WO2018155753A1 - Renewable water treatment separation membrane and manufacturing method therefor - Google Patents

Renewable water treatment separation membrane and manufacturing method therefor Download PDF

Info

Publication number
WO2018155753A1
WO2018155753A1 PCT/KR2017/002595 KR2017002595W WO2018155753A1 WO 2018155753 A1 WO2018155753 A1 WO 2018155753A1 KR 2017002595 W KR2017002595 W KR 2017002595W WO 2018155753 A1 WO2018155753 A1 WO 2018155753A1
Authority
WO
WIPO (PCT)
Prior art keywords
diene
functional group
separator
water treatment
derived functional
Prior art date
Application number
PCT/KR2017/002595
Other languages
French (fr)
Korean (ko)
Inventor
곽승엽
변승환
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2018155753A1 publication Critical patent/WO2018155753A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention claims priority based on Korean Patent Application No. 10-2017-0024776, filed February 24, 2017.
  • the present invention relates to a renewable water treatment membrane and a method for manufacturing the same, and more particularly, to a water treatment membrane and a method for manufacturing the same that can be reused through the recovery of the membrane function.
  • the water treatment method through the membrane is simple, compared to the conventional physical, chemical, and biological water treatment method, despite the need for a small installation space, low energy consumption has the advantage of having an excellent purification ability, the use is increasing gradually.
  • hydrophilic materials or materials capable of decomposing contaminants may be coated or introduced on the surface of the separator, or these materials may be introduced. Attempts have been made to form membranes using mixed dope solutions.
  • Korean Patent Publication No. 10-2012-0048378 discloses the measurement of contamination of the separator by supporting the fluorescent nanoparticles on the separator, but only confirming the replacement time by fluorescence.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a separation membrane capable of confirming the replacement time of the membrane due to the adsorption separation of contaminants such as heavy metals in the contaminated water and the change in fluorescence intensity.
  • another object of the present invention is to provide a renewable separator and a method for manufacturing the same that can be reused without replacing the entire membrane.
  • the present invention relates to a separator for solving the above problems and a method of manufacturing the separator.
  • a first aspect of the present invention is directed to the separator, wherein the separator is a separator substrate; And fluorescent organic nanoparticles introduced on at least one surface of the separator substrate, wherein the fluorescent organic nanoparticles are capable of coordination coupling with metal particles and are quenched by the coupling.
  • the fluorescent organic nanoparticle is a macrocyclic compound selected from at least one selected from porphyrin, subphthalocyanine, phthalocyanine, and furylene, and the macrocyclic compound is at least any It is substituted with one functional group or unsubstituted.
  • the separator substrate is a diene-diene diene linker complex
  • the fluorescent organic nanoparticles are bonded to the linker complex form It is introduced into the separator substrate.
  • the linker complex includes a diene-derived functional group introduced to at least one surface of the separator, and a diene-derived functional group coupled to the diene-derived functional group. Or a diene-derived functional group coupled to the dienophile-derived functional group introduced into the at least one surface of the separation membrane.
  • the fluorescent organic nanoparticles are bonded to the linker complex and introduced into the separator, wherein the fluorescent organic nanoparticles are bonded to the dienophile-derived functional group in the linker complex.
  • the dienophile-derived functional group has one end of a functional group bonded to the fluorescent organic nanoparticle, and the other end thereof has maleimide, so that the maleimide acts as a dienophile. It is combined with the diene body introduced into the separator.
  • the diene-derived functional group has one end of a functional group bonded to the separation membrane, and the other end thereof has a furan bound to which the furan acts as a diene body. It is combined with a dienophile.
  • the separator substrate includes at least one of a polymer material, an inorganic material, and a metal material.
  • the polymer material is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), poly Polyethersulfone (PES), Polyacrylonitrile (PAN), Polycarbonate (PC), Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride (PVC) It includes at least one selected from the group consisting of cellulose (Cellulose) and cellulose acetate (Cellulose acetate).
  • the present invention also provides a method for producing a separation membrane for water treatment.
  • a tenth aspect of the present invention is directed to the method, and includes the following steps (S10) to (S30).
  • the step (S30) is performed by heating the separation membrane in a temperature range of 20 ° C to 70 ° C.
  • the present invention also provides a method for regenerating a separation membrane for water treatment.
  • a twelfth aspect of the present invention relates to the above method, and includes the following steps (S100) to (S300).
  • the step (S200) is to heat-treat the separator so that the separator becomes 80 ° C to 200 ° C.
  • the step (S200) is performed by a DIELS elder reaction.
  • the intensity of fluorescence of the (S250) separator when the intensity of fluorescence of the (S250) separator is not reached before performing the step (S200), the intensity may not reach the preset intensity. Determining the recovery of the separator.
  • the present invention enables the separation of contaminants such as heavy metals in contaminated water by the fluorescent organic nanoparticles introduced into the separator, and at the same time it is possible to check the replacement time of the separator through the quenching effect of the fluorescent organic nanoparticles.
  • the organic nanoparticles combined with heavy metals can be removed by a simple heat treatment process, thereby enabling the regeneration of the separator.
  • FIG. 1 is a schematic perspective view of a separator for water treatment according to an embodiment of the present invention.
  • Figure 2 shows the FT-IR confirmed by the step of the synthesis of phthalocyanine.
  • Figure 3 is a schematic diagram showing a method for producing a separation membrane for water treatment according to an embodiment of the present invention.
  • Figure 4 is a result of confirming the modified state of the surface of the separator by ATR-IR by introducing fluorescent organic nanoparticles on the surface of the separator.
  • Figure 5 shows the change in the fluorescence properties of the PTFE separation membrane is introduced fluorescent organic nanoparticles according to an embodiment of the present invention.
  • Figure 6 shows the process of attachment and desorption of phthalocyanine particles through ATR FT-IR spectra.
  • Figure 7 shows the change in the fluorescence properties of the adhesion and desorption of phthalocyanine particles through the fluorescence spectra.
  • Figure 8 illustrates the structure of the separator according to a specific embodiment of the present invention and the mechanism by which the contaminants are removed using the separator.
  • the present invention relates to a separation membrane for water treatment.
  • the separation membrane for water treatment may be applied to, for example, one or more fields of ultrafiltration and microfiltration.
  • the separation membrane for water treatment has fluorescent organic nanoparticles introduced into at least one surface thereof.
  • the fluorescent organic nanoparticles are capable of coordinating bonds with metal particles, and have a quenching property in which the intensity of fluorescence is reduced or fluorescence is canceled by the metal particles.
  • the fluorescent organic nanoparticles may be introduced into the separator in a form combined with the linker complex introduced into the separator.
  • the renewable water treatment membrane 100 includes a separator substrate 10 and fluorescent organic nanoparticles 50 introduced into the separator, and the fluorescent organic nanoparticles Is introduced into the separator in a state connected to the linker complex 40.
  • the linker complex 40 includes a diene-derived functional group 20 and a diene-derived functional group 30 coupled with the diene-derived functional group 20, and the diene-derived functional group. 20 is introduced to at least one surface of the separator substrate 10, and the dienophile-derived functional group 30 is combined with the fluorescent organic nanoparticles 50.
  • the separator substrate may be applied without limitation to the material applied in the art.
  • Non-limiting examples thereof may include any one or a mixture of two or more of the polymer material, the inorganic material and the metal material.
  • the polymer material is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), polyethersulfone (Polyethersulfone, PES), Polyacrylonitrile (PAN), Polycarbonate (PC), Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride (PVC), Cellulose And cellulose acetate (Cellulose acetate) may include one or two or more selected from the group consisting of.
  • the polymer material is preferably at least one selected from polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), and polyethersulfone (PES). It may include.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polysulfone
  • PSF polysulfone
  • PES polyethersulfone
  • the inorganic material that can be used as the separator substrate is at least one of aluminum oxide (silicon), silicon oxide (silica), titanium oxide (Titania), or a mixture thereof can be used, the metal material that can be used as the separator substrate At least one of stainless steel and a palladium alloy may be used, or a mixture thereof may be used.
  • the separator substrate may be used by modifying the surface of the at least one selected from the group consisting of OH, -NH2, -CN, -CO-, -COOH, and -CONH-.
  • the fluorescent organic nanoparticles are macrocyclic compounds of at least one selected from porphyrin, subphthalocyanine, phthalocyanine and furylene.
  • the macrocyclic compound may be substituted with at least one functional group, or may be unsubstituted.
  • the macrocyclic compound may be nitrophthalocyanine in the tetrameric form of aminophthalonitrile.
  • Such fluorescent organic nanoparticles are in a form capable of coordinating metal and / or metal ions to a core portion of a molecular structure. In addition, it exhibits the property of emitting fluorescence, and this fluorescence property is eliminated by the combination with metals and / or metal ions. Therefore, the introduction of the fluorescent organic nanoparticles is useful for identifying the replacement time of the membrane by removing heavy metal ions, which are contaminants, and capturing optical characteristics of the separator.
  • the metal or metal ion may be a heavy metal or an ion thereof.
  • the heavy metal is a metal having a specific gravity of about 4.0 or more, or 5.0 or more.
  • Non-limiting examples of such heavy metals include aluminum (Al), arsenic (As), barium (Ba), uranium (U), bismuth (Bi), thallium (Ti), cesium (Cs), antimony (Sb), cobalt ( Co, beryllium (Be), manganese (Mn), chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), tin (Sn), mercury ( Hg), lead (Pb), etc. are mentioned.
  • such fluorescent organic nanoparticles may be introduced into the separator through a linker.
  • the linker of the present invention may be in the form of a diene-dienediene linker complex. That is, the separator substrate according to the present invention is provided with a diene-prodiene linker complex on one side or both sides, and fluorescent organic nanoparticles are introduced into the separator in a form bonded to the linker complex.
  • the diene body applicable to the present invention is a material having a structure consisting of a double bond-single bond-double bond order, and a material having an s-cis diene form can be used without limitation.
  • Butadiene butadiene
  • Cyclopentadiene cyclopentadiene
  • pyrrole Pyrole
  • Furan Furan
  • the diene body may be furan.
  • the dienophile is a material capable of coupling with the diene body to form a ring
  • the dienophile applicable to the present invention can be used without limitation, any material containing a double bond or triple bond.
  • Non-limiting examples are at least one selected from acrylonitrile, quinone, maleic anhydride maleimide.
  • the dienophile may be maleimide.
  • the diene-dienediene linker complex is a result of the Dieels-Alder reaction of the diene and dienedie, and is reversible for binding and dissociation. It may be in covalent form.
  • the Diels-Alder reaction is a reaction capable of controlling the forward and reverse reaction by changing the temperature, pressure, concentration of a substance, etc. in a thermodynamic equilibrium system.
  • the Diels-Alder reaction is an organic chemical reaction of conjugated dienes and dienes, and is used to heat energy, such as heat, in a mixture of conjugated dienes and dienes.
  • heat energy such as heat
  • a positive reaction proceeds, a ring-shaped cyclohexane is formed.
  • Its reverse reaction also dissociates the cyclic cyclohexane into a mixture of conjugated diene and dienophile.
  • the present invention provides a separator in which the fluorescent organic nanoparticles are introduced into the surface of the separator for water treatment by the diene-diene linker complex formed by the above-mentioned Diels-Alder reaction, thereby degrading the membrane by fouling. Can be used for regeneration.
  • the Diels-Alder reaction proceeds, and the diene-chindiene bond is dissociated.
  • Contaminants can be easily removed through this bond dissociation, and the functionality of the separator can be restored by combining the pure diene-diene-diene body at an appropriate temperature to form a linker complex.
  • the diene-didiene-linker complex applicable to the present invention includes diene-derived functional groups introduced on one or both sides of the separator substrate and diene-derived functional groups coupled to the diene-derived functional groups. can do.
  • the fluorescent organic nanoparticles are combined with the dienophile-derived functional group and introduced into the separator.
  • the diene-diene diene linker complex may be a diene-derived functional group coupled to the diene diene-derived functional group and the diene diene-derived functional group introduced on one side or both sides of the separation membrane It may include.
  • the fluorescent organic nanoparticles are combined with diene-derived functional groups and introduced into the separator.
  • the diene-derived functional groups introduced to the separator substrate or the dienophile-derived functional groups introduced to the separator substrate are each independently 0.1 to 30 parts by weight based on 100 parts by weight of the separator substrate. , Preferably 1 to 10 parts by weight.
  • the dienophile-derived functional group may be one end of the functional group is bonded to the fluorescent organic nanoparticles and the other end thereof is a maleimide bonded.
  • the maleimide may act as a diene diene to form a linker complex bonded to a diene body introduced into the separator, for example, furan.
  • a method of manufacturing a renewable water treatment membrane includes the following steps (S10) to (S30):
  • the step of introducing the dienophile-derived functional group into the fluorescent organic nanoparticles may be directly bonded to the fluorescent organic nanoparticles and the dienophile-derived functional group.
  • a substituent may be introduced at the terminal of at least one of the functional group or the fluorescent organic nanoparticles derived from the diene, and the two components may be bonded through the substituent.
  • the substituent may include, for example, an amine group, an alcohol group, a carboxyl group, a thiol group, and the like.
  • a substituent including an amine group may be introduced at the terminal of the fluorescent organic nanoparticle so that the amine group is bonded to the dienophile-derived functional group.
  • the bonding by introduction of a substituent is not limited to the above-mentioned content, It is apparent that any substituent can be used as long as it is possible to couple
  • the linker complex of (S30) may be formed by a Diels-Alder reaction of a diene-derived functional group and a diene-diene-derived functional group, wherein the reaction is 20 ° C. to 70 ° C., or It may be carried out at a temperature condition of 40 to 60 °C.
  • a fluorescent nano is introduced by introducing a dienophile into the separator, combining the fluorescent nanoorganic particles with the diene, and then complexing the diene and dienophile to form a linker complex. It is also possible to prepare the separator in the order in which the organic particles are introduced into the separator.
  • the method for preparing a separator for water treatment may include a dienophile-diene or diene in which fluorescent organic particles are introduced after introduction of a diene-dienophile linker complex on at least one surface of the separator. It is also possible to carry out by means of coupling with a sieve.
  • the present invention also provides a method for regenerating a separation membrane for water treatment according to the present invention.
  • the regeneration method may include the following steps (S100) to (S300).
  • the method assumes an embodiment in which the diene-derived functional group in the linker complex is bonded to the separator and the fluorescent organic nanoparticles are bonded to the dienophile-derived functional group.
  • the dienophile body in which the fluorescent organic nanoparticles are combined is removed from the separator.
  • the contaminants are attached to the fluorescent organic nanoparticles so that the contaminants are removed together by (S200).
  • the dienophile-derived functional group added in step (S300) is to which the fluorescent organic nanoparticles are attached, wherein the fluorescent organic nanoparticles are in a state in which the fluorescent property is maintained as the contaminants are not attached.
  • the fluorescent organic nano particles may be recovered after performing the step (S200) can be used to remove the contaminants and then recycled.
  • the diene-derived functional group in the linker complex is bonded to the separator and the fluorescent organic nanoparticles are regenerated in the separator, the dienophile-derived functional group is added to the separator after the step (S200). Since the combined diene-derived functional group is recovered (S300), the linker complex may be reproduced by adding fluorescent organic nanoparticles to which the diene-derived functional group is bound.
  • the water-treated separator is heated to dissociate the diene-derived functional group and diene-derived functional group coupling of the diene-diene-diene linker complex to remove contaminants.
  • the reaction that can break the linker complex may be variously applied, but may preferably be a retro Diels-Alder reaction.
  • the heat treatment temperature is 80 to 200 °C, preferably 100 to 150 °C, because the Diels-Alder reaction (retro Diels-Alder reaction) does not proceed outside the temperature range.
  • the polytetrafluoroethylene (PTFE) membrane substrate was first exposed to hydrazine vapor, followed by 48 hours of ultraviolet radiation at 264 nm at 100 W output. Irradiation gave a polytetrafluoroethylene (PTFE) separator substrate modified with an amine group. Subsequently, the furfuryl glycidyl ether solution was impregnated with the amine group-modified polytetrafluoroethylene (PTFE) membrane substrate and reacted at 60 ° C., finally, the polytetrafluoroethylene (PTFE) membrane substrate surface-modified with the furan functional group was reacted. Prepared.
  • the XPS surface oxygen atom ratio analysis confirmed that 2 to 20 parts by weight of furan functional groups were introduced based on 100 parts by weight of the polytetrafluoroethylene (PTFE) membrane substrate modified with an amine group.
  • PTFE polytetrafluoroethylene
  • Figure 4 shows the result of confirming the surface modification of the separator through the ATR FT-IR.
  • the carbon double bond strength of the furan was shown as the result of FT-IR of the separator into which the furan functional group was introduced.
  • Figure 2 shows the results confirmed by FT-IR step by step phthalocyanine synthesis. Through this, an amino group was introduced into 4-nitrophthalonitrile and combined with maleimide to confirm that phthalocyanine having a maleimide substituent was introduced therein.
  • Phthalocyanine-maleimide was dissolved in toluene organic solvent at 5% concentration. The solution was impregnated with a polytetrafluoroethylene (PTFE) membrane substrate modified with a furan group, and then phthalocyanine was introduced into polytetrafluoroethylene (PTFE) through a Diels-Alder reaction between the furan and maleimide at about 60 ° C. to phthalocyanine.
  • -PTFE (phthalocyanine-PTFE) separator was prepared.
  • the prepared phthalocyanine-PTFE (phthalocyanine-PTFE) separator contained 1 to 10 parts by weight of Pc-Maleimide based on 100 parts by weight of the polytetrafluoroethylene (PTFE) separator substrate.
  • Figure 3 shows a schematic diagram illustrating a method of manufacturing a separator according to a specific embodiment of the present invention.
  • the separation membrane prepared in Example 1 was used to confirm heavy metal removal ability and fluorescence physical properties. After preparing a heavy metal solution containing 0.001 to 0.01 parts by weight of chromium hexavalent ions and iron trivalent ions, the fluorescence property change of the surface of the separator was observed in the 300-800 nm region while being passed through the phthalocyanine-PTFE membrane for 30 minutes.
  • FIG. 5 is a graph showing the change in the fluorescence properties of the separator prepared in Example 1.
  • Figure 5 (a) and (b) is Cr (VI)
  • (c) and (d) is to confirm the fluorescence scavenging ability for Fe (III). According to this, it was confirmed that the fluorescence properties of the B-band region of 350-500 nm and the Q-band region of 700-800 nm, respectively, were eliminated according to the membrane permeation time of the raw water containing heavy metal ions.
  • Example 1 The membrane prepared in Example 1 was impregnated with a toluene solvent, followed by a Diels-Elder reverse reaction at 150 ° C. to remove phthalocyanine attached to the membrane surface.
  • Diels-Alder reaction was performed in the same manner as in Example 1 to prepare a phthalocyanine-bound membrane.
  • the surface adhesion and desorption reaction of the phthalocyanine PTFE separator was repeated three times to confirm reproducibility.
  • FIG. 6 is an FT-IR spectra showing the process of adhesion and desorption of phthalocyanine from the separator prepared in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a separation membrane, which adsorbs and separates pollutants such as heavy metals in polluted water and, simultaneously, can check the replacement time of the separation membrane by using a change in fluorescence intensity. The separation membrane is reusable and renewable without replacement of the entire separation membrane.

Description

재생 가능한 수처리 분리막 및 이의 제조방법Renewable Water Treatment Membrane and Manufacturing Method Thereof
본 발명은 2017년 2월 24일자로 출원된 한국특허출원 제10-2017-0024776호에 기초한 우선권을 주장한다. 본 발명은 재생 가능한 수처리용 분리막 및 이의 제조방법에 관한 것으로, 보다 상세하게는 분리막 기능 회복을 통해 재사용이 가능한 수처리용 분리막 및 이의 제조방법에 관한 것이다.The present invention claims priority based on Korean Patent Application No. 10-2017-0024776, filed February 24, 2017. The present invention relates to a renewable water treatment membrane and a method for manufacturing the same, and more particularly, to a water treatment membrane and a method for manufacturing the same that can be reused through the recovery of the membrane function.
분리막을 통한 수처리 방식은 기존의 물리, 화학, 생물학적 수처리 방식에 비해 단순하고, 작은 설치공간, 낮은 에너지 소모를 요구함에도 불구하고 우수한 정화능력을 갖는 이점이 있어 그 사용이 점차 증가하고 있는 추세이다. The water treatment method through the membrane is simple, compared to the conventional physical, chemical, and biological water treatment method, despite the need for a small installation space, low energy consumption has the advantage of having an excellent purification ability, the use is increasing gradually.
하지만, 분리막을 이용하여 수처리 시, 제거하고자 하는 오염물질들이 분리막 표면이나 내부 기공에 쌓여 분리막의 성능을 저하시키는 분리막 파울링(fouling) 문제가 발생하여 분리막의 수명을 크게 단축시키는 문제가 있다.However, when the water treatment using the membrane, contaminants to be removed accumulate on the surface of the membrane or internal pores, so there is a problem that the membrane fouling (fouling) problem to reduce the performance of the membrane to significantly shorten the life of the membrane.
이에, 분리막 파울링을 유발하는 소수성 오염물질의 부착을 억제하기 위해, 친수성 재료나 오염 물질들을 분해시킬 수 있는 재료들을 분리막 표면에 코팅(coating), 그래프팅(grafting)하여 도입하거나, 이들 재료가 혼합된 도프용액을 이용하여 분리막을 제막하는 시도들이 이루어져 왔다. Accordingly, in order to suppress adhesion of hydrophobic contaminants that cause membrane fouling, hydrophilic materials or materials capable of decomposing contaminants may be coated or introduced on the surface of the separator, or these materials may be introduced. Attempts have been made to form membranes using mixed dope solutions.
또한, 한국 특허공개 제10-2012-0048378호는 형광 나노 입자를 분리막에 담지하여 분리막의 오염 정도를 측정하는 내용을 개시하고 있으나, 형광에 의해 단지 교체 시기만을 확인하는 것에 불과하였다. In addition, Korean Patent Publication No. 10-2012-0048378 discloses the measurement of contamination of the separator by supporting the fluorescent nanoparticles on the separator, but only confirming the replacement time by fluorescence.
이러한 시도들은 분리막 파울링 속도를 늦춰 분리막의 수명을 연장시킬 수는 있으나, 내파울링 기능성 재료의 처리 한계에 도달하면, 분리막 성능을 회복시키기 위해 분리막 전체의 교체가 불가피한 문제가 있다. These attempts can extend the life of the membrane by slowing down the fouling rate of the membrane. However, when the treatment limit of the fouling resistant functional material is reached, replacement of the entire membrane is inevitable to restore the membrane performance.
또한, 부여하고자 하는 기능성이 분리막에 발현되기 위해서는 각각의 기능별로 적합한 도입 공정의 개발이 필수적이어서, 제조 비용 및 개발 시간이 많이 필요하여, 여전히 기술개발이 요구되고 있는 실정이다.In addition, in order for the functionality to be imparted to the separation membrane is required to develop a suitable introduction process for each function, a lot of manufacturing cost and development time is required, the situation is still a technical development is required.
본 발명은 상기와 같은 문제를 해결하기 위한 것으로, 오염수 중 중금속과 같은 오염 물질을 흡착 분리함과 동시에 형광 강도의 변화로 인해 분리막의 교체 시기 확인이 가능한 분리막을 제공하는 것을 목적으로 한다. 또한, 본 발명은 분리막의 전체를 교체하지 않고도 분리막의 재사용이 가능한, 재생 가능한 분리막 및 이의 제조방법을 제공하는 것을 또 다른 목적으로 한다. 본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a separation membrane capable of confirming the replacement time of the membrane due to the adsorption separation of contaminants such as heavy metals in the contaminated water and the change in fluorescence intensity. In addition, another object of the present invention is to provide a renewable separator and a method for manufacturing the same that can be reused without replacing the entire membrane. Other objects and advantages of the invention will be understood by the following description. In addition, it will be readily appreciated that the objects and advantages of the present invention may be realized by the means or method described in the claims and combinations thereof.
본 발명은 상기 과제를 해결하기 위한 분리막 및 상기 분리막을 제조하는 방법에 대한 것이다. 본 발명의 제1 측면은 상기 분리막에 대한 것으로서, 상기 분리막은 분리막 기재; 및 분리막 기재의 적어도 일측 표면에 도입된 형광성 유기 나노 입자;를 포함하며, 상기 형광성 유기 나노 입자는 금속 입자와의 배위 결합이 가능하며, 결합에 의해 소광(quenching)되는 것이다. The present invention relates to a separator for solving the above problems and a method of manufacturing the separator. A first aspect of the present invention is directed to the separator, wherein the separator is a separator substrate; And fluorescent organic nanoparticles introduced on at least one surface of the separator substrate, wherein the fluorescent organic nanoparticles are capable of coordination coupling with metal particles and are quenched by the coupling.
본 발명의 제2 측면은, 상기 제1 측면에 있어서, 상기 형광성 유기 나노 입자는 포르피린, 서브프탈로시아닌, 프탈로시아닌, 퍼닐렌 중 선택된 1종 이상인 거대고리(macrocyclic) 화합물이며, 상기 거대고리 화합물은 적어도 어느 하나의 작용기로 치환된 것이거나, 또는 비치환된 것이다. According to a second aspect of the present invention, in the first aspect, the fluorescent organic nanoparticle is a macrocyclic compound selected from at least one selected from porphyrin, subphthalocyanine, phthalocyanine, and furylene, and the macrocyclic compound is at least any It is substituted with one functional group or unsubstituted.
본 발명의 제3 측면은, 상기 제1 측면 또는 제2 측면에 있어서, 상기 분리막 기재는 다이엔체-친다이엔체 링커 복합체가 도입되어 있고, 상기 형광성 유기 나노 입자는 상기 링커 복합체에 결합된 형태로 분리막 기재에 도입된 것이다. In a third aspect of the present invention, in the first or second aspect, the separator substrate is a diene-diene diene linker complex is introduced, the fluorescent organic nanoparticles are bonded to the linker complex form It is introduced into the separator substrate.
본 발명의 제4 측면은, 상기 제3 측면에 있어서, 상기 링커 복합체는 분리막의 적어도 일측 표면에 도입된 다이엔체 유래 작용기, 및 상기 다이엔체 유래 작용기와 커플링된 친다이엔체 유래 작용기를 포함하는 것이거나, 분리막의 적어도 일측 표면에 도입된 친다이엔체 유래 작용기, 및 상기 친다이엔체 유래 작용기와 커플링된 다이엔체 유래 작용기를 포함하는 것이다. According to a fourth aspect of the present invention, in the third aspect, the linker complex includes a diene-derived functional group introduced to at least one surface of the separator, and a diene-derived functional group coupled to the diene-derived functional group. Or a diene-derived functional group coupled to the dienophile-derived functional group introduced into the at least one surface of the separation membrane.
본 발명의 제5 측면은, 상기 제4 측면에 있어서, 형광성 유기 나노 입자가 링커 복합체에 결합되어 분리막에 도입된 것이며, 여기에서 상기 형광성 유기 나노 입자는 링커 복합체 중 친다이엔체 유래 작용기와 결합된 것이다. In a fourth aspect of the present invention, in the fourth aspect, the fluorescent organic nanoparticles are bonded to the linker complex and introduced into the separator, wherein the fluorescent organic nanoparticles are bonded to the dienophile-derived functional group in the linker complex. will be.
본 발명의 제6 측면은, 상기 제5 측면에 있어서, 상기 친다이엔체 유래 작용기는 작용기의 일단이 형광성 유기 나노 입자와 결합하고 이의 타단은 말레이미드가 결합되어 있어 말레이미드가 친다이엔체로 작용하여 분리막에 도입된 다이엔체와 결합된 것이다. According to a sixth aspect of the present invention, in the fifth aspect, the dienophile-derived functional group has one end of a functional group bonded to the fluorescent organic nanoparticle, and the other end thereof has maleimide, so that the maleimide acts as a dienophile. It is combined with the diene body introduced into the separator.
본 발명의 제7 측면은, 상기 제5 측면 또는 제6 측면에 있어서, 상기 다이엔체 유래 작용기는 작용기의 일단이 분리막과 결합하고, 이의 타단은 퓨란이 결합되어 있어 퓨란이 다이엔체로 작용하여 친다이엔체와 결합된 것이다. According to a seventh aspect of the present invention, in the fifth or sixth aspect, the diene-derived functional group has one end of a functional group bonded to the separation membrane, and the other end thereof has a furan bound to which the furan acts as a diene body. It is combined with a dienophile.
본 발명의 제8 측면은, 상기 제1 측면 내지 제7 측면 중 어느 하나에 있어서, 상기 분리막 기재는 고분자 재료, 무기 재료 및 금속 재료 중 적어도 어느 하나를 포함하는 것이다. In an eighth aspect of the present invention, in any one of the first to seventh aspects, the separator substrate includes at least one of a polymer material, an inorganic material, and a metal material.
본 발명의 제9 측면은, 상기 제8 측면에 있어서, 상기 고분자 재료는 폴리테트라플로오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리설폰 (Polysulfone, PSF), 폴리에테르설폰(Polyethersulfone, PES), 폴리아크릴로니트릴 (Polyacrylonitrile, PAN), 폴리카보네이트(Polycarbonate, PC), 폴리에틸렌(Polyethylene, PE), 폴리프로필렌(Polypropylene, PP), 폴리염화비닐(Polyvinyl chloride, PVC), 셀룰로오스(Cellulose) 및 셀룰로오스 아세테이트(Cellulose acetate)로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것이다. In a ninth aspect of the present invention, in the eighth aspect, the polymer material is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), poly Polyethersulfone (PES), Polyacrylonitrile (PAN), Polycarbonate (PC), Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride (PVC) It includes at least one selected from the group consisting of cellulose (Cellulose) and cellulose acetate (Cellulose acetate).
또한 본 발명은 수처리용 분리막의 제조 방법을 제공한다. 본 발명의 제10 측면은 상기 방법에 대한 것으로서, 하기 (S10) 단계 내지 (S30)단계를 포함한다. The present invention also provides a method for producing a separation membrane for water treatment. A tenth aspect of the present invention is directed to the method, and includes the following steps (S10) to (S30).
(S10) 분리막의 적어도 일측 표면에 다이엔체 유래 작용기를 도입하는 단계; (S10) introducing a diene-derived functional group on at least one surface of the separator;
(S20) 형광성 유기 나노 입자에 친다이엔체 유래 작용기를 도입하는 단계; 및 (S20) introducing a dienophile-derived functional group into the fluorescent organic nanoparticles; And
(S30) (S10)의 결과물과 (S20)의 결과물을 반응시켜 다이엔체 유래 작용기 및 친다이엔체 유래 작용기를 결합시켜 커플링 시키는 단계. (S30) reacting the resultant of (S10) with the resultant of (S20) to combine and couple diene-derived functional groups and dienophile-derived functional groups.
본 발명의 제11 측면은 상기 제10 측면에 있어서, 상기 (S30) 단계는 분리막이 20℃ 내지 70℃의 온도 범위에서 가열 처리되어 수행되는 것이다. In an eleventh aspect of the present invention, in the tenth aspect, the step (S30) is performed by heating the separation membrane in a temperature range of 20 ° C to 70 ° C.
또한 본 발명은 수처리용 분리막의 재생 방법을 제공한다. 본 발명의 제12 측면은 상기 방법에 대한 것으로서, 하기 (S100) 단계 내지 (S300)단계를 포함한다. The present invention also provides a method for regenerating a separation membrane for water treatment. A twelfth aspect of the present invention relates to the above method, and includes the following steps (S100) to (S300).
(S100) 중금속을 포함하는 오염물질을 포함하는 물(water)을 제1항 내지 제9항 중 어느 한 항의 수처리용 분리막으로 여과하여, 형광성 유기 나노 입자에 오염물질이 부착되는 단계; (S100) filtering the water containing contaminants including heavy metals with the water treatment membrane of any one of claims 1 to 9, wherein the contaminants are attached to the fluorescent organic nanoparticles;
(S200) 상기 오염물질이 부착된 분리막을 가열 처리하여, 상기 다이엔체-친다이엔체 링커 복합체의 다이엔체 유래 작용기와 친다이엔체 유래 작용기의 커플링을 해리시키는 단계; 및(S200) dissociating coupling of the diene-derived functional group and the diene-diene-derived functional group of the diene-diene-diene linker complex by heating the separator to which the contaminants are attached; And
(S300) 친다이엔체 유래 작용기가 결합된 형광성 유기 나노 입자를 첨가하여 다이엔체 유래 작용기와 친다이엔체 유래 작용기를 재결합시키는 단계. (S300) re-combining the diene-derived functional group and the diene-diene-derived functional group by adding fluorescent organic nanoparticles having a dienophile-derived functional group bonded thereto.
본 발명의 제13 측면은, 상기 제12 측면에 있어서, 상기 (S200) 단계는 분리막이 80℃ 내지 200℃가 되도록 가열 처리 하는 것이다. In a thirteenth aspect of the present invention, in the twelfth aspect, the step (S200) is to heat-treat the separator so that the separator becomes 80 ° C to 200 ° C.
본 발명의 제14 측면은, 상기 제12 측면 또는 제13 측면에 있어서, 상기 (S200) 단계는 디엘스 엘더 역반응에 의해 수행되는 것이다. According to a fourteenth aspect of the present invention, in the twelfth aspect or the thirteenth aspect, the step (S200) is performed by a DIELS elder reaction.
본 발명의 제15 측면은, 상기 제12 측면 내지 제14 측면 중 어느 하나에 있어서, 상기 (S200) 단계의 수행 이전에, (S250) 분리막의 형광의 강도를 측정하여 기설정 강도에 미치지 못하는 경우 분리막 회수를 결정하는 단계를 더 포함한다. According to a fifteenth aspect of the present invention, in any one of the twelfth to fourteenth aspects, when the intensity of fluorescence of the (S250) separator is not reached before performing the step (S200), the intensity may not reach the preset intensity. Determining the recovery of the separator.
본 발명은 분리막에 도입된 형광성 유기 나노 입자에 의해 오염수 중 중금속과 같은 오염 물질의 분리가 가능하며, 이와 동시에 상기 형광성 유기 나노 입자의 소광 효과를 통해 분리막의 교체 시기 확인이 가능하다. 또한, 중금속과 결합된 유기 나노 입자는 간이한 열처리 공정에 의해 제거될 수 있어 분리막의 재생 사용이 가능하다. The present invention enables the separation of contaminants such as heavy metals in contaminated water by the fluorescent organic nanoparticles introduced into the separator, and at the same time it is possible to check the replacement time of the separator through the quenching effect of the fluorescent organic nanoparticles. In addition, the organic nanoparticles combined with heavy metals can be removed by a simple heat treatment process, thereby enabling the regeneration of the separator.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다. BRIEF DESCRIPTION OF THE DRAWINGS The drawings appended hereto illustrate preferred embodiments of the present invention, and together with the teachings of the present invention serve to better understand the technical idea of the present invention, the present invention is limited only to those described in such drawings. It is not to be interpreted. On the other hand, the shape, size, scale or ratio of the elements in the drawings included in this specification may be exaggerated to emphasize a more clear description.
도 1은 본 발명의 일 실시예에 따른 수처리용 분리막의 개략적인 사시도이다. 1 is a schematic perspective view of a separator for water treatment according to an embodiment of the present invention.
도 2는 프탈로시아닌의 합성 단계별로 FT-IR을 확인하여 나타낸 것이다. Figure 2 shows the FT-IR confirmed by the step of the synthesis of phthalocyanine.
도 3은 본 발명의 일 실시양태에 따른 수처리용 분리막의 제조 방법을 도식화하여 나타낸 것이다. Figure 3 is a schematic diagram showing a method for producing a separation membrane for water treatment according to an embodiment of the present invention.
도 4는 분리막의 표면에 형광성 유기 나노 입자가 도입하여 분리막의 표면이 개질된 상태를 ATR-IR을 통해 확인할 결과이다. Figure 4 is a result of confirming the modified state of the surface of the separator by ATR-IR by introducing fluorescent organic nanoparticles on the surface of the separator.
도 5는 본 발명의 일 실시양태에 따른 형광성 유기 나노 입자가 도입된 PTFE 소재 분리막의 형광 물성 변화를 나타낸 것이다. Figure 5 shows the change in the fluorescence properties of the PTFE separation membrane is introduced fluorescent organic nanoparticles according to an embodiment of the present invention.
도 6은 ATR FT-IR 스펙트라를 통해 프탈로시아닌 입자의 부착 및 탈착 과정을 나타낸 것이다. Figure 6 shows the process of attachment and desorption of phthalocyanine particles through ATR FT-IR spectra.
도 7은 형광 스펙트라를 통해 프탈로시아닌 입자의 부착과 탈착에 따른 형광 물성을 변화를 확인한 것이다. Figure 7 shows the change in the fluorescence properties of the adhesion and desorption of phthalocyanine particles through the fluorescence spectra.
도 8은 본원 발명의 구체적인 일 실시양태에 따른 분리막의 구조 및 상기 분리막을 이용하여 오염물질이 제거되는 기작을 도식화하여 나타낸 것이다. Figure 8 illustrates the structure of the separator according to a specific embodiment of the present invention and the mechanism by which the contaminants are removed using the separator.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, embodiments of the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the configurations described in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations.
본 발명은 수처리용 분리막에 대한 것이다. 상기 수처리용 분리막은 예를 들어 한외여과 및 정밀여과 중 하나 이상의 분야에 적용될 수 있다. 본 발명에 있어서 상기 수처리용 분리막은 적어도 일측 표면에 형광성 유기 나노 입자가 도입되어 있는 것이다. 또한, 상기 형광성 유기 나노 입자는 금속 입자와 배위 결합이 가능한 것이며, 금속 입자와의 결합에 의해 형광의 강도가 약화되거나 형광이 소거되는 소광(quenching) 특성이 있는 것이다. 또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 형광성 유기 나노 입자는 분리막에 도입된 링커 복합체와 결합된 형태로 분리막에 도입된 것일 수 있다. The present invention relates to a separation membrane for water treatment. The separation membrane for water treatment may be applied to, for example, one or more fields of ultrafiltration and microfiltration. In the present invention, the separation membrane for water treatment has fluorescent organic nanoparticles introduced into at least one surface thereof. In addition, the fluorescent organic nanoparticles are capable of coordinating bonds with metal particles, and have a quenching property in which the intensity of fluorescence is reduced or fluorescence is canceled by the metal particles. In addition, in one specific embodiment of the present invention, the fluorescent organic nanoparticles may be introduced into the separator in a form combined with the linker complex introduced into the separator.
다음으로 본 발명의 구체적인 다양한 실시양태에 대해 첨부된 도면을 참조하여 설명한다. Next, specific various embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 수처리용 분리막의 개략적인 사시도이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 재생 가능한 수처리용 분리막(100)은 분리막 기재(10) 및 상기 분리막에 도입된 형광성 유기 나노 입자(50)를 포함하며, 상기 형광성 유기 나노 입자는 링커 복합체(40)에 연결된 상태로 분리막에 도입된 것이다. 또한, 상기 링커 복합체(40)는 다이엔체 유래 작용기(20) 및 상기 다이엔체 유래 작용기(20)와 커플링된 친다이엔체 유래 작용기(30)를 포함하는 것으로서, 상기 다이엔체 유래 작용기(20)은 상기 분리막 기재(10)의 적어도 일 표면에 도입된 것이며, 상기 친다이엔체 유래 작용기(30)는 형광성 상기 유기 나노 입자(50)와 결합되어 있다. 1 is a schematic perspective view of a separator for water treatment according to an embodiment of the present invention. Referring to FIG. 1, the renewable water treatment membrane 100 according to an embodiment of the present invention includes a separator substrate 10 and fluorescent organic nanoparticles 50 introduced into the separator, and the fluorescent organic nanoparticles Is introduced into the separator in a state connected to the linker complex 40. In addition, the linker complex 40 includes a diene-derived functional group 20 and a diene-derived functional group 30 coupled with the diene-derived functional group 20, and the diene-derived functional group. 20 is introduced to at least one surface of the separator substrate 10, and the dienophile-derived functional group 30 is combined with the fluorescent organic nanoparticles 50.
본 발명의 구체적인 일 실시양태에 있어서, 상기 분리막 기재는 당해 기술분야에서 적용되는 물질은 제한없이 적용할 있다. 이의 비제한적인 예로 고분자 재료, 무기 재료 및 금속 재료 중 어느 하나 또는 이 중 둘 이상의 혼합물을 포함할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 재료는 폴리테트라플로오로에틸렌 (Polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리설폰(Polysulfone, PSF), 폴리에테르설폰 (Polyethersulfone, PES), 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리카보네이트(Polycarbonate, PC), 폴리에틸렌(Polyethylene, PE), 폴리프로필렌(Polypropylene, PP), 폴리염화비닐(Polyvinyl chloride, PVC), 셀룰로오스(Cellulose) 및 셀룰로오스 아세테이트(Cellulose acetate) 로 이루어진 군으로부터 선택되는 하나 또는 이 중 둘 이상을 포함할 수 있다. 상기 고분자 재료는 바람직하게는 폴리테트라플로오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리설폰(Polysulfone, PSF), 폴리에테르설폰(Polyethersulfone, PES) 중 선택된 1종 이상을 포함할 수 있다. In one specific embodiment of the present invention, the separator substrate may be applied without limitation to the material applied in the art. Non-limiting examples thereof may include any one or a mixture of two or more of the polymer material, the inorganic material and the metal material. In one specific embodiment of the present invention, the polymer material is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), polyethersulfone (Polyethersulfone, PES), Polyacrylonitrile (PAN), Polycarbonate (PC), Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride (PVC), Cellulose And cellulose acetate (Cellulose acetate) may include one or two or more selected from the group consisting of. The polymer material is preferably at least one selected from polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), and polyethersulfone (PES). It may include.
또한, 분리막 기재로 사용할 수 있는 무기 재료는 알루미늄 산화물 (Alumina), 규소산화물(silica), 티타늄산화물(Titania) 중 적어도 어느 하나이거나, 이들을 혼합하여 사용할 수 있고, 분리막 기재로 사용할 수 있는 금속물질은 스텐리스 스틸(Stainless steel), 팔라듐 합금(Palladium alloy) 중 적어도 어느 하나이거나, 이들을 혼합하여 사용할 수 있다. In addition, the inorganic material that can be used as the separator substrate is at least one of aluminum oxide (silicon), silicon oxide (silica), titanium oxide (Titania), or a mixture thereof can be used, the metal material that can be used as the separator substrate At least one of stainless steel and a palladium alloy may be used, or a mixture thereof may be used.
아울러, 분리막 기재는 전술한 물질을 사용하거나, 표면을 OH, -NH2, -CN, -CO-, -COOH, 및 -CONH-로 이루어진 군으로부터 선택된 1종 이상으로 개질하여 사용할 수 있다. In addition, the separator substrate may be used by modifying the surface of the at least one selected from the group consisting of OH, -NH2, -CN, -CO-, -COOH, and -CONH-.
본 발명에 있어서, 상기 형광성 유기 나노 입자는 포르피린, 서브프탈로시아닌, 프탈로시아닌, 퍼닐렌 중 선택된 1종 이상인 거대고리(macrocyclic) 화합물인 것이다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 거대 고리 화합물은 적어도 어느 하나의 작용기로 치환된 것이거나, 또는 비치환 된 것일 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 거대고리 화합물은 아미노프탈로나이트릴의 4량체 형태인 나이트로프탈로시아닌일 수 있다. In the present invention, the fluorescent organic nanoparticles are macrocyclic compounds of at least one selected from porphyrin, subphthalocyanine, phthalocyanine and furylene. In one specific embodiment of the present invention, the macrocyclic compound may be substituted with at least one functional group, or may be unsubstituted. In one specific embodiment of the present invention, the macrocyclic compound may be nitrophthalocyanine in the tetrameric form of aminophthalonitrile.
이러한 형광성 유기 나노 입자는 분자 구조의 코어 부분에 금속 및/또는 금속 이온과 배위결합을 할 수 있는 형태이다. 또한, 형광을 발광하는 특성을 나타내며, 이러한 형광 발광 특성은 금속 및/또는 금속 이온과의 결합에 의해 소거된다. 따라서 이러한 형광성 유기 나노 입자의 도입으로 오염물질인 중금속 이온을 제거함과 동시에 분리막의 광학적 특성 변화를 포착하여 분리막의 교체 시기를 확인하는데 유용하다. Such fluorescent organic nanoparticles are in a form capable of coordinating metal and / or metal ions to a core portion of a molecular structure. In addition, it exhibits the property of emitting fluorescence, and this fluorescence property is eliminated by the combination with metals and / or metal ions. Therefore, the introduction of the fluorescent organic nanoparticles is useful for identifying the replacement time of the membrane by removing heavy metal ions, which are contaminants, and capturing optical characteristics of the separator.
본 발명의 구체적인 일 실시양태에 있어서, 상기 금속 또는 금속 이온은 중금속 또는 이들의 이온일 수 있다. 상기 중금속은 비중이 약 4.0 이상, 또는 5.0 이상인 금속인 것이다. 이러한 중금속의 비제한적인 예로는 알루미늄(Al), 비소(As), 바륨(Ba), 우라늄(U), 비스무스(Bi), 탈륨(Ti), 세슘(Cs), 안티몬(Sb), 코발트(Co), 베릴륨(Be), 망간(Mn), 크롬(Cr), 철(Fe), 니켈(Ni), 구리(Cu), 아연(Zn), 카드뮴(Cd), 주석(Sn), 수은(Hg), 납(Pb) 등을 들 수 있다.In one specific embodiment of the present invention, the metal or metal ion may be a heavy metal or an ion thereof. The heavy metal is a metal having a specific gravity of about 4.0 or more, or 5.0 or more. Non-limiting examples of such heavy metals include aluminum (Al), arsenic (As), barium (Ba), uranium (U), bismuth (Bi), thallium (Ti), cesium (Cs), antimony (Sb), cobalt ( Co, beryllium (Be), manganese (Mn), chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), tin (Sn), mercury ( Hg), lead (Pb), etc. are mentioned.
본 발명에 있어서, 이러한 형광성 유기 나노 입자는 링커를 통해 분리막에 도입될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 본 발명의 상기 링커는 다이엔체-친다이엔체 링커 복합체의 형태일 수 있다. 즉, 본 발명에 따른 분리막은 분리막 기재는 일면 또는 양면에 다이엔체-친다이엔체 링커 복합체가 구비되어 있으며, 형광성 유기 나노 입자가 상기 링커 복합체에 결합된 형태로 분리막에 도입된 것이다. In the present invention, such fluorescent organic nanoparticles may be introduced into the separator through a linker. In one specific embodiment of the present invention, the linker of the present invention may be in the form of a diene-dienediene linker complex. That is, the separator substrate according to the present invention is provided with a diene-prodiene linker complex on one side or both sides, and fluorescent organic nanoparticles are introduced into the separator in a form bonded to the linker complex.
본 발명에 적용할 수 있는 다이엔체는 이중결합-단일결합-이중결합 순으로 이루어진 구조를 갖는 물질로, s-시스형 다이엔 형태를 갖는 물질은 제한없이 사용할 수 있으며, 비제한적인 예로는 부타다이엔(Butadiene), 사이클로펜타다이엔 (Cyclopentadiene), 피롤(Pyrrole), 퓨란(Furan) 중 어느 하나이거나, 이들의 혼합물을 사용할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서 상기 다이엔체는 퓨란(Furan)일 수 있다. The diene body applicable to the present invention is a material having a structure consisting of a double bond-single bond-double bond order, and a material having an s-cis diene form can be used without limitation. Butadiene (Butadiene), cyclopentadiene (Cyclopentadiene), pyrrole (Fyrrole), Furan (Furan), or a mixture thereof may be used. In one specific embodiment of the present invention, the diene body may be furan.
또한, 친다이엔체는 다이엔체와 커플링 결합하여, 고리를 형성할 수 있는 물질로, 본 발명에 적용할 수 있는 친다이엔체는 이중결합 혹은 삼중결합을 포함하는 물질은 제한없이 사용할 수 있으며, 비제한적인 예로는 아크릴로나이트릴(Acrylonitrile), 퀴논(Quinone), 말레산무수물(Maleic anhydride) 말레이미드(Maleimide) 중 선택된 1종 이상인 것이다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 친다이엔체는 말레이미드(Maleimide)일 수 있다. In addition, the dienophile is a material capable of coupling with the diene body to form a ring, the dienophile applicable to the present invention can be used without limitation, any material containing a double bond or triple bond. Non-limiting examples are at least one selected from acrylonitrile, quinone, maleic anhydride maleimide. In one specific embodiment of the present invention, the dienophile may be maleimide.
본 발명의 구체적인 일 실시양태에 있어서 상기 다이엔체-친다이엔체 링커 복합체는 다이엔체 및 친다이엔체의 디엘스-엘더 반응(Diels-Alder reaction)의 결과물인 것으로서, 결합 및 해리가 가능한 가역적 공유결합 형태일 수 있다.In one specific embodiment of the present invention, the diene-dienediene linker complex is a result of the Dieels-Alder reaction of the diene and dienedie, and is reversible for binding and dissociation. It may be in covalent form.
상기 디엘스-엘더 반응(Diels-Alder reaction)은 열역학적으로 평형상태에 있는 계의 온도, 압력, 물질의 농도 등을 변경하여, 정·역반응을 조절할 수 있는 반응인 것이다. The Diels-Alder reaction is a reaction capable of controlling the forward and reverse reaction by changing the temperature, pressure, concentration of a substance, etc. in a thermodynamic equilibrium system.
디엘스-엘더 반응(Diels-Alder reaction)은 콘쥬게이티드(conjugated) 다이엔과 친다이엔의 유기화학반응으로, 콘쥬게이티드(conjugated)다이엔과 친다이엔의 혼합물에 열(heat)등의 에너지를 가해주면 정반응이 진행되어, 고리 모양의 사이클로헥세인이 형성된다. 또한 이의 역반응은 고리 모양의 사이클로헥세인이 해리되어 콘쥬게이티드(conjugated) 다이엔체와 친다이엔체의 혼합물로 분해된다.The Diels-Alder reaction is an organic chemical reaction of conjugated dienes and dienes, and is used to heat energy, such as heat, in a mixture of conjugated dienes and dienes. When a positive reaction proceeds, a ring-shaped cyclohexane is formed. Its reverse reaction also dissociates the cyclic cyclohexane into a mixture of conjugated diene and dienophile.
본 발명은 전술한 디엘스-엘더 반응(Diels-Alder reaction)으로 형성된 다이엔체-친다이엔 링커 복합체에 의해 형광성 유기 나노 입자가 수처리용 분리막 표면에 도입됨으로써 파울링에 의해 성능이 저하된 분리막을 재생 사용할 수 있다. The present invention provides a separator in which the fluorescent organic nanoparticles are introduced into the surface of the separator for water treatment by the diene-diene linker complex formed by the above-mentioned Diels-Alder reaction, thereby degrading the membrane by fouling. Can be used for regeneration.
보다 상세하게는, 오염물질이 부착된 수처리용 분리막 표면을 고온으로 가열하면 디엘스-엘더 역반응(retro Diels-Alder reaction)이 진행되면서, 다이엔체-친다이엔의 결합이 해리된다. 이러한 결합 해리를 통해 오염물질을 쉽게 제거할 수 있으며, 다시 적절한 온도에서 순수한 다이엔체-친다이엔체를 결합시켜 링커 복합체를 형성함으로써 분리막의 기능성을 회복시킬 수 있다. More specifically, when the surface of the contaminant-treated water treatment membrane is heated to a high temperature, the Diels-Alder reaction proceeds, and the diene-chindiene bond is dissociated. Contaminants can be easily removed through this bond dissociation, and the functionality of the separator can be restored by combining the pure diene-diene-diene body at an appropriate temperature to form a linker complex.
본 발명에 적용할 수 있는 상기 다이엔체-친다이엔체 링커 복합체는 분리막 기재의 일면 또는 양면에 도입된 다이엔체 유래 작용기와 상기 다이엔체 유래 작용기와 커플링된 친다이엔체 유래 작용기를 포함할 수 있다. 이때 상기 형광성 유기 나노 입자는 친다이엔체 유래 작용기와 결합되어 분리막에 도입된다. The diene-didiene-linker complex applicable to the present invention includes diene-derived functional groups introduced on one or both sides of the separator substrate and diene-derived functional groups coupled to the diene-derived functional groups. can do. In this case, the fluorescent organic nanoparticles are combined with the dienophile-derived functional group and introduced into the separator.
또한, 다른 일 실시예에 따르면, 상기 다이엔체-친다이엔체 링커 복합체는 분리막의 일면 또는 양면에 도입된 친다이엔체 유래 작용기와 상기 친다이엔체 유래 작용기와 커플링된 다이엔체 유래 작용기를 포함할 수 있다. 이때 상기 형광성 유기 나노 입자는 다이엔체 유래 작용기와 결합되어 분리막에 도입된다. In addition, according to another embodiment, the diene-diene diene linker complex may be a diene-derived functional group coupled to the diene diene-derived functional group and the diene diene-derived functional group introduced on one side or both sides of the separation membrane It may include. In this case, the fluorescent organic nanoparticles are combined with diene-derived functional groups and introduced into the separator.
본 발명의 구체적인 일 실시양태에 있어서, 상기 분리막 기재에 도입된 다이엔체 유래 작용기 또는 상기 분리막 기재에 도입된 친다이엔체 유래 작용기는 각각 독립적으로 분리막 기재 100 중량부에 대하여 0.1 내지 30 중량부이거나, 바람직하게는 1 내지 10 중량부일 수 있다. In one specific embodiment of the present invention, the diene-derived functional groups introduced to the separator substrate or the dienophile-derived functional groups introduced to the separator substrate are each independently 0.1 to 30 parts by weight based on 100 parts by weight of the separator substrate. , Preferably 1 to 10 parts by weight.
본 발명의 일 실시양태에 있어서, 상기 친다이엔체 유래 작용기는 작용기의 일단이 형광성 유기 나노 입자와 결합하고 이의 타단은 말레이미드가 결합되어 있는 것일 수 있다. 이때 말레이미드가 친다이엔체로 작용하여 분리막에 도입된 다이엔체, 예를 들어 퓨란과 결합된 링커 복합체를 형성할 수 있다. In one embodiment of the present invention, the dienophile-derived functional group may be one end of the functional group is bonded to the fluorescent organic nanoparticles and the other end thereof is a maleimide bonded. In this case, the maleimide may act as a diene diene to form a linker complex bonded to a diene body introduced into the separator, for example, furan.
다음으로 수처리용 분리막 제조방법 및 수처리용 분리막의 재생방법에 대해 설명한다. 다음 설명하는 내용 중 전술한 수처리용 분리막과 동일한 구성에 있어서, 설명의 반복이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있으나, 동일하게 적용할 수 있음은 물론이다.Next, a method for preparing a separator for water treatment and a method for regenerating the separator for water treatment will be described. In the following configuration, in the same configuration as the above-described separation membrane for water treatment, if it is determined that the repetition of the description may unnecessarily obscure the subject matter of the present invention, the detailed description may be omitted, but the same may be applied. to be.
본 발명의 다른 일 실시예에 따른 재생 가능한 수처리용 분리막의 제조방법은 하기 (S10) 내지 (S30)의 단계를 포함한다:According to another embodiment of the present invention, a method of manufacturing a renewable water treatment membrane includes the following steps (S10) to (S30):
(S10) 분리막의 적어도 일측 표면에 다이엔체 유래 작용기를 도입하는 단계; (S10) introducing a diene-derived functional group on at least one surface of the separator;
(S20) 형광성 유기 나노 입자에 친다이엔체 유래 작용기를 도입하는 단계; 및 (S20) introducing a dienophile-derived functional group into the fluorescent organic nanoparticles; And
(S30) (S10)의 결과물과 (S20)의 결과물을 반응시켜 다이엔체 유래 작용기 및 친다이엔체 유래 작용기를 결합시켜 링커 복합체를 통해 형광성 유기 나노 입자가 분리막에 도입되는 단계. (S30) reacting the product of (S10) with the product of (S20) to combine a diene-derived functional group and a diene-diene-derived functional group to introduce fluorescent organic nanoparticles into the separator through a linker complex.
상기 (S20)에서 형광성 유기 나노 입자에 친다이엔체 유래 작용기를 도입하는 단계는 형광성 유기 나노 입자와 친다이엔체 유래 작용기가 직접 결합할 수 있다. 또는 친다이엔에 유래 작용기나 형광성 유기 나노 입자 중 적어도 어느 하나의 말단에 두 성분의 결합이 가능하도록 하는 치환기를 도입하고 이러한 치환기를 통해 두 성분이 결합하도록 할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 치환기는, 예를 들어 아민기, 알콜기, 카르복실기, 싸이올기 등을 포함할 수 있다. 예를 들어 형광성 유기 나노 입자의 말단에 아민기를 포함하는 치환기를 도입하여 아민기가 친다이엔체 유래 작용기와 결합하도록 할 수 있다. 치환기 도입에 의한 결합은 전술한 내용에 한정되는 것은 아니며 본 발명의 형광성 유기 나노 입자와 친다이엔체 유래 작용기의 결합이 가능한 치환기이면 어느 것이나 사용할 수 있음은 자명하다. In the step (S20), the step of introducing the dienophile-derived functional group into the fluorescent organic nanoparticles may be directly bonded to the fluorescent organic nanoparticles and the dienophile-derived functional group. Alternatively, a substituent may be introduced at the terminal of at least one of the functional group or the fluorescent organic nanoparticles derived from the diene, and the two components may be bonded through the substituent. In one specific embodiment of the present invention, the substituent may include, for example, an amine group, an alcohol group, a carboxyl group, a thiol group, and the like. For example, a substituent including an amine group may be introduced at the terminal of the fluorescent organic nanoparticle so that the amine group is bonded to the dienophile-derived functional group. The bonding by introduction of a substituent is not limited to the above-mentioned content, It is apparent that any substituent can be used as long as it is possible to couple | bond the fluorescent organic nanoparticle of this invention with a dienophile-derived functional group.
이때, (S30)의 링커 복합체는 다이엔체 유래 작용기와 친다이엔체 유래 작용기의 디엘스-엘더 반응(Diels-Alder reaction)에 의해 형성될 수 있으며, 이때 상기 반응은 20℃ 내지 70 ℃, 또는 40 내지 60 ℃의 온도 조건에서 수행될 수 있다.In this case, the linker complex of (S30) may be formed by a Diels-Alder reaction of a diene-derived functional group and a diene-diene-derived functional group, wherein the reaction is 20 ° C. to 70 ° C., or It may be carried out at a temperature condition of 40 to 60 ℃.
본 발명의 구체적인 일 실시양태에 있어서, 분리막에 친다이엔체를 도입하고, 형광성 나노 유기 입자와 다이엔체를 결합시킨 후 다이엔체와 친다이엔체를 복합화하여 링커 복합체를 형성하는 방법으로 형광성 나노 유기 입자가 분리막에 도입되는 순서로 분리막을 제조하는 것도 가능하다. In one specific embodiment of the present invention, a fluorescent nano is introduced by introducing a dienophile into the separator, combining the fluorescent nanoorganic particles with the diene, and then complexing the diene and dienophile to form a linker complex. It is also possible to prepare the separator in the order in which the organic particles are introduced into the separator.
또한, 본 발명의 다른 구체적인 일 실시양태에 있어서, 상기 수처리용 분리막 제조 방법은 분리막의 적어도 일 표면에 다이엔체-친다이엔체 링커 복합체를 도입한 이후에 형광성 유기 입자를 친다이엔체 또는 다이엔체와 결합시켜는 방법으로 수행되는 것도 가능하다. In addition, in another specific embodiment of the present invention, the method for preparing a separator for water treatment may include a dienophile-diene or diene in which fluorescent organic particles are introduced after introduction of a diene-dienophile linker complex on at least one surface of the separator. It is also possible to carry out by means of coupling with a sieve.
본 발명은 또한 본 발명에 따른 수처리용 분리막의 재생 방법을 제공한다. 상기 재생 방법은 하기 (S100) 내지 (S300)의 단계를 포함할 수 있다. The present invention also provides a method for regenerating a separation membrane for water treatment according to the present invention. The regeneration method may include the following steps (S100) to (S300).
(S100) 형광성 유기 나노 입자에 오염물질이 부착된 분리막을 준비하는 단계;(S100) preparing a separator having contaminants attached to the fluorescent organic nanoparticles;
(S200) 상기 오염물질이 부착된 분리막을 가열 처리하여, 링커 복합체의 다이엔체 유래 작용기와 친다이엔체 유래 작용기의 커플링을 해리시키는 단계; 및(S200) dissociating the coupling of the diene-derived functional group and the diene-diene-derived functional group of the linker complex by heating the membrane to which the contaminant is attached; And
(S300) 친다이엔체 유래 작용기가 결합된 형광성 유기 나노 입자를 첨가하고 링커 복합체를 형성하는 단계. (S300) adding fluorescent organic nanoparticles bonded to dienophile-derived functional groups to form a linker complex.
상기 방법은 링커 복합체 중 다이엔체 유래 작용기가 분리막에 결합되어 있고 형광성 유기 나노 입자가 친다이엔체 유래 작용기에 결합되어 있는 구현예를 가정한 것이다. 또한, 상기 (S200)단계를 수행함으로써 형광성 유기 나노 입자가 결합된 친다이엔체가 분리막으로부터 제거되며 이때 오염물질이 형광성 유기 나노 입자에 부착되어 있어 (S200)에 의해 오염물질이 함께 제거되는 효과가 있다. 한편, (S300) 단계에서 첨가되는 친다이엔체 유래 작용기는 형광성 유기 나노 입자가 부착된 것이며, 이때 형광성 유기 나노 입자는 오염물질이 부착되지 않은 것으로서 형광특성이 유지되는 상태인 것이다. 한편, 상기 형광성 유기 나노 입자는 (S200) 단계 수행 후 회수되어 오염물질을 제거한 후 재생된 것을 사용할 수 있다. The method assumes an embodiment in which the diene-derived functional group in the linker complex is bonded to the separator and the fluorescent organic nanoparticles are bonded to the dienophile-derived functional group. In addition, by performing the step (S200), the dienophile body in which the fluorescent organic nanoparticles are combined is removed from the separator. At this time, the contaminants are attached to the fluorescent organic nanoparticles so that the contaminants are removed together by (S200). . Meanwhile, the dienophile-derived functional group added in step (S300) is to which the fluorescent organic nanoparticles are attached, wherein the fluorescent organic nanoparticles are in a state in which the fluorescent property is maintained as the contaminants are not attached. On the other hand, the fluorescent organic nano particles may be recovered after performing the step (S200) can be used to remove the contaminants and then recycled.
만일, 링커 복합체 중 친다이엔체 유래 작용기가 분리막에 결합되어 있고 형광성 유기 나노 입자가 다이엔체 유래 작용기에 결합되어 있는 분리막을 재생시키는 경우에는 (S200)단계 수행후 친다이엔체 유래 작용기가 분리막에 결합되고 다이엔체 유래 작용기가 회수되므로 (S300) 단계에서 다이엔체 유래 작용기가 결합된 형광성 유기 나노 입자를 첨가하여 링커 복합체를 재현할 수 있다. If the diene-derived functional group in the linker complex is bonded to the separator and the fluorescent organic nanoparticles are regenerated in the separator, the dienophile-derived functional group is added to the separator after the step (S200). Since the combined diene-derived functional group is recovered (S300), the linker complex may be reproduced by adding fluorescent organic nanoparticles to which the diene-derived functional group is bound.
상기 수처리한 분리막을 가열 처리하여, 다이엔체-친다이엔체 링커 복합체의 다이엔체 유래 작용기와 친다이엔체 유래 작용기의 커플링을 해리시켜 오염물질을 제거하는 단계에서 다이엔체-친다이엔체 링커 복합체의 결합을 끊을 수 있는 반응은 다양하게 적용될 수 있으나, 바람직하게는 디엘스-엘더 역반응(retro Diels-Alder reaction)일 수 있다. 이때, 가열 처리하는 온도는 80 내지 200 ℃이고, 바람직하게는 100 내지 150 ℃이며, 상기 온도 범위 밖에서는 디엘스-엘더 역반응(retro Diels-Alder reaction)이 진행되지 않기 때문이다.The water-treated separator is heated to dissociate the diene-derived functional group and diene-derived functional group coupling of the diene-diene-diene linker complex to remove contaminants. The reaction that can break the linker complex may be variously applied, but may preferably be a retro Diels-Alder reaction. At this time, the heat treatment temperature is 80 to 200 ℃, preferably 100 to 150 ℃, because the Diels-Alder reaction (retro Diels-Alder reaction) does not proceed outside the temperature range.
이하, 본 발명을 구체적으로 설명하기 이하여 실시예를 들어 상세히 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가지는 자에게 본 발명을 보다 완전하기 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
[실시예 1] Example 1
폴리테트라플로오로에틸렌(PTFE) 분리막 기재 표면에 퓨란 작용기를 도입시키기 위해 먼저 폴리테트라플로오로에틸렌(PTFE) 분리막 기재를 히드라진(hydrazine) 증기에 노출 시킨 후 264nm의 자외선을 100W의 출력으로 48시간 동안 조사하여 아민기로 개질된 폴리테트라플로오로에틸렌(PTFE) 분리막 기재를 얻었다. 이후, Furfuryl glycidyl ether 용액에 아민기로 개질된 폴리테트라 플로오로에틸렌(PTFE) 분리막 기재를 함침시킨 후 60 ℃에서 반응시켜 최종적으로, 퓨란 작용기로 표면 개질된 폴리테트라플로오로에틸렌(PTFE) 분리막 기재를 제조하였다.To introduce furan functional groups on the surface of the polytetrafluoroethylene (PTFE) membrane substrate, the polytetrafluoroethylene (PTFE) membrane substrate was first exposed to hydrazine vapor, followed by 48 hours of ultraviolet radiation at 264 nm at 100 W output. Irradiation gave a polytetrafluoroethylene (PTFE) separator substrate modified with an amine group. Subsequently, the furfuryl glycidyl ether solution was impregnated with the amine group-modified polytetrafluoroethylene (PTFE) membrane substrate and reacted at 60 ° C., finally, the polytetrafluoroethylene (PTFE) membrane substrate surface-modified with the furan functional group was reacted. Prepared.
이때, XPS 표면 산소 원자 비율 분석을 통하여 아민기로 개질된 폴리테트라플로오로에틸렌(PTFE) 분리막 기재 100 중량부에 대하여 2 내지 20 중량부의 퓨란 작용기가 도입되었음을 확인하였다.At this time, the XPS surface oxygen atom ratio analysis confirmed that 2 to 20 parts by weight of furan functional groups were introduced based on 100 parts by weight of the polytetrafluoroethylene (PTFE) membrane substrate modified with an amine group.
한편, 도 4는 분리막의 표면 개질 여부를 ATR FT-IR을 통해 확인한 결과를 나타낸 것이다. 도 4의 초록색 그래프는 퓨란 작용기가 도입된 분리막의 FT-IR 결과로 퓨란의 탄소 이중결합 강도가 나타나는 것이 확인되었다. On the other hand, Figure 4 shows the result of confirming the surface modification of the separator through the ATR FT-IR. In the green graph of FIG. 4, it was confirmed that the carbon double bond strength of the furan was shown as the result of FT-IR of the separator into which the furan functional group was introduced.
다음으로 나이트로기를 포함하는 4-아미노 프탈로나이트릴(4-aminophthalonitrile)을 전구체로 사용하여 말레이미드기가 결합된 프탈로시아닌을 준비하였다. 4-아미노프탈로나이트릴(4-aminophthalonitrile)을 프로판올(propanol)에 용해시킨 후 케톡사임(ketoxime)을 투입하여 4량체 형태의 나이트로 프탈로시아닌을 제조하였다. 다음으로 상기 준비된 4량체 형태의 나이트로프탈로시아닌을 질소 분위기에서 다이메틸포름아마이드(dimethylformamide)에 용해시킨 후 소듐설파이드 수화물(sodium sulfide hydrate)을 투입하여 프탈로시아닌의 말단을 아민기로 개질한다. 그 다음으로 준비된 아미노프탈로시아닌을 트라이에틸아민(triethylamine) 과 함께 테트라하이드로퓨란(tetrahydrofuran)에 용해시킨 후 말레이미드 유도체를 투입하여 공유 결합시켜 최종적으로 말레이미드 치환기를 갖는 프탈로시아닌(Pc-Maleimide)을 수득하였다. Next, using a 4-amino phthalonitrile (4-aminophthalonitrile) containing a nitro group as a precursor to prepare a phthalocyanine to which the maleimide group is bound. 4-aminophthalonitrile was dissolved in propanol, and then ketoxime was added to form tetrameric nitrophthalocyanine. Next, the prepared tetrameric nitrophthalocyanine is dissolved in dimethylformamide in a nitrogen atmosphere, and sodium sulfide hydrate is added to modify the terminal of the phthalocyanine group with an amine group. Next, the prepared aminophthalocyanine was dissolved in tetrahydrofuran with triethylamine, and then a maleimide derivative was added to covalently bond to finally obtain a phthalocyanine (Pc-Maleimide) having a maleimide substituent. .
도 2는 프탈로시아닌 합성 단계별로 FT-IR 을 통해 확인한 결과이다. 이를 통해 4-니트로프탈로나이트릴에 아미노기를 도입하고 말레이미드와 결합시켜 말레이미드 치환기가 도입된 프탈로시아닌이 형성된 것을 확인할 수 있다. Figure 2 shows the results confirmed by FT-IR step by step phthalocyanine synthesis. Through this, an amino group was introduced into 4-nitrophthalonitrile and combined with maleimide to confirm that phthalocyanine having a maleimide substituent was introduced therein.
프탈로시아닌-말레이미드(Pc-Maleimide)를 5% 농도로 톨루엔 유기 용매에 녹였다. 이 용액에 퓨란기로 개질된 폴리테트라플로오로에틸렌(PTFE) 분리막 기재를 함침시킨 후 약 60℃에서 퓨란과 말레이미드간의 Diels-Alder 반응을 통해 프탈로시아닌을 폴리테트라플로오로에틸렌(PTFE)에 도입시켜 프탈로시아닌-PTFE (프탈로시아닌-PTFE) 분리막을 제조하였다.Phthalocyanine-maleimide was dissolved in toluene organic solvent at 5% concentration. The solution was impregnated with a polytetrafluoroethylene (PTFE) membrane substrate modified with a furan group, and then phthalocyanine was introduced into polytetrafluoroethylene (PTFE) through a Diels-Alder reaction between the furan and maleimide at about 60 ° C. to phthalocyanine. -PTFE (phthalocyanine-PTFE) separator was prepared.
이때, 제조된 프탈로시아닌-PTFE (프탈로시아닌-PTFE) 분리막은 폴리테트라플로오로에틸렌(PTFE) 분리막 기재 100 중량부 기준으로 1 내지 10 중량부의 Pc-Maleimide 를 함유하고 있었다.At this time, the prepared phthalocyanine-PTFE (phthalocyanine-PTFE) separator contained 1 to 10 parts by weight of Pc-Maleimide based on 100 parts by weight of the polytetrafluoroethylene (PTFE) separator substrate.
도 3은 본 발명의 구체적인 일 실시양태에 따른 분리막의 제조 방법을 도식화하여 나타낸 것이다. Figure 3 shows a schematic diagram illustrating a method of manufacturing a separator according to a specific embodiment of the present invention.
[성능 평가][Performance evaluation]
분리막의 형광 물성 변화 평가실험Evaluation of Fluorescence Property Change of Membrane
실시예 1에서 제조된 분리막을 이용하여 중금속 제거능 및 형광 물성 변화를 확인하였다. 크롬 6가 이온 및 철 3가 이온을 0.001 내지 0.01 중량부 포함하고있는 중금속 수용액을 준비한 후 프탈로시아닌-PTFE 분리막에 30분간 투과시키면서 분리막 표면의 형광 물성 변화를 300-800 nm 영역대에서 관찰하였다.The separation membrane prepared in Example 1 was used to confirm heavy metal removal ability and fluorescence physical properties. After preparing a heavy metal solution containing 0.001 to 0.01 parts by weight of chromium hexavalent ions and iron trivalent ions, the fluorescence property change of the surface of the separator was observed in the 300-800 nm region while being passed through the phthalocyanine-PTFE membrane for 30 minutes.
도 5는 실시예 1에서 제조된 분리막의 형광 물성 변화를 확인하여 나타낸 그래프이다. 도 5에서 (a)와 (b)는 Cr(VI), (c)와 (d)는 Fe(III) 에 대한 형광 소거능을 확인한 것이다. 이에 따르면 350-500 nm 의 B-band 영역대와 700-800 nm 의 Q-band 영역대에서 각각 나타나는 형광 물성이 중금속 이온 함유 원수의 분리막 투과 시간에 따라 소거되는 것이 확인되었다. 5 is a graph showing the change in the fluorescence properties of the separator prepared in Example 1. In Figure 5 (a) and (b) is Cr (VI), (c) and (d) is to confirm the fluorescence scavenging ability for Fe (III). According to this, it was confirmed that the fluorescence properties of the B-band region of 350-500 nm and the Q-band region of 700-800 nm, respectively, were eliminated according to the membrane permeation time of the raw water containing heavy metal ions.
분리막의 재생 능력 평가Evaluation of Regeneration Capability of Membranes
실시예 1에 의해 제조된 분리막을 톨루엔 용매에 함침시킨 후 150℃에서 디엘스-엘더 역반응을 진행하여 분리막 표면에 부착된 프탈로시아닌을 제거하였다. 프탈로시아닌이 탈착된 PTFE 분리막에 다시 프탈로시아닌을 도입시키기 위해 실시예 1과 동일한 방법으로 Diels-Alder 반응을 진행하여 프탈로시아닌이 표면 결합된 분리막을 제조하였다. 프탈로시아닌의 PTFE 분리막 표면 부착 및 탈착 반응을 3회 반복 실시하여 재현성을 확인하였다.The membrane prepared in Example 1 was impregnated with a toluene solvent, followed by a Diels-Elder reverse reaction at 150 ° C. to remove phthalocyanine attached to the membrane surface. In order to introduce phthalocyanine back to the phthalocyanine-desorbed PTFE separator, Diels-Alder reaction was performed in the same manner as in Example 1 to prepare a phthalocyanine-bound membrane. The surface adhesion and desorption reaction of the phthalocyanine PTFE separator was repeated three times to confirm reproducibility.
도 6는 실시예 1에 의해 제조된 분리막의 프탈로시아닌의 부착 및 탈착 과정을 나타내는 FT-IR 스펙트라 결과이다. 이에 따르면 프탈로시아닌의 도입 및 제거에 따라 색상으로 표시된 부분의 강도가 변화되고 있는 것을 확인할 수 있다. 즉, 해당 부분에서 프탈로시아닌의 C=O, N-H, C-N IR 밴드들이 관찰되며, 이들 IR 밴드들은 retro Diels-Alder 반응 시 대부분 사라지는 것을 보여준다.6 is an FT-IR spectra showing the process of adhesion and desorption of phthalocyanine from the separator prepared in Example 1. FIG. According to this, it can be seen that the intensity of the portion indicated in color is changed as the phthalocyanine is introduced and removed. That is, C = O, N-H, and C-N IR bands of phthalocyanine are observed in this region, and these IR bands show that most of them disappear in the retro Diels-Alder reaction.
또한, 도 7은 형광 스펙트라를 확인하여 나타낸 결과이다. 이에 따르면 프탈로시아닌의 부착과 탈착에 따른 형광 물성의 변화를 확인할 수 있다. 형광 물성은 Pc 도입시 확인되나 retro Diels-Alder 반응 이후에는 형광이 소멸되어 확인되지 않는다. 7 is a result of confirming and confirming the fluorescence spectra. According to this, it is possible to confirm the change in fluorescence properties due to the attachment and desorption of phthalocyanine. The fluorescence properties were confirmed when Pc was introduced, but after the retro Diels-Alder reaction the fluorescence disappeared.
[부호의 설명][Description of the code]
10 : 분리막 기재 10: separator substrate
20 : 다이엔체 유래 작용기 20: diene-derived functional group
30 : 친다이엔체 유래 작용기 30: dienophile-derived functional group
40 : 다이엔체-친다이엔체 링커 복합체40: diene-chindiene linker complex
50 : 형광성 나노 유기 입자 50: fluorescent nano organic particles
100 : 재생 가능한 수처리용 분리막100: renewable membrane for water treatment

Claims (15)

  1. 분리막 기재; 및 Separator substrate; And
    분리막 기재의 적어도 일측 표면에 도입된 형광성 유기 나노 입자;를 포함하며,It includes; fluorescent organic nano-particles introduced on at least one surface of the separator substrate,
    상기 형광성 유기 나노 입자는 금속 입자와의 배위 결합이 가능하며, 결합에 의해 소광(quenching)되는 것을 특징으로 하는 것인, 재생 가능한 수처리용 분리막. The fluorescent organic nanoparticles are capable of coordination bonding with metal particles, characterized in that the quenching (quenching) by the binding, renewable membrane for water treatment.
  2. 제1항에 있어서, The method of claim 1,
    상기 형광성 유기 나노 입자는 포르피린, 서브프탈로시아닌, 프탈로시아닌, 퍼닐렌 중 선택된 1종 이상인 거대고리(macrocyclic) 화합물이며, 상기 거대고리 화합물은 적어도 어느 하나의 작용기로 치환된 것이거나, 또는 비치환된 것인, 수처리용 분리막. The fluorescent organic nanoparticles are macrocyclic compounds of at least one selected from porphyrin, subphthalocyanine, phthalocyanine, and furylene, and the macrocyclic compounds are unsubstituted or substituted with at least one functional group. , Separator for water treatment.
  3. 제1항에 있어서, The method of claim 1,
    상기 분리막 기재는 다이엔체-친다이엔체 링커 복합체가 도입되어 있고, 상기 The separator substrate is a diene-diene diene linker complex is introduced,
    형광성 유기 나노 입자는 상기 링커 복합체에 결합된 형태로 분리막 기재에 도입된 것인, 수처리용 분리막. Fluorescent organic nanoparticles are introduced into the separator substrate in a form bonded to the linker complex, the separator for water treatment.
  4. 제3항에 있어서, The method of claim 3,
    상기 링커 복합체는 분리막의 적어도 일측 표면에 도입된 다이엔체 유래 작용기, 및 상기 다이엔체 유래 작용기와 커플링된 친다이엔체 유래 작용기를 포함하는 것이거나, 분리막의 적어도 일측 표면에 도입된 친다이엔체 유래 작용기, 및 상기 친다이엔체 유래 작용기와 커플링된 다이엔체 유래 작용기를 포함하는 것인, 수처리용 분리막.The linker complex may include a diene-derived functional group introduced to at least one surface of the separator, and a diene-diene-derived functional group coupled to the diene-derived functional group, or a diene-diene introduced to at least one surface of the separator. Separator for water treatment comprising a sieve-derived functional group, and a diene-derived functional group coupled to the dienophile-derived functional group.
  5. 제4항에 있어서, The method of claim 4, wherein
    형광성 유기 나노 입자가 링커 복합체에 결합되어 분리막에 도입된 것이며, 여기에서 상기 형광성 유기 나노 입자는 링커 복합체 중 친다이엔체 유래 작용기와 결합된 것인, 수처리용 분리막. Fluorescent organic nanoparticles are bonded to the linker complex is introduced into the separator, wherein the fluorescent organic nanoparticles are bonded to the diene-derived functional group in the linker complex, the membrane for water treatment.
  6. 제5항에 있어서, The method of claim 5,
    상기 친다이엔체 유래 작용기는 작용기의 일단이 형광성 유기 나노 입자와 결합하고 이의 타단은 말레이미드가 결합되어 있어 말레이미드가 친다이엔체로 작용하여 분리막에 도입된 다이엔체와 결합된 것을 특징으로 하는 것인, 수처리용 분리막. The dienophile-derived functional group is characterized in that one end of the functional group is bonded to the fluorescent organic nanoparticles and the other end thereof is bonded to the maleimide, so that the maleimide acts as a dienophile and is combined with a diene body introduced into the separator. Phosphorus, water treatment membrane.
  7. 제5항에 있어서, The method of claim 5,
    상기 다이엔체 유래 작용기는 작용기의 일단이 분리막과 결합하고, 이의 타단은 퓨란이 결합되어 있어 퓨란이 다이엔체로 작용하여 친다이엔체와 결합된 것을 특징으로 하는 것인, 수처리용 분리막. The diene-derived functional group is characterized in that one end of the functional group is combined with the separation membrane, and the other end thereof is furan is bonded, and the furan acts as a diene body and is combined with a dienophile.
  8. 제1항에 있어서, The method of claim 1,
    상기 분리막 기재는 고분자 재료, 무기 재료 및 금속 재료 중 적어도 어느 하나를 포함하는 것인, 수처리용 분리막.The separator substrate is a separator for water treatment comprising at least one of a polymer material, an inorganic material and a metal material.
  9. 제8항에 있어서,The method of claim 8,
    상기 고분자 재료는 폴리테트라플로오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리설폰 (Polysulfone, PSF), 폴리에테르설폰(Polyethersulfone, PES), 폴리아크릴로니트릴 (Polyacrylonitrile, PAN), 폴리카보네이트(Polycarbonate, PC), 폴리에틸렌(Polyethylene, PE), 폴리프로필렌(Polypropylene, PP), 폴리염화비닐(Polyvinyl chloride, PVC), 셀룰로오스(Cellulose) 및 셀룰로오스 아세테이트(Cellulose acetate)로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인, 수처리용 분리막.The polymer material is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (Polysulfone, PSF), polyethersulfone (PES), polyacrylonitrile (Polyacrylonitrile, PAN), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), cellulose (Cellulose) and cellulose acetate (Cellulose acetate) It comprises at least any one selected from, separation membrane for water treatment.
  10. 하기 (S10) 단계 내지 (S30)단계를 포함하는 수처리용 분리막의 제조 방법:Method for producing a separation membrane for water treatment comprising the following (S10) to (S30) step:
    (S10) 분리막의 적어도 일측 표면에 다이엔체 유래 작용기를 도입하는 단계; (S10) introducing a diene-derived functional group on at least one surface of the separator;
    (S20) 형광성 유기 나노 입자에 친다이엔체 유래 작용기를 도입하는 단계; 및 (S20) introducing a dienophile-derived functional group into the fluorescent organic nanoparticles; And
    (S30) (S10)의 결과물과 (S20)의 결과물을 반응시켜 다이엔체 유래 작용기 및 친다이엔체 유래 작용기를 결합시켜 커플링 시키는 단계. (S30) reacting the resultant of (S10) with the resultant of (S20) to combine and couple diene-derived functional groups and dienophile-derived functional groups.
  11. 제10항에 있어서, The method of claim 10,
    상기 (S30) 단계는 분리막이 20℃ 내지 70℃의 온도 범위에서 가열 처리되어 수행되는 것인 수처리용 분리막의 제조방법.The step (S30) is a method for producing a separation membrane for water treatment is carried out by the separation treatment is carried out in a temperature range of 20 ℃ to 70 ℃.
  12. (S100) 중금속을 포함하는 오염물질을 포함하는 물(water)을 제1항 내지 제9항 중 어느 한 항의 수처리용 분리막으로 여과하여, 형광성 유기 나노 입자에 오염물질이 부착되는 단계;(S100) filtering the water containing contaminants including heavy metals with the water treatment membrane of any one of claims 1 to 9, wherein the contaminants are attached to the fluorescent organic nanoparticles;
    (S200) 상기 오염물질이 부착된 분리막을 가열 처리하여, 상기 다이엔체-친다이엔체 링커 복합체의 다이엔체 유래 작용기와 친다이엔체 유래 작용기의 커플링을 해리시키는 단계; 및(S200) dissociating coupling of the diene-derived functional group and the diene-diene-derived functional group of the diene-diene-diene linker complex by heating the separator to which the contaminants are attached; And
    (S300) 친다이엔체 유래 작용기가 결합된 형광성 유기 나노 입자를 첨가하여 다이엔체 유래 작용기와 친다이엔체 유래 작용기를 재결합시키는 단계;를(S300) adding the fluorescent organic nanoparticles to which the dienophile-derived functional group is bound to recombine the diene-derived functional group and the dienophile-derived functional group;
    포함하는 수처리용 분리막의 재생방법.Regeneration method of a separator for water treatment comprising.
  13. 제12항에 있어서,The method of claim 12,
    상기 (S200)는 분리막이 80℃ 내지 200℃가 되도록 가열 처리 하는 것인, 수처리용 분리막의 재생 방법. Wherein (S200) is a heat treatment so that the separation membrane is 80 ℃ to 200 ℃, regeneration method of the separation membrane for water treatment.
  14. 제12항에 있어서,The method of claim 12,
    상기 (S200) 단계는 디엘스 엘더 역반응으로 이루어지는 것인 수처리용 분리막의 재생 방법. The step (S200) is a regeneration method of the separation membrane for water treatment will be made by the Elder elder reaction.
  15. 제12항에 있어서, The method of claim 12,
    상기 (S200) 단계의 수행 이전에, (S250) 분리막의 형광의 강도를 측정하여 기설정 강도에 미치지 못하는 경우 분리막 회수를 결정하는 단계를 더 포함하는 것인, 수처리용 분리막의 재생 방법.Before performing the step (S200), further comprising the step of determining the number of separation membrane when the intensity of the fluorescence of the separation membrane (S250) is less than the predetermined intensity, regeneration method for water treatment membrane.
PCT/KR2017/002595 2017-02-24 2017-03-09 Renewable water treatment separation membrane and manufacturing method therefor WO2018155753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0024776 2017-02-24
KR1020170024776A KR101941767B1 (en) 2017-02-24 2017-02-24 Renewable water-treatment membranes and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018155753A1 true WO2018155753A1 (en) 2018-08-30

Family

ID=63254234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002595 WO2018155753A1 (en) 2017-02-24 2017-03-09 Renewable water treatment separation membrane and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101941767B1 (en)
WO (1) WO2018155753A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204838A (en) * 2020-03-09 2020-05-29 泰州九润环保科技有限公司 Application of metalloporphyrin covalent grafting photocatalytic membrane in organic wastewater treatment
CN114904400A (en) * 2022-06-30 2022-08-16 江苏大学 Preparation method and application of TCPP @ HPAMAM @ PA/PVDF bifunctional composite membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0128283B1 (en) * 1988-05-17 1998-04-03 베르너 발데크 Heat-stalle, pigmented thermoplastic resin composition
KR20120048378A (en) * 2010-11-05 2012-05-15 한국화학연구원 Measuring method of fouling of membrane containing fluorescent nano particle
JP2014118551A (en) * 2012-12-19 2014-06-30 Tohoku Univ Porous structure, oxygen sensor and separation membrane using the same, and method for producing porous structure
KR20170014642A (en) * 2015-07-30 2017-02-08 서울대학교산학협력단 Renewable water-treatment membranes and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101770697B1 (en) * 2012-10-29 2017-08-23 주식회사 엘지화학 Porous separator for electrochemical device with homogeneously aligned polarizable inorganic particles, and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0128283B1 (en) * 1988-05-17 1998-04-03 베르너 발데크 Heat-stalle, pigmented thermoplastic resin composition
KR20120048378A (en) * 2010-11-05 2012-05-15 한국화학연구원 Measuring method of fouling of membrane containing fluorescent nano particle
JP2014118551A (en) * 2012-12-19 2014-06-30 Tohoku Univ Porous structure, oxygen sensor and separation membrane using the same, and method for producing porous structure
KR20170014642A (en) * 2015-07-30 2017-02-08 서울대학교산학협력단 Renewable water-treatment membranes and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BYUN, SEONG HWAN ET AL.: "DEVELOPMENT OF METAL ION SENSING MEMBRANE BY THERMO REVERSIBLE ASSEMBLY OF PHTHALOCYANINE", 2016 MRS FALL MEETING SYMPOSIUM PM4: NOVEL MATERIALS, FABRICATION ROUTES AND DEVICES FOR ENVIRONMENTAL MONITORING, 28 November 2016 (2016-11-28), pages 1 - 2 *
XU, HUI ET AL.: "RECENT PROGRESS IN METAL-ORGANIC COMPLEXES FOR OPTOELECTRONIC APPLICATIONS", CHEMICAL SOCIETY REVIEWS, vol. 43, no. 10, 21 May 2014 (2014-05-21), pages 3259 - 3302, XP055543940, Retrieved from the Internet <URL:doi:10.1039/c3cs60449g> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204838A (en) * 2020-03-09 2020-05-29 泰州九润环保科技有限公司 Application of metalloporphyrin covalent grafting photocatalytic membrane in organic wastewater treatment
CN111204838B (en) * 2020-03-09 2022-01-04 泰州九润环保科技有限公司 Application of metalloporphyrin covalent grafting photocatalytic membrane in organic wastewater treatment
CN114904400A (en) * 2022-06-30 2022-08-16 江苏大学 Preparation method and application of TCPP @ HPAMAM @ PA/PVDF bifunctional composite membrane
CN114904400B (en) * 2022-06-30 2024-01-23 江苏大学 Preparation method and application of TCPP@HPAMM@PA/PVDF dual-function composite membrane

Also Published As

Publication number Publication date
KR101941767B1 (en) 2019-04-12
KR20180097945A (en) 2018-09-03

Similar Documents

Publication Publication Date Title
WO2012099445A2 (en) Method for manufacturing an organic-inorganic composite hybrid sorbent by impregnating an oxide into nanopores of activated carbon and method for using the method in water treatment
WO2018155753A1 (en) Renewable water treatment separation membrane and manufacturing method therefor
WO2015050387A1 (en) Surface-modified separation membrane and method for modifying surface of separation membrane
WO2014168366A1 (en) Separation membrane for seawater desalination and method for producing same
WO2012148040A1 (en) Porous manganese oxide-based lithium adsorbent having a spinel structure, and method for preparing same
WO2018012684A1 (en) Composite filter and manufacturing method therefor
WO2019146987A1 (en) Method for preparing polyaniline complex for antimicrobial action and removal of heavy metals by doping polyaniline conducting polymer with organic acid and metal ions in predetermined order, and polyaniline complex prepared thereby
WO2014027825A1 (en) Super water-repellent coating solution composition, and method for preparing coating composition
WO2013165148A1 (en) Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method
WO2018110852A1 (en) Alkali-based metal-treated activated carbon material for automotive filter, and preparation method therefor
WO2018008930A1 (en) Magnetic cesium adsorbent, preparation method therefor, and cesium removal method using same
WO2022139188A1 (en) Proton exchange membrane comprising perfluorosulfonic acid ionomer-grafted graphene oxide, and use thereof
WO2018194431A2 (en) Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
WO2019093660A2 (en) Method for manufacture of maghemite
WO2017078415A1 (en) Apparatus for treating mercury-containing waste and method for recovering high purity elemental mercury using same apparatus
WO2018182273A1 (en) Method and apparatus for removing heavy metal ions using environment-friendly organic solvent
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
WO2014069699A1 (en) Absorbent ball particle for recovering porous lithium by carbonization, and method for preparing same
KR102056534B1 (en) Renewable water-treatment membranes and method for manufacturing the same
WO2016080672A1 (en) Water treatment material and method for preparing same
WO2023113273A1 (en) Metal-organic framework for collecting krypton or xenon, and apparatus for collecting krypton or xenon, comprising same
WO2018088783A1 (en) Method and apparatus for continuous removal of carbon dioxide
KR101711049B1 (en) Renewable water-treatment membranes and method for manufacturing the same
WO2017018569A1 (en) Method for manufacturing polymer-coated fluidized-bed carbon electrode and fluidized-bed carbon electrode manufactured thereby
WO2016182365A1 (en) Agent for removing acidic materials and heavy metals and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898072

Country of ref document: EP

Kind code of ref document: A1