이트의 결정립은 15㎛ 이하의 평균 크기를 갖는 것이 바람직하다. 상기 페라이트의 결정립 크키가 15㎛를 초과하는 경우에는 결정립 조대화로 인하여 충분한 강도를 얻지 못할 수 있다. 상기 페라이트의 결정립 크기는 12㎛ 이하인 것이 보다 바람직하고, 10㎛ 이하인 것이 보다 더 바람직하다. At this time, the crystal grains of the ferrite preferably have an average size of 15 μm or less. When the crystal grain size of the ferrite exceeds 15 μm, sufficient strength may not be obtained due to grain coarsening. The crystal grain size of the ferrite is more preferably 12 μm or less, and even more preferably 10 μm or less.
본 발명의 열연강판은 Ti, Nb, Mo를 단독 혹은 복합으로 함유하는 탄화물을 0.05중량% 이상 포함하는 것이 바람직하며, 상기 탄화물은 20nm 이하의 평균 크기를 갖는 것이 바람직하다. 이와 같이, 평균 크기가 20nm 이하인 미세한 탄화물을 0.05중량% 이상으로 다량 형성시킴으로써, 탄화물의 파괴가 일어나지 않으면서도 우수한 강도 향상 효과를 얻을 수 있다. 상기 탄화물의 분율은 0.07중량% 이상인 것이 보다 바람직하고, 0.08중량% 이상인 것이 보다 더 바람직하다. 상기 탄화물의 평균 크기는 15nm 이하인 것이 보다 바람직하고, 10nm 이하인 것이 보다 더 바람직하다. 한편, 본 발명에서는 상기 탄화물이 다량 형성될수록 유리하므로, 그 상한에 대해서 특별히 한정하지 않으나, 강에 포함되는 Ti, Nb, Mo의 함량을 고려하면, 0.2중량%를 초과하기는 어렵다.The hot-rolled steel sheet of the present invention preferably contains 0.05% by weight or more of carbides containing Ti, Nb, and Mo alone or in combination, and the carbides preferably have an average size of 20 nm or less. In this way, by forming a large amount of fine carbides having an average size of 20 nm or less at 0.05% by weight or more, an excellent strength improvement effect can be obtained without destruction of carbides. The fraction of the carbide is more preferably 0.07% by weight or more, and even more preferably 0.08% by weight or more. The average size of the carbide is more preferably 15 nm or less, and even more preferably 10 nm or less. On the other hand, in the present invention, the more the carbide is formed, the more advantageous it is, so the upper limit is not particularly limited, but considering the contents of Ti, Nb, and Mo included in the steel, it is difficult to exceed 0.2% by weight.
전술한 바와 같이 제공되는 본 발명의 열연강판은 항복강도(YS): 700MPa 이상, 인장강도(TS): 750MPa 이상 및 연신율(EL): 15%이상으로서 우수한 강도와 성형성을 확보할 수 있다. The hot-rolled steel sheet of the present invention provided as described above has yield strength (YS): 700 MPa or more, tensile strength (TS): 750 MPa or more, and elongation (EL): 15% or more, so that excellent strength and formability can be secured.
한편, 본 발명에서는 상기 열연강판을 이용하여 제조된 강관을 제공할 수 있다.Meanwhile, in the present invention, a steel pipe manufactured using the hot-rolled steel sheet may be provided.
본 발명의 강관은 항복강도(YS): 800MPa 이상, 인장강도(TS): 860MPa 이상, 연신율(EL): 10%이상으로서 우수한 강도와 성형성을 확보할 수 있다.The steel pipe of the present invention has yield strength (YS): 800 MPa or more, tensile strength (TS): 860 MPa or more, and elongation (EL): 10% or more, so that excellent strength and formability can be secured.
한편, 전조 가공시 강관의 두께 방향으로 균일하게 변형되어야 가공 중 응력집중에 의한 불량이 발생하지 않고 안정적인 전조 가공이 가능한데, 본 발명의 강관은 경도 편차가 15% 이하로서 균일한 경도를 확보하여 전조 가공에 유리한 장점이 있다. 상기 경도 편차는 강관의 표면으로부터 두께 방향으로 0.5mm, t/4, t/2 지점(t: 강관 두께)에서 측정된 각각의 경도값으로부터 [(최대경도값-최소경도값)/최대경도값×100]으로 정의될 수 있다.On the other hand, it is necessary to uniformly deform in the thickness direction of the steel pipe during rolling processing so that defects due to stress concentration do not occur during processing and stable rolling processing is possible. There are advantages to processing. The hardness deviation is from each hardness value measured at 0.5 mm, t / 4, t / 2 points (t: steel pipe thickness) in the thickness direction from the surface of the steel pipe [(maximum hardness value-minimum hardness value) / maximum hardness value ×100].
이하, 본 발명의 일 실시형태에 따른 열연강판의 제조방법에 대하여 설명한다.Hereinafter, a method for manufacturing a hot-rolled steel sheet according to an embodiment of the present invention will be described.
우선, 전술한 합금조성과 관계식 1 및 2를 만족하는 강 슬라브를 1150~1300℃의 온도 범위에서 재가열한다. 상기 강 슬라브를 1150~1300℃의 온도 범위에서 재가열하는 것은 합금조성 및 미세조직을 균일하게 하기 위함이다. 상기 재가열온도가 1150℃ 미만인 경우에는 슬라브에 형성된 석출물이 미고용되어 이후 공정에서 최적의 석출강화 효과를 얻을 수 없다. 또한, 재가열온도가 1300℃를 초과하는 경우에는 과도한 결정립 성장이 발생하여 목표로 하는 재질 및 품질을 확보하기 어렵다. 따라서, 상기 강 슬라브의 재가열온도는 1150~1300℃의 범위를 갖는 것이 바람직하다. 상기 재가열온도의 하한은 1170℃인 것이 보다 바람직하고, 1180℃인 것이 보다 더 바람직하며, 1200℃인 것이 가장 바람직하다. 상기 재가열온도의 상한은 1290℃인 것이 보다 바람직하고, 1270℃인 것이 보다 더 바람직하며, 1250℃인 것이 가장 바람직하다. First, a steel slab satisfying the aforementioned alloy composition and relational expressions 1 and 2 is reheated in a temperature range of 1150 to 1300 ° C. Reheating the steel slab at a temperature range of 1150 to 1300 ° C is to make the alloy composition and microstructure uniform. When the reheating temperature is less than 1150 ° C., the precipitate formed on the slab is not dissolved, so that the optimum precipitation strengthening effect cannot be obtained in the subsequent process. In addition, when the reheating temperature exceeds 1300 ° C., excessive crystal grain growth occurs, making it difficult to secure the target material and quality. Therefore, the reheating temperature of the steel slab is preferably in the range of 1150 to 1300 °C. The lower limit of the reheating temperature is more preferably 1170°C, even more preferably 1180°C, and most preferably 1200°C. The upper limit of the reheating temperature is more preferably 1290°C, even more preferably 1270°C, and most preferably 1250°C.
이후, 상기 재가열된 강 슬라브를 800~950℃의 온도 범위에서 마무리 열간 압연하여 열연강판을 얻는다. 상기 마무리 열간압연 온도가 800℃ 미만인 경우에는 오스테나이트 일부가 페라이트로 변태하여 최종적으로 얻어지는 결정립의 크기가 불균일해지며, 950℃를 초과하는 경우에는 스케일 결함 등이 발생할 수 있다. 따라서, 상기 마무리 열간압연 온도는 800~950℃의 범위를 갖는 것이 바람직하다. 상기 마무리 열간압연 온도의 하한은 820℃인 것이 보다 바람직하고, 825℃인 것이 보다 더 바람직하며, 850℃인 것이 가장 바람직하다. 상기 마무리 열간압연 온도의 상한은 940℃인 것이 보다 바람직하고, 920℃인 것이 보다 더 바람직하며, 900℃인 것이 가장 바람직하다. Thereafter, the reheated steel slab is finished hot-rolled at a temperature range of 800 to 950° C. to obtain a hot-rolled steel sheet. When the finish hot rolling temperature is less than 800 ° C, a portion of austenite is transformed into ferrite, and the finally obtained crystal grain size becomes non-uniform, and when it exceeds 950 ° C, scale defects and the like may occur. Therefore, the finish hot rolling temperature preferably has a range of 800 ~ 950 ℃. The lower limit of the finish hot rolling temperature is more preferably 820°C, even more preferably 825°C, and most preferably 850°C. The upper limit of the finish hot rolling temperature is more preferably 940°C, even more preferably 920°C, and most preferably 900°C.
이후, 상기 열연강판을 550~700℃의 온도 범위에서 권취한다. 상기 권취온도가 550℃ 미만인 경우에는 본 발명이 얻고자 하는 미세조직을 얻지 못할 뿐만 아니라, 탄화물 형성이 충분하지 않아 충분한 석출강화 효과를 얻을 수 없고, 700℃를 초과하는 경우에는 탄화물의 조대화가 일어나 목표하는 강도를 얻을 수 없다. 따라서, 상기 권취온도는 550~700℃의 범위를 갖는 것이 바람직하다. 상기 권취온도의 하한은 600℃인 것이 보다 바람직하고, 620℃인 것이 보다 더 바람직하며, 640℃인 것이 가장 바람직하다. 상기 권취온도의 상한은 680℃인 것이 보다 바람직하고, 665℃인 것이 보다 더 바람직하며, 650℃인 것이 가장 바람직하다. 한편, 상기 마무리 열간압연 후 권취시까지의 냉각은 런아웃 테이블에서 이루어질 수 있다.Thereafter, the hot-rolled steel sheet is wound in a temperature range of 550 to 700 °C. If the coiling temperature is less than 550 ° C., the microstructure desired by the present invention cannot be obtained, and sufficient precipitation strengthening effect cannot be obtained because carbide formation is not sufficient. I can't get up and get the intensity I'm aiming for. Therefore, the winding temperature is preferably in the range of 550 ~ 700 ℃. The lower limit of the coiling temperature is more preferably 600°C, even more preferably 620°C, and most preferably 640°C. The upper limit of the coiling temperature is more preferably 680°C, even more preferably 665°C, and most preferably 650°C. Meanwhile, cooling from the finish hot rolling to winding may be performed on a run-out table.
한편, 본 발명에서는 전술한 공정을 통해 열연강판을 얻은 뒤, 상기 열연강판을 조관함으로써 강관을 얻을 수 있다. 이 때, 상기 조관시 용접 방법으로는 전기저항용접(ERW) 등이 이용될 수 있다. 아울러, 본 발명에서는 상기 강관을 얻는 단계 후 상기 강관을 전조 가공하는 단계를 추가로 포함할 수 있다. Meanwhile, in the present invention, after obtaining a hot-rolled steel sheet through the above process, a steel pipe may be obtained by forming the hot-rolled steel sheet into a pipe. At this time, electric resistance welding (ERW) or the like may be used as a welding method when manufacturing the pipe. In addition, the present invention may further include the step of rolling the steel pipe after the step of obtaining the steel pipe.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for exemplifying the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1에 기재된 합금조성을 갖는 강 슬라브를 준비한 뒤, 하기 표 2에 기재된 조건으로 재가열, 마무리 열간압연 및 권취하여 2.8~6mm의 두께를 갖는 열연강판을 제조하였다. 이후, 이 제조된 열연강판을 조관하여 강관을 제조하였다. 이 때, 상기 조관시 일반적인 전봉강관 제조방법인 롤 성형과 전기저항용접을 이용하였으며, 소재의 두께(t)와 강관의 직경(D)에 따르는 조관 조건(t/D)은 14% 이상을 적용하였다. 이와 같이 제조된 열연강판 및 강관에 대하여 미세조직, 석출물 및 기계적 물성을 측정하였고, 강관에 대해서 추가적으로 두께방향 위치별 경도를 측정한 뒤, 그 결과를 하기 표 3 및 4에 나타내었다.After preparing a steel slab having an alloy composition shown in Table 1, reheating, finish hot rolling, and winding under the conditions shown in Table 2 below were performed to prepare a hot-rolled steel sheet having a thickness of 2.8 to 6 mm. Thereafter, the manufactured hot-rolled steel sheet was manufactured to manufacture a steel pipe. At this time, roll forming and electric resistance welding, which are common electrically welded steel pipe manufacturing methods, were used in the above pipe manufacturing, and the pipe manufacturing condition (t/D) according to the thickness (t) of the material and the diameter (D) of the steel pipe was applied at 14% or more. did The microstructure, precipitates, and mechanical properties were measured for the hot-rolled steel sheet and the steel pipe prepared as described above, and hardness was additionally measured for each position in the thickness direction of the steel pipe, and the results are shown in Tables 3 and 4 below.
미세조직의 종류 및 분율은 광학현미경(OM)을 사용하여 측정하였다. 또한, 페라이트 결정립 크기는 주사전자현미경(SEM)을 사용하여 촬영한 후 ASTM E 112의 Circular intercept 법을 활용하여 측정하였다.The type and fraction of microstructures were measured using an optical microscope (OM). In addition, the ferrite grain size was measured using the circular intercept method of ASTM E 112 after photographing using a scanning electron microscope (SEM).
석출물의 크기는 carbon replica 법을 이용하여 시편으로부터 석출물을 채취하고, 투과전자현미경(TEM)을 활용하여 측정하였다. 석출물의 분율은 잔사추출법을 활용하여 Ti, Nb, Mo의 함량을 측정함으로써 구하였다.The size of the precipitate was measured by collecting the precipitate from the specimen using the carbon replica method and using a transmission electron microscope (TEM). The fraction of the precipitate was obtained by measuring the contents of Ti, Nb, and Mo using the residue extraction method.
항복강도(YS), 인장강도(TS) 및 연신율(EL) KS B 0802 규격의 인장시험 방법으로 인장시험을 진행하여 측정하였다. 열연강판의 경우 KS B 0801규격의 5호 시험편으로 길이방향을 열연 압연방향에 맞추어 인장시편을 가공하였다. 또한, 강관의 경우 KS B 0801 규격의 11호 시험편을 사용하여 인장시험을 진행하였다.Yield strength (YS), tensile strength (TS) and elongation (EL) were measured by performing a tensile test according to the tensile test method of KS B 0802 standard. In the case of hot-rolled steel sheet, a No. 5 test piece of the KS B 0801 standard was machined in the longitudinal direction according to the hot-rolling direction. In addition, in the case of the steel pipe, a tensile test was performed using a No. 11 test piece of the KS B 0801 standard.
두께방향 위치별 경도는 강관의 외측 표면으로부터 두께 방향으로 0.5mm, t/4, t/2 지점(t: 강관 두께)에 대하여 비커스경도계를 활용하여 1kg 하중으로 측정하였다. 이 때, 각 위치에서 5지점을 측정하여 평균값을 구하였다. 또한, 하기 표 3에 기재된 경도 편차는 상기 위치별로 측정된 각각의 경도값으로부터 [(최대경도값-최소경도값)/최대경도값×100]으로 계산하였다.The hardness at each position in the thickness direction was measured with a 1 kg load using a Vickers hardness tester at 0.5 mm, t/4, and t/2 points (t: steel pipe thickness) in the thickness direction from the outer surface of the steel pipe. At this time, 5 points were measured at each location and the average value was obtained. In addition, the hardness deviation described in Table 3 below was calculated as [(maximum hardness value-minimum hardness value) / maximum hardness value × 100] from each hardness value measured for each location.
강종No.Steel grade No. 합금조성(중량%)Alloy composition (% by weight)
CC SiSi MnMn PP SS TiTi NbNb MoMo NN 식 1Equation 1 식 2Equation 2
발명강1invention steel 1 0.06990.0699 0.0120.012 1.6681.668 0.01380.0138 0.00380.0038 0.09290.0929 0.0410.041 0.0490.049 0.0030.003 0.002890.00289 0.002940.00294
발명강2invention steel 2 0.09890.0989 0.0150.015 1.6921.692 0.01340.0134 0.00320.0032 0.08950.0895 0.0380.038 0.0510.051 0.0030.003 0.002800.00280 0.005440.00544
발명강3invention steel 3 0.0580.058 0.0130.013 1.7021.702 0.01380.0138 0.00280.0028 0.0860.086 0.0410.041 0.0540.054 0.0030.003 0.002800.00280 0.002040.00204
발명강4Invention Steel 4 0.0710.071 0.0150.015 1.8921.892 0.01320.0132 0.00420.0042 0.1030.103 0.040.04 0.0520.052 0.0030.003 0.003120.00312 0.002800.00280
발명강5invention steel 5 0.0740.074 0.0130.013 1.5251.525 0.01330.0133 0.00420.0042 0.09890.0989 0.0380.038 0.0540.054 0.0030.003 0.003030.00303 0.003140.00314
발명강6invention steel 6 0.08460.0846 0.0120.012 1.7251.725 0.01330.0133 0.0030.003 0.1410.141 0.050.05 0.0440.044 0.0030.003 0.003930.00393 0.003120.00312
발명강7invention steel 7 0.08620.0862 0.0120.012 1.7421.742 0.01350.0135 0.00380.0038 0.0520.052 0.0520.052 0.0410.041 0.0030.003 0.002070.00207 0.005110.00511
발명강8invention steel 8 0.06340.0634 0.0130.013 1.6961.696 0.01380.0138 0.00410.0041 0.0690.069 0.09510.0951 0.0640.064 0.0040.004 0.003130.00313 0.002160.00216
발명강9invention steel 9 0.06530.0653 0.0140.014 1.6671.667 0.01450.0145 0.00420.0042 0.0820.082 0.0320.032 0.0650.065 0.0040.004 0.002730.00273 0.002710.00271
발명강10invention steel 10 0.0680.068 0.0220.022 1.7121.712 0.01750.0175 0.00350.0035 0.10110.1011 0.0430.043 0.0920.092 0.0030.003 0.003530.00353 0.002140.00214
발명강11Invention Steel 11 0.0680.068 0.0220.022 1.7121.712 0.01750.0175 0.00350.0035 0.10110.1011 0.0430.043 0.0330.033 0.0030.003 0.002910.00291 0.002750.00275
비교강1comparative steel 1 0.0680.068 0.0120.012 1.7021.702 0.01510.0151 0.00480.0048 0.0480.048 0.0180.018 0.0420.042 0.0040.004 0.001630.00163 0.004040.00404
비교강2comparative steel 2 0.0720.072 0.0130.013 1.6821.682 0.01310.0131 0.00350.0035 0.160.16 0.0410.041 0.0490.049 0.0030.003 0.004280.00428 0.001720.00172
비교강3comparative lecture 3 0.07020.0702 0.0150.015 1.4351.435 0.01110.0111 0.00420.0042 0.10110.1011 0.040.04 0.0580.058 0.0030.003 0.003140.00314 0.002810.00281
비교강4comparative lecture 4 0.0730.073 0.0140.014 1.6981.698 0.0110.011 0.00420.0042 0.09560.0956 0.120.12 0.0510.051 0.0030.003 0.003810.00381 0.002740.00274
비교강5comparative steel 5 0.0430.043 0.0130.013 1.7031.703 0.01130.0113 0.00340.0034 0.1020.102 0.0410.041 0.0530.053 0.0030.003 0.003120.00312 0.000470.00047
비교강6comparative steel 6 0.1150.115 0.0180.018 1.6881.688 0.01420.0142 0.00440.0044 0.10110.1011 0.040.04 0.0480.048 0.0030.003 0.003040.00304 0.006550.00655
비교강7comparative steel 7 0.09890.0989 0.0130.013 1.1721.172 0.01130.0113 0.00330.0033 0.0620.062 0.0350.035 0.0320.032 0.0040.004 0.002000.00200 0.006240.00624
비교강8comparative river 8 0.0820.082 0.0140.014 1.551.55 0.01350.0135 0.00420.0042 0.1230.123 0.0720.072 0.0820.082 0.0030.003 0.004190.00419 0.002640.00264
[식 1] (Ti/48 + Mo/96 + Nb/93)
[식 2] (C/12) - (Ti/48 + Mo/96 + Nb/93)
[Equation 1] (Ti/48 + Mo/96 + Nb/93)
[Equation 2] (C/12) - (Ti/48 + Mo/96 + Nb/93)
구분division 강종No.Steel grade No. 재가열온도(℃)Reheat temperature (℃) 마무리 열간압연온도(℃)Finish hot rolling temperature (℃) 권취온도(℃)Winding temperature (℃)
발명예1Invention example 1 발명강1invention steel 1 12141214 892892 612612
발명예2Invention example 2 발명강1invention steel 1 11561156 888888 614614
발명예3Invention example 3 발명강1invention steel 1 12081208 806806 624624
발명예4Invention example 4 발명강1invention steel 1 12311231 945945 631631
발명예5Invention Example 5 발명강1invention steel 1 12101210 878878 552552
발명예6Example 6 발명강1invention steel 1 12121212 869869 692692
비교예1Comparative Example 1 발명강1invention steel 1 11211121 891891 614614
비교예2Comparative Example 2 발명강1invention steel 1 12131213 789789 621621
비교예3Comparative Example 3 발명강1invention steel 1 12151215 972972 622622
비교예4Comparative Example 4 발명강1invention steel 1 12081208 885885 518518
비교예5Comparative Example 5 발명강1invention steel 1 12091209 886886 711711
발명예7Example 7 발명강2invention steel 2 12101210 895895 615615
발명예8Invention Example 8 발명강3invention steel 3 12051205 900900 612612
발명예9Inventive Example 9 발명강4Invention Steel 4 12141214 895895 613613
발명예10Inventive Example 10 발명강5invention steel 5 12221222 873873 624624
발명예11Inventive Example 11 발명강6invention steel 6 12051205 865865 618618
발명예12Inventive Example 12 발명강7invention steel 7 11981198 857857 614614
발명예13Inventive Example 13 발명강8invention steel 8 12021202 858858 611611
발명예14Inventive Example 14 발명강9invention steel 9 11951195 868868 608608
발명예15Inventive Example 15 발명강10invention steel 10 11941194 884884 603603
발명예16Inventive Example 16 발명강11Invention Steel 11 12131213 868868 603603
비교예6Comparative Example 6 비교강1comparative steel 1 12111211 890890 620620
비교예7Comparative Example 7 비교강2comparative steel 2 12011201 912912 608608
비교예8Comparative Example 8 비교강3comparative lecture 3 12051205 968968 612612
비교예9Comparative Example 9 비교강4comparative lecture 4 12111211 867867 608608
비교예10Comparative Example 10 비교강5comparative steel 5 12051205 901901 621621
비교예11Comparative Example 11 비교강6comparative steel 6 12091209 895895 612612
비교예12Comparative Example 12 비교강7comparative steel 7 12101210 876876 618618
비교예13Comparative Example 13 비교강8comparative river 8 12051205 865865 582582
구분division 미세조직microstructure Ti, Nb, Mo를 단독 혹은 복합으로 함유하는 탄화물Carbides containing Ti, Nb, Mo alone or in combination
페라이트
(면적%)
ferrite
(area%)
잔부
(면적%)
balance
(area%)
페라이트 결정립 크기(㎛)Ferrite grain size (㎛) 분율(중량%)Fraction (% by weight) 평균 크기(nm)average size (nm)
발명예1Invention example 1 98.998.9 P:1.1P:1.1 8.88.8 0.1070.107 5.65.6
발명예2Invention example 2 99.099.0 P:1.0P:1.0 8.58.5 0.0950.095 5.55.5
발명예3Invention example 3 97.297.2 P:2.8P:2.8 6.76.7 0.1230.123 10.810.8
발명예4Invention example 4 95.995.9 P:4.1P:4.1 13.513.5 0.1220.122 6.26.2
발명예5Invention example 5 92.892.8 B:6.1, M:1.1B:6.1, M:1.1 7.87.8 0.0760.076 4.84.8
발명예6Example 6 90.390.3 P : 9.7P: 9.7 7.97.9 0.1280.128 7.57.5
비교예1Comparative Example 1 98.898.8 P:1.2P:1.2 8.38.3 0.0460.046 6.26.2
비교예2Comparative Example 2 97.597.5 P:2.5P:2.5 6.56.5 0.1020.102 28.428.4
비교예3Comparative Example 3 98.298.2 P:1.8P:1.8 15.315.3 0.0930.093 6.86.8
비교예4Comparative Example 4 86.386.3 B:12.5, M:1.2B:12.5, M:1.2 8.08.0 0.0440.044 5.55.5
비교예5Comparative Example 5 86.886.8 P:13.2P:13.2 10.310.3 0.1060.106 23.123.1
발명예7Example 7 91.291.2 P:8.8P:8.8 8.88.8 0.1110.111 14.214.2
발명예8Invention Example 8 99.299.2 P:0.8P:0.8 9.29.2 0.0920.092 4.84.8
발명예9Inventive Example 9 99.099.0 P:1.0P:1.0 9.89.8 0.0870.087 7.07.0
발명예10Inventive Example 10 98.598.5 P:1.5P:1.5 9.79.7 0.1140.114 4.54.5
발명예11Inventive Example 11 98.098.0 P:2.0P:2.0 7.57.5 0.1410.141 18.218.2
발명예12Inventive Example 12 98.298.2 P:1.8P:1.8 8.38.3 0.0720.072 5.95.9
발명예13Inventive Example 13 98.198.1 P:1.9P:1.9 5.25.2 0.1150.115 6.86.8
발명예14Inventive Example 14 99.599.5 P:0.5P:0.5 9.29.2 0.1060.106 7.27.2
발명예15Inventive Example 15 96.896.8 B:2.1, RA:1.1B:2.1, RA:1.1 8.58.5 0.1100.110 3.83.8
발명예16Inventive Example 16 98.298.2 P:1.8P:1.8 9.89.8 0.1010.101 6.76.7
비교예6Comparative Example 6 97.897.8 P:2.2P:2.2 10.210.2 0.0460.046 6.56.5
비교예7Comparative Example 7 97.597.5 P:2.5P:2.5 8.18.1 0.1560.156 52.552.5
비교예8Comparative Example 8 99.599.5 P:0.5P:0.5 14.614.6 0.0490.049 9.89.8
비교예9Comparative Example 9 98.298.2 P:1.8P:1.8 4.84.8 0.1310.131 51.351.3
비교예10Comparative Example 10 99.299.2 P:0.8P:0.8 9.29.2 0.0590.059 6.66.6
비교예11Comparative Example 11 87.787.7 P:12.3P:12.3 9.59.5 0.1130.113 22.122.1
비교예12Comparative Example 12 90.590.5 P:9.5P:9.5 7.57.5 0.0470.047 6.76.7
비교예13Comparative Example 13 94.894.8 P:5.2P:5.2 6.96.9 0.1750.175 48.248.2
P: 펄라이트, RA: 잔류 오스테나이트, B: 베이나이트, M: 마르텐사이트P: pearlite, RA: retained austenite, B: bainite, M: martensite
구분division 열연강판hot rolled steel 강관steel pipe
YS
(MPa)
YS
(MPa)
TS
(MPa)
TS
(MPa)
EL
(%)
EL
(%)
YS
(MPa)
YS
(MPa)
TS
(MPa)
TS
(MPa)
EL
(%)
EL
(%)
두께방향 위치별 경도(Hv)Hardness (Hv) by location in the thickness direction 경도
편차
(%)
Hardness
Deviation
(%)
표면으로부터 0.5mm0.5mm from surface t/4t/4 t/2t/2
발명예1Invention example 1 733733 793793 22.422.4 867867 922922 1414 267267 288288 296296 1010
발명예2Invention Example 2 712712 769769 23.123.1 825825 882882 1414 273273 275275 297297 88
발명예3Invention Example 3 717717 760760 20.320.3 835835 878878 1313 268268 274274 282282 55
발명예4Invention Example 4 734734 797797 21.521.5 872872 922922 1414 272272 290290 288288 66
발명예5Invention Example 5 715715 762762 22.422.4 847847 890890 1414 268268 275275 276276 33
발명예6Example 6 712712 775775 21.821.8 821821 894894 1414 268268 279279 288288 77
비교예1Comparative Example 1 679679 735735 23.323.3 789789 852852 1515 257257 267267 264264 44
비교예2Comparative Example 2 651651 743743 24.124.1 774774 848848 1515 260260 265265 267267 33
비교예3Comparative Example 3 671671 735735 22.322.3 788788 842842 1414 251251 263263 265265 55
비교예4Comparative Example 4 672672 752752 21.121.1 781781 862862 1414 255255 272272 277277 88
비교예5Comparative Example 5 685685 760760 19.119.1 792792 876876 1313 255255 273273 276276 88
발명예7Invention Example 7 711711 798798 20.120.1 838838 932932 1414 273273 291291 294294 77
발명예8Invention Example 8 705705 760760 24.424.4 824824 877877 1515 268268 275275 272272 33
발명예9Inventive Example 9 736736 807807 21.421.4 843843 911911 1414 271271 285285 278278 55
발명예10Inventive Example 10 711711 761761 19.419.4 829829 875875 1515 268268 273273 268268 22
발명예11Inventive Example 11 781781 853853 18.418.4 935935 10121012 1313 298298 315315 311311 55
발명예12Inventive Example 12 706706 759759 23.123.1 816816 861861 1414 254254 265265 268268 55
발명예13Inventive Example 13 738738 792792 19.519.5 880880 906906 1313 272272 288288 292292 77
발명예14Inventive Example 14 711711 761761 21.521.5 836836 878878 1414 260260 272272 276276 66
발명예15Inventive Example 15 754754 812812 22.322.3 868868 911911 1515 271271 284284 284284 55
발명예16Inventive Example 16 714714 772772 22.322.3 851851 885885 1414 264264 275275 272272 44
비교예6Comparative Example 6 626626 728728 24.624.6 745745 844844 1717 255255 264264 268268 55
비교예7Comparative Example 7 679679 746746 23.223.2 786786 856856 1616 257257 269269 266266 44
비교예8Comparative Example 8 692692 767767 23.123.1 782782 815815 1515 252252 268268 275275 88
비교예9Comparative Example 9 675675 772772 24.024.0 781781 878878 1616 265265 274274 285285 77
비교예10Comparative Example 10 682682 745745 28.228.2 782782 848848 2020 255255 268268 274274 77
비교예11Comparative Example 11 684684 788788 18.318.3 782782 887887 1313 258258 315315 278278 1818
비교예12Comparative Example 12 648648 736736 24.824.8 756756 848848 1717 251251 304304 272272 1717
비교예13Comparative Example 13 681681 742742 20.220.2 787787 851851 1414 259259 272272 268268 55
상기 표 1 내지 4로부터 알 수 있듯이, 본 발명이 제안하는 합금조성, 관계식 1 및 2와 제조조건을 만족하는 발명예 1 내지 16의 경우에는 본 발명이 얻고자 하는 미세조직 및 석출물을 확보함에 따라 우수한 기계적 물성을 가질 뿐만 아니라, 강관의 두께방향 위치별 경도의 편차 또한 낮은 수준임을 알 수 있다.As can be seen from Tables 1 to 4, in the case of Inventive Examples 1 to 16 satisfying the alloy composition, relational expressions 1 and 2 and manufacturing conditions proposed by the present invention, the microstructure and precipitate to be obtained by the present invention are secured In addition to having excellent mechanical properties, it can be seen that the variation of hardness for each position in the thickness direction of the steel pipe is also at a low level.
비교예 1의 경우에는 본 발명의 합금조성은 만족하나, 강 슬라브 재가열온도가 낮음에 따라 석출강화원소 재고용이 부족하여 충분한 석출강화효과를 얻지 못하였다. 이로 인해, 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 1, the alloy composition of the present invention was satisfied, but due to the low reheating temperature of the steel slab, the precipitation hardening element was not re-dissolved, so a sufficient precipitation hardening effect was not obtained. For this reason, it was not possible to secure high strength, which is the target of the present invention.
비교예 2의 경우에는 본 발명의 합금조성은 만족하나, 마무리 열간압연온도가 낮음에 따라 압연 중 조대한 석출물의 형성으로 인해 충분한 석출강화효과를 얻지 못하였다. 이로 인해, 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 2, the alloy composition of the present invention was satisfied, but due to the formation of coarse precipitates during rolling according to the low finish hot rolling temperature, sufficient precipitation strengthening effect was not obtained. For this reason, it was not possible to secure high strength, which is the target of the present invention.
비교예 3의 경우에는 본 발명의 합금조성은 만족하나, 마무리 열간압연온도가 높음에 따라 결정립이 조대화되어 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 3, the alloy composition of the present invention was satisfied, but the crystal grains were coarsened as the finish hot rolling temperature was high, so that the high strength targeted by the present invention was not secured.
비교예 4의 경우에는 본 발명의 합금조성은 만족하나, 권취온도가 낮음에 따라 본 발명이 얻고자 하는 미세조직을 얻지 못하였을 뿐만 아니라, 충분한 석출강화효과를 얻지 못하여 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 4, the alloy composition of the present invention is satisfied, but due to the low coiling temperature, the microstructure to be obtained by the present invention is not obtained, and sufficient precipitation strengthening effect is not obtained. could not be obtained.
비교예 5의 경우에는 본 발명의 합금조성은 만족하나, 권취온도가 높음에 따라 조대한 탄화물이 형성되어 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 5, the alloy composition of the present invention was satisfied, but as the coiling temperature was high, coarse carbides were formed, so that the high strength targeted by the present invention was not secured.
비교예 6의 경우에는 Ti 및 Nb의 함량이 낮음에 따라 충분한 석출강화효과를 얻지 못하여 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 6, since the content of Ti and Nb was low, sufficient precipitation strengthening effect was not obtained, and thus high strength, which is the target of the present invention, was not secured.
비교예 7의 경우에는 Ti 함량이 높음에 따라 조대한 탄화물의 형성으로 인해 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 7, the high strength targeted by the present invention was not secured due to the formation of coarse carbides as the Ti content was high.
비교예 8의 경우에는 Mn 함량이 낮음에 따라 고용강화 효과가 낮고, 냉각 중 상변태 조건의 변화로 인해 충분한 석출강화효과를 얻지 못하여 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 8, the solid solution strengthening effect was low according to the low Mn content, and the high strength targeted by the present invention was not secured because a sufficient precipitation strengthening effect was not obtained due to a change in the phase transformation condition during cooling.
비교예 9의 경우에는 Nb 함량이 높음에 따라 조대한 탄화물의 형성으로 인해 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 9, the high strength targeted by the present invention was not secured due to the formation of coarse carbides as the Nb content was high.
비교예 10의 경우에는 관계식 2를 만족하지 않을 뿐만 아니라 C 함량이 낮음에 따라 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 10, as well as not satisfying the relational expression 2, the high strength targeted by the present invention was not secured due to the low C content.
비교예 11의 경우에는 C 함량이 높음에 따라 고용 C 함량이 높아져 펄라이트 함량이 증가하여 본 발명이 얻고자 하는 미세조직을 얻지 못하였고, 관계식 2를 만족하지 않음에 따라 본 발명이 목표로 하는 고강도를 확보하지 못하였을 뿐만 아니라 강관의 두께방향 위치별 경도의 편차 또한 커졌음을 알 수 있다.In the case of Comparative Example 11, as the C content increased, the dissolved C content increased and the pearlite content increased, so that the microstructure to be obtained by the present invention was not obtained, and the relational expression 2 was not satisfied. It can be seen that not only was not secured, but also the deviation of hardness for each position in the thickness direction of the steel pipe also increased.
비교예 12의 경우에는 관계식 2를 만족하지 않음에 따라 본 발명이 제안하는 석출물과 고용 C의 적절한 균형을 얻지 못하여 고강도를 확보하지 못하였을 뿐만 아니라 강관의 두께방향 위치별 경도의 편차가 커졌음을 알 수 있다.In the case of Comparative Example 12, since relational expression 2 was not satisfied, it was not possible to obtain an appropriate balance between the precipitate and solid solution C proposed by the present invention, so that high strength was not secured, and the deviation of hardness by position in the thickness direction of the steel pipe increased. Able to know.
비교예 13의 경우에는 관계식 1을 만족하지 않음에 따라 충분한 석출강화효과를 얻지 못하여 본 발명이 목표로 하는 고강도를 확보하지 못하였다.In the case of Comparative Example 13, since the relational expression 1 was not satisfied, a sufficient precipitation strengthening effect was not obtained, and thus high strength, which is the target of the present invention, was not secured.

Claims (9)

  1. 중량%로, C: 0.05~0.1%, Si: 0.1% 이하(0%는 제외), Mn: 1.5~1.9%, Ti: 0.05~0.15%, Nb: 0.03~0.1%, Mo: 0.03~0.1%, P: 0.02% 이하(0%는 제외), S: 0.02% 이하(0%는 제외), N: 0.01% 이하(0%는 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고,In % by weight, C: 0.05 to 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 to 1.9%, Ti: 0.05 to 0.15%, Nb: 0.03 to 0.1%, Mo: 0.03 to 0.1% , P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the remainder including Fe and unavoidable impurities,
    하기 관계식 1 및 2를 만족하며,Satisfies the following relations 1 and 2,
    면적%로, 90% 이상의 페라이트를 포함하는 미세조직을 가지고,In terms of area%, it has a microstructure containing more than 90% ferrite,
    상기 페라이트의 결정립은 15㎛ 이하의 평균 크기를 가지며,The crystal grains of the ferrite have an average size of 15 μm or less,
    Ti, Nb, Mo를 단독 혹은 복합으로 함유하는 탄화물을 0.05중량% 이상 포함하고,Containing 0.05% by weight or more of carbides containing Ti, Nb, Mo alone or in combination,
    상기 탄화물은 20nm 이하의 평균 크기를 가지는 지반보강용 열연강판.The carbide is a hot-rolled steel sheet for ground reinforcement having an average size of 20 nm or less.
    [관계식 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004[Relational Expression 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004
    [관계식 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006[Relational Expression 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006
    (단, 상기 관계식 1 및 2에서 각 합금원소의 함량은 중량%를 의미함.)(However, in the relational expressions 1 and 2, the content of each alloy element means % by weight.)
  2. 청구항 1에 있어서,The method of claim 1,
    상기 미세조직은 잔부 조직으로서 펄라이트, 잔류 오스테나이트, 베이나이트 및 마르텐사이트 중 하나 이상을 포함하는 지반보강용 열연강판.The microstructure is a hot-rolled steel sheet for ground reinforcement containing at least one of pearlite, retained austenite, bainite and martensite as a remainder structure.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 열연강판은 항복강도(YS): 700MPa 이상, 인장강도(TS): 750MPa 이상 및 연신율(EL): 15%이상인 지반보강용 열연강판.The hot-rolled steel sheet has yield strength (YS): 700 MPa or more, tensile strength (TS): 750 MPa or more, and elongation (EL): hot-rolled steel sheet for ground reinforcement of 15% or more.
  4. 청구항 1 내지 3 중 어느 한 항에 기재된 열연강판을 이용하여 제조된 지반보강용 강관.A steel pipe for ground reinforcement manufactured using the hot-rolled steel sheet according to any one of claims 1 to 3.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 강관은 항복강도(YS): 800MPa 이상, 인장강도(TS): 860MPa 이상 및 연신율(EL): 10%이상인 지반보강용 강관.The steel pipe is a steel pipe for ground reinforcement having a yield strength (YS): 800 MPa or more, tensile strength (TS): 860 MPa or more, and elongation (EL): 10% or more.
  6. 청구항 4에 있어서,The method of claim 4,
    상기 강관은 경도 편차가 15% 이하인 지반보강용 강관.The steel pipe is a steel pipe for ground reinforcement having a hardness deviation of 15% or less.
    (단, 상기 경도 편차는 강관의 표면으로부터 두께 방향으로 0.5mm, t/4, t/2 지점(t: 강관 두께)에서 측정된 각각의 경도값으로부터 [(최대경도값-최소경도값)/최대경도값×100]으로 정의됨.)(However, the hardness deviation is from each hardness value measured at 0.5 mm, t / 4, t / 2 points (t: steel pipe thickness) in the thickness direction from the surface of the steel pipe [(maximum hardness value-minimum hardness value) / It is defined as the maximum hardness value × 100].)
  7. 중량%로, C: 0.05~0.1%, Si: 0.1% 이하(0%는 제외), Mn: 1.5~1.9%, Ti: 0.05~0.15%, Nb: 0.03~0.1%, Mo: 0.03~0.1%, P: 0.02% 이하(0%는 제외), S: 0.02% 이하(0%는 제외), N: 0.01% 이하(0%는 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1 및 2를 만족하는 강 슬라브를 1150~1300℃의 온도 범위에서 재가열하는 단계;In % by weight, C: 0.05 to 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 to 1.9%, Ti: 0.05 to 0.15%, Nb: 0.03 to 0.1%, Mo: 0.03 to 0.1% , P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the remainder including Fe and unavoidable impurities, the following relational expression 1 and reheating the steel slabs satisfying 2 in a temperature range of 1150 to 1300° C.;
    상기 재가열된 강 슬라브를 800~950℃의 온도 범위에서 마무리 열간 압연하여 열연강판을 얻는 단계; 및 Obtaining a hot-rolled steel sheet by finish hot-rolling the reheated steel slab at a temperature range of 800 to 950° C.; and
    상기 열연강판을 550~700℃의 온도 범위에서 권취하는 단계;를 포함하는 지반보강용 열연강판의 제조방법.Method for manufacturing a hot-rolled steel sheet for ground reinforcement comprising the step of winding the hot-rolled steel sheet in a temperature range of 550 to 700 ° C.
    [관계식 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004[Relational Expression 1] 0.002 ≤ (Ti/48 + Mo/96 + Nb/93) ≤ 0.004
    [관계식 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006[Relational Expression 2] 0.002 ≤ (C/12) - (Ti/48 + Mo/96 + Nb/93) ≤ 0.006
    (단, 상기 관계식 1 및 2에서 각 합금원소의 함량은 중량%를 의미함.)(However, in the relational expressions 1 and 2, the content of each alloy element means % by weight.)
  8. 청구항 7에 기재된 제조방법에 의해 제조된 열연강판을 조관하여 강관을 얻는 단계를 포함하는 지반보강용 강관의 제조방법.A method for manufacturing a steel pipe for ground reinforcement comprising the step of obtaining a steel pipe by manufacturing a hot-rolled steel sheet manufactured by the manufacturing method according to claim 7.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 강관을 얻는 단계 후, 상기 강관을 전조 가공하는 단계를 추가로 포함하는 지반보강용 강관의 제조방법.After the step of obtaining the steel pipe, the manufacturing method of the steel pipe for ground reinforcement further comprising the step of rolling the steel pipe.
PCT/KR2022/019505 2021-12-16 2022-12-02 Hot rolled steel sheet for ground reinforcement and steel pipe for ground reinforcement, and manufacturing methods thereof WO2023113327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0180819 2021-12-16
KR1020210180819A KR20230091585A (en) 2021-12-16 2021-12-16 Hot rolled steel sheet for ground reinforcement and steel pipe for ground reinforcement having exellent strength and formability and method of manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2023113327A1 true WO2023113327A1 (en) 2023-06-22

Family

ID=86773104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019505 WO2023113327A1 (en) 2021-12-16 2022-12-02 Hot rolled steel sheet for ground reinforcement and steel pipe for ground reinforcement, and manufacturing methods thereof

Country Status (2)

Country Link
KR (1) KR20230091585A (en)
WO (1) WO2023113327A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354973A1 (en) * 2002-04-09 2003-10-22 Nippon Steel Corporation High-strength steel sheet and high-strength pipe excellent in deformability and method for producing the same
JP2007146275A (en) * 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method
KR20130058074A (en) * 2011-08-23 2013-06-03 신닛테츠스미킨 카부시키카이샤 Thick-walled electric-resistance-welded steel pipe and process for producing same
KR20150075306A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Ultra-high strength hot-rolled steel sheet with excellent in bending workability, and method for producing the same
KR101715524B1 (en) * 2015-11-25 2017-03-22 현대제철 주식회사 Non-heated type hot-rolled steel sheet and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354973A1 (en) * 2002-04-09 2003-10-22 Nippon Steel Corporation High-strength steel sheet and high-strength pipe excellent in deformability and method for producing the same
JP2007146275A (en) * 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method
KR20130058074A (en) * 2011-08-23 2013-06-03 신닛테츠스미킨 카부시키카이샤 Thick-walled electric-resistance-welded steel pipe and process for producing same
KR20150075306A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Ultra-high strength hot-rolled steel sheet with excellent in bending workability, and method for producing the same
KR101715524B1 (en) * 2015-11-25 2017-03-22 현대제철 주식회사 Non-heated type hot-rolled steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
KR20230091585A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2017111510A1 (en) Non-magnetic steel material having excellent hot workability and manufacturing method therefor
WO2020067685A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2019125083A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2018110853A1 (en) High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2021125621A1 (en) High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
WO2018004297A1 (en) High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
WO2018117482A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2018117700A1 (en) High-strength high-toughness thick steel sheet and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2018080108A1 (en) High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2018117496A1 (en) Steel for pressure vessels with excellent resistance to high-temperature tempering heat treatment and post-weld heat treatment and manufacturing method therefor
WO2018117606A1 (en) Hot dip coated steel having excellent processability, and manufacturing method therefor
WO2017111443A1 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
WO2017104995A1 (en) High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2019132179A1 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2017111303A1 (en) High-strength hot-rolled steel sheet with excellent bending workability and production method therefor
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907796

Country of ref document: EP

Kind code of ref document: A1