WO2023113214A1 - Method for manufacturing conductive member for rubber socket - Google Patents

Method for manufacturing conductive member for rubber socket Download PDF

Info

Publication number
WO2023113214A1
WO2023113214A1 PCT/KR2022/016636 KR2022016636W WO2023113214A1 WO 2023113214 A1 WO2023113214 A1 WO 2023113214A1 KR 2022016636 W KR2022016636 W KR 2022016636W WO 2023113214 A1 WO2023113214 A1 WO 2023113214A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
conductive
conductive member
conductive particles
manufacturing
Prior art date
Application number
PCT/KR2022/016636
Other languages
French (fr)
Korean (ko)
Inventor
문성주
Original Assignee
주식회사 티에프이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티에프이 filed Critical 주식회사 티에프이
Publication of WO2023113214A1 publication Critical patent/WO2023113214A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures

Definitions

  • the present invention relates to a method of manufacturing a conductive member for a rubber socket used in a semiconductor device test.
  • a semiconductor device undergoes a manufacturing process and then undergoes an inspection to determine whether electrical performance is defective.
  • the quality test of a semiconductor device is performed in a state in which a test socket for energizing the semiconductor device is disposed between the semiconductor device and the inspection circuit board.
  • the test socket is also used in a burn-in test process during the manufacturing process of semiconductor devices.
  • test socket for testing an integrated semiconductor device with a conventional pogo-pin type test socket.
  • conductive particles are used, each of which is usually formed of small particles. Since resistance increases at contact points between conductive particles along a conductive path formed by a plurality of conductive particles, electrical performance of the current rod deteriorates.
  • One object of the present invention when used in an energizing rod, it is possible to manufacture a conductive member that improves the electrical performance of an energizing rod by forming a conductive path while reducing resistance generated in the conductive path, for a rubber socket It is to provide a method for manufacturing a conductive member.
  • a method for manufacturing a conductive member for a rubber socket according to an aspect of the present invention for realizing the above object includes preparing a first substrate having a first groove; filling the first groove with a ferromagnetic material and a diamagnetic material; sintering at a temperature higher than the melting point of the diamagnetic material so that the diamagnetic material is agglomerated while surrounding the ferromagnetic material in the first groove to form spherical conductive particles; preparing a second substrate having a second groove wider than the first groove; filling the second groove with a plurality of conductive particles; and sintering the diamagnetic material at a temperature higher than the melting point of the diamagnetic material so that the diamagnetic material is melted and bonded to each other in the plurality of conductive particles, thereby forming a conductive member in which the plurality of conductive particles are connected to each other.
  • the second groove may have a rectangular shape such that the plurality of conductive particles are arranged in a line.
  • the diamagnetic material may include at least one of silver, copper, gold, and platinum, and the ferromagnetic material may include at least one of cobalt and iron.
  • the step of performing an oxide film coating on the first groove may be further included.
  • the step of performing an oxide film coating on the second groove may be further included.
  • the oxide film coating may include forming a silicon dioxide layer.
  • a step of additionally plating the conductive member with the diamagnetic material may be further provided.
  • conductive particles are formed by primary sintering of a ferromagnetic material and a diamagnetic material, and then secondary sintering of the plurality of conductive particles is performed so that the plurality of conductive particles are interconnected.
  • a conductive member connected to each other can be formed, and the electrical performance of the conducting rod can be improved by reducing the conduction resistance of the conducting rod along the connecting direction through the conducting member.
  • FIG. 1 is a cross-sectional view showing a state of use of a rubber socket 100 for testing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a conceptual view showing a main portion A of the rubber socket 100 of FIG. 1 .
  • FIG. 3 is a conceptual view showing a conductive member according to a modified example of the conductive member 151 of FIG. 2 .
  • FIG. 4 is a conceptual diagram for explaining a specific structure of the first conductive particles 153 of FIG. 2 .
  • FIG. 5 is a flowchart illustrating a method of manufacturing a conductive member for a rubber socket according to another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram for explaining a step S3 of FIG. 5 .
  • FIG. 7 is a conceptual diagram for explaining another step S5 of FIG. 5 .
  • FIG. 8 is a conceptual diagram for explaining another step S9 of FIG. 5 .
  • FIG. 9 is a conceptual diagram showing an oxide film coating step added in FIG. 5 .
  • FIG. 10 is a conceptual diagram showing a plated conductive member 151 .
  • FIG. 1 is a cross-sectional view showing a state of use of a rubber socket 100 for testing a semiconductor device according to an embodiment of the present invention.
  • the rubber socket 100 is positioned between the semiconductor element S and the test board B. Specifically, the rubber socket 100 is for electrically connecting the terminal E of the semiconductor element S and the pad P of the test board B. The rubber socket 100 also serves to receive and buffer the pressing force when the semiconductor element S is pressed toward the test board B by a pusher or the like.
  • Such a rubber socket 100 may include a main body 110 and an energizing rod 150 .
  • the main body 110 may have a base 111 having a substantially rectangular parallelepiped block shape.
  • the base 111 may be made of an insulating material, for example silicon rubber. As a result, the base 111 has insulating properties and cushioning properties.
  • a through hole 115 is formed through the base 111 along the height direction H.
  • a plurality of through holes 115 may be formed, and may be arranged to have a predetermined interval therebetween.
  • the conducting rod 150 is disposed in a form inserted into the through hole 115 to form an electrical passage. Through the conducting rod 150, the terminal E of the semiconductor element S is electrically connected to the pad P of the test board B.
  • the conducting rods 150 may be arranged along the height direction in the main body 110 by magnetic forming without forming the through hole 115 .
  • FIG. 2 is a conceptual view showing a main portion A of the rubber socket 100 of FIG. 1 .
  • a through hole 115 is formed in the base 111 of the main body 110, and an energizing rod 150 is disposed in the through hole 115.
  • the conducting rod 150 forms a form in which a plurality of conductive members 151 are integrally coupled by a coupling material 161 .
  • the conductive rod 150 is formed by filling the through hole 115 with a mixture of the conductive member 151 and the binding material 161 .
  • the plurality of conductive members 151 are in contact with each other along the height direction H to form an electrical path along the height direction H.
  • the conductive member 151 is not a single particle, but a plurality of particles combined to form one member. Specifically, the conductive member 151 may be a combination of first conductive particles 153 and second conductive particles 155.
  • the first conductive particle 153 and the second conductive particle 155 may have a substantially spherical shape. Although they are connected to each other to form the conductive member 151, in the conductive member 151 they generally retain their respective shapes.
  • the total length (L) of the conductive member 151 corresponds to the sum of the individual lengths (L 1 ) of the first conductive particles 153 and the individual lengths (L 2 ) of the second conductive particles 155 can be defined as
  • a direction in which the first conductive particles 153 and the second conductive particles 155 are connected is a direction in which they are arranged in a line.
  • This connection direction may be substantially the same as the height direction (H).
  • the conductive members 151 are arranged in an erect shape along the height direction H. Such an arrangement is made by a magnetoforming process for the energizing rod 150.
  • the resistance between the conductive members 151 is reduced compared to the conventional one. This is because contact resistance does not occur for each individual particle such as the first conductive particle 153 and the second conductive particle 155 . Since the first conductive particles 153 and the second conductive particles 155 are combined to form a single member called the conductive member 151, contact resistance does not occur therefrom. In contrast, contact resistance is generated only at the contact portion C between the conductive members 151 .
  • FIG. 3 is a conceptual view showing a conductive member according to a modified example of the conductive member 151 of FIG. 2 .
  • the conductive members 151' and 151" are substantially the same as the previous conductive member 151, but there is a difference in that the third conductive particles 157 and the fourth conductive particles 159 are additionally connected. .
  • the third conductive particle 157 and the fourth conductive particle 159 may also have the same spherical shape as the first conductive particle 153 or the second conductive particle 155 . These may also be connected to the second conductive particles 155 or the third conductive particles 157 along the connection direction while maintaining their respective shapes.
  • the contact resistance of the conductive members 151' and 151" along the height direction H is further reduced, so that the electrical performance of the energizing rod 150 (see FIG. 2) can be further improved.
  • FIG. 4 is a conceptual diagram for explaining a specific structure of the first conductive particles 153 of FIG. 2 .
  • the first conductive particle 153 may be a composite of several materials. Specifically, the first conductive particle 153 may have a structure of a base 153a and a core 153b included therein.
  • the base 153a may have a spherical shape as a whole. It may be formed of a diamagnetic material such as at least one of silver, copper, gold, and platinum. A plating layer 153c may be formed on an outer surface of the base 153a. The plating layer 153c may also be formed of a diamagnetic material. For example, when the base 153a is made of silver, the plating layer 153c may be made of gold.
  • the core 153b is disposed within the base 153a and may be formed of a ferromagnetic material.
  • a ferromagnetic material for example, at least one of cobalt and iron may be used.
  • the ferromagnetic material can enhance the stability of electrical contact between the conductive members (151, see FIG. 2) by improving the gathering ability between the conductive members 151 in the magnetic forming process.
  • the other shape 153' of the first conductive particle 153 is also substantially the same as the first conductive particle 153, but there is a difference in that the core 153b' is enlarged. This may further enhance the meeting between the conductive members 151 by the core 153b'.
  • the first conductive particle 153 has been described as an example, but other particles such as the second conductive particle 155 may have the same configuration.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a conductive member for a rubber socket according to another embodiment of the present invention
  • FIG. 6 is a conceptual diagram illustrating a step S3 of FIG. 5, and FIG. It is a conceptual diagram for explaining another step (S5)
  • FIG. 8 is a conceptual diagram for explaining another step (S9) of FIG.
  • a first substrate having a first groove should be prepared (S1).
  • the first substrate may be a semiconductor wafer, and the first groove may be formed in the first substrate through an etching process.
  • the first groove should be filled with a material for forming the conductive particles (153 and 155, see FIG. 2) (S3).
  • the diamagnetic material 153am for making the base 153a described above with reference to FIG. 4 and the ferromagnetic material 153bm for making the core 153b may be filled.
  • the conductive particles 153 and 155 are molded through primary sintering (S5). This is achieved by sintering at a temperature slightly higher than the melting temperature of the diamagnetic material 153am having a relatively low melting point among the diamagnetic material 153am and the ferromagnetic material 153bm. Specifically, the diamagnetic material 153am melted in the first groove is formed into spherical conductive particles 153 and 155 while being aggregated while surrounding the ferromagnetic material 153bm.
  • a second substrate having a second groove should be prepared (S7).
  • the second groove has a larger size than the first groove.
  • the second groove may also be formed on the semiconductor substrate through an etching process.
  • the second substrate may be separate from the first substrate, or the first substrate may be used as the second substrate. In the latter case, both the first groove and the second groove must be formed in the first substrate.
  • the prepared second groove should be filled with conductive particles 153 and 155 (S9). If it is desired to mold the conductive member 151 in which the two conductive particles 153 and 155 are connected, the two conductive particles 153 and 155 may be inserted into the second groove. In order to form the conductive member 151 having three particles, the second groove must be filled with three conductive particles 153 and 155, of course.
  • the second groove has a corresponding size and may have a rectangular shape for one-line arrangement of the conductive particles 153 and 155 .
  • a plurality of conductive particles 153 and 155 are connected (S11). Similar to the first sintering, as the sintering is performed at a temperature slightly higher than the melting temperature of the diamagnetic material 153am, the diamagnetic material 153am of each of the conductive particles 153 and 155 is melted and bonded to each other. Due to this, the conductive member 151 is completed.
  • FIG. 9 is a conceptual diagram showing an oxide film coating step added in FIG. 5 .
  • a step of coating the first groove or the second groove with an oxide film may be added.
  • the oxide film coating may be to form a silicon dioxide layer in the first groove or the second groove.
  • the oxide film has a higher melting temperature than the diamagnetic material 153am with which it comes into contact.
  • the conductive particles 153 and 155 molded in the first groove do not adhere to the substrate by the oxide film coating layer, and thus can be easily separated from the first groove. This prevents the shape of the conductive particles 153 and 155 from being damaged or the shape of the first groove from being damaged, so that the first substrate can be reused.
  • the same may be applied to the conductive member 151 or the second substrate formed in the second groove.
  • FIG. 10 is a conceptual diagram showing a plated conductive member 151 .
  • the previously formed conductive member 151 is formed by bonding diamagnetic materials 153am to each other, and additional plating may be performed on this.
  • the plating layer 153c may be formed on the entire bases 153a of the first conductive particles 153 and the second conductive particles 155 . Furthermore, an additional plating layer 153d may be first formed on the bases 153a. These plating layers 153c and 153d have a meaning of enhancing conductive performance.
  • the manufacturing method of the conductive member for the rubber socket as described above is not limited to the configuration and operation method of the embodiments described above.
  • the above embodiments may be configured so that various modifications can be made by selectively combining all or part of each embodiment.
  • the present invention has industrial applicability in the field of manufacturing a conductive member for a rubber socket.

Abstract

The present invention provides a method for manufacturing a conductive member for a rubber socket, comprising the steps of: preparing a first substrate having a first groove; filling the first groove with a ferromagnetic material and a diamagnetic material; sintering the materials at a temperature that is higher than the melting point of the diamagnetic material so that the diamagnetic material is agglomerated while surrounding the ferromagnetic material in the first groove so as to form spherical conductive particles; preparing a second substrate having a second groove that is wider than the first groove; filling the second groove with a plurality of conductive particles; and sintering the conductive particles at a temperature that is higher than the melting point of the diamagnetic material so that the diamagnetic material is melted in the plurality of conductive particles and bonded to each other, thereby forming a conductive member in which the plurality of conductive particles are connected to each other.

Description

러버 소켓용 도전성 부재 제조 방법Manufacturing method of conductive member for rubber socket
본 발명은 반도체 소자 테스트에 사용되는 러버 소켓용 도전성 부재의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a conductive member for a rubber socket used in a semiconductor device test.
일반적으로, 반도체 소자는 제조 과정을 거친 후 전기적 성능의 불량 여부를 판단하기 위한 검사를 받는다. 반도체 소자의 양불 검사는 반도체 소자와 검사회로기판 사이에 그들을 통전시키는 테스트 소켓을 배치한 상태에서 수행된다. 테스트 소켓은 반도체 소자의 최종 양불 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.In general, a semiconductor device undergoes a manufacturing process and then undergoes an inspection to determine whether electrical performance is defective. The quality test of a semiconductor device is performed in a state in which a test socket for energizing the semiconductor device is disposed between the semiconductor device and the inspection circuit board. In addition to the final pass/fail test of semiconductor devices, the test socket is also used in a burn-in test process during the manufacturing process of semiconductor devices.
반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 피치도 미세화되는 추세여서, 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다. 따라서, 기존의 포고-핀(Pogo-pin) 타입의 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하기 위한 테스트 소켓을 제작하는데 한계가 있었다.As semiconductor device integration technology develops and miniaturization trends, the size and pitch of terminals of semiconductor devices, that is, leads, are also miniaturized, so a method of forming fine intervals between conductive patterns of test sockets is required. Therefore, there is a limit to manufacturing a test socket for testing an integrated semiconductor device with a conventional pogo-pin type test socket.
반도체 소자의 집적화에 부합하도록, 탄성 재료의 실리콘 러버 소재로 제작되는 본체 상에 높이 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 입자와 접착 성분의 혼합물을 충전하여 통전 로드를 형성하는 PCR(Pressurized Conductive Rubber) 소켓, 간단히는 러버 소켓이 널리 사용되고 있다.In order to meet the integration of semiconductor devices, after forming a perforated pattern in the height direction on a body made of elastic silicone rubber material, filling the perforated pattern with a mixture of conductive particles and adhesive components to form a current rod PCR (Pressurized Conductive Rubber) sockets, simply rubber sockets, are widely used.
러버 소켓에서 많은 도전성 입자가 사용되고 그들 각각은 통상적으로 작은 입자로 형성된다. 복수의 도전성 입자가 형성하는 도전 경로를 따라서 도전성 입자들 간의 접촉 지점에서 저항이 커지기에, 통전 로드의 전기적 성능이 저하되는 문제가 있다. In the rubber socket, many conductive particles are used, each of which is usually formed of small particles. Since resistance increases at contact points between conductive particles along a conductive path formed by a plurality of conductive particles, electrical performance of the current rod deteriorates.
본 발명의 일 목적은, 통전 로드에 사용되는 경우에 도전 경로를 형성하면서 해당 도전 경로에서 발생하는 저항을 저감하여 통전 로드의 전기성 성능을 향상시키는 도전성 부재를 제조할 수 있게 하는, 러버 소켓용 도전성 부재 제조 방법을 제공하는 것이다.One object of the present invention, when used in an energizing rod, it is possible to manufacture a conductive member that improves the electrical performance of an energizing rod by forming a conductive path while reducing resistance generated in the conductive path, for a rubber socket It is to provide a method for manufacturing a conductive member.
상기한 과제를 실현하기 위한 본 발명의 일 측면에 따른 러버 소켓용 도전성 부재 제조 방법은, 제1 홈을 가지는 제1 기판을 준비하는 단계; 상기 제1 홈에 강자성 물질과 반자성 물질을 채우는 단계; 상기 반자성 물질의 용융점 보다 높은 온도로 소결하여, 상기 제1 홈에서 상기 반자성 물질이 상기 강자성 물질을 감싼 채로 응집하면서 구 형상의 도전성 입자를 형성하게 하는 단계; 상기 제1 홈 보다 폭이 큰 제2 홈을 가지는 제2 기판을 준비하는 단계; 상기 제2 홈에 상기 도전성 입자를 복수 개로 채우는 단계; 및 상기 반자성 물질의 용융점 보다 높은 온도로 소결하여, 상기 복수의 도전성 입자에서 상기 반자성 물질이 용융되어 서로 접합됨에 따라 상기 복수의 도전성 입자가 서로 연결된 도전성 부재를 형성하는 단계를 포함할 수 있다. A method for manufacturing a conductive member for a rubber socket according to an aspect of the present invention for realizing the above object includes preparing a first substrate having a first groove; filling the first groove with a ferromagnetic material and a diamagnetic material; sintering at a temperature higher than the melting point of the diamagnetic material so that the diamagnetic material is agglomerated while surrounding the ferromagnetic material in the first groove to form spherical conductive particles; preparing a second substrate having a second groove wider than the first groove; filling the second groove with a plurality of conductive particles; and sintering the diamagnetic material at a temperature higher than the melting point of the diamagnetic material so that the diamagnetic material is melted and bonded to each other in the plurality of conductive particles, thereby forming a conductive member in which the plurality of conductive particles are connected to each other.
여기서, 상기 제2 홈은, 상기 복수의 도전성 입자가 일렬로 배열되도록 직사각 형상을 가질 수 있다. Here, the second groove may have a rectangular shape such that the plurality of conductive particles are arranged in a line.
여기서, 상기 반자성 물질은, 은, 구리, 금, 및 백금 중 적어도 하나를 포함하고, 상기 강자성 물질은, 코발트 및 철 중 적어도 하나를 포함할 수 있다. Here, the diamagnetic material may include at least one of silver, copper, gold, and platinum, and the ferromagnetic material may include at least one of cobalt and iron.
여기서, 상기 제1 홈을 가지는 제1 기판을 준비하는 단계 및 상기 상기 제1 홈 보다 폭이 큰 제2 홈을 가지는 제2 기판을 준비하는 단계 중 적어도 하나는, 상기 제1 기판 또는 상기 제2 기판을 식각하여 상기 제1 홈 또는 상기 제2 홈을 형성하는 단계를 포함할 수 있다. Here, at least one of preparing a first substrate having the first groove and preparing a second substrate having a second groove wider than the first groove, the first substrate or the second substrate. Forming the first groove or the second groove by etching the substrate may be included.
여기서, 상기 제1 홈에 강자성 물질과 반자성 물질을 채우는 단계 전에, 상기 제1 홈에 대해 산화막 코팅을 수행하는 단계를 더 포함할 수 있다. Here, before the step of filling the first groove with a ferromagnetic material and a diamagnetic material, the step of performing an oxide film coating on the first groove may be further included.
여기서, 상기 제2 홈에 상기 도전성 입자를 복수 개로 채우는 단계 전에, 상기 제2 홈에 대해 산화막 코팅을 수행하는 단계를 더 포함할 수 있다. Here, before the step of filling the second groove with a plurality of conductive particles, the step of performing an oxide film coating on the second groove may be further included.
여기서, 상기 산화막 코팅은, 이산화규소층을 형성하는 것을 포함할 수 있다.Here, the oxide film coating may include forming a silicon dioxide layer.
여기서, 상기 도전성 부재에 대해 추가적으로 상기 반자성 물질로 도금하는 단계가 더 구비될 수 있다. Here, a step of additionally plating the conductive member with the diamagnetic material may be further provided.
상기와 같이 구성되는 본 발명에 따른 러버 소켓용 도전성 부재 제조 방법에 의하면, 강자성 물질과 반자성 물질을 1차 소결하여 도전성 입자를 형성하고 다시 복수의 도전성 입자를 2차 소결하여 복수의 도전성 입자가 상호 접합됨에 따라 복수의 도전성 입자가 서로 연결된 도전성 부재를 형성할 수 있기에, 이러한 도전성 부재를 통해 연결 방향을 따르는 통전 로드의 도전 저항을 저감하여 통전 로드의 전기성 성능을 향상시킬 수 있게 된다. According to the method for manufacturing a conductive member for a rubber socket according to the present invention configured as described above, conductive particles are formed by primary sintering of a ferromagnetic material and a diamagnetic material, and then secondary sintering of the plurality of conductive particles is performed so that the plurality of conductive particles are interconnected. As a plurality of conductive particles are bonded together, a conductive member connected to each other can be formed, and the electrical performance of the conducting rod can be improved by reducing the conduction resistance of the conducting rod along the connecting direction through the conducting member.
도 1은 본 발명의 일 실시예에 따른 반도체 소자 테스트용 러버 소켓(100)의 사용 상태를 보인 단면도이다. 1 is a cross-sectional view showing a state of use of a rubber socket 100 for testing a semiconductor device according to an embodiment of the present invention.
도 2는 도 1의 러버 소켓(100)의 요부(A)를 보인 개념도이다. FIG. 2 is a conceptual view showing a main portion A of the rubber socket 100 of FIG. 1 .
도 3은 도 2의 도전성 부재(151)의 일 변형예에 따른 도전성 부재를 보인 개념도이다.FIG. 3 is a conceptual view showing a conductive member according to a modified example of the conductive member 151 of FIG. 2 .
도 4는 도 2의 제1 도전성 입자(153)의 구체적 구조를 설명하기 위한 개념도이다. FIG. 4 is a conceptual diagram for explaining a specific structure of the first conductive particles 153 of FIG. 2 .
도 5는 본 발명의 다른 일 실시예에 따른 러버 소켓용 도전성 부재 제조 방법을 설명하기 위한 순서도이다. 5 is a flowchart illustrating a method of manufacturing a conductive member for a rubber socket according to another embodiment of the present invention.
도 6은 도 5의 일 단계(S3)를 설명하기 위한 개념도이다. FIG. 6 is a conceptual diagram for explaining a step S3 of FIG. 5 .
도 7은 도 5의 다른 일 단계(S5)를 설명하기 위한 개념도이다. FIG. 7 is a conceptual diagram for explaining another step S5 of FIG. 5 .
도 8은 도 5의 또 다른 일 단계(S9)를 설명하기 위한 개념도이다. FIG. 8 is a conceptual diagram for explaining another step S9 of FIG. 5 .
도 9는 도 5에서 추가되는 산화막 코팅 단계를 보인 개념도이다. 9 is a conceptual diagram showing an oxide film coating step added in FIG. 5 .
도 10은 도금 처리된 도전성 부재(151)를 보인 개념도이다.10 is a conceptual diagram showing a plated conductive member 151 .
이하, 본 발명의 바람직한 실시예에 따른 러버 소켓용 도전성 부재 제조 방법에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.Hereinafter, a method of manufacturing a conductive member for a rubber socket according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this specification, the same or similar reference numerals are assigned to the same or similar components even in different embodiments, and the description is replaced with the first description.
도 1은 본 발명의 일 실시예에 따른 반도체 소자 테스트용 러버 소켓(100)의 사용 상태를 보인 단면도이다. 1 is a cross-sectional view showing a state of use of a rubber socket 100 for testing a semiconductor device according to an embodiment of the present invention.
본 도면을 참조하면, 러버 소켓(100)은 반도체 소자(S)와 테스트 보드(B) 사이에 위치하게 된다. 구체적으로, 러버 소켓(100)은, 반도체 소자(S)의 단자(E)와 테스트 보드(B)의 패드(P)를 전기적으로 연결하기 위한 것이다. 러버 소켓(100)은 또한 푸셔 등에 의해 반도체 소자(S)가 테스트 보드(B)를 향해 가압될 때, 그 가압력을 받아내고 완충하는 역할도 하게 된다.Referring to this figure, the rubber socket 100 is positioned between the semiconductor element S and the test board B. Specifically, the rubber socket 100 is for electrically connecting the terminal E of the semiconductor element S and the pad P of the test board B. The rubber socket 100 also serves to receive and buffer the pressing force when the semiconductor element S is pressed toward the test board B by a pusher or the like.
이러한 러버 소켓(100)은, 본체(110) 및 통전 로드(150)를 포함할 수 있다. Such a rubber socket 100 may include a main body 110 and an energizing rod 150 .
본체(110)는 대체로 직육면체 블럭 형상인 베이스(111)를 가질 수 있다. 베이스(111)는 절연성 물질, 예를 들어 실리콘 러버로 제작될 수 있다. 그에 의해, 베이스(111)는 절연성과 함께, 완충성을 갖게 된다. The main body 110 may have a base 111 having a substantially rectangular parallelepiped block shape. The base 111 may be made of an insulating material, for example silicon rubber. As a result, the base 111 has insulating properties and cushioning properties.
베이스(111)에는 높이 방향(H)을 따라 관통홀(115)이 관통 형성된다. 관통홀(115)은 복수 개로 형성되며, 서로 간에 일정 간격을 갖도록 배열될 수 있다. A through hole 115 is formed through the base 111 along the height direction H. A plurality of through holes 115 may be formed, and may be arranged to have a predetermined interval therebetween.
통전 로드(150)는 관통홀(115)에 삽입된 형태로 배치되어, 전기적 통로를 형성하는 구성이다. 통전 로드(150)를 통해서는, 반도체 소자(S)의 단자(E)가 테스트 보드(B)의 패드(P)와 전기적으로 연결된다. 이와 달리, 관통홀(115)을 형성하지 않고, 자력 성형에 의해 본체(110) 중에 통전 로드(150)가 높이 방향을 따라 배열되게 할 수도 있다. The conducting rod 150 is disposed in a form inserted into the through hole 115 to form an electrical passage. Through the conducting rod 150, the terminal E of the semiconductor element S is electrically connected to the pad P of the test board B. Alternatively, the conducting rods 150 may be arranged along the height direction in the main body 110 by magnetic forming without forming the through hole 115 .
이하에서는, 통전 로드(150)의 구체적 구성에 대해 도 2를 참조하여 설명한다. Hereinafter, a specific configuration of the energizing rod 150 will be described with reference to FIG. 2 .
도 2는 도 1의 러버 소켓(100)의 요부(A)를 보인 개념도이다. FIG. 2 is a conceptual view showing a main portion A of the rubber socket 100 of FIG. 1 .
본 도면을 참조하면, 앞서 설명한 바대로, 본체(110) 중 베이스(111)에는 관통홀(115)이 형성되고, 관통홀(115)에는 통전 로드(150)가 배치된다. Referring to this figure, as described above, a through hole 115 is formed in the base 111 of the main body 110, and an energizing rod 150 is disposed in the through hole 115.
통전 로드(150)는, 구체적으로, 복수의 도전성 부재(151)가 결합 물질(161)에 의해 일체로 결합된 형태를 이룬다. 이러한 통전 로드(150)는 도전성 부재(151) 및 결합 물질(161)의 혼합물이 관통홀(115)에 충전되어 성형된 것이다. 복수의 도전성 부재(151)는 높이 방향(H)을 따라 서로 간에 접촉되어, 높이 방향(H)을 따르는 전기적 경로를 형성한다. In detail, the conducting rod 150 forms a form in which a plurality of conductive members 151 are integrally coupled by a coupling material 161 . The conductive rod 150 is formed by filling the through hole 115 with a mixture of the conductive member 151 and the binding material 161 . The plurality of conductive members 151 are in contact with each other along the height direction H to form an electrical path along the height direction H.
도전성 부재(151)는, 단일 입자가 아니라, 복수의 입자가 하나의 부재를 이루도록 결합된 것이다. 구체적으로, 도전성 부재(151)는 제1 도전성 입자(153)와 제2 도전성 입자(155)가 서로 결합된 것일 수 있다. The conductive member 151 is not a single particle, but a plurality of particles combined to form one member. Specifically, the conductive member 151 may be a combination of first conductive particles 153 and second conductive particles 155.
제1 도전성 입자(153)와 제2 도전성 입자(155)는 대체로 구 형상을 가질 수 있다. 이들이 서로 연결되어 도전성 부재(151)를 형성하지만, 도전성 부재(151)에서 그들은 각자의 형상을 대체로 유지한다. 그러한 연결에 의해, 도전성 부재(151)의 전체 길이(L)는 제1 도전성 입자(153)의 개별 길이(L1)와 제2 도전성 입자(155)의 개별 길이(L2)의 합에 상응하는 것으로 정의될 수 있다. The first conductive particle 153 and the second conductive particle 155 may have a substantially spherical shape. Although they are connected to each other to form the conductive member 151, in the conductive member 151 they generally retain their respective shapes. By such a connection, the total length (L) of the conductive member 151 corresponds to the sum of the individual lengths (L 1 ) of the first conductive particles 153 and the individual lengths (L 2 ) of the second conductive particles 155 can be defined as
제1 도전성 입자(153)와 제2 도전성 입자(155)가 연결되는 방향은 그들이 일렬로 늘어서는 방향이다. 이러한 연결 방향은 대체로 높이 방향(H)과 동일할 수 있다. 다시 말해, 도전성 부재(151)는 높이 방향(H)을 따라 세워진 형태로 배열되는 것이다. 그러한 배열은 통전 로드(150)에 대해 자력 성형 공정에 의해 이루어지게 된다. A direction in which the first conductive particles 153 and the second conductive particles 155 are connected is a direction in which they are arranged in a line. This connection direction may be substantially the same as the height direction (H). In other words, the conductive members 151 are arranged in an erect shape along the height direction H. Such an arrangement is made by a magnetoforming process for the energizing rod 150.
이러한 구성에 의하면, 높이 방향(H)을 따르는 도전 경로에 있어서, 도전성 부재(151) 간의 저항은 기존 보다 줄어들게 된다. 이는 제1 도전성 입자(153)와 제2 도전성 입자(155)와 같은 개별 입자마다 접촉 저항이 발생하는 것이 아니기 때문이다. 제1 도전성 입자(153)와 제2 도전성 입자(155)는 하나로 결합되어 도전성 부재(151)라는 단일 부재를 이루기에, 그에서는 접촉 저항이 발생하지 않는다. 그와 달리, 도전성 부재(151) 간의 접촉하는 부분(C)에서만 접촉 저항이 발생한다. According to this configuration, in the conductive path along the height direction H, the resistance between the conductive members 151 is reduced compared to the conventional one. This is because contact resistance does not occur for each individual particle such as the first conductive particle 153 and the second conductive particle 155 . Since the first conductive particles 153 and the second conductive particles 155 are combined to form a single member called the conductive member 151, contact resistance does not occur therefrom. In contrast, contact resistance is generated only at the contact portion C between the conductive members 151 .
결과적으로, 기존에 개별 입자 간에 발생하던 접촉 저항이 제1 도전성 입자(153)와 제2 도전성 입자(155)를 단일 부재로 연결한 도전성 부재(151)에 의해 거의 절반으로 줄어들게 된다. 그에 따라, 도전 경로를 따라 발생하는 저항이 줄어서, 통전 로드(150)의 전기적 성능이 향상될 수 있다. As a result, contact resistance previously occurring between individual particles is reduced by almost half due to the conductive member 151 connecting the first conductive particles 153 and the second conductive particles 155 as a single member. Accordingly, resistance generated along the conductive path is reduced, and electrical performance of the energizing rod 150 may be improved.
도전성 부재(151)의 다른 형태에 대해서는 도 3을 참조하여 설명한다. 도 3은 도 2의 도전성 부재(151)의 일 변형예에 따른 도전성 부재를 보인 개념도이다.Other forms of the conductive member 151 will be described with reference to FIG. 3 . FIG. 3 is a conceptual view showing a conductive member according to a modified example of the conductive member 151 of FIG. 2 .
본 도면을 참조하면, 도전성 부재(151',151")는 앞선 도전성 부재(151)와 대체로 동일하나, 제3 도전성 입자(157), 나아가 제4 도전성 입자(159)가 추가적으로 연결됨에 차이가 있다. Referring to this figure, the conductive members 151' and 151" are substantially the same as the previous conductive member 151, but there is a difference in that the third conductive particles 157 and the fourth conductive particles 159 are additionally connected. .
제3 도전성 입자(157)와 제4 도전성 입자(159) 역시 제1 도전성 입자(153) 또는 제2 도전성 입자(155)와 동일하게 구 형상을 가질 수 있다. 이들 역시 각자의 형상을 유지하면서, 연결 방향을 따라 제2 도전성 입자(155), 또는 제3 도전성 입자(157)에 연결될 수 있다. The third conductive particle 157 and the fourth conductive particle 159 may also have the same spherical shape as the first conductive particle 153 or the second conductive particle 155 . These may also be connected to the second conductive particles 155 or the third conductive particles 157 along the connection direction while maintaining their respective shapes.
이러한 구성에 따르면, 높이 방향(H)을 따르는 도전성 부재(151',151")의 접촉 저항은 더욱 감소하여, 통전 로드(150, 도 2 참조)의 전기적 성능은 보다 향상될 수 있다.According to this configuration, the contact resistance of the conductive members 151' and 151" along the height direction H is further reduced, so that the electrical performance of the energizing rod 150 (see FIG. 2) can be further improved.
이상에서 도전성 부재를 이루는 개별 입자의 구조에 대해 도 4를 참조하여 설명한다. 도 4는 도 2의 제1 도전성 입자(153)의 구체적 구조를 설명하기 위한 개념도이다. In the above, the structure of individual particles constituting the conductive member will be described with reference to FIG. 4 . FIG. 4 is a conceptual diagram for explaining a specific structure of the first conductive particles 153 of FIG. 2 .
본 도면을 참조하면, 제1 도전성 입자(153)는 여러 물질이 복합된 것일 수 있다. 구체적으로, 제1 도전성 입자(153)는 베이스(153a)와 그에 함유되는 코어(153b)의 구조를 가질 수 있다. Referring to this figure, the first conductive particle 153 may be a composite of several materials. Specifically, the first conductive particle 153 may have a structure of a base 153a and a core 153b included therein.
베이스(153a)는 전체적으로 구 형상을 가질 수 있다. 이는 반자성 물질, 예를 들어 은, 구리, 금, 및 백금 중 적어도 하나로 형성될 수 있다. 베이스(153a)의 외면에는 도금층(153c)이 형성될 수 있다. 도금층(153c) 역시 반자성 물질로 형성될 수 있다. 예를 들어, 베이스(153a)는 은으로 만들어질 때, 도금층(153c)은 금으로 만들어질 수 있다. The base 153a may have a spherical shape as a whole. It may be formed of a diamagnetic material such as at least one of silver, copper, gold, and platinum. A plating layer 153c may be formed on an outer surface of the base 153a. The plating layer 153c may also be formed of a diamagnetic material. For example, when the base 153a is made of silver, the plating layer 153c may be made of gold.
코어(153b)는 베이스(153a) 내에 배치되는 것으로서, 강자성 물질로 형성될 수 있다. 강자성 물질로는, 예를 들어, 코발트 및 철 중 적어도 하나가 이용될 수 있다. 강자성 물질은 자력 성형 공정에서 도전성 부재(151, 도 2 참조) 간의 모임성을 향상시켜서, 그들 간의 전기적 접촉의 안정성을 높일 수 있다. The core 153b is disposed within the base 153a and may be formed of a ferromagnetic material. As the ferromagnetic material, for example, at least one of cobalt and iron may be used. The ferromagnetic material can enhance the stability of electrical contact between the conductive members (151, see FIG. 2) by improving the gathering ability between the conductive members 151 in the magnetic forming process.
제1 도전성 입자(153)의 다른 형태(153')도 제1 도전성 입자(153)와 대체로 동일하나, 코어(153b')를 크게 함에 차이가 있다. 이는 코어(153b')에 의한 도전성 부재(151) 간의 모임성을 보다 높일 수 있을 것이다. The other shape 153' of the first conductive particle 153 is also substantially the same as the first conductive particle 153, but there is a difference in that the core 153b' is enlarged. This may further enhance the meeting between the conductive members 151 by the core 153b'.
이상에서는 제1 도전성 입자(153)를 예로 들어 설명하였으나, 제2 도전성 입자(155) 등 다른 입자도 그와 동일한 구성을 가질 수 있다. In the above, the first conductive particle 153 has been described as an example, but other particles such as the second conductive particle 155 may have the same configuration.
이제, 도전성 부재(151)의 제조 방법에 대해 도 5 내지 도 10을 참조하여 설명한다.Now, a method of manufacturing the conductive member 151 will be described with reference to FIGS. 5 to 10 .
도 5는 본 발명의 다른 일 실시예에 따른 러버 소켓용 도전성 부재 제조 방법을 설명하기 위한 순서도이고, 도 6은 도 5의 일 단계(S3)를 설명하기 위한 개념도이며, 도 7은 도 5의 다른 일 단계(S5)를 설명하기 위한 개념도이고, 도 8은 도 5의 또 다른 일 단계(S9)를 설명하기 위한 개념도이다. 5 is a flowchart illustrating a method of manufacturing a conductive member for a rubber socket according to another embodiment of the present invention, FIG. 6 is a conceptual diagram illustrating a step S3 of FIG. 5, and FIG. It is a conceptual diagram for explaining another step (S5), and FIG. 8 is a conceptual diagram for explaining another step (S9) of FIG.
본 도면들을 참조하면, 먼저 제1 홈을 가진 제1 기판을 준비해야 한다(S1). 여기서, 제1 기판은 반도체 웨이퍼이고, 제1 홈은 식각 공정을 통해 제1 기판에 형성될 수 있다. Referring to these drawings, first, a first substrate having a first groove should be prepared (S1). Here, the first substrate may be a semiconductor wafer, and the first groove may be formed in the first substrate through an etching process.
다음으로, 제1 홈에는 도전성 입자(153,155, 도 2 참조)를 성형하기 위한 물질을 채워야 한다(S3). 앞서 도 4를 참조하여 설명한 베이스(153a)를 만들기 위한 반자성 물질(153am), 코어(153b)를 만들기 위한 강자성 물질(153bm) 등이 채워질 수 있다. Next, the first groove should be filled with a material for forming the conductive particles (153 and 155, see FIG. 2) (S3). The diamagnetic material 153am for making the base 153a described above with reference to FIG. 4 and the ferromagnetic material 153bm for making the core 153b may be filled.
이제, 1차 소결을 통해 도전성 입자(153,155)를 성형한다(S5). 이는 반자성 물질(153am)과 강자성 물질(153bm) 중 융융점이 상대적으로 낮은 반자성 물질(153am)의 용융 온도 보다 다소 높은 온도로 소결함에 따라 이루어진다. 구체적으로, 제1 홈 내에서 용융된 반자성 물질(153am)은 강자성 물질(153bm)을 감싼 채로 응집하면서 구 형상의 도전성 입자(153,155)로 성형된다. Now, the conductive particles 153 and 155 are molded through primary sintering (S5). This is achieved by sintering at a temperature slightly higher than the melting temperature of the diamagnetic material 153am having a relatively low melting point among the diamagnetic material 153am and the ferromagnetic material 153bm. Specifically, the diamagnetic material 153am melted in the first groove is formed into spherical conductive particles 153 and 155 while being aggregated while surrounding the ferromagnetic material 153bm.
도전성 입자(153,155)가 확보된 상태에서, 제2 홈을 가진 제2 기판을 준비해야 한다(S7). 제2 홈은 제1 홈 보다 큰 사이즈를 가진다. 제2 홈 역시 제1 홈과 마찬가지로, 반도체 기판 상에 식각 공정에 의해 형성될 수 있다. 제2 기판은 제1 기판과 별도의 것일 것이거나, 제1 기판이 제2 기판으로 사용될 수도 있다. 후자의 경우에, 제1 기판에는 제1 홈과 제2 홈이 모두 형성되어 있어야 한다. In a state in which the conductive particles 153 and 155 are secured, a second substrate having a second groove should be prepared (S7). The second groove has a larger size than the first groove. Like the first groove, the second groove may also be formed on the semiconductor substrate through an etching process. The second substrate may be separate from the first substrate, or the first substrate may be used as the second substrate. In the latter case, both the first groove and the second groove must be formed in the first substrate.
준비된 제2 홈에는 도전성 입자(153,155)를 채워야 한다(S9). 두 개의 도전성 입자(153,155)가 연결된 도전성 부재(151)를 성형하고자 한다면, 제2 홈에 두 개의 도전성 입자(153,155)를 넣으면 된다. 세 개의 입자를 가진 도전성 부재(151)를 형성하려면, 당연히 제2 홈에 세 개의 도전성 입자(153,155)를 채워 넣어야 한다. 제2 홈은 그에 대응한 사이즈를 가지며, 도전성 입자(153,155)의 일렬 배치를 위해 직사각 형상을 가질 수 있다. The prepared second groove should be filled with conductive particles 153 and 155 (S9). If it is desired to mold the conductive member 151 in which the two conductive particles 153 and 155 are connected, the two conductive particles 153 and 155 may be inserted into the second groove. In order to form the conductive member 151 having three particles, the second groove must be filled with three conductive particles 153 and 155, of course. The second groove has a corresponding size and may have a rectangular shape for one-line arrangement of the conductive particles 153 and 155 .
마지막으로, 2차 소결을 통하여, 복수의 도전성 입자(153,155)를 연결한다(S11). 1차 소결과 마찬가지로, 반자성 물질(153am)의 용융 온도 보다 다소 높은 온도로 소결함에 따라서, 도전성 입자(153,155) 각각의 반자성 물질(153am)이 용융되어 서로 간에 접합된다. 이로 인하여, 도전성 부재(151)가 완성된다. Finally, through secondary sintering, a plurality of conductive particles 153 and 155 are connected (S11). Similar to the first sintering, as the sintering is performed at a temperature slightly higher than the melting temperature of the diamagnetic material 153am, the diamagnetic material 153am of each of the conductive particles 153 and 155 is melted and bonded to each other. Due to this, the conductive member 151 is completed.
이상의 제조 과정에서 추가될 수 있는 단계에 대해 도 9를 참조하여 설명한다. 도 9는 도 5에서 추가되는 산화막 코팅 단계를 보인 개념도이다.Steps that may be added in the above manufacturing process will be described with reference to FIG. 9 . 9 is a conceptual diagram showing an oxide film coating step added in FIG. 5 .
본 도면을 참조하면, 단계(S3)와 단계(S9) 전에는 제1 홈 또는 제2 홈에 산화막 코팅을 하는 단계가 추가될 수 있다. Referring to this figure, before steps S3 and S9, a step of coating the first groove or the second groove with an oxide film may be added.
산화막 코팅은 제1 홈 또는 제2 홈에 이산화규소층을 형성하는 것일 수 있다. 산화막은 그가 접하게 되는 반자성 물질(153am) 보다는 용융 온도가 높다.The oxide film coating may be to form a silicon dioxide layer in the first groove or the second groove. The oxide film has a higher melting temperature than the diamagnetic material 153am with which it comes into contact.
이러한 공정이 추가됨에 의해, 제1 홈에서 성형된 도전성 입자(153,155)가 산화막 코팅층에 의해 기판에 들러붙지 않음에 의해, 제1 홈으로부터 쉽게 분리될 수 있다. 이는 도전성 입자(153,155)의 형상이 훼손되거나 제1 홈의 형상이 훼손되는 것도 막아주기에, 제1 기판을 재사용할 수 있게 한다. By adding this process, the conductive particles 153 and 155 molded in the first groove do not adhere to the substrate by the oxide film coating layer, and thus can be easily separated from the first groove. This prevents the shape of the conductive particles 153 and 155 from being damaged or the shape of the first groove from being damaged, so that the first substrate can be reused.
이는 제2 홈에서 성형된 도전성 부재(151)나 제2 기판에 대해서도 동일하게 적용될 수 있다. The same may be applied to the conductive member 151 or the second substrate formed in the second groove.
앞서 만들어진 도전성 부재(151)에 대한 추가 처리는 도 10을 참조하여 설명한다. 도 10은 도금 처리된 도전성 부재(151)를 보인 개념도이다.Further processing of the previously made conductive member 151 will be described with reference to FIG. 10 . 10 is a conceptual diagram showing a plated conductive member 151 .
본 도면을 참조하면, 앞서 성형된 도전성 부재(151)는 반자성 물질(153am) 끼리 서로 접합된 것인데, 이에 대해서는 추가적인 도금이 이루어질 수 있다. Referring to this figure, the previously formed conductive member 151 is formed by bonding diamagnetic materials 153am to each other, and additional plating may be performed on this.
그에 의해, 제1 도전성 입자(153)와 제2 도전성 입자(155)의 베이스(153a)들 전체에 대해 도금층(153c)이 형성될 수 있다. 나아가, 추가적인 도금층(153d)이 먼저 베이스(153a)들에 형성될 수 있다. 이러한 도금층(153c,153d)은 도전 성능을 높여주는 의미가 있다. As a result, the plating layer 153c may be formed on the entire bases 153a of the first conductive particles 153 and the second conductive particles 155 . Furthermore, an additional plating layer 153d may be first formed on the bases 153a. These plating layers 153c and 153d have a meaning of enhancing conductive performance.
상기와 같은 러버 소켓용 도전성 부재 제조 방법은 위에서 설명된 실시예들의 구성과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 다양한 변형이 이루어질 수 있도록 구성될 수도 있다. The manufacturing method of the conductive member for the rubber socket as described above is not limited to the configuration and operation method of the embodiments described above. The above embodiments may be configured so that various modifications can be made by selectively combining all or part of each embodiment.
본 발명은 러버 소켓용 도전성 부재 제조 분야에 산업상 이용 가능성이 있다.The present invention has industrial applicability in the field of manufacturing a conductive member for a rubber socket.

Claims (8)

  1. 제1 홈을 가지는 제1 기판을 준비하는 단계;preparing a first substrate having a first groove;
    상기 제1 홈에 강자성 물질과 반자성 물질을 채우는 단계;filling the first groove with a ferromagnetic material and a diamagnetic material;
    상기 반자성 물질의 용융점 보다 높은 온도로 소결하여, 상기 제1 홈에서 상기 반자성 물질이 상기 강자성 물질을 감싼 채로 응집하면서 구 형상의 도전성 입자를 형성하게 하는 단계;sintering at a temperature higher than the melting point of the diamagnetic material so that the diamagnetic material is agglomerated while surrounding the ferromagnetic material in the first groove to form spherical conductive particles;
    상기 제1 홈 보다 폭이 큰 제2 홈을 가지는 제2 기판을 준비하는 단계;preparing a second substrate having a second groove wider than the first groove;
    상기 제2 홈에 상기 도전성 입자를 복수 개로 채우는 단계; 및filling the second groove with a plurality of conductive particles; and
    상기 반자성 물질의 용융점 보다 높은 온도로 소결하여, 상기 복수의 도전성 입자에서 상기 반자성 물질이 용융되어 서로 접합됨에 따라 상기 복수의 도전성 입자가 서로 연결된 도전성 부재를 형성하는 단계를 포함하는, 러버 소켓용 도전성 부재 제조 방법.Sintering at a temperature higher than the melting point of the diamagnetic material to form a conductive member in which the plurality of conductive particles are connected to each other as the diamagnetic material is melted and bonded to each other in the plurality of conductive particles. member manufacturing method.
  2. 제1항에 있어서,According to claim 1,
    상기 제2 홈은,The second groove,
    상기 복수의 도전성 입자가 일렬로 배열되도록 직사각 형상을 갖는, 러버 소켓용 도전성 부재 제조 방법.A method of manufacturing a conductive member for a rubber socket having a rectangular shape so that the plurality of conductive particles are arranged in a line.
  3. 제1항에 있어서,According to claim 1,
    상기 반자성 물질은,The diamagnetic material,
    은, 구리, 금, 및 백금 중 적어도 하나를 포함하고,at least one of silver, copper, gold, and platinum;
    상기 강자성 물질은,The ferromagnetic material,
    코발트 및 철 중 적어도 하나를 포함하는, 러버 소켓용 도전성 부재 제조 방법.A method of manufacturing a conductive member for a rubber socket comprising at least one of cobalt and iron.
  4. 제1항에 있어서,According to claim 1,
    상기 제1 홈을 가지는 제1 기판을 준비하는 단계 및 상기 상기 제1 홈 보다 폭이 큰 제2 홈을 가지는 제2 기판을 준비하는 단계 중 적어도 하나는,At least one of preparing a first substrate having the first groove and preparing a second substrate having a second groove wider than the first groove,
    상기 제1 기판 또는 상기 제2 기판을 식각하여 상기 제1 홈 또는 상기 제2 홈을 형성하는 단계를 포함하는, 러버 소켓용 도전성 부재 제조 방법.Forming the first groove or the second groove by etching the first substrate or the second substrate, the method of manufacturing a conductive member for a rubber socket.
  5. 제1항에 있어서,According to claim 1,
    상기 제1 홈에 강자성 물질과 반자성 물질을 채우는 단계 전에,Before filling the first groove with a ferromagnetic material and a diamagnetic material,
    상기 제1 홈에 대해 산화막 코팅을 수행하는 단계를 더 포함하는, 러버 소켓용 도전성 부재 제조 방법.Further comprising the step of performing an oxide film coating on the first groove, the method of manufacturing a conductive member for a rubber socket.
  6. 제1항에 있어서,According to claim 1,
    상기 제2 홈에 상기 도전성 입자를 복수 개로 채우는 단계 전에,Before the step of filling the second groove with a plurality of conductive particles,
    상기 제2 홈에 대해 산화막 코팅을 수행하는 단계를 더 포함하는, 러버 소켓용 도전성 부재 제조 방법.Further comprising the step of performing an oxide film coating on the second groove, the method of manufacturing a conductive member for a rubber socket.
  7. 제5항에 있어서,According to claim 5,
    상기 산화막 코팅은,The oxide film coating,
    이산화규소층을 형성하는 것을 포함하는, 러버 소켓용 도전성 부재 제조 방법.A method of manufacturing a conductive member for a rubber socket, comprising forming a silicon dioxide layer.
  8. 제1항에 있어서,According to claim 1,
    상기 도전성 부재에 대해 추가적으로 상기 반자성 물질로 도금하는 단계를 더 포함하는, 러버 소켓용 도전성 부재 제조 방법.Further comprising the step of additionally plating the conductive member with the diamagnetic material, the method of manufacturing a conductive member for a rubber socket.
PCT/KR2022/016636 2021-12-13 2022-10-28 Method for manufacturing conductive member for rubber socket WO2023113214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0177247 2021-12-13
KR1020210177247A KR20230088965A (en) 2021-12-13 2021-12-13 Method for manufacturing conductive member for rubber socket

Publications (1)

Publication Number Publication Date
WO2023113214A1 true WO2023113214A1 (en) 2023-06-22

Family

ID=86772957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016636 WO2023113214A1 (en) 2021-12-13 2022-10-28 Method for manufacturing conductive member for rubber socket

Country Status (2)

Country Link
KR (1) KR20230088965A (en)
WO (1) WO2023113214A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586340B1 (en) * 2014-12-26 2016-01-18 주식회사 아이에스시 Electrical test socket and fabrication method of conductive powder for electrical test socket
KR20160046621A (en) * 2014-10-21 2016-04-29 삼성전자주식회사 Test socket for testing semiconductor chip package and manufacturing method of the same
KR101769882B1 (en) * 2016-02-15 2017-09-05 (주)티에스이 Test Socket
KR20180051174A (en) * 2016-11-08 2018-05-16 주식회사 대성엔지니어링 Test socket
KR20210089444A (en) * 2020-01-08 2021-07-16 주식회사 아이에스시 Test socket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046621A (en) * 2014-10-21 2016-04-29 삼성전자주식회사 Test socket for testing semiconductor chip package and manufacturing method of the same
KR101586340B1 (en) * 2014-12-26 2016-01-18 주식회사 아이에스시 Electrical test socket and fabrication method of conductive powder for electrical test socket
KR101769882B1 (en) * 2016-02-15 2017-09-05 (주)티에스이 Test Socket
KR20180051174A (en) * 2016-11-08 2018-05-16 주식회사 대성엔지니어링 Test socket
KR20210089444A (en) * 2020-01-08 2021-07-16 주식회사 아이에스시 Test socket

Also Published As

Publication number Publication date
KR20230088965A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
WO2019216503A1 (en) Semiconductor device test socket
WO2014129784A1 (en) Test socket with high density conduction section
US5629631A (en) Interface card for a probe card assembly
WO2015182885A1 (en) Socket for inspecting semiconductor package and substrate, flexible contact pin used therein, and method for manufacturing flexible contact pin
WO2016126024A1 (en) Test socket having conductive particles in coupled form
WO2015012498A1 (en) Conductive connector and manufacturing method therefor
WO2012121449A1 (en) Probe card and manufacturing method
WO2010082715A1 (en) Electrical connector and test socket including the electrical connector
WO2014171621A1 (en) Semiconductor chip test socket and method for manufacturing same
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2020096238A1 (en) Electroconductive particles and signal-transmitting connector having same
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
WO2023113214A1 (en) Method for manufacturing conductive member for rubber socket
WO2014073813A1 (en) Interposer, and method for manufacturing same
WO2023113213A1 (en) Rubber socket for testing semiconductor element, and conductive member for rubber socket
WO2020209583A1 (en) Test socket
WO2021075628A1 (en) Bidirectional conductive module with buffer area formed around conductive lines
WO2018182327A1 (en) Semiconductor package test socket and method for manufacturing same
WO2016167412A1 (en) Bidirectional conductive socket for testing high-frequency device, bidirectional conductive module for testing high-frequency device, and manufacturing method thereof
WO2020230945A1 (en) Spring contact and socket having spring contact embedded therein
WO2022045787A1 (en) Conductive particle and electrical connection connector including same
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
WO2019245153A1 (en) Plate spring-type connecting pin
WO2023101224A1 (en) Rubber socket for testing semiconductor element and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907685

Country of ref document: EP

Kind code of ref document: A1