WO2019160231A1 - Multifunctional polymer fiber - Google Patents

Multifunctional polymer fiber Download PDF

Info

Publication number
WO2019160231A1
WO2019160231A1 PCT/KR2018/016205 KR2018016205W WO2019160231A1 WO 2019160231 A1 WO2019160231 A1 WO 2019160231A1 KR 2018016205 W KR2018016205 W KR 2018016205W WO 2019160231 A1 WO2019160231 A1 WO 2019160231A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer fiber
filter
group
polymer
silane coupling
Prior art date
Application number
PCT/KR2018/016205
Other languages
French (fr)
Korean (ko)
Inventor
김운중
이승호
Original Assignee
한남대학교 산학협력단
(주)켐트리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단, (주)켐트리 filed Critical 한남대학교 산학협력단
Publication of WO2019160231A1 publication Critical patent/WO2019160231A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6433Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing carboxylic groups
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a polymer fiber for filters, and more particularly, (a) treating the polymer fiber with a diazonium salt to modify the surface of the polymer fiber; (b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And (c) treating the surface treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
  • Korean Utility Model Registration No. 20-0365133 discloses a filter for various uses.
  • the technique disclosed in the above document is inferior in harmful gas removal characteristics, fine dust removal characteristics, antibacterial properties, etc., and thus cannot satisfy the needs of consumers who need a high functional filter.
  • Patent Document 1 Korean Utility Model Registration No. 20-0365133
  • the present invention is to solve the problems of the prior art, it is an object of the present invention to provide a polymer fiber for filter excellent in removing harmful gas, fine dust removal characteristics and antibacterial by forming a metal complex on the surface of the polymer fiber.
  • the present invention is a graft polymer having excellent thermal stability on the surface of the polymer fiber and a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer covalently bonded, so that the graft polymer and even under high temperature conditions such as coating process, filter manufacturing process Since the copolymer is thermally stable and does not decompose, an object of the present invention is to provide a polymer fiber for filters that can stably bond metal complexes to express adsorption characteristics, antibacterial properties, and the like for a long time.
  • an object of the present invention is to provide a cabin filter that can be used stably for a long time by increasing the surface area and porosity, and excellent in the harmful gas removal characteristics, fine dust removal characteristics and antibacterial properties by bonding the metal complex to the surface of the polymer fiber.
  • the present invention comprises the steps of (a) treating the polymer fibers with a diazonium salt (diazonium salt) to modify the surface of the polymer fibers; (b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And (c) treating the surface treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
  • a diazonium salt diazonium salt
  • the step (a) is a diazonium salt on the surface of the polymer fiber by treating the polymer fiber with a diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group It is characterized by graft polymerization.
  • the copolymer of step (b) is characterized in that the weight ratio of the acrylate group-containing silane coupling agent and the acrylic acid monomer is 10 to 30:70 to 90.
  • the step (c) is characterized in that the metal of the functional group and the metal solution formed on the surface of the polymer fiber to form a metal complex.
  • the present invention is a filter polymer fiber produced by the manufacturing method, wherein the filter polymer fiber is graft polymerized diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group on the surface And a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer bonded to the surface of the filter polymer fiber, wherein the functional group and the metal of the metal solution formed on the surface of the filter polymer fiber form a metal complex. It provides a polymer fiber for.
  • the present invention provides a cabin filter comprising the polymer fiber for the filter.
  • the present invention can provide a polymer fiber for the filter excellent in the removal of harmful gas, fine dust removal characteristics and antibacterial by forming a metal complex on the surface of the polymer fiber.
  • the present invention is a graft polymer having excellent thermal stability on the surface of the polymer fiber and a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer covalently bonded, so that the graft polymer and even under high temperature conditions such as coating process, filter manufacturing process Since the copolymer is thermally stable and does not decompose, it is possible to provide a polymer fiber for a filter that can stably bond metal complexes to express adsorption characteristics, antibacterial properties, and the like for a long time.
  • the present invention can provide a cabin filter that can be used stably for a long time by combining the metal complex on the surface of the polymer fiber, the surface area and porosity is increased and the harmful gas removal characteristics, fine dust removal characteristics and antibacterial properties.
  • FIG. 1 shows a metal complex polymer fiber of the present invention.
  • the present invention comprises the steps of (a) treating the polymer fibers with a diazonium salt (diazonium salt) to modify the surface of the polymer fibers; (b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And (c) treating the surface treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
  • a diazonium salt diazonium salt
  • the step (a) is treated with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group and a phosphate group, so that the diazonium salt may be graft polymerized on the surface of the polymer fiber.
  • functional groups such as carboxyl groups, hydroxyl groups, sulfonic acid groups, and phosphoric acid groups formed on the surface of the polymer fiber may be combined with metals, nano carbon balls or various compounds, and adsorption characteristics and antimicrobial properties may be improved.
  • polyolefin such as polyethylene, polypropylene, polyester, polyamide, polyurethane, polyacrylonitrile, acrylic resin, or the like can be used without limitation.
  • the polymer fibers also include aggregates of polymer fibers, that is, nonwovens, mats, webs, fabrics, filters, and the like.
  • the content of diazonium salt is preferably 1 to 10 parts by weight based on 100 parts by weight of the polymer fiber, and when the content of the diazonium salt is less than 1 part by weight, the introduction of functional groups is insignificant, so that the adsorption characteristics are lowered, and the content is greater than 10 parts by weight.
  • the porosity of the filter is rather small, making it difficult to effectively adsorb harmful gases and fine dust.
  • the diazonium salt may be prepared by reacting an aromatic primary amine having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group with hydrochloric acid and sodium nitrite.
  • the diazonium salt can be prepared through a third step of mixing 0.1 to 500 parts by weight of 0.02M sodium nitrite into the mixture of the second step.
  • a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group and a phosphate group
  • a diazonium salt is continuously bonded to the surface of the polymer fiber to form a graft polymer having excellent thermal stability.
  • a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group and a phosphate group
  • the graft polymer having excellent thermal stability is covalently bonded to the surface of the polymer fiber
  • the graft polymer is thermally stable and does not decompose under high temperature conditions such as a coating process and a filter manufacturing process, so that the metal complex or the nano carbon ball is stably Can be combined to express adsorption characteristics, antimicrobial properties for a long time.
  • the low molecular weight compound is bonded to the surface of the polymer fiber, the low molecular weight compound is easily decomposed by heat, so that the metal complex or nano carbon ball is easily detached, and adsorption characteristics, antimicrobial properties, etc. cannot be expressed.
  • a catalyst such as potassium sulfate or sodium nitrate may be used, and the catalyst is preferably used in an amount of 0.01 to 0.1 moles based on 1 mole of diazonium salt. If the content of the catalyst is less than 0.01 mole, the effect of the addition is insignificant, and if it exceeds 0.1 mole, a large amount of homopolymer of the diazonium salt is produced and the adsorption characteristic is lowered.
  • the graft polymerization is preferably carried out at 50 to 90 ° C. for 10 minutes to 24 hours.
  • the polymerization temperature is less than 50 ° C., the polymerization is incompletely occurred, and when it exceeds 90 ° C., the durability of the fiber is lowered.
  • the polymerization time is less than 10 minutes, the polymerization is incompletely produced. If the polymerization time is more than 24 hours, a large amount of the homopolymer of the diazonium salt is generated and the adsorption characteristics are deteriorated.
  • Step (b) is a step of preparing the surface-treated polymer fibers by treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer.
  • the copolymer may bind to the graft polymer covalently bonded to the surface of the polymer fiber or introduced by the diazonium salt, thereby introducing a plurality of carboxyl groups on the surface of the polymer fiber.
  • a plurality of carboxyl groups included in the copolymer may be combined with metals, nano carbon balls or various compounds, and adsorption characteristics, antibacterial properties, and the like may be improved.
  • the copolymer having excellent thermal stability is covalently bonded to the surface of the polymer fiber, the copolymer is thermally stable and does not decompose under high temperature conditions such as a coating process or a filter manufacturing process, so that the metal complex or nano carbon ball is stably Can be combined to express adsorption characteristics, antimicrobial properties for a long time.
  • acrylate group containing silane coupling agent 3-methacryloxypropyl methyldimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl methyl diethoxysilane, 3-methacryloxypropyl tri Ethoxysilane, 3-acryloxypropyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, and the like.
  • the acrylic acid monomer is acrylic acid, methacrylic acid, methyl acrylic acid, ethyl acrylic acid, butyl acrylic acid, 2-ethyl hexyl acrylic acid, decyl acrylic acid, methyl methacrylic acid, ethyl methacrylic acid, butyl methacrylic acid, 2-ethyl hexyl methacrylic acid And decyl methacrylic acid.
  • the weight ratio of the said acrylate group containing silane coupling agent and an acrylic acid monomer is 10-30: 70-90, and when the weight ratio is less than 10:90, the adhesive force with a fiber will fall, and when 30:70, adsorption characteristic will become Degrades.
  • the copolymer of the acrylate group-containing silane coupling agent and the acrylic acid monomer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of polymer fibers, and when the content of the copolymer is less than 1 part by weight, the introduction of functional groups is insignificant and the adsorption characteristics are lowered. When the amount exceeds 10 parts by weight, the porosity of the manufactured filter is rather small, so that harmful gas and fine dust cannot be adsorbed effectively.
  • the metal of the functional group and the metal solution formed on the surface of the polymer fiber may form a metal complex.
  • the functional group of the polymer graft-polymerized on the surface of the polymer fiber and the carboxyl group of the copolymer may form a metal complex with a metal of the metal solution.
  • Functional groups such as carboxyl groups, hydroxyl groups, sulfonic acid groups, and phosphoric acid groups can form stable complexes with metals, and the metals are not easily detached even under high temperature conditions.
  • metal gold, silver, copper, cobalt, nickel, zinc, platinum and the like can be used without limitation.
  • Metal formed on the surface of the polymer fiber can be combined with harmful gases, fine dust, viruses and the like can improve the adsorption characteristics, antibacterial properties of the filter.
  • a metal precursor may be used to form the metal complex, silver nitrate, silver sulfate, silver acetylacetonate, silver acetate, silver carbonate, silver chloride, copper nitrate, copper sulfate, copper acetylacetonate, copper acetate, copper carbonate, copper Chloride and the like can be used.
  • the content of the metal is preferably 0.1 to 5 parts by weight based on 100 parts by weight of the polymer fiber, the effect of the addition is insignificant when the content of the metal is less than 0.1 parts by weight, and when the content of the metal exceeds 5 parts by weight, the metal complex is uniformly applied to the fiber surface. It cannot be distributed.
  • the manufacturing method may further include the step of coating the nano carbon ball after the step (c).
  • the nano carbon ball is a ball-shaped carbon structure having a particle size of 100 ⁇ 600nm and a large number of pores, very high specific surface area and porosity, and can deposit a catalyst inside the pores, volatile organic compounds, fine dust, odor It can adsorb or decompose components and harmful gases.
  • the nano carbon balls may be agglomerated with each other to increase particle size.
  • the nano carbon balls may be surface treated with a surfactant, a stabilizer, or the like.
  • Cationic surfactant such as alkyl trimethylammonium halide
  • Neutral surfactants such as oleic acid and alkyl amines
  • Anionic surfactants such as sodium alkyl sulfate and sodium alkyl phosphate may be used without limitation.
  • the nano carbon ball may be used by surface treatment with a silane coupling agent.
  • the silane coupling agent has an organic functional group capable of bonding with an organic compound and a hydrolyzable group capable of reacting with an inorganic compound, and can improve the adsorptivity and durability of the manufactured filter by improving the interfacial adhesion between the nano carbon ball and the polymer fiber. Can be.
  • silane coupling agent an alkyl group containing silane coupling agent, an amino group containing silane coupling agent, an epoxy group containing silane coupling agent, an acrylate group containing silane coupling agent, an isocyanate group containing silane coupling agent, a mercapto group containing silane coupling agent, a fluorine group containing silane Coupling agents, vinyl group-containing silane coupling agents and the like can be used without limitation.
  • the nano carbon ball is preferably surface treated with a mixture of an epoxy group-containing silane coupling agent and an amino group-containing silane coupling agent in view of durability and adsorptivity of the filter.
  • a mixed silane coupling agent consists of 60-90 weight% of epoxy group containing silane coupling agents, and 10-40 weight% of amino group containing silane coupling agents.
  • the content of the silane coupling agent to be surface treated is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the nano carbon ball, and when the content is less than 1 part by weight, the effect of addition is insignificant, and when the content exceeds 10 parts by weight, the excessive silane coupling agent is used. Rather, the interface adhesion properties and durability are lowered.
  • the nano carbon ball may be surface-treated with a diazonium salt having one or more functional groups selected from carboxyl groups, hydroxyl groups, sulfonic acid groups and phosphoric acid groups.
  • the functional group introduced into the nano carbon ball may improve the interface adhesion with the surface-modified polymer fiber, thereby dramatically improving the adsorption force, durability, and the like of the manufactured filter.
  • the amount of diazonium salt to be surface treated is preferably 1 to 10 parts by weight with respect to 100 parts by weight of nano carbon balls, and the effect of addition is insignificant when the content is less than 1 part by weight, and the use of excessive diazonium salt when it exceeds 10 parts by weight. Rather, the interfacial adhesion properties and durability deteriorate.
  • the content of the nano carbon ball is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polymer fiber, the effect of the addition is insignificant when the content of the nano carbon ball is less than 1 part by weight, the breathability of the filter and more than 10 parts by weight The adsorption property is rather lowered.
  • the nano carbon ball may be coated in a powder form or coated in a solution or gel state on the metal complex polymer fiber.
  • the composition including the nano carbon ball may include a binder, and the binder serves as an adhesive to improve the bonding strength between the polymer fiber and the nano carbon ball, preventing desorption of the nano carbon ball particles and providing durability to the filter. Grant.
  • the binder polyvinyl alcohol, polyethylene, ethylene-vinyl acetate resin, starch, and the like are used, and the content of the binder is preferably 1 to 10 parts by weight based on 100 parts by weight of the nano carbon ball. If the content of the binder is less than 1 part by weight, the effect of the addition is insignificant, and if it exceeds 10 parts by weight, the adsorptivity, air flow rate and harmful gas removal performance are rather deteriorated.
  • the composition including the nano carbon ball may include a silane coupling agent, and the content of the silane coupling agent is preferably 1 to 10 parts by weight based on 100 parts by weight of the nano carbon ball.
  • the content of the silane coupling agent is less than 1 part by weight, the effect of the addition is insignificant, and when it exceeds 10 parts by weight, the adsorptivity, the air flow amount, and the harmful gas removal performance are rather deteriorated.
  • the said silane coupling agent is a mixture of an epoxy group containing silane coupling agent and an amino group containing silane coupling agent.
  • a mixed silane coupling agent consists of 60-90 weight% of epoxy group containing silane coupling agents, and 10-40 weight% of amino group containing silane coupling agents.
  • the present invention may further be coated with an airgel in addition to the nano carbon ball on the surface of the polymer fiber.
  • the airgel is a highly porous nanostructure used to adsorb and remove small contaminants, residual chlorine, volatile organic compounds, heavy metals, microorganisms, odor generating factors, and the like.
  • silica airgel silica airgel, alumina airgel, carbon airgel, zirconia airgel, ruthenic airgel, iron oxide airgel, magnesium oxide airgel, tungsten oxide airgel, zinc oxide airgel, porous silica, and the like may be used.
  • the airgel may be heat-treated to remove impurities, the heat treatment temperature is preferably 50 ⁇ 500 °C.
  • silica airgel is preferably used, and silica airgel may be used without limitation in powder, beads, water dispersion paste, and the like.
  • the particle size of the silica airgel is 10 to 500 ⁇ m, the pore size is 20 to 50 nm, and the porosity is preferably 50 to 99%.
  • the material having a size of 20 nm or more can be efficiently filtered.
  • silica airgel When silica airgel is used, powdered silica airgel and water dispersion paste type silica airgel can be used simultaneously to improve adsorption and durability.
  • the weight ratio of powder type silica airgel and water dispersion paste type silica airgel is used. It is preferable that it is 70-90: 10-30.
  • the airgel may be surface treated or coated on the surface of the polymer fiber in the same manner as in the case of the nano carbon ball.
  • the present invention relates to a polymer fiber for filters produced by the manufacturing method (Fig. 1).
  • the filter polymer fiber is graft polymerized with a diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group on the surface thereof, and an acrylate group-containing silane coupling agent and acrylic acid on the surface of the filter polymer fiber.
  • the copolymer of the monomer is bonded, and the functional group formed on the surface of the filter polymer fiber and the metal of the metal solution form a metal complex.
  • nanofiber ball and the airgel may be coated on the surface of the polymer fiber for the filter.
  • Metal formed on the surface of the polymer fiber can be combined with harmful gases, fine dust, viruses and the like can improve the adsorption characteristics, antibacterial properties of the filter.
  • Nano carbon balls and aerogels formed on the surface of the polymer fibers may adsorb or decompose volatile organic compounds, fine dust, small particles of contaminants, odor components, heavy metals, microorganisms, harmful gases, and the like.
  • the present invention relates to a cabin filter comprising the polymer fiber for the filter.
  • the filter polymer fibers can be used in the manufacture of various filters, in particular cabin filters.
  • a metal complex-type nonwoven fabric is prepared by treating a nonwoven fabric with a diazonium salt to perform graft polymerization, followed by a surface treatment with a copolymer, followed by a metal solution to form a metal complex.
  • the meltblown nonwoven fabric is laminated on the metal complex nonwoven fabric.
  • the spunbond nonwoven fabric may be laminated on the meltblown nonwoven fabric and then bonded by hot melt or ultrasonic processing to manufacture a cabin filter.
  • 0.2 M HCl 1 L was added to a 2 L reaction vessel installed on an ice bath, and stirred at 300 rpm.
  • the mixture was stirred at 300 rpm for 2 hours to obtain a diazonium salt having a carboxyl group.
  • the polyethylene nonwoven fabric of 5 cm ⁇ 5 cm ⁇ 0.3 cm size was washed with methanol for 10 minutes and then dried at 70 ° C. for 3 hours using a vacuum oven.
  • a constant temperature water bath maintained at 70 ° C. was prepared on a hot plate, a 500 mL flask was immersed in the constant temperature water bath, and then 100 mL of the diazonium salt having a carboxyl group obtained above was added to the flask.
  • the nonwoven fabric was taken out, washed with distilled water, and dried at 70 ° C. for 3 hours using a vacuum oven.
  • a copolymer was prepared by copolymerizing 20% by weight of 3-methacryloxypropyltrimethoxysilane and 80% by weight of methacrylic acid.
  • the copolymer was treated with the dried nonwoven fabric to prepare a surface-treated nonwoven fabric and then dried. At this time, 5 parts by weight of the copolymer relative to 100 parts by weight of the nonwoven fabric was used.
  • a filter nonwoven fabric was prepared in the same manner as in Example 1 except that 0.5 parts by weight of the copolymer was used relative to 100 parts by weight of the nonwoven fabric.
  • a filter nonwoven fabric was prepared in the same manner as in Example 1, except that 15 parts by weight of the copolymer was used relative to 100 parts by weight of the nonwoven fabric.
  • a filter nonwoven fabric was prepared in the same manner as in Example 1 except that the nanocarbon ball coating was applied by spraying the nano carbon ball composition.
  • the nano carbon ball was used 5 parts by weight compared to 100 parts by weight of the nonwoven fabric.
  • a filter nonwoven fabric was prepared in the same manner as in Example 4 except that the nanocarbon balls surface-treated with a diazonium salt of 4-aminobenzoic acid were used.
  • a filter nonwoven fabric was prepared in the same manner as in Example 1 except that the diazonium salt was not treated.
  • a filter nonwoven fabric was prepared in the same manner as in Example 1 except that the copolymer was not treated.
  • Antimicrobial characteristics were collected on the surface of the air filter, the filter was placed in a liquid medium and shaken out, and then the liquid medium was incubated for 64 hours to measure the cell count on the liquid medium to confirm the growth of the microorganisms.
  • Adsorption characteristics were left in a closed tank by using ammonia coefficient measuring equipment, and NH 4 OH solution was added in this state, and the concentration of ammonia in the tank was measured using a gas detector tube.
  • the ammonia concentration in the tank was measured in the course of adsorption and decomposition of the ammonia solution on the sample left in the tank.
  • the present invention can provide a polymer fiber for the filter excellent in the removal of harmful gas, fine dust removal characteristics and antibacterial by forming a metal complex on the surface of the polymer fiber.
  • the present invention is a graft polymer having excellent thermal stability on the surface of the polymer fiber and a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer covalently bonded, so that the graft polymer and even under high temperature conditions such as coating process, filter manufacturing process Since the copolymer is thermally stable and does not decompose, it is possible to provide a polymer fiber for a filter that can stably bond metal complexes to express adsorption characteristics, antibacterial properties, and the like for a long time.
  • the present invention can provide a cabin filter that can be used stably for a long time by combining the metal complex on the surface of the polymer fiber, the surface area and porosity is increased and the harmful gas removal characteristics, fine dust removal characteristics and antibacterial properties.

Abstract

The present invention relates to a filter polymer fiber and, more specifically, to a filter polymer fiber manufactured by a manufacturing method comprising the steps of: (a) modifying the surface of a polymer fiber by treating the polymer fiber with a diazonium salt; (b) manufacturing a surface-treated polymer fiber by treating the modified polymer fiber with a copolymer of an acrylic acid monomer and a silane coupling agent containing an acrylate group; and (c) manufacturing a metal complex polymer fiber by treating the surface-treated polymer fiber with a metal solution.

Description

다기능성 고분자 섬유Multifunctional Polymer Fiber
본 발명은 필터용 고분자 섬유에 관한 것으로, 더욱 상세하게는 (a) 고분자 섬유를 디아조늄염(diazonium salt)으로 처리하여 고분자 섬유의 표면을 개질하는 단계; (b) 상기 개질된 고분자 섬유를 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체로 처리하여 표면 처리된 고분자 섬유를 제조하는 단계; 및 (c) 상기 표면 처리된 고분자 섬유를 금속 용액으로 처리하여 금속착물형 고분자 섬유를 제조하는 단계를 포함하는 제조방법에 의하여 제조되는 필터용 고분자 섬유에 관한 것이다. The present invention relates to a polymer fiber for filters, and more particularly, (a) treating the polymer fiber with a diazonium salt to modify the surface of the polymer fiber; (b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And (c) treating the surface treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
산업화가 진행되면서 메르스 등 신종 바이러스, 미세먼지, 황사 등 환경적으로 인체에 유해한 미세입자들이 증가하고 있으며, 이러한 미세입자들의 인체 유입을 차단하기 위해 다양한 기능성 필터가 개발되고 있다. As industrialization progresses, environmentally harmful microparticles such as new viruses such as MERS, fine dust, and yellow dust are increasing, and various functional filters are being developed to block the influx of such microparticles to the human body.
특히 2015년에 메르스 환자가 급증하면서 이를 예방하기 위한 기능성 필터에 대한 관심이 집중된 경험이 있다. In particular, as the MERS patients surged in 2015, there has been a great deal of interest in functional filters to prevent them.
최근 자동차의 급증과 유류 및 유기용제의 소비로 발생되는 휘발성 유기화합물에 의한 대기오염이 매우 심각하며, 특히 벤젠류는 발암물질로서 인체의 면역체계에 심각한 피해를 끼치므로 배출 이전에 반드시 제거되어야 한다. The air pollution caused by volatile organic compounds caused by the recent increase in automobiles and the consumption of oil and organic solvents is very serious. Especially, benzenes are carcinogens that seriously damage the human immune system and must be removed before discharge. .
또한 봄철에는 황사와 미세먼지 차단을 위한 기능성 필터의 판매량이 급증하며, 식약처 및 안전보건공단의 인증을 받은 고기능성 필터를 찾는 고객은 지속적으로 증가할 것으로 예상된다. In addition, sales of functional filters to block yellow dust and fine dust will surge in spring, and the number of customers looking for high functional filters certified by the KFDA and the Korea Health and Safety Agency is expected to increase continuously.
기능성 필터와 관련하여 한국등록실용신안 제20-0365133호 등은 다양한 용도의 필터를 개시하고 있다. In connection with the functional filter, Korean Utility Model Registration No. 20-0365133 discloses a filter for various uses.
그러나 상기 문헌에 개시된 기술은 유해가스 제거 특성, 미세먼지 제거 특성, 항균성 등이 열등하여 고기능성 필터를 필요로 하는 소비자의 요구를 충족시킬 수 없다. However, the technique disclosed in the above document is inferior in harmful gas removal characteristics, fine dust removal characteristics, antibacterial properties, etc., and thus cannot satisfy the needs of consumers who need a high functional filter.
(특허문헌 1) 한국등록실용신안 제20-0365133호(Patent Document 1) Korean Utility Model Registration No. 20-0365133
본 발명은 상기 종래 기술의 문제점을 해결하기 위한 것으로서, 고분자 섬유의 표면에 금속착물을 형성함으로써 유해가스 제거 특성, 미세먼지 제거 특성 및 항균성이 우수한 필터용 고분자 섬유를 제공하는 데 그 목적이 있다. The present invention is to solve the problems of the prior art, it is an object of the present invention to provide a polymer fiber for filter excellent in removing harmful gas, fine dust removal characteristics and antibacterial by forming a metal complex on the surface of the polymer fiber.
또한 본 발명은 고분자 섬유의 표면에 열안정성이 우수한 그래프트 중합체 및 아크릴레이트기 함유 실란 커플링제와 아크릴산 모노머의 공중합체가 공유 결합함으로써, 코팅공정, 필터 제조공정 등 고온의 조건 하에서도 상기 그래프트 중합체 및 공중합체가 열적으로 안정하여 분해되지 않으므로, 금속착물이 안정적으로 결합되어 흡착특성, 항균성 등을 장기간 발현할 수 있는 필터용 고분자 섬유를 제공하는 것을 목적으로 한다. In addition, the present invention is a graft polymer having excellent thermal stability on the surface of the polymer fiber and a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer covalently bonded, so that the graft polymer and even under high temperature conditions such as coating process, filter manufacturing process Since the copolymer is thermally stable and does not decompose, an object of the present invention is to provide a polymer fiber for filters that can stably bond metal complexes to express adsorption characteristics, antibacterial properties, and the like for a long time.
아울러 본 발명은 고분자 섬유의 표면에 금속착물을 결합시킴으로써 표면적과 기공율이 증가하고 유해가스 제거 특성, 미세먼지 제거 특성 및 항균성이 우수하여 장기간 안정적으로 사용될 수 있는 캐빈 필터를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a cabin filter that can be used stably for a long time by increasing the surface area and porosity, and excellent in the harmful gas removal characteristics, fine dust removal characteristics and antibacterial properties by bonding the metal complex to the surface of the polymer fiber.
상기와 같은 목적을 달성하기 위하여 본 발명은 (a) 고분자 섬유를 디아조늄염(diazonium salt)으로 처리하여 고분자 섬유의 표면을 개질하는 단계; (b) 상기 개질된 고분자 섬유를 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체로 처리하여 표면 처리된 고분자 섬유를 제조하는 단계; 및 (c) 상기 표면 처리된 고분자 섬유를 금속 용액으로 처리하여 금속착물형 고분자 섬유를 제조하는 단계를 포함하는 필터용 고분자 섬유의 제조방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of (a) treating the polymer fibers with a diazonium salt (diazonium salt) to modify the surface of the polymer fibers; (b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And (c) treating the surface treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
본 발명의 일실시예에 있어서, 상기 (a) 단계는 고분자 섬유를 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염으로 처리하여, 고분자 섬유 표면에 디아조늄염이 그래프트 중합되는 것을 특징으로 한다. In one embodiment of the present invention, the step (a) is a diazonium salt on the surface of the polymer fiber by treating the polymer fiber with a diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group It is characterized by graft polymerization.
본 발명의 일실시예에 있어서, 상기 (b) 단계의 공중합체는 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 중량비가 10~30:70~90인 것을 특징으로 한다. In one embodiment of the present invention, the copolymer of step (b) is characterized in that the weight ratio of the acrylate group-containing silane coupling agent and the acrylic acid monomer is 10 to 30:70 to 90.
본 발명의 일실시예에 있어서, 상기 (c) 단계는 고분자 섬유 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성하는 것을 특징으로 한다. In one embodiment of the present invention, the step (c) is characterized in that the metal of the functional group and the metal solution formed on the surface of the polymer fiber to form a metal complex.
또한 본 발명은 상기 제조방법으로 제조되는 필터용 고분자 섬유에 있어서, 상기 필터용 고분자 섬유는 표면에 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염이 그래프트 중합되고, 상기 필터용 고분자 섬유 표면에 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체가 결합되고, 상기 필터용 고분자 섬유 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성하는 것을 특징으로 하는 필터용 고분자 섬유를 제공한다.In another aspect, the present invention is a filter polymer fiber produced by the manufacturing method, wherein the filter polymer fiber is graft polymerized diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group on the surface And a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer bonded to the surface of the filter polymer fiber, wherein the functional group and the metal of the metal solution formed on the surface of the filter polymer fiber form a metal complex. It provides a polymer fiber for.
아울러 본 발명은 상기 필터용 고분자 섬유를 포함하는 캐빈 필터를 제공한다. In addition, the present invention provides a cabin filter comprising the polymer fiber for the filter.
본 발명은 고분자 섬유의 표면에 금속착물을 형성함으로써 유해가스 제거 특성, 미세먼지 제거 특성 및 항균성이 우수한 필터용 고분자 섬유를 제공할 수 있다. The present invention can provide a polymer fiber for the filter excellent in the removal of harmful gas, fine dust removal characteristics and antibacterial by forming a metal complex on the surface of the polymer fiber.
또한 본 발명은 고분자 섬유의 표면에 열안정성이 우수한 그래프트 중합체 및 아크릴레이트기 함유 실란 커플링제와 아크릴산 모노머의 공중합체가 공유 결합함으로써, 코팅공정, 필터 제조공정 등 고온의 조건 하에서도 상기 그래프트 중합체 및 공중합체가 열적으로 안정하여 분해되지 않으므로, 금속착물이 안정적으로 결합되어 흡착특성, 항균성 등을 장기간 발현할 수 있는 필터용 고분자 섬유를 제공할 수 있다. In addition, the present invention is a graft polymer having excellent thermal stability on the surface of the polymer fiber and a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer covalently bonded, so that the graft polymer and even under high temperature conditions such as coating process, filter manufacturing process Since the copolymer is thermally stable and does not decompose, it is possible to provide a polymer fiber for a filter that can stably bond metal complexes to express adsorption characteristics, antibacterial properties, and the like for a long time.
아울러 본 발명은 고분자 섬유의 표면에 금속착물을 결합시킴으로써 표면적과 기공율이 증가하고 유해가스 제거 특성, 미세먼지 제거 특성 및 항균성이 우수하여 장기간 안정적으로 사용될 수 있는 캐빈 필터를 제공할 수 있다. In addition, the present invention can provide a cabin filter that can be used stably for a long time by combining the metal complex on the surface of the polymer fiber, the surface area and porosity is increased and the harmful gas removal characteristics, fine dust removal characteristics and antibacterial properties.
도 1은 본 발명의 금속착물형 고분자 섬유를 나타낸다.1 shows a metal complex polymer fiber of the present invention.
이하 실시예를 바탕으로 본 발명을 상세히 설명한다. 본 발명에 사용된 용어, 실시예 등은 본 발명을 보다 구체적으로 설명하고 통상의 기술자의 이해를 돕기 위하여 예시된 것에 불과할 뿐이며, 본 발명의 권리범위 등이 이에 한정되어 해석되어서는 안 된다.Hereinafter, the present invention will be described in detail with reference to Examples. The terms, examples, etc. used in the present invention are merely illustrated to explain the present invention in more detail and to help those skilled in the art, and the scope of the present invention is not limited thereto.
본 발명에 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 나타낸다.Technical terms and scientific terms used in the present invention represent the meanings that are commonly understood by those of ordinary skill in the art unless otherwise defined.
본 발명은 (a) 고분자 섬유를 디아조늄염(diazonium salt)으로 처리하여 고분자 섬유의 표면을 개질하는 단계; (b) 상기 개질된 고분자 섬유를 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체로 처리하여 표면 처리된 고분자 섬유를 제조하는 단계; 및 (c) 상기 표면 처리된 고분자 섬유를 금속 용액으로 처리하여 금속착물형 고분자 섬유를 제조하는 단계를 포함하는 필터용 고분자 섬유의 제조방법에 관한 것이다. The present invention comprises the steps of (a) treating the polymer fibers with a diazonium salt (diazonium salt) to modify the surface of the polymer fibers; (b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And (c) treating the surface treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
상기 (a) 단계는 고분자 섬유를 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염으로 처리하여, 고분자 섬유 표면에 디아조늄염이 그래프트 중합될 수 있다. The step (a) is treated with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group and a phosphate group, so that the diazonium salt may be graft polymerized on the surface of the polymer fiber.
상기 표면 개질을 통하여 고분자 섬유의 표면에 형성된 카르복실기, 하이드록실기, 술폰산기, 인산기 등의 관능기는 금속, 나노 카본볼 또는 다양한 화합물과 결합할 수 있으며, 흡착 특성, 항균성 등이 개선될 수 있다. Through the surface modification, functional groups such as carboxyl groups, hydroxyl groups, sulfonic acid groups, and phosphoric acid groups formed on the surface of the polymer fiber may be combined with metals, nano carbon balls or various compounds, and adsorption characteristics and antimicrobial properties may be improved.
고분자 섬유의 소재로는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리우레탄, 폴리아크릴로니트릴, 아크릴 수지 등이 제한 없이 사용될 수 있다. As the material of the polymer fiber, polyolefin such as polyethylene, polypropylene, polyester, polyamide, polyurethane, polyacrylonitrile, acrylic resin, or the like can be used without limitation.
상기 고분자 섬유는 고분자 섬유의 집합체, 즉 부직포, 매트, 웹, 직물, 필터 등도 포함한다. The polymer fibers also include aggregates of polymer fibers, that is, nonwovens, mats, webs, fabrics, filters, and the like.
디아조늄염의 함량은 고분자 섬유 100중량부에 대하여 1~10중량부인 것이 바람직하며, 디아조늄염의 함량이 1중량부 미만인 경우 관능기의 도입이 미미하여 흡착특성이 저하되고, 10중량부를 초과하는 경우 제조된 필터의 기공율이 오히려 작게 되어 유해가스 및 미세먼지를 효과적으로 흡착할 수 없게 된다. The content of diazonium salt is preferably 1 to 10 parts by weight based on 100 parts by weight of the polymer fiber, and when the content of the diazonium salt is less than 1 part by weight, the introduction of functional groups is insignificant, so that the adsorption characteristics are lowered, and the content is greater than 10 parts by weight. The porosity of the filter is rather small, making it difficult to effectively adsorb harmful gases and fine dust.
상기 디아조늄염은 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 방향족 1차 아민을 염산 및 아질산나트륨과 반응시켜 제조될 수 있다. The diazonium salt may be prepared by reacting an aromatic primary amine having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group with hydrochloric acid and sodium nitrite.
일예로서, 반응용기에 0.2M HCl 1,000중량부를 넣고 혼합하는 제1단계; 상기 제1단계의 혼합액에 4-아미노벤조산 또는 4-아미노페놀을 10 내지 1,000중량부를 넣고 혼합하는 제2단계; 및 상기 제2단계의 혼합액에 0.02M 아질산나트륨 0.1 내지 500중량부를 넣어주며 혼합하는 제3단계를 통하여 디아조늄염을 제조할 수 있다. As an example, the first step of mixing 1,000 parts by weight of 0.2M HCl in the reaction vessel; A second step of mixing 10 to 1,000 parts by weight of 4-aminobenzoic acid or 4-aminophenol in the mixed solution of the first step; And the diazonium salt can be prepared through a third step of mixing 0.1 to 500 parts by weight of 0.02M sodium nitrite into the mixture of the second step.
상기 고분자 섬유를 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염으로 처리하면, 고분자 섬유 표면에 디아조늄염이 연속적으로 결합하여 열안정성이 우수한 그래프트 중합체가 형성될 수 있다. When the polymer fiber is treated with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group and a phosphate group, a diazonium salt is continuously bonded to the surface of the polymer fiber to form a graft polymer having excellent thermal stability. Can be.
고분자 섬유의 표면에 열안정성이 우수한 그래프트 중합체가 공유 결합되는 경우, 코팅공정, 필터 제조공정 등 고온의 조건 하에서도 상기 그래프트 중합체가 열적으로 안정하여 분해되지 않으므로, 금속착물 또는 나노 카본볼이 안정적으로 결합되어 흡착특성, 항균성 등을 장기간 발현할 수 있다. When the graft polymer having excellent thermal stability is covalently bonded to the surface of the polymer fiber, the graft polymer is thermally stable and does not decompose under high temperature conditions such as a coating process and a filter manufacturing process, so that the metal complex or the nano carbon ball is stably Can be combined to express adsorption characteristics, antimicrobial properties for a long time.
만일 고분자 섬유의 표면에 저분자 화합물이 결합하면, 상기 저분자 화합물은 열에 의해 쉽게 분해되어 금속착물 또는 나노 카본볼이 쉽게 탈리되며, 흡착특성, 항균성 등을 발현할 수 없게 된다. If the low molecular weight compound is bonded to the surface of the polymer fiber, the low molecular weight compound is easily decomposed by heat, so that the metal complex or nano carbon ball is easily detached, and adsorption characteristics, antimicrobial properties, etc. cannot be expressed.
그래프트 중합을 효율적으로 수행하기 위하여 황산칼륨, 질산나트륨 등의 촉매를 사용할 수 있으며, 상기 촉매는 디아조늄염 1몰에 대하여 0.01~0.1몰 사용되는 것이 바람직하다. 촉매의 함량이 0.01몰 미만이면 첨가의 효과가 미미하고, 0.1몰을 초과하면 디아조늄염의 호모 중합체가 다량 생성되어 흡착특성이 저하된다. In order to efficiently perform graft polymerization, a catalyst such as potassium sulfate or sodium nitrate may be used, and the catalyst is preferably used in an amount of 0.01 to 0.1 moles based on 1 mole of diazonium salt. If the content of the catalyst is less than 0.01 mole, the effect of the addition is insignificant, and if it exceeds 0.1 mole, a large amount of homopolymer of the diazonium salt is produced and the adsorption characteristic is lowered.
그래프트 중합은 50~90℃에서 10분~24시간 수행되는 것이 바람직하며, 중합온도가 50℃ 미만이면 중합이 불완전하게 일어나고, 90℃를 초과하면 섬유의 내구성이 저하된다. 또한 중합시간이 10분 미만이면 중합이 불완전하게 일어나고, 24시간을 초과하면 디아조늄염의 호모 중합체가 다량 생성되어 흡착특성이 저하된다. The graft polymerization is preferably carried out at 50 to 90 ° C. for 10 minutes to 24 hours. When the polymerization temperature is less than 50 ° C., the polymerization is incompletely occurred, and when it exceeds 90 ° C., the durability of the fiber is lowered. If the polymerization time is less than 10 minutes, the polymerization is incompletely produced. If the polymerization time is more than 24 hours, a large amount of the homopolymer of the diazonium salt is generated and the adsorption characteristics are deteriorated.
상기 (b) 단계는 상기 개질된 고분자 섬유를 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체로 처리하여 표면 처리된 고분자 섬유를 제조하는 단계이다. Step (b) is a step of preparing the surface-treated polymer fibers by treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer.
상기 공중합체는 고분자 섬유 표면에 공유 결합되거나 또는 디아조늄염에 의해 도입된 그래프트 중합체와 결합할 수 있으며, 이를 통해 고분자 섬유 표면에 다수의 카르복실기를 도입할 수 있다. The copolymer may bind to the graft polymer covalently bonded to the surface of the polymer fiber or introduced by the diazonium salt, thereby introducing a plurality of carboxyl groups on the surface of the polymer fiber.
상기 공중합체 내에 포함된 다수의 카르복실기는 금속, 나노 카본볼 또는 다양한 화합물과 결합할 수 있으며, 흡착 특성, 항균성 등이 개선될 수 있다. A plurality of carboxyl groups included in the copolymer may be combined with metals, nano carbon balls or various compounds, and adsorption characteristics, antibacterial properties, and the like may be improved.
고분자 섬유의 표면에 열안정성이 우수한 공중합체가 공유 결합되는 경우, 코팅공정, 필터 제조공정 등 고온의 조건 하에서도 상기 공중합체가 열적으로 안정하여 분해되지 않으므로, 금속착물 또는 나노 카본볼이 안정적으로 결합되어 흡착특성, 항균성 등을 장기간 발현할 수 있다. When the copolymer having excellent thermal stability is covalently bonded to the surface of the polymer fiber, the copolymer is thermally stable and does not decompose under high temperature conditions such as a coating process or a filter manufacturing process, so that the metal complex or nano carbon ball is stably Can be combined to express adsorption characteristics, antimicrobial properties for a long time.
상기 아크릴레이트기 함유 실란 커플링제로는 3-메타크릴록시프로필메틸디메톡시실란, 3-메타크릴록시프로필트리메톡시실란, 3-메타크릴록시프로필메틸디에톡시실란, 3-메타크릴록시프로필트리에톡시실란, 3-아크릴록시프로필트리메톡시실란, 메타크릴록시메틸트리에톡시실란, 메타크릴록시메틸트리메톡시실란 등이 있다. As said acrylate group containing silane coupling agent, 3-methacryloxypropyl methyldimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl methyl diethoxysilane, 3-methacryloxypropyl tri Ethoxysilane, 3-acryloxypropyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, and the like.
상기 아크릴산 모노머는 아크릴산, 메타크릴산, 메틸 아크릴산, 에틸 아크릴산, 부틸 아크릴산, 2-에틸 헥실 아크릴산, 데실아크릴산, 메틸 메타크릴산, 에틸 메타크릴산, 부틸 메타크릴산, 2-에틸 헥실 메타크릴산, 데실메타크릴산 등이 있다. The acrylic acid monomer is acrylic acid, methacrylic acid, methyl acrylic acid, ethyl acrylic acid, butyl acrylic acid, 2-ethyl hexyl acrylic acid, decyl acrylic acid, methyl methacrylic acid, ethyl methacrylic acid, butyl methacrylic acid, 2-ethyl hexyl methacrylic acid And decyl methacrylic acid.
상기 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 중량비는 10~30:70~90인 것이 바람직하며, 중량비가 10:90 미만이면 섬유와의 결합력이 저하되고, 30:70을 초과하면 흡착 특성이 저하된다. It is preferable that the weight ratio of the said acrylate group containing silane coupling agent and an acrylic acid monomer is 10-30: 70-90, and when the weight ratio is less than 10:90, the adhesive force with a fiber will fall, and when 30:70, adsorption characteristic will become Degrades.
상기 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체는 고분자 섬유 100중량부에 대하여 1~10중량부인 것이 바람직하며, 공중합체의 함량이 1중량부 미만인 경우 관능기의 도입이 미미하여 흡착특성이 저하되고, 10중량부를 초과하는 경우 제조된 필터의 기공율이 오히려 작게 되어 유해가스 및 미세먼지를 효과적으로 흡착할 수 없게 된다. The copolymer of the acrylate group-containing silane coupling agent and the acrylic acid monomer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of polymer fibers, and when the content of the copolymer is less than 1 part by weight, the introduction of functional groups is insignificant and the adsorption characteristics are lowered. When the amount exceeds 10 parts by weight, the porosity of the manufactured filter is rather small, so that harmful gas and fine dust cannot be adsorbed effectively.
상기 (c) 단계는 고분자 섬유 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성할 수 있다.In the step (c), the metal of the functional group and the metal solution formed on the surface of the polymer fiber may form a metal complex.
고분자 섬유 표면에 그래프트 중합된 중합체의 관능기 및 공중합체의 카르복실기는 금속용액의 금속과 금속착물을 형성할 수 있다. The functional group of the polymer graft-polymerized on the surface of the polymer fiber and the carboxyl group of the copolymer may form a metal complex with a metal of the metal solution.
카르복실기, 하이드록실기, 술폰산기, 인산기 등의 관능기는 금속과 안정적인 착물을 형성할 수 있으며, 고온의 조건에서도 상기 금속은 쉽게 탈리되지 않는다. Functional groups such as carboxyl groups, hydroxyl groups, sulfonic acid groups, and phosphoric acid groups can form stable complexes with metals, and the metals are not easily detached even under high temperature conditions.
상기 금속으로서는 금, 은, 구리, 코발트, 니켈, 아연, 백금 등이 제한 없이 사용될 수 있다.As the metal, gold, silver, copper, cobalt, nickel, zinc, platinum and the like can be used without limitation.
고분자 섬유의 표면에 형성되는 금속은 유해가스, 미세먼지, 바이러스 등과 결합할 수 있어 필터의 흡착 특성, 항균성 등이 개선될 수 있다. Metal formed on the surface of the polymer fiber can be combined with harmful gases, fine dust, viruses and the like can improve the adsorption characteristics, antibacterial properties of the filter.
상기 금속착물을 형성하기 위해 금속 전구체가 사용될 수 있으며, 질산은, 황산은, 은아세틸아세토네이트, 은아세테이트, 은카보네이트, 은클로라이드, 질산구리, 황산구리, 구리아세틸아세토네이트, 구리아세테이트, 구리카보네이트, 구리클로라이드 등이 사용 가능하다. A metal precursor may be used to form the metal complex, silver nitrate, silver sulfate, silver acetylacetonate, silver acetate, silver carbonate, silver chloride, copper nitrate, copper sulfate, copper acetylacetonate, copper acetate, copper carbonate, copper Chloride and the like can be used.
금속의 함량은 고분자 섬유 100중량부에 대하여 0.1~5중량부인 것이 바람직하며, 금속의 함량이 0.1중량부 미만인 경우 첨가의 효과가 미미하고, 5중량부를 초과하는 경우 섬유 표면에 금속착물을 균일하게 분포시킬 수 없다. The content of the metal is preferably 0.1 to 5 parts by weight based on 100 parts by weight of the polymer fiber, the effect of the addition is insignificant when the content of the metal is less than 0.1 parts by weight, and when the content of the metal exceeds 5 parts by weight, the metal complex is uniformly applied to the fiber surface. It cannot be distributed.
상기 제조방법은 상기 (c) 단계 이후에 나노 카본볼을 코팅하는 단계를 추가로 포함할 수 있다. The manufacturing method may further include the step of coating the nano carbon ball after the step (c).
금속착물형 고분자 섬유에 나노 카본볼을 포함하는 조성물을 분사 또는 스프레이하거나 상기 금속착물형 고분자 섬유를 나노 카본볼을 포함하는 조성물에 함침하거나 상기 금속착물형 고분자 섬유에 나노 카본볼을 열접착할 수 있다. Spraying or spraying a composition containing nano carbon balls on metal complex polymer fibers, impregnating the metal complex polymer fibers into a composition containing nano carbon balls, or thermally bonding nano carbon balls to the metal complex polymer fibers. have.
상기 나노 카본볼은 입자의 크기가 100~600nm이고 다수의 기공을 갖는 공 모양의 탄소구조체로서, 비표면적과 공극율이 매우 높으며, 기공 내부에 촉매를 침착시킬 수 있어 휘발성 유기화합물, 미세먼지, 악취 성분, 유해가스 등을 흡착하거나 분해할 수 있다. The nano carbon ball is a ball-shaped carbon structure having a particle size of 100 ~ 600nm and a large number of pores, very high specific surface area and porosity, and can deposit a catalyst inside the pores, volatile organic compounds, fine dust, odor It can adsorb or decompose components and harmful gases.
상기 나노 카본볼은 상호 응집되어 입자의 크기가 증가할 수 있는데, 이러한 응집 현상을 방지하기 위하여 나노 카본볼은 계면활성제, 안정화제 등으로 표면 처리될 수 있다. The nano carbon balls may be agglomerated with each other to increase particle size. In order to prevent such agglomeration, the nano carbon balls may be surface treated with a surfactant, a stabilizer, or the like.
계면활성제로는 알킬 트리메틸암모늄 할라이드 등의 양이온 계면활성제; 올레산, 알킬 아민 등의 중성 계면활성제; 소디움 알킬설페이트, 소디움 알킬포스페이트 등의 음이온 계면활성제가 제한 없이 사용될 수 있다. As surfactant, Cationic surfactant, such as alkyl trimethylammonium halide; Neutral surfactants such as oleic acid and alkyl amines; Anionic surfactants such as sodium alkyl sulfate and sodium alkyl phosphate may be used without limitation.
상기 나노 카본볼은 실란 커플링제로 표면 처리되어 사용될 수 있다. The nano carbon ball may be used by surface treatment with a silane coupling agent.
실란 커플링제는 유기 화합물과 결합할 수 있는 유기 관능기 및 무기물과 반응할 수 있는 가수분해기를 가지며, 나노 카본볼과 고분자 섬유의 계면 접착력을 향상시켜 제조된 필터의 흡착력, 내구성 등을 획기적으로 개선할 수 있다. The silane coupling agent has an organic functional group capable of bonding with an organic compound and a hydrolyzable group capable of reacting with an inorganic compound, and can improve the adsorptivity and durability of the manufactured filter by improving the interfacial adhesion between the nano carbon ball and the polymer fiber. Can be.
실란 커플링제로는 알킬기 함유 실란 커플링제, 아미노기 함유 실란 커플링제, 에폭시기 함유 실란 커플링제, 아크릴레이트기 함유 실란 커플링제, 이소시아네이트기 함유 실란 커플링제, 메르캅토기 함유 실란 커플링제, 불소기 함유 실란 커플링제, 비닐기 함유 실란 커플링제 등이 제한 없이 사용될 수 있다. As a silane coupling agent, an alkyl group containing silane coupling agent, an amino group containing silane coupling agent, an epoxy group containing silane coupling agent, an acrylate group containing silane coupling agent, an isocyanate group containing silane coupling agent, a mercapto group containing silane coupling agent, a fluorine group containing silane Coupling agents, vinyl group-containing silane coupling agents and the like can be used without limitation.
상기 나노 카본볼은 에폭시기 함유 실란 커플링제 및 아미노기 함유 실란 커플링제의 혼합물로 표면 처리되는 것이 필터의 내구성과 흡착성의 측면에서 바람직하다. The nano carbon ball is preferably surface treated with a mixture of an epoxy group-containing silane coupling agent and an amino group-containing silane coupling agent in view of durability and adsorptivity of the filter.
혼합 실란 커플링제는 에폭시기 함유 실란 커플링제 60~90중량% 및 아미노기 함유 실란 커플링제 10~40중량%로 구성되는 바람직하다.It is preferable that a mixed silane coupling agent consists of 60-90 weight% of epoxy group containing silane coupling agents, and 10-40 weight% of amino group containing silane coupling agents.
표면 처리되는 실란 커플링제의 함량은 나노 카본볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 함량이 1중량부 미만인 경우 첨가의 효과가 미미하고, 10중량부를 초과하는 경우 과다한 실란 커플링제의 사용으로 오히려 계면 접착 특성 및 내구성이 저하된다. The content of the silane coupling agent to be surface treated is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the nano carbon ball, and when the content is less than 1 part by weight, the effect of addition is insignificant, and when the content exceeds 10 parts by weight, the excessive silane coupling agent is used. Rather, the interface adhesion properties and durability are lowered.
또한 상기 나노 카본볼은 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염으로 표면 처리될 수 있다. In addition, the nano carbon ball may be surface-treated with a diazonium salt having one or more functional groups selected from carboxyl groups, hydroxyl groups, sulfonic acid groups and phosphoric acid groups.
나노 카본볼에 도입된 관능기는 표면 개질된 고분자 섬유와의 계면 접착력을 향상시켜 제조된 필터의 흡착력, 내구성 등을 획기적으로 개선할 수 있다. The functional group introduced into the nano carbon ball may improve the interface adhesion with the surface-modified polymer fiber, thereby dramatically improving the adsorption force, durability, and the like of the manufactured filter.
표면 처리되는 디아조늄염의 함량은 나노 카본볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 함량이 1중량부 미만인 경우 첨가의 효과가 미미하고, 10중량부를 초과하는 경우 과다한 디아조늄염의 사용으로 오히려 계면 접착 특성 및 내구성이 저하된다. The amount of diazonium salt to be surface treated is preferably 1 to 10 parts by weight with respect to 100 parts by weight of nano carbon balls, and the effect of addition is insignificant when the content is less than 1 part by weight, and the use of excessive diazonium salt when it exceeds 10 parts by weight. Rather, the interfacial adhesion properties and durability deteriorate.
나노 카본볼의 함량은 고분자 섬유 100중량부에 대하여 1~10중량부인 것이 바람직하며, 나노 카본볼의 함량이 1중량부 미만인 경우 첨가의 효과가 미미하고, 10중량부를 초과하는 경우 필터의 통기성 및 흡착성이 오히려 저하된다. The content of the nano carbon ball is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polymer fiber, the effect of the addition is insignificant when the content of the nano carbon ball is less than 1 part by weight, the breathability of the filter and more than 10 parts by weight The adsorption property is rather lowered.
상기 나노 카본볼은 금속착물형 고분자 섬유에 분말 형태로 코팅되거나 용액 또는 젤 상태로 코팅될 수 있다. The nano carbon ball may be coated in a powder form or coated in a solution or gel state on the metal complex polymer fiber.
금속착물형 고분자 섬유에 나노 카본볼을 포함하는 조성물을 분사 또는 스프레이하거나 상기 금속착물형 고분자 섬유를 나노 카본볼을 포함하는 조성물에 함침하거나 상기 금속착물형 고분자 섬유에 나노 카본볼을 포함하는 조성물을 열접착할 수 있다. Spraying or spraying a composition containing a nano carbon ball on a metal complex polymer fiber, or impregnating the metal complex polymer fiber into a composition containing a nano carbon ball, or a composition comprising a nano carbon ball on the metal complex polymer fiber It can be thermally bonded.
상기 나노 카본볼을 포함하는 조성물은 바인더를 포함할 수 있으며, 상기 바인더는 고분자 섬유와 나노 카본볼의 결합력을 향상시키는 접착제의 역할을 하는 것으로서, 나노 카본볼 입자의 탈리를 방지하고 필터에 내구성을 부여한다. The composition including the nano carbon ball may include a binder, and the binder serves as an adhesive to improve the bonding strength between the polymer fiber and the nano carbon ball, preventing desorption of the nano carbon ball particles and providing durability to the filter. Grant.
상기 바인더로는 폴리비닐알콜, 폴리에틸렌, 에틸렌-초산비닐 수지, 전분 등이 사용되며, 바인더의 함량은 나노 카본볼 100중량부 대비 1~10중량부인 것이 바람직하다. 바인더의 함량이 1중량부 미만인 경우 첨가의 효과가 미미하고, 10중량부를 초과하는 경우 흡착성, 통기량 및 유해가스 제거성능이 오히려 저하된다.As the binder, polyvinyl alcohol, polyethylene, ethylene-vinyl acetate resin, starch, and the like are used, and the content of the binder is preferably 1 to 10 parts by weight based on 100 parts by weight of the nano carbon ball. If the content of the binder is less than 1 part by weight, the effect of the addition is insignificant, and if it exceeds 10 parts by weight, the adsorptivity, air flow rate and harmful gas removal performance are rather deteriorated.
상기 나노 카본볼을 포함하는 조성물은 실란 커플링제를 포함할 수 있으며, 실란 커플링제의 함량은 나노 카본볼 100중량부 대비 1~10중량부인 것이 바람직하다. 실란 커플링제의 함량이 1중량부 미만인 경우 첨가의 효과가 미미하고, 10중량부를 초과하는 경우 흡착성, 통기량 및 유해가스 제거성능이 오히려 저하된다. The composition including the nano carbon ball may include a silane coupling agent, and the content of the silane coupling agent is preferably 1 to 10 parts by weight based on 100 parts by weight of the nano carbon ball. When the content of the silane coupling agent is less than 1 part by weight, the effect of the addition is insignificant, and when it exceeds 10 parts by weight, the adsorptivity, the air flow amount, and the harmful gas removal performance are rather deteriorated.
상기 실란 커플링제는 에폭시기 함유 실란 커플링제 및 아미노기 함유 실란 커플링제의 혼합물인 것이 바람직하다. It is preferable that the said silane coupling agent is a mixture of an epoxy group containing silane coupling agent and an amino group containing silane coupling agent.
혼합 실란 커플링제는 에폭시기 함유 실란 커플링제 60~90중량% 및 아미노기 함유 실란 커플링제 10~40중량%로 구성되는 바람직하다.It is preferable that a mixed silane coupling agent consists of 60-90 weight% of epoxy group containing silane coupling agents, and 10-40 weight% of amino group containing silane coupling agents.
또한 본 발명은 상기 고분자 섬유의 표면에 나노 카본볼 이외에 에어로겔을 추가로 코팅할 수 있다. In another aspect, the present invention may further be coated with an airgel in addition to the nano carbon ball on the surface of the polymer fiber.
상기 에어로겔은 고다공성 나노구조체로서 입자가 작은 오염물질, 잔류 염소, 휘발성 유기 화합물, 중금속, 미생물, 냄새 발생 인자 등을 흡착하여 제거하기 위하여 사용된다. The airgel is a highly porous nanostructure used to adsorb and remove small contaminants, residual chlorine, volatile organic compounds, heavy metals, microorganisms, odor generating factors, and the like.
상기 에어로겔로는 실리카 에어로겔, 알루미나 에어로겔, 카본 에어로겔, 지르코니아 에어로겔, 루테니아 에어로겔, 산화철 에어로겔, 산화마그네슘 에어로겔, 산화텅스텐 에어로겔, 산화아연 에어로겔, 다공성 실리카 등이 사용될 수 있다. As the airgel, silica airgel, alumina airgel, carbon airgel, zirconia airgel, ruthenic airgel, iron oxide airgel, magnesium oxide airgel, tungsten oxide airgel, zinc oxide airgel, porous silica, and the like may be used.
상기 에어로겔은 불순물 제거를 위하여 열처리 될 수 있으며, 열처리 온도는 50~500℃인 것이 바람직하다. The airgel may be heat-treated to remove impurities, the heat treatment temperature is preferably 50 ~ 500 ℃.
특히 실리카 에어로겔이 사용되는 것이 바람직하며, 실리카 에어로겔은 분말, 비드, 수분산 페이스트 등이 제한 없이 사용될 수 있다. In particular, silica airgel is preferably used, and silica airgel may be used without limitation in powder, beads, water dispersion paste, and the like.
실리카 에어로겔의 입자 크기는 10~500㎛이고, 기공 크기는 20~50nm이며, 기공율은 50~99%인 것이 바람직하다. The particle size of the silica airgel is 10 to 500 µm, the pore size is 20 to 50 nm, and the porosity is preferably 50 to 99%.
실리카 에어로겔의 기공 크기가 20~50nm이므로, 20nm 이상의 크기를 가지는 물질을 효율적으로 여과할 수 있다.Since the pore size of the silica airgel is 20 to 50 nm, the material having a size of 20 nm or more can be efficiently filtered.
실리카 에어로겔의 입자 크기, 기공 크기 및 기공율이 상기 수치 범위를 만족하는 경우 제조된 필터의 흡착성, 내구성 및 유해가스 제거성능이 극대화될 수 있다. When the particle size, pore size, and porosity of the silica airgel satisfy the above numerical range, adsorptivity, durability, and harmful gas removal performance of the manufactured filter may be maximized.
실리카 에어로겔이 사용되는 경우, 흡착성과 내구성의 향상을 위해 분말 형태의 실리카 에어로겔과 수분산 페이스트 형태의 실리카 에어로겔을 동시에 사용할 수 있으며, 이 경우 분말 형태의 실리카 에어로겔과 수분산 페이스트 형태의 실리카 에어로겔의 중량비는 70~90:10~30인 것이 바람직하다. When silica airgel is used, powdered silica airgel and water dispersion paste type silica airgel can be used simultaneously to improve adsorption and durability.In this case, the weight ratio of powder type silica airgel and water dispersion paste type silica airgel is used. It is preferable that it is 70-90: 10-30.
상기 에어로겔은 나노 카본볼의 경우와 동일한 방법으로 표면 처리되거나 고분자 섬유의 표면에 코팅될 수 있다. The airgel may be surface treated or coated on the surface of the polymer fiber in the same manner as in the case of the nano carbon ball.
또한 본 발명은 상기 제조방법으로 제조되는 필터용 고분자 섬유에 관한 것이다(도 1).In addition, the present invention relates to a polymer fiber for filters produced by the manufacturing method (Fig. 1).
상기 필터용 고분자 섬유는 표면에 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염이 그래프트 중합되고, 상기 필터용 고분자 섬유 표면에 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체가 결합되고, 상기 필터용 고분자 섬유 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성하는 것을 특징으로 한다. The filter polymer fiber is graft polymerized with a diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group on the surface thereof, and an acrylate group-containing silane coupling agent and acrylic acid on the surface of the filter polymer fiber. The copolymer of the monomer is bonded, and the functional group formed on the surface of the filter polymer fiber and the metal of the metal solution form a metal complex.
또한 상기 필터용 고분자 섬유 표면에 나노 카본볼 및 에어로겔이 코팅될 수 있다. In addition, the nanofiber ball and the airgel may be coated on the surface of the polymer fiber for the filter.
고분자 섬유의 표면에 형성되는 금속은 유해가스, 미세먼지, 바이러스 등과 결합할 수 있어 필터의 흡착 특성, 항균성 등이 개선될 수 있다. Metal formed on the surface of the polymer fiber can be combined with harmful gases, fine dust, viruses and the like can improve the adsorption characteristics, antibacterial properties of the filter.
고분자 섬유의 표면에 형성되는 나노 카본볼 및 에어로겔은 휘발성 유기화합물, 미세먼지, 입자가 작은 오염물질, 악취 성분, 중금속, 미생물, 유해가스 등을 흡착하거나 분해할 수 있다. Nano carbon balls and aerogels formed on the surface of the polymer fibers may adsorb or decompose volatile organic compounds, fine dust, small particles of contaminants, odor components, heavy metals, microorganisms, harmful gases, and the like.
아울러 본 발명은 상기 필터용 고분자 섬유를 포함하는 캐빈 필터에 관한 것이다. In addition, the present invention relates to a cabin filter comprising the polymer fiber for the filter.
상기 필터용 고분자 섬유는 다양한 필터, 특히 캐빈 필터의 제조에 사용될 수 있다. The filter polymer fibers can be used in the manufacture of various filters, in particular cabin filters.
일예로, 부직포를 디아조늄염으로 처리하여 그래프트 중합시킨 후, 공중합체로 표면 처리한 다음 금속 용액으로 처리하여 금속착물을 형성시킴으로써 금속착물형 부직포를 제조한다. For example, a metal complex-type nonwoven fabric is prepared by treating a nonwoven fabric with a diazonium salt to perform graft polymerization, followed by a surface treatment with a copolymer, followed by a metal solution to form a metal complex.
상기 금속착물형 부직포 위에 멜트블로운 부직포를 적층한다. The meltblown nonwoven fabric is laminated on the metal complex nonwoven fabric.
상기 멜트블로운 부직포 위에 스펀본드 부직포를 적층한 후 핫멜트나 초음파 가공에 의하여 접합하여 캐빈 필터를 제조할 수 있다. The spunbond nonwoven fabric may be laminated on the meltblown nonwoven fabric and then bonded by hot melt or ultrasonic processing to manufacture a cabin filter.
이하 실시예 및 비교예를 통해 본 발명을 상세히 설명한다. 하기 실시예는 본 발명의 실시를 위하여 예시된 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. The following examples are merely illustrative for the practice of the present invention, but the content of the present invention is not limited by the following examples.
(실시예 1)(Example 1)
아이스 베스에 설치된 2L 반응용기에 0.2M HCl 1L를 넣고 300rpm으로 교반하였다.0.2 M HCl 1 L was added to a 2 L reaction vessel installed on an ice bath, and stirred at 300 rpm.
여기에 4-아미노벤조산 27.428g를 가한 후, 0.02M NaNO2 250mL를 20mL/min의 속도로 연동펌프(peristaltic pump)를 이용해 첨가하였다.After adding 27.428 g of 4-aminobenzoic acid, 250 mL of 0.02 M NaNO 2 was added at a rate of 20 mL / min using a peristaltic pump.
상기 혼합액을 300rpm으로 2시간 교반하여 카르복실기를 갖는 디아조늄염을 수득하였다. The mixture was stirred at 300 rpm for 2 hours to obtain a diazonium salt having a carboxyl group.
5cm×5cm×0.3cm 크기의 폴리에틸렌 부직포를 메탄올로 10분 동안 세척한 후, 진공오븐을 사용하여 70℃에서 3시간 건조하였다. The polyethylene nonwoven fabric of 5 cm × 5 cm × 0.3 cm size was washed with methanol for 10 minutes and then dried at 70 ° C. for 3 hours using a vacuum oven.
핫플레이트 상에 70℃로 유지되는 항온수조를 준비하고, 상기 항온수조에 500mL 플라스크를 담근 후, 이 플라스크에 상기에서 수득한 카르복실기를 갖는 디아조늄염 100mL를 첨가하였다. A constant temperature water bath maintained at 70 ° C. was prepared on a hot plate, a 500 mL flask was immersed in the constant temperature water bath, and then 100 mL of the diazonium salt having a carboxyl group obtained above was added to the flask.
상기 플라스크에 건조된 폴리에틸렌 부직포를 첨가하여 함침시킨 후, 카르복실기를 갖는 디아조늄염 1몰에 대하여 0.03몰의 황산칼륨을 가한 다음 500rpm으로 1시간 교반하여 그래프트 중합을 수행하였다. After impregnating the dried polyethylene nonwoven fabric with the flask, 0.03 mol of potassium sulfate was added to 1 mol of the diazonium salt having a carboxyl group, followed by stirring at 500 rpm for 1 hour to perform graft polymerization.
그 후 부직포를 꺼내 증류수로 세척하고 진공오븐을 사용하여 70℃에서 3시간 동안 건조하였다. Thereafter, the nonwoven fabric was taken out, washed with distilled water, and dried at 70 ° C. for 3 hours using a vacuum oven.
3-메타크릴록시프로필트리메톡시실란 20중량% 및 메타크릴산 80중량%를 공중합하여 공중합체를 제조하였다. A copolymer was prepared by copolymerizing 20% by weight of 3-methacryloxypropyltrimethoxysilane and 80% by weight of methacrylic acid.
상기 건조된 부직포에 상기 공중합체를 처리하여 표면 처리된 부직포를 제조한 후 건조하였다. 이때 부직포 100중량부 대비 5중량부의 공중합체를 사용하였다. The copolymer was treated with the dried nonwoven fabric to prepare a surface-treated nonwoven fabric and then dried. At this time, 5 parts by weight of the copolymer relative to 100 parts by weight of the nonwoven fabric was used.
플라스크에 0.2mM의 질산은 용액 250mL을 가하고 상기 표면 처리된 부직포를 넣은 다음 1시간 교반한 후, 부직포를 다시 꺼내어 증류수로 세척하고 진공오븐을 사용하여 70℃에서 3시간 동안 건조하였다. 이때 은의 함량은 부직포 100중량부 대비 3중량부를 사용하였다. 250 mL of 0.2 mM silver nitrate solution was added to the flask, the surface-treated nonwoven fabric was added thereto, stirred for 1 hour, the nonwoven fabric was taken out again, washed with distilled water, and dried at 70 ° C. for 3 hours using a vacuum oven. At this time, the content of silver used 3 parts by weight relative to 100 parts by weight of the nonwoven fabric.
(실시예 2)(Example 2)
부직포 100중량부 대비 공중합체 0.5중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 필터용 부직포를 제조하였다. A filter nonwoven fabric was prepared in the same manner as in Example 1 except that 0.5 parts by weight of the copolymer was used relative to 100 parts by weight of the nonwoven fabric.
(실시예 3)(Example 3)
부직포 100중량부 대비 공중합체 15중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 필터용 부직포를 제조하였다. A filter nonwoven fabric was prepared in the same manner as in Example 1, except that 15 parts by weight of the copolymer was used relative to 100 parts by weight of the nonwoven fabric.
(실시예 4)(Example 4)
부직포에 질산은 용액을 처리한 후, 나노 카본볼 조성물을 분사하여 부직포에 나노 카본볼을 코팅시킨 것을 제외하고는 실시예 1과 동일한 방법으로 필터용 부직포를 제조하였다. After treating the silver nitrate solution to the nonwoven fabric, a filter nonwoven fabric was prepared in the same manner as in Example 1 except that the nanocarbon ball coating was applied by spraying the nano carbon ball composition.
이때 나노 카본볼은 부직포 100중량부 대비 5중량부를 사용하였다. At this time, the nano carbon ball was used 5 parts by weight compared to 100 parts by weight of the nonwoven fabric.
(실시예 5)(Example 5)
4-아미노벤조산의 디아조늄염으로 표면 처리된 나노 카본볼을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 필터용 부직포를 제조하였다. A filter nonwoven fabric was prepared in the same manner as in Example 4 except that the nanocarbon balls surface-treated with a diazonium salt of 4-aminobenzoic acid were used.
(비교예 1)(Comparative Example 1)
디아조늄염을 처리하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 필터용 부직포를 제조하였다. A filter nonwoven fabric was prepared in the same manner as in Example 1 except that the diazonium salt was not treated.
(비교예 2)(Comparative Example 2)
공중합체를 처리하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 필터용 부직포를 제조하였다. A filter nonwoven fabric was prepared in the same manner as in Example 1 except that the copolymer was not treated.
상기 실시예 및 비교예로부터 제조된 부직포로부터 필터를 제조한 후 항균특성 및 흡착특성을 측정하여 그 결과를 아래의 표 1에 나타내었다. After preparing a filter from the nonwoven fabrics prepared in Examples and Comparative Examples, the antibacterial and adsorption properties were measured, and the results are shown in Table 1 below.
항균특성은 공기 중의 미생물을 필터 표면에 채취한 후, 액체배지에 필터를 넣고 흔들어 꺼낸 다음 그 액체배지를 64시간 동안 배양하여 액체배지에 대한 셀카운트를 측정하여 미생물의 증식여부를 확인하였다. Antimicrobial characteristics were collected on the surface of the air filter, the filter was placed in a liquid medium and shaken out, and then the liquid medium was incubated for 64 hours to measure the cell count on the liquid medium to confirm the growth of the microorganisms.
흡착특성은 암모니아 계수 측정 장비를 이용하여 필터를 밀폐된 탱크 안에 방치하고, 이 상태에서 NH4OH 용액을 첨가하여 탱크 안의 암모니아의 농도를 가스 검지관을 사용하여 측정하였다. Adsorption characteristics were left in a closed tank by using ammonia coefficient measuring equipment, and NH 4 OH solution was added in this state, and the concentration of ammonia in the tank was measured using a gas detector tube.
탱크 안에 방치된 시료에 암모니아 용액이 흡착, 분해하는 과정에서 탱크 안의 암모니아 농도를 측정하였다. The ammonia concentration in the tank was measured in the course of adsorption and decomposition of the ammonia solution on the sample left in the tank.
구분division 실시예Example 비교예Comparative example
1One 22 33 44 55 1One 22
Visible cell count(×107) at 720분Visible cell count (× 10 7 ) at 720 minutes 00 1010 88 00 00 450450 120120
탈취율(%)Deodorization rate (%) 97.597.5 94.694.6 95.195.1 99.199.1 99.399.3 88.988.9 91.591.5
상기 표 1의 결과로부터, 실시예 1 내지 5의 필터는 흡착성 및 항균성이 우수한 반면, 비교예 1 및 2의 필터는 흡착성 및 항균성이 실시예에 비하여 열등함을 알 수 있다. From the results of Table 1, it can be seen that the filters of Examples 1 to 5 are excellent in adsorption and antimicrobial properties, while the filters of Comparative Examples 1 and 2 are inferior to the examples.
본 발명은 고분자 섬유의 표면에 금속착물을 형성함으로써 유해가스 제거 특성, 미세먼지 제거 특성 및 항균성이 우수한 필터용 고분자 섬유를 제공할 수 있다. The present invention can provide a polymer fiber for the filter excellent in the removal of harmful gas, fine dust removal characteristics and antibacterial by forming a metal complex on the surface of the polymer fiber.
또한 본 발명은 고분자 섬유의 표면에 열안정성이 우수한 그래프트 중합체 및 아크릴레이트기 함유 실란 커플링제와 아크릴산 모노머의 공중합체가 공유 결합함으로써, 코팅공정, 필터 제조공정 등 고온의 조건 하에서도 상기 그래프트 중합체 및 공중합체가 열적으로 안정하여 분해되지 않으므로, 금속착물이 안정적으로 결합되어 흡착특성, 항균성 등을 장기간 발현할 수 있는 필터용 고분자 섬유를 제공할 수 있다. In addition, the present invention is a graft polymer having excellent thermal stability on the surface of the polymer fiber and a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer covalently bonded, so that the graft polymer and even under high temperature conditions such as coating process, filter manufacturing process Since the copolymer is thermally stable and does not decompose, it is possible to provide a polymer fiber for a filter that can stably bond metal complexes to express adsorption characteristics, antibacterial properties, and the like for a long time.
아울러 본 발명은 고분자 섬유의 표면에 금속착물을 결합시킴으로써 표면적과 기공율이 증가하고 유해가스 제거 특성, 미세먼지 제거 특성 및 항균성이 우수하여 장기간 안정적으로 사용될 수 있는 캐빈 필터를 제공할 수 있다. In addition, the present invention can provide a cabin filter that can be used stably for a long time by combining the metal complex on the surface of the polymer fiber, the surface area and porosity is increased and the harmful gas removal characteristics, fine dust removal characteristics and antibacterial properties.

Claims (6)

  1. (a) 고분자 섬유를 디아조늄염(diazonium salt)으로 처리하여 고분자 섬유의 표면을 개질하는 단계; (a) treating the polymer fibers with a diazonium salt to modify the surface of the polymer fibers;
    (b) 상기 개질된 고분자 섬유를 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체로 처리하여 표면 처리된 고분자 섬유를 제조하는 단계; 및(b) treating the modified polymer fibers with a copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer to produce surface treated polymer fibers; And
    (c) 상기 표면 처리된 고분자 섬유를 금속 용액으로 처리하여 금속착물형 고분자 섬유를 제조하는 단계를 포함하는 필터용 고분자 섬유의 제조방법. (c) treating the surface-treated polymer fibers with a metal solution to produce a metal complex polymer fiber.
  2. 제1항에 있어서, The method of claim 1,
    상기 (a) 단계는 고분자 섬유를 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염으로 처리하여, 고분자 섬유 표면에 디아조늄염이 그래프트 중합되는 것을 특징으로 하는 필터용 고분자 섬유의 제조방법. In the step (a), the polymer fiber is treated with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group and a phosphate group, so that the diazonium salt is graft-polymerized on the surface of the polymer fiber. Method for producing polymer fiber for the use.
  3. 제2항에 있어서, The method of claim 2,
    상기 (b) 단계의 공중합체는 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 중량비가 10~30:70~90인 것을 특징으로 하는 필터용 고분자 섬유의 제조방법. In the copolymer of step (b), the weight ratio of the acrylate group-containing silane coupling agent and the acrylic acid monomer is 10 to 30:70 to 90.
  4. 제3항에 있어서, The method of claim 3,
    상기 (c) 단계는 고분자 섬유 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성하는 것을 특징으로 하는 필터용 고분자 섬유의 제조방법. The step (c) is a method for producing a polymer fiber for filters, characterized in that the metal formed in the metal solution and the functional group formed on the surface of the polymer fiber.
  5. 제1항 내지 제4항 중 어느 한 항의 제조방법으로 제조되는 필터용 고분자 섬유에 있어서,In the polymer fiber for filters produced by the manufacturing method of any one of claims 1 to 4,
    상기 필터용 고분자 섬유는 표면에 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염이 그래프트 중합되고,The polymer fiber for the filter is graft polymerized diazonium salt having at least one functional group selected from carboxyl group, hydroxyl group, sulfonic acid group and phosphoric acid group on the surface,
    상기 필터용 고분자 섬유 표면에 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 공중합체가 결합되고, A copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer is bonded to the surface of the filter polymer fiber,
    상기 필터용 고분자 섬유 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성하는 것을 특징으로 하는 필터용 고분자 섬유.The polymer fiber for a filter, wherein the functional group formed on the surface of the filter polymer fiber and the metal of the metal solution form a metal complex.
  6. 제5항의 필터용 고분자 섬유를 포함하는 캐빈 필터. Cabin filter comprising a polymer fiber for a filter of claim 5.
PCT/KR2018/016205 2018-02-14 2018-12-19 Multifunctional polymer fiber WO2019160231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180018841A KR102031126B1 (en) 2018-02-14 2018-02-14 a multi-functionalpolymer fiber
KR10-2018-0018841 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019160231A1 true WO2019160231A1 (en) 2019-08-22

Family

ID=67619462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016205 WO2019160231A1 (en) 2018-02-14 2018-12-19 Multifunctional polymer fiber

Country Status (2)

Country Link
KR (1) KR102031126B1 (en)
WO (1) WO2019160231A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592778A (en) * 2019-10-09 2019-12-20 刘国成 Graphene-based composite fiber summer sleeping mat and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990026192A (en) * 1997-09-23 1999-04-15 구광시 Oil absorbent
JP2010521562A (en) * 2007-03-14 2010-06-24 エイチ.ビー.フラー カンパニー Aqueous composition for filter media with enhanced wet burst strength
KR20120095315A (en) * 2011-02-18 2012-08-28 엘지전자 주식회사 Composition for inactivation of allergen and filter comprinsing the same
KR20160063337A (en) * 2013-09-30 2016-06-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for manufacturing same
KR20160134166A (en) * 2015-05-15 2016-11-23 한남대학교 산학협력단 Metal-complex polymer film for air cleaning filter and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200365133Y1 (en) 2004-03-29 2004-10-16 노기선 Antibacterial air filter that coated Silver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990026192A (en) * 1997-09-23 1999-04-15 구광시 Oil absorbent
JP2010521562A (en) * 2007-03-14 2010-06-24 エイチ.ビー.フラー カンパニー Aqueous composition for filter media with enhanced wet burst strength
KR20120095315A (en) * 2011-02-18 2012-08-28 엘지전자 주식회사 Composition for inactivation of allergen and filter comprinsing the same
KR20160063337A (en) * 2013-09-30 2016-06-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for manufacturing same
KR20160134166A (en) * 2015-05-15 2016-11-23 한남대학교 산학협력단 Metal-complex polymer film for air cleaning filter and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592778A (en) * 2019-10-09 2019-12-20 刘国成 Graphene-based composite fiber summer sleeping mat and preparation method thereof

Also Published As

Publication number Publication date
KR102031126B1 (en) 2019-10-11
KR20190098655A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
CN108003771B (en) Halogen-free flame-retardant electromagnetic shielding material and preparation method and application thereof
EP3281968B1 (en) Aerogel-containing composition and insulation blanket prepared by using same
WO2016129874A1 (en) Method for preparing blanket containing silica aerogel, and blanket prepared thereby and containing silica aerogel
RU2404841C2 (en) Electret and compunds suitable for electrets
WO2010053270A2 (en) Resin composition for surface treatment of steel sheet and surface-treated steel sheet using the same
WO2019160231A1 (en) Multifunctional polymer fiber
WO2014030782A1 (en) Carbon fibre composite coated with silicon carbide, and production method for same
KR20090051211A (en) Densified conductive materials and articles made from same
WO2016159556A1 (en) Functional copper sulfide composition and functional fiber prepared from same
WO2020096353A1 (en) Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same
WO2019125043A1 (en) Hydrocolloid composition and biopatch comprising same
CN106367723A (en) Workpiece, electronic equipment and vacuum sputtering coating method
KR101848494B1 (en) a polymer fiber for filter and a cabin filter comprising the same
WO2017131400A1 (en) Water-repellent agent of silicone-based emulsion and fabric water-repellent processing method using same
WO2018194432A9 (en) Membrane including porous substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
WO2022154151A1 (en) Environment-friendly sheet and manufacturing method therefor
WO2019124865A1 (en) Solution composition for surface treatment of steel sheet and steel sheet surface-treated using same
CN101914849A (en) Aluminum hydroxide sol-coated high-temperature-resistant fiber fabric and preparation method thereof
WO2020004857A1 (en) Filter containing flake-shaped powder coating layer and manufacturing method therefor
WO2020096267A1 (en) Electrostatic chuck and manufacturing method therefor
WO2011129552A2 (en) Method for manufacturing a metal filter for water treatment using a metal fiber
WO2023033618A1 (en) Composite comprising organometallic nanostructure powder and method for producing same
WO2021145563A1 (en) Method for surface-treating inorganic particles, and inorganic particles produced thereby
KR20220065307A (en) Peelable coatings with flame retardant nanomicro capsule and manufacturing method thereof
WO2015147378A1 (en) Porous filter media having double-layered structure in which positive charge is added, and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906422

Country of ref document: EP

Kind code of ref document: A1