WO2014027825A1 - Super water-repellent coating solution composition, and method for preparing coating composition - Google Patents

Super water-repellent coating solution composition, and method for preparing coating composition Download PDF

Info

Publication number
WO2014027825A1
WO2014027825A1 PCT/KR2013/007289 KR2013007289W WO2014027825A1 WO 2014027825 A1 WO2014027825 A1 WO 2014027825A1 KR 2013007289 W KR2013007289 W KR 2013007289W WO 2014027825 A1 WO2014027825 A1 WO 2014027825A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
coating
coating solution
composition
weight
Prior art date
Application number
PCT/KR2013/007289
Other languages
French (fr)
Korean (ko)
Inventor
박상권
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2014027825A1 publication Critical patent/WO2014027825A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Abstract

The present invention relates to a highly transparent and super water-repellent coating solution composition that can be applied to a window, and to a method for preparing the coating composition. Since the coating composition of the present invention has excellent transparency and can implement a self-cleaning function, the present invention can be applied to windows for construction purposes and automobiles. In the event the present invention is applied to exterior and glass and ceramic interior construction materials, as well as to windows for construction purposes, the present invention can contribute to a green environment by implementing a self-cleaning function, and ultimately can play a significant role in the reduction of carbon dioxide emissions as well.

Description

초발수성 코팅용액 조성물 및 코팅 조성물의 제조방법Super water-repellent coating solution composition and preparation method of coating composition
본 발명은 윈도우에 적용될 수 있는 코팅용액 조성물 및 코팅 조성물의 제조방법에 관한 것이다.The present invention relates to a coating solution composition and a method for preparing the coating composition that can be applied to the window.
일반적인 직물, 도료, 복합막 등은 사용 소재에 각종 기능성을 부여하여 사용 효과를 높임으로써 높은 부가가치를 창출한다. 상기와 같은 기능성의 예로서 초발수성 기능이 있으며, 이와 같은 초발수성 기능은 '연꽃잎 효과'로부터 비롯되었다.General fabrics, paints, composite membranes, etc. create a high value added by increasing the effectiveness of the use by giving various functionalities to the material used. An example of such a function is a super water-repellent function, such a super water-repellent function is derived from the 'lotus leaf effect'.
연꽃잎 효과란 연꽃잎, 벼 등 식물의 잎이나 나비 같은 곤충 날개는 항상 깨끗한 상태를 유지하는 효과로서, 자기 세정 능력에 의한 것이다. 연꽃잎 효과의 비밀은 1975년 독일 본 대학교 식물학자인 빌헬름 바스롯 교수가 고배율의 현미경으로 연꽃잎을 관찰한 결과, 표면에 마이크로미터(μm: 100만 분의 1m) 크기의 돌기들이 형성돼 있는 것을 발견했고, 이어 돌기들의 표면에 나노미터(nm: 10억 분의 1m) 크기의 섬모들이 돋아나 있는 것을 확인하였다. 연꽃잎은 이 같은 표면 구조로 인해 물방울이 붙지 않고 굴러 떨어지므로 오염물질이 자동으로 씻겨 내려가는 자기정화 능력을 지니게 된다.The lotus leaf effect is an effect that keeps the insect wings such as leaves and butterflies of plants, such as lotus leaf and rice, at all times by self-cleaning ability. The secret of the lotus leaf effect is that in 1975, Professor Wilhelm Barthlot, a botanist at the University of Bonn, Germany, observed the lotus leaf under a high-magnification microscope, indicating that micrometer-sized protrusions were formed on the surface. They then found cilia of nanometer size (nm: 1 billionth of a meter) on the surface of the projections. Because of this surface structure, the lotus leaf rolls down without attaching water droplets, and thus has a self-cleaning ability to automatically wash down pollutants.
상기와 같은 연꽃잎 효과를 실생활에 응용한 제품들도 속속 등장하고 있으며, 이를 초발수 표면기술이라고도 하는데, 이러한 기술은 젖음 및 표면개질 기술의 한 분야로, 고체의 표면을 물리화학적으로 표면 개질하여 고체의 표면에 액체가 접촉할 때 접촉각이 150° 이상이 되도록 하는 기술로서, 이와 같이 자연계에서 이미 일어나고 있는 현상을 규명하여 손쉽게 산업적으로 이용하기 위한 초발수 표면의 물리화학적 제작, 젖음 현상의 해석 및 응용기술이다.Products applying the above-mentioned lotus leaf effect in real life also appear one after another, which is also called super water repellent surface technology, which is a field of wet and surface modification technology, by physically chemically modifying the surface of the solid surface When the liquid is in contact with the surface of the solid, the contact angle is 150 ° or more, the physical phenomenon of the super water-repellent surface for the identification of the phenomena already occurring in the natural world for easy industrial use, analysis of the wet phenomenon and Applied technology.
이러한 초발수성은 표면에 존재하는 미세구조와 표면을 덮고 있는 저에너지 물질(연잎의 경우 wax)에 의해 구현된다고 알려져 있는데, 미세구조를 갖지 않는 매끄러운 표면은 에너지가 낮은 유기물이나 고분자(불소계 또는 실리콘계 수지)로 코팅하더라고 최대 접촉각은 약 120° 정도로서 한계가 있다. 표면장력이 높은 물방울은 표면에너지가 낮은 초발수성 표면의 돌출부와 매우 제한적인 면적만이 접촉함으로써 매우 높은 접촉각을 나타내며, 이로 인하여 물방울이 부착된 오염물과 함께 굴러 떨어지면서 자기세정(self-cleaning) 기능을 갖게 된다. 최근 들어, 특정 미세구조를 갖는 낮은 표면에너지의 고분자 수지를 기재(substrate) 상에 코팅함으로써, 도료 등 일부 제품에 초발수성 코팅을 적용하고 있지만, 이러한 초발수성 코팅은 수지 자체 또는 미세구조에 의한 불투명성 때문에 고투명성을 요구하는 다양한 윈도우 제품에는 적용이 불가능하다.This super water repellency is known to be realized by the microstructure existing on the surface and the low-energy material (wax in the case of lotus leaf) covering the surface, and the smooth surface without the microstructure is a low energy organic material or polymer (fluorine-based or silicone-based resin). Even with coating, the maximum contact angle is limited to about 120 °. Water droplets with high surface tension show very high contact angles by contacting only very limited areas with the projections of superhydrophobic surfaces with low surface energy, resulting in self-cleaning functions as they drop with contaminants attached to water droplets. Will have Recently, superhydrophobic coating is applied to some products such as paints by coating a low surface energy polymer resin having a specific microstructure on a substrate, but such a superhydrophobic coating is opaque due to the resin itself or the microstructure. Therefore, it is not applicable to various window products requiring high transparency.
이에 본 발명자는 건축용 및 자동차 등의 윈도우에 사용할 수 있고, 나아가서는 태양전지용 보호유리나 옥외용 디스플레이 최외각 유리 등에 적용이 가능한 고투명 자가세정 기능성 코팅소재를 개발하기에 이르렀다.Accordingly, the present inventors have developed a highly transparent self-cleaning functional coating material which can be used in windows of construction and automobiles, and further applicable to solar cell protective glass or outdoor display outermost glass.
본 발명은 투명도와 초발수성을 극대화시킨 코팅용액 조성물 및 코팅 조성물의 제조방법을 제공하는 것이다.The present invention is to provide a coating solution composition and a method for preparing the coating composition to maximize transparency and super water repellency.
본 발명은 실리카 전구체, 중성 촉매, 알코올 및 비불소 실란계 유기물을 포함하는 코팅용액 조성물에 관한 것이다. The present invention relates to a coating solution composition comprising a silica precursor, a neutral catalyst, an alcohol, and a non-fluorine silane-based organic material.
또한, 본 발명은 (a) 실리카 전구체, 중성 촉매, 알코올 및 물을 사용하여 기재 상에 실리카 나노구조를 형성하는 단계; 및 (b) 상기 (a) 단계 후, 비불소 실란계 유기물을 사용하여 실란계 유기물을 코팅하는 단계;를 포함하는 코팅 조성물의 제조방법에 관한 것이다.In addition, the present invention comprises the steps of (a) forming a silica nanostructure on a substrate using a silica precursor, a neutral catalyst, alcohol and water; And (b) after the step (a), using a non-fluorine silane-based organic coating the silane-based organic; relates to a method for producing a coating composition comprising a.
본 발명의 코팅 조성물은, 투명도가 우수하고 자기세정 기능성의 구현이 가능하므로, 건축용 및 자동차용 윈도우용에 적용이 가능하다. 건축용 윈도우뿐만 아니라 유리 및 세라믹 재질의 건축용 외장 및 인테리어 소재에 적용할 경우, 자기세정 기능성 구현에 의하여 그린환경 조성에 일조할 수 있으며, 궁극적으로는 이산화탄소 배출 감소에도 기여할 수 있다.The coating composition of the present invention is excellent in transparency and can implement the self-cleaning functionality, it can be applied to architectural and automotive windows. When applied to architectural exterior and interior materials of glass and ceramic as well as building windows, it can contribute to the creation of a green environment by realizing self-cleaning functionality, and ultimately contribute to the reduction of carbon dioxide emissions.
도 1은 본 발명에서 제조된 코팅 구조에 대한 단면도이다.1 is a cross-sectional view of the coating structure produced in the present invention.
도 2는 실시예 1, 5, 6에 대한 접촉각, SEM 사진, AFM 이미지이다.2 is a contact angle, an SEM photograph, and an AFM image for Examples 1, 5, and 6;
도 3은 실시예 8과 비교예 2에 대한 광투과도이다.3 is a light transmission diagram for Example 8 and Comparative Example 2.
도 4는 (좌) 비교예 2 (우) 실시예 8에 대해 카본블랙(0.1 g) 도포 후 물방울(1 ml)로 세척한 사진(내오염성 및 자기세정성)이다.Figure 4 (left) Comparative Example 2 (right) The photograph (washing resistance and self-cleaning) of Example 8 washed with water droplets (1 ml) after application of carbon black (0.1 g).
도 5는 실시예 9에 대한 코팅용액 조성에 따른 접촉각 결과(25℃) 그래프이다.5 is a contact angle results (25 ℃) according to the coating solution composition for Example 9 It is a graph.
도 6은 실시예 10에 대한 온도에 따른 접촉각 결과 그래프이다.6 is a graph of contact angle results according to temperature for Example 10. FIG.
본 발명은 실리카 전구체, 중성 촉매, 알코올 및 비불소 실란계 유기물을 포함하는 코팅용액 조성물에 관한 것이다.The present invention relates to a coating solution composition comprising a silica precursor, a neutral catalyst, an alcohol, and a non-fluorine silane-based organic material.
상기 전체 코팅용액 조성물 100 중량부에 대해 실리카 전구체 10~40 중량부, 중성 촉매 0.0001~0.02 중량부, 알코올 35~88 중량부, 비불소 실란계 유기물 0.13~2.6 중량부를 포함할 수 있다. 상기 중량비로 포함하는 경우 본 발명의 코팅용액 조성물로 기재를 졸-겔(sol-gel) 반응시키고, 비불소 실란계 유기물로 처리해 줌으로써 고투명성과 초발수 특성을 갖는 코팅 조성물을 얻을 수 있다.The total amount of the coating solution composition may include 10 to 40 parts by weight of silica precursor, 0.0001 to 0.02 parts by weight of neutral catalyst, 35 to 88 parts by weight of alcohol, and 0.13 to 2.6 parts by weight of non-fluorine silane-based organic material. When it is included in the weight ratio by the sol-gel reaction of the substrate with the coating solution composition of the present invention, by treating with a non-fluorine silane-based organic material it can be obtained a coating composition having high transparency and super water-repellent properties.
상기 실리카 전구체는 이에 제한되는 것은 아니나, 실리콘 알콕사이드계일 수 있으며, 보다 구체적으로 테트라메틸오소실리케이트(tetramethyl orthosilicate), 테트라에틸 오소실리케이트(tetraethyl orthosilicate, TEOS), 테트라프로폭시실란(tetrapropoxy silane), 테트라이소프로폭시실란(tetraisopropoxy silane)일 수 있다. The silica precursor may be, but not limited to, silicon alkoxide-based, and more specifically, tetramethyl orthosilicate, tetraethyl orthosilicate (TEOS), tetrapropoxy silane, tetraisooxy It may be tetraisopropoxy silane.
*상기 중성 촉매는 이에 제한되는 것은 아니나, 불화암모늄(NH4F)일 수 있다. The neutral catalyst may be, but is not limited to, ammonium fluoride (NH 4 F).
상기 비불소 실란계 유기물은 이에 제한되는 것은 아니나, 클로로트리메틸실란(chlorotrimethyl silane) 등 클로로트리알킬실란(chlorotrialkyl silane)계 유기물이나, 옥타데실트리클로로실란(octadecyltrichloro silane) 등 알킬트리클로로실란(alkyltrichloro silane)계 유기물일 수 있다.The non-fluorine silane-based organic material is not limited thereto, but may be a chlorotrialkyl silane-based organic material such as chlorotrimethyl silane, or an alkyltrichloro silane such as octadecyltrichlorosilane. ) May be an organic material.
상기 알코올은 이에 제한되는 것은 아니나, 메탄올, 에탄올 또는 이소프로판올일 수 있다.The alcohol may be, but is not limited to, methanol, ethanol or isopropanol.
또한, 본 발명은 코팅 조성물의 제조방법에 관한 것이다. 보다 구체적으로 (a) 실리카 전구체, 중성 촉매, 알코올 및 물을 사용하여 기재 상에 실리카 나노구조를 형성하는 단계; 및 (b) 상기 (a) 단계 후, 비불소 실란계 유기물을 사용하여 실란계 유기물을 코팅하는 단계;를 포함하는 코팅 조성물의 제조방법에 관한 것이다. The invention also relates to a process for the preparation of the coating composition. More specifically (a) forming a silica nanostructure on the substrate using a silica precursor, a neutral catalyst, alcohol and water; And (b) after the step (a), using a non-fluorine silane-based organic coating the silane-based organic; relates to a method for producing a coating composition comprising a.
상기 (a) 단계의 실리카 나노구조를 기재 상에 형성하는 단계에서 기재는 이에 제한되지 않으나, 유리 기재일 수 있고, 유리 표면에 나노 구조가 균일하게 생성될 수 있도록 분순물을 제거할 수 있다. 본 발명의 일실시예에서는 유리 표면의 불순물을 제거하기 위해서 과산화수소와 황산 용액을 처리하여 유리 표면에 흡착/부착된 유기물을 제거하였다. In the step of forming the silica nanostructure of the step (a) on the substrate, the substrate is not limited thereto, but may be a glass substrate, the impurities may be removed so that the nanostructure is uniformly generated on the glass surface. In one embodiment of the present invention to remove impurities on the glass surface by treating the hydrogen peroxide and sulfuric acid solution to remove the organic material adsorbed / adhered to the glass surface.
또한, (a) 단계는 투명도를 높게 유지하면서 초발수성 특성을 구현하기 위해서 졸-겔(sol-gel)법에 의해 실리카 나노구조를 유리 기재 상에 형성시키는 단계로서, 보다 구체적으로 실리카 전구체, 물, 촉매가 용해된 알코올 용액을 제조하고, 유리 기재를 용액 중에 담그어, 졸-겔 반응(가수분해 반응과 응축 반응)을 일어나게 함으로써 투명하고 균일한 코팅막을 얻을 수 있다. In addition, step (a) is to form a silica nanostructure on the glass substrate by a sol-gel (sol-gel) method in order to implement super water-repellent properties while maintaining high transparency, more specifically, silica precursor, water A transparent and uniform coating film can be obtained by preparing an alcohol solution in which a catalyst is dissolved and immersing the glass substrate in the solution to cause a sol-gel reaction (hydrolysis reaction and condensation reaction).
이때, 실리카 나노구조 코팅막을 형성하기 위해서 반응 온도는 20~50℃, 25℃일 수 있으며, 반응 온도가 달라지면 반응 시간에 따른 접촉각이 달라지게 된다. 또한, 반응 시간은 1~50시간, 25시간 동안 반응시킬 수 있다. In this case, in order to form the silica nanostructure coating film, the reaction temperature may be 20 to 50 ° C and 25 ° C. When the reaction temperature is changed, the contact angle according to the reaction time is changed. In addition, the reaction time can be reacted for 1 to 50 hours, 25 hours.
상기 실리카 전구체는 이에 제한되는 것은 아니나, 실리콘 알콕사이드계일 수 있으며, 보다 구체적으로 테트라메틸오소실리케이트(tetramethyl orthosilicate), 테트라에틸 오소실리케이트(tetraethyl orthosilicate, TEOS), 테트라프로폭시실란(tetrapropoxy silane), 테트라이소프로폭시실란(tetraisopropoxy silane)일 수 있다. The silica precursor may be, but not limited to, silicon alkoxide-based, and more specifically, tetramethyl orthosilicate, tetraethyl orthosilicate (TEOS), tetrapropoxy silane, tetraisooxy It may be tetraisopropoxy silane.
상기 중성 촉매는 이에 제한되는 것은 아니나, 불화암모늄(NH4F)일 수 있다. The neutral catalyst may be, but is not limited to, ammonium fluoride (NH 4 F).
상기 알코올은 이에 제한되는 것은 아니나, 메탄올, 에탄올 또는 이소프로판올일 수 있다.The alcohol may be, but is not limited to, methanol, ethanol or isopropanol.
본 발명에 의한 중성 촉매를 사용하는 경우 산성 촉매나 염기성 촉매를 사용시 중화시키는 단계를 거칠 필요가 없어 공정의 단순화가 가능하다.When using the neutral catalyst according to the present invention it is not necessary to go through the step of neutralizing when using an acidic catalyst or a basic catalyst it is possible to simplify the process.
상기 실리카 나노구조 코팅막이 형성된 유리 기재는 dip coater로 3~10mm/min의 속도로 꺼낼 수 있고, 그 후 건조할 수 있다. The glass substrate on which the silica nanostructure coating film is formed may be taken out at a speed of 3 to 10 mm / min with a dip coater, and then dried.
상기 (b) 단계는 실리카 나노구조가 형성된 유리 기재 표면 상에 비불소 실란계 유기물을 사용하여 표면을 개질시킬 수 있다. 표면을 개질시킴으로써, 발수성이 더 향상될 수 있으며, 실란계 유기물 중에서 비불소 실란계 유기물을 사용하는 경우 투명성을 극대화할 수 있다는 장점을 가질 수 있다. In the step (b), the surface may be modified by using a non-fluorine silane-based organic material on the surface of the glass substrate on which the silica nanostructure is formed. By modifying the surface, the water repellency may be further improved, and the non-fluorine silane-based organic material among the silane-based organic materials may have an advantage of maximizing transparency.
상기 비불소 실란계 유기물은 이에 제한되는 것은 아니나, 클로로트리메틸실란(chlorotrimethyl silane) 등 클로로트리알킬실란(chlorotrialkyl silane)계 유기물이나, 옥타데실트리클로로실란(octadecyltrichloro silane) 등 알킬트리클로로실란(alkyltrichloro silane)계 유기물일 수 있다.The non-fluorine silane-based organic material is not limited thereto, but may be a chlorotrialkyl silane-based organic material such as chlorotrimethyl silane, or an alkyltrichloro silane such as octadecyltrichlorosilane. ) May be an organic material.
보다 구체적으로, 실리카 나노구조가 코팅된 유리 기재를 비불소 실란계 유기물을 용해시킨 용매에 담그고, 20~100℃, 50℃, 0.5~5시간, 1시간 동안 코팅시킬 수 있다.More specifically, the glass substrate coated with silica nanostructures may be dipped in a solvent in which a non-fluorine silane-based organic material is dissolved, and then coated for 20 to 100 ° C., 50 ° C., 0.5 to 5 hours, and 1 hour.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예 1> <Example 1>
1. 유리 기재의 준비1. Preparation of Glass Substrate
유리 기재로는 1 mm 두께의 글라스 슬라이드(glass slide, 독일 Paul Marienfeld GmbH사)를 사용하였다. 유리는 과산화수소와 황산을 1:3의 부피비로 혼합한 용액에 12시간 이상 담가 표면에 있는 불순물을 제거하였다. 증류수로 용액을 세척해 낸 후, 105℃에서 1시간 동안 건조시켰다.As a glass substrate, a glass slide of 1 mm thickness (Paul Marienfeld GmbH, Germany) was used. The glass was immersed in a solution of hydrogen peroxide and sulfuric acid in a volume ratio of 1: 3 for 12 hours or more to remove impurities on the surface. The solution was washed with distilled water and then dried at 105 ° C. for 1 hour.
2. 코팅 용액의 제조2. Preparation of Coating Solution
유리 기재 상에 실리카 나노구조를 형성시키기 위하여 실리카 전구체인 tetraethyl orthosilicate(TEOS, reagent grade, Aldrich사), 물 및 불화암모늄(NH4F, reagent grade, Aldrich사) 촉매가 용해된 메탄올(anhydrous grade, Aldrich사) 용액을 사용하였다. 사용된 TEOS의 농도는 22 중량부, 물의 농도는 12 중량부, 불화암모늄의 농도는 0.004 중량부로서, 혼합된 코팅용액을 약 30분간 상온에서 교반하였다.In order to form silica nanostructure on the glass substrate, methanol (anhydrous grade) in which tetraethyl orthosilicate (TEOS, reagent grade, Aldrich), water and ammonium fluoride (NH 4 F, reagent grade, Aldrich) catalyst are dissolved Aldrich) solution was used. The used TEOS concentration was 22 parts by weight, the water concentration was 12 parts by weight, and the concentration of ammonium fluoride was 0.004 parts by weight. The mixed coating solution was stirred at room temperature for about 30 minutes.
3. 유리 기재 상에 나노구조의 형성 및 건조3. Formation and drying of nanostructures on glass substrates
상기 코팅 용액 중에 세척된 유리 기재를 수직으로 담그고, 졸-겔 반응에 의해 유리 기재 표면 상에 실리카 나노구조가 형성될 수 있도록 25 ℃에서 25시간 동안 반응시켰다. 이때, 반응 온도가 달라지면, 반응 시간에 따른 접촉각이 달라지게 된다. 그 후, 나노구조가 코팅된 유리 기재는 dip coater로 5 mm/min에서 꺼내고, 상온에서 건조한 후 80 ℃에서 추가로 건조하였다.The glass substrate washed in the coating solution was vertically immersed and reacted at 25 ° C. for 25 hours so that silica nanostructures could be formed on the surface of the glass substrate by a sol-gel reaction. At this time, if the reaction temperature is different, the contact angle according to the reaction time is different. Then, the nanostructure-coated glass substrate was taken out at 5 mm / min with a dip coater, dried at room temperature and further dried at 80 ℃.
4. 실란계 유기물 코팅4. Silane Organic Coating
실리카 나노구조가 코팅된 유리 기재를 트리메틸클로로실란((CH3)3SiCl)을 0.01 중량부로 용해시킨 hexane 용액에 담그고, 50℃에서 1시간 동안 반응시킨 후, 125℃에서 1시간 동안 curing함으로써 실란계 유기물 코팅을 완료하였다.The glass substrate coated with the silica nanostructures was immersed in a hexane solution in which trimethylchlorosilane ((CH 3 ) 3 SiCl) was dissolved in 0.01 parts by weight, reacted at 50 ° C for 1 hour, and then cured at 125 ° C for 1 hour. The system organic coating was completed.
<실시예 2><Example 2>
실시예 1에서와 같은 방법으로 진행하되, 단계 2)의 코팅 용액 조성을 TEOS의 농도는 19 중량부, 물의 농도 범위는 10 중량부, 불화암모늄의 농도는 0.003 중량부를 사용하여 코팅을 제조하였다.Proceed in the same manner as in Example 1, the coating solution composition of step 2) was prepared by using a concentration of 19 parts by weight of TEOS, 10 parts by weight of water, and 0.003 parts by weight of ammonium fluoride.
<실시예 3><Example 3>
실시예 1에서와 같은 방법으로 진행하되, 단계 2)의 촉매를 불화암모늄(NH4F) 대신 농도 0.8 중량부의 염화수소(HCl)를 사용하였다.Proceed in the same manner as in Example 1, the catalyst of step 2) was used instead of ammonium fluoride (NH 4 F) of 0.8 parts by weight of hydrogen chloride (HCl).
<실시예 4><Example 4>
*실시예 1에서와 같은 방법으로 진행하되, 단계 2)의 촉매를 불화암모늄(NH4F) 대신 농도 0.7 중량부의 수산화암모늄(NH4OH)를 사용하였다.Proceed in the same manner as in Example 1, but the catalyst of step 2) was used in the concentration of 0.7 parts by weight of ammonium hydroxide (NH4OH) instead of ammonium fluoride (NH4F).
<실시예 5>Example 5
실시예 1과 같은 방법으로 진행하되, 단계 3)의 코팅 시간을 10시간으로 하였다.Proceed in the same manner as in Example 1, the coating time of step 3) was 10 hours.
<실시예 6><Example 6>
실시예 1과 같은 방법으로 진행하되, 단계 3)의 코팅 시간을 48시간으로 하였다.Proceed in the same manner as in Example 1, the coating time of step 3) was 48 hours.
<실시예 7><Example 7>
실시예 1에서와 같은 방법으로 진행하되, 단계 4)의 트리메틸클로로실란 대신 불소 실란계 유기물인 트리클로로퍼플루오로옥틸실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane)을 0.007 중량부의 농도로 사용하였다.Proceed in the same manner as in Example 1, but instead of trimethylchlorosilane of step 4) a concentration of 0.007 parts by weight of trichloroperfluorooctylsilane (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane) Used as.
<실시예 8><Example 8>
실시예 1에서와 같은 방법으로 진행하되, 단계 1)의 유리 기재로서 글라스 슬라이드 대신 상용 제품인 저철분 유리(두께 4 mm, 디아망 (주)한글라스)를 사용하였다.Proceed in the same manner as in Example 1, but a low iron glass (thickness 4mm, Diaman Co., Ltd.) commercial glass was used as the glass substrate of step 1) instead of the glass slide.
<실시예 9>Example 9
실시예 1에서와 같은 방법으로 진행하되, 단계 2)의 코팅 용액을 아래와 같이 여러 가지로 조성으로 사용하였다(도 5 참조).Proceed in the same manner as in Example 1, the coating solution of step 2) was used in various compositions as follows (see Fig. 5).
A; TEOS 26 중량부, 물 14 중량부, 불화암모늄 0.005 중량부A; 26 parts by weight of TEOS, 14 parts by weight of water, 0.005 parts by weight of ammonium fluoride
B; TEOS 23 중량부, 물 16 중량부, 불화암모늄 0.004 중량부B; 23 parts by weight of TEOS, 16 parts by weight of water, 0.004 parts by weight of ammonium fluoride
C; TEOS 23 중량부, 물 14 중량부, 불화암모늄 0.004 중량부C; 23 parts by weight of TEOS, 14 parts by weight of water, 0.004 parts by weight of ammonium fluoride
D; TEOS 22 중량부, 물 12 중량부, 불화암모늄 0.004 중량부D; 22 parts by weight of TEOS, 12 parts by weight of water, 0.004 parts by weight of ammonium fluoride
E; TEOS 19 중량부, 물 10 중량부, 불화암모늄 0.003 중량부E; 19 parts by weight of TEOS, 10 parts by weight of water, 0.003 parts by weight of ammonium fluoride
<실시예 10><Example 10>
실시예 1에서와 같은 방법으로 진행하되, 단계 2)의 온도를 40℃, 45℃ 또는 50℃로 유지하였다(도 6 참조).Proceed in the same manner as in Example 1, but the temperature of step 2) was maintained at 40 ℃, 45 ℃ or 50 ℃ (see Figure 6).
<비교예 1>Comparative Example 1
실시예 1에서 단계 1)만을 거친 글라스 슬라이드 유리 기재를 사용하였다.In Example 1 a glass slide glass substrate with only coarse step 1) was used.
<비교예 2>Comparative Example 2
실시예 8에서 단계 1)만을 거친 저철분 유리 기재를 사용하였다.In Example 8 a low iron glass substrate was used which passed only step 1).
1. 특성 분석1. Characterization
(1) 접촉각(1) contact angle
유리 기재 상에 형성된 코팅의 발수성을 확인하기 위해서, 접촉각 측정기(KRUSS사, DSA100)로 접촉각을 측정하였고, 모든 실시예에 대한 결과를 표1에 정리하였고, 실시예 1, 5, 6에 대한 결과를 도 2에 사진으로 나타내었다.In order to confirm the water repellency of the coating formed on the glass substrate, the contact angle was measured by a contact angle meter (KRUSS, DSA100), the results for all examples are summarized in Table 1, and the results for Examples 1, 5, and 6 2 is shown in the photograph.
(2) 전자현미경 (SEM)(2) electron microscope (SEM)
유리 기재 상에 형성된 코팅의 나노구조를 확인하기 위해서, 전자현미경(SEM, HITACHI사, S-3000N)으로 관찰하였으며, 실시예 1, 5, 6에 대한 SEM 사진을 도 2에 나타내었다.In order to confirm the nanostructure of the coating formed on the glass substrate, it was observed with an electron microscope (SEM, HITACHI, S-3000N), and the SEM photographs of Examples 1, 5, and 6 are shown in FIG. 2.
(3) 원자현미경 (AFM)(3) atomic force microscope (AFM)
유리 기재 상에 형성된 코팅의 나노구조를 확인하기 위해서, 원자현미경(AFM, Veeco사, Nanoman II)으로 관찰하였으며, 실시예 1, 5, 6에 대한 AFM 이미지를 도 2에 나타내었다.In order to confirm the nanostructure of the coating formed on the glass substrate, it was observed with an atomic force microscope (AFM, Veeco, Nanoman II), AFM images for Examples 1, 5, 6 are shown in FIG.
(4) 광투과도(4) light transmittance
유리 기재 상에 형성된 코팅의 광투과도는 UV-Vis spectrometer(Perkin Elmer사, Lambda 35)를 이용하여 측정하였고, 실시예 8과 비교예 2의 광투과도를 도 3에 나타내었다.The light transmittance of the coating formed on the glass substrate was measured using a UV-Vis spectrometer (Lambda 35, Perkin Elmer), and the light transmittances of Example 8 and Comparative Example 2 are shown in FIG.
(5) 실시예 1~10 및 비교예 1, 2의 비교(5) Comparison of Examples 1 to 10 and Comparative Examples 1 and 2
실시예 1~10과 비교예 1, 2의 접촉각과 광투과도 결과를 다음 표 1에서 비교하였다.The contact angles and light transmittance results of Examples 1 to 10 and Comparative Examples 1 and 2 were compared in Table 1 below.
표 1
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8 실시예9 실시예10
촉 도143 115 135 142 53 93 154 130 도5참조 도6참조
투도우수a 우수a 매우불량b 불량c 우수a 우수a 매우불량b 우수d 양호또는 우수a 양호또는 우수a
Table 1
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10
Wet dildo143 115 135 142 53 93 154 130 See Figure 5 See Figure 6
Excellent a Excellent a Very bad b Bad c Excellent a Excellent a Very bad b Excellent d Good or excellent a Good or excellent a
a ; 우수 = '비교예 1'에 비해 광투과도가 높음a; Excellent = higher light transmission than 'Comparative Example 1'
b ; 매우 불량 = '비교예 1'에 비해 광투과도가 매우 낮음b; Very poor = very low light transmittance compared to 'Comparative Example 1'
c ; 불량 = '비교예 1'에 비해 광투과도가 낮음c; Poor = low light transmittance compared to 'Comparative Example 1'
d ; 우수 = '비교예 2'에 비해 광투과도가 높음.d; Excellent = higher light transmittance than 'Comparative Example 2.'
<부호의 설명><Description of the code>
1: 유리 기재 / 2: 실리카 나노구조 / 3: 실란계 유기물1: glass substrate / 2: silica nanostructure / 3: silane-based organic material

Claims (12)

  1. 실리카 전구체, 중성 촉매, 알코올 및 비불소 실란계 유기물을 포함하는 코팅용액 조성물.A coating solution composition comprising a silica precursor, a neutral catalyst, an alcohol, and a non-fluorine silane-based organic material.
  2. 제1항에 있어서, 전체 코팅용액 조성물 100 중량부 대비 실리카 전구체 10~40 중량부, 중성 촉매 0.0001~0.02 중량부, 알코올 35~88 중량부, 비불소 실란계 유기물 0.13~2.6 중량부인 것을 특징으로 하는 코팅용액 조성물.The method according to claim 1, wherein the total amount of the coating solution composition is 10 to 40 parts by weight of silica precursor, 0.0001 to 0.02 parts by weight of neutral catalyst, 35 to 88 parts by weight of alcohol, 0.13 to 2.6 parts by weight of non-fluorine silane-based organic material. Coating solution composition.
  3. 제1항에 있어서, 상기 실리카 전구체는 테트라메틸오소실리케이트(tetramethyl orthosilicate), 테트라에틸 오소실리케이트(tetraethyl orthosilicate, TEOS), 테트라프로폭시실란(tetrapropoxy silane) 또는 테트라이소프로폭시실란(tetraisopropoxy silane)인 것을 특징으로 하는 코팅용액 조성물.The method of claim 1, wherein the silica precursor is tetramethyl orthosilicate, tetraethyl orthosilicate (TEOS), tetrapropoxy silane or tetraisopropoxy silane (tetraisopropoxy silane). Coating solution composition, characterized in that.
  4. 제1항에 있어서, 상기 중성 촉매는 불화암모늄(NH4F)인 것을 특징으로 하는 코팅용액 조성물.The coating solution composition of claim 1, wherein the neutral catalyst is ammonium fluoride (NH 4 F).
  5. 제1항 있어서, 상기 비불소 실란계 유기물은 클로로트리메틸실란(chlorotrimethyl silane) 또는 옥타데실트리클로로실란(octadecyltrichloro silane)인 것을 특징으로 하는 코팅용액 조성물.The coating solution composition of claim 1, wherein the non-fluorine silane-based organic material is chlorotrimethyl silane or octadecyltrichloro silane.
  6. 제1항 있어서, 상기 알코올은 메탄올, 에탄올 또는 이소프로판올인 것을 특징으로 하는 코팅용액 조성물.The coating solution composition of claim 1, wherein the alcohol is methanol, ethanol or isopropanol.
  7. (a)실리카 전구체, 중성 촉매, 알코올 및 물을 사용하여 기재 상에 실리카 나노구조를 형성하는 단계; 및(a) forming a silica nanostructure on the substrate using a silica precursor, a neutral catalyst, alcohol and water; And
    (b)상기 (a) 단계 후, 비불소 실란계 유기물을 사용하여 코팅하는 단계;(b) after the step (a), coating with a non-fluorine silane-based organic material;
    를 포함하는 코팅 조성물의 제조방법.Method of producing a coating composition comprising a.
  8. 제7항에 있어서, 상기 실리카 전구체는 테트라메틸오소실리케이트(tetramethyl orthosilicate), 테트라에틸 오소실리케이트(tetraethyl orthosilicate, TEOS), 테트라프로폭시실란(tetrapropoxy silane) 또는 테트라이소프로폭시실란(tetraisopropoxy silane)인 것을 특징으로 하는 코팅 조성물의 제조방법.The method of claim 7, wherein the silica precursor is tetramethyl orthosilicate, tetraethyl orthosilicate (TEOS), tetrapropoxy silane or tetraisopropoxy silane (tetraisopropoxy silane) Method for producing a coating composition characterized in that.
  9. 제7항에 있어서, 상기 중성 촉매는 불화암모늄(NH4F)인 것을 특징으로 하는 코팅 조성물의 제조방법.The method of claim 7, wherein the neutral catalyst is ammonium fluoride (NH 4 F).
  10. 제7항에 있어서, 상기 (a) 단계의 실리카 나노구조 형성 단계는 20~50℃, 1~50시간 동안인 것을 특징으로 하는 코팅 조성물의 제조방법.According to claim 7, wherein the step of forming the silica nanostructures of step (a) is a method for producing a coating composition, characterized in that for 20 to 50 ℃, 1 to 50 hours.
  11. 제7항에 있어서, 상기 (b) 단계의 실란계 유기물을 코팅하는 단계는 20~100℃, 0.5~5시간 동안인 것을 특징으로 하는 코팅 조성물의 제조방법.The method of claim 7, wherein the coating of the silane-based organic material of step (b) is 20 to 100 ° C. for 0.5 to 5 hours.
  12. 제7항 있어서, 상기 비불소 실란계 유기물은 클로로트리메틸실란(chlorotrimethyl silane) 또는 옥타데실트리클로로실란 (octadecyltrichloro silane)인 것을 특징으로 하는 코팅 조성물의 제조방법.The method of claim 7, wherein the non-fluorine silane-based organic material is chlorotrimethyl silane or octadecyltrichloro silane.
PCT/KR2013/007289 2012-08-13 2013-08-13 Super water-repellent coating solution composition, and method for preparing coating composition WO2014027825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120088146A KR101401754B1 (en) 2012-08-13 2012-08-13 Superhydrophobic coating solution composition and method for producing the coating composition
KR10-2012-0088146 2012-08-13

Publications (1)

Publication Number Publication Date
WO2014027825A1 true WO2014027825A1 (en) 2014-02-20

Family

ID=50268389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007289 WO2014027825A1 (en) 2012-08-13 2013-08-13 Super water-repellent coating solution composition, and method for preparing coating composition

Country Status (2)

Country Link
KR (1) KR101401754B1 (en)
WO (1) WO2014027825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021067042A1 (en) * 2019-09-30 2021-04-08 Saudi Arabian Oil Company Methods for reducing condensation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089504B1 (en) * 2018-07-03 2020-03-16 주식회사 쓰리에스테크 Packaging box enhanced sealing ability
KR102097481B1 (en) * 2018-07-18 2020-04-06 주식회사 쓰리에스테크 Packaging box
KR102019315B1 (en) * 2018-12-14 2019-09-06 고려대학교 산학협력단 Method for super-hydrophobic coating
KR102633015B1 (en) * 2021-05-13 2024-02-01 경상국립대학교산학협력단 Manufacturing method of Superhydrophobic coating
KR20230056437A (en) * 2021-10-20 2023-04-27 한국기계연구원 Water repellent composition
KR102658521B1 (en) 2021-11-12 2024-04-18 삼화페인트공업주식회사 Self-cleaning silylated polyurethane for solar panel, manufacturing method thereof, and solar panel self-cleaning product including the same
KR20230092082A (en) 2021-12-16 2023-06-26 주식회사 지디원 Super water-repellent coating agent for automobiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040050297A1 (en) * 2001-02-09 2004-03-18 Hideki Kobayashi Silicone resin composition for water repellent coating
KR20060011218A (en) * 2004-07-29 2006-02-03 엘지전자 주식회사 Coating composition for forming ultra water repellent coating layer, preparation method thereof and caoting method using the same
KR20110118475A (en) * 2010-04-23 2011-10-31 삼성전자주식회사 Super-hydrorepellent composition, super-hydrorepellent coating layer including a cured product of the composition, and heat exchanger including the super-hydrorepellent coating layer
US20120128958A1 (en) * 2010-08-10 2012-05-24 Massachusetts Institute Of Technology Silica aerogels and their preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040050297A1 (en) * 2001-02-09 2004-03-18 Hideki Kobayashi Silicone resin composition for water repellent coating
KR20060011218A (en) * 2004-07-29 2006-02-03 엘지전자 주식회사 Coating composition for forming ultra water repellent coating layer, preparation method thereof and caoting method using the same
KR20110118475A (en) * 2010-04-23 2011-10-31 삼성전자주식회사 Super-hydrorepellent composition, super-hydrorepellent coating layer including a cured product of the composition, and heat exchanger including the super-hydrorepellent coating layer
US20120128958A1 (en) * 2010-08-10 2012-05-24 Massachusetts Institute Of Technology Silica aerogels and their preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JIANN ET AL: "FROM HOLLOW NANOSPHERE TO HOLLOW MICROSPHERE MILD BUFFER PROVIDES EASY ACCESS TO TUNABLE SILICA STRUCTURE", J.PHYS.CHEM., vol. 112, 2008, pages 16446 - 16450 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021067042A1 (en) * 2019-09-30 2021-04-08 Saudi Arabian Oil Company Methods for reducing condensation

Also Published As

Publication number Publication date
KR20140022491A (en) 2014-02-25
KR101401754B1 (en) 2014-06-02

Similar Documents

Publication Publication Date Title
WO2014027825A1 (en) Super water-repellent coating solution composition, and method for preparing coating composition
WO2010143765A1 (en) Surface treatment method for treating surface of substrate to be highly hydrophobic
WO2014137111A1 (en) Transparent electrode and method for manufacturing same
WO2014084480A1 (en) Multifunctional coating structure and method for forming the same
WO2011034388A2 (en) Porous structure for forming an anti-fingerprint coating, method for forming an anti-fingerprint coating using the porous structure, substrate comprising the anti-fingerprint coating formed by the method, and products comprising the substrate
WO2014092422A1 (en) Transparent polyimide substrate and method for fabricating the same
CN102849962A (en) Preparation method of SiO2 super-hydrophobic film and super-hydrophobic material
WO2012018160A1 (en) Silicone based water repellent coating composition for modifying the surface of non-porous substrate
WO2014069808A1 (en) Anti-reflective coating composition including siloxane compound, and anti-reflective film of which surface energy is adjusted using same
WO2017090835A1 (en) Barrier film manufacturing method and barrier film
WO2012070908A2 (en) Organic/inorganic hybrid hierarchical structure and method for manufacturing a superhydrophobic or superhydrophilic surface using same
WO2013089413A1 (en) Hard coating composition
WO2012044068A2 (en) Manufacturing method of electrode substrate
CN113122081B (en) Transparent high-hardness multifunctional integrated self-repairing coating and preparation method and application thereof
WO2009110764A2 (en) Positive photosensitive polyimide composition
CN113823467A (en) Anti-pollution flashover porcelain insulator and preparation method thereof
JP7317203B2 (en) SELF-HEALING OR REPEATABLE PRODUCTS, PRODUCTION METHOD AND APPLICATION THEREOF
WO2018043987A1 (en) Silica-siloxane nanohybrid coating material and production method therefor
WO2014163376A1 (en) Coating composition comprising bis-type silane compound
EP2864402A1 (en) Transparent polyimide substrate and method of manufacturing the same
KR20120098165A (en) Anti-reflection film and method of producing the same
CN113861481B (en) High-transmittance hydrophobic optical polyimide composite film material and preparation method thereof
WO2019083136A1 (en) Self-healing polyurea/sol-gel silica nanohybrid cured product, and preparation method therefor
WO2013147443A1 (en) Resin composition containing ladder-like silsesquioxane polymer for optical film
CN110746651B (en) Aromatic Schiff base hyperbranched polysiloxane coated modified ammonium polyphosphate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879661

Country of ref document: EP

Kind code of ref document: A1