WO2023113262A1 - 자기부상 회전 장치 및 자기부상 회전 방법 - Google Patents

자기부상 회전 장치 및 자기부상 회전 방법 Download PDF

Info

Publication number
WO2023113262A1
WO2023113262A1 PCT/KR2022/018140 KR2022018140W WO2023113262A1 WO 2023113262 A1 WO2023113262 A1 WO 2023113262A1 KR 2022018140 W KR2022018140 W KR 2022018140W WO 2023113262 A1 WO2023113262 A1 WO 2023113262A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
value
rotating
horizontal
current output
Prior art date
Application number
PCT/KR2022/018140
Other languages
English (en)
French (fr)
Inventor
문용수
김창교
지상현
Original Assignee
에이피시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이피시스템 주식회사 filed Critical 에이피시스템 주식회사
Publication of WO2023113262A1 publication Critical patent/WO2023113262A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0242Magnetic drives, magnetic coupling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Definitions

  • the present invention relates to a magnetic levitation rotation device and a magnetic levitation rotation method, and more particularly, to a magnetic levitation rotation device and a magnetic levitation rotation method capable of stable magnetic levitation rotation by compensating for a rotation error of a rotating part.
  • the thickness of a thin film constituting the semiconductor device is only a few nanometers (nm), and the thickness uniformity must be maintained within several percent. This level of uniformity necessitates the requirement that temperature variations across the substrate during high temperature processing cannot exceed several degrees Celsius. Therefore, a technique for minimizing temperature non-uniformity is very important. In particular, as the size of the substrate increases, such uniform heating is not properly performed, resulting in many problems. In order to solve the problem of uniform heating of the substrate, there is a maglev rotating apparatus as a substrate rotation device that horizontally rotates the substrate during rapid heat treatment.
  • the magnetic levitation rotation device includes a stator and a rotor, and the rotating part is lifted and rotated by magnetic force in a non-contact state with the stator. Therefore, it is suitable for a rapid heat treatment device that is heated to a high temperature for a short time because it has low noise and vibration, no generation of particles, and high-speed rotation.
  • the rotating unit supports the edge ring through a support cylinder, and a substrate is placed on the edge ring.
  • the hollow rotating part is difficult to be machined into a perfect circle due to processing accuracy and shape errors, resulting in rapid displacement during rotation of the rotating part. change can occur.
  • a mismatch between the center of mass and the center of rotation may arise due to the non-uniform mass distribution of the hollow rotating part. Due to the shape tolerance or eccentricity of the center of mass of the rotating part rotating at such high speed, vibration and noise are caused while the rotating part rotates.
  • a large load is generated on the electromagnet due to a rapid change in electromagnetic force for position control of the vibrating rotating part, and there is a problem in that it is difficult to control the speed and position of the rotating part.
  • Patent Document 1 Korean Patent Publication No. 10-2001-0111030
  • the present invention provides a magnetic levitation rotating device and a magnetic levitation rotating method capable of stable rotational motion and precise control by compensating for a shape tolerance of a rotating part.
  • the present invention provides a magnetic levitation rotation device and a magnetic levitation rotation method capable of stable rotational motion and precise control by compensating for the mass eccentricity of the rotating part.
  • the magnetic levitation rotation device includes a hollow rotating portion that rotates around a rotation shaft by being levitated by magnetic force; Provided on the outside of the rotating unit so as to be spaced apart from the rotating unit in the horizontal direction, a permanent magnet generating a suction force on the rotating unit and a horizontal position control coil configured to control the horizontal position of the rotating unit by generating magnetic flux and adjusting the suction force a fixed part; a horizontal displacement sensor unit measuring a displacement value of the rotating unit in a horizontal direction; a displacement value correction unit correcting the measured displacement value of the rotating unit in a horizontal direction according to a shape tolerance of the rotating unit; a control unit outputting a current output value for controlling a horizontal position of the rotation unit according to an input corrected horizontal displacement value; and a power supply unit receiving the current output value and providing control current to the horizontal position control coil.
  • the displacement value correction unit adds or subtracts the shape offset value (S) according to the shape tolerance of the rotation unit to the horizontal displacement value (G) measured by the horizontal displacement sensor unit, and converts the corrected horizontal displacement value (G_r) to the control unit can be provided to
  • the horizontal displacement sensor unit is provided in a plurality (n), and the displacement value correction unit calculates a shape offset value for calculating the shape offset value (S(i)) of the i-th horizontal displacement sensor unit among the plurality (n) by the following formula. wealth may be included.
  • i 0, 1, 2, ..., n-1 (integers given in order in one direction along the circumference with an arbitrary reference horizontal displacement sensor unit among a plurality of horizontal displacement sensor units set to 0)
  • is The shape correction coefficient
  • is the absolute angle when the rotating part rotates
  • ⁇ e is the phase offset value that minimizes vibration when the rotating part rotates.
  • the displacement value correction unit sets the phase offset value ( ⁇ e ) at an angle at which the total difference between the maximum value and the minimum value of horizontal displacement values (G) measured by a plurality of horizontal displacement sensor units while rotating the rotating unit is minimized. It may include a phase offset value determining unit for determining.
  • the displacement value compensating unit may include a shape compensating coefficient determiner that determines the shape compensating coefficient ⁇ as a value at which the amplitude of the corrected change in the displacement value in the horizontal direction according to the rotation of the rotating unit is minimized.
  • a magnetic levitation rotating device includes a hollow rotating part that rotates around a rotating shaft by being lifted by magnetic force; Provided on the outside of the rotating unit so as to be spaced apart from the rotating unit in the horizontal direction, a permanent magnet generating a suction force on the rotating unit and a horizontal position control coil configured to control the horizontal position of the rotating unit by generating magnetic flux and adjusting the suction force a fixed part; a horizontal displacement sensor unit measuring a displacement value of the rotating unit in a horizontal direction; a control unit outputting a current output value for controlling a horizontal position of the rotation unit according to the input horizontal displacement value; a current output value correction unit correcting the current output value according to the eccentricity of the center of mass of the rotating part; and a power supply unit receiving the corrected current output value and providing control current to the horizontal position control coil.
  • the current output value correction unit may provide a corrected current output value DAC_r obtained by adding or subtracting an inertia compensation value E according to the eccentricity of the center of mass of the rotating unit to the current output value DAC output from the control unit to the power supply unit.
  • the current output value correction unit may include an inertia compensation value calculation unit that calculates the inertia compensation value E by the following equation with respect to the X axis to the Y axis that intersect each other.
  • is the distance coefficient of the center of mass to the geometric center
  • is the absolute angle when the rotating part rotates
  • ⁇ x is the x-axis eccentricity angle (x-axis eccentricity offset value)
  • ⁇ y is the y-axis eccentricity angle (y-axis eccentricity offset value )lim.
  • the current output value compensator may include a distance coefficient determiner that determines the distance coefficient ⁇ as a value that minimizes the amplitude of the corrected current output value change according to the rotation of the rotating unit.
  • the magnetic levitation rotation method includes a permanent magnet for generating a suction force and a horizontal position control coil for controlling the horizontal position of the rotating unit by generating a magnetic flux to control the suction force inside the fixing unit.
  • E inertia compensation value
  • the horizontal displacement sensor unit is provided in a plurality (n), and the process of correcting the horizontal displacement value calculates the shape offset value (S(i)) of the i-th horizontal displacement sensor unit among the plurality (n) by the following equation. It may include a shape offset value calculation process.
  • i 0, 1, 2, ..., n-1 (integers given in order in one direction along the circumference with an arbitrary reference horizontal displacement sensor unit among a plurality of horizontal displacement sensor units set to 0)
  • is The shape correction coefficient
  • is the absolute angle when the rotating part rotates
  • ⁇ e is the phase offset value that minimizes vibration when the rotating part rotates.
  • the sum of the differences between the maximum value and the minimum value of the horizontal displacement values G measured by the plurality of horizontal displacement sensor units while rotating the rotation unit for the phase offset value ⁇ e is A process of determining a phase offset value for determining a minimum angle may be included.
  • the process of correcting the horizontal displacement value includes a shape correction coefficient determining process of determining a shape correction coefficient ( ⁇ ) as a value at which the amplitude of the corrected horizontal displacement value change according to the rotation of the rotating unit is minimized. can do.
  • the magnetic levitation rotation method includes a permanent magnet for generating a suction force and a horizontal position control coil for controlling the horizontal position of the rotating unit by generating a magnetic flux to control the suction force inside the fixing unit.
  • E inertia compensation value
  • the process of correcting the current output value may include an inertia compensation value calculation process of calculating an inertia compensation value (E) for an X axis to a Y axis that intersect each other by the equation below.
  • is the distance coefficient of the center of mass to the geometric center
  • is the absolute angle when the rotating part rotates
  • ⁇ x is the x-axis eccentricity angle (x-axis eccentricity offset value)
  • ⁇ y is the y-axis eccentricity angle (y-axis eccentricity offset value )lim.
  • the process of correcting the current output value may include a process of determining the distance coefficient ( ⁇ ) as a value that minimizes the amplitude of the change in the corrected current output value according to the rotation of the rotating unit.
  • stable rotation of the rotation unit is achieved by precisely controlling the position of the rotation unit by compensating for the shape tolerance of the hollow rotor and the runout error due to mass eccentricity. This could be possible
  • the speed and position of the rotating part can be stably controlled by effectively suppressing vibration and noise that may occur during rotation of the rotating part and properly managing the load applied to the electromagnet used for moving the horizontal position of the rotating part. Additionally, the amount of current applied to the control coil may be reduced, and the number of turns and diameter of the control coil may be minimized.
  • FIG. 1 is a block diagram of a magnetic levitation rotation device according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating run-out of a rotating part according to a shape tolerance of the rotating part in a magnetic levitation rotating device according to an embodiment of the present invention.
  • FIG 3 is measurement data of a horizontal displacement sensor unit showing a shape tolerance of a rotating unit in a magnetic levitation rotating device according to an embodiment of the present invention.
  • Figure 4 is data showing the change in the displacement value in the horizontal direction in the magnetic levitation rotation device according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a magnetic levitation rotation device according to another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating run-out of a rotating part according to mass eccentricity in a magnetic levitation rotating device according to another embodiment of the present invention.
  • FIG. 7 is a graph showing the effect of compensating for mass eccentricity in a magnetic levitation rotation device according to another embodiment of the present invention.
  • FIG. 8 is a block diagram of a magnetic levitation rotation device according to another embodiment of the present invention.
  • FIG. 9 is data showing a horizontal displacement value and a current output value in a magnetic levitation rotation device according to another embodiment of the present invention.
  • FIG. 10 is a flow chart of a magnetic levitation rotation method according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a magnetic levitation rotation method according to another embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a magnetic levitation rotating device according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram illustrating runout of a rotating part according to a shape tolerance of a rotating part in a magnetic levitating rotating device according to an embodiment of the present invention
  • 3 is measurement data of the horizontal displacement sensor unit representing the shape tolerance of the rotating unit in the magnetic levitation rotating device according to an embodiment of the present invention, and FIG. data shown.
  • the magnetic levitation rotation device is a hollow rotating portion 100 that rotates around the axis of rotation by floating by magnetic force; It is provided on the outside of the rotating part 100 so as to be spaced apart from the rotating part 100 in the horizontal direction, and generates a magnetic flux with a permanent magnet 220 that generates a suction force in the rotating part 100 to adjust the suction force so as to control the rotating part.
  • a fixing unit 200 having a horizontal position control coil 230 for controlling a horizontal position; a horizontal displacement sensor unit 300 for measuring a displacement value of the rotation unit 100 in a horizontal direction; a displacement value correction unit 400 for correcting the measured displacement value of the rotating unit 100 in the horizontal direction according to a shape tolerance of the rotating unit 100; a control unit 500 outputting a current output value for controlling the horizontal position of the rotation unit according to the input corrected horizontal displacement value; and a power supply unit 600 receiving the current output value and providing control current to the horizontal position control coil.
  • the hollow rotating part 100 may be lifted by magnetic force and rotated around the rotation axis.
  • the magnetic force for floating and rotating the rotator 100 is provided by the fixing part 200 disposed on the outside and spaced apart from the rotating part 100.
  • the hollow rotating part 100 may have a protruding top and bottom ends.
  • the rotating part 100 may be made of a ferromagnetic material so that a strong magnetic field can be induced by the fixing part 200, and a plurality of magnetic pole teeth are arranged in a ring shape at regular intervals on the outer circumferential surface of the hollow rotating part 100.
  • the fixing part 200 may be provided on the outside of the rotating part 100 so as to be spaced apart in the horizontal direction to provide magnetic force necessary for lifting, rotation, horizontal movement, vertical movement, and tilt adjustment of the rotating part 100 .
  • the fixing part 200 is in the form of a flat plate and includes magnetic cores 211 and 212 provided as a pair spaced apart in the vertical (Z-axis) direction, and equiangular intervals in the horizontal direction between the pair of magnetic cores 211 and 212 (eg For example, it includes a plurality of permanent magnets 220 arranged along the X-axis and Y-axis.
  • the magnetic cores 211 and 212 are integral flat plates extending along the outer circumferential surface of the hollow rotating part 100 and form a radial closed circuit.
  • the plurality of permanent magnets 220 have a strong magnetic field, they can generate a strong magnetic field in the rotator 100 despite the existence of a gap of air or vacuum, thereby injuring the rotator 100 as well as (100) allows the center of a plurality of permanent magnets to be aligned in the vertical direction.
  • the fixing unit 200 further includes a rotation drive coil (not shown) and position control coils 230, 240, and 250 coupled to the magnetic cores 211 and 212 and generating magnetic flux by an input current.
  • the driving coil is a multi-phase winding in which a plurality of end windings are arranged equiangularly along the inner surface of the magnetic core, and interacts with the magnetic field of the rotating part 100 or a plurality of magnetic pole teeth provided on its outer circumferential surface to generate torque around a vertical axis. generated to generate a rotating electromagnetic field that rotates the rotating unit 100.
  • the magnetic flux of the plurality of permanent magnets 220 generates a radial attraction between the fixed part 200 and the rotating part 100, and this attractive force will move the rotating part 100 to one side when instability occurs along the direction.
  • it is necessary to control the position of the rotating part 100 and the position of the rotating part 100 can be controlled using a position control coil that adjusts the suction force according to the direction and magnitude of the current generating the magnetic flux.
  • the position of the rotating unit can be controlled by additionally generating or canceling the attractive force.
  • the fixing part 200 is a plurality of magnet assemblies arranged in pairs symmetrically about the vertical axis along a plurality of horizontal axes (eg, X-axis and Y-axis) intersecting the vertical axis (Z-axis).
  • a plurality of horizontal axes eg, X-axis and Y-axis
  • Z-axis can include
  • Each of the plurality of magnet assemblies includes a permanent magnet 220 that lifts the rotating part by generating an attractive force to the rotating part 100; a horizontal position control coil 230 for controlling a horizontal position of the rotary unit 100 by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux; and a tilt control coil 240 for controlling the tilt of the rotating unit 100 by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux.
  • the permanent magnet 220 is disposed on the outer circumferential side between the magnetic cores 211 and 212 provided radially symmetrically and spaced apart in the vertical direction.
  • the horizontal position control coil 230 and the tilt control coil 240 may be wound on the protrusions of the upper magnetic core 211 and the protrusions of the lower magnetic core 212, which are spaced apart from each other in the vertical direction, respectively.
  • the horizontal position control coil, and the gradient control coil disposed symmetrically in the X-axis and Y-axis directions are relatively changed around the vertical axis, the horizontal rotation of the rotating unit 100 Directional position control and tilt control are possible.
  • the fixing part 200 extends along the outer wall of the rotating part 100 and is provided to surround the rotating part 100, and controls the vertical position of the rotating part 100 according to the direction and magnitude of current generating magnetic flux.
  • a control coil 250 may be further included. Since the rotation unit 100 receives a downward force by its own weight, the floating rotation unit 100 may not be aligned with the center of the height of the permanent magnet in the vertical direction, and may be lowered than the normal position. In this case, when it rotates at high speed, the rotating part may fluctuate while rotating due to the interaction between the magnetic force and gravity by the permanent magnet. Therefore, it is necessary to control the vertical position of the rotating part 100 so that the rotating part 100 can be positioned at a desired height as needed. By doing so, the vertical position of the rotation unit 100 can be controlled.
  • the horizontal and vertical positions of the rotating part must be obtained using a plurality of displacement sensor units spaced apart from each other.
  • a plurality of horizontal displacement sensor units 300 are provided on the inside or outside of the rotating unit at regular intervals to measure the horizontal displacement value (ie, horizontal distance or position) of the rotating unit.
  • the horizontal displacement sensor unit 300 may be an eddy current displacement sensor or a hall sensor, but is not particularly limited thereto, as long as it can detect a change in magnetic characteristics induced by a change in the position of the rotating unit.
  • an eddy current displacement sensor is a displacement sensor using eddy current, and eddy current is generated in the conductor when a conductor approaches the sensor due to a magnetic field generated when a current is supplied to a coil of the sensor.
  • This eddy current affects the current flowing through the coil of the sensor. Precise distance can be measured using the change in magnitude and phase of this current.
  • the Hall sensor outputs an output value linearly according to a change (ie, distance change) of the magnetic flux density (Gauss) from the magnet, from which displacement can be measured.
  • the hollow rotary part 100 is generally formed in a cylindrical shape, but it is very difficult to process the cross section of the rotary part into a perfect circle (perfect circle) due to processing precision and shape error. Due to this, even when the hollow rotating unit 100 rotates around the rotating shaft, the trajectory drawn by the hollow rotating unit does not draw a perfect circle, causing movement of the rotating shaft, thereby generating vibration and noise.
  • the horizontal displacement sensor units 300 are spaced apart from each other at intervals of 120 ° along the inner or outer circumferential surface of the rotating unit 100 to measure the displacement of the rotating unit. If the rotating part has a perfect circular shape, stable rotation is possible by measuring only the horizontal displacement of the rotating part in response to the movement of the geometric center axis (or rotation axis) of the rotating part and moving the position of the geometric center axis accordingly. However, when the rotating part has a shape other than a perfect circle (for example, an elliptical shape as shown in FIG. 2), the horizontal displacement sensor unit ( 300) The displacement values of the rotating parts 100 each measured rapidly change. In FIG.
  • Figure 3 shows the change in the displacement value of the rotating part measured by three horizontal displacement sensor units 300 spaced apart from each other at 120 ° intervals when the rotating part rotates 4 times.
  • the displacement value should be constantly measured according to However, in the case of an elliptical rotation part, even if it rotates around a fixed rotation axis, different distances (displacement values) are displayed depending on the rotational position of the ellipse. For this reason, as shown in FIG. 3 , the three horizontal displacement sensor units 300 have a phase difference of 120 ° and draw two sine curves per rotation of the rotating unit while the displacement value changes over time. That is, when the measured displacement value of the horizontal displacement sensor unit shows the same data as in FIG. 3 , it can be seen that it has an elliptical shape error.
  • Such sudden change in displacement value of the rotating part 100 is not due to a change in displacement value due to actual movement of the rotating part or the rotating shaft, but is due to a change in displacement value due to a shape tolerance of the rotating part.
  • the general rotational axis runout difference in horizontal displacement value
  • the runout that occurs when the elliptical rotational part rotates is caused by the combination of the rotational axis runout and the shape tolerance runout, so it is a general rotational axis runout.
  • the displacement value measured by the horizontal displacement sensor is used as it is to control the position of the rotating part, as in the prior art.
  • the displacement value including the displacement value due to the shape tolerance of the rotating part is controlled in addition to the movement of the rotating shaft.
  • the geometric center axis and the rotation axis do not coincide, and vibration may occur.
  • the load of the electromagnet may be generated by abruptly changing the magnetic force of the electromagnet for horizontal movement of the rotation unit in response to the rapid change in the displacement value. In order to suppress this problem, active control of the horizontal position of the rotating part is required.
  • the horizontal position of the rotating unit 100 is not controlled by the control unit 500 using the horizontal displacement value of the rotating unit measured by the horizontal displacement sensor unit 300 as it is, but the displacement value correction unit 400 controls the horizontal position of the rotating unit 100.
  • the horizontal position of the rotating part is determined using the corrected horizontal displacement value generated by correcting the horizontal displacement value of the rotating part measured by the displacement sensor unit 300 according to the shape tolerance of the rotating part before being provided to the control unit 500. You can control it.
  • the control unit 500 may output a current output value for controlling the horizontal position of the rotation unit according to the corrected horizontal displacement value input from the displacement value correction unit 400 .
  • the control unit 500 may be a PID control unit, which is a kind of feedback control, that allows the output of the system to maintain the reference voltage based on an error between the control variable and the reference input.
  • the corrected horizontal displacement value is input to the control unit 500 by compensating for the shape tolerance of the rotating part for the measured horizontal displacement value, only the actual displacement of the rotating shaft is actively controlled except for the displacement value generated by the shape tolerance. By doing so, it is possible to suppress vibration and noise generated during rotation of the rotating unit.
  • the displacement value according to the shape tolerance of the rotational unit in the displacement value correction unit 400 rapidly changes in the order of maximum -> minimum -> maximum -> minimum as the rotational unit rotates horizontally
  • the control unit 500 receives the corrected displacement value in the horizontal direction obtained by converting the measured value (or distance value) of the displacement sensor unit into an average value or a median value and outputs the compensated current output value for controlling the horizontal position of the rotation unit 100. can be printed out.
  • the maximum or minimum measured horizontal displacement value is compensated with an intermediate value, even when the horizontal displacement value (distance) of the rotating part is maximized, the change in displacement value due to the shape tolerance is compensated for, so that the suction force is not strengthened. It is possible to output a current output value so as not to (or not to pull the rotating part).
  • the power supply unit 600 receives a current output value obtained by using the corrected displacement value obtained by compensating for the change in displacement value according to the shape tolerance from the control unit 500, and transmits a control current corresponding to the current output value to the horizontal position control coil 230.
  • the horizontal position control coil 230 controls only the positional change of the rotation axis (geometry center axis) of the rotation unit excluding the displacement value change according to the shape tolerance, so that the rotation unit does not vibrate violently and rotates smoothly and stably. .
  • the displacement value correction unit 400 adds or subtracts the shape offset value (S) according to the shape tolerance of the rotating part to the horizontal displacement value (G) measured by the horizontal displacement sensor unit 300 to obtain a corrected horizontal displacement value (G_r) It can be obtained and provided to the control unit 500. That is, by adding or subtracting the shape offset value (S) according to the shape tolerance of the rotating part from the measured horizontal displacement value (G), the size of the horizontal displacement value amplitude (see FIG. 3) generated due to the shape tolerance while the rotating part rotates can reduce
  • the displacement value correcting unit 400 may include a shape offset value calculating unit that calculates the shape offset value S(i) of the i-th horizontal displacement sensor unit among the plurality (n) by the following equation.
  • i 0, 1, 2, ..., n-1 (integers given in order in one direction along the circumference with an arbitrary reference horizontal displacement sensor unit among a plurality of horizontal displacement sensor units set to 0)
  • is The shape correction coefficient
  • is an absolute angle when the rotating part rotates
  • ⁇ e is a phase offset value at which vibration is minimized when the rotating part rotates.
  • the shape offset value S(i) is as follows.
  • the shape offset value S(i) is as follows.
  • the displacement value compensating unit 400 rotates the rotating unit 100 and rotates the horizontal displacement sensor units of all the horizontal displacement sensor units by summing the differences between the maximum value and the minimum value of the horizontal displacement values G measured in each of the plurality of horizontal displacement sensor units.
  • a phase offset value determiner may be configured to determine, as the phase offset value ⁇ e , an angle at which a sum of differences between the maximum value and the minimum value of the directional displacement value G is minimum.
  • line 300(0) is the horizontal displacement value data of the number '0' horizontal displacement sensor unit
  • line 300(1) is horizontal displacement value data of the number '1' horizontal displacement sensor unit.
  • the phase offset value ⁇ e according to the shape tolerance of the rotating part showing the data of FIG. 4 is 150 degrees, but the rotating parts having different shape tolerances can obtain different phase offset values.
  • the displacement value correcting unit 400 may further include a shape correction coefficient determination unit that determines, as the shape correction coefficient ⁇ , a value at which the amplitude of the change in the corrected horizontal displacement value G_r obtained while rotating the rotating unit is minimized.
  • phase offset value ( ⁇ e ) determined as the angle at which the sum of the differences between the maximum and minimum values of the horizontal displacement values (G) measured while rotating the rotating part (indicated by a thick solid line) is minimized is used, and the shape correction coefficient (
  • the change in the input value input to the control unit 500 that is, the corrected horizontal displacement value G_r output from the displacement value correction unit
  • the shape offset value S can be obtained using the shape correction coefficient ⁇ at this time (see FIG. 9).
  • the horizontal position control of the rotating part inputs the horizontal displacement value measured by the horizontal displacement sensor part to the control unit, and the control unit compares the input horizontal displacement value with the horizontal displacement sensor target value to maintain the floating state of the rotating part.
  • a current output value for controlling the horizontal position of the rotating part is output.
  • the shape tolerance may be compensated for by correcting the horizontal displacement value.
  • FIG. 5 is a configuration diagram of a magnetic levitation rotating device according to another embodiment of the present invention
  • FIG. 6 is a conceptual diagram illustrating runout of a rotating part according to mass eccentricity in a magnetic levitation rotating device according to another embodiment of the present invention
  • 7 is a graph showing the effect of compensating for mass eccentricity in a magnetic levitation rotation device according to another embodiment of the present invention.
  • the magnetic levitation rotation device is a hollow rotating portion 100 that rotates around the axis of rotation by floating by the magnetic force; It is provided on the outside of the rotating part 100 so as to be spaced apart from the rotating part 100 in the horizontal direction, and generates a magnetic flux with a permanent magnet 220 that generates a suction force in the rotating part 100 to adjust the suction force to adjust the rotating part ( a fixing unit 200 having a horizontal position control coil 230 for controlling the horizontal position of 100; a horizontal displacement sensor unit 300 for measuring a displacement value of the rotation unit 100 in a horizontal direction; a control unit 500 outputting a current output value for controlling the horizontal position of the rotation unit 100 according to the input horizontal displacement value; a current output value correction unit 700 correcting the current output value according to the eccentricity of the center of mass of the rotating part; and a power supply unit 600 receiving the corrected current output value and providing control current to the horizontal position control coil 230 .
  • the geometric center and the center of mass of the rotating part do not coincide and are greatly distorted, if the horizontal position of the rotating part is controlled based on the geometric center, vibration and noise are generated while the rotating part rotates. may cause
  • the hollow rotating part may have a non-uniform mass distribution with respect to the geometric center. Due to the non-uniform mass distribution, the geometric center and the center of mass do not coincide and become eccentric.
  • the horizontal displacement value of the rotating part measured by the horizontal displacement sensor represents the geometrical distance of the rotating part. For this reason, if the control current is provided to the horizontal position control coil by using the current output value output only by the control unit based on the geometric distance as it is, the center of mass is eccentric and the center of mass does not coincide with the geometric center.
  • the horizontal position control of the rotating part may become very unstable due to the vibration of the fixed part and the vibration of the mechanism supporting the object to be rotated.
  • FIG. 6 shows instability of the rotational locus and the center of mass trajectory of the rotating part caused by the difference between the center of mass and the center of geometry.
  • the fixing part 200 and the horizontal displacement sensor part 300 are geometrically aligned in the form of concentric circles with respect to the center point, and the rotating part 100 that is magnetically levitated and rotated by the fixing part 200 can rotate around the center point as a rotation axis. there is.
  • rotational instability such as vibration may occur while the rotating part rotates about a rotating shaft deviated from the same center point due to the inertia of the center of mass eccentric according to the rotation of the rotating part. .
  • Such rotational instability may present many problems when a magnetic levitation rotation device rotates a substrate in a substrate processing device such as a rapid thermal processing (RTP) device.
  • a substrate processing device such as a rapid thermal processing (RTP) device.
  • RTP rapid thermal processing
  • an edge ring 120 supporting a substrate (wafer) is seated on a support ring 110 connected to a rotating part of a magnetic levitation rotating device, and the substrate and the substrate are rotated according to the rotation of the rotating part.
  • the edge ring rotates together.
  • the substrate and the edge ring 120 are not coupled to the support ring 110 or the rotating part 100, but are seated in contact with each other, and if the geometric center and the center of mass of the rotating part coincide, the substrate and the edge ring 120 rotate However, in the case of a rotating part having an eccentric center of mass, the substrate and the edge ring may be shifted to one side. Due to this, there may be a problem in that the substrate is pushed in the radial direction or slipped in the rotational direction, which may give an impact to the substrate or cause instability in processing the substrate.
  • control unit 500 controls the horizontal position of the rotation unit 100 according to the horizontal displacement value input from the horizontal displacement sensor unit 300.
  • the current output value correction unit 700 may correct the output current output value according to the eccentricity of the center of mass of the rotating part.
  • the power supply unit 600 receives this input and provides control current to the horizontal position control coil so that the center point (center of mass) at which the amount of control current is minimized is the target of control. can Through this, vibration of the rotating unit can be suppressed by making the rotating shaft of the rotating unit coincide with or close to the center point of the rotating unit.
  • the current output value correction unit 700 adds or subtracts the inertia compensation value E according to the eccentricity of the center of mass of the rotating part to the current output value DAC output from the control unit 500 to obtain a corrected current output value DAC_r, and obtains the corrected current output value DAC_r. 600) can be provided.
  • the current output value correcting unit 700 may include an inertia compensation value calculating unit that calculates the inertia compensation value E by the following equation with respect to the X axis to the Y axis that intersect each other.
  • is the distance coefficient of the center of mass to the geometric center
  • is the absolute angle when the rotating part rotates
  • ⁇ x is the X-axis eccentric angle (X-axis eccentric offset value)
  • ⁇ y is the Y-axis eccentric angle (Y-axis eccentric offset value )am.
  • the current output value is output for each of the X-axis and Y-axis, and the control current corresponding to the X-axis current output value and the Y-axis current output value is applied to the X-axis horizontal position control coil and the Y-axis horizontal position control coil.
  • the X-axis control current and Y-axis control current appear in the form of sin/cos (90 degree phase difference). Angles at which the sum of the total amount of the X-axis control current and the total amount of the Y-axis control current are minimum may be set as the X-axis eccentricity angle ( ⁇ x ) and the Y-axis eccentricity angle ( ⁇ y ), respectively.
  • the X-axis total amount of X-axis control current and the total amount of Y-axis control current measured while increasing at regular intervals from 0 degrees to 360 degrees in the direction in which the rotating part rotates in the absolute angle ( ⁇ ) of the rotating part are minimized.
  • the X-axis eccentric angle ( ⁇ x ) and the Y-axis eccentric angle ( ⁇ y ) are angles at which the movement of the center point of the rotating part is minimized and the total amount of current is also minimized.
  • the current output value compensator 700 may further include a distance coefficient determiner that determines the distance coefficient ⁇ as a value that minimizes the amplitude of the corrected current output value change according to the rotation of the rotating unit.
  • a distance coefficient determiner that determines the distance coefficient ⁇ as a value that minimizes the amplitude of the corrected current output value change according to the rotation of the rotating unit.
  • the X-axis eccentricity angle ( ⁇ x ) and Y-axis eccentricity angle ( ⁇ y ) are determined and reflected in the equation for calculating the inertia compensation value (E) for the X-axis to Y-axis Distance coefficient ( ⁇ )
  • the change of the corrected current output value DAC_r obtained by changing ⁇ C_r is expressed with time (according to the rotation of the rotating part), there is a moment when the amplitude of the change in the corrected current output value DAC_r becomes minimum.
  • the inertia compensation value E can be obtained using the distance coefficient ⁇ at this time (see
  • FIG. 7(a) is a graph showing the position of the center of rotation of the rotating unit obtained when the horizontal position of the rotating unit is controlled without compensating for the eccentricity of the center of mass of the rotating unit.
  • Figure 7 (b) is a graph showing the rotation center position of the rotation unit when the horizontal position of the rotation unit is controlled after compensating for the eccentricity of the center of mass of the rotation unit.
  • the position of the rotating center of the rotating part fluctuated by about ⁇ 90 ⁇ m in the X and Y axes with respect to the origin (central point).
  • FIG. 8 is a block diagram of a magnetic levitation rotation device according to another embodiment of the present invention.
  • the magnetic levitation rotation device is a hollow rotating portion 100 that rotates around the axis of rotation by floating by the magnetic force; It is provided on the outside of the rotating part 100 so as to be spaced apart from the rotating part 100 in the horizontal direction, and generates a magnetic flux with a permanent magnet 220 that generates a suction force in the rotating part 100 to adjust the suction force to adjust the rotating part ( a fixing unit 200 having a horizontal position control coil 230 for controlling the horizontal position of 100; a horizontal displacement sensor unit 300 for measuring a horizontal displacement value of the rotating unit; a displacement value correcting unit 400 for correcting the measured displacement value of the rotating unit in the horizontal direction according to a shape tolerance of the rotating unit; a control unit 500 outputting a current output value for controlling the horizontal position of the rotation unit according to the input corrected horizontal displacement value; a current output value correction unit 700 correcting the current output value according to the eccentricity of the center of mass of the rotating part; and a power supply unit 600 receiving the corrected
  • the magnetically levitated rotating device of the present invention includes the displacement value correcting unit and the current output value correcting unit at the same time. can do.
  • FIG. 9 is data showing a horizontal displacement value and a current output value in a magnetic levitation rotation device according to another embodiment of the present invention.
  • FIG. 9 lines d r and d s indicate displacement values in the horizontal direction, and lines D 0 and D 1 indicate current output values.
  • Figure 9 (a) shows the horizontal direction displacement value and current output value change when the shape correction coefficient ( ⁇ ) and the distance coefficient ( ⁇ ) are set to '0' and compensation for the shape tolerance or center of mass eccentricity is not performed.
  • 9 (b) and (c) show the corrected horizontal direction displacement value and the corrected current output value change obtained by changing the shape correction coefficient ( ⁇ ) and the distance coefficient ( ⁇ ).
  • the horizontal direction displacement value and the amplitude of the current output value change are significantly reduced compared to the case where compensation for the shape tolerance and center of mass eccentricity is not performed.
  • FIG. 10 is a flowchart of a magnetic levitation rotation method according to another embodiment of the present invention.
  • items overlapping with those described above in relation to the magnetic levitation rotation device according to the present invention will be omitted.
  • the magnetic levitation rotation method includes a permanent magnet for generating a suction force and a horizontal position control coil for controlling the horizontal position of the rotation unit by generating a magnetic flux and adjusting the suction force.
  • the step of rotating the hollow rotating part provided inside the fixing part provided by the magnetic force to rotate about the rotating shaft (S100); Measuring a displacement value in the horizontal direction of the rotation unit in the horizontal displacement sensor unit (S110); Correcting the horizontal displacement value by adding or subtracting the shape offset value (S) according to the shape tolerance of the rotation unit to the measured horizontal displacement value (G) (S120); outputting a current output value for controlling the horizontal position of the rotary unit according to the corrected horizontal displacement value (Gr) (S130); and receiving the current output value and providing control current to the horizontal position control coil (S140).
  • Each process of the magnetic levitation rotation method according to another embodiment of the present invention does not necessarily need to be performed in chronological order, and each process may be performed in the opposite order or simultaneously as needed.
  • the step of causing the rotating part to float by magnetic force and rotating about the rotating shaft (S100) and the process of measuring the displacement value in the horizontal direction of the rotating part (S110) may be simultaneously performed.
  • a hollow provided inside the fixing part 200 having a permanent magnet 220 generating a suction force and a horizontal position control coil 230 controlling the horizontal position of the rotation unit by generating a magnetic flux and adjusting the suction force.
  • the rotating part 100 of the mold can be lifted by magnetic force and rotated around the rotating shaft (see S100).
  • a displacement value in the horizontal direction of the rotating unit may be measured in a plurality of horizontal displacement sensors provided inside or outside the rotating unit at regular intervals (see S110).
  • the horizontal displacement value may be corrected by adding or subtracting a shape offset value (S) according to the shape tolerance of the rotation unit to the measured horizontal displacement value (G) (see S120).
  • the controller 500 does not control the horizontal position of the rotating unit 100 by using the horizontal displacement value of the rotating unit measured by the horizontal displacement sensor unit 300 as it is, but the displacement value correction unit 400
  • the horizontal displacement value of the rotation unit measured by the horizontal displacement sensor unit 300 is corrected according to the shape tolerance of the rotation unit before being provided to the control unit 500. position can be controlled.
  • a current output value for controlling the horizontal position of the rotation unit may be output according to the corrected horizontal displacement value Gr (see S130).
  • the control unit 500 controls the horizontal position of the rotating part using the corrected horizontal displacement value by compensating for the shape tolerance of the rotating part with respect to the measured horizontal displacement value, the actual rotational axis excluding the displacement value generated by the shape tolerance Vibration and noise generated during rotation of the rotating part can be suppressed by actively controlling only the displacement of the rotating part.
  • a control current may be provided to the horizontal position control coil by receiving the current output value (see S140).
  • the horizontal displacement sensor unit is provided in a plurality (n), and in the process of correcting the horizontal displacement value (S120), the shape offset value (S(i)) of the i-th horizontal displacement sensor unit among the plurality (n) is calculated by the following formula. It may include a shape offset value calculation process calculated by
  • i 0, 1, 2, ..., n-1 (integers given in order in one direction along the circumference with an arbitrary reference horizontal displacement sensor unit among a plurality of horizontal displacement sensor units set to 0)
  • is The shape correction coefficient
  • is an absolute angle when the rotating part rotates
  • ⁇ e is a phase offset value at which vibration is minimized when the rotating part rotates.
  • the phase offset value ( ⁇ e ) is the maximum and minimum values of the horizontal displacement values (G) measured by the plurality of horizontal displacement sensor units while rotating the rotating unit.
  • a step of determining a phase offset value of determining an angle at which the sum of the differences is minimized may be further included.
  • the difference between the maximum and minimum horizontal displacement values (G) of all horizontal displacement sensors is There is an angular interval where the sum (indicated by the thick solid line) is minimal.
  • the angle at which the sum of the differences between the maximum and minimum horizontal displacement values (G) of all horizontal displacement sensors (indicated by thick solid lines) is minimized is determined as the phase offset value ( ⁇ e ) at which vibration is minimized during rotation of the rotating part. This can be used to obtain the shape offset value S(i).
  • the process of correcting the horizontal displacement value (S120) is a shape correction coefficient determining process of determining the shape correction coefficient ⁇ to a value that minimizes the amplitude of the change in the corrected horizontal displacement value according to the rotation of the rotating unit. may further include. While changing the shape correction coefficient ( ⁇ ), the change in the input value input to the control unit 500 (ie, the corrected horizontal displacement value (G_r) output from the displacement value correction unit) is measured over time (according to the rotation of the rotating unit). ), there is a moment when the amplitude of the change in the corrected horizontal displacement value G_r becomes minimum.
  • the shape offset value S can be obtained using the shape correction coefficient ⁇ at this time.
  • FIG. 11 is a flowchart of a magnetic levitation rotation method according to another embodiment of the present invention.
  • the overlapping details with the previously described parts in relation to the magnetic levitation rotation device and the magnetic levitation rotation method according to the present invention will be omitted.
  • Each process of the magnetic levitation rotation method according to another embodiment of the present invention does not necessarily need to be performed in chronological order, and each process may be performed in the opposite order or simultaneously as needed.
  • the magnetic levitation rotation method includes a permanent magnet 220 generating an attractive force, and a horizontal direction for controlling the horizontal position of the rotation unit by generating a magnetic flux and adjusting the attractive force.
  • E inertia compensation value
  • DAC output current output value
  • the process of levitating and rotating the rotating part (S200) and the process of measuring the displacement value in the horizontal direction of the rotating part (S210) are steps (S100) and (S110) in the magnetic levitation rotation method according to another embodiment of the present invention described above. is substantially the same as
  • a current output value for controlling the horizontal position of the rotating unit may be output according to the measured horizontal displacement value (see S220).
  • the current output value may be corrected by adding or subtracting the inertia compensation value E according to the eccentricity of the center of mass of the rotating part to the output current output value DAC (see S230).
  • Compensation for the eccentricity of the center of mass of the rotating part needs to be performed according to the eccentric distance and direction (angle) of the center of mass of the rotating part based on the geometric center of the rotating part. Therefore, it is effective to correct the current output value for the eccentricity of the center of mass of the rotating part after the control unit 500 outputs the current output values for the X and Y axes in order to control the X-axis direction and the Y-axis direction of the rotating part. am.
  • a control current may be provided to the horizontal position control coil by receiving the corrected current output value DAC_r (see S240).
  • the process of correcting the current output value (S230) may include an inertia compensation value calculation process of calculating the inertia compensation value (E) for the intersecting X-axis to Y-axis by the equation below.
  • is the distance coefficient of the center of mass to the geometric center
  • is the absolute angle when the rotating part rotates
  • ⁇ x is the x-axis eccentricity angle (x-axis eccentricity offset value)
  • ⁇ y is the y-axis eccentricity angle (y-axis eccentricity offset value )am.
  • the process of correcting the current output value (S230) may further include a distance coefficient determining process of determining the distance coefficient ⁇ as a value that minimizes the amplitude of the change in the corrected current output value according to the rotation of the rotating unit. That is, the change in the corrected current output value DAC_r obtained while changing the distance coefficient ( ⁇ ) in the above formula for calculating the inertia compensation value (E) for the X-axis to Y-axis over time (according to the rotation of the rotating part) ), there is a moment when the amplitude of the change of the corrected current output value DAC_r becomes minimum.
  • the inertia compensation value (E) can be obtained using the distance coefficient ( ⁇ ) at this time.
  • the shape tolerance of the hollow rotor and the runout error due to the eccentricity of the center of mass are compensated for to precisely control the position of the rotating part, thereby Stable rotation may be possible.
  • the speed and position of the rotating part can be stably controlled by effectively suppressing vibration and noise that may occur during rotation of the rotating part and properly managing the load applied to the electromagnet used for moving the horizontal position of the rotating part. Additionally, the amount of current applied to the control coil may be reduced, and the number of turns and diameter of the control coil may be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

본 발명은 회전부의 회전 오차를 보상하여 안정적인 자기부상 회전이 가능한 자기부상 회전 장치 및 자기부상 회전 방법에 관한 것으로, 상기 자기부상 회전 장치는 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부; 상기 회전부로부터 수평방향으로 이격되도록 상기 회전부의 외측에 제공되고, 상기 회전부에 흡인력을 발생시키는 영구자석과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부; 상기 회전부의 수평 방향 변위값을 측정하는 수평 변위 센서부; 측정된 상기 회전부의 수평방향 변위값을 상기 회전부의 형상공차에 따라 보정하는 변위값 보정부; 입력되는 보정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부; 및 상기 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부;를 포함할 수 있다.

Description

자기부상 회전 장치 및 자기부상 회전 방법
본 발명은 자기부상 회전 장치 및 자기부상 회전 방법에 관한 것으로, 보다 상세하게는 회전부의 회전 오차를 보상하여 안정적인 자기부상 회전이 가능한 자기부상 회전 장치 및 자기부상 회전 방법에 관한 것이다.
최근의 반도체 소자에서는 반도체 소자를 구성하는 박막의 두께가 수 나노(nm)에 불과하며 그 두께 균일성이 수% 내로 유지되어야 한다. 이러한 균일성의 레벨은 고온 프로세싱 동안에 기판 전체의 온도 변화가 수℃를 초과할 수 없다는 요건을 필요로 한다. 따라서, 온도의 불균일성을 최소화시키는 기술이 매우 중요하다. 특히, 기판이 대형화되면서 이러한 균일 가열이 제대로 이루어지지 않아 많은 문제점들이 발생되고 있다. 이러한 기판의 균일가열문제를 해결하기 위하여 급속열처리가 이루어지는 동안에 기판을 수평회전시키는 기판 회전장치로서 자기부상 회전 장치(Maglev rotating apparatus)가 있다.
자기부상 회전 장치는 고정부(Stator)와 회전부(Rotor)를 포함하며, 회전부는 자기력에 의해 고정부에 비접촉된 상태로 부상되어 회전한다. 따라서, 소음 및 진동이 적고, 파티클의 발생이 없으며, 고속회전이 가능하여 짧은 시간동안 고온으로 가열되는 급속열처리장치에 적합하다. 회전부는 지지 실린더를 통하여 에지링을 지지하고, 에지링 상에는 기판이 올려 놓여진다.
일반적으로 고속으로 회전하는 회전부의 변위를 측정하는 변위 센서를 이용하여 회전부의 위치를 미세 조정할 필요가 있다. 회전부의 위치를 미세 조정하기 위해서는 변위 센서를 이용해서 정확한 변위값을 확보하는 것이 필수적인데, 중공형의 회전부는 가공 정밀도와 형상 오차등의 원인으로 진원으로 가공되기 어려워 회전부의 회전시에 급격한 변위값 변화가 발생될 수 있다. 또한, 중공형 회전부의 불균일한 질량 분포로 인해서 질량 중심과 회전 중심 사이의 불일치가 발행될 수도 있다. 이러한 고속으로 회전하는 회전부의 형상 공차나 질량 중심의 편심으로 인해서 회전부가 회전을 하면서 진동과 소음을 유발하게 된다. 그리고 진동하는 회전부의 위치 제어를 위한 전자기력의 급격한 변화로 인해서 전자석에 많은 부하가 발생되며, 회전부의 속도와 위치를 제어하는 것에 어려움을 초래하는 문제점이 있다.
(특허문헌 1) 한국공개특허 제10-2001-0111030호
본 발명은 회전부의 형상 공차를 보상하여 안정적인 회전운동과 정밀한 제어가 가능한 자기부상 회전 장치 및 자기부상 회전 방법을 제공한다.
또한, 본 발명은 회전부의 질량 편심을 보상하여 안정적인 회전운동과 정밀한 제어가 가능한 자기부상 회전 장치 및 자기부상 회전 방법을 제공한다.
본 발명의 실시예에 따른 자기부상 회전 장치는 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부; 상기 회전부로부터 수평방향으로 이격되도록 상기 회전부의 외측에 제공되고, 상기 회전부에 흡인력을 발생시키는 영구자석과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부; 상기 회전부의 수평 방향 변위값을 측정하는 수평 변위 센서부; 측정된 상기 회전부의 수평방향 변위값을 상기 회전부의 형상공차에 따라 보정하는 변위값 보정부; 입력되는 보정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부; 및 상기 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부;를 포함할 수 있다.
상기 변위값 보정부는, 수평 변위 센서부에서 측정된 수평방향 변위값(G)에 상기 회전부의 형상공차에 따른 형상 오프셋값(S)을 가감하여 얻어진 보정된 수평방향 변위값(G_r)을 상기 제어부에 제공할 수 있다.
상기 수평 변위 센서부는 복수(n)개로 제공되고, 상기 변위값 보정부는, 복수(n)중에서 i번째 수평 변위 센서부의 형상 오프셋값(S(i))을 아래 식에 의해서 산출하는 형상 오프셋값 산출부를 포함할 수 있다.
Figure PCTKR2022018140-appb-I000001
여기서, i는 0, 1, 2, ... , n-1(복수의 수평 변위 센서부 중 임의의 기준 수평 변위 센서부를 0으로 하고, 원주를 따라 일방향으로 순서대로 부여된 정수), α는 형상 보정 계수, θ는 회전부 회전시 절대 각도, θe는 회전부 회전시 진동이 최소가 되는 위상 오프셋값임.
상기 변위값 보정부는, 위상 오프셋값(θe)을 상기 회전부를 회전하면서 복수의 수평 변위 센서부에서 측정된 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합이 최소가 되는 각도로 결정하는 위상 오프셋값 결정부를 포함할 수 있다.
상기 변위값 보정부는, 형상 보정 계수(α)를 회전부의 회전에 따른 상기 보정된 수평방향 변위값 변화의 진폭이 최소가 되는 값으로 결정하는 형상 보정 계수 결정부를 포함할 수 있다.
본 발명의 다른 실시예에 따른 자기부상 회전 장치는 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부; 상기 회전부로부터 수평방향으로 이격되도록 상기 회전부의 외측에 제공되고, 상기 회전부에 흡인력을 발생시키는 영구자석과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부; 상기 회전부의 수평 방향 변위값을 측정하는 수평 변위 센서부; 입력되는 상기 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부; 출력된 상기 전류 출력값을 회전부 질량 중심의 편심에 따라 보정하는 전류 출력값 보정부; 및 보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부;를 포함할 수 있다.
상기 전류 출력값 보정부는, 상기 제어부에서 출력된 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 얻어진 보정된 전류 출력값(DAC_r)을 상기 전원부에 제공할 수 있다.
상기 전류 출력값 보정부는, 서로 교차하는 X축 내지 Y축에 대해서 아래 식에 의해서 상기 관성 보상값(E)을 산출하는 관성 보상값 산출부를 포함할 수 있다.
Figure PCTKR2022018140-appb-I000002
Figure PCTKR2022018140-appb-I000003
여기서, β는 기하 중심에 대한 질량 중심의 거리 계수, θ는 회전부 회전시 절대 각도, θx는 x축 편심 각도(x축 편심 오프셋값), θy는 y축 편심 각도(y축 편심 오프셋값)임.
상기 전류 출력값 보정부는, 거리 계수(β)를 상기 회전부의 회전에 따른 보정된 전류 출력값 변화의 진폭이 최소가 되는 값으로 결정하는 거리 계수 결정부를 포함할 수 있다.
본 발명의 다른 실시예에 따른 자기부상 회전 방법은 흡인력을 발생시키는 영구자석과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부 내측에 제공된 중공형의 회전부를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정; 수평 변위 센서부에서 상기 회전부의 수평 방향 변위값을 측정하는 과정; 상기 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 과정; 출력된 상기 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 전류 출력값을 보정하는 과정; 및 보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 과정;을 포함할 수 있다.
상기 수평 변위 센서부는 복수(n)개로 제공되고, 상기 수평방향 변위값을 보정하는 과정은, 복수(n)중에서 i번째 수평 변위 센서부의 형상 오프셋값(S(i))을 아래 식에 의해서 산출하는 형상 오프셋값 산출 과정을 포함할 수 있다.
Figure PCTKR2022018140-appb-I000004
여기서, i는 0, 1, 2, ... , n-1(복수의 수평 변위 센서부 중 임의의 기준 수평 변위 센서부를 0으로 하고, 원주를 따라 일방향으로 순서대로 부여된 정수), α는 형상 보정 계수, θ는 회전부 회전시 절대 각도, θe는 회전부 회전시 진동이 최소가 되는 위상 오프셋값임.
상기 수평방향 변위값을 보정하는 과정은, 위상 오프셋값(θe)를 상기 회전부를 회전하면서 복수의 수평 변위 센서부에서 측정된 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합이 최소가 되는 각도로 결정하는 위상 오프셋값 결정 과정을 포함할 수 있다.
상기 상기 수평방향 변위값을 보정하는 과정은, 형상 보정 계수(α)를 상기 회전부의 회전에 따른 상기 보정된 수평방향 변위값 변화의 진폭이 최소가 되는 값으로 결정하는 형상 보정 계수 결정 과정을 포함할 수 있다.
본 발명의 다른 실시예에 따른 자기부상 회전 방법은 흡인력을 발생시키는 영구자석과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부 내측에 제공된 중공형의 회전부를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정; 상기 회전부의 수평 방향 변위값을 측정하는 과정; 상기 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 과정; 출력된 상기 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 전류 출력값을 보정하는 과정; 및 보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 과정;을 포함할 수 있다.
상기 전류 출력값을 보정하는 과정은, 서로 교차하는 X축 내지 Y축에 대해서 관성 보상값(E)을 아래 식에 의해서 산출하는 관성 보상값 산출 과정을 포함할 수 있다.
Figure PCTKR2022018140-appb-I000005
Figure PCTKR2022018140-appb-I000006
여기서, β는 기하 중심에 대한 질량 중심의 거리 계수, θ는 회전부 회전시 절대 각도, θx는 x축 편심 각도(x축 편심 오프셋값), θy는 y축 편심 각도(y축 편심 오프셋값)임.
상기 전류 출력값을 보정하는 과정은, 거리 계수(β)를 상기 회전부의 회전에 따른 보정된 전류 출력값 변화의 진폭이 최소가 되는 값으로 결정하는 거리 계수 결정 과정을 포함할 수 있다.
본 발명의 실시예에 따른 자기부상 회전 장치 및 자기부상 회전 방법에 의하면, 중공형 회전부(Rotor)의 형상 공차와 질량 편심에 따른 런아웃 오차를 보상하여 회전부의 위치를 정밀하게 제어함으로써 회전부의 안정적인 회전이 가능할 수 있다.
또한, 회전부의 회전시에 발생될 수 있는 진동과 소음을 효과적으로 억제하고, 회전부의 수평 위치 이동을 위해서 사용되는 전자석에 걸리는 부하를 적절히 관리하여 회전부의 속도와 위치를 안정적으로 제어할 수 있다. 추가적으로, 제어 코일에 인가되는 전류량이 줄고, 제어 코일의 턴수와 직경 등을 최소화할 수도 있다.
그리고, 회전부에 연결되어 함께 회전하는 피회전체(예를 들어, 반도체 웨이퍼)의 경우, 회전부의 런아웃 오차로 인해 불안정한 회전을 하게 되면 반경 방향으로 밀림 현상이나 회전 방향으로 슬립현상 등이 발생될 수 있으나, 별도의 복잡한 장치 없이도 런아웃 오차를 보상함으로써, 피회전체에 가해지는 힘을 최소화할 수 있다.
도 1은 본 발명의 실시예에 따른 자기부상 회전 장치의 구성도.
도 2는 본 발명의 실시예에 따른 자기부상 회전 장치에서 회전부의 형상 공차에 따른 회전부의 런아웃을 설명하는 개념도.
도 3은 본 발명의 실시예에 따른 자기부상 회전 장치에서 회전부의 형상 공차를 나타내는 수평 변위 센서부의 측정 데이터.
도 4는 본 발명의 실시예에 따른 자기부상 회전 장치에서 수평방향 변위값의 변화를 나타낸 데이터.
도 5는 본 발명의 다른 실시예에 따른 자기부상 회전 장치의 구성도.
도 6은 본 발명의 다른 실시예에 따른 자기부상 회전 장치에서 질량 편심에 따른 회전부의 런아웃을 설명하는 개념도.
도 7은 본 발명의 다른 실시예에 따른 자기부상 회전 장치에서 질량 편심 보상의 효과를 나타내는 그래프.
도 8은 본 발명의 또 다른 실시예에 따른 자기부상 회전 장치의 구성도.
도 9는 본 발명의 또 다른 실시예에 따른 자기부상 회전 장치에서 수평방향 변위값과 전류 출력값을 나타낸 데이터.
도 10은 본 발명의 다른 실시예에 따른 자기부상 회전 방법의 순서도.
도 11은 본 발명의 또 다른 실시예에 따른 자기부상 회전 방법의 순서도.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 실시예에 따른 자기부상 회전 장치의 구성도이고, 도 2는 본 발명의 실시예에 따른 자기부상 회전 장치에서 회전부의 형상 공차에 따른 회전부의 런아웃을 설명하는 개념도이고, 도 3은 본 발명의 실시예에 따른 자기부상 회전 장치에서 회전부의 형상 공차를 나타내는 수평 변위 센서부의 측정 데이터이고, 도 4는 본 발명의 실시예에 따른 자기부상 회전 장치에서 수평방향 변위값의 변화를 나타낸 데이터이다.
도 1 내지 도 4를 참조하면, 본 발명의 실시예에 따른 자기부상 회전 장치는 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부(100); 상기 회전부(100)로부터 수평방향으로 이격되도록 상기 회전부(100)의 외측에 제공되고, 상기 회전부(100)에 흡인력을 발생시키는 영구자석(220)과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일(230)을 구비하는 고정부(200); 상기 회전부(100)의 수평 방향 변위값을 측정하는 수평 변위 센서부(300); 측정된 상기 회전부(100)의 수평방향 변위값을 상기 회전부(100)의 형상공차에 따라 보정하는 변위값 보정부(400); 입력되는 보정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부(500); 및 상기 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부(600);를 포함할 수 있다.
중공형의 회전부(100)는 자기력에 의해서 부상하여 회전축을 중심으로 회전할 수 있다. 회전부(100)를 부상시키고 회전시키는 자기력은 회전부(100)로부터 이격되어 외측에 배치되는 고정부(200)에 의해서 제공되는데, 회전부(100)와 고정부(200) 사이에 자계의 상호 작용을 원할하게 하기 위해서 중공형의 회전부(100)는 상단부와 하단부가 돌출된 형태일 수 있다. 회전부(100)는 고정부(200)에 의해서 강한 자계가 유도될 수 있도록 강자성 물질로 이루어질 수 있고, 중공형 회전부(100)의 외주면에는 등간격으로 복수개의 자극 톱니가 링 형태로 배치되도록 제공될 수 있다.
고정부(200)는 수평방향으로 이격되도록 상기 회전부(100)의 외측에 제공되어 회전부(100)의 부상, 회전, 수평 이동, 수직 이동, 기울기 조절 등에 필요한 자기력을 제공할 수 있다. 고정부(200)는 평판 형태로서 수직(Z-축)방향으로 이격되어 한쌍으로 제공되는 자기 코어(211, 212), 및 한쌍의 자기 코어(211, 212) 사이에 수평방향으로 등각간격(예를 들어, X-축 및 Y-축)으로 배치되는 복수의 영구자석(220)을 포함한다.
자기 코어(211, 212)는 중공형의 회전부(100)의 외주면을 따라 연장되는 일체의 평판으로 방사상의 폐쇄 회로를 구성한다.
복수의 영구자석(220)은 강한 자계를 갖고 있어서 공기 혹은 진공의 갭이 존재함에도 불구하고 회전부(100)에 강한 자계를 발생시킬 수 있고, 이로 인해 회전부(100)를 부상시킬 수 있을 뿐만 아니라 회전부(100)가 수직방향으로 복수의 영구자석의 중심이 맞추어질 수 있도록 한다.
고정부(200)는 자기 코어(211, 212) 각각에 결합되고 입력되는 전류에 의해서 자속을 발생시키는 회전 구동 코일(미도시)과 위치 제어 코일(230, 240, 250)을 더 포함한다.
구동 코일은 복수의 단부 권선이 자기 코어의 내측면을 따라 등각격으로 배치되는 다상 권선으로, 회전부(100) 또는 그 외주면에 제공된 복수의 자극 톱니의 자계와 상호작용하여 수직축을 중심으로 한 토오크를 발생시켜 회전부(100)을 회전시키는 회전 전자계를 발생시킨다.
한편, 복수의 영구자석(220)의 자속은 고정부(200)과 회전부(100) 사이에 방사상의 흡인력을 발생시키는데, 이러한 흡인력은 방향에 따라 불안정성이 발생되면 회전부(100)을 일측으로 이동시킬 수 있다. 이러한 경우에는 회전부(100)의 위치 제어가 필요하게 되는데, 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하는 위치 제어 코일을 이용하여 회전부(100)의 위치를 제어할 수 있다. 영구자석(220)의 자속과 위치 제어 코일의 자속의 상대적인 방향이 일치하는지 혹은 반대 방향인지에 따라 흡인력을 추가로 발생시키거나 흡인력을 상쇄시킴으로써 회전부의 위치를 제어할 수 있다.
고정부(200)는 수직축(Z-축)에 교차하는 복수의 수평축(예를 들어, X-축 및 Y-축)을 따라 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치되는 복수의 자석 조립체를 포함할 수 있다.
상기 복수의 자석 조립체 각각은, 회전부(100)에 흡인력을 발생시켜 회전부를 부상시키는 영구자석(220); 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 회전부(100)의 수평 방향 위치를 제어하는 수평 위치 제어 코일(230); 및 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 회전부(100)의 기울기를 제어하는 기울기 제어 코일(240);을 포함할 수 있다.
영구자석(220)은 방사상으로 대칭되게 제공되는 수직방향으로 이격되어 제공되는 자기 코어(211, 212) 사이의 외주면 측에 배치된다.
수평 위치 제어 코일(230)과 기울기 제어 코일(240)은 각각 수직방향으로 서로 이격되어 제공되는 상측 자기 코어(211)의 돌출부와 하측 자기 코어(212)의 돌출부에 권취될 수 있다.
수직축을 중심으로 X-축과 Y-축 방향으로 서로 대칭되게 배치되는 영구자석, 수평 위치 제어 코일, 및 기울기 제어 코일의 자속 방향과 자속 크기를 상대적으로 변화시킴에 따라서, 회전부(100)의 수평 방향 위치 제어와 기울기 제어가 가능하게 된다.
고정부(200)는 회전부(100)의 외측벽을 따라 연장되어 회전부(100)을 감싸도록 제공되고, 자속을 발생시키는 전류의 방향과 크기에 따라 회전부(100)의 수직 방향 위치를 제어하는 수직 위치 제어 코일(250)을 더 포함할 수 있다. 회전부(100)은 자중에 의해서 아랫방향으로 힘을 받게 되어서 부상되어 있는 회전부가(100)가 수직방향으로 영구자석의 높이 중심이 맞추어지지 못하고, 정위치보다 아래로 쳐질 수가 있다. 이런 경우에서 고속으로 회전하게 되면 영구자석에 의한 자기력과 중력의 상호작용으로 인해서 회전부가 회전하면서 요동칠 수 있다. 따라서, 필요에 따라서 회전부(100)을 원하는 높이에 위치시킬 수 있도록 회전부(100)의 수직 방향 위치를 제어할 필요가 있는데, 수직 위치 제어 코일(250)에서 코일을 흐르는 전류의 방향과 크기를 조절함으로써 회전부(100)의 수직 방향 위치를 제어할 수 있다.
한편, 위치 제어 코일(230, 240, 250)을 이용하여 회전부(100)의 위치를 조절하기 위해서는 회전부(100)의 위치 또는 변위를 측정할 필요가 있다. 회전부의 수평 방향 위치, 기울기, 수직 방향 위치를 제어하기 위해서는 서로 이격된 복수의 변위 센서부를 이용하여 회전부의 수평 방향 위치와 수직 방향 위치를 획득하여야 한다.
수평 변위 센서부(300)는 회전부의 내측 혹은 외측에 등각간격으로 복수개가 제공되어 상기 회전부의 수평 방향 변위값(즉 수평 방향 거리 또는 위치 등)을 측정할 수 있다. 수평 변위 센서부(300)는 와전류 변위 센서 또는 홀 센서일 수 있는데, 특별히 이들에 제한되는 것에 아니고 회전부의 위치 변화에 의해 유도되는 자기적 특성 변화를 감지할 수 있으면 족하다.
예를 들어, 와전류 변위센서를 와전류를 이용한 변위센서로서, 센서의 코일에 전류를 공급하면 생성되는 자기장에 의해서 센서 주위에 도체가 접근하면 도체에 와전류가 생성된다. 이 와전류는 센서의 코일에 흐르는 전류에 영향을 준다. 이 전류의 크기 변화와 위상 변화 등을 이용하여 정밀한 거리를 측정할 수 있다. 그리고, 홀 센서는 자석에서 나오는 자속밀도(가우스)의 크기 변화(즉, 거리 변화)에 따라 선형적으로 출력값을 출력하는데, 이로부터 변위를 측정할 수 있다.
중공형의 회전부(100)는 일반적으로 원통형으로 형성되는데, 회전부의 단면이 가공 정밀도와 형상 오차 등의 원인으로 진원(완전한 원형)으로 가공되는 것이 매우 어렵다. 이로 인해, 중공형의 회전부(100)가 회전축을 중심으로 회전하는 경우에도 중공형의 회전부가 그리는 궤적이 진원을 그리지 않게 되어 회전축의 이동을 유발하고 이로 인해서 진동과 소음을 발생시킬 수 있다.
일반적으로 수평 변위 센서부(300)가 회전부(100)의 내주면 혹은 외주면을 따라 120o 간격으로 서로 이격되어 제공되어 회전부의 변위를 측정할 수 있다. 회전부가 진원 형상인 경우에는 회전부의 기하 중심축(혹은 회전축) 이동에 대응하여 발생되는 회전부의 수평 방향 변위만 측정하고, 이에 따라 기하 중심축의 위치 이동을 시키면 안정적인 회전이 가능하다. 그러나, 회전부가 진원이 아닌 형상(예를 들어 도 2에서와 같이 타원형)인 경우에는 회전부(100)가 일정한 기하 중심축(혹은 회전축)을 중심으로 회전하더라도 회전부의 회전에 따라 수평 변위 센서부(300) 각각이 측정하는 회전부(100)의 변위값은 급격하게 변화한다. 도 2에서 타원형 회전부(100)의 장축이 ‘0’번 수평 변위 센서부(300(0))를 향한 경우(실선 표시)와 타원형 회전부(100)이 반시계반향으로 회전하여 타원형 회전부(100')의 장축이 ‘0’번 수평 변위 센서부(300(0))와 ‘2’번 수평 변위 센서부(300(2)) 사이에 위치한 경우(점선 표시)에 타원형 회전부의 회전에 따라서 수평 변위 센서부에서 측정되는 거리는 급격하게 변화하는 것을 확인할 수 있다.
도 3은 회전부가 4회전 할 때 120o 간격으로 서로 이격된 세개의 수평 변위 센서부(300)에서 측정한 회전부의 변위값 변화를 나타내는데, 고정된 회전축을 중심으로 회전하는 진원의 회전부라면 시간에 따라 변위값이 일정하게 측정되어야한다. 그러나, 타원형의 회전부인 경우에는 고정된 회전축을 중심으로 회전하다고 하더라도 타원형의 회전 위치에 따라 서로 다른 거리(변위값)을 나타낸다. 이로 인해, 도 3에서와 같이 세개의 수평 변위 센서부(300)는 120o의 위상차를 가지면서 시간에 따라 변위값이 변화하면서 회전부의 1회전당 2개의 사인곡선을 그리게 된다. 즉, 수평 변위 센서부의 측정 변위값이 도 3과 같은 데이터를 나타내면 타원형의 형상 오차를 갖고 있는 것을 알 수 있다.
이러한 회전부(100)의 급격한 변위값 변화는 회전부 혹은 회전축의 실질적인 이동에 의한 변위값 변화가 아니고, 회전부의 형상공차에 따른 변위값 변화에 기인한 것이다. 회전부가 회전할 때 발생되는 일반적인 회전축 런아웃(수평 방향 변위값 차이)은 ±30㎛ 이내이나, 타원 형상의 회전부가 회전할 때 발생되는 런아웃은 회전축 런아웃과 함께 형상공차 런아웃을 합쳐져서 발생되므로 일반적인 회전축 런아웃은 ±30㎛보다 훨씬 클 수 있다.
즉, 가공 오차 혹은 형상 오차로 인해서 회전부가 진원 형태가 아닌 타원 등의 형태로 가공되는 경우에는, 종래와 같이 수평 변위 센서부가 측정하는 변위값을 그대로 사용하여 회전부의 위치를 제어하게 되면, 위치 제어가 실제로 필요한 회전축(혹은 회전부) 수평 이동뿐만 아니라, 회전축 이동 외에 회전부의 형상 공차로 인한 변위값을 포함한 변위값에 대한 제어를 하게 된다. 이로 인해, 기하 중심축과 회전축이 일치하지 않게 되고 진동이 발생될 수 있다. 또한, 급격한 변위값 변화에 대응하여 회전부의 수평 이동을 위해서 전자석의 자기력을 급격하게 변화시킴으로서 전자석의 부하가 발생될 수도 있다. 이러한 문제점을 억제하기 위해서 회전부의 수평 위치에 대한 능동 제어가 필요하다.
본 발명에서는 수평 변위 센서부(300)에서 측정한 회전부의 수평방향 변위값을 그대로 이용하여 제어부(500)에서 회전부(100)의 수평 위치를 제어하는 것이 아니라, 변위값 보정부(400)가 수평 변위 센서부(300)에서 측정된 상기 회전부의 수평방향 변위값을 제어부(500)로 제공되기 전에 상기 회전부의 형상공차에 따라 보정하여 생성한 보정된 수평방향 변위값을 이용하여 회전부의 수평 위치를 제어할 수 있다.
제어부(500)는 변위값 보정부(400)으로부터 입력되는 보정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력할 수 있다. 제어부(500)는 제어 변수와 기준 입력 사이의 오차에 근거하여 계통의 출력이 기준 전압을 유지하도록 하는 피드백 제어의 일종인 PID 제어부일 수 있다. 수평 변위 센서부(300)에서 측정한 회전부(100)의 수평 방향 변위값이 제어부에 입력되면, 회전부의 수평 방향 변위값와 회전부가 부상 상태를 유지하려는 수평 변위 센서부 목표값(target reference) 사이의 차이값을 '0'으로 만들기 위해서 회전부의 수평 위치를 계속해서 피드백 제어하게 된다. 따라서, 측정 수평 방향 변위값에 대해서 회전부의 형상 공차를 보상하여 보정된 수평방향 변위값을 제어부(500)에 입력하면, 형상 공차에 의해서 발생되는 변위값을 제외하고 실질적인 회전축의 변위만을 능동적으로 제어함으로써, 회전부의 회전시에 발생되는 진동과 소음을 억제할 수 있게 된다.
회전부의 회전축(기하 중심축)을 제어함에 있어서, 변위값 보정부(400)에서 회전부의 형상 공차에 따른 변위가 회전부가 회전하면서 최대 -> 최소 -> 최대 -> 최소 순으로 급격하게 변화하는 수평 변위 센서부의 측정값(혹은 거리값)을 평균값 혹은 중간값으로 변화시켜서 보상하여 출력한 보정된 수평방향 변위값을 제어부(500)가 입력받아 회전부(100)의 수평방향 위치를 제어하는 전류 출력값을 출력할 수 있다. 예를 들어, 최대 혹은 최소로 측정된 수평방향 변위값을 중간값으로 보상하게 되면, 회전부의 수평방향 변위값(거리)가 최대가 되었을 때에도 형상 공차에 따른 변위값 변화를 보상하여 흡인력을 강화하지 않도록(혹은 회전부를 당기지 않도록) 전류 출력값을 출력할 수 있다.
전원부(600)는 형상 공차에 따른 변위값 변화를 보상한 보정된 변위값을 이용하여 얻어지는 전류 출력값을 제어부(500)로부터 입력 받아, 전류 출력값에 대응하는 제어 전류를 수평 위치 제어 코일(230)에 제공할 수 있다. 이에 의하면, 수평 위치 제어 코일(230)은 형상 공차에 따른 변위값 변화를 제외하고 회전부의 회전축(기하 중심축)의 위치 변화만을 제어하게 됨으로써, 회전부가 심하게 진동하지 않고 부드럽고 안정적으로 회전할 수 있다.
변위값 보정부(400)는 수평 변위 센서부(300)에서 측정된 수평방향 변위값(G)에 회전부의 형상 공차에 따른 형상 오프셋값(S)을 가감하여 보정된 수평방향 변위값(G_r)을 얻고, 이를 제어부(500)에 제공할 수 있다. 즉, 측정된 수평방향 변위값(G)에서 회전부의 형상 공차에 따른 형상 오프셋값(S)을 가감함으로써 회전부가 회전하면서 형상 공차로 인하여 발생되는 수평 방향 변위값 진폭(도 3 참조)의 크기를 줄여줄 수 있다.
회전부(100)의 정확한 수평 방향 변위를 확인하기 위해서는 수평 변위 센서부(300)는 복수(n)개로 제공될 수 있다. 이때, 변위값 보정부(400)는 복수(n)중에서 i번째 수평 변위 센서부의 형상 오프셋값인 S(i)를 아래 식에 의해서 산출하는 형상 오프셋값 산출부를 포함할 수 있다.
Figure PCTKR2022018140-appb-I000007
여기서, i는 0, 1, 2, ... , n-1(복수의 수평 변위 센서부 중 임의의 기준 수평 변위 센서부를 0으로 하고, 원주를 따라 일방향으로 순서대로 부여된 정수), α는 형상 보정 계수, θ는 회전부 회전시 절대 각도, θe는 회전부 회전시 진동이 최소가 되는 위상 오프셋값이다.
예를 들어, 회전부의 내주면을 따라 시계방향으로 120o 간격으로 배치된 3개의 수평 변위 센서부를 사용하는 경우에 형상 오프셋값(S(i))는 다음과 같다.
Figure PCTKR2022018140-appb-I000008
Figure PCTKR2022018140-appb-I000009
Figure PCTKR2022018140-appb-I000010
또는, 회전부의 내주면을 따라 시계방향으로 90o 간격으로 배치된 4개의 수평 변위 센서부를 사용하는 경우에 형상 오프셋값(S(i))는 다음과 같다.
Figure PCTKR2022018140-appb-I000011
Figure PCTKR2022018140-appb-I000012
Figure PCTKR2022018140-appb-I000013
Figure PCTKR2022018140-appb-I000014
이때, 변위값 보정부(400)는 회전부(100)를 회전하면서 복수의 수평 변위 센서부 각각에서 측정된 수평방향 변위값(G)의 최대값과 최소값의 차이를 모두 합한 모든 수평 변위 센서부의 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합이 최소가 되는 각도를 위상 오프셋값(θe)으로 결정하는 위상 오프셋값 결정부를 포함할 수 있다.
도 4에서 300(0) 선은 ‘0’번 수평 변위 센서부의 수평방향 변위값 데이터이고, 300(1) 선은 ‘1’번 수평 변위 센서부의 수평방향 변위값 데이터로서, 회전부의 형상 공차로 인해서 시간에 따라(회전부의 회전에 따라) 사인 곡선을 그리면서 심하게 변화한다. θe 선으로 표시되는 위상 오프셋값을 0도부터 360도까지 변화시켜면서 수평방향 변위값을 측정하면 모든 수평 변위 센서부의 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합(굵은 실선(Rsum)으로 표시)이 최소가 되는 각도 구간이 존재한다. 모든 수평 변위 센서부의 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합(굵은 실선(Rsum)으로 표시)이 최소가 되는 각도를 회전부 회전시 진동이 최소가 되는 위상 오프셋값(θe)로 결정하여 형상 오프셋값(S(i))을 구하는데 사용할 수 있다. 예를 들어, 도 4의 데이터를 나타낸 회전부의 형상 공차에 따른 위상 오프셋값(θe)은 150도인데, 다른 형상 공차를 갖는 회전부는 서로 다른 위상 오프셋값을 얻을 수 있다.
한편, 변위값 보정부(400)는 회전부를 회전하면서 얻어지는 보정된 수평방향 변위값(G_r) 변화의 진폭이 최소가 되는 값을 형상 보정 계수(α)로 결정하는 형상 보정 계수 결정부를 더 포함할 수 있다. 회전부를 회전하면서 측정되는 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합(굵은 실선으로 표시)이 최소가 되는 각도로 결정된 위상 오프셋값(θe)를 이용하고, 형상 보정 계수(α)를 변화시키면서 제어부(500)에 입력되는 입력값(즉, 변위값 보정부에서 출력되는 보정된 수평방향 변위값(G_r))의 변화를 시간에 따라(회전부의 회전에 따라) 나타내면, 보정된 수평방향 변위값(G_r) 변화의 진폭이 최소이 되는 순간이 있다. 이때의 형상 보정 계수(α)를 사용하여 형상 오프셋값(S)를 얻을 수 있다(도 9 참조).
일반적으로 회전부의 수평 위치 제어는 수평 변위 센서부에서 측정된 수평 방향 변위값을 제어부에 입력하고, 제어부는 입력된 수평 방향 변위값과 회전부가 부상 상태를 유지하려는 수평 변위 센서부 목표값을 비교하여 회전부의 수평 위치를 제어하기 위한 전류 출력값을 출력하게 된다. 회전부의 형상 공차에 의한 회전 불안정성을 보상하기 위해서 회전부의 형상 자체를 기준으로 보상하는 것이 효과적이므로, 형상 공차를 직접적으로 확인할 수 있는 수평 방향 변위값이 변화하는 진폭을 줄이는 방향으로 제어부에 입력되기 전에 수평 방향 변위값을 보정하여 형상 공차를 보상할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 자기부상 회전 장치의 구성도이고, 도 6은 본 발명의 다른 실시예에 따른 자기부상 회전 장치에서 질량 편심에 따른 회전부의 런아웃을 설명하는 개념도이고, 도 7은 본 발명의 다른 실시예에 따른 자기부상 회전 장치에서 질량 편심 보상의 효과를 나타내는 그래프이다. 본 발명의 다른 실시예에 따른 자기부상 회전 장치를 설명함에 있어서, 본 발명의 실시예에 따른 자기부상 회전 장치와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.
도 5 내지 도 7을 참조하면, 본 발명의 다른 실시예에 따른 자기부상 회전 장치는 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부(100); 상기 회전부(100)로부터 수평방향으로 이격되도록 상기 회전부(100)의 외측에 제공되고, 상기 회전부(100)에 흡인력을 발생시키는 영구자석(220)과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부(100)의 수평 방향 위치를 제어하는 수평 위치 제어 코일(230)을 구비하는 고정부(200); 상기 회전부(100)의 수평 방향 변위값을 측정하는 수평 변위 센서부(300); 입력되는 상기 수평방향 변위값에 따라 상기 회전부(100)의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부(500); 출력된 상기 전류 출력값을 회전부 질량 중심의 편심에 따라 보정하는 전류 출력값 보정부(700); 및 보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일(230)에 제공하는 전원부(600);를 포함할 수 있다.
회전부(100)의 형상 공차에 따른 회전 불안정성과는 별도로 회전부가 기하 중심과 질량 중심이 일치하지 않고 많이 틀어져 있으면, 기하 중심을 기준으로 회전부의 수평방향 위치를 제어하게 되면 회전부는 회전하면서 진동과 소음을 발생시키게 될 수 있다. 중공형의 회전부는 기하 중심을 기준으로 불균일한 질량 분포를 가질 수 있는데, 질량 분포가 불균일에 의해서 기하 중심과 질량 중심이 일치하지 않고 편심되게 된다.
수평 변위 센서부는 측정하는 회전부의 수평 방향 변위값은 회전부의 기학하적 거리를 나타내는 것이다. 이로 인해, 제어부에서 기하학적 거리만을 기준으로 출력하는 전류 출력값을 그대로 이용하여 제어 전류를 수평 위치 제어 코일에 제공한다면, 질량 중심이 편심되어 있어서 질량 중심이 기하 중심과 일치하지 않음으로 인해 발행되는 회전부과 고정부의 진동, 피회전체를 지지하는 기구물의 진동 등으로 인해서 회전하는 회전부에 대한 수평 위치 제어는 매우 불안정해질 수 있다.
도 6은 질량 중심과 기하 중심의 차이로 인해서 발생되는 회전부의 회전 궤적과 질량 중심 궤적의 불안정성을 나타낸다. 고정부(200)과 수평 변위 센서부(300)는 중심점에 대해서 동심원 형태로 기하학적으로 정렬되고, 고정부(200)에 의해서 자기부상되어 회전하는 회전부(100)는 상기 중심점을 회전축으로 회전할 수 있다. 그러나 회전부의 질량 분포가 불균일하여 질량 중심이 편심되어 있다면, 회전부의 회전에 따라 편심된 질량 중심의 관성에 의해서 상기 동일한 중심점에서 벗어난 회전축에 대해서 회전부는 회전하면서 진동 등의 회전 불안정성이 발생될 수 있다.
이러한 회전 불안정성은 자기부상 회전 장치가 급속 열처리(Rapid Thermal Processing; RTP) 장치와 같은 기판 처리 장치에서 기판을 회전시키는 경우에 많은 문제점을 나타낼 수 있다. 기판 처리 장치에서는 기판(웨이퍼)을 지지하는 에지링(Edge ring; 120)이 자기부상 회전 장치의 회전부에 연결된 서포트링(Support ring; 110) 상에 안착된 상태로, 회전부의 회전에 따라 기판과 에지링이 함께 회전한다. 기판과 에지링(120)은 서포트링(110) 또는 회전부(100)에 결합된 것이 아니라 서로 접촉되어 안착된 상태로서, 회전부의 기하 중심과 질량 중심이 일치한다면 기판과 에지링(120)은 회전시에도 움직이지 않지만 질량 중심이 편심된 회전부의 경우는 기판과 에지링은 한쪽으로 쉬프트될 수 있다. 이로 인해, 기판은 반경방향으로 밀리거나, 회전방향으로 슬립되는 현상들이 발생되어 기판에 충격을 가하거나 기판 처리의 불안정성을 초래하는 문제가 있을 수 있다.
이러한 문제를 해결하기 위해서 본 발명의 다른 실시예에 따른 자기부상 회전 장치는 제어부(500)가 수평 변위 센서부(300)로부터 입력되는 수평방향 변위값에 따라 회전부(100)의 수평방향 위치를 제어하는 전류 출력값을 출력하면, 전류 출력값 보정부(700)는 회전부 질량 중심의 편심에 따라 출력된 상기 전류 출력값을 보정할 수 있다.
한편, 회전부 질량 중심의 편심에 대한 보상은 회전부의 기하 중심을 기준으로 질량 중심의 편심된 거리와 방향(각도)에 따라 이루어지는 것이 필요하다. 이에, 회전부의 X축 방향과 Y축 방향에 대한 제어를 위하여 제어부(500)가 X축과 Y축에 대한 전류 출력값을 출력한 후에 회전부 질량 중심의 편심에 대한 전류 출력값의 보정을 진행하는 것이 효과적이다.
전원부(600)는 전류 출력값 보정부(700)가 보정된 전류 출력값을 출력하면, 이를 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하여 제어 전류량이 최소화되는 중심점(질량 중심점)을 제어 대상으로 할 수 있다. 이를 통해서 회전부의 회전축을 회전부의 중심점에 일치 혹은 근접시킴으로써 회전부의 진동을 억제할 수 있다.
전류 출력값 보정부(700)는 제어부(500)에서 출력된 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 보정된 전류 출력값(DAC_r)을 얻고, 이를 전원부(600)에 제공할 수 있다.
한편, 전류 출력값 보정부(700)는 서로 교차하는 X축 내지 Y축에 대해서 아래 식에 의해서 상기 관성 보상값(E)을 산출하는 관성 보상값 산출부를 포함할 수 있다.
Figure PCTKR2022018140-appb-I000015
Figure PCTKR2022018140-appb-I000016
여기서, β는 기하 중심에 대한 질량 중심의 거리 계수, θ는 회전부 회전시 절대 각도, θx는 X축 편심 각도(X축 편심 오프셋값), θy는 Y축 편심 각도(Y축 편심 오프셋값)이다.
전류 출력값은 X축과 Y축 각각에 대해서 출력되어, X축 전류 출력값과 Y축 전류 출력값에 대응하는 제어 전류가 X축 수평 위치 제어 코일과 Y축 수평 위치 제어 코일에 인가되는데, 회전부가 회전하면 X축 제어전류와 Y축 제어전류가 sin/cos인의 형태로 나타난다(90도 위상차). X축 제어전류 총량과 Y축 제어전류 총량의 합이 최소가 되는 각도를 각각 X축 편심 각도(θx), Y축 편심 각도(θy)로 할 수 있다. 구체적으로, 회전하는 회전부의 절대 각도(θ)에서 회전부가 회전하는 방향으로 0도에서 360도까지 일정 간격으로 증가하면서 측정되는 X축 제어전류 총량과 Y축 제어전류 총량이 최소화되는 각도로 X축 편심 각도(θx), Y축 편심 각도(θy)를 결정한다. 다시 말해, X축 편심 각도(θx), Y축 편심 각도(θy)는 회전부 중심점의 움직임이 최소가 되고, 전류총량도 최소가 되는 각도이다.
전류 출력값 보정부(700)는 상기 회전부의 회전에 따른 보정된 전류 출력값 변화의 진폭이 최소가 되는 값으로 거리 계수(β)를 결정하는 거리 계수 결정부를 더 포함할 수 있다. 앞에서 설명한 바에 따라 X축 편심 각도(θx), Y축 편심 각도(θy)를 결정하여 반영한 X축 내지 Y축에 대해서 상기 관성 보상값(E)을 산출하는 상기 식에 거리 계수(β)를 변화시키면서 얻은 보정된 전류 출력값(DAC_r)의 변화를 시간에 따라(회전부의 회전에 따라) 나타내면, 보정된 전류 출력값(DAC_r) 변화의 진폭이 최소이 되는 순간이 있다. 이때의 거리 계수(β)를 사용하여 관성 보상값(E)를 얻을 수 있다(도 9 참조).
도 7의 (a)는 회전부 질량 중심의 편심에 대한 보상을 하지 않고 회전부의 수평 위치를 제어한 경우에 얻어진 회전부의 회전 중심 위치를 나타낸 그래프이다. 그리고 도 7의 (b)는 회전부 질량 중심의 편심에 대한 보상을 한 후에 회전부의 수평 위치를 제어한 경우에 회전부의 회전 중심 위치를 나타낸 그래프이다. 회전부 질량 중심의 편심에 대한 보상을 하지 않은 경우는 회전부의 회전 중심 위치는 원점(중심점)에 대해서 X축과 Y축으로 약 ±90㎛ 정도 흔들렸다. 하지만, 회전부 질량 중심의 편심에 대한 보상을 한 경우는 회전부의 회전 중심 위치는 원점(중심점)에 대해서 X축과 Y축으로 약 ±25㎛ 정도 흔들려서, 회전부의 진동이 약 4배정도 줄어든 것을 알 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 자기부상 회전 장치의 구성도이다.
도 8을 참조하면, 본 발명의 다른 실시예에 따른 자기부상 회전 장치는 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부(100); 상기 회전부(100)로부터 수평방향으로 이격되도록 상기 회전부(100)의 외측에 제공되고, 상기 회전부(100)에 흡인력을 발생시키는 영구자석(220)과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부(100)의 수평 방향 위치를 제어하는 수평 위치 제어 코일(230)을 구비하는 고정부(200); 상기 회전부의 수평 방향 변위값을 측정하는 수평 변위 센서부(300); 측정된 상기 회전부의 수평방향 변위값을 상기 회전부의 형상공차에 따라 보정하는 변위값 보정부(400); 입력되는 보정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부(500); 출력된 상기 전류 출력값을 회전부 질량 중심의 편심에 따라 보정하는 전류 출력값 보정부(700); 및 보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부(600);를 포함할 수 있다.
본 발명의 다른 실시예에 따른 자기부상 회전 장치를 설명함에 있어서, 본 발명의 자기부상 회전 장치와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.
자기부상 회전 장치의 회전부(100)는 형상 공차에 의한 회전 불안정과 질량 중심 편심에 의한 회전 불안정을 동시에 갖게 되므로, 본 발명의 자기부상 회전 장치는 앞서 살펴본 변위값 보정부와 전류 출력값 보정부를 동시에 포함할 수 있다.
도 9는 본 발명의 또 다른 실시예에 따른 자기부상 회전 장치에서 수평방향 변위값과 전류 출력값을 나타낸 데이터이다.
도 9에서 dr 선과 ds 선은 수평방향 변위값이고, D0 선과 D1 선은 전류 출력값을 나타낸다. 도 9의 (a)는 형상 보정 계수(α)와 거리 계수(β)가 '0'으로서 형상 공차 혹은 질량 중심 편심에 대한 보상을 하지 않은 경우의 수평방향 변위값과 전류 출력값 변화이다. 그리고 도 9의 (b)와 (c)는 형상 보정 계수(α)와 거리 계수(β)를 변화시키면서 얻은 보정된 수평방향 변위값과 보정된 전류 출력값 변화를 나타낸다. 도 9의 (b)에서 알 수 있듯이 형상 공차 및 질량 중심 편심에 대한 보상을 하지 않은 경우에 비해서 수평방향 변위값과 전류 출력값 변화의 진폭이 상당히 줄어드는 거을 확인할 수 있다. 수평방향 변위값과 전류 출력값 변화의 진폭이 줄어들면 회전부의 수평 방향 위치 제어가 안정화되고 회전부가 튀지 않고 부드럽게 회전하여 안정성을 확보할 수 있고 진동을 효과적을 억제할 수 있게 된다. 한편, 형상 공차 혹은 질량 중심 편심에 대한 보상을 과도하게 하면, 수평방향 변위값과 전류 출력값 변화의 진폭이 다시 증가하여 회전부의 회전 안정성이 훼손됨을 알 수 있다(도 9의 (c) 참조).
도 10은 본 발명의 다른 실시예에 따른 자기부상 회전 방법의 순서도이다. 본 발명의 다른 실시예에 따른 자기부상 회전 방법을 설명함에 있어서, 본 발명에 따른 자기부상 회전 장치와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.
도 10을 참조하면, 본 발명의 다른 실시예에 따른 자기부상 회전 방법은 흡인력을 발생시키는 영구자석과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부 내측에 제공된 중공형의 회전부를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정(S100); 수평 변위 센서부에서 상기 회전부의 수평 방향 변위값을 측정하는 과정(S110); 측정된 수평방향 변위값(G)에 상기 회전부의 형상공차에 따른 형상 오프셋값(S)을 가감하여 수평방향 변위값을 보정하는 과정(S120); 보정된 수평방향 변위값(Gr)에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 과정(S130); 및 상기 전류 출력값을 입력받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 과정(S140);을 포함할 수 있다.
본 발명의 다른 실시예에 따른 자기부상 회전 방법의 각 과정들은 반드시 시계열적으로 순서에 따라 수행될 필요는 없고, 필요에 따라서 각 과정들은 반대 순서로 수행될 수도 있고 혹은 동시에 수행될 수도 있다. 예를 들어, 회전부를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정(S100)과 회전부의 수평 방향 변위값을 측정하는 과정(S110)을 동시에 수행할 수도 있다.
우선, 흡인력을 발생시키는 영구자석(220)과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일(230)을 구비하는 고정부(200) 내측에 제공된 중공형의 회전부(100)를 자기력에 의해서 부상하여 회전축을 중심으로 회전시킬 수 있다(S100 참조).
다음으로, 회전부의 내측 혹은 외측에 등각간격으로 복수개가 제공되는 수평 변위 센서부에서 상기 회전부의 수평 방향 변위값을 측정할 수 있다(S110 참조).
그리고, 측정된 수평방향 변위값(G)에 상기 회전부의 형상공차에 따른 형상 오프셋값(S)을 가감하여 수평방향 변위값을 보정할 수 있다(S120 참조). 종래 기술에서와 같이 수평 변위 센서부(300)에서 측정한 회전부의 수평방향 변위값을 그대로 이용하여 제어부(500)에서 회전부(100)의 수평 위치를 제어하는 것이 아니라, 변위값 보정부(400)가 수평 변위 센서부(300)에서 측정된 상기 회전부의 수평방향 변위값을 제어부(500)로 제공되기 전에 상기 회전부의 형상공차에 따라 보정하여 생성한 보정된 수평방향 변위값을 이용하여 회전부의 수평 위치를 제어할 수 있다.
이어서, 보정된 수평방향 변위값(Gr)에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력할 수 있다(S130 참조). 측정된 수평 방향 변위값에 대해서 회전부의 형상 공차를 보상하여 보정된 수평방향 변위값을 이용하여 제어부(500)에서 회전부의 수평 위치를 제어하면, 형상 공차에 의해서 발생되는 변위값을 제외하고 실질적인 회전축의 변위만을 능동적으로 제어함으로써 회전부의 회전시에 발생되는 진동과 소음을 억제할 수 있게 된다.
마지막으로, 상기 전류 출력값을 입력받아 제어 전류를 상기 수평 위치 제어 코일에 제공할 수 있다(S140 참조).
한편, 상기 수평 변위 센서부는 복수(n)개로 제공되고, 수평방향 변위값을 보정하는 과정(S120)은 복수(n)중에서 i번째 수평 변위 센서부의 형상 오프셋값(S(i))을 아래 식에 의해서 산출하는 형상 오프셋값 산출 과정을 포함할 수 있다.
Figure PCTKR2022018140-appb-I000017
여기서, i는 0, 1, 2, ... , n-1(복수의 수평 변위 센서부 중 임의의 기준 수평 변위 센서부를 0으로 하고, 원주를 따라 일방향으로 순서대로 부여된 정수), α는 형상 보정 계수, θ는 회전부 회전시 절대 각도, θe는 회전부 회전시 진동이 최소가 되는 위상 오프셋값이다.
그리고, 상기 수평방향 변위값을 보정하는 과정(S120)은 위상 오프셋값(θe)를 상기 회전부를 회전하면서 복수의 수평 변위 센서부에서 측정된 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합이 최소가 되는 각도로 결정하는 위상 오프셋값 결정 과정을 더 포함할 수 있다.
위상 오프셋값을 0도부터 360도까지 변화시켜면서 시간에 따라(회전부의 회전에 따라) 수평방향 변위값을 측정하면 모든 수평 변위 센서부의 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합(굵은 실선으로 표시)이 최소가 되는 각도 구간이 존재한다. 모든 수평 변위 센서부의 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합(굵은 실선으로 표시)이 최소가 되는 각도를 회전부 회전시 진동이 최소가 되는 위상 오프셋값(θe)로 결정하여 형상 오프셋값(S(i))을 구하는데 사용할 수 있다.
상기 상기 수평방향 변위값을 보정하는 과정(S120)은 형상 보정 계수(α)를 상기 회전부의 회전에 따른 상기 보정된 수평방향 변위값 변화의 진폭이 최소가 되는 값으로 결정하는 형상 보정 계수 결정 과정을 더 포함할 수 있다. 형상 보정 계수(α)를 변화시키면서 제어부(500)에 입력되는 입력값(즉, 변위값 보정부에서 출력되는 보정된 수평방향 변위값(G_r))의 변화를 시간에 따라(회전부의 회전에 따라) 나타내면, 보정된 수평방향 변위값(G_r) 변화의 진폭이 최소이 되는 순간이 있다. 이때의 형상 보정 계수(α)를 사용하여 형상 오프셋값(S)를 얻을 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 자기부상 회전 방법의 순서도이다. 본 발명의 또 다른 실시예에 따른 자기부상 회전 방법을 설명함에 있어서, 본 발명에 따른 자기부상 회전 장치와 자기부상 회전 방법과 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다. 본 발명의 다른 실시예에 따른 자기부상 회전 방법의 각 과정들은 반드시 시계열적으로 순서에 따라 수행될 필요는 없고, 필요에 따라서 각 과정들은 반대 순서로 수행될 수도 있고 혹은 동시에 수행될 수도 있다.
도 11을 참고하면, 본 발명의 또 다른 실시예에 따른 자기부상 회전 방법은 흡인력을 발생시키는 영구자석(220)과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일(230)을 구비하는 고정부(200) 내측에 제공된 중공형의 회전부(100)를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정(S200); 상기 회전부(100)의 수평 방향 변위값을 측정하는 과정(S210); 상기 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 과정(S220); 출력된 상기 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 전류 출력값을 보정하는 과정(S230); 및 보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 과정(S240);을 포함할 수 있다.
회전부를 부상하여 회전시키는 과정(S200)과 회전부의 수평 방향 변위값을 측정하는 과정(S210) 각각은 앞서 설명한 본 발명의 다른 실시예에 따른 자기부상 회전 방법에서 (S100)과정과 (S110)과정과 실질적으로 동일하다.
회전부의 수평 방향 변위값을 측정하는 과정 이후에 측정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력할 수 있다(S220 참조).
이후에, 출력된 상기 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 전류 출력값을 보정할 수 있다(S230 참조). 회전부 질량 중심의 편심에 대한 보상은 회전부의 기하 중심을 기준으로 질량 중심의 편심된 거리와 방향(각도)에 따라 이루어지는 것이 필요하다. 이에, 회전부의 X축 방향과 Y축 방향에 대한 제어를 위하여 제어부(500)가 X축과 Y축에 대한 전류 출력값을 출력한 후에 회전부 질량 중심의 편심에 대한 전류 출력값의 보정을 진행하는 것이 효과적이다.
마지막으로, 보정된 전류 출력값(DAC_r)을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공할 수 있다(S240 참조). 이를 통해서 회전부의 회전축을 회전부의 중심점에 일치 혹은 근접시킴으로써 회전부의 진동을 억제할 수 있다.
전류 출력값을 보정하는 과정(S230)은 서로 교차하는 X축 내지 Y축에 대해서 관성 보상값(E)을 아래 식에 의해서 산출하는 관성 보상값 산출 과정을 포함할 수 있다.
Figure PCTKR2022018140-appb-I000018
Figure PCTKR2022018140-appb-I000019
여기서, β는 기하 중심에 대한 질량 중심의 거리 계수, θ는 회전부 회전시 절대 각도, θx는 x축 편심 각도(x축 편심 오프셋값), θy는 y축 편심 각도(y축 편심 오프셋값)이다.
또한, 전류 출력값을 보정하는 과정(S230)은 거리 계수(β)를 상기 회전부의 회전에 따른 보정된 전류 출력값 변화의 진폭이 최소가 되는 값으로 결정하는 거리 계수 결정 과정을 더 포함할 수 있다. 즉, X축 내지 Y축에 대해서 상기 관성 보상값(E)을 산출하는 상기 식에 거리 계수(β)를 변화시키면서 얻은 보정된 전류 출력값(DAC_r)의 변화를 시간에 따라(회전부의 회전에 따라) 나타내면, 보정된 전류 출력값(DAC_r) 변화의 진폭이 최소이 되는 순간이 있다. 이때의 거리 계수(β)를 사용하여 관성 보상값(E)를 얻을 수 있다.
본 발명의 실시예에 따른 자기부상 회전 장치 및 자기부상 회전 방법에 의하면, 중공형 회전부(Rotor)의 형상 공차와 질량 중심의 편심에 따른 런아웃 오차를 보상하여 회전부의 위치를 정밀하게 제어함으로써 회전부의 안정적인 회전이 가능할 수 있다.
또한, 회전부의 회전시에 발생될 수 있는 진동과 소음을 효과적으로 억제하고, 회전부의 수평 위치 이동을 위해서 사용되는 전자석에 걸리는 부하를 적절히 관리하여 회전부의 속도와 위치를 안정적으로 제어할 수 있다. 추가적으로, 제어 코일에 인가되는 전류량이 줄고, 제어 코일의 턴수와 직경 등을 최소화할 수도 있다.
그리고, 회전부에 연결되어 함께 회전하는 피회전체(예를 들어, 반도체 웨이퍼)의 경우, 회전부의 런아웃 오차로 인해 불안정한 회전을 하게 되면 반경 방향으로 밀림 현상이나 회전 방향으로 슬립현상 등이 발생될 수 있으나, 별도의 복잡한 장치 없이도 런아웃 오차를 보상함으로써, 피회전체에 가해지는 힘을 최소화할 수 있다.
상기 설명에서 사용한 “~ 상에”라는 의미는 직접 접촉하는 경우와 직접 접촉하지는 않지만 상부 또는 하부에 대향하여 위치하는 경우를 포함하고, 상부면 또는 하부면 전체에 대향하여 위치하는 것뿐만 아니라 부분적으로 대향하여 위치하는 것도 가능하며, 위치상 떨어져 대향하거나 상부면 또는 하부면에 직접 접촉한다는 의미로 사용하였다.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (16)

  1. 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부;
    상기 회전부로부터 수평방향으로 이격되도록 상기 회전부의 외측에 제공되고, 상기 회전부에 흡인력을 발생시키는 영구자석과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부;
    상기 회전부의 수평 방향 변위값을 측정하는 수평 변위 센서부;
    측정된 상기 회전부의 수평방향 변위값을 상기 회전부의 형상공차에 따라 보정하는 변위값 보정부;
    입력되는 보정된 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부; 및
    상기 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부;를 포함하는 자기부상 회전 장치.
  2. 청구항 1에 있어서,
    상기 변위값 보정부는,
    수평 변위 센서부에서 측정된 수평방향 변위값(G)에 상기 회전부의 형상공차에 따른 형상 오프셋값(S)을 가감하여 얻어진 보정된 수평방향 변위값(G_r)을 상기 제어부에 제공하는 자기부상 회전 장치.
  3. 청구항 2에 있어서,
    상기 수평 변위 센서부는 복수(n)개로 제공되고,
    상기 변위값 보정부는,
    복수(n)중에서 i번째 수평 변위 센서부의 형상 오프셋값(S(i))을 아래 식에 의해서 산출하는 형상 오프셋값 산출부를 포함하는 자기부상 회전 장치.
    Figure PCTKR2022018140-appb-I000020
    여기서, i는 0, 1, 2, ... , n-1(복수의 수평 변위 센서부 중 임의의 기준 수평 변위 센서부를 0으로 하고, 원주를 따라 일방향으로 순서대로 부여된 정수), α는 형상 보정 계수, θ는 회전부 회전시 절대 각도, θe는 회전부 회전시 진동이 최소가 되는 위상 오프셋값임.
  4. 청구항 3에 있어서,
    상기 변위값 보정부는,
    위상 오프셋값(θe)을 상기 회전부를 회전하면서 복수의 수평 변위 센서부에서 측정된 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합이 최소가 되는 각도로 결정하는 위상 오프셋값 결정부를 포함하는 자기부상 회전 장치.
  5. 청구항 3에 있어서,
    상기 변위값 보정부는,
    형상 보정 계수(α)를 회전부의 회전에 따른 상기 보정된 수평방향 변위값 변화의 진폭이 최소가 되는 값으로 결정하는 형상 보정 계수 결정부를 포함하는 자기부상 회전 장치.
  6. 자기력에 의해서 부상하여 회전축을 중심으로 회전하는 중공형의 회전부;
    상기 회전부로부터 수평방향으로 이격되도록 상기 회전부의 외측에 제공되고, 상기 회전부에 흡인력을 발생시키는 영구자석과 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부;
    상기 회전부의 수평 방향 변위값을 측정하는 수평 변위 센서부;
    입력되는 상기 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 제어부;
    출력된 상기 전류 출력값을 회전부 질량 중심의 편심에 따라 보정하는 전류 출력값 보정부; 및
    보정된 전류 출력값을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 전원부;를 포함하는 자기부상 회전 장치.
  7. 청구항 6에 있어서,
    상기 전류 출력값 보정부는,
    상기 제어부에서 출력된 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 얻어진 보정된 전류 출력값(DAC_r)을 상기 전원부에 제공하는 자기부상 회전 장치.
  8. 청구항 7에 있어서,
    상기 전류 출력값 보정부는,
    서로 교차하는 X축 내지 Y축에 대해서 아래 식에 의해서 상기 관성 보상값(E)을 산출하는 관성 보상값 산출부를 포함하는 자기부상 회전 장치.
    Figure PCTKR2022018140-appb-I000021
    Figure PCTKR2022018140-appb-I000022
    여기서, β는 기하 중심에 대한 질량 중심의 거리 계수, θ는 회전부 회전시 절대 각도, θx는 x축 편심 각도(x축 편심 오프셋값), θy는 y축 편심 각도(y축 편심 오프셋값)임.
  9. 청구항 8에 있어서,
    상기 전류 출력값 보정부는,
    거리 계수(β)를 상기 회전부의 회전에 따른 보정된 전류 출력값 변화의 진폭이 최소가 되는 값으로 결정하는 거리 계수 결정부를 포함하는 자기부상 회전 장치.
  10. 흡인력을 발생시키는 영구자석과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부 내측에 제공된 중공형의 회전부를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정;
    수평 변위 센서부에서 상기 회전부의 수평 방향 변위값을 측정하는 과정;
    측정된 수평방향 변위값(G)에 상기 회전부의 형상공차에 따른 형상 오프셋값(S)을 가감하여 수평방향 변위값을 보정하는 과정;
    보정된 수평방향 변위값(Gr)에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 과정; 및
    상기 전류 출력값을 입력받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 과정;을 포함하는 자기부상 회전 방법.
  11. 청구항 10에 있어서,
    상기 수평 변위 센서부는 복수(n)개로 제공되고,
    상기 수평방향 변위값을 보정하는 과정은,
    복수(n)중에서 i번째 수평 변위 센서부의 형상 오프셋값(S(i))을 아래 식에 의해서 산출하는 형상 오프셋값 산출 과정을 포함하는 자기부상 회전 방법.
    Figure PCTKR2022018140-appb-I000023
    여기서, i는 0, 1, 2, ... , n-1(복수의 수평 변위 센서부 중 임의의 기준 수평 변위 센서부를 0으로 하고, 원주를 따라 일방향으로 순서대로 부여된 정수), α는 형상 보정 계수, θ는 회전부 회전시 절대 각도, θe는 회전부 회전시 진동이 최소가 되는 위상 오프셋값임.
  12. 청구항 11에 있어서,
    상기 수평방향 변위값을 보정하는 과정은,
    위상 오프셋값(θe)를 상기 회전부를 회전하면서 복수의 수평 변위 센서부에서 측정된 수평방향 변위값(G)의 최대값과 최소값의 차이의 총합이 최소가 되는 각도로 결정하는 위상 오프셋값 결정 과정을 포함하는 자기부상 회전 방법.
  13. 청구항 11에 있어서,
    상기 상기 수평방향 변위값을 보정하는 과정은,
    형상 보정 계수(α)를 상기 회전부의 회전에 따른 상기 보정된 수평방향 변위값 변화의 진폭이 최소가 되는 값으로 결정하는 형상 보정 계수 결정 과정을 포함하는 자기부상 회전 방법.
  14. 흡인력을 발생시키는 영구자석과, 자속을 발생시켜 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일을 구비하는 고정부 내측에 제공된 중공형의 회전부를 자기력에 의해서 부상하여 회전축을 중심으로 회전시키는 과정;
    상기 회전부의 수평 방향 변위값을 측정하는 과정;
    상기 수평방향 변위값에 따라 상기 회전부의 수평방향 위치를 제어하는 전류 출력값을 출력하는 과정;
    출력된 상기 전류 출력값(DAC)에 회전부 질량 중심의 편심에 따른 관성 보상값(E)을 가감하여 전류 출력값을 보정하는 과정; 및
    보정된 전류 출력값(DAC_r)을 입력 받아 제어 전류를 상기 수평 위치 제어 코일에 제공하는 과정;을 포함하는 자기부상 회전 방법.
  15. 청구항 14에 있어서,
    상기 전류 출력값을 보정하는 과정은,
    서로 교차하는 X축 내지 Y축에 대해서 관성 보상값(E)을 아래 식에 의해서 산출하는 관성 보상값 산출 과정을 포함하는 자기부상 회전 방법.
    Figure PCTKR2022018140-appb-I000024
    Figure PCTKR2022018140-appb-I000025
    여기서, β는 기하 중심에 대한 질량 중심의 거리 계수, θ는 회전부 회전시 절대 각도, θx는 x축 편심 각도(x축 편심 오프셋값), θy는 y축 편심 각도(y축 편심 오프셋값)임.
  16. 청구항 15에 있어서,
    상기 전류 출력값을 보정하는 과정은,
    거리 계수(β)를 상기 회전부의 회전에 따른 보정된 전류 출력값 변화의 진폭이 최소가 되는 값으로 결정하는 거리 계수 결정 과정을 포함하는 자기부상 회전 방법.
PCT/KR2022/018140 2021-12-16 2022-11-16 자기부상 회전 장치 및 자기부상 회전 방법 WO2023113262A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0180678 2021-12-16
KR1020210180678A KR20230091507A (ko) 2021-12-16 2021-12-16 자기부상 회전 장치 및 자기부상 회전 방법

Publications (1)

Publication Number Publication Date
WO2023113262A1 true WO2023113262A1 (ko) 2023-06-22

Family

ID=86773001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018140 WO2023113262A1 (ko) 2021-12-16 2022-11-16 자기부상 회전 장치 및 자기부상 회전 방법

Country Status (3)

Country Link
KR (1) KR20230091507A (ko)
TW (1) TW202333171A (ko)
WO (1) WO2023113262A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067113A (ko) * 1995-10-26 1999-08-16 알프레드 디. 호크 통합형 자기부상 및 회전시스템
KR100726016B1 (ko) * 1999-07-19 2007-06-08 가부시키가이샤 에바라 세이사꾸쇼 기판 회전 장치
KR20120030564A (ko) * 2009-07-22 2012-03-28 도쿄엘렉트론가부시키가이샤 처리 장치 및 그 동작 방법
JP2013139844A (ja) * 2011-12-29 2013-07-18 Osaka Vacuum Ltd ラジアル方向制御器及び、それが適用された磁気軸受装置
KR20170041652A (ko) * 2013-09-12 2017-04-17 그리 그린 리프리저레이션 테크놀로지 센터 컴퍼니 리미티드 오브 주하이 자기부상 시스템의 축 제어 방법 및 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351874A (ja) 2000-06-09 2001-12-21 Ebara Corp 基板回転装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067113A (ko) * 1995-10-26 1999-08-16 알프레드 디. 호크 통합형 자기부상 및 회전시스템
KR100726016B1 (ko) * 1999-07-19 2007-06-08 가부시키가이샤 에바라 세이사꾸쇼 기판 회전 장치
KR20120030564A (ko) * 2009-07-22 2012-03-28 도쿄엘렉트론가부시키가이샤 처리 장치 및 그 동작 방법
JP2013139844A (ja) * 2011-12-29 2013-07-18 Osaka Vacuum Ltd ラジアル方向制御器及び、それが適用された磁気軸受装置
KR20170041652A (ko) * 2013-09-12 2017-04-17 그리 그린 리프리저레이션 테크놀로지 센터 컴퍼니 리미티드 오브 주하이 자기부상 시스템의 축 제어 방법 및 장치

Also Published As

Publication number Publication date
TW202333171A (zh) 2023-08-16
KR20230091507A (ko) 2023-06-23

Similar Documents

Publication Publication Date Title
JP4165903B2 (ja) 集積された磁気浮揚及び回転装置
US8283813B2 (en) Robot drive with magnetic spindle bearings
US5524502A (en) Positioning apparatus including a hydrostatic bearing for spacing apart a supporting surface and a guide surface
WO2023113261A1 (ko) 자기부상 회전 장치 및 이를 이용하는 기판 처리 장치
US6639225B2 (en) Six-axis positioning system having a zero-magnetic-field space
US20120118504A1 (en) Processing apparatus and method for operating same
US20010051499A1 (en) Substrate rotating apparatus
KR101691518B1 (ko) 감소된 복잡성을 갖는 블러시가 없는 자가 베어링 dc 모터
US20220148931A1 (en) Alignment mechanism, alignment method, film forming device and film forming method
WO2023113262A1 (ko) 자기부상 회전 장치 및 자기부상 회전 방법
CN112947007A (zh) 一种光刻机的旋转平台的旋转装置
KR102424177B1 (ko) 자기부상 회전 장치 및 진공 처리 장치
CN111434796A (zh) 成膜装置、成膜方法以及电子器件的制造装置和制造方法
WO2017086625A1 (ko) 형상측정기
JPH0557550A (ja) 精密1段6自由度ステージ
JP6017506B2 (ja) 磁気スピンドル軸受を伴うロボット駆動装置
JP2000029530A (ja) ステージ装置、およびこれを用いた露光装置ならびにデバイス製造方法
JP7449215B2 (ja) アライメント装置、アライメント方法、成膜装置及び成膜方法
WO2024014847A1 (ko) 밸런스 스테이지
JP7491827B2 (ja) 荷電粒子線装置
JP2946326B1 (ja) 磁気軸受内位置センサのオフセット調整装置
JPH04302711A (ja) 磁気軸受装置
JPH05122893A (ja) 直線動磁気支持装置
JPH04272506A (ja) 磁気軸受装置
JPS62139241A (ja) イオン打込室円盤の回転及び走査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907732

Country of ref document: EP

Kind code of ref document: A1