WO2023113327A1 - Tôle d'acier laminée à chaud pour renforcer un sol et tuyau en acier pour renforcer un sol, et procédés de fabrication correspondant - Google Patents

Tôle d'acier laminée à chaud pour renforcer un sol et tuyau en acier pour renforcer un sol, et procédés de fabrication correspondant Download PDF

Info

Publication number
WO2023113327A1
WO2023113327A1 PCT/KR2022/019505 KR2022019505W WO2023113327A1 WO 2023113327 A1 WO2023113327 A1 WO 2023113327A1 KR 2022019505 W KR2022019505 W KR 2022019505W WO 2023113327 A1 WO2023113327 A1 WO 2023113327A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
hot
ground reinforcement
steel sheet
Prior art date
Application number
PCT/KR2022/019505
Other languages
English (en)
Korean (ko)
Inventor
권윤익
김학준
박경수
서석종
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023113327A1 publication Critical patent/WO2023113327A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • B21B21/02Rollers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a hot-rolled steel sheet and steel pipe for ground reinforcement having excellent strength and formability and a manufacturing method thereof.
  • the structure Although it is easy to obtain high strength by using a low-temperature structure such as bainite or martensite, the structure has the disadvantage of impairing the physical properties of the welded part by causing a softening of the welded part due to a slow cooling rate after welding.
  • One aspect of the present invention is to provide a hot-rolled steel sheet and steel pipe for ground reinforcement with excellent strength and formability and a manufacturing method thereof.
  • C 0.05 ⁇ 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 ⁇ 1.9%, Ti: 0.05 ⁇ 0.15%, Nb: 0.03 ⁇ 0.1% , Mo: 0.03 ⁇ 0.1%, P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the rest is Fe and unavoidable impurities It contains, satisfies the following relational expressions 1 and 2, has a microstructure containing 90% or more of ferrite in area%, the crystal grains of the ferrite have an average size of 15 ⁇ m or less, and Ti, Nb, Mo alone or 0.05% by weight or more of carbides contained in a composite, and the carbides provide a hot-rolled steel sheet for ground reinforcement having excellent strength and formability having an average size of 20 nm or less.
  • Another embodiment of the present invention provides a steel pipe for ground reinforcement having excellent strength and formability manufactured using the hot-rolled steel sheet.
  • Another embodiment of the present invention is, in weight percent, C: 0.05 to 0.1%, Si: 0.1% or less (excluding 0%), Mn: 1.5 to 1.9%, Ti: 0.05 to 0.15%, Nb: 0.03 to 0.1 %, Mo: 0.03 ⁇ 0.1%, P: 0.02% or less (excluding 0%), S: 0.02% or less (excluding 0%), N: 0.01% or less (excluding 0%), the rest is Fe and unavoidable Reheating a steel slab containing impurities and satisfying the following relations 1 and 2 in a temperature range of 1150 to 1300 ° C; Obtaining a hot-rolled steel sheet by finish hot-rolling the reheated steel slab at a temperature range of 800 to 950° C.; and winding the hot-rolled steel sheet in a temperature range of 550 to 700° C.
  • Another embodiment of the present invention provides a method for manufacturing a steel pipe for ground reinforcement with excellent strength and formability, including the step of obtaining a steel pipe by manufacturing a hot-rolled steel sheet manufactured by the above manufacturing method.
  • the content of C is preferably in the range of 0.05 to 0.1%.
  • the lower limit of the C content is more preferably 0.06%, even more preferably 0.065%, and most preferably 0.07%.
  • the upper limit of the C content is more preferably 0.09%, even more preferably 0.085%, and most preferably 0.08%.
  • Si 0.1% or less (excluding 0%)
  • Si is not only useful for deoxidation of steel, but also effective for securing strength through solid solution strengthening. However, when the Si content exceeds 0.1%, silicon oxide is formed, which makes plating difficult. Therefore, the Si content is preferably 0.1% or less.
  • the Si content is more preferably 0.08% or less, more preferably 0.065% or less, and most preferably 0.05% or less.
  • Mn is added to secure the solid solution strengthening effect and the hardenability of the welded part during cooling after welding. In order to obtain the above effects, it is preferable that 1.5% or more is added. However, if it exceeds 1.9%, Mn segregation increases and defects and material deviations may occur during continuous casting. Therefore, the Mn content is preferably in the range of 1.5 to 1.9%.
  • the lower limit of the Mn content is more preferably 1.55%, even more preferably 1.6%, and most preferably 1.65%.
  • the upper limit of the Mn content is more preferably 1.85%, even more preferably 1.8%, and most preferably 1.75%.
  • Ti is added for precipitation strengthening effect and grain coarsening suppression.
  • the Ti content is preferably in the range of 0.05 to 0.15%.
  • the lower limit of the Ti content is more preferably 0.07%, even more preferably 0.08%, and most preferably 0.09%.
  • the upper limit of the Ti content is more preferably 0.14%, more preferably 0.13%, and most preferably 0.12%.
  • Nb is added to obtain a finer grain size by inhibiting recrystallization during hot rolling in addition to the precipitation strengthening effect.
  • the Nb content is preferably in the range of 0.03 to 0.1%.
  • the lower limit of the Nb content is more preferably 0.035%, even more preferably 0.038%, and most preferably 0.04%.
  • the upper limit of the Nb content is more preferably 0.08%, more preferably 0.07%, and most preferably 0.06%.
  • Mo is added to suppress precipitate growth. In addition, by delaying the formation of ferrite so that ferrite is formed at a low temperature, it contributes to crystal grain refinement. When the content of Mo is less than 0.03%, it may be difficult to sufficiently obtain the above effect. On the other hand, if it exceeds 0.1%, economic feasibility may decrease. Therefore, the Mo content is preferably in the range of 0.03 to 0.1%.
  • the lower limit of the Mo content is more preferably 0.035%, more preferably 0.04%, and most preferably 0.045%.
  • the upper limit of the Mo content is more preferably 0.09%, even more preferably 0.08%, and most preferably 0.07%.
  • P as an impurity element, is segregated at grain boundaries and deteriorates toughness, it is preferable not to include P as much as possible, and in the present invention, the upper limit is limited to 0.02%.
  • the P content is more preferably 0.018% or less, even more preferably 0.017% or less, and most preferably 0.015% or less.
  • S is a major element that forms MnS as an impurity element, and since toughness is lowered due to the formation of coarse MnS, its content is limited to 0.02% or less in the present invention.
  • the S content is more preferably 0.015% or less, even more preferably 0.01% or less, and most preferably 0.005% or less.
  • N is an impurity element, and when its content exceeds 0.01%, it reacts with Ti and Nb at high temperatures to form nitrides. there is. Therefore, the N content is preferably 0.01% or less.
  • the N content is more preferably 0.008% or less, even more preferably 0.007% or less, and most preferably 0.006% or less.
  • the hot-rolled steel sheet of the present invention preferably satisfies the following relational expressions 1 and 2.
  • the relational expression 1 is a parameter for improving strength by controlling the contents of Ti, Mo, and Nb, which are precipitation hardening elements.
  • Ti, Mo, and Nb which are precipitation hardening elements.
  • the value of (Ti/48 + Mo/96 + Nb/93) is less than 0.002, the amount of precipitates is too small to be effective in improving strength.
  • the value of (Ti/48 + Mo/96 + Nb/93) exceeds 0.004, an effective precipitation hardening effect may not be obtained due to coarsening of the precipitate.
  • the relational expression 2 is a parameter representing the content of C used for the solid solution strengthening effect excluding the content of C used for the precipitation hardening effect.
  • the value of (C/12) - (Ti/48 + Mo/96 + Nb/93) is less than 0.002
  • the high strength targeted by the present invention cannot be achieved because the ferrite phase cannot obtain sufficient strength.
  • the value of (C/12) - (Ti/48 + Mo/96 + Nb/93) exceeds 0.006, the remaining C content excessively increases, making the precipitate easily coarse to obtain the target strength.
  • the fraction of pearlite increases, it is difficult to obtain ferrite of 90% or more, which is the target of the present invention.
  • the rest may include Fe and unavoidable impurities. Inevitable impurities can be unintentionally mixed in the normal steel manufacturing process, and cannot be completely excluded, and those skilled in the ordinary steel manufacturing field can easily understand the meaning. Further, the present invention does not entirely exclude the addition of other compositions than the aforementioned steel composition.
  • the hot-rolled steel sheet of the present invention preferably has a microstructure containing 90% or more of ferrite in terms of area%.
  • the microstructure of the present invention is theoretically preferably a single phase of ferrite, but one or more of pearlite, retained austenite, bainite and martensite may be formed inevitably in the manufacturing process.
  • the low-temperature transformation phase such as bainite or martensite increases, formability deteriorates.
  • the remaining tissue is as small as possible.
  • the fraction of the ferrite is more preferably 93% or more, and even more preferably 95% or more.
  • the ferrite may be one or more of polygonal ferrite, bainitic ferrite, and acicular ferrite.
  • the crystal grains of the ferrite preferably have an average size of 15 ⁇ m or less.
  • the crystal grain size of the ferrite is more preferably 12 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the hot-rolled steel sheet of the present invention preferably contains 0.05% by weight or more of carbides containing Ti, Nb, and Mo alone or in combination, and the carbides preferably have an average size of 20 nm or less.
  • the fraction of the carbide is more preferably 0.07% by weight or more, and even more preferably 0.08% by weight or more.
  • the average size of the carbide is more preferably 15 nm or less, and even more preferably 10 nm or less.
  • the upper limit is not particularly limited, but considering the contents of Ti, Nb, and Mo included in the steel, it is difficult to exceed 0.2% by weight.
  • the hot-rolled steel sheet of the present invention provided as described above has yield strength (YS): 700 MPa or more, tensile strength (TS): 750 MPa or more, and elongation (EL): 15% or more, so that excellent strength and formability can be secured.
  • a steel pipe manufactured using the hot-rolled steel sheet may be provided.
  • the steel pipe of the present invention has yield strength (YS): 800 MPa or more, tensile strength (TS): 860 MPa or more, and elongation (EL): 10% or more, so that excellent strength and formability can be secured.
  • the hardness deviation is from each hardness value measured at 0.5 mm, t / 4, t / 2 points (t: steel pipe thickness) in the thickness direction from the surface of the steel pipe [(maximum hardness value-minimum hardness value) / maximum hardness value ⁇ 100].
  • a steel slab satisfying the aforementioned alloy composition and relational expressions 1 and 2 is reheated in a temperature range of 1150 to 1300 ° C. Reheating the steel slab at a temperature range of 1150 to 1300 ° C is to make the alloy composition and microstructure uniform.
  • the reheating temperature is less than 1150 ° C., the precipitate formed on the slab is not dissolved, so that the optimum precipitation strengthening effect cannot be obtained in the subsequent process.
  • the reheating temperature exceeds 1300 ° C., excessive crystal grain growth occurs, making it difficult to secure the target material and quality. Therefore, the reheating temperature of the steel slab is preferably in the range of 1150 to 1300 °C.
  • the lower limit of the reheating temperature is more preferably 1170°C, even more preferably 1180°C, and most preferably 1200°C.
  • the upper limit of the reheating temperature is more preferably 1290°C, even more preferably 1270°C, and most preferably 1250°C.
  • the reheated steel slab is finished hot-rolled at a temperature range of 800 to 950° C. to obtain a hot-rolled steel sheet.
  • the finish hot rolling temperature preferably has a range of 800 ⁇ 950 °C.
  • the lower limit of the finish hot rolling temperature is more preferably 820°C, even more preferably 825°C, and most preferably 850°C.
  • the upper limit of the finish hot rolling temperature is more preferably 940°C, even more preferably 920°C, and most preferably 900°C.
  • the hot-rolled steel sheet is wound in a temperature range of 550 to 700 °C.
  • the winding temperature is preferably in the range of 550 ⁇ 700 °C.
  • the lower limit of the coiling temperature is more preferably 600°C, even more preferably 620°C, and most preferably 640°C.
  • the upper limit of the coiling temperature is more preferably 680°C, even more preferably 665°C, and most preferably 650°C. Meanwhile, cooling from the finish hot rolling to winding may be performed on a run-out table.
  • a steel pipe may be obtained by forming the hot-rolled steel sheet into a pipe.
  • electric resistance welding EW or the like may be used as a welding method when manufacturing the pipe.
  • the present invention may further include the step of rolling the steel pipe after the step of obtaining the steel pipe.
  • the type and fraction of microstructures were measured using an optical microscope (OM).
  • OM optical microscope
  • SEM scanning electron microscope
  • the size of the precipitate was measured by collecting the precipitate from the specimen using the carbon replica method and using a transmission electron microscope (TEM).
  • the fraction of the precipitate was obtained by measuring the contents of Ti, Nb, and Mo using the residue extraction method.
  • Yield strength (YS), tensile strength (TS) and elongation (EL) were measured by performing a tensile test according to the tensile test method of KS B 0802 standard.
  • YS Yield strength
  • TS tensile strength
  • EL elongation
  • the hardness at each position in the thickness direction was measured with a 1 kg load using a Vickers hardness tester at 0.5 mm, t/4, and t/2 points (t: steel pipe thickness) in the thickness direction from the outer surface of the steel pipe. At this time, 5 points were measured at each location and the average value was obtained.
  • the hardness deviation described in Table 3 below was calculated as [(maximum hardness value-minimum hardness value) / maximum hardness value ⁇ 100] from each hardness value measured for each location.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne : une tôle d'acier laminée à chaud pour renforcer un sol et un tuyau en acier pour renforcer un sol, qui ont une excellente résistance et une excellente aptitude au formage ; et leurs procédés de fabrication.
PCT/KR2022/019505 2021-12-16 2022-12-02 Tôle d'acier laminée à chaud pour renforcer un sol et tuyau en acier pour renforcer un sol, et procédés de fabrication correspondant WO2023113327A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0180819 2021-12-16
KR1020210180819A KR20230091585A (ko) 2021-12-16 2021-12-16 강도 및 성형성이 우수한 지반보강용 열연강판 및 강관과 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2023113327A1 true WO2023113327A1 (fr) 2023-06-22

Family

ID=86773104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019505 WO2023113327A1 (fr) 2021-12-16 2022-12-02 Tôle d'acier laminée à chaud pour renforcer un sol et tuyau en acier pour renforcer un sol, et procédés de fabrication correspondant

Country Status (2)

Country Link
KR (1) KR20230091585A (fr)
WO (1) WO2023113327A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354973A1 (fr) * 2002-04-09 2003-10-22 Nippon Steel Corporation Tôle d'acier et tube d'acier à haute résistance excellant en déformabilité et méthode pour leur production
JP2007146275A (ja) * 2005-11-01 2007-06-14 Nippon Steel Corp 低降伏比型高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
KR20130058074A (ko) * 2011-08-23 2013-06-03 신닛테츠스미킨 카부시키카이샤 후육 전봉 강관 및 그의 제조 방법
KR20150075306A (ko) * 2013-12-25 2015-07-03 주식회사 포스코 굽힘 가공성이 우수한 초고강도 열연강판 및 그 제조 방법
KR101715524B1 (ko) * 2015-11-25 2017-03-22 현대제철 주식회사 비열처리형 열연강판 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354973A1 (fr) * 2002-04-09 2003-10-22 Nippon Steel Corporation Tôle d'acier et tube d'acier à haute résistance excellant en déformabilité et méthode pour leur production
JP2007146275A (ja) * 2005-11-01 2007-06-14 Nippon Steel Corp 低降伏比型高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
KR20130058074A (ko) * 2011-08-23 2013-06-03 신닛테츠스미킨 카부시키카이샤 후육 전봉 강관 및 그의 제조 방법
KR20150075306A (ko) * 2013-12-25 2015-07-03 주식회사 포스코 굽힘 가공성이 우수한 초고강도 열연강판 및 그 제조 방법
KR101715524B1 (ko) * 2015-11-25 2017-03-22 현대제철 주식회사 비열처리형 열연강판 및 그 제조 방법

Also Published As

Publication number Publication date
KR20230091585A (ko) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2018074887A1 (fr) Armature de béton armé à haute résistance et procédé de fabrication de ladite armature de béton armé à haute résistance
WO2017111510A1 (fr) Matériau d'acier non magnétique ayant une excellente aptitude au façonnage à chaud et son procédé de fabrication
WO2020067685A1 (fr) Acier résistant à l'usure ayant d'excellentes dureté et ténacité au choc et procédé de fabrication de celui-ci
WO2019125083A1 (fr) Acier résistant à l'usure possédant une excellente dureté et une excellente ténacité aux chocs, et son procédé de production
WO2021091138A1 (fr) Plaque d'acier présentant une résistance élevée et une excellente ténacité à basse température, et son procédé de fabrication
WO2018117646A1 (fr) Tôle d'acier épaisse ayant une excellente résistance à l'impact cryogénique et son procédé de fabrication
WO2018110853A1 (fr) Acier à deux phases à haute résistance présentant d'excellentes propriétés d'ébavurage dans une plage de basse température, et son procédé de production
WO2021125621A1 (fr) Acier résistant à l'usure à dureté élevée ayant une excellente ténacité à l'impact à basse température, et son procédé de fabrication
WO2018004297A1 (fr) Plaque d'acier à haute résistance présentant d'excellentes caractéristiques de faible coefficient d'élasticité et une ténacité à basse température et son procédé de fabrication
WO2018117482A1 (fr) Acier résistant à l'usure à dureté élevée et son procédé de fabrication
WO2018117614A1 (fr) Matériau en acier ultra-épais ayant d'excellentes propriétés de surface en nrl-dwt et son procédé de fabrication
WO2018117450A1 (fr) Matériau d'acier à paroi lourde résistant à l'acidité ayant d'excellentes caractéristiques de ténacité à basse température et de post-traitement thermique et son procédé de fabrication
WO2018117700A1 (fr) Tôle d'acier épaisse à ténacité élevée et haute résistance et son procédé de fabrication
WO2012043984A2 (fr) Tôle d'acier pour tube de canalisation, présentant une excellente résistance à la fissuration sous hydrogène, et son procédé de préparation
WO2018117507A1 (fr) Tôle d'acier à faible rapport d'élasticité présentant une excellente ténacité à basse température et son procédé de fabrication
WO2018080108A1 (fr) Acier à haute résistance et haute teneur en manganèse ayant une excellente ténacité à basse température et son procédé de fabrication
WO2020111856A2 (fr) Tôle à haute résistance ayant une excellente ductilité et une excellente ténacité à basse température et son procédé de fabrication
WO2018117496A1 (fr) Acier pour récipients sous pression ayant une excellente résistance aux traitements thermiques de trempe à haute température et aux traitements thermiques après soudage et son procédé de fabrication
WO2018117606A1 (fr) Acier revêtu par immersion à chaud présentant une excellente aptitude au traitement, et son procédé de fabrication
WO2017111443A1 (fr) Tôle d'acier structural haute résistance présentant une excellente résistance à chaud et son procédé de fabrication
WO2017104995A1 (fr) Acier de haute dureté résistant à l'abrasion avec une ténacité et une résistance à la fissuration de coupe excellentes, et son procédé de fabrication
WO2023121179A1 (fr) Matériaux en acier ultra-épais pour bride ayant une excellente résistance et une excellente ténacité aux chocs à basse température, et leur procédé de fabrication
WO2019125076A1 (fr) Acier résistant à l'usure ayant d'excellentes dureté et ténacité au choc et procédé pour la production de celui-ci
WO2019132179A1 (fr) Feuille d'acier laminée à chaud à haute résistance et haute robustesse et son procédé de fabrication
WO2017111303A1 (fr) Tôle d'acier laminée à chaud de haute résistance présentant une excellente aptitude au cintrage et son procédé de production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907796

Country of ref document: EP

Kind code of ref document: A1