WO2018194431A2 - Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same - Google Patents

Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same Download PDF

Info

Publication number
WO2018194431A2
WO2018194431A2 PCT/KR2018/004648 KR2018004648W WO2018194431A2 WO 2018194431 A2 WO2018194431 A2 WO 2018194431A2 KR 2018004648 W KR2018004648 W KR 2018004648W WO 2018194431 A2 WO2018194431 A2 WO 2018194431A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
cnt
chitosan
layer
coating layer
Prior art date
Application number
PCT/KR2018/004648
Other languages
French (fr)
Korean (ko)
Other versions
WO2018194431A9 (en
WO2018194431A3 (en
Inventor
신원상
김한샘
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Publication of WO2018194431A2 publication Critical patent/WO2018194431A2/en
Publication of WO2018194431A3 publication Critical patent/WO2018194431A3/en
Publication of WO2018194431A9 publication Critical patent/WO2018194431A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0216Bicomponent or multicomponent fibres
    • B01D2239/0233Island-in-sea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret

Definitions

  • the present invention relates to a membrane comprising a metal substrate layer and a CNT / chitosan nano hybrid coating layer and an electrostatic precipitating system comprising the same.
  • Dust is classified into total dust, fine dust, and ultrafine dust according to its particle size.
  • the fine dust means that the diameter is 10 ⁇ m or less
  • the ultra-fine dust means that the diameter is 2.5 ⁇ m or less.
  • fine dust and ultrafine dust can penetrate into the alveoli of a person, which is a direct cause of various respiratory diseases after infiltration.
  • Such fine dust and ultrafine dust are composed of ionic components such as sulfate, nitrate and ammonia, and harmful substances such as metal compounds and carbon compounds. These materials cause photochemical reactions in the atmosphere, producing fine dust and ultra-fine dust. These materials are mainly generated from automobile exhaust or smoke from factories. Due to the harmfulness of these substances, countries around the world strictly regulate the concentration of fine dust and ultrafine dust.
  • the fine dust is generally about 1/10 of the thickness of the hair, while the ultra fine dust is very small, about 1/40 or less, so it is almost invisible to the human eye and can not be filtered out of the airways. do. This can lead to heart disease and respiratory diseases.
  • yellow dust from China occurs in spring, and in recent years, due to global warming, desertification of inland China has occurred, and the time of occurrence of yellow dust is also being accelerated.
  • Yellow dust from China was analyzed to be five times more toxic than domestic yellow dust.
  • the concentration of heavy metals is three times higher than that of Korea. Therefore, it is essential to wear a mask that can remove fine dust when going out.
  • fine dust caused by air pollution is also a major threat to health, attentive environment that should not have impurities such as operating room, intensive care unit and semiconductor process room, and underground spaces that are not well ventilated such as subway For example, it is very important to block fine dust and ultrafine dust even in office spaces where printers are frequently used. Therefore, the development of filters, such as for vehicles, masks, printers, air cleaners, air conditioners, electric cleaners, special clean rooms, etc. that can remove such fine dust or ultra-fine dust is becoming important.
  • Conventional anti-vibration filter uses a filter method using a woven fabric or a nonwoven fabric. In other words, a filter having pores smaller than the particle size was manufactured, and a method of filtering large particles was selected.
  • a conventional dust filter has two problems. First, there is a limit to removing nano-sized ultrafine particles whose particle size is smaller than 2.5 ⁇ m. Secondly, in order to effectively remove fine dust and ultrafine dust, the pores of the filter have to be made small, which makes it difficult to move the air. As a result, it is necessary to manufacture a dustproof filter that has pores of a suitable size, which allows free access of air and can effectively remove ultra fine dust.
  • the inventor of the present invention has completed the present invention by producing a membrane that has excellent electrical conductivity and can effectively collect fine dust even at a low current. Accordingly, the problem solving means of the present invention is as follows:
  • a membrane comprising a metal substrate layer and a CNT / chitosan nano hybrid coating layer coated on the metal substrate layer, wherein the CNT / chitosan nano hybrid is a CNT core surrounded by a chitosan shell.
  • the electrostatic dust collection system comprising the membrane of 1 above.
  • the membrane of the present invention includes CNTs in a high content, and has excellent electrical conductivity, and has excellent structural stability, and can effectively collect fine dust or ultrafine dust even at low current.
  • CNT / chitosan nano-hybrid by coating the CNT / chitosan nano-hybrid on the metal substrate it has sufficient electrical conductivity and can be mass-produced at high speed.
  • the membrane of the present invention is thus suitable for use in electrostatic precipitating systems.
  • FIG. 1 is a schematic of the core-shell structure of a CNT / chitosan membrane.
  • Figure 2 is a simplified view of the case where the membrane layer is disposed on both sides of the filtration layer in the electrostatic dust collection system of the present invention.
  • Figure 3 is a simplified diagram of the case where the membrane layer is disposed on one side of the filtration layer in the electrostatic dust collection system of the present invention.
  • FIG. 5 is an enlarged SEM image of FIG. 4C.
  • FIG. 8 shows a graph depicting the results of thermogravimetric analysis of pure CNT, chitosan and CNT / chitosan membranes.
  • FIG. 9A is a graph showing the change in thickness and surface resistance according to the CNT weight% change of the CNT / chitosan membrane
  • FIG. 9B is a graph showing the change in tensile strength and elastic modulus according to the CNT weight% change.
  • FIG. 10 is a graph showing the change in elongation rate according to the CNT weight% change of the CNT / chitosan membrane.
  • 11 is a graph showing tensile-stress curves of pure chitosan and CNT-chitosan 25, 50, 75, 85.
  • FIG. 13 shows XPS data C 1s (A), N 1s (B), and O 1s (C) of CNT / chitosan membranes.
  • FIG. 14 to 18 is a view showing the SEM image of the membrane surface of the present invention when exposed to outside air for 3 hours under a voltage of 0 to 12V, the case of 0V 14, 15V and 15V In FIG. 16 and 9V, FIG. 17 and 12V are shown in FIG. 18.
  • Figure 19 compares the membrane surface of the present invention after adsorption of fine dust and after washing it.
  • Example 20 is a photograph showing the Al / CNT membrane prepared in Example 2 of the present invention.
  • FIG. 21 shows a conceptual diagram and actual manufacturing results of the cylindrical electrostatic dust collecting system of the second embodiment of the present invention.
  • Example 22 is a graph showing the fine dust removal rate measured when only the nonwoven fabric is mounted in the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
  • FIG. 23 is a graph showing the fine dust removal rate measured when only the nonwoven fabric and wool are mounted in the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
  • Example 24 is a graph showing the fine dust removal rate measured when only the nonwoven fabric, wool and Al foil is mounted on the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
  • Example 25 is a graph showing the fine dust removal rate measured in the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
  • FIG. 26 is a measurement of the maximum adsorption capacity of the fine dust of the cylindrical electrostatic dust collecting system of Example 2 of the present invention, and an Al electrode and a carbon fiber electrode were used as a comparative example instead of the Al / CNT membrane.
  • Figure 27 shows the results of measuring the change in fine dust removal rate according to the size change of the cylindrical electrostatic filter, the left side when the size is 1.5 times (medium size in Example 2), the right side when the size is doubled ( The result of large size in Example 2 is shown.
  • the present invention includes a metal substrate layer and a CNT / chitosan nano hybrid coating layer coated on the metal substrate layer, wherein the CNT / chitosan nano hybrid is directed to a membrane wherein the CNT core is surrounded by a chitosan shell.
  • the CNT / chitosan nanohybrid has a core / shell structure and refers to a nanoparticle having a CNT core surrounded by a chitosan shell. If CNTs and chitosan are simply mixed or used in the form of composites, CNTs may not be uniformly distributed and may be concentrated in some areas, which may weaken the mechanical strength of the entire membrane and adversely affect the electrical conductivity of the membrane. Can be crazy On the other hand, the core / shell structure of the present invention allows the CNTs to be uniformly distributed, so that the membrane of the present invention can contain a high content of CNTs, while maintaining its excellent mechanical strength.
  • the core / shell structure of the CNT / chitosan nano hybrid of the present invention is shown in FIG. 1.
  • the CNT is short for carbon nanotubes, and includes both single-walled carbon nanotubes and multi-walled carbon nanotubes.
  • the chitosan refers to a polymer compound deacetylated chitin, the degree of deacetylation may be 75 to 85%, the molecular weight may be 50000 to 190000 Da, but within the range that can achieve the object of the present invention If not limited to this.
  • the metal substrate includes all metal substrates on which the CNT / chitosan nanohybrid can be coated, and is preferably a metal substrate having an oxide film formed on a surface thereof.
  • the surface of the metal substrate is oxidized, functional groups present in the oxidized portion of the surface and the chitosan of the CNT / chitosan nanohybrid can bond hydrogen, which allows the substrate layer to be strongly bonded to the coating layer.
  • the metal of the metal base is preferably selected from the group consisting of iron, gold, silver, copper, platinum, titanium, aluminum and palladium, and particularly preferably aluminum and copper.
  • the size of the manufacturable membrane can be increased, and the preparation time of the membrane can be shortened.
  • the metal substrate also imparts structural stability and electrical conductivity to the membrane, making the membrane of the present invention suitable for use in electrostatic precipitating systems.
  • the coating layer preferably comprises 25 to 90% by weight of CNT based on the total weight of the coating layer. If the CNT content is less than this, the electrical conductivity of the membrane is low, which is not suitable for use in an electrostatic precipitating system, and if more than this, the mechanical strength of the membrane may be weakened.
  • the coating layer preferably has an electrical resistance of 50 ⁇ or less. If the electrical resistance is larger than this, a high voltage is required to generate an electric field, which lowers the energy efficiency of the electrostatic precipitating system.
  • the coating layer is preferably coated with a weight of 0.5 to 2.5 times the weight, based on the weight of the metal base layer, it is particularly preferably 1 to 1.5 times. If the weight of the coating layer is less than this, the dust collection capacity of the electrostatic dust collection system is lowered, if more than this may reduce the structural stability of the membrane.
  • the coating layer preferably has a specific surface area of 50 to 150m 2 / g. If the specific surface area is smaller than this, the dust collecting capacity of the electrostatic precipitating system will be reduced, and if the specific surface area is larger, the structural stability of the membrane may be reduced.
  • the present invention also the membrane layer; And a filtration layer.
  • the filtration layer refers to a layer having a function of filtering dust on a filtration principle, and may include a general cloth, a cabin filter, a nonwoven fabric or a wool layer.
  • the general fabrics collectively refer to woven and knitted fabrics composed of fibers.
  • the membrane layer may be disposed on either side or one side of the filtration layer.
  • the simplified electrostatic dust collection system when the membrane layer is disposed on both sides of the filtration layer is shown in FIG. 2, and the simplified electrostatic dust collection system when the membrane layer is disposed on one side of the filtration layer is simplified. Same as FIG. 3.
  • air containing dust is introduced parallel to the two membrane layers through the filtration layer. Due to the attraction by the electric field generated in the membrane layer by an external power source, the dust of the introduced air is attracted to both membrane layers and collected, and the dedusted air passes through the filtration layer and is discharged out of the dust collection system.
  • air containing dust is introduced in a direction perpendicular to the membrane layer through the filtration layer.
  • the dust from the introduced air is attracted to the membrane layer surrounding the filtration layer and collected by the attraction of the electric field generated in the membrane layer by an external power source, and the dedusted air passes through the filtration layer and is discharged outside the dust collection system. do.
  • the electrostatic dust collecting system of the present invention may have a planar shape or a cylindrical shape, and a representative example of the planar form is shown in FIG. 2, and a representative example of the cylindrical form is shown in FIG. 3.
  • any form can be used without limitation as long as it can utilize the principles of the electrostatic dust collecting system of the present invention.
  • the electrostatic dust collection system of the present invention has an electrical resistance of 50 ⁇ or less. If the electrical resistance is larger than this, a high voltage is required to generate the electric field required for driving the dust collecting system, thereby reducing the energy efficiency of the electrostatic dust collecting system.
  • the air velocity of the gas passing through the filtration layer is from 0.001 to 5 m / s. If the wind speed is lower than this, the amount of air that can be purified per unit time is not enough, if high, there is a problem that the dust collection performance is not enough.
  • the differential pressure before and after passing through the filtration layer is 100 Pa or less, and when the differential pressure is larger than this, there is a problem that the dust collection efficiency is not sufficient.
  • Example 1 CNT / chitosan nano hybrid coating layer
  • Multi-walled carbon nanotubes > 95%, outer radius 20-30 nm, length 10-30 ⁇ m
  • EMP EM-Power Co., Republic of Korea
  • CNT carbon nanotubes
  • a membrane was prepared in the same manner as in Preparation Example 1, except that carbon nanotubes were used at 25 wt%.
  • the membranes were prepared in the same manner as in Preparation Example 1, except that 75% by weight of carbon nanotubes were used.
  • a membrane was prepared in the same manner as in Preparation Example 1, except that 85 wt% of the carbon nanotubes were used.
  • the shape of the CNT-chitosan membrane was analyzed using a high resolution electron transmission microscope (HR-TEM; JEM 3010, JEOL, Japan) and a field emission scanning electron microscope (FE-SEM; MIRA II LMH microscope, Tescan, Czech Republic). . Samples were sputter-coated with gold prior to SEM analysis. The results are shown in Figures 4-6.
  • 4 is an HR-TEM (A), FE-SEM (B) image and photograph (C) of CNT-chitosan 50.
  • 5 is an enlarged view of C of FIG. 4 by SEM.
  • 6 is an HR-TEM photograph of CNT-chitosan 25, 50, 75 and pure CNTs.
  • thermogravimetric analyzer Seiko Exstar 6000 TG / DTA6100, Japan
  • FTIR Fourier transform infrared spectrometer
  • Samples were heated in the range 25-900 ° C. at a rate of 10 ° C./min using 4 mg of sample.
  • FT-IR spectra were measured in the solid state and in the range from 400 to 4000 cm ⁇ 1 .
  • Experiments were also performed on pure chitosan and CNT for comparison, and the results of the FT-IR are shown in FIG. 7 and the results of TGA are shown in FIG. 8.
  • thermogravimetric analysis major mass loss occurred in the range of 600 to 700 ° C. for pure CNTs, but mass loss occurred in two steps for pure chitosan.
  • the first stage is near about 300 ° C. where the polymer structure is broken and the decomposition of glucosamine units occurs, and the second stage is 400 to 600 ° C. where oxidative degradation occurs.
  • the 50 wt% CNT-chitosan membrane showed a clear two stage degradation.
  • the first step is between 200 and 300 ° C. resulting from loss of chitosan, and the second step is between 500 and 600 ° C. where decomposition of CNT occurs.
  • the thermal decomposition temperature of both materials moved to the lower side as compared to the pure case. This is because the weight concentration of each component is half lower as compared to the pure case.
  • FIG. 9 shows a comparison of changes in thickness and resistance of chitosan and tensile strength and modulus of elasticity according to CNT content. Also shown in Figure 10 is a graph showing the change in elongation rate according to the CNT content.
  • Raman spectra are an efficient way to analyze carbon nanocomponents.
  • the D-band at 1350 cm ⁇ 1 shows the presence of sp3 hybrid carbon. It also relates to a disordered graphite structure proportional to the amount of amorphous carbon in the dispersed state.
  • the high frequency of 1580 cm -1 G-band shows the structural strength of sp2 hybrid carbon with CNT oscillation mode. The sharpness of the G and G ⁇ peaks is related to the fact that nanotubes may exhibit metal-like conductivity.
  • the C 1s, N 1s and O 1s of XPS data obtained from the functionalized CNTs exhibit binding energies of 280-295, 395-410 and 525-540eV, respectively.
  • the C 1s spectrum of the chitosan functionalized CNTs shows that the sp2 carbon atoms of the CNT molecules are strongly attached to the chitosan molecules.
  • These XPS data show that the CNT surface is well functionalized with chitosan.
  • the surface of the membrane when exposed to outside air for 3 hours under a voltage of 0 to 12V was observed by SEM image to qualitatively determine the degree of adsorption of fine dust.
  • FIG. 14 in the case of 3V, in FIG. 15, in the case of 6V, in FIG. 16, in the case of 9V, in FIG. 18, and in case of 12V, FIG. 18 is shown. It was. From this, it was confirmed that the surface of the membrane was covered with fine dust as the voltage increased and a strong electric field was generated.
  • Example 2 Membrane comprising metal layer and CNT / chitosan nano hybrid coating layer and electrostatic dust collection system using same
  • Chitosan was dissolved in 150 ml of 1% acetic acid and hydrochloric acid solution (pH 2.0), and CNT was added, followed by sufficient stirring.
  • Chitosan 0.7g and CNT 0.7g (Chit-pCNT50), Chitosan 0.35g and CNT 1.05g (Chit-pCNT75), Chitosan 0.14g and CNT 1.26g (Chit-pCNT90)
  • the solution was prepared and sufficiently dispersed through stirring and dispersing equipment. Then, the pH was slowly increased to 9-10 by adding 5% aqueous ammonia or basic solution to each solution.
  • a cylindrical electrostatic dust collecting system was manufactured.
  • a cylindrical frame was fabricated by 3D printing technique, and the dust collecting system was composed of a three-layer structure of a first filtration layer (nonwoven fabric), a second filtration layer (wool), and an electrostatic CNT filter layer, and a CNT-chitosan 50 on the CNT filter layer.
  • Al / CNT membrane using the membrane was applied.
  • the conceptual diagram and the actual production result thereof are shown in FIG. 21. Cylindrical frame is manufactured in three sizes: small, medium and large.
  • the small size is 10cm long, the outer diameter is 7cm, the inner diameter is 4cm, the medium size is 15cm, the outer diameter is 10.5cm, the inner diameter is 6cm, and the large size is 20cm. It has a diameter of 14 cm and an inner diameter of 8 cm.
  • a dust collecting system composed of only a nonwoven fabric or a nonwoven fabric / wool was used as a comparative example.
  • the removal rates for PM 1.0, 2.5 and 10 dusts were measured at constant wind speeds for the 2, 4, 6, 8 and 10 nonwoven fabrics.
  • the PM 1.0, 2.5, and 10 dusts refer to dusts having particle diameters of 1, 2.5, and 10 ⁇ m or less, respectively.
  • the results are shown in FIG. 22. It was confirmed that the nonwoven fabric alone did not remove PM 1.0 and 2.5 dusts well, and even if the number of nonwoven fabrics increased, only the removal rate for PM 10.0 dust increased, but the removal rates for PM 1.0 and 2.5 dust did not increase.

Abstract

The present invention relates to a membrane including a metal substrate layer and a CNT/chitosan nanohybrid coating layer, and an electrostatic dust collection system including the same. The membrane of the present invention has excellent electrical conductivity and is thus capable of efficiently collecting dust, even with a low current, and has excellent mechanical strength and is thus suitable for application in various types of electrostatic dust collection systems.

Description

금속 기재 층 및 CNT/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인 및 이를 포함하는 정전식 집진 시스템Membrane comprising metal base layer and CNT / chitosan nano hybrid coating layer and electrostatic dust collection system comprising the same
본 발명은 금속 기재 층 및 CNT/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인 및 이를 포함하는 정전식 집진 시스템에 관한 것이다.The present invention relates to a membrane comprising a metal substrate layer and a CNT / chitosan nano hybrid coating layer and an electrostatic precipitating system comprising the same.
먼지는 그 입자 크기에 따라 총먼지, 미세먼지, 초미세먼지로 분류된다. 그 중 미세먼지는 지름이 10μm 이하인 것을 의미하며, 초미세먼지는 지름이 2.5μm 이하인 것을 의미한다. 이 중 미세먼지와 초미세먼지는 사람의 폐포까지 침투할 수 있고, 침투 후 각종 호흡기 질환을 일으킬 수 있는 직접적인 원인이 된다. 이러한 미세먼지와 초미세먼지는 황산염, 질산염, 암모니아 등의 이온 성분과 금속화합물, 탄소화합물 등의 유해물질로 이루어져 있다. 이러한 물질들이 대기중 광화학 반응을 일으켜 미세먼지와 초미세먼지가 생성되고, 이러한 물질들은 주로 자동차 배기가스나, 공장에서 나오는 매연에서 발생된다. 이러한 물질들의 유해성 때문에 세계 각국에서는 미세먼지와 초미세먼지의 농도를 엄격하게 규제하고 있다.Dust is classified into total dust, fine dust, and ultrafine dust according to its particle size. Among them, the fine dust means that the diameter is 10μm or less, the ultra-fine dust means that the diameter is 2.5μm or less. Among them, fine dust and ultrafine dust can penetrate into the alveoli of a person, which is a direct cause of various respiratory diseases after infiltration. Such fine dust and ultrafine dust are composed of ionic components such as sulfate, nitrate and ammonia, and harmful substances such as metal compounds and carbon compounds. These materials cause photochemical reactions in the atmosphere, producing fine dust and ultra-fine dust. These materials are mainly generated from automobile exhaust or smoke from factories. Due to the harmfulness of these substances, countries around the world strictly regulate the concentration of fine dust and ultrafine dust.
미세먼지는 일반적으로 머리카락 굵기의 약 1/10인 반면, 초미세먼지는 약 1/40 이하의 매우 작은 사이즈임으로 사람의 눈에는 거의 보이지 않고, 기도에서도 걸러지지 못해 흡입하는 대부분이 폐포까지 침투하게 된다. 이는 심장질환과 호흡기 질병 등을 야기한다.The fine dust is generally about 1/10 of the thickness of the hair, while the ultra fine dust is very small, about 1/40 or less, so it is almost invisible to the human eye and can not be filtered out of the airways. do. This can lead to heart disease and respiratory diseases.
우리나라에서는 봄철 중국발 황사가 발생하며, 최근에는 지구 온난화 현상으로 인해 중국 내륙의 사막화가 발생하여, 황사의 발생 시기도 앞당겨지는 추세이다. 중국발 황사는 국내 황사에 비해 독성물질이 5배 높은 것으로 분석되었으며, 북경에서는 중금속 농도가 한국의 3배에 달해 장시간 노출될 경우 기관지에 손상이 생길 가능성이 높다. 그러므로 외출 시 미세먼지를 제거할 수 있는 마스크를 착용하는 것이 필수적이 되었다. In Korea, yellow dust from China occurs in spring, and in recent years, due to global warming, desertification of inland China has occurred, and the time of occurrence of yellow dust is also being accelerated. Yellow dust from China was analyzed to be five times more toxic than domestic yellow dust. In Beijing, the concentration of heavy metals is three times higher than that of Korea. Therefore, it is essential to wear a mask that can remove fine dust when going out.
또한 황사뿐만 아니라, 대기오염으로 인한 미세먼지 발생도 건강을 위협하는 큰 문제가 되고 있으며, 수술실이나 중환자실, 반도체 공정실 등 불순물이 있어서는 안 되는 세심한 환경, 지하철과 같이 환기가 잘되지 못하는 지하 공간, 프린터를 자주 사용하는 사무실 공간과 같은 곳에서도 미세먼지와 초미세먼지를 차단하는 것이 매우 중요한 문제이다. 그러므로 이러한 미세먼지나 초미세먼지를 제거할 수 있는 차량용, 마스크용, 프린터용, 공기청정기용, 에어컨용, 전기 청소기용, 특수 청정실용 등등 필터들의 개발이 중요해지고 있다.In addition to the yellow dust, fine dust caused by air pollution is also a major threat to health, attentive environment that should not have impurities such as operating room, intensive care unit and semiconductor process room, and underground spaces that are not well ventilated such as subway For example, it is very important to block fine dust and ultrafine dust even in office spaces where printers are frequently used. Therefore, the development of filters, such as for vehicles, masks, printers, air cleaners, air conditioners, electric cleaners, special clean rooms, etc. that can remove such fine dust or ultra-fine dust is becoming important.
기존의 방진 필터는 직조직물이나 부직포를 이용한 필터 방식을 사용하고 있다. 즉 입자의 크기보다 작은 기공을 가진 필터를 제조하여, 크기가 큰 입자를 걸러내는 방식을 택하였다. 그러나 이러한 기존의 방진 필터는 두 가지의 문제점을 가지고 있다. 첫째로, 입자의 크기가 2.5μm보다 더 작은 나노 사이즈의 초미세먼지를 제거하는 것에는 한계를 갖고 있다. 둘째로, 미세먼지 및 초미세먼지를 효과적으로 제거하기 위해 필터의 기공은 작아질 수밖에 없는데, 이로 인해 공기의 이동이 어려워지는 문제를 갖게 된다. 결과론적으로 적당한 크기의 기공을 가지고 있어 공기의 출입이 자유로우면서도 초미세먼지도 효과적으로 제거할 수 있는 방진 필터의 제조가 필요하다.Conventional anti-vibration filter uses a filter method using a woven fabric or a nonwoven fabric. In other words, a filter having pores smaller than the particle size was manufactured, and a method of filtering large particles was selected. However, such a conventional dust filter has two problems. First, there is a limit to removing nano-sized ultrafine particles whose particle size is smaller than 2.5 μm. Secondly, in order to effectively remove fine dust and ultrafine dust, the pores of the filter have to be made small, which makes it difficult to move the air. As a result, it is necessary to manufacture a dustproof filter that has pores of a suitable size, which allows free access of air and can effectively remove ultra fine dust.
본 발명의 목적은 우수한 전기 전도성을 가져 낮은 전류로도 효과적으로 미세먼지를 집진할 수 있는 멤브레인 및 이를 포함하는 정전식 집진 시스템을 제공하는 것이다.It is an object of the present invention to provide a membrane and an electrostatic precipitating system including the same which have excellent electrical conductivity and can effectively collect fine dust even at a low current.
상기 과제를 해결하기 위하여, 본 발명의 발명자는 우수한 전기 전도성을 가져 낮은 전류로도 효과적으로 미세먼지를 집진할 수 있는 멤브레인을 제조하여 본 발명을 완성하였다. 따라서, 본 발명의 과제 해결 수단은 다음과 같다: In order to solve the above problems, the inventor of the present invention has completed the present invention by producing a membrane that has excellent electrical conductivity and can effectively collect fine dust even at a low current. Accordingly, the problem solving means of the present invention is as follows:
1. 금속 기재 층 및 상기 금속 기재 층에 코팅된 CNT/키토산 나노 하이브리드 코팅층을 포함하고, 상기 CNT/키토산 나노 하이브리드는 CNT 코어가 키토산 쉘로 둘러싸여 있는 것인 멤브레인.1. A membrane comprising a metal substrate layer and a CNT / chitosan nano hybrid coating layer coated on the metal substrate layer, wherein the CNT / chitosan nano hybrid is a CNT core surrounded by a chitosan shell.
2. 상기 1의 멤브레인을 포함하는 정전식 집진 시스템.2. The electrostatic dust collection system comprising the membrane of 1 above.
본 발명의 멤브레인은 높은 함량으로 CNT를 포함하여 그 전기 전도성이 우수하며, 구조적 안정성이 뛰어나 낮은 전류로도 효율적으로 미세먼지 또는 초미세먼지를 집진할 수 있다. 또한 금속 기재에 CNT/키토산 나노 하이브리드를 코팅함으로써 충분한 전기전도성을 가지며 빠른 속도로 대량 생산이 가능하다. 이에 본 발명의 멤브레인은 정전식 집진 시스템에 사용되기에 적합하다.The membrane of the present invention includes CNTs in a high content, and has excellent electrical conductivity, and has excellent structural stability, and can effectively collect fine dust or ultrafine dust even at low current. In addition, by coating the CNT / chitosan nano-hybrid on the metal substrate it has sufficient electrical conductivity and can be mass-produced at high speed. The membrane of the present invention is thus suitable for use in electrostatic precipitating systems.
도 1은 CNT/키토산 멤브레인의 코어-쉘 구조를 도식화 한 것이다.1 is a schematic of the core-shell structure of a CNT / chitosan membrane.
도 2는 본 발명의 정전식 집진 시스템에서 멤브레인 층이 여과층의 양 면에 배치되는 경우를 간략화 한 도이다.Figure 2 is a simplified view of the case where the membrane layer is disposed on both sides of the filtration layer in the electrostatic dust collection system of the present invention.
도 3은 본 발명의 정전식 집진 시스템에서 멤브레인 층이 여과층의 한 면에 배치되는 경우를 간략화한 도이다.Figure 3 is a simplified diagram of the case where the membrane layer is disposed on one side of the filtration layer in the electrostatic dust collection system of the present invention.
도 4은 CNT-chitosan 50의 HR-TEM(A), FE-SEM(B) 이미지 및 사진(C)이다. 4 is an HR-TEM (A), FE-SEM (B) image and photograph (C) of CNT-chitosan 50.
도 5는 도 4의 C를 확대한 SEM 이미지이다.FIG. 5 is an enlarged SEM image of FIG. 4C.
도 6는 CNT-chitosan 25, 50, 75 및 순수한 CNT(pCNT)의 HR-TEM 이미지이다.6 is an HR-TEM image of CNT- chitosan 25, 50, 75 and pure CNTs (pCNTs).
도 7은 순수한 CNT, 키토산 및 CNT/키토산 멤브레인의 FTIR 스펙트럼을 나타낸 것이다.7 shows FTIR spectra of pure CNT, chitosan and CNT / chitosan membranes.
도 8은 순수한 CNT, 키토산 및 CNT/키토산 멤브레인의 열중량 분석 결과를 도시한 그래프를 나타낸 것이다.FIG. 8 shows a graph depicting the results of thermogravimetric analysis of pure CNT, chitosan and CNT / chitosan membranes.
도 9A는 CNT/키토산 멤브레인의 CNT 중량% 변화에 따른 두께 및 면 저항의 변화를 나타낸 그래프이며, 도 9B는 CNT 중량% 변화에 따른 인장 강도 및 탄성 계수의 변화를 나타낸 그래프이다.FIG. 9A is a graph showing the change in thickness and surface resistance according to the CNT weight% change of the CNT / chitosan membrane, and FIG. 9B is a graph showing the change in tensile strength and elastic modulus according to the CNT weight% change.
도 10은 CNT/키토산 멤브레인의 CNT 중량% 변화에 따른 신장율의 변화를 표시한 그래프를 나타낸 것이다. 10 is a graph showing the change in elongation rate according to the CNT weight% change of the CNT / chitosan membrane.
도 11는 순수한 키토산 및 CNT-chitosan 25, 50, 75, 85의 인장-응력 곡선을 나타낸 그래프이다.11 is a graph showing tensile-stress curves of pure chitosan and CNT- chitosan 25, 50, 75, 85.
도 12은 순수한 키토산 및 CNT/키토산 멤브레인의 라만 스펙트럼을 도시한 도이다.12 shows Raman spectra of pure chitosan and CNT / chitosan membranes.
도 13은 CNT/키토산 멤브레인의 XPS 데이터 C 1s(A), N 1s(B), O 1s(C)를 나타낸 도이다.FIG. 13 shows XPS data C 1s (A), N 1s (B), and O 1s (C) of CNT / chitosan membranes.
도 14 내지 18은 0 내지 12V의 전압 하에서 3시간 동안 외부 공기에 노출시켰을 때 본 발명의 멤브레인 표면을 SEM 이미지로 관찰한 결과를 나타낸 도이며, 0V인 경우 도 14, 3V인 경우 도 15, 6V인 경우 도 16, 9V인 경우 도 17, 12V 인 경우 도 18로 나타내었다.14 to 18 is a view showing the SEM image of the membrane surface of the present invention when exposed to outside air for 3 hours under a voltage of 0 to 12V, the case of 0V 14, 15V and 15V In FIG. 16 and 9V, FIG. 17 and 12V are shown in FIG. 18.
도 19는 미세먼지 흡착 후와 이를 세척한 이후의 본 발명의 멤브레인 표면을 비교한 것이다.Figure 19 compares the membrane surface of the present invention after adsorption of fine dust and after washing it.
도 20은 본 발명의 실시예 2에서 제조한 Al/CNT 멤브레인을 사진으로 나타낸 것이다.20 is a photograph showing the Al / CNT membrane prepared in Example 2 of the present invention.
도 21은 본 발명의 실시예 2의 원통형 정전식 집진 시스템의 개념도 및 실제 제작 결과를 나타낸 것이다.21 shows a conceptual diagram and actual manufacturing results of the cylindrical electrostatic dust collecting system of the second embodiment of the present invention.
도 22는 본 발명의 실시예 2의 원통형 정전식 집진 시스템 형태에 부직포만을 장착하였을 때 측정된 미세먼지 제거율을 나타낸 그래프이다.22 is a graph showing the fine dust removal rate measured when only the nonwoven fabric is mounted in the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
도 23은 본 발명의 실시예 2의 원통형 정전식 집진 시스템 형태에 부직포 및 양모만을 장착하였을 때 측정된 미세먼지 제거율을 나타낸 그래프이다.FIG. 23 is a graph showing the fine dust removal rate measured when only the nonwoven fabric and wool are mounted in the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
도 24는 본 발명의 실시예 2의 원통형 정전식 집진 시스템 형태에 부직포, 양모 및 Al 호일만을 장착하였을 때 측정된 미세먼지 제거율을 나타낸 그래프이다.24 is a graph showing the fine dust removal rate measured when only the nonwoven fabric, wool and Al foil is mounted on the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
도 25는 본 발명의 실시예 2의 원통형 정전식 집진 시스템에서 측정된 미세먼지 제거율을 나타낸 그래프이다.25 is a graph showing the fine dust removal rate measured in the cylindrical electrostatic dust collecting system of Example 2 of the present invention.
도 26은 본 발명의 실시예 2의 원통형 정전식 집진 시스템의 미세먼지 최대 흡착 용량을 측정한 것으로, Al/CNT 멤브레인 대신 Al 전극과 탄소 섬유 전극을 장착한 것을 비교예로 사용하였다.FIG. 26 is a measurement of the maximum adsorption capacity of the fine dust of the cylindrical electrostatic dust collecting system of Example 2 of the present invention, and an Al electrode and a carbon fiber electrode were used as a comparative example instead of the Al / CNT membrane.
도 27은 원통형 정전식 필터의 크기 변화에 따른 미세먼지 제거율 변화를 측정한 결과를 나타낸 것으로, 좌측은 크기를 1.5배로 하였을 때(실시예 2에서의 중형), 우측은 크기를 2배로 하였을 때(실시예 2에서의 대형)의 결과를 나타낸 것이다.Figure 27 shows the results of measuring the change in fine dust removal rate according to the size change of the cylindrical electrostatic filter, the left side when the size is 1.5 times (medium size in Example 2), the right side when the size is doubled ( The result of large size in Example 2 is shown.
본 발명은 금속 기재 층 및 상기 금속 기재 층에 코팅된 CNT/키토산 나노 하이브리드 코팅층을 포함하고, 상기 CNT/키토산 나노 하이브리드는 CNT 코어가 키토산 쉘로 둘러싸여 있는 것인 멤브레인에 관한 것이다.The present invention includes a metal substrate layer and a CNT / chitosan nano hybrid coating layer coated on the metal substrate layer, wherein the CNT / chitosan nano hybrid is directed to a membrane wherein the CNT core is surrounded by a chitosan shell.
본 발명의 멤브레인에 있어서, 상기 CNT/키토산 나노 하이브리드는 코어/쉘 구조를 가지며, CNT 코어가 키토산 쉘로 둘러싸여 있는 형태의 나노 입자를 지칭한다. CNT와 키토산을 단순 혼합하여 사용하거나 복합재의 형태로 사용할 경우, CNT가 균일하게 분포하지 못하고, 일부 영역에 집중되는 경우가 발생하며 이는 멤브레인 전체의 기계적 강도를 약하게 하고, 멤브레인의 전기 전도성에 악영향을 미칠 수 있다. 반면, 본 발명의 코어/쉘 구조는 균일하게 CNT가 분포되도록 하며, 이에 따라 본 발명의 멤브레인은 높은 함량의 CNT를 포함할 수 있으면서도, 그 기계적 강도는 우수하게 유지된다. 본 발명의 CNT/키토산 나노 하이브리드의 코어/쉘 구조를 도 1로 나타내었다.In the membrane of the present invention, the CNT / chitosan nanohybrid has a core / shell structure and refers to a nanoparticle having a CNT core surrounded by a chitosan shell. If CNTs and chitosan are simply mixed or used in the form of composites, CNTs may not be uniformly distributed and may be concentrated in some areas, which may weaken the mechanical strength of the entire membrane and adversely affect the electrical conductivity of the membrane. Can be crazy On the other hand, the core / shell structure of the present invention allows the CNTs to be uniformly distributed, so that the membrane of the present invention can contain a high content of CNTs, while maintaining its excellent mechanical strength. The core / shell structure of the CNT / chitosan nano hybrid of the present invention is shown in FIG. 1.
본 발명에 있어서, 상기 CNT는 탄소 나노튜브의 약칭으로, 단일벽 탄소 나노튜브와 다중벽 탄소 나노튜브를 모두 포함한다. 상기 키토산은 키틴을 탈아세탈화한 고분자 화합물을 지칭하며, 탈아세틸화의 정도는 75 내지 85% 일 수 있으며, 분자량은 50000 내지 190000 Da 일 수 있으나, 본 발명의 목적을 달성할 수 있는 범위 내라면 이에 제한되지 않는다. In the present invention, the CNT is short for carbon nanotubes, and includes both single-walled carbon nanotubes and multi-walled carbon nanotubes. The chitosan refers to a polymer compound deacetylated chitin, the degree of deacetylation may be 75 to 85%, the molecular weight may be 50000 to 190000 Da, but within the range that can achieve the object of the present invention If not limited to this.
본 발명의 멤브레인에 있어서, 상기 금속 기재는 상기 CNT/키토산 나노 하이브리드가 코팅될 수 있는 모든 금속 기재를 포함하며, 표면에 산화막이 형성된 금속 기재인 것이 바람직하다. 금속 기재의 표면이 산화된 경우 표면의 산화된 부분과 CNT/키토산 나노 하이브리드의 키토산에 존재하는 작용기가 수소 결합을 할 수 있고, 이는 기재 층이 코팅층과 강하게 결합될 수 있도록 한다. 상기 금속 기재의 금속은 철, 금, 은, 동, 백금, 티타늄, 알루미늄 및 팔라듐으로 이루어진 군에서 선택되는 것이 바람직하며, 특히 알루미늄과 동인 것이 바람직하다. In the membrane of the present invention, the metal substrate includes all metal substrates on which the CNT / chitosan nanohybrid can be coated, and is preferably a metal substrate having an oxide film formed on a surface thereof. When the surface of the metal substrate is oxidized, functional groups present in the oxidized portion of the surface and the chitosan of the CNT / chitosan nanohybrid can bond hydrogen, which allows the substrate layer to be strongly bonded to the coating layer. The metal of the metal base is preferably selected from the group consisting of iron, gold, silver, copper, platinum, titanium, aluminum and palladium, and particularly preferably aluminum and copper.
상기 CNT/키토산 나노 하이브리드를 금속 기재에 코팅하여 제조할 경우, 제조 가능한 멤브레인의 크기를 증가시킬 수 있으며, 멤브레인의 제조 시간을 단축할 수 있다. 또한 상기 금속 기재는 멤브레인에 구조적 안정성과 전기 전도성을 부여하여 본 발명의 멤브레인이 정전식 집진 시스템에 사용되기에 적합하게 한다.When the CNT / chitosan nano hybrid is manufactured by coating a metal substrate, the size of the manufacturable membrane can be increased, and the preparation time of the membrane can be shortened. The metal substrate also imparts structural stability and electrical conductivity to the membrane, making the membrane of the present invention suitable for use in electrostatic precipitating systems.
본 발명의 멤브레인에 있어서, 상기 코팅층은 코팅층의 총 중량을 기준으로 CNT를 25 내지 90 중량%로 포함하는 것이 바람직하다. CNT 함량이 이보다 작을 경우 멤브레인의 전기 전도성이 떨어져 정전식 집진 시스템에 사용되기에 적합하지 않으며, 이보다 많을 경우 멤브레인의 기계적 강도가 약해지는 문제점이 발생할 수 있다.In the membrane of the present invention, the coating layer preferably comprises 25 to 90% by weight of CNT based on the total weight of the coating layer. If the CNT content is less than this, the electrical conductivity of the membrane is low, which is not suitable for use in an electrostatic precipitating system, and if more than this, the mechanical strength of the membrane may be weakened.
본 발명의 멤브레인에 있어서, 상기 코팅층은 50Ω 이하의 전기 저항을 갖는 것이 바람직하다. 전기 저항이 이보다 클 경우 전기장을 발생시키는 데에 높은 전압이 필요하여, 정전식 집진 시스템의 에너지 효율이 낮아지는 문제점이 있다. In the membrane of the present invention, the coating layer preferably has an electrical resistance of 50Ω or less. If the electrical resistance is larger than this, a high voltage is required to generate an electric field, which lowers the energy efficiency of the electrostatic precipitating system.
본 발명의 멤브레인에 있어서, 상기 코팅층은 금속 기재 층의 중량을 기준으로 0.5 내지 2.5배의 중량으로 코팅되는 것이 바람직하며, 1 내지 1.5배인 것이 특히 바람직하다. 상기 코팅층의 중량이 이보다 적을 경우, 정전식 집진 시스템의 집진 능력이 떨어지며, 이보다 많을 경우 멤브레인의 구조적 안정성이 떨어질 수 있다.In the membrane of the present invention, the coating layer is preferably coated with a weight of 0.5 to 2.5 times the weight, based on the weight of the metal base layer, it is particularly preferably 1 to 1.5 times. If the weight of the coating layer is less than this, the dust collection capacity of the electrostatic dust collection system is lowered, if more than this may reduce the structural stability of the membrane.
본 발명의 멤브레인에 있어서, 상기 코팅층은 50 내지 150m2/g의 비표면적을 갖는 것이 바람직하다. 비표면적이 이보다 적을 경우, 정전식 집진 시스템의 집진 용량이 떨어지며, 이보다 많을 경우 멤브레인의 구조적 안정성이 떨어질 수 있다.In the membrane of the present invention, the coating layer preferably has a specific surface area of 50 to 150m 2 / g. If the specific surface area is smaller than this, the dust collecting capacity of the electrostatic precipitating system will be reduced, and if the specific surface area is larger, the structural stability of the membrane may be reduced.
또한 본 발명은 상기 멤브레인 층; 및 여과층을 포함하는 정전식 집진 시스템에 관한 것이다.The present invention also the membrane layer; And a filtration layer.
본 발명의 정전식 집진 시스템에 있어서, 상기 여과층은 여과 원리로 먼지를 걸러내는 기능을 가진 층을 지칭하며, 일반 천, 캐빈필터, 부직포 또는 양모 층을 포함할 수 있다.In the electrostatic dust collection system of the present invention, the filtration layer refers to a layer having a function of filtering dust on a filtration principle, and may include a general cloth, a cabin filter, a nonwoven fabric or a wool layer.
상기 일반 천은 섬유로 구성되는 직조물 및 편물을 통칭한다.The general fabrics collectively refer to woven and knitted fabrics composed of fibers.
본 발명의 정전식 집진 시스템에 있어서, 상기 멤브레인 층은 여과층의 양 면 또는 한 면에 배치될 수 있다. 상기 멤브레인 층이 여과층의 양 면에 배치되는 경우의 정전식 집진 시스템을 간략화한 것은 도 2와 같으며, 상기 멤브레인 층이 여과층의 한 면에 배치되는 경우의 정전식 집진 시스템을 간략화한 것은 도 3과 같다.In the electrostatic dust collection system of the present invention, the membrane layer may be disposed on either side or one side of the filtration layer. The simplified electrostatic dust collection system when the membrane layer is disposed on both sides of the filtration layer is shown in FIG. 2, and the simplified electrostatic dust collection system when the membrane layer is disposed on one side of the filtration layer is simplified. Same as FIG. 3.
도 2에서 먼지를 포함하는 공기는 여과층을 통해 두 개의 멤브레인 층과 평행하게 도입된다. 외부 전원에 의해 멤브레인 층에서 발생되는 전기장에 의한 인력으로 인해 도입된 공기의 먼지가 양 멤브레인 층으로 끌려가 집진되며, 먼지가 제거된 공기는 여과층을 통과하여 집진 시스템 외부로 배출된다. In FIG. 2, air containing dust is introduced parallel to the two membrane layers through the filtration layer. Due to the attraction by the electric field generated in the membrane layer by an external power source, the dust of the introduced air is attracted to both membrane layers and collected, and the dedusted air passes through the filtration layer and is discharged out of the dust collection system.
도 3에서 먼지를 포함하는 공기는 여과층을 통해 멤브레인 층에 수직 방향으로 도입된다. 외부 전원에 의해 멤브레인 층에서 발생되는 전기장에 의한 인력으로 인해 도입된 공기의 먼지는 여과층을 둘러싸고 있는 멤브레인 층으로 끌려가 집진되며, 먼지가 제거된 공기는 여과층을 통과하여 집진 시스템 외부로 배출된다.In FIG. 3, air containing dust is introduced in a direction perpendicular to the membrane layer through the filtration layer. The dust from the introduced air is attracted to the membrane layer surrounding the filtration layer and collected by the attraction of the electric field generated in the membrane layer by an external power source, and the dedusted air passes through the filtration layer and is discharged outside the dust collection system. do.
본 발명의 정전식 집진 시스템은 평면 형태 또는 원통 형태를 가질 수 있으며, 평면 형태의 대표적 예는 상기 도 2, 원통 형태의 대표적 예는 상기 도 3과 같다. 원통 및 평면 형태 이외에도 본 발명의 정전식 집진 시스템의 원리를 이용할 수 있는 형태라면 제한 없이 적용이 가능하다.The electrostatic dust collecting system of the present invention may have a planar shape or a cylindrical shape, and a representative example of the planar form is shown in FIG. 2, and a representative example of the cylindrical form is shown in FIG. 3. In addition to the cylindrical and planar form, any form can be used without limitation as long as it can utilize the principles of the electrostatic dust collecting system of the present invention.
본 발명의 정전식 집진 시스템은 50Ω 이하의 전기 저항을 갖는 것이 바람직하다. 전기 저항이 이보다 클 경우 집진 시스템의 구동에 필요한 전기장을 발생시키는 데에 높은 전압이 필요하여, 정전식 집진 시스템의 에너지 효율이 저하된다. It is preferable that the electrostatic dust collection system of the present invention has an electrical resistance of 50 Ω or less. If the electrical resistance is larger than this, a high voltage is required to generate the electric field required for driving the dust collecting system, thereby reducing the energy efficiency of the electrostatic dust collecting system.
본 발명의 정전식 집진 시스템에 있어서, 여과층을 통과하는 기체의 풍속이 0.001 내지 5m/s인 것이 바람직하다. 풍속이 이보다 낮을 경우 단위 시간 당 정화할 수 있는 공기의 양이 충분하지 못하며, 높을 경우 집진 성능이 충분하지 못한 문제점이 있다.In the electrostatic precipitating system of the present invention, it is preferable that the air velocity of the gas passing through the filtration layer is from 0.001 to 5 m / s. If the wind speed is lower than this, the amount of air that can be purified per unit time is not enough, if high, there is a problem that the dust collection performance is not enough.
본 발명의 정전식 집진 시스템에 있어서, 여과층 통과 전후의 차압이 100Pa 이하인 것이 바람직하며, 차압이 이보다 클 경우 집진 효율이 충분하지 못한 문제점이 있다.In the electrostatic dust collection system of the present invention, it is preferable that the differential pressure before and after passing through the filtration layer is 100 Pa or less, and when the differential pressure is larger than this, there is a problem that the dust collection efficiency is not sufficient.
실시예Example
이하, 본 발명의 이해를 돕기 위하여 바람직한 제조예 및 실험예를 제시한다. 그러나 하기의 제조예 및 실험예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 제조예 및 실험예에 의해 본 발명의 내용이 한정되는 것은 아니다. 본 발명의 제조예에서 멤브레인의 CNT 함량을 중량%로 x%라 할 때, CNT-chitosan x라 명명한다.Hereinafter, preferred preparation examples and experimental examples are presented to help understand the present invention. However, the following Preparation Examples and Experimental Examples are provided only for easier understanding of the present invention, and the contents of the present invention are not limited by the Preparation Examples and Experimental Examples. In the preparation of the present invention, when the CNT content of the membrane is% by weight, it is named CNT-chitosan x.
실시예 1. CNT/키토산 나노 하이브리드 코팅층Example 1. CNT / chitosan nano hybrid coating layer
재료material
다중벽 탄소나노튜브(>95%, 외측 반지름 20 내지 30nm, 길이 10 내지 30μm)를 EMP(EM-Power Co., Republic of Korea)로부터 얻어 사용하였다. 저 분자량 키토산(MW = 50000-190000, 75 내지 85%의 탈아세틸화)은 Sigma-Aldrich(United States)로부터 구매하여 사용하였다. 빙초산, 수산화나트륨, 유기 용매를 포함한 모든 화학 물질은 Sigma-Aldrich로부터 구매하여 사용하였으며, 추가적인 정제 없이 사용하였다.Multi-walled carbon nanotubes (> 95%, outer radius 20-30 nm, length 10-30 μm) were obtained from EMP (EM-Power Co., Republic of Korea). Low molecular weight chitosan (MW = 50000-190000, 75-85% deacetylation) was purchased from Sigma-Aldrich (United States). All chemicals, including glacial acetic acid, sodium hydroxide and organic solvents, were purchased from Sigma-Aldrich and used without further purification.
제조예 1-1. CNT-chitosan 50 멤브레인의 제조Preparation Example 1-1. Preparation of CNT-chitosan 50 Membrane
탄소나노튜브(CNT)를 사용하기에 앞서, 5N 염산에 하루 동안 환류시켜 가능한 모든 불순물을 제거하였다. 그 후 200mg의 키토산을 5N 염산 및 빙초산의 1:1 혼합액 50mL(pH < 2)에 24시간 동안 녹였다. 그 후 200mg의 CNT를 키토산 용액에 넣고 고압 균질화기(Nano DeBEE 45-3, BEE International, South Easton MA)로 균질화하였다. 그 후 산성의 CNT-키토산 용액에 2N의 수산화나트륨을 가해 천천히 중화하였고, 분자량 12000 내지 14000의 분절을 갖는 투석 멤브레인(Spectrum Laboratories, Savannah, GA) 및 증류수로 3일간 투석하여 무기 부산물을 포함한 작은 분자들을 제거하였다. CNT-키토산 용액을 적당한 크기의 용기에 넣은 후 30분간 음파처리 하였고, 흄 후드(fume hood) 및 상온에서 2일간 두었다. 그 후 용액을 건조시켜 멤브레인을 제조하였다. Prior to using carbon nanotubes (CNT), reflux in 5N hydrochloric acid for one day to remove all possible impurities. Thereafter, 200 mg of chitosan was dissolved in 50 mL (pH <2) of a 1: 1 mixture of 5N hydrochloric acid and glacial acetic acid for 24 hours. Then 200 mg of CNT was added to the chitosan solution and homogenized with a high pressure homogenizer (Nano DeBEE 45-3, BEE International, South Easton MA). 2N sodium hydroxide was added to the acidic CNT-chitosan solution and neutralized slowly. Were removed. The CNT-chitosan solution was sonicated for 30 minutes in a suitable sized container, and placed in a fume hood and at room temperature for 2 days. The solution was then dried to prepare a membrane.
제조예 1-2. CNT-chitosan 25 멤브레인의 제조Preparation Example 1-2. Preparation of CNT-chitosan 25 Membrane
탄소나노튜브를 25중량%로 사용한 것 이외에는 모두 제조예 1과 동일한 방법을 사용하여 멤브레인을 제조하였다.A membrane was prepared in the same manner as in Preparation Example 1, except that carbon nanotubes were used at 25 wt%.
제조예 1-3. CNT-chitosan 75 멤브레인의 제조Preparation Example 1-3. Preparation of CNT-chitosan 75 Membrane
탄소나노튜브의 중량%를 75%로 사용한 것 이외에는 모두 제조예 1과 동일한 방법을 사용하여 멤브레인을 제조하였다.The membranes were prepared in the same manner as in Preparation Example 1, except that 75% by weight of carbon nanotubes were used.
제조예 1-4. CNT-chitosan 85 멤브레인의 제조Preparation Example 1-4. Preparation of CNT-chitosan 85 Membrane
탄소나노튜브의 중량%를 85로 사용한 것 이외에는 모두 제조예 1과 동일한 방법을 사용하여 멤브레인을 제조하였다.A membrane was prepared in the same manner as in Preparation Example 1, except that 85 wt% of the carbon nanotubes were used.
실험예 1-1. CNT-키토산 멤브레인의 형태 분석Experimental Example 1-1. Morphology Analysis of CNT-chitosan Membrane
CNT-키토산 멤브레인의 형태를 고 해상도 전자 투과 현미경(HR-TEM; JEM 3010, JEOL, Japan) 및 전계 방출 스캐닝 전자 현미경 (FE-SEM; MIRA II LMH microscope, Tescan, Czech Republic)을 이용하여 분석하였다. SEM 분석에 앞서 시료들을 금으로 스퍼터-코팅(sputter-coat)하였다. 그 결과는 도 4 내지 도 6에 나타난다. 도 4은 CNT-chitosan 50의 HR-TEM(A), FE-SEM(B) 이미지 및 사진(C)이다. 도 5은 도 4의 C를 SEM으로 확대한 것이다. 도 6는 CNT-chitosan 25, 50, 75 및 순수한 CNT의 HR-TEM 사진이다.The shape of the CNT-chitosan membrane was analyzed using a high resolution electron transmission microscope (HR-TEM; JEM 3010, JEOL, Japan) and a field emission scanning electron microscope (FE-SEM; MIRA II LMH microscope, Tescan, Czech Republic). . Samples were sputter-coated with gold prior to SEM analysis. The results are shown in Figures 4-6. 4 is an HR-TEM (A), FE-SEM (B) image and photograph (C) of CNT-chitosan 50. 5 is an enlarged view of C of FIG. 4 by SEM. 6 is an HR-TEM photograph of CNT- chitosan 25, 50, 75 and pure CNTs.
실험예 1-2. CNT-키토산 멤브레인의 특성 분석Experimental Example 1-2. Characterization of CNT-chitosan Membrane
CNT-키토산 멤브레인의 특성을 분석하기 위해, 열중량 분석기(TGA; Seiko Exstar 6000 TG/DTA6100, Japan) 및 푸리에 변환 적외선 분광분석기(FTIR; JASCO 470 PLUS, Japan)을 사용하였다. 4mg의 시료를 사용하여 10℃/분의 속도로 25 내지 900℃ 범위에서 시료를 가열하였다. FT-IR 스펙트럼은 고체 상태 및 400 내지 4000cm-1 범위에서 측정하였다. 비교하기 위하여 순수한 키토산 및 CNT에 대해서도 실험을 수행하였고, 그 FT-IR의 결과는 도 7에, TGA의 결과는 도 8에 나타내었다. To characterize the CNT-chitosan membrane, a thermogravimetric analyzer (TGA; Seiko Exstar 6000 TG / DTA6100, Japan) and a Fourier transform infrared spectrometer (FTIR; JASCO 470 PLUS, Japan) were used. Samples were heated in the range 25-900 ° C. at a rate of 10 ° C./min using 4 mg of sample. FT-IR spectra were measured in the solid state and in the range from 400 to 4000 cm −1 . Experiments were also performed on pure chitosan and CNT for comparison, and the results of the FT-IR are shown in FIG. 7 and the results of TGA are shown in FIG. 8.
FT-IR의 경우에, 순수한 CNT는 어떠한 특징적인 피크도 나타내지 않았다. 이는 표면에 작용기가 없기 때문이다. 반면에, 50중량%의 CNT-키토산 멤브레인은 키토산과 같은 유형의 아래의 피크를 나타내었다. In the case of FT-IR, pure CNTs did not show any characteristic peaks. This is because there is no functional group on the surface. On the other hand, 50% by weight of CNT-chitosan membrane showed the following peak of the same type as chitosan.
- 3120 - 3385 cm-1 (키토산의 -OH 및 -NH의 늘어남)-3120-3385 cm -1 (stretch of -OH and -NH of chitosan)
- 2925 및 2856 cm-1 (키토산의 -CH의 늘어남)-2925 and 2856 cm -1 (stretch of -CH of chitosan)
- 1654 cm-1 (순수한 CNT의 C=C 늘어남)1654 cm -1 (C = C stretch of pure CNT)
- 1632 cm-1 (키토산의 C=O 늘어남)-1632 cm -1 (extended C = O of chitosan)
이러한 IR 스펙트럼은 CNT가 키토산으로 잘 작용기화 되었음을 나타낸다.These IR spectra indicate that CNTs are well functionalized with chitosan.
열중량 분석의 경우에, 순수한 CNT의 경우 600 내지 700℃ 범위에서 주된 질량 손실이 발생하였으나, 순수한 키토산의 경우 2단계로 질량 손실이 발생하였다. 첫 단계는 고분자 구조가 깨지고, 글루코사민 단위의 분해가 일어나는 약 300℃ 근처의 단계이고, 두 번째 단계는 산화적 분해가 발생하는 400 내지 600℃의 단계이다. 50중량%의 CNT-키토산 멤브레인의 경우 명확한 2단계의 분해를 보였다. 첫 단계는 키토산의 손실로 발생하는 200 내지 300℃의 단계이고, 두 번째 단계는 CNT의 분해가 발생하는 500 내지 600℃의 단계이다. 양 물질의 열 분해 온도는 순수한 경우와 비교하여 낮은 쪽으로 이동하였다. 이는 순수한 경우와 비교하여 각 성분의 중량 농도가 절반으로 낮기 때문이다. In the case of thermogravimetric analysis, major mass loss occurred in the range of 600 to 700 ° C. for pure CNTs, but mass loss occurred in two steps for pure chitosan. The first stage is near about 300 ° C. where the polymer structure is broken and the decomposition of glucosamine units occurs, and the second stage is 400 to 600 ° C. where oxidative degradation occurs. The 50 wt% CNT-chitosan membrane showed a clear two stage degradation. The first step is between 200 and 300 ° C. resulting from loss of chitosan, and the second step is between 500 and 600 ° C. where decomposition of CNT occurs. The thermal decomposition temperature of both materials moved to the lower side as compared to the pure case. This is because the weight concentration of each component is half lower as compared to the pure case.
실험예 1-3. CNT-키토산 멤브레인의 기계적 특성 분석Experimental Example 1-3. Mechanical Characterization of CNT-chitosan Membrane
각 CNT-키토산 멤브레인에 대해 표면 키토산의 두께, 전기 저항, 인장 강도, 탄성 계수, 신장율을 측정하였다. 비교하기 위해 순수한 키토산에 대해서도 측정하였다. 그 결과는 아래 표 1과 같다.The thickness, electrical resistance, tensile strength, modulus of elasticity, and elongation of surface chitosan were measured for each CNT-chitosan membrane. It was also measured for pure chitosan for comparison. The results are shown in Table 1 below.
시료sample 키토산 두께(nm)Chitosan thickness (nm) 면 저항(Ω/sq)Surface resistance (Ω / sq) 인장 강도(MPa)Tensile Strength (MPa) 탄성 계수(N/mm)Modulus of elasticity (N / mm) 신장율 (%)Elongation (%)
키토산Chitosan NDND >10¹²> 10¹² 14.814±1.43314.814 ± 1.433 5.501±1.3675.501 ± 1.367 217.2±21.113217.2 ± 21.113
CNT-chitosan 25CNT-chitosan 25 6.528±1.07886.528 ± 1.0788 16.51±0.65116.51 ± 0.651 37.557±1.67837.557 ± 1.678 16.253±2.06816.253 ± 2.068 76.3±6.47276.3 ± 6.472
CNT-chitosan 50CNT-chitosan 50 3.542±0.19063.542 ± 0.1906 8.477±0.3778.477 ± 0.377 51.039±1.10451.039 ± 1.104 22.754±2.12822.754 ± 2.128 67.1±4.35967.1 ± 4.359
CNT-chitosan 75CNT-chitosan 75 1.211±0.11721.211 ± 0.1172 5.133±0.0685.133 ± 0.068 36.113±1.77236.113 ± 1.772 27.263±1.11527.263 ± 1.115 40.7±5.66940.7 ± 5.669
CNT-chitosan 85CNT-chitosan 85 NDND 4.861±0.1284.861 ± 0.128 14.251±1.83914.251 ± 1.839 24.02±2.02924.02 ± 2.029 13.3±1.11513.3 ± 1.115
(ND는 값이 결정되지 않음을 뜻함)CNT 함량에 따라 키토산의 두께 및 저항의 변화를 비교한 것과 인장 강도 및 탄성 계수를 비교한 것을 도 9에 도시하였다. 또한 CNT 함량에 따라 신장율이 변화하는 것을 나타낸 그래프를 도 10에 도시하였다. (ND means that the value is not determined.) FIG. 9 shows a comparison of changes in thickness and resistance of chitosan and tensile strength and modulus of elasticity according to CNT content. Also shown in Figure 10 is a graph showing the change in elongation rate according to the CNT content.
또한 각 멤브레인 및 키토산에 대해 인장-응력 곡선을 얻었다. 그 결과는 도 11에 도시하였다.Tensile-stress curves were also obtained for each membrane and chitosan. The result is shown in FIG.
실험예 1-4. CNT-키토산 멤브레인의 표면 분석Experimental Example 1-4. Surface analysis of CNT-chitosan membrane
CNT-키토산 멤브레인의 표면을 분석하는 것에는 라만 스펙트럼(Horiba LabRam Aramis IR2, Japan) 및 엑스선 광전자 분광분석기(XPS; AES-XPS ESCA 2000, Thermo Fisher Scientific, United States)를 사용하였다. 그 결과를 도 12(라만 스펙트럼) 및 도 13(XPS)에 도시하였다.For analyzing the surface of the CNT-chitosan membrane, Raman spectra (Horiba LabRam Aramis IR2, Japan) and X-ray photoelectron spectroscopy (XPS; AES-XPS ESCA 2000, Thermo Fisher Scientific, United States) were used. The results are shown in Figure 12 (Raman spectrum) and Figure 13 (XPS).
라만 스펙트럼은 탄소 나노성분을 분석하는 것에 효율적인 방법이다. 1350cm-1 에서의 D-밴드는 sp³ 혼성 탄소의 존재를 보여준다. 또한 분산된 상태의 비정질 탄소의 양에 비례하는 무질서한 흑연 구조에도 관련이 있다. 고 주파수의 1580cm-1 G-밴드는 CNT의 진동 모드에 따른 sp² 혼성 탄소의 구조적인 강함을 보여준다. G 및 G` 피크의 날카로움은 나노튜브가 금속과 같은 전도성을 보여줄 수 있을 것이라는 것과 관련이 있다.Raman spectra are an efficient way to analyze carbon nanocomponents. The D-band at 1350 cm −1 shows the presence of sp³ hybrid carbon. It also relates to a disordered graphite structure proportional to the amount of amorphous carbon in the dispersed state. The high frequency of 1580 cm -1 G-band shows the structural strength of sp² hybrid carbon with CNT oscillation mode. The sharpness of the G and G` peaks is related to the fact that nanotubes may exhibit metal-like conductivity.
XPS의 경우 3개의 특징적인 피크를 보여준다. XPS shows three characteristic peaks.
- 284.60eV (C 1s)284.60 eV (C 1s)
- 399.63-400.16eV (N 1s)399.63-400.16eV (N 1s)
- 532.36-533.17eV (O 1s)532.36-533.17eV (O 1s)
작용기화된 CNT로부터 얻어진 XPS 데이터의 C 1s, N 1s 및 O 1s는 280-295, 395-410, 525-540eV의 결합 에너지를 각각 나타낸다. 키토산 작용기화 된 CNT의 C 1s 스펙트럼은 키토산 분자에 강하게 부착되어 있는 CNT 분자의 sp² 탄소 원자가 많은 양으로 존재함을 보여준다. 이러한 XPS 데이터는 CNT 표면이 키토산으로 잘 작용기화 되었음을 보여준다.The C 1s, N 1s and O 1s of XPS data obtained from the functionalized CNTs exhibit binding energies of 280-295, 395-410 and 525-540eV, respectively. The C 1s spectrum of the chitosan functionalized CNTs shows that the sp2 carbon atoms of the CNT molecules are strongly attached to the chitosan molecules. These XPS data show that the CNT surface is well functionalized with chitosan.
실험예 1-5. CNT-chitosan 50 멤브레인의 미세먼지 제거 테스트Experimental Example 1-5. Fine dust removal test of CNT-chitosan 50 membrane
0 내지 12V의 전압 하에서 3시간 동안 외부 공기에 노출시킨 경우의멤브레인 표면을 SEM 이미지로 관찰하여 미세먼지의 흡착 정도를 정성적으로 파악하였다. 0V인 경우 도 14, 3V인 경우 도 15, 6V인 경우 도 16, 9V인 경우 도 17, 12V 인 경우 도 18에 나타내었으며, 미세먼지 흡착 후와 이를 세척한 이후의 멤브레인 표면을 도 19에서 비교하였다. 이로부터 전압이 증가하여 강한 전기장이 발생할수록 멤브레인의 표면이 미세먼지로 덮인다는 점을 확인하였다.The surface of the membrane when exposed to outside air for 3 hours under a voltage of 0 to 12V was observed by SEM image to qualitatively determine the degree of adsorption of fine dust. In the case of 0V, in FIG. 14, in the case of 3V, in FIG. 15, in the case of 6V, in FIG. 16, in the case of 9V, in FIG. 18, and in case of 12V, FIG. 18 is shown. It was. From this, it was confirmed that the surface of the membrane was covered with fine dust as the voltage increased and a strong electric field was generated.
실시예 2. 금속층 및 CNT/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인 및 이를 이용한 정전식 집진 시스템Example 2 Membrane comprising metal layer and CNT / chitosan nano hybrid coating layer and electrostatic dust collection system using same
제조예 2-1. 알루미늄 층 및 CNT/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인의 제조Preparation Example 2-1. Preparation of Membrane Including Aluminum Layer and CNT / chitosan Nano Hybrid Coating Layer
1%의 초산 및 염산 용액(pH 2.0) 150ml에 키토산을 녹이고, CNT를 첨가한 후 충분히 교반하였다. 키토산 0.7g과 CNT 0.7g(Chit-pCNT50), 키토산 0.35g과 CNT 1.05g(Chit-pCNT75) 및 키토산 0.14g과 CNT 1.26g(Chit-pCNT90)으로 키토산과 CNT의 양을 달리하여 세 종류의 용액을 제조하며, 교반 및 분산장비를 통해 이를 충분히 분산시켰다. 그 후 각 용액에 5% 암모니아수 또는 염기성 용액을 첨가하여 pH를 9 내지 10까지 천천히 증가시켰다. Chitosan was dissolved in 150 ml of 1% acetic acid and hydrochloric acid solution (pH 2.0), and CNT was added, followed by sufficient stirring. Chitosan 0.7g and CNT 0.7g (Chit-pCNT50), Chitosan 0.35g and CNT 1.05g (Chit-pCNT75), Chitosan 0.14g and CNT 1.26g (Chit-pCNT90) The solution was prepared and sufficiently dispersed through stirring and dispersing equipment. Then, the pH was slowly increased to 9-10 by adding 5% aqueous ammonia or basic solution to each solution.
핫플레이트에 Al 박막을 평평하게 펴서 깔아준 후, 상기에서 제조한 3가지 용액을 상기 박막 위에 각기 분산시킨다. 그 후 60 내지 70℃의 범위에서 온도를 조절하여 건조시키고, 5% 암모니아수에 잠시 담그고 꺼내어 물과 에탄올로 세척한 후 건조시켜 알루미늄 층 및 CNT/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인을 제조하였으며, 이를 Al/CNT 멤브레인으로 칭한다. 알루미늄 층을 포함하지 않는 멤브레인의 경우 기존 상온조건에서 제조에 5일의 기간이 소요되었으나, Al 박막 상에서는 1분 안에 대면적의 멤브레인 제조가 가능하였다. 이의 나노 표면적은 80m2/g 이상인 것으로 측정되었다. 제조된 Al/CNT의 양 표면 사진을 도 20에 나타내었다.After spreading the Al thin film flat on the hot plate, the three solutions prepared above are dispersed on the thin film, respectively. Then, by controlling the temperature in the range of 60 to 70 ℃ dried, immersed in 5% ammonia water and then taken out, washed with water and ethanol and dried to prepare a membrane comprising an aluminum layer and CNT / chitosan nano hybrid coating layer, this Referred to as Al / CNT membrane. In the case of the membrane containing no aluminum layer, it took 5 days to manufacture under the existing room temperature conditions, but it was possible to manufacture a large area membrane in 1 minute on the Al thin film. Its nano surface area was determined to be greater than 80 m 2 / g. Both surface photographs of the prepared Al / CNT are shown in FIG. 20.
제조예 2-2. 원통형 정전식 집진 시스템의 제조Preparation Example 2-2. Fabrication of Cylindrical Electrostatic Dust Collecting System
상기 제조예 2-1에서 제조한 멤브레인을 공기청정기 및 건축물 환기구에 적용하기 위하여 원통형 정전식 집진 시스템을 제작하였다. 3D 프린팅 기법으로 원통형 프레임을 제작하였으며, 제 1 여과층(부직포), 제 2 여과층(양모) 및 정전식 CNT 필터 층의 3층 구조로 집진 시스템을 구성하였으며, CNT 필터 층에 CNT-chitosan 50 멤브레인을 사용한 Al/CNT 멤브레인을 적용하였다. 이의 개념도 및 실제 제작 결과물을 도 21에 나타내었다. 원통형 프레임은 소형, 중형 및 대형의 총 3개의 크기로 제작하였으며, 소형은 길이 10cm, 외부직경 7cm, 내부직경 4cm, 중형은 길이 15cm, 외부직경 10.5cm, 내부직경 6cm, 대형은 길이 20cm, 외부직경 14cm, 내부직경 8cm의 크기를 갖는다.In order to apply the membrane prepared in Preparation Example 2-1 to an air purifier and a building vent, a cylindrical electrostatic dust collecting system was manufactured. A cylindrical frame was fabricated by 3D printing technique, and the dust collecting system was composed of a three-layer structure of a first filtration layer (nonwoven fabric), a second filtration layer (wool), and an electrostatic CNT filter layer, and a CNT-chitosan 50 on the CNT filter layer. Al / CNT membrane using the membrane was applied. The conceptual diagram and the actual production result thereof are shown in FIG. 21. Cylindrical frame is manufactured in three sizes: small, medium and large. The small size is 10cm long, the outer diameter is 7cm, the inner diameter is 4cm, the medium size is 15cm, the outer diameter is 10.5cm, the inner diameter is 6cm, and the large size is 20cm. It has a diameter of 14 cm and an inner diameter of 8 cm.
비교예 2-1. 부직포만에 의한 미세먼지 최대 제거율 측정Comparative Example 2-1. Maximum removal rate of fine dust by nonwoven fabric only
본 발명의 정전식 집진 시스템의 미세먼지 제거 우수성을 확인하기 위하여 부직포 또는 부직포/양모만으로 이루어진 집진 시스템을 비교예로 사용하였다. 부직포 2장, 4장, 6장, 8장 및 10장의 경우에 대하여 일정한 풍속으로 PM 1.0, 2.5 및 10 먼지에 대한 제거율을 측정하였다. 상기 PM 1.0, 2.5 및 10 먼지는 입경이 각각 1, 2.5 및 10μm 이하인 먼지를 지칭한다. 그 결과를 도 22에 나타내었다. 부직포만으로는 PM 1.0 및 2.5 먼지가 잘 제거되지 않으며, 부직포 장수가 증가하더라도 PM 10.0 먼지에 대한 제거율만 상승할 뿐, PM 1.0 및 2.5 먼지에 대한 제거율은 증가하지 않는다는 점을 확인하였다.In order to confirm the fine dust removal superiority of the electrostatic dust collection system of the present invention, a dust collecting system composed of only a nonwoven fabric or a nonwoven fabric / wool was used as a comparative example. The removal rates for PM 1.0, 2.5 and 10 dusts were measured at constant wind speeds for the 2, 4, 6, 8 and 10 nonwoven fabrics. The PM 1.0, 2.5, and 10 dusts refer to dusts having particle diameters of 1, 2.5, and 10 μm or less, respectively. The results are shown in FIG. 22. It was confirmed that the nonwoven fabric alone did not remove PM 1.0 and 2.5 dusts well, and even if the number of nonwoven fabrics increased, only the removal rate for PM 10.0 dust increased, but the removal rates for PM 1.0 and 2.5 dust did not increase.
비교예 2-2. 부직포/양모만에 의한 미세먼지 최대 제거율 측정Comparative Example 2-2. Maximum removal rate of fine dust by nonwoven fabric / wool
부직포 6장을 고정 값으로 하고, 일정한 풍속으로 양모의 사용 양을 2g, 4g, 6g, 8g 및 10g으로 하여 PM 1.0, 2.5 및 10 먼지에 대한 제거율을 측정하였다. 그 결과를 도 23에 나타내었다. 부직포만을 사용하였을 때에 비하여 전반적으로 제거율이 증가하였으나, 여전히 50% 전후의 제거율만을 나타내고 있으며, 가장 크기가 작은 초미세먼지인 PM 1.0 먼지의 경우 가장 많은 양모를 사용하였다고 하더라도 34%만 제거된다는 점을 확인하였다.Six nonwoven fabrics were used as fixed values, and the removal rates for PM 1.0, 2.5, and 10 dusts were measured at constant wind speeds using 2g, 4g, 6g, 8g, and 10g. The results are shown in FIG. Although the removal rate was increased as compared with the use of only nonwoven fabrics, the removal rate was still around 50%, and even the largest amount of ultrafine dust, PM 1.0 dust, only 34% was removed. Confirmed.
실험예 2-1. 원통형 정전식 집진 시스템에 의한 미세먼지 최대 제거율 측정Experimental Example 2-1. Maximum dust removal rate measurement by cylindrical electrostatic precipitating system
부직포 6장 및 양모 10g을 고정 값으로 하고, Al 호일 및 Al/CNT 멤브레인(CNT-chitosan 50)을 필터 층에 장착하여 미세먼지 제거율을 측정하였다. 멤브레인에 0 내지 10A의 전류를 흘려주어 미세먼지 제거율을 최적화하였으며, Al 호일만을 사용한 경우의 결과를 도 24, Al/CNT 멤브레인을 사용한 경우의 결과를 도 25에 나타내었다. Al/CNT 멤브레인을 사용한 경우 Al 호일만을 사용한 경우에 비해 우수한 제거율을 나타내었으며, PM 1.0, 2.5 및 10 먼지 모두 약 80%을 나타내었고, PM 2.5 및 1.0 먼지의 제거율이 크게 상승하였다는 점을 확인하였다.With 6 nonwoven fabrics and 10 g of wool as fixed values, Al foil and Al / CNT membrane (CNT-chitosan 50) were mounted on the filter layer to measure fine dust removal rate. A fine dust removal rate was optimized by flowing a current of 0 to 10 A through the membrane, and the result of using only Al foil is shown in FIG. 24 and the result of using an Al / CNT membrane. When Al / CNT membrane was used, it showed better removal rate than Al foil alone, PM 1.0, 2.5, and 10 dust showed about 80%, and PM 2.5 and 1.0 dust removal rate was greatly increased. It was.
실험예 2-2. 원통형 정전식 집진 시스템에 의한 미세먼지 최대 흡착용량 측정Experimental Example 2-2. Maximum adsorption capacity measurement of fine dust by cylindrical electrostatic precipitating system
실험예 2-1과 같이 부직포 6장 및 양모 10g을 고정 값으로 하고, Al/CNT 멤브레인(CNT-chitosan 50)을 필터 층에 장착하여 미세먼지 최대 흡착 용량을 측정하였다. Al/CNT 멤브레인 대신 Al 전극과 탄소 섬유 전극을 장착한 것을 비교예로 하였으며, 0.46V에서 실험을 진행하였다. 그 결과를 도 26에 나타내었다. Al/CNT 멤브레인은 70시간 동안 80%의 제거 효율을 유지한 반면, 나머지 Al과 탄소 섬유는 10 내지 20시간만 초기 흡착율을 유지하였다. 이로부터 계산한 Al/CNT 멤브레인의 미세먼지 최대 흡착 용량은 20.1mg/g이다.As in Experimental Example 2-1, 6 nonwoven fabrics and 10 g of wool were fixed, and an Al / CNT membrane (CNT-chitosan 50) was mounted on the filter layer to measure fine dust maximum adsorption capacity. An Al electrode and a carbon fiber electrode were mounted as a comparative example instead of the Al / CNT membrane, and the experiment was performed at 0.46V. The results are shown in FIG. The Al / CNT membrane maintained 80% removal efficiency for 70 hours, while the remaining Al and carbon fibers maintained their initial adsorption rate only for 10-20 hours. The maximum dust adsorption capacity of the Al / CNT membrane calculated from this is 20.1 mg / g.
실험예 2-3. 원통형 정전식 필터의 크기 변화에 따른 미세먼지 제거율 변화 측정Experimental Example 2-3. Measurement of the change of fine dust removal rate according to the size change of the cylindrical electrostatic filter
부직포 10장을 고정 값으로 하고, 필터 크기에 따라 양모 40 내지 70g를 채워 넣은 후 Al/CNT 멤브레인을 필터 층에 장착하여 크기가 다른 3 종류의 원통형 정전식 필터를 제조하였다. 멤브레인에 0 내지 5A의 전류를 흘려주었으며, 그 결과를 도 27에 나타내었다. PM 1.0, 2.5 및 10 먼지 모두 81 내지 86%의 제거율을 보였으며, 필터의 크기가 커질수록 제거율이 1 내지 2% 상승한다는 점을 확인하였다. Ten nonwoven fabrics were fixed and filled with 40 to 70 g of wool according to the filter size, and then Al / CNT membranes were mounted on the filter layer to prepare three kinds of cylindrical electrostatic filters having different sizes. A current of 0 to 5 A was applied to the membrane, and the result is shown in FIG. 27. PM 1.0, 2.5 and 10 dust all showed a removal rate of 81 to 86%, it was confirmed that the removal rate increases by 1-2% as the size of the filter increases.
[부호의 설명][Description of the code]
1, 1‘ : 금속 기재 층1, 1 ′: metal base layer
2, 2‘ : 코팅층2, 2 ': coating layer
3 : 여과층3: filtration layer

Claims (14)

  1. 금속 기재 층 및 상기 금속 기재 층에 코팅된 CNT/키토산 나노 하이브리드 코팅층을 포함하고, 상기 CNT/키토산 나노 하이브리드는 CNT 코어가 키토산 쉘로 둘러싸여 있는 것인 멤브레인.And a metal base layer and a CNT / chitosan nano hybrid coating layer coated on the metal base layer, wherein the CNT / chitosan nano hybrid is a CNT core surrounded by a chitosan shell.
  2. 제1항에 있어서, 상기 금속은 철, 금, 은, 동, 백금, 티타늄, 알루미늄 및 팔라듐으로 이루어진 군에서 선택되는 것인 멤브레인.The membrane of claim 1, wherein the metal is selected from the group consisting of iron, gold, silver, copper, platinum, titanium, aluminum, and palladium.
  3. 제1항에 있어서, 상기 코팅층은 코팅층의 총 중량을 기준으로 CNT를 25 내지 90 중량% 포함하는 것인 멤브레인.The membrane of claim 1, wherein the coating layer comprises 25 to 90 weight percent of CNTs based on the total weight of the coating layer.
  4. 제1항에 있어서, 상기 코팅층은 5Ω 이하의 전기 저항을 갖는 것인 멤브레인.The membrane of claim 1, wherein the coating layer has an electrical resistance of 5 Ω or less.
  5. 제1항에 있어서, 상기 코팅층은 금속 기재 층의 중량을 기준으로 0.5 내지 2.5배의 중량으로 코팅되는 것인 멤브레인.The membrane of claim 1, wherein the coating layer is coated at a weight of 0.5 to 2.5 times the weight of the metal substrate layer.
  6. 제1항에 있어서, 상기 코팅층은 50 내지 150m2/g의 비표면적을 갖는 것인 멤브레인.The membrane of claim 1, wherein the coating layer has a specific surface area of 50 to 150 m 2 / g.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 멤브레인 층; 및 여과층을 포함하는 정전식 집진 시스템.A membrane layer according to any one of claims 1 to 6; And a filtration layer.
  8. 제7항에 있어서, 상기 여과층은 일반 천, 캐빈필터, 부직포 및 양모로 이루어진 군에서 선택되는 것인 정전식 집진 시스템.8. The electrostatic precipitator system of claim 7, wherein the filtration layer is selected from the group consisting of ordinary cloth, cabin filter, nonwoven fabric and wool.
  9. 제7항에 있어서, 상기 여과층의 양 면 또는 한 면에 멤브레인 층이 배치되는 것인 정전식 집진 시스템.8. The electrostatic dust collection system of claim 7, wherein a membrane layer is disposed on either or one side of the filtration layer.
  10. 제9항에 있어서, 평면 형태를 갖는 것인 정전식 집진 시스템.10. The electrostatic precipitator system of claim 9, having a planar shape.
  11. 제9항에 있어서, 원통 형태를 갖는 것인 정전식 집진 시스템.10. The capacitive dust collection system according to claim 9, having a cylindrical shape.
  12. 제7항에 있어서, 50Ω 이하의 전기 저항을 갖는 것인 정전식 집진 시스템.The capacitive dust collection system according to claim 7, having an electrical resistance of 50 Ω or less.
  13. 제7항에 있어서, 여과층을 통과하는 기체의 풍속이 0.001 내지 5m/s인 정전식 집진 시스템.8. The electrostatic dust collection system according to claim 7, wherein the wind speed of the gas passing through the filter bed is 0.001 to 5 m / s.
  14. 제7항에 있어서, 여과층 통과 전후의 차압이 100Pa 이하인 정전식 집진 시스템.The electrostatic dust collecting system according to claim 7, wherein the differential pressure before and after passing through the filtration layer is 100 Pa or less.
PCT/KR2018/004648 2017-04-21 2018-04-20 Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same WO2018194431A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170051679 2017-04-21
KR10-2017-0051679 2017-04-21

Publications (3)

Publication Number Publication Date
WO2018194431A2 true WO2018194431A2 (en) 2018-10-25
WO2018194431A3 WO2018194431A3 (en) 2018-12-20
WO2018194431A9 WO2018194431A9 (en) 2019-01-31

Family

ID=63855988

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2018/004649 WO2018194432A2 (en) 2017-04-21 2018-04-20 Membrane including porous substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
PCT/KR2018/004648 WO2018194431A2 (en) 2017-04-21 2018-04-20 Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004649 WO2018194432A2 (en) 2017-04-21 2018-04-20 Membrane including porous substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same

Country Status (3)

Country Link
KR (2) KR102120735B1 (en)
CN (1) CN110799257A (en)
WO (2) WO2018194432A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235307B1 (en) * 2019-05-16 2021-04-01 단국대학교 천안캠퍼스 산학협력단 Chitosan-carbon nanotube core-shell nanohybrid based humidity sensor
KR102235310B1 (en) * 2019-05-16 2021-04-01 단국대학교 천안캠퍼스 산학협력단 Chitosan-carbon nanotube core-shell nanohybrid based electrochemical glucose sensor
KR102466228B1 (en) * 2020-06-18 2022-11-10 권순창 Air mask filter and manufacturing process of the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756623B2 (en) * 1996-04-25 2006-03-15 株式会社ブリヂストン Air purification filter
AU2003279736A1 (en) * 2002-10-03 2004-04-23 Laird Technologies, Inc. Emi-absorbing air filter
KR100749772B1 (en) * 2002-12-23 2007-08-17 삼성전자주식회사 Air purifier
US7338547B2 (en) * 2003-10-02 2008-03-04 Laird Technologies, Inc. EMI-absorbing air filter
KR101228496B1 (en) * 2004-10-06 2013-01-31 리서치 파운데이션 어브 서니 High flux and low fouling filtration media
CN101384425A (en) * 2006-02-20 2009-03-11 大赛璐化学工业株式会社 Porous film and multilayer assembly using the same
US7557167B2 (en) * 2006-09-28 2009-07-07 Gore Enterprise Holdings, Inc. Polyester compositions, methods of manufacturing said compositions, and articles made therefrom
US20090249957A1 (en) * 2008-04-04 2009-10-08 Lackey Sr Robert W Two Stage Air Filter
JP2010221210A (en) * 2009-02-27 2010-10-07 Sintokogio Ltd Antistatic filter cloth for surface filtration type dust collector
US9943796B2 (en) * 2009-03-26 2018-04-17 Columbus Industries, Inc. Multi layer pleatable filter medium
KR101104902B1 (en) * 2009-08-19 2012-01-12 성균관대학교산학협력단 Dust collecting filter for printer having carbon nanotubes-chitosan membrane, filtering system comprising the same and printer having the same
CA2786867C (en) * 2010-01-18 2022-01-04 3M Innovative Properties Company Air filter with sorbent particles
CN102971897A (en) * 2011-01-14 2013-03-13 昭和电工株式会社 Current collector
US10898865B2 (en) * 2013-01-31 2021-01-26 American University In Cairo (AUC) Polymer-carbon nanotube nanocomposite porous membranes
KR101499673B1 (en) * 2013-08-12 2015-03-06 단국대학교 산학협력단 A carbon nanotube-buckypaper and the preparation method thereof
CN104437397A (en) * 2014-11-12 2015-03-25 青岛海洋生物医药研究院股份有限公司 Application of brown seaweed polysaccharide, brown seaweed oligosaccharide as well as derivatives of brown seaweed polysaccharide and brown seaweed oligosaccharide in preparation of adsorbent for adsorbing atmospheric pollutants

Also Published As

Publication number Publication date
CN110799257A (en) 2020-02-14
KR20180118557A (en) 2018-10-31
KR20180118555A (en) 2018-10-31
WO2018194432A2 (en) 2018-10-25
KR102120735B1 (en) 2020-06-09
KR102137416B1 (en) 2020-07-24
WO2018194432A3 (en) 2018-12-20
WO2018194431A9 (en) 2019-01-31
WO2018194432A9 (en) 2019-01-31
WO2018194431A3 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2018194431A2 (en) Membrane including metal substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
Park et al. Filtration and inactivation of aerosolized bacteriophage MS2 by a CNT air filter fabricated using electro-aerodynamic deposition
WO2019177289A1 (en) Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor
WO2014104492A1 (en) Nanocomposite ultra-thin separation film and method for manufacturing same
Jachak et al. Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus
WO2014163236A1 (en) Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
WO2017007267A1 (en) Method for preparing functional nanofiber filter, and functional nanofiber filter prepared thereby
WO2015111770A1 (en) Method for manufacturing antibacterial filter using nonwoven fabric and activated carbon
WO2014027825A1 (en) Super water-repellent coating solution composition, and method for preparing coating composition
Zhao et al. Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2. 5 and thermal stability
WO2014148705A1 (en) Method for producing carbon nanotube composite
KR100988285B1 (en) Tungsten wire
Gong et al. A facile strategy for rapid in situ synthesis of Cu2O on PP non-woven fabric with durable antibacterial activities
WO2022102809A1 (en) Air-cleaning device and air-cleaning method
KR102139952B1 (en) Membrane Comprising Porous Substrate Layer and CNT/Chitosan Nano Hybrid Coating Layer and Electrostatic Dust Collector System Comprising the Same
WO2020171357A1 (en) Car filter having improved dust collection and deodorizing ability
CN114908561B (en) Copper nanowire composite gauze, preparation method thereof and anti-haze screen window
WO2016072726A2 (en) Positive charge coating agent for antiviral filter material, antiviral filter material, and method for preparing same
WO2019124623A1 (en) Plasma wire having carbon-based coating layer, and dust collector using same
CN217287610U (en) Air filtering material based on nanofiber
KR100489471B1 (en) A Complex Honeycomb Filter with Carbon Nano-materials for Air Cleaning
WO2019160231A1 (en) Multifunctional polymer fiber
Bang et al. A simple method for the fabrication of metallic copper nanospheres-decorated cellulose nanofiber composite
WO2017018569A1 (en) Method for manufacturing polymer-coated fluidized-bed carbon electrode and fluidized-bed carbon electrode manufactured thereby
WO2023080389A1 (en) Electrode, manufacturing method therefor, and electrostatic discharge system comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788467

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788467

Country of ref document: EP

Kind code of ref document: A2