WO2023113273A1 - Metal-organic framework for collecting krypton or xenon, and apparatus for collecting krypton or xenon, comprising same - Google Patents

Metal-organic framework for collecting krypton or xenon, and apparatus for collecting krypton or xenon, comprising same Download PDF

Info

Publication number
WO2023113273A1
WO2023113273A1 PCT/KR2022/018408 KR2022018408W WO2023113273A1 WO 2023113273 A1 WO2023113273 A1 WO 2023113273A1 KR 2022018408 W KR2022018408 W KR 2022018408W WO 2023113273 A1 WO2023113273 A1 WO 2023113273A1
Authority
WO
WIPO (PCT)
Prior art keywords
krypton
xenon
metal
organic
container
Prior art date
Application number
PCT/KR2022/018408
Other languages
French (fr)
Korean (ko)
Inventor
최경민
지서현
Original Assignee
랩인큐브 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 랩인큐브 주식회사 filed Critical 랩인큐브 주식회사
Publication of WO2023113273A1 publication Critical patent/WO2023113273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Definitions

  • the present invention relates to a metal-organic framework for efficiently recovering krypton and/or xenon, and a device including the metal-organic framework and recovering krypton and/or xenon contained in a fluid.
  • the present invention is derived from research conducted as part of the research material and diffusion support project of the Science and Technology Job Promotion Agency below.
  • Krypton Krypton (Kr) is mainly used in the lighting industry, such as incandescent light bulbs and automobile lamps, and xenon (Xe) is a rare element mainly used in the aerospace industry, electronic engineering and medicine.
  • Krypton and xenon are mainly produced from air. Since the amount of krypton and xenon contained in the air (krypton 114 ppmv, xenon 0086 ppmv) is very small, krypton and xenon are very expensive due to the process cost of treating a large amount of air. .
  • krypton is indispensably used in manufacturing processes such as semiconductor wafers.
  • the production cost of krypton is very high, the need to recover and reuse krypton from waste gas used in semiconductor processes is increasing.
  • An object of the present invention is to collect krypton and/or xenon contained in the air as well as to efficiently recover krypton and/or xenon concentrated in waste gas generated in industrial processes such as semiconductor processes.
  • An object of the present invention is to provide a framework and a krypton or xenon recovery device including the framework.
  • One aspect of the present invention for achieving the above object is a metal-organic framework composed of a metal ion containing copper (Cu) and an organic linker containing fluorine (F), wherein the interplanar structure of the metal-organic framework is an organic linker.
  • one surface and the other surface constituting the interplanar structure may face each other, and copper (Cu) included in the one surface faces CF 3 of the other surface.
  • the organic linker may include 2,2'-bis (4-carboxyphenyl) hexafluoro-propane. there is.
  • the metal organic framework may be formed of, for example, crystal particles (preferably single crystal particles), but is not necessarily limited thereto.
  • the metalorganic framework may selectively adsorb or release krypton and/or xenon from a gas containing krypton and/or xenon.
  • a first container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side, and a metal-organic skeleton embedded in the first container.
  • a device comprising a sieve, wherein the metal-organic framework is composed of a metal ion containing copper (Cu) and an organic linker containing fluorine (F), and the interplanar structure of the metal-organic framework is completely formed by the organic linker. It is to provide a krypton or xenon recovery device characterized in that it has a flexible (flexible) structure that is not fixed.
  • the organic linker of the metal-organic framework is 2,2'-bis (4-carboxyphenyl) hexafluoropropane (2,2'-bis (4-carboxyphenyl) hexafluoro- propane).
  • one surface and the other surface face each other, and copper (Cu) contained in the one surface faces CF 3 of the other surface.
  • the metal-organic skeleton contained in the first container may be in a powder form.
  • the metal-organic framework may be formed of, for example, crystal particles (preferably single crystal particles), but is not necessarily limited thereto.
  • the krypton or xenon recovery device further includes a second container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side, and the suction port of the second container is formed on the other side. 2 May be connected to the outlet of the vessel.
  • the metal-organic framework contained in the first container and the metal-organic framework contained in the second container may be of different types.
  • the metal-organic skeleton contained in the first container and the metal-organic skeleton contained in the second container may be of the same type.
  • the metalorganic framework according to the present invention can be used for recovery of krypton and/or xenon.
  • the metal-organic framework according to an embodiment of the present invention has a flexible structure in which the interplanar structure is not completely fixed by the organic linker, and thus, unlike conventional MOFs, the adsorption amount of nitrogen is reduced while krypton and / or Since it is easy to implement a porous structure capable of increasing the adsorption amount of xenon, the recovery efficiency of krypton and / or xenon can be significantly improved compared to conventionally known MOFs.
  • the MOF having a flexible structure according to an embodiment of the present invention has a property of easily releasing adsorbed xenon, it is possible to more easily separate adsorbed krypton and xenon.
  • FIG. 1 is an image of a flexible MOF according to an embodiment of the present invention.
  • FIG. 3 schematically shows the crystal structure of a flexible MOF according to an embodiment of the present invention.
  • FIG. 5 is an adsorption and release test result for nitrogen, krypton, and xenon using a flexible MOF according to an embodiment of the present invention.
  • FIG. 6 schematically shows the krypton or xenon recovery device.
  • FIG. 7 is an adsorption test result for a mixed gas of nitrogen and xenon using a flexible MOF according to an embodiment of the present invention.
  • FIG. 11 shows particle images of Ag@MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
  • 13 is a particle image of Co-FA, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
  • the term "combination thereof" included in the expression of the Markush form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush form, and the components It means including one or more selected from the group consisting of.
  • Table 1 below shows synthesis conditions of the metal-organic framework according to Example 1 of the present invention.
  • a first solution is prepared by dissolving 0.012 g of Cu(NO 3 ) 2 3H 2 O in 2.5 mL of N,N-dimethylmethanamide (DMF).
  • DMF N,N-dimethylmethanamide
  • a second solution by dissolving 0.122 g of CPHFP ((2,2'-bis(4-carboxyphenyl)hexafluoro-propane), an organic ligand, in 2.5 mL of DMF.
  • the first and second solutions are mixed in a 20 mL glass vial. After mixing, it was sufficiently sonicated and reacted for 24 hours in an oven at 120 ° C. After the reaction was completed, it was sufficiently cooled and washed three times with dimethylformamide (DMF) to complete the synthesis process.
  • DMF dimethylformamide
  • FIG. 1 is an image of a flexible MOF (hereinafter, referred to as “FMOFCu”) synthesized according to an embodiment, and FIG. 2 shows an XRD analysis result of the flexible FMOFCu.
  • FMOFCu flexible MOF
  • the FMOFCu synthesized under the above conditions was composed of a single crystal and the size of the crystal was about 17 to 20 ⁇ m.
  • the FMOFCu synthesized according to the embodiment has a structure in which dimethylformamide is bonded to the end of the interplanar structure and the interplanar structure is not completely fixed by the organic linker, so the interlayer distance It has a flexible structure that can vary the change of
  • the interplanar distance is narrowed, reducing the number of pores in which nitrogen (N 2 ) can enter and be adsorbed, and the number of pores in which only krypton and xenon can enter are increased, resulting in high-purity separation of krypton and xenon for nitrogen.
  • copper (Cu) present in the metal site on one side of the interplanar structure and CF 3 present on the other side opposite to it have absorption characteristics of krypton and xenon, and the metal site and CF 3
  • the space formed by this can adsorb krypton and xenon without adsorbing nitrogen (N 2 ), thereby enhancing the adsorption characteristics of these gases.
  • dimethylformamide bonded to the end of the interplanar structure was removed by washing with ethanol, methanol and/or acetone.
  • the adsorption amount of xenon and krypton is significantly higher than that of nitrogen (N 2 ).
  • Xenon and krypton can be selectively separated from nitrogen (N 2 ) by using the difference in adsorption amount.
  • xenon since emission is easy, there may be an advantage in that xenon can be separated with high purity from krypton, xenon, and some nitrogen (N 2 ) adsorbed together.
  • FIG. 6 schematically shows the krypton or xenon recovery device.
  • the recovery device of FIG. 6 is for separating xenon and krypton from a gas in which xenon and krypton are mixed.
  • the krypton or xenon recovery device is connected to a first container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side, and the outlet of the first container. It may be made of a second container including a suction port formed on the side and a discharge port for discharging gas on the other side.
  • the first container may contain pellets made of a metal-organic framework to more easily adsorb xenon
  • the second container may contain pellets made of a metal-organic framework to more easily adsorb krypton.
  • the metalorganic framework according to the embodiment adsorbs both xenon and krypton well, after passing through the first container under a condition in which xenon is relatively easily adsorbed, the second container is opened in a condition in which krypton is easily adsorbed. It is also possible to separate krypton and xenon included in the mixed gas by using a passing method.
  • xenon is hardly detected for about 7,209 seconds at 5 sccm, for about 7,043 seconds at 10 sccm, and for 3,765 seconds at a flow rate of 20 sccm, and then the amount of xenon detected tends to increase.
  • the adsorption rate tends to increase.
  • nitrogen was continuously detected in a significant amount from the beginning. That is, it can be seen that xenon is selectively adsorbed by the FMOFCu loaded into the sample bed. Through this selective adsorption function, it is possible to separate xenon from industrial waste gas.
  • the desorption test was carried out in two cases: the case of adsorption of xenon at 120 ° C, followed by nitrogen gas flow and desorption (black circle), and the case of xenon gas flow and desorption (gray circle).
  • SBMOF-1 is also capable of selective adsorption of krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment and is selective. Separation is poor.
  • MOF-303 is also capable of selectively adsorbing krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment. Separation is poor.
  • FIG. 11 shows particle images of Ag@MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
  • Ag@MOF-303 can also selectively adsorb krypton compared to nitrogen, but significantly more than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the example. low and poor selective separability.
  • Cu@MOF-303 can also selectively adsorb krypton compared to nitrogen, but significantly more than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment. low and poor selective separability.
  • 13 is a particle image of Co-FA, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
  • Co-FA is also capable of selective adsorption of krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment and is selective. Separation is poor.
  • UiO66 can also selectively adsorb krypton compared to nitrogen, but the selective separability is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment. it falls
  • HKUST-1 is also capable of selective adsorption of krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the example and selectively Separation is poor.
  • MOF-74-Co can also selectively adsorb krypton compared to nitrogen, but significantly more than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the example. low and poor selective separability.

Abstract

The present invention relates to: a metal-organic framework capable of efficiently adsorbing and collecting krypton and/or xenon contained in gas or liquid; and an apparatus for collecting krypton and/or xenon contained in gas or liquid by using the metal-organic framework. The metal-organic framework for collecting krypton and/or xenon, of the present invention, is a metal-organic framework formed from a metal ion comprising copper (Cu) and an organic linker comprising fluorine (F). The metal-organic framework has a flexible structure in which the interplanar structure thereof is not completely fixed by the organic linker, and thus the interplanar distance can be controlled, and the interplanar distance decreases during drying such that nitrogen (N2) is not adsorbed easily and mainly krypton and/or xenon are adsorbed, and thus krypton and/or xenon contained in waste gas, which is generated during a semiconductor process, and also in the air can be efficiently collected.

Description

크립톤 또는 제논 회수용 금속유기 골격체 및 이를 포함하는 크립톤 또는 제논 회수장치Metalorganic skeleton for recovering krypton or xenon and apparatus for recovering krypton or xenon including the same
본 발명은 크립톤 및/또는 제논을 효율적으로 회수하는 금속유기 골격체와, 상기 금속유기 골격체를 포함하고 유체에 포함된 크립톤 및/또는 제논을 회수하는 장치에 관한 것이다.The present invention relates to a metal-organic framework for efficiently recovering krypton and/or xenon, and a device including the metal-organic framework and recovering krypton and/or xenon contained in a fluid.
본 발명은 아래의 (재)과학기술일자리진흥원의 연구재료·확산 지원사업의 일환으로 수행한 연구로부터 도출된 것이다.The present invention is derived from research conducted as part of the research material and diffusion support project of the Science and Technology Job Promotion Agency below.
[과제고유번호] 1711175880 (2022RMD-S01)[Assignment identification number] 1711175880 (2022RMD-S01)
[부처명] 과학기술정보통신부[Name of Department] Ministry of Science and ICT
[연구사업명] 연구재료 개발·확산 지원사업[Research project name] Research material development and diffusion support project
[연구과제명] 타겟 기체의 분리 및 정제를 위한 MOF 연구재료의 개발 및 상용화[Research project title] Development and commercialization of MOF research materials for separation and purification of target gases
[연구관리전문기관] (재)과학기술일자리진흥원[Research management specialized institution] Science and Technology Job Promotion Agency
[기여율] 100%[Contribution rate] 100%
[주관연구기관] 숙명여자대학교[Host Research Institution] Sookmyung Women's University
[연구기간] 2022.01.01 - 2022.12.31[Research period] 2022.01.01 - 2022.12.31
크립톤(Kr)은 백열 전구, 자동차 램프와 같은 조명산업에 주로 사용되고 있고, 제논(Xe)은 항공 우주 산업, 전자 공학 및 의학 분야에서 주로 사용되고 있는 희유 원소이다.Krypton (Kr) is mainly used in the lighting industry, such as incandescent light bulbs and automobile lamps, and xenon (Xe) is a rare element mainly used in the aerospace industry, electronic engineering and medicine.
크립톤과 제논은 주로 공기로부터 생산되는데, 공기 중에 포함된 크립톤과 제논의 양(크립톤 114 ppmv, 제논 0086 ppmv)이 매우 적기 때문에 대량의 공기를 처리해야 하는 공정 비용에 의해 크립톤과 제논은 매우 고가이다.Krypton and xenon are mainly produced from air. Since the amount of krypton and xenon contained in the air (krypton 114 ppmv, xenon 0086 ppmv) is very small, krypton and xenon are very expensive due to the process cost of treating a large amount of air. .
한편, 반도체 제조 공정에는 많은 희유 가스가 이용된다. 예를 들어 크립톤은 반도체 웨이퍼 등의 제조 공정에서 필수적으로 사용되고 있는데, 상술한 바와 같이 크립톤의 생산비용이 매우 고가이기 때문에 반도체 공정에서 사용된 폐가스로부터 크립톤을 회수하여 재사용할 필요성이 높아지고 있다.On the other hand, many rare gases are used in the semiconductor manufacturing process. For example, krypton is indispensably used in manufacturing processes such as semiconductor wafers. As described above, since the production cost of krypton is very high, the need to recover and reuse krypton from waste gas used in semiconductor processes is increasing.
본 발명의 목적은 공기 중에 포함된 크립톤 및/또는 제논의 포집은 물론, 반도체 공정과 같은 산업 공정에서 발생하는 폐가스에 농축되어 있는 크립톤 및/또는 제논을 효율적으로 회수하는 용도로 사용될 수 있는 금속유기 골격체와, 이를 포함하는 크립톤 또는 제논 회수장치를 제공하는 것이다.An object of the present invention is to collect krypton and/or xenon contained in the air as well as to efficiently recover krypton and/or xenon concentrated in waste gas generated in industrial processes such as semiconductor processes. An object of the present invention is to provide a framework and a krypton or xenon recovery device including the framework.
상기 목적을 달성하기 위한 본 발명의 일 측면은, 구리(Cu)를 포함하는 금속 이온과 불소(F)를 포함하는 유기 링커로 이루어진 금속유기 골격체로, 상기 금속유기 골격체의 면간 구조가 유기 링커에 의해 완전히 고정되어 있지 않은 플렉시블(flexible)한 구조를 가지는 금속유기 골격체를 제공하는 것이다.One aspect of the present invention for achieving the above object is a metal-organic framework composed of a metal ion containing copper (Cu) and an organic linker containing fluorine (F), wherein the interplanar structure of the metal-organic framework is an organic linker. To provide a metal-organic skeleton having a flexible structure that is not completely fixed by
또한, 상기 금속유기 골격체에 있어서, 상기 면간 구조를 구성하는 일면과 타면이 서로 대향하고, 상기 일면에 포함된 구리(Cu)는 상기 타면의 CF3와 마주보는 구조일 수 있다.In addition, in the metal-organic framework, one surface and the other surface constituting the interplanar structure may face each other, and copper (Cu) included in the one surface faces CF 3 of the other surface.
또한, 상기 금속유기 골격체에 있어서, 상기 유기 링커는 2,2'-비스(4-카르복시페닐)헥사플루오로프로판(2,2'-bis(4-carboxyphenyl)hexafluoro-propane)을 포함할 수 있다.In addition, in the metal-organic framework, the organic linker may include 2,2'-bis (4-carboxyphenyl) hexafluoro-propane. there is.
또한, 상기 금속유기 골격체는 예를 들어 결정 입자(바람직하게는 단결정 입자)로 이루어질 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition, the metal organic framework may be formed of, for example, crystal particles (preferably single crystal particles), but is not necessarily limited thereto.
또한, 상기 금속유기 골격체는 크립톤 및/또는 제논이 포함된 기체로부터 크립톤 및/또는 제논을 선택적으로 흡착하거나 방출하는 것일 수 있다.In addition, the metalorganic framework may selectively adsorb or release krypton and/or xenon from a gas containing krypton and/or xenon.
상기 목적을 달성하기 위한 본 발명의 다른 측면은, 일측에 가스를 흡입하는 흡입구가 형성되어 있고, 타측에 가스를 배출하는 배출구가 형성되어 있는 제1 용기와 상기 제1 용기에 내장되는 금속유기 골격체를 포함하여 이루어진 장치로, 상기 금속유기 골격체는 구리(Cu)를 포함하는 금속 이온과 불소(F)를 포함하는 유기 링커로 이루어진 것으로 상기 금속유기 골격체의 면간 구조가 유기 링커에 의해 완전히 고정되어 있지 않은 플렉시블(flexible)한 구조를 가지는 것을 특징으로 하는 크립톤 또는 제논 회수장치를 제공하는 것이다.Another aspect of the present invention for achieving the above object is a first container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side, and a metal-organic skeleton embedded in the first container. A device comprising a sieve, wherein the metal-organic framework is composed of a metal ion containing copper (Cu) and an organic linker containing fluorine (F), and the interplanar structure of the metal-organic framework is completely formed by the organic linker. It is to provide a krypton or xenon recovery device characterized in that it has a flexible (flexible) structure that is not fixed.
또한, 상기 크립톤 또는 제논 회수장치에 있어서, 상기 금속유기 골격체의 유기 링커는 2,2'-비스(4-카르복시페닐)헥사플루오로프로판(2,2'-bis(4-carboxyphenyl)hexafluoro-propane)을 포함할 수 있다.In addition, in the krypton or xenon recovery device, the organic linker of the metal-organic framework is 2,2'-bis (4-carboxyphenyl) hexafluoropropane (2,2'-bis (4-carboxyphenyl) hexafluoro- propane).
또한, 상기 크립톤 또는 제논 회수장치에 있어서, 상기 금속유기 골격체의 면간 구조에 있어서 일면과 타면이 서로 대향하고, 상기 일면에 포함된 구리(Cu)는 상기 타면의 CF3와 마주보는 구조를 가질 수 있다.In addition, in the krypton or xenon recovery device, in the interplanar structure of the metal-organic framework, one surface and the other surface face each other, and copper (Cu) contained in the one surface faces CF 3 of the other surface. can
또한, 상기 크립톤 또는 제논 회수장치에 있어서, 상기 제1 용기에 내장되는 금속유기 골격체는 분말상일 수 있다.In addition, in the krypton or xenon recovery device, the metal-organic skeleton contained in the first container may be in a powder form.
또한, 상기 크립톤 또는 제논 회수장치에 있어서, 상기 금속유기 골격체는 예를 들어 결정 입자(바람직하게는 단결정 입자)로 이루어질 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition, in the krypton or xenon recovery device, the metal-organic framework may be formed of, for example, crystal particles (preferably single crystal particles), but is not necessarily limited thereto.
또한, 상기 크립톤 또는 제논 회수장치는, 일측에 가스를 흡입하는 흡입구가 형성되어 있고, 타측에 가스를 배출하는 배출구가 형성되어 있는 제2 용기를 더 포함하고, 상기 제2 용기의 흡입구는 상기 제2 용기의 배출구와 연결되어 있을 수 있다.In addition, the krypton or xenon recovery device further includes a second container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side, and the suction port of the second container is formed on the other side. 2 May be connected to the outlet of the vessel.
또한, 상기 크립톤 또는 제논 회수장치에 있어서, 상기 제1 용기에 내장되는 금속유기 골격체와 상기 제2 용기에 내장되는 금속유기 골격체는 서로 다른 종류일 수 있다.In addition, in the krypton or xenon recovery device, the metal-organic framework contained in the first container and the metal-organic framework contained in the second container may be of different types.
또한, 상기 크립톤 또는 제논 회수장치에 있어서, 상기 제1 용기에 내장되는 금속유기 골격체와 상기 제2 용기에 내장되는 금속유기 골격체는 서로 같은 종류일 수 있다.In addition, in the krypton or xenon recovery device, the metal-organic skeleton contained in the first container and the metal-organic skeleton contained in the second container may be of the same type.
본 발명에 따른 금속유기 골격체는 크립톤 및/또는 제논의 회수에 사용될 수 있다.The metalorganic framework according to the present invention can be used for recovery of krypton and/or xenon.
또한, 본 발명의 일 실시형태에 따른 금속유기 골격체는, 면간 구조가 유기링커에 의해 완전히 고정되어 있지 않은 플렉시블(flexible) 구조를 가져, 종래의 MOF와 달리 질소의 흡착량을 줄이면서 크립톤 및/또는 제논의 흡착량을 증가시킬 있는 다공성 구조를 구현하기 용이하기 때문에, 크립톤 및/또는 제논의 회수 효율을 기존에 알려진 MOF에 비해 현저하게 향상시킬 수 있다.In addition, the metal-organic framework according to an embodiment of the present invention has a flexible structure in which the interplanar structure is not completely fixed by the organic linker, and thus, unlike conventional MOFs, the adsorption amount of nitrogen is reduced while krypton and / or Since it is easy to implement a porous structure capable of increasing the adsorption amount of xenon, the recovery efficiency of krypton and / or xenon can be significantly improved compared to conventionally known MOFs.
또한, 본 발명의 일 실시형태에 따른 플렉시블(flexible) 구조의 MOF는 흡착된 제논이 쉽게 방출되는 특성을 가지기 때문에, 함께 흡착된 크립톤과 제논의 분리를 보다 용이하게 할 수도 있다.In addition, since the MOF having a flexible structure according to an embodiment of the present invention has a property of easily releasing adsorbed xenon, it is possible to more easily separate adsorbed krypton and xenon.
도 1은 본 발명의 실시예에 따른 플렉시블 MOF의 이미지이다.1 is an image of a flexible MOF according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 플렉시블 MOF의 XRD 분석결과를 나타낸 것이다.2 shows the results of XRD analysis of a flexible MOF according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 플렉시블 MOF의 결정구조를 모식적으로 나타낸 것이다.3 schematically shows the crystal structure of a flexible MOF according to an embodiment of the present invention.
도 4는 종래의 MOF의 결정구조를 모식적으로 나타낸 것이다.4 schematically shows the crystal structure of a conventional MOF.
도 5는 본 발명의 실시예에 따른 플렉시블 MOF를 사용하여, 질소, 크립톤 및 제논에 대한 흡착 및 방출 시험 결과이다.5 is an adsorption and release test result for nitrogen, krypton, and xenon using a flexible MOF according to an embodiment of the present invention.
도 6은 상기 크립톤 또는 제논 회수장치를 개략적으로 나타낸 것이다.6 schematically shows the krypton or xenon recovery device.
도 7은 본 발명의 실시예에 따른 플렉시블 MOF를 사용하여 질소와 제논의 혼합 가스에 대한 흡착 시험 결과이다.7 is an adsorption test result for a mixed gas of nitrogen and xenon using a flexible MOF according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 플렉시블 MOF를 사용하여 질소와 제논의 혼합 가스에 대한 탈착 시험 결과이다.8 is a desorption test result for a mixed gas of nitrogen and xenon using a flexible MOF according to an embodiment of the present invention.
도 9는 SBMOF-1의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.9 shows particle images of SBMOF-1, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 10은 MOF-303의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.10 shows particle images of MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 11은 Ag@MOF-303의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.11 shows particle images of Ag@MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 12는 Cu@MOF-303의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.12 shows particle images of Cu@MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 13은 Co-FA의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.13 is a particle image of Co-FA, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 14는 UiO66의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.14 shows UiO66 particle images, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 15는 HKUST-1의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.15 shows particle images of HKUST-1, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 16은 MOF-74-Co의 XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.16 shows XRD analysis results of MOF-74-Co and adsorption and release test results for nitrogen and krypton.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present application will be described in detail so that those skilled in the art can easily practice with reference to the accompanying drawings. However, the present disclosure may be implemented in many different forms and is not limited to the embodiments described herein.
또한, 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.In addition, in order to clearly describe the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout this specification, when a part is said to be "connected" to another part, this includes not only the case of being "directly connected" but also the case of being "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the present specification, when a member is referred to as being “on,” “above,” “on top of,” “below,” “below,” or “below” another member, this means that a member is located in relation to another member. This includes not only the case of contact but also the case of another member between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the present specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout the present specification, the term "combination thereof" included in the expression of the Markush form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush form, and the components It means including one or more selected from the group consisting of.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A 또는 B, 또는, A 및 B" 를 의미한다.Throughout this specification, reference to "A and/or B" means "A or B, or A and B".
<실시예 1><Example 1>
아래 표 1은 본 발명의 실시예 1에 따른 금속유기 골격체의 합성조건을 나타낸 것이다.Table 1 below shows synthesis conditions of the metal-organic framework according to Example 1 of the present invention.
단위unit Cu(NO3)2ㆍ3H2OCu(NO 3 ) 2 ㆍ3H 2 O DMFDMF CPHFPCPHFP DMFDMF 합성조건Synthesis conditions
mmolmmol 0.04970.0497 -- 0.3110.311 -- 150 ℃,
20 mL 바이알
150 ℃,
20 mL vial
gg 0.012007520.01200752 2.5 mL2.5 mL 0.121989750.12198975 2.5 mL2.5 mL 24 h24h
표 1에 나타낸 바와 같이, Cu(NO3)2ㆍ3H2O 0.012g을 DMF(N,N-dimethylmethanamide) 2.5mL에 용해하여 제1 용액을 준비한다. 유기 리간드인 CPHFP((2,2'-bis(4-carboxyphenyl)hexafluoro-propane) 0.122g을 DMF 2.5mL에 용해하여 제2 용액을 준비한다. 그리고, 제1 용액과 제2 용액을 20mL 유리 바이알에 혼합한 후 충분히 초음파처리하고 120℃ 오븐에서 24시간 동안 반응시킨다. 반응이 완료된 후에는 충분히 냉각시킨 후 디메틸포름아미드(DMF)로 3번 워시(wash)하여 합성 공정을 완료하였다.As shown in Table 1, a first solution is prepared by dissolving 0.012 g of Cu(NO 3 ) 2 3H 2 O in 2.5 mL of N,N-dimethylmethanamide (DMF). Prepare a second solution by dissolving 0.122 g of CPHFP ((2,2'-bis(4-carboxyphenyl)hexafluoro-propane), an organic ligand, in 2.5 mL of DMF. Then, the first and second solutions are mixed in a 20 mL glass vial. After mixing, it was sufficiently sonicated and reacted for 24 hours in an oven at 120 ° C. After the reaction was completed, it was sufficiently cooled and washed three times with dimethylformamide (DMF) to complete the synthesis process.
도 1은 실시예에 따라 합성된 플렉시블 MOF(이하, "FMOFCu"라고 한다)의 이미지이고, 도 2는 플렉시블 FMOFCu의 XRD 분석결과를 나타낸 것이다.1 is an image of a flexible MOF (hereinafter, referred to as “FMOFCu”) synthesized according to an embodiment, and FIG. 2 shows an XRD analysis result of the flexible FMOFCu.
도 1 및 2에서 확인되는 것과 같이, 상기 조건으로 합성된 FMOFCu는 단결정으로 이루어지며 결정의 크기는 약 17 ~ 20㎛였다.As confirmed in FIGS. 1 and 2, the FMOFCu synthesized under the above conditions was composed of a single crystal and the size of the crystal was about 17 to 20 μm.
실시예에 따라 합성된 FMOFCu는 도 3에 나타낸 것과 같이, 면간 구조의 끝 부분에 디메틸포름아미드(dimethylformamide)가 결합되어 있어 유기 링커에 의해 면간 구조 사이가 완전히 고정되지 않은 구조를 가지기 때문에, 층간 거리의 변화를 다양하게 할 수 있는 플렉시블한 구조를 가진다.As shown in FIG. 3, the FMOFCu synthesized according to the embodiment has a structure in which dimethylformamide is bonded to the end of the interplanar structure and the interplanar structure is not completely fixed by the organic linker, so the interlayer distance It has a flexible structure that can vary the change of
예를 들어, FMOFCu를 건조시키면 면간 거리가 좁아져 질소(N2)가 들어가 흡착될 수 있는 기공의 수가 줄어들고, 크립톤과 제논만 들어가는 기공의 수가 증대되어, 질소에 대한 크립톤과 제논의 분리를 고순도로 할 수 있다.For example, when FMOFCu is dried, the interplanar distance is narrowed, reducing the number of pores in which nitrogen (N 2 ) can enter and be adsorbed, and the number of pores in which only krypton and xenon can enter are increased, resulting in high-purity separation of krypton and xenon for nitrogen. can be done with
특히, 도 3에 나타난 바와 같이, 면간 구조의 일면의 메탈 사이트에 존재하는 구리(Cu)와 이에 대향하는 타면에 존재하는 CF3는 크립톤과 제논과의 흡성 특성이 있고, 메탈 사이트와 CF3에 의해 형성되는 공간은 질소(N2)는 흡착하지 않으면서 크립톤과 제논을 흡착할 수 있어 이들 가스의 흡착특성을 높인다.In particular, as shown in FIG. 3, copper (Cu) present in the metal site on one side of the interplanar structure and CF 3 present on the other side opposite to it have absorption characteristics of krypton and xenon, and the metal site and CF 3 The space formed by this can adsorb krypton and xenon without adsorbing nitrogen (N 2 ), thereby enhancing the adsorption characteristics of these gases.
한편, 상기 면간 구조의 끝부분에 결합되어 있는 디메틸포름아미드는 에탄올, 메탄올 및/또는 아세톤 세척을 통해 제거되었다.Meanwhile, dimethylformamide bonded to the end of the interplanar structure was removed by washing with ethanol, methanol and/or acetone.
이에 비해, 종래의 CF3를 가지는 유기 링커와 Cu를 포함하는 MOF의 경우, 도 4에 나타낸 것과 같이 면간 구조에 유기 링커가 기둥으로 작용하여 단단하게 고정되어 있는 구조를 가지기 때문에, 상대적으로 질소(N2)가 들어가 흡착될 수 있는 기공의 수가 많아져 질소에 대한 크립톤과 제논의 분리를 고순도로 하기 어려울 뿐 아니라, 크립톤 및 제논의 흡착량도 줄어들게 하여 질소(N2)에 대해 크립톤과 제논의 선택적 분리도 어렵게 한다.In contrast, in the case of a conventional MOF containing an organic linker having CF 3 and Cu, as shown in FIG. Since the number of pores through which N 2 ) can enter and be adsorbed increases, it is difficult to separate krypton and xenon from nitrogen with high purity, and the amount of adsorption of krypton and xenon is also reduced. Selective separation also makes it difficult.
도 5는 FMOFCu를 사용하여, 질소(N2), 크립톤 및 제논에 대한 흡착 및 방출 시험 결과이다.5 shows adsorption and release test results for nitrogen (N 2 ), krypton, and xenon using FMOFCu.
도 5에서 확인되는 것과 같이, 본 발명의 실시예에 따라 제조된 FMOFCu의 경우, 질소(N2)에 비해 제논과 크립톤의 흡착량이 현저하게 높음을 알 수 있다. 이러한 흡착량의 차이를 이용하여 질소(N2)로부터 제논과 크립톤을 선택적으로 분리할 수 있다. 뿐만 아니라, 제논의 경우, 방출이 용이하기 때문에 함께 흡착된 크립톤, 제논 및 약간의 질소(N2)로부터 제논을 고순도로 분리할 수 있는 이점이 있을 수 있다.As confirmed in FIG. 5 , in the case of FMOFCu prepared according to an embodiment of the present invention, it can be seen that the adsorption amount of xenon and krypton is significantly higher than that of nitrogen (N 2 ). Xenon and krypton can be selectively separated from nitrogen (N 2 ) by using the difference in adsorption amount. In addition, in the case of xenon, since emission is easy, there may be an advantage in that xenon can be separated with high purity from krypton, xenon, and some nitrogen (N 2 ) adsorbed together.
도 6은 상기 크립톤 또는 제논 회수장치를 개략적으로 나타낸 것이다. 도 6의 회수장치는 제논과 크립톤이 혼합되어 있는 가스로부터 제논과 크립톤을 분리하기 위한 것이다.6 schematically shows the krypton or xenon recovery device. The recovery device of FIG. 6 is for separating xenon and krypton from a gas in which xenon and krypton are mixed.
도 6에 도시된 것과 같이, 상기 크립톤 또는 제논 회수장치는, 일측에 가스를 흡입하는 흡입구가 형성되어 있고 타측에 가스를 배출하는 배출구가 형성되어 있는 제1 용기와, 제1 용기의 배출구와 연결되는 측에 형성된 흡입구와 타측에 가스를 배출하는 배출구를 포함하는 제2 용기로 이루어질 수 있다.As shown in FIG. 6, the krypton or xenon recovery device is connected to a first container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side, and the outlet of the first container. It may be made of a second container including a suction port formed on the side and a discharge port for discharging gas on the other side.
상기 제1 용기에는 제논을 더 흡착하기 쉬운 금속유기 골격체로 이루어진 펠렛을 포함하고, 제2 용기에는 크립톤을 더 흡착하기 쉬운 금속유기 골격체로 이루어진 펠렛을 포함할 수 있다.The first container may contain pellets made of a metal-organic framework to more easily adsorb xenon, and the second container may contain pellets made of a metal-organic framework to more easily adsorb krypton.
이때, 실시예에 따른 금속유기 골격체는 제논과 크립톤을 모두 잘 흡착하므로, 상대적으로 제논의 흡착이 용이한 조건으로 제1 용기를 통과시킨 후, 크립톤의 흡착이 용이한 조건으로 제2 용기를 통과시키는 방법을 사용하여 혼합가스 중에 포함된 크립톤과 제논을 분리할 수도 있다.At this time, since the metalorganic framework according to the embodiment adsorbs both xenon and krypton well, after passing through the first container under a condition in which xenon is relatively easily adsorbed, the second container is opened in a condition in which krypton is easily adsorbed. It is also possible to separate krypton and xenon included in the mixed gas by using a passing method.
도 7은 FMOFCu를 사용하여 질소와 제논의 혼합 가스에 대한 흡착 시험 결과이다.7 is an adsorption test result for a mixed gas of nitrogen and xenon using FMOFCu.
질소와 제논의 혼합 가스에 대한 흡착 시험은 직경 0.5인치×10cm의 샘플 베드에 5g의 FMOFCu를 장입한 후, 760torr로 5sccm(도 7의 (a)), 10sccm(도 7의 (b)), 20sccm(도 7의 (c))의 유량으로 제논과 질소를 샘플 베드의 입구로 흘렸을 때, 샘플 베드의 출구에서 질소와 제논의 검출량을 측정하는 방법을 사용하였다. 이때, 샘플 베드에 대해서는 100℃에서 진공에서 약 2시간 동안 유지하는 전처리를 하였다.In the adsorption test for the mixed gas of nitrogen and xenon, after loading 5 g of FMOFCu in a sample bed with a diameter of 0.5 inch × 10 cm, 5 sccm at 760 torr (Fig. 7 (a)), 10 sccm (Fig. 7 (b)), When xenon and nitrogen flowed through the inlet of the sample bed at a flow rate of 20 sccm (FIG. 7(c)), a method of measuring detection amounts of nitrogen and xenon at the outlet of the sample bed was used. At this time, pretreatment was performed on the sample bed at 100° C. in a vacuum for about 2 hours.
도 7에서 확인되는 바와 같이, 5sccm에서는 약 7,209초 동안, 10sccm에서는 약 7,043초 동안, 20sccm의 유량에서는 3,765초 동안 제논이 거의 검출되지 않다가 이후에 제논의 검출량이 증가하는 경향을 보인다. 또한 유량이 증가함에 따라 흡착속도가 빨라지는 경향을 나타낸다. 이에 비해 질소는 초기부터 상당량이 지속적으로 검출되었다. 즉, 샘플 베드 내에 장입되는 FMOFCu에 의해 제논이 선택적으로 흡착됨을 알 수 있다. 이러한 선택적 흡착기능을 통해 산업 폐가스에 포함된 제논을 분리할 수 있다.As confirmed in FIG. 7 , xenon is hardly detected for about 7,209 seconds at 5 sccm, for about 7,043 seconds at 10 sccm, and for 3,765 seconds at a flow rate of 20 sccm, and then the amount of xenon detected tends to increase. In addition, as the flow rate increases, the adsorption rate tends to increase. In contrast, nitrogen was continuously detected in a significant amount from the beginning. That is, it can be seen that xenon is selectively adsorbed by the FMOFCu loaded into the sample bed. Through this selective adsorption function, it is possible to separate xenon from industrial waste gas.
도 8은 FMOFCu를 사용하여 질소 및 제논의 혼합 가스에 대한 탈착 시험 결과이다.8 is a desorption test result for a mixed gas of nitrogen and xenon using FMOFCu.
탈착 시험은 120℃에서 제논의 흡착 후에 질소 가스를 흘려주며 탈착(흑색 원)한 경우와 제논 가스를 흘려주며 탈착(회색 원)한 경우의 2가지로 실시하였다.The desorption test was carried out in two cases: the case of adsorption of xenon at 120 ° C, followed by nitrogen gas flow and desorption (black circle), and the case of xenon gas flow and desorption (gray circle).
도 8에서 확인되는 바와 같이, 제논 가스를 흘려주며 탈착(회색 원)한 경우가 질소 가스를 흘려주며 탈착(흑색 원)한 경우에 비해 탈착 효율이 우수하였다.As confirmed in FIG. 8 , the case of desorption while flowing xenon gas (gray circle) was superior to the case of desorption while flowing nitrogen gas (black circle).
<비교예 1><Comparative Example 1>
도 9는 SBMOF-1의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.9 shows particle images of SBMOF-1, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 9의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, SBMOF-1도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 9, SBMOF-1 is also capable of selective adsorption of krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment and is selective. Separation is poor.
<비교예 2><Comparative Example 2>
도 10은 MOF-303의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.10 shows particle images of MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 10의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, MOF-303도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 10, MOF-303 is also capable of selectively adsorbing krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment. Separation is poor.
<비교예 3><Comparative Example 3>
도 11은 Ag@MOF-303의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.11 shows particle images of Ag@MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 11의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, Ag@MOF-303도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 11, Ag@MOF-303 can also selectively adsorb krypton compared to nitrogen, but significantly more than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the example. low and poor selective separability.
<비교예 4><Comparative Example 4>
도 12는 Cu@MOF-303의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.12 shows particle images of Cu@MOF-303, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 12의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, Cu@MOF-303도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 12, Cu@MOF-303 can also selectively adsorb krypton compared to nitrogen, but significantly more than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment. low and poor selective separability.
<비교예 5><Comparative Example 5>
도 13은 Co-FA의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.13 is a particle image of Co-FA, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 13의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, Co-FA도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 13, Co-FA is also capable of selective adsorption of krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment and is selective. Separation is poor.
<비교예 6><Comparative Example 6>
도 14는 UiO66의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.14 shows UiO66 particle images, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 14의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, UiO66도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 14, UiO66 can also selectively adsorb krypton compared to nitrogen, but the selective separability is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the embodiment. it falls
<비교예 7><Comparative Example 7>
도 15는 HKUST-1의 입자 이미지와, XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.15 shows particle images of HKUST-1, XRD analysis results, and adsorption and release test results for nitrogen and krypton.
도 15의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, HKUST-1도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed from the adsorption and release test results of FIG. 15, HKUST-1 is also capable of selective adsorption of krypton compared to nitrogen, but is significantly lower than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the example and selectively Separation is poor.
<비교예 8><Comparative Example 8>
도 16은 MOF-74-Co의 XRD 분석결과 및 질소 및 크립톤에 대한 흡착 및 방출 시험 결과이다.16 shows XRD analysis results of MOF-74-Co and adsorption and release test results for nitrogen and krypton.
도 16의 흡착 및 방출 시험 결과에서 확인되는 것과 같이, MOF-74-Co도 질소에 비해 크립톤의 선택적 흡착이 가능하나, 실시예의 크립톤(Kr)과 제논(Xe)의 흡착량의 합에 비해 상당히 낮고 선택적 분리성이 떨어진다.As confirmed in the adsorption and release test results of FIG. 16, MOF-74-Co can also selectively adsorb krypton compared to nitrogen, but significantly more than the sum of the adsorption amounts of krypton (Kr) and xenon (Xe) in the example. low and poor selective separability.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is for illustrative purposes, and those skilled in the art will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts thereof should be construed as being included in the scope of the present application.

Claims (9)

  1. 구리(Cu)를 포함하는 금속 이온과, 불소(F)를 포함하는 유기 링커로 이루어진 금속유기 골격체로, A metal-organic skeleton composed of a metal ion containing copper (Cu) and an organic linker containing fluorine (F),
    상기 금속유기 골격체의 면간 구조가 유기 링커에 의해 완전히 고정되어 있지 않은 플렉시블(flexible)한 구조를 가지는, 금속유기 골격체.A metal-organic skeleton having a flexible structure in which the interplanar structure of the metal-organic skeleton is not completely fixed by an organic linker.
  2. 제 1 항에 있어서,According to claim 1,
    상기 면간 구조에 있어서 일면과 타면이 서로 대향하고,In the interplanar structure, one side and the other side face each other,
    상기 일면에 포함된 구리(Cu)는 상기 타면의 CF3와 마주보는 구조를 가지는, 금속유기 골격체.Copper (Cu) contained on the one surface has a structure facing CF 3 on the other surface, the metal-organic framework.
  3. 제 1 항에 있어서,According to claim 1,
    상기 유기 링커는 2,2'-비스(4-카르복시페닐)헥사플루오로프로판(2,2'-bis(4-carboxyphenyl)hexafluoro-propane)을 포함하는, 금속유기 골격체.The organic linker comprises 2,2'-bis (4-carboxyphenyl) hexafluoropropane (2,2'-bis (4-carboxyphenyl) hexafluoro-propane).
  4. 제 1 항에 있어서,According to claim 1,
    상기 금속유기 골격체는 결정 입자로 이루어지는 것인, 금속유기 골격체.The metal-organic framework is composed of crystal particles, the metal-organic framework.
  5. 제 1 항에 있어서,According to claim 1,
    상기 금속유기 골격체는 크립톤 및/또는 제논이 포함된 기체로부터 크립톤 및/또는 제논을 선택적으로 흡착하거나 방출하는 것인, 금속유기 골격체.Wherein the metal-organic framework selectively adsorbs or releases krypton and/or xenon from a gas containing krypton and/or xenon.
  6. 일측에 가스를 흡입하는 흡입구가 형성되어 있고, 타측에 가스를 배출하는 배출구가 형성되어 있는 제1 용기와,A first container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side;
    상기 제1 용기에 내장되는 금속유기 골격체를 포함하는 장치로,A device comprising a metal-organic skeleton embedded in the first container,
    상기 금속유기 골격체는 제 1 항 내지 제 5 항 중 어느 한 항에 기재된 것을 포함하는, 크립톤 또는 제논 회수장치.The metal-organic skeleton is an apparatus for recovering krypton or xenon, including one according to any one of claims 1 to 5.
  7. 제 6 항에 있어서,According to claim 6,
    상기 크립톤 또는 제논 회수장치는, The krypton or xenon recovery device,
    일측에 가스를 흡입하는 흡입구가 형성되어 있고, 타측에 가스를 배출하는 배출구가 형성되어 있는 제2 용기와,A second container having a suction port for inhaling gas on one side and an outlet for discharging gas on the other side;
    상기 제2 용기에 내장되는 금속유기 골격체를 포함하고,Including a metal-organic skeleton embedded in the second container,
    상기 제2 용기의 흡입구는 상기 제2 용기의 배출구와 연결되어 있는, 크립톤 또는 제논 회수장치.The inlet of the second container is connected to the outlet of the second container, krypton or xenon recovery device.
  8. 제 7 항에 있어서,According to claim 7,
    상기 제1 용기에 내장되는 금속유기 골격체와 상기 제2 용기에 내장되는 금속유기 골격체는 서로 다른 종류인, 크립톤 또는 제논 회수장치.The metal-organic skeleton contained in the first container and the metal-organic skeleton contained in the second container are of different types.
  9. 제 7 항에 있어서,According to claim 7,
    상기 제1 용기에 내장되는 금속유기 골격체와 상기 제2 용기에 내장되는 금속유기 골격체는 서로 동일한 종류인, 크립톤 또는 제논 회수장치.The metal-organic skeleton contained in the first container and the metal-organic skeleton contained in the second container are of the same type, krypton or xenon recovery device.
PCT/KR2022/018408 2021-12-15 2022-11-21 Metal-organic framework for collecting krypton or xenon, and apparatus for collecting krypton or xenon, comprising same WO2023113273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0179864 2021-12-15
KR20210179864 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023113273A1 true WO2023113273A1 (en) 2023-06-22

Family

ID=86773013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018408 WO2023113273A1 (en) 2021-12-15 2022-11-21 Metal-organic framework for collecting krypton or xenon, and apparatus for collecting krypton or xenon, comprising same

Country Status (2)

Country Link
KR (1) KR20230091020A (en)
WO (1) WO2023113273A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170096394A1 (en) * 2014-05-26 2017-04-06 Mohamed Eddaoudi Design, synthesis and characterization of metal organic frameworks
KR20180081563A (en) * 2015-11-07 2018-07-16 엔테그리스, 아이엔씨. Adsorbent and fluid supply package and apparatus comprising same
CN111072987A (en) * 2019-12-19 2020-04-28 北京工业大学 Two fluorinated metal organic framework materials, preparation and low-carbon hydrocarbon separation application thereof
US20200269211A1 (en) * 2017-09-12 2020-08-27 Centre National De La Recherche Scientifique Metal organic frameworks for the capture of volatil organic compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031004B1 (en) 2018-03-30 2019-10-11 한국원자력연구원 Absorption device for krypton and method for absorbing krypton using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170096394A1 (en) * 2014-05-26 2017-04-06 Mohamed Eddaoudi Design, synthesis and characterization of metal organic frameworks
KR20180081563A (en) * 2015-11-07 2018-07-16 엔테그리스, 아이엔씨. Adsorbent and fluid supply package and apparatus comprising same
US20200269211A1 (en) * 2017-09-12 2020-08-27 Centre National De La Recherche Scientifique Metal organic frameworks for the capture of volatil organic compounds
CN111072987A (en) * 2019-12-19 2020-04-28 北京工业大学 Two fluorinated metal organic framework materials, preparation and low-carbon hydrocarbon separation application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERNANDEZ CARLOS A., LIU JIAN, THALLAPALLY PRAVEEN K., STRACHAN DENIS M.: "Switching Kr/Xe Selectivity with Temperature in a Metal–Organic Framework", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 134, no. 22, 6 June 2012 (2012-06-06), pages 9046 - 9049, XP093072695, ISSN: 0002-7863, DOI: 10.1021/ja302071t *

Also Published As

Publication number Publication date
KR20230091020A (en) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2010035956A2 (en) Lithium recovery device using separator reservoir, lithium recovery method and lithium adsorption/desorption system using the same
WO2022119376A1 (en) Method for separation and purification of hydrogen from decomposed mixed gas of ammonia
WO2015111821A1 (en) Volatile organic compound removal system using microwaves
WO2014171657A1 (en) Air purifying filter with desorption unit using microwave heating and air purifying device using the same
WO2018084553A1 (en) Process for separating and recovering carbon monoxide from iron and steel industry byproduct gases
WO2016104910A1 (en) Graphene membrane film for solvent purification, method for producing same, and solvent purification system using same
WO2023113273A1 (en) Metal-organic framework for collecting krypton or xenon, and apparatus for collecting krypton or xenon, comprising same
WO2019139202A1 (en) Compact oxygen generator
WO2017004854A1 (en) Oled display panel and packaging method therefor
WO2016032115A1 (en) Adsorbent comprising silica nanoparticles with corrugated surfaces, and method for preparing same
KR20070092115A (en) Treating method of air containing organic solvent
WO2019022317A1 (en) High-purity recovery method of strontium in seawater
WO2013141487A1 (en) Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
WO2018008930A1 (en) Magnetic cesium adsorbent, preparation method therefor, and cesium removal method using same
WO2020171357A1 (en) Car filter having improved dust collection and deodorizing ability
WO2023105507A4 (en) Carbon dioxide capturing apparatus and capturing method
EP2257370A2 (en) Adsorbent, preparation method thereof and sr-90/y-90 generator using the same
WO2018194431A2 (en) Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
WO2017078415A1 (en) Apparatus for treating mercury-containing waste and method for recovering high purity elemental mercury using same apparatus
WO2018155753A1 (en) Renewable water treatment separation membrane and manufacturing method therefor
EP2476646B1 (en) Method for recovering xenon
WO2023121245A1 (en) Wafer treatment device for combined high-pressure process and vacuum process, and wafer treatment method using reduced pressure
WO2023033416A1 (en) Hydrogen production device
WO2019124623A1 (en) Plasma wire having carbon-based coating layer, and dust collector using same
WO2020246746A2 (en) Carbon dioxide adsorbent based on hydrophobic silane-coated amine-functionalized mof/alumina composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907743

Country of ref document: EP

Kind code of ref document: A1