WO2023113130A1 - Substrate treatment method - Google Patents

Substrate treatment method Download PDF

Info

Publication number
WO2023113130A1
WO2023113130A1 PCT/KR2022/010529 KR2022010529W WO2023113130A1 WO 2023113130 A1 WO2023113130 A1 WO 2023113130A1 KR 2022010529 W KR2022010529 W KR 2022010529W WO 2023113130 A1 WO2023113130 A1 WO 2023113130A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
temperature
substrate processing
chamber
pressure reduction
Prior art date
Application number
PCT/KR2022/010529
Other languages
French (fr)
Korean (ko)
Inventor
김창훈
장원준
김주섭
박경
남상록
안원식
안해진
이대성
Original Assignee
주식회사 원익아이피에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 원익아이피에스 filed Critical 주식회사 원익아이피에스
Publication of WO2023113130A1 publication Critical patent/WO2023113130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present invention relates to a substrate processing method, and more particularly, to a substrate processing method for improving substrate characteristics.
  • a substrate processing method may include a process of forming a film through deposition.
  • an object of the present invention is to provide a substrate processing method capable of improving substrate characteristics by removing impurities while reducing the heat balance of the substrate.
  • the present invention as created to achieve the object of the present invention as described above, the present invention, a first pressurization and decompression step (S100) of performing pressurization and decompression at least once in the chamber in which the substrate is processed;
  • a substrate including a second pressurization and depressurization step (S200) of performing pressurization and decompression in the chamber at least once at a higher temperature than the first pressurization and decompression step (S100) after the first pressurization and depressurization step (S100) Initiate processing method.
  • the first pressure reduction step (S100) the first temperature (T 1 ) is constantly maintained, and in the second pressure reduction step (S200), the second temperature (T higher than the first temperature (T 1 )) 2 ), substrate treatment can be performed.
  • the temperature may be raised to a temperature at which the second pressure reduction step (S200) is performed either continuously or stepwise, or a combination thereof.
  • a standby step ( S300 ) of preparing a substrate process for the substrate and maintaining the temperature in the chamber at a third temperature ( T 3 ) may be further included.
  • the first temperature T 1 may be the same as the third temperature T 3 .
  • the first temperature T 1 may be greater than the third temperature T 3 and less than the second temperature T 2 .
  • the first pressure reduction step (S100) and the second pressure reduction step (S200) may use the same process gas.
  • the process gas may include hydrogen (H 2 ) gas.
  • the first pressure reduction step (S100) performs substrate processing using a first gas
  • the second pressure reduction step (S200) performs substrate processing using a second gas different from the first gas. can do.
  • the first gas may include hydrogen (H 2 ) gas
  • the second gas may include at least one of nitrogen (N 2 ) and oxygen (O 2 ) gas.
  • the first pressure reduction step (S100) uses a first gas containing hydrogen (H 2 ) gas
  • the second pressure reduction step (S200) uses the first gas to the substrate and the substrate and a stabilization step of performing stabilization of the thin film, and an impurity removal step of removing impurities from the thin film formed on the thin film, wherein the stabilization step includes at least one of nitrogen (N 2 ) and oxygen (O 2 ) gas.
  • the first pressure reduction step (S100) includes a first pressure step of raising the pressure in the chamber to a first pressure (P 1 ) or less greater than the atmospheric pressure, and the pressure in the chamber after the first pressure step is increased to the first pressure step (P 1 ).
  • the first pressurizing step may include a pressure raising step of increasing the pressure in the chamber, and a pressure maintaining step of maintaining the pressure in the chamber that has risen through the pressure raising step to be constant.
  • the first pressure step and the first pressure reducing step are set as one unit cycle, and the first pressure (P 1 ) is set to a maximum value and the second pressure (P 2 ) to a minimum value. It can be performed n times (n ⁇ 1) within the pressure range of
  • the second pressure P 2 may be greater than or equal to atmospheric pressure.
  • the second pressure reduction step (S200) includes a second pressure step of raising the pressure in the chamber to a third pressure (P 3 ) or less that is greater than atmospheric pressure, and the pressure in the chamber after the second pressure step is increased to the first pressure.
  • a second pressure reduction step of lowering the fourth pressure (P 4 ) or higher than the third pressure (P 3 ) may be included.
  • the first pressure P 1 may have the same pressure value as the third pressure P 3 .
  • the fourth pressure (P 4 ) may be a pressure lower than atmospheric pressure.
  • the second pressure-reducing step (S200) includes a temperature-raising step of raising the temperature in the chamber to the second temperature (T 2 ), and a high-temperature maintaining step of maintaining the temperature in the chamber at the second temperature (T 2 ). and a temperature reduction step of lowering the temperature in the chamber from the second temperature T 2 to the fourth temperature T 4 .
  • the second pressure step and the second pressure reduction step are performed within a pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value. It is performed n times (n ⁇ 1) as one unit cycle, and at least one unit cycle may be performed in the high temperature maintaining step.
  • the second pressure reduction step (S200) includes a temperature raising step of raising the temperature in the chamber to the second temperature (T 2 ), and the temperature in the chamber is increased from the second temperature (T 2 ) to a fourth temperature (T 4 ), and at least one of the temperature raising step and the temperature decreasing step may be performed when the pressure in the chamber is equal to or greater than atmospheric pressure.
  • the fourth temperature T 4 may be equal to or lower than the first temperature T 1 .
  • the substrate processing method according to the present invention has the advantage of maximizing the annealing effect in the main process by removing impurities from the inside of the reactor and the substrate and removing unnecessary gases adsorbed to the substrate in advance.
  • the substrate processing method according to the present invention has an advantage of minimizing film damage by minimizing a process under high temperature and reducing heat balance with respect to the substrate.
  • the substrate processing method according to the present invention has an advantage of improving process yield while reducing process time.
  • the substrate processing method according to the present invention has the advantage of maximizing the annealing effect by increasing the concentration of the reaction gas inside the reactor by performing the pressure reduction process before the process under high temperature.
  • FIG. 1 is a flow chart showing a substrate processing method according to the present invention.
  • FIG. 2 is a graph showing a substrate processing method according to FIG. 1 .
  • FIG. 3 is a graph showing temperature changes of another embodiment of the substrate processing method according to FIG. 1 .
  • Figure 4 is a graph showing the effect of the substrate processing method according to Figure 1.
  • a substrate processing method includes a first pressurization and decompression step (S100) of performing pressurization and decompression at least once in a chamber in which a substrate is processed; After the first pressure reduction step (S100), a second pressure reduction step (S200) of performing pressurization and pressure reduction in the chamber at least once at a higher temperature than the first pressure reduction step (S100).
  • S100 first pressurization and decompression step
  • S200 second pressure reduction step
  • a standby step of preparing a substrate treatment for the substrate and maintaining the temperature in the chamber at a third temperature (T 3 ) ( S300) may be further included.
  • a substrate described below may be used as a concept including both a state before a thin film is formed and a state in which a thin film is deposited.
  • the substrate to be processed may be understood as including all substrates such as substrates used for display devices such as LED, LCD, and OLED, semiconductor substrates, solar cell substrates, and glass substrates.
  • the process of processing the substrate may include deposition, etching, annealing, and the like, and may include, in particular, a process of removing impurities and unnecessary gases from the substrate and a thin film deposited on the substrate.
  • the substrate may have a configuration including a non-metal film including a dielectric film and a metal film, and in this case, details of the non-metal film and the metal film will be described later.
  • the chamber is a configuration in which a processing space is formed to process a substrate, and various configurations are possible.
  • the chamber may be configured to perform substrate processing on a single substrate, and as another example, may be configured to perform substrate processing by stacking a plurality of substrates in a vertical direction in a batch manner.
  • the chamber may have a single tube or double tube structure, an internal processing space is formed, and gas may be supplied or exhausted through a lower manifold.
  • the chamber has a structure in which a lower part is opened, and a lower part can be opened and closed through a cap flange or the like, thereby forming a closed processing space and introducing and taking out substrates.
  • the chamber may be made of a metal material such as aluminum, and may be made of a quartz material as another example.
  • the first pressure reduction step ( S100 ) may be a step of performing pressurization and decompression at least once in a chamber in which a substrate can be placed.
  • the first pressure reduction step (S100) removes impurities and unnecessary gases from the substrate at a relatively lower temperature than the second pressure reduction step (S200) before the second pressure reduction step (S200) to be described later. step, whereby the effect of the main process through the second pressure reduction step (S200) can be maximized.
  • the first pressure reduction step (S100) is performed at a relatively lower temperature than the second pressure reduction step (S200), and removes impurities and unnecessary gases while minimizing damage to the substrate and thin film by lowering the heat balance of the substrate.
  • the first pressure reduction step (S100) may be performed before the second pressure reduction step (S200), which is the main process.
  • pressurization and decompression of the chamber in which the substrate can be placed may be performed at least once at a temperature lower than that of the second pressurization and decompression step (S200).
  • the first temperature (T 1 ) may be constantly maintained, and the substrate is treated by performing pressurization and decompression while maintaining the first temperature (T 1 ). can be performed.
  • the first pressure reduction step (S100) is performed at a relatively lower temperature than the second pressure reduction step (S200), and continuously up to the temperature at which the second pressure reduction step (S200) is performed. At the same time as raising the temperature in any one step or a combination thereof, pressurization and decompression may be performed at least once.
  • the temperature is continuously increased linearly to the temperature at which the second pressure reduction step (S200) is performed, or pressurization and pressure reduction are performed at least once while increasing the temperature in stages.
  • the first temperature (T 1 ) at which the first pressure reduction step (S100) is performed is a temperature lower than the second temperature (T 2 ) at which the second pressure reduction step (S200) is performed, and is a standby step to be described later. It may be the same temperature as the third temperature (T 3 ) maintained in (S300).
  • pressurization and pressure reduction may be performed at least once at the same temperature as the third temperature (T 3 ) of the standby step (S300), which is a process preparation step for substrate processing.
  • the first temperature (T 1 ) may be set to be greater than the third temperature (T 3 ) and smaller than the second temperature (T 2 ), of course. .
  • substrate processing may be performed using a process gas, and at this time, the process gas may include hydrogen (H 2 ) gas.
  • the process gas may include hydrogen (H 2 ) gas.
  • the process gas may be a gas containing at least one element of hydrogen (H), oxygen (O), nitrogen (N), chlorine (Cl), and fluorine (F).
  • the substrate in the first pressure reduction step (S100), the substrate may be treated by supplying hydrogen (H 2 ) gas into the chamber, and more specifically, the substrate and the surface of the thin film formed on the substrate may have impurities and unnecessary gas can be removed.
  • hydrogen H 2
  • substrate treatment may be performed by applying the same process gas as that of the second pressure reduction step (S200) to be described later, and the process gas at this time is hydrogen (H 2 ) gas. It may be a gas containing
  • the substrate treatment may be performed in the first pressurizing/reducing step (S100) with a process gas different from that of the second pressurizing/reducing step (S200), which will be described later in this regard.
  • pressurization and pressure reduction may be performed at least once within a pressure range in which the first pressure (P 1 ) is the maximum value and the second pressure (P 2 ) is the minimum value. there is.
  • the first pressurizing step may include a pressure raising step of increasing the pressure in the chamber, and a pressure maintaining step of maintaining the pressure in the chamber that has risen through the pressure raising step to be constant.
  • the first pressurizing step may include a pressure raising step of raising the pressure in the chamber to the first pressure P 1 , and when the first pressure P 1 is reached, the pressure in the chamber is reduced to the first pressure P 1 . 1 ) may include a pressure maintaining step of maintaining a constant for a preset time.
  • the first pressurization step as shown in Figure 1, the pressure in the chamber is raised to the first pressure (P 1 ) And the first depressurization step can be performed immediately afterwards, of course. am.
  • the first pressure step and the first pressure reduction step are set as one unit cycle, and the first pressure (P 1 ) is the maximum value and the second pressure (P 2 )
  • the first pressure reduction step (S100) may be repeatedly performed with the first pressure step and the first pressure pressure step as one unit cycle, and in this process, the maximum and minimum pressure values in each cycle are the same or different. may be set differently.
  • the unit cycle may be repeatedly performed within a pressure range in which the first pressure (P 1 ) is the maximum value and the second pressure (P 2 ) is the minimum value, and the maximum and minimum values of the pressure for each unit cycle are as described above. They may be the same or different within the pressure range.
  • the second pressure (P 2 ) may be greater than or equal to the atmospheric pressure, and through this, the inflow of outside air according to the formation of a vacuum state for the inside of the chamber before the main process, which is the second pressure reduction step (S200), can be blocked. there is.
  • the first pressure (P 1 ) may be a preset pressure value within a range of 2 atm to 5 atm
  • the second pressure (P 2 ) may be 1 atm, that is, atmospheric pressure
  • the second pressure reduction step (S200) may be a step of performing pressurization and pressure reduction in the chamber at least once at a higher temperature than the first pressure reduction step (S100) after the first pressure reduction step (S100). .
  • the second pressure reduction step (S200) is a step in which substrate processing is performed at a relatively high temperature following the first pressure reduction step (S100), and may be a main process for removing impurities and unnecessary gases from the substrate and thin film. .
  • the substrate treatment may be performed at a second temperature (T 2 ) higher than the first temperature (T 1 ), and the second temperature (T 2 ) is constantly maintained during the entire step.
  • a heating section in which the temperature changes before and after the second temperature T 2 may be included.
  • substrate processing may be performed through the same process gas as the first pressure reduction step (S100), wherein the process gas is hydrogen (H 2 ) gas. It may be a gas containing
  • the first pressure reduction step (S100) and the second pressure reduction step (S200) in which a process gas containing hydrogen (H 2 ) gas is used may be a configuration in which a metal electrode is formed on the substrate to be processed, As an example, it may be a film such as TiN, Mo, or Ru.
  • the substrate processing may be performed in the second pressure reduction step ( S200 ) using a process gas different from that of the first pressure reduction step ( S100 ).
  • the second pressure reduction step (S200) unlike the first pressure reduction step (S100) in which the substrate processing is performed using a first gas containing hydrogen (H 2 ) gas, nitrogen (N 2 ) And oxygen (O 2 ) It is possible to perform the substrate treatment using a second gas containing at least one gas.
  • the second pressure reduction step (S200) may perform thin film stabilization for stabilizing the thin film formed on the substrate without performing a separate impurity removal process on the substrate.
  • nitrogen (N 2 ) and A second gas including at least one of oxygen (O 2 ) gases may be used.
  • the first gas may be more specifically, a gas containing at least one element of hydrogen (H), oxygen (O), nitrogen (N), chlorine (Cl), and fluorine (F).
  • the second pressure reduction step (S200) may include both an impurity removal step of removing impurities from the substrate and a thin film formed on the substrate, and a stabilization step of stabilizing the substrate and the thin film.
  • the impurity removal step may be performed using a first gas containing hydrogen (H 2 ) gas, and among nitrogen (N 2 ) and oxygen (O 2 ) gases.
  • the stabilization step may be performed using a second gas containing at least one gas.
  • a first pressure reduction step (S100) in which substrate processing is performed using the first gas, and a second pressure reduction step (S200) in which substrate processing is performed using the first gas and the second gas sequentially may be performed when a dielectric film is formed on the substrate, and for example, ZrO2, HfO2, and Al2O3 may be applied.
  • a dielectric film such as HfO 2 or ZrO 2 is filled with oxygen (O) in place of the carbon (C) removed through the hydrogen gas (H 2 ) in the impurity removal step, thereby enabling a stable dielectric film to be formed.
  • oxygen (O) in place of the carbon (C) removed through the hydrogen gas (H 2 ) in the impurity removal step, thereby enabling a stable dielectric film to be formed.
  • the second pressure reduction step (S200) similar to the above-described first pressure reduction step (S100), the pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value. Pressurization and depressurization may be performed at least once.
  • the second pressure reduction step (S200), the second pressure step of increasing the pressure in the chamber to the third pressure (P 3 ) and the third pressure (P 3 ) when the pressure in the chamber reaches the third pressure (P 3 ) It may include a high pressure maintaining step for maintaining constant as long as a preset time.
  • the second decompression step may be performed immediately following the second depressurization step of raising the pressure in the chamber to the third pressure P 3 .
  • the second pressure step and the second pressure reduction step are used as one unit cycle, and the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is a pressure range of the minimum value It can be performed n times (n ⁇ 1) within
  • the second pressure reduction step (S200) may be repeatedly performed by taking the second pressure step and the second pressure pressure step as one unit cycle, and in this process, the maximum and minimum pressure values in each cycle are the same or different. may be set differently.
  • the unit cycle may be repeatedly performed within a pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value, and the maximum and minimum values of the pressure for each unit cycle are as described above. They may be the same or different within the pressure range.
  • the third pressure (P 3 ) may have the same pressure value as the first pressure (P 1 ), whereby the maximum pressure value of the first pressure reduction step (S100) and the second pressure reduction step (S200) The maximum pressure values of may be equal to each other.
  • the fourth pressure (P 4 ) may be a pressure lower than atmospheric pressure, and through this, the second pressure reduction step (S200), unlike the first pressure reduction step (S100), the third pressure relatively greater than the atmospheric pressure ( A rapid pressure change between P 3 ) and the fourth pressure P 4 in a vacuum state can be induced.
  • the third pressure (P 3 ) may have a pressure value within a range of 2 atm to 5 atm
  • the fourth pressure (P 4 ) may be a pressure value in a vacuum state of 10 torr less than normal pressure.
  • the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is within a pressure range of the minimum value, the second pressure step and the second pressure range
  • the depressurization step may be performed n times (n ⁇ 1) as one unit cycle, and at least one unit cycle at this time may be performed in the high temperature maintaining step.
  • At least one of the unit cycles consisting of the second pressurization step and the second depressurization step is performed in the high-temperature maintaining step, so that the reaction for removing impurities from the substrate can be further promoted.
  • the thermal vibration of atoms can be increased, and through this, it is possible to promote decomposition of the bond of impurities forming a weak bond with the substrate or thin film. It is possible to improve the binding between the constituting material of the first gas, such as hydrogen, and impurities on the surface of the substrate or thin film.
  • the temperature raising step may be a step of raising the temperature in the chamber from the first temperature T 1 to the second temperature T 2 .
  • the temperature in the chamber may be raised to create a temperature atmosphere for removing impurities, thereby creating temperature conditions for substrate processing.
  • the temperature raising step may be performed when the pressure in the chamber is equal to or greater than atmospheric pressure during the second pressure reduction step (S200).
  • the high-temperature maintaining step is a step of maintaining the temperature in the chamber at the second temperature T2, and the second pressing step and the second depressurizing step are performed, so that impurities and unnecessary gases can be effectively removed from the substrate and the thin film.
  • the temperature reduction step may be a step of lowering the temperature in the chamber from the second temperature T 2 to the fourth temperature T 4 .
  • the fourth temperature (T 4 ) may be the same temperature as the third temperature (T 3 ), which is a chamber temperature applied during the standby step (S300) to be described later, and, as another example, a temperature higher than the third temperature (T 3 ). It may be a low temperature, and as described above, it may be the same as the first temperature (T 1 ) or a different temperature depending on subsequent processes.
  • the temperature reduction step may be performed during any one of the second pressurization step and the high pressure maintaining step, and more specifically, the pressure in the chamber is maintained at a first pressure P 1 , which is a high pressure state greater than atmospheric pressure. During the period, the temperature can be reduced from the second temperature (T 2 ) to the fourth temperature (T 4 ).
  • the temperature raising step and the temperature decreasing step may be performed when the pressure in the chamber is higher than atmospheric pressure during the second increasing/decreasing step (S200), and more preferably, during the high pressure maintaining step maintaining the high pressure state. can be performed
  • the temperature increase time point and temperature increase end point of the temperature increase step, and the temperature decrease point and temperature decrease end point of the temperature decrease step can be specified as points at which deterioration of the thin film can be minimized.
  • the temperature atmosphere is changed from the first temperature T 1 to the second temperature T 2 from the preset temperature rising time point to the temperature rising end point during or after the second pressing step is performed.
  • the temperature rising point and the temperature rising end point in the temperature raising step are the start point of the second pressurization step (the point at which pressurization starts with the third pressure P 3 ) and the start point of the second decompression step (the fourth pressure P 4 ) to the point at which decompression begins).
  • the temperature in the temperature raising step, the temperature may be raised from a preset temperature raising time point to a temperature raising end point during the performance of the second pressurizing step.
  • the temperature increase time point may be set at any time point after the start point of the second pressurization step, but the inside of the chamber is blocked by O 2 gas. It is preferable to set a time point after a certain amount of the first gas or the second gas is introduced so that the process pressure is pressurized above the atmospheric pressure so as to be sufficiently protected.
  • the temperature rising point and the temperature rising end point are preferably set within a high pressure maintaining step in which the pressure is maintained in a state in which the process pressure in the chamber is pressurized to a sufficiently high pressure of the third pressure level (P 3 ) through the second pressing step. do.
  • the temperature atmosphere can be reduced to the fourth temperature T 4 from a preset temperature reduction time point to a temperature reduction end point during or after the second pressure step is performed. .
  • the temperature reduction start point and the temperature reduction end point in the temperature reduction step are the start point of the second pressure step (the point at which pressurization starts with the third pressure (P 3 )) and the start point of the second pressure reduction step (the fourth pressure (P 4 ) ). ) to the point at which decompression begins).
  • the temperature may be reduced from a predetermined temperature reduction time point to a temperature reduction end point during any one of the second pressurization step and the high pressure maintaining step.
  • the temperature reduction time point may be set at any time point after the start point of the pressurization step, but the inside of the chamber is free from O 2 gas. It is preferable to set the time point after a certain amount of the first gas or the second gas is introduced so as to be sufficiently protected and the process pressure is pressurized above the atmospheric pressure. It may be set to a time point before the pressure is reduced to below atmospheric pressure.
  • the temperature reduction start point and temperature reduction end point are preferably set within a high pressure maintenance step in which the pressure is maintained in a state in which the process pressure in the chamber is pressurized to a sufficiently high pressure of the level of the third pressure (P 3 ) through the second pressurization step. do.
  • the temperature reduction step may be performed during the last n-th high-pressure maintaining step when the second pressure step and the second pressure step are repeated n times as one unit cycle.
  • the temperature in the chamber may be maintained at the second temperature (T 2 ), and the temperature reduction step is performed at the nth pressure for the temperature condition of the subsequent process. This can be done during the maintenance phase.
  • the aforementioned fourth temperature T 4 may be equal to or lower than the first temperature T 1 .
  • the waiting step (S300) may be a step of preparing a substrate treatment for the substrate before the first pressure reduction step (S100).
  • the temperature in the chamber is constantly maintained at the third temperature (T 3 ) to prepare for substrate processing before the first pressure reduction step (S100). It may be a step to
  • the third temperature T 3 may be equal to or lower than the first temperature T 1 .
  • the temperature in the chamber is maintained at the third temperature (T 3 ) in a standby state preparing for substrate processing. It may include a temperature maintaining step and a temperature raising step of raising the temperature in the chamber to the first temperature T 1 for the first pressure reduction step S100 after the temperature maintaining step.
  • FIG. 4 is a graph comparing substrate processing experiment results through a conventional substrate processing method and a substrate processing method according to the present invention, and the experiment was conducted in the following situation.
  • the temperature in the chamber was maintained at 300 ° C in the standby step (S300), and the process corresponding to the second pressure reduction step (S200) of the present invention, which is the main process, was repeatedly performed at 400 ° C. for three cycles. .
  • the temperature in the chamber is maintained at 300 ° C in the standby step (S300), the first pressure reduction step (S100) is performed at the same 300 ° C, and then the second pressure reduction step (S200) was performed one cycle under 400 ° C., wherein both the first pressure reduction step (S100) and the second pressure reduction step (S200) used hydrogen (H 2 ) gas.
  • the sheet resistance (R s ) is improved and the substrate characteristics are improved. ) to reduce damage to the substrate and the thin film, while improving the sheet resistance (R s ) can be confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention relates to a substrate treatment method and, more specifically, to a substrate treatment method for improving substrate properties. The present invention provides a substrate treatment method comprising: a first compression and decompression step (S100) for performing, at least once, compression and decompression of a chamber in which a substrate is treated; and a second compression and decompression step (S200) for performing, at least once, compression and decompression of the chamber at a temperature higher than the first compression and decompression step (S100), after the first compression and decompression step (S100).

Description

기판처리방법Substrate treatment method
본 발명은, 기판처리방법에 관한 것으로서, 보다 상세하게는 기판 특성을 개선하기 위한 기판처리방법에 관한 것이다.The present invention relates to a substrate processing method, and more particularly, to a substrate processing method for improving substrate characteristics.
일반적으로, 기판처리방법은 증착을 통한 막을 형성하는 공정을 포함할 수 있다.In general, a substrate processing method may include a process of forming a film through deposition.
그런데, 종래에는 기판의 박막 형성 후 막 내 불순물 제거 및 막의 특성을 개선하기 위하여 업계에서 특별히 선호하거나 완벽하게 검증되었다고 특히 잘 알려진 기술이 없었다.However, in the prior art, there has been no particularly well-known technology that is particularly favored or perfectly verified in the industry for removing impurities in the film and improving the properties of the film after forming a thin film on a substrate.
특히, 3차원 반도체 소자들, 높은 종횡비(High Aspect Ratio)를 갖는 기판들의 등장에 따라 스텝 커버리지(Step coverage)의 규격을 만족하기 위해 막 증착 온도를 보다 저온화하거나 불순물의 함량이 높은 소스를 필연적으로 사용하게 된 탓에 막 내의 불순물 제거가 더욱 어려워지고 있는 실정이다.In particular, with the advent of 3D semiconductor devices and substrates with a high aspect ratio, it is inevitable to lower the film deposition temperature or to use a source with a high impurity content in order to meet the step coverage standard. As a result, it is becoming more difficult to remove impurities in the membrane.
따라서, 막 형성 후 막 특성의 열화없이도 막 내에 존재하는 불순물을 제거하여 막의 특성을 개선할 수 있는 기판처리방법이 요구되고 있다.Therefore, there is a need for a substrate processing method capable of improving film properties by removing impurities present in the film without deteriorating film properties after film formation.
이를 위하여, 종래에는 압력과 온도를 공정값까지 상승시킨 이후에 기판에 대한 가압 및 감압을 수행하여 불순물을 제거하였으나, 이와 같은 기판처리방법으로는 기판이 대기에 노출되는 바 불순물을 및 불필요한 가스입자를 효과적으로 제거하지 못해 불순물 제거 공정 효율이 저하되는 문제점이 있다.To this end, conventionally, after raising the pressure and temperature to process values, pressurization and depressurization are performed on the substrate to remove impurities. There is a problem in that the efficiency of the impurity removal process is lowered because it is not effectively removed.
따라서, 종래에는 불순물을 완전히 제거하지 못하거나 가감압을 고온 상태에서 장시간 반복 수행하여야만 했으나, 고온에서 장시간 불순물 제거공정을 위한 기판처리를 수행하는 경우 기판이 수용가능한 수준을 초과하는 열수지(Heat budget)로 인해 막이 손상되는 문제점이 있다. Therefore, in the prior art, impurities could not be completely removed or pressure and pressure had to be repeatedly performed at a high temperature for a long time. However, in the case of performing a substrate treatment for a long-term impurity removal process at a high temperature, the heat budget exceeds the acceptable level of the substrate There is a problem that the film is damaged due to this.
결과적으로 종래 기판처리방법은, 열수지를 줄이는 경우 불순물 제거가 완전하지 못하는 문제점이 있으며, 불순물 제거를 완전하게 수행하는 경우 열수지과다로 인해 막질이 손상되어 공정 수율이 저하되며 공정시간이 증가하는 문제점이 있다.As a result, in the conventional substrate processing method, there is a problem in that impurities are not completely removed when the heat balance is reduced, and when the impurity removal is completely performed, the film quality is damaged due to the excessive heat balance, resulting in a decrease in process yield and an increase in process time. there is.
본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여, 기판에 대한 열수지를 줄이면서도 불순물 제거를 수행함으로써 기판 특성을 개선할 수 있는 기판처리방법을 제공하는데 있다.In order to solve the above problems, an object of the present invention is to provide a substrate processing method capable of improving substrate characteristics by removing impurities while reducing the heat balance of the substrate.
본 발명은, 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 기판이 처리되는 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 제1가감압단계(S100)와; 상기 제1가감압단계(S100) 이후에, 상기 제1가감압단계(S100) 보다 높은 온도에서 상기 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 제2가감압단계(S200)를 포함하는 기판처리방법을 개시한다. The present invention, as created to achieve the object of the present invention as described above, the present invention, a first pressurization and decompression step (S100) of performing pressurization and decompression at least once in the chamber in which the substrate is processed; A substrate including a second pressurization and depressurization step (S200) of performing pressurization and decompression in the chamber at least once at a higher temperature than the first pressurization and decompression step (S100) after the first pressurization and depressurization step (S100) Initiate processing method.
상기 제1가감압단계(S100)는, 제1온도(T1)로 일정하게 유지되며, 상기 제2가감압단계(S200)는, 상기 제1온도(T1)보다 높은 제2온도(T2)에서 기판처리가 수행될 수 있다. In the first pressure reduction step (S100), the first temperature (T 1 ) is constantly maintained, and in the second pressure reduction step (S200), the second temperature (T higher than the first temperature (T 1 )) 2 ), substrate treatment can be performed.
상기 제1가감압단계(S100)는, 상기 제2가감압단계(S200)가 수행되는 온도까지 지속적 및 단계적 중 어느 하나 또는 이들의 조합으로 온도를 상승시킬 수 있다. In the first pressure reduction step (S100), the temperature may be raised to a temperature at which the second pressure reduction step (S200) is performed either continuously or stepwise, or a combination thereof.
상기 제1가감압단계(S100) 이전에, 상기 기판에 대한 기판처리를 준비하며 상기 챔버 내의 온도를 제3온도(T3)로 유지하는 대기단계(S300)를 추가로 포함할 수 있다. Prior to the first pressure reduction step ( S100 ), a standby step ( S300 ) of preparing a substrate process for the substrate and maintaining the temperature in the chamber at a third temperature ( T 3 ) may be further included.
상기 제1온도(T1)는, 상기 제3온도(T3)와 동일한 온도일 수 있다. The first temperature T 1 may be the same as the third temperature T 3 .
상기 제1온도(T1)는, 상기 제3온도(T3) 초과 상기 제2온도(T2) 미만일 수 있다. The first temperature T 1 may be greater than the third temperature T 3 and less than the second temperature T 2 .
상기 제1가감압단계(S100) 및 상기 제2가감압단계(S200)는, 서로 동일한 공정가스를 사용할 수 있다. The first pressure reduction step (S100) and the second pressure reduction step (S200) may use the same process gas.
상기 공정가스는, 수소(H2) 가스를 포함할 수 있다. The process gas may include hydrogen (H 2 ) gas.
상기 제1가감압단계(S100)는, 제1가스를 이용하여 기판처리를 수행하며, 상기 제2가감압단계(S200)는, 상기 제1가스와 상이한 제2가스를 이용하여 기판처리를 수행할 수 있다. The first pressure reduction step (S100) performs substrate processing using a first gas, and the second pressure reduction step (S200) performs substrate processing using a second gas different from the first gas. can do.
상기 제1가스는, 수소(H2) 가스를 포함하며, 상기 제2가스는, 질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함할 수 있다. The first gas may include hydrogen (H 2 ) gas, and the second gas may include at least one of nitrogen (N 2 ) and oxygen (O 2 ) gas.
상기 제1가감압단계(S100)는, 수소(H2) 가스를 포함하는 제1가스를 사용하며, 상기 제2가감압단계(S200)는, 상기 제1가스를 사용하여 상기 기판 및 상기 기판에 형성되는 박막에 대한 불순물을 제거하는 불순물제거단계와, 상기 박막에 대한 안정화를 수행하는 안정화단계를 포함하며, 상기 안정화단계는, 질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함하는 제2가스를 사용할 수 있다. The first pressure reduction step (S100) uses a first gas containing hydrogen (H 2 ) gas, and the second pressure reduction step (S200) uses the first gas to the substrate and the substrate and a stabilization step of performing stabilization of the thin film, and an impurity removal step of removing impurities from the thin film formed on the thin film, wherein the stabilization step includes at least one of nitrogen (N 2 ) and oxygen (O 2 ) gas. A second gas containing
상기 제1가감압단계(S100)는, 상기 챔버 내의 압력을 대기압보다 큰 제1압력(P1) 이하로 상승시키는 제1가압단계와, 상기 제1가압단계 이후에 상기 챔버 내의 압력을 상기 제1압력(P1)보다 낮은 제2압력(P2) 이상으로 하강시키는 제1감압단계를 포함할 수 있다. The first pressure reduction step (S100) includes a first pressure step of raising the pressure in the chamber to a first pressure (P 1 ) or less greater than the atmospheric pressure, and the pressure in the chamber after the first pressure step is increased to the first pressure step (P 1 ). 1 pressure (P 1 ) Lower than the second pressure (P 2 ) It may include a first decompression step of lowering.
상기 제1가압단계는, 상기 챔버 내의 압력을 상승시키는 압력상승단계와, 상기 압력상승단계를 통해 상승한 상기 챔버 내의 압력을 일정하게 유지하는 압력유지단계를 포함할 수 있다. The first pressurizing step may include a pressure raising step of increasing the pressure in the chamber, and a pressure maintaining step of maintaining the pressure in the chamber that has risen through the pressure raising step to be constant.
상기 제1가감압단계(S100)는, 상기 제1가압단계와 상기 제1감압단계를 하나의 단위 사이클로 하여, 제1압력(P1)을 최대값 상기 제2압력(P2)을 최소값으로 하는 압력범위 내에서 n회(n≥1) 수행할 수 있다. In the first pressure reducing step (S100), the first pressure step and the first pressure reducing step are set as one unit cycle, and the first pressure (P 1 ) is set to a maximum value and the second pressure (P 2 ) to a minimum value. It can be performed n times (n≥1) within the pressure range of
상기 제2압력(P2)은, 대기압보다 크거나 같은 압력일 수 있다. The second pressure P 2 may be greater than or equal to atmospheric pressure.
상기 제2가감압단계(S200)는, 상기 챔버 내의 압력을 대기압보다 큰 제3압력(P3) 이하로 상승시키는 제2가압단계와, 상기 제2가압단계 이후에 상기 챔버 내의 압력을 상기 제3압력(P3)보다 낮은 제4압력(P4) 이상으로 하강시키는 제2감압단계를 포함할 수 있다. The second pressure reduction step (S200) includes a second pressure step of raising the pressure in the chamber to a third pressure (P 3 ) or less that is greater than atmospheric pressure, and the pressure in the chamber after the second pressure step is increased to the first pressure. A second pressure reduction step of lowering the fourth pressure (P 4 ) or higher than the third pressure (P 3 ) may be included.
상기 제1압력(P1)은, 상기 제3압력(P3)과 동일한 압력값일 수 있다. The first pressure P 1 may have the same pressure value as the third pressure P 3 .
상기 제4압력(P4)은, 대기압보다 낮은 압력일 수 있다. The fourth pressure (P 4 ) may be a pressure lower than atmospheric pressure.
상기 제2가감압단계(S200)는, 상기 챔버 내의 온도를 상기 제2온도(T2)로 상승시키는 승온단계와, 상기 챔버 내의 온도를 상기 제2온도(T2)로 유지하는 고온유지단계와, 상기 챔버 내의 온도를 상기 제2온도(T2)에서 제4온도(T4)로 하강시키는 감온단계를 포함할 수 있다. The second pressure-reducing step (S200) includes a temperature-raising step of raising the temperature in the chamber to the second temperature (T 2 ), and a high-temperature maintaining step of maintaining the temperature in the chamber at the second temperature (T 2 ). and a temperature reduction step of lowering the temperature in the chamber from the second temperature T 2 to the fourth temperature T 4 .
상기 제2가감압단계(S200)는, 제3압력(P3)을 최대값 상기 제4압력(P4)을 최소값으로 하는 압력범위 내에서, 상기 제2가압단계와 상기 제2감압단계를 하나의 단위 사이클로 하여 n회(n≥1) 수행되며, 적어도 하나의 단위 사이클은, 상기 고온유지단계에서 수행될 수 있다. In the second pressure reduction step (S200), the second pressure step and the second pressure reduction step are performed within a pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value. It is performed n times (n≥1) as one unit cycle, and at least one unit cycle may be performed in the high temperature maintaining step.
상기 제2가감압단계(S200)는, 상기 챔버 내의 온도를 상기 제2온도(T2)로 상승시키는 승온단계와, 상기 챔버 내의 온도를 상기 제2온도(T2)에서 제4온도(T4)로 하강시키는 감온단계를 포함하며, 상기 승온단계 및 상기 감온단계 중 적어도 하나는, 상기 챔버 내 압력이 대기압 이상일 때 수행될 수 있다.The second pressure reduction step (S200) includes a temperature raising step of raising the temperature in the chamber to the second temperature (T 2 ), and the temperature in the chamber is increased from the second temperature (T 2 ) to a fourth temperature (T 4 ), and at least one of the temperature raising step and the temperature decreasing step may be performed when the pressure in the chamber is equal to or greater than atmospheric pressure.
상기 제4온도(T4)는, 상기 제1온도(T1)와 같거나 낮은 온도일 수 있다.The fourth temperature T 4 may be equal to or lower than the first temperature T 1 .
본 발명에 따른 기판처리방법은, 반응기 내부와 기판의 불순물 제거 및 기판에 흡착된 불필요한 가스를 미리 제거하여 메인 공정에서의 어닐링 효과를 극대화할 수 있는 이점이 있다.The substrate processing method according to the present invention has the advantage of maximizing the annealing effect in the main process by removing impurities from the inside of the reactor and the substrate and removing unnecessary gases adsorbed to the substrate in advance.
특히, 본 발명에 따른 기판처리방법은, 고온 하에서의 공정을 최소화하여 기판에 대한 열수지를 줄임으로써 막질 손상을 최소화할 수 있는 이점이 있다.In particular, the substrate processing method according to the present invention has an advantage of minimizing film damage by minimizing a process under high temperature and reducing heat balance with respect to the substrate.
이를 통해 본 발명에 따른 기판처리방법은, 공정 시간은 줄이면서도 공정 수율은 향상시킬 수 있는 이점이 있다.Through this, the substrate processing method according to the present invention has an advantage of improving process yield while reducing process time.
또한, 본 발명에 따른 기판처리방법은, 고온 하에서의 공정 전에 가감압 공정을 진행함으로써, 반응기 내부 반응가스의 농도를 높일 수 있고 이를 통해 어닐 효과를 극대화할 수 있는 이점이 있다.In addition, the substrate processing method according to the present invention has the advantage of maximizing the annealing effect by increasing the concentration of the reaction gas inside the reactor by performing the pressure reduction process before the process under high temperature.
도 1은, 본 발명에 따른 기판처리방법을 보여주는 순서도이다.1 is a flow chart showing a substrate processing method according to the present invention.
도 2는, 도 1에 따른 기판처리방법을 보여주는 그래프이다.FIG. 2 is a graph showing a substrate processing method according to FIG. 1 .
도 3은, 도 1에 따른 기판처리방법 다른 실시예의 온도변화를 보여주는 그래프이다.FIG. 3 is a graph showing temperature changes of another embodiment of the substrate processing method according to FIG. 1 .
도 4는, 도 1에 따른 기판처리방법의 효과를 보여주는 그래프이다.Figure 4 is a graph showing the effect of the substrate processing method according to Figure 1.
이하, 본 발명에 따른 기판처리방법에 관하여 첨부된 도면을 참조하여 설명한다. Hereinafter, a substrate processing method according to the present invention will be described with reference to the accompanying drawings.
본 발명에 따른 기판처리방법은, 도 1 및 도 2에 도시된 바와 같이, 기판이 처리되는 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 제1가감압단계(S100)와; 상기 제1가감압단계(S100) 이후에, 상기 제1가감압단계(S100) 보다 높은 온도에서 상기 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 제2가감압단계(S200)를 포함한다.As shown in FIGS. 1 and 2 , a substrate processing method according to the present invention includes a first pressurization and decompression step (S100) of performing pressurization and decompression at least once in a chamber in which a substrate is processed; After the first pressure reduction step (S100), a second pressure reduction step (S200) of performing pressurization and pressure reduction in the chamber at least once at a higher temperature than the first pressure reduction step (S100).
또한, 본 발명에 따른 기판처리방법은, 상기 제1가감압단계(S100) 이전에, 상기 기판에 대한 기판처리를 준비하며 상기 챔버 내의 온도를 제3온도(T3)로 유지하는 대기단계(S300)를 추가로 포함할 수 있다.In addition, the substrate processing method according to the present invention, before the first pressure reduction step (S100), a standby step of preparing a substrate treatment for the substrate and maintaining the temperature in the chamber at a third temperature (T 3 ) ( S300) may be further included.
이하에서 설명하는 기판은, 박막이 형성되기 전 상태와 박막이 증착된 상태를 모두 포함하는 개념으로 사용될 수 있다.A substrate described below may be used as a concept including both a state before a thin film is formed and a state in which a thin film is deposited.
여기서 처리대상이 되는 상기 기판은, LED, LCD, OLED 등의 표시장치에 사용하는 기판, 반도체 기판, 태양전지 기판, 글라스 기판 등의 모든 기판을 포함하는 의미로 이해될 수 있다.Here, the substrate to be processed may be understood as including all substrates such as substrates used for display devices such as LED, LCD, and OLED, semiconductor substrates, solar cell substrates, and glass substrates.
또한, 기판이 처리되는 공정은, 증착, 식각, 어닐링 등을 포함할 수 있으며, 특히 기판과 기판에 증착되는 박막에 대한 불순물 및 불필요한 가스를 제거하는 공정을 포함할 수 있다.Further, the process of processing the substrate may include deposition, etching, annealing, and the like, and may include, in particular, a process of removing impurities and unnecessary gases from the substrate and a thin film deposited on the substrate.
또한, 상기 기판은, 유전막을 포함하는 비금속막과 금속막을 포함하는 구성일 수 있으며, 이때 비금속막과 금속막에 구체적인 내용에 대하여는 후술한다.In addition, the substrate may have a configuration including a non-metal film including a dielectric film and a metal film, and in this case, details of the non-metal film and the metal film will be described later.
상기 챔버는, 처리공간이 형성되어 기판을 처리하는 구성으로서, 다양한 구성이 가능하다.The chamber is a configuration in which a processing space is formed to process a substrate, and various configurations are possible.
이때, 상기 챔버는, 단일의 기판에 대한 기판처리가 수행되는 구성일 수 있으며, 다른 예로서, 배치식으로 다수의 기판이 수직방향으로 적층되어 기판처리를 수행하는 구성일 수 있다. In this case, the chamber may be configured to perform substrate processing on a single substrate, and as another example, may be configured to perform substrate processing by stacking a plurality of substrates in a vertical direction in a batch manner.
이하 다수의 기판을 동시에 처리할 수 있는 배치식 구조의 실시예를 기준으로 설명하며, 단일의 기판에 대한 기판처리가 수행되는 매엽식 구조가 적용될 수 있음은 또한 물론이다.Hereinafter, an embodiment of a batch type structure capable of simultaneously processing a plurality of substrates will be described, and a single layer type structure in which substrate processing for a single substrate is performed can be applied, of course.
상기 챔버는, 단일관 또는 이중관 구조를 가질 수 있으며, 내부의 처리공간이 형성되고, 하부의 매니폴드를 통해서 가스가 공급되거나 배기되는 구성일 수 있다.The chamber may have a single tube or double tube structure, an internal processing space is formed, and gas may be supplied or exhausted through a lower manifold.
이때, 상기 챔버는, 하부가 개방되는 구조로서, 캡플랜지 등을 통해 하부가 개폐될 수 있으며 이로써, 밀폐된 처리공간을 형성하고 기판을 도입 및 반출할 수 있다.At this time, the chamber has a structure in which a lower part is opened, and a lower part can be opened and closed through a cap flange or the like, thereby forming a closed processing space and introducing and taking out substrates.
한편, 이때 상기 챔버는, 알루미늄을 비롯한 금속재질로 구성될 수 있으며, 다른 예로서 석영재질로 구성될 수 있다.Meanwhile, the chamber may be made of a metal material such as aluminum, and may be made of a quartz material as another example.
상기 제1가감압단계(S100)는, 기판이 배치가능한 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 단계일 수 있다.The first pressure reduction step ( S100 ) may be a step of performing pressurization and decompression at least once in a chamber in which a substrate can be placed.
보다 구체적으로, 상기 제1가감압단계(S100)는, 후술하는 제2가감압단계(S200) 전에 제2가감압단계(S200)보다 상대적으로 낮은 온도에서 기판에 대한 불순물 및 불필요한 가스를 제거하는 단계일 수 있으며, 이로써 제2가감압단계(S200)를 통한 메인공정의 효과를 극대화할 수 있다.More specifically, the first pressure reduction step (S100) removes impurities and unnecessary gases from the substrate at a relatively lower temperature than the second pressure reduction step (S200) before the second pressure reduction step (S200) to be described later. step, whereby the effect of the main process through the second pressure reduction step (S200) can be maximized.
특히, 상기 제1가감압단계(S100)는, 제2가감압단계(S200)보다 상대적으로 낮은 온도에서 수행되는 바, 기판의 열수지를 낮춰서 기판 및 박막에 대한 손상을 최소화하면서도 불순물 및 불필요한 가스 제거 효과는 극대화할 수 있는 이점이 있다.In particular, the first pressure reduction step (S100) is performed at a relatively lower temperature than the second pressure reduction step (S200), and removes impurities and unnecessary gases while minimizing damage to the substrate and thin film by lowering the heat balance of the substrate. There are advantages to maximizing the effect.
이를 위해, 상기 제1가감압단계(S100)는, 메인 공정인 제2가감압단계(S200) 전에 수행될 수 있다.To this end, the first pressure reduction step (S100) may be performed before the second pressure reduction step (S200), which is the main process.
보다 구체적으로, 상기 제1가감압단계(S100)는, 제2가감압단계(S200)보다 낮은 온도에서 기판이 배치가능한 챔버 내에 대한 가압 및 감압을 적어도 1회 수행할 수 있다.More specifically, in the first pressurization and depressurization step (S100), pressurization and decompression of the chamber in which the substrate can be placed may be performed at least once at a temperature lower than that of the second pressurization and decompression step (S200).
이때, 상기 제1가감압단계(S100)는, 제1온도(T1)로 일정하게 유지될 수 있으며, 제1온도(T1)를 유지한 상태에서 가압 및 감압을 수행함으로써 기판에 대한 처리를 수행할 수 있다.At this time, in the first pressure reduction step (S100), the first temperature (T 1 ) may be constantly maintained, and the substrate is treated by performing pressurization and decompression while maintaining the first temperature (T 1 ). can be performed.
또한, 다른 예로서, 상기 제1가감압단계(S100)는, 제2가감압단계(S200)보다 상대적으로 낮은 온도로 수행되는 바, 제2가감압단계(S200)가 수행되는 온도까지 지속적 및 단계적 중 어느 하나 또는 이들의 조합으로 온도를 상승시킴과 동시에 가압 및 감압이 적어도 1회 수행될 수 있다.In addition, as another example, the first pressure reduction step (S100) is performed at a relatively lower temperature than the second pressure reduction step (S200), and continuously up to the temperature at which the second pressure reduction step (S200) is performed. At the same time as raising the temperature in any one step or a combination thereof, pressurization and decompression may be performed at least once.
즉, 상기 제1가감압단계(S100)는, 제2가감압단계(S200)가 수행되는 온도까지 지속적인 선형으로 온도를 상승시키거나, 단계적으로 온도를 상승시키면서 가압 및 감압이 적어도 1회 수행될 수 있다.That is, in the first pressure reduction step (S100), the temperature is continuously increased linearly to the temperature at which the second pressure reduction step (S200) is performed, or pressurization and pressure reduction are performed at least once while increasing the temperature in stages. can
한편, 상기 제1가감압단계(S100)가 수행되는 제1온도(T1)는, 제2가감압단계(S200)가 수행되는 제2온도(T2)보다 낮은 온도로서, 후술하는 대기단계(S300)에서 유지되는 제3온도(T3)와 같은 온도일 수 있다.Meanwhile, the first temperature (T 1 ) at which the first pressure reduction step (S100) is performed is a temperature lower than the second temperature (T 2 ) at which the second pressure reduction step (S200) is performed, and is a standby step to be described later. It may be the same temperature as the third temperature (T 3 ) maintained in (S300).
즉, 상기 제1가감압단계(S100)는, 기판처리를 위한 공정 준비단계인 대기단계(S300)의 제3온도(T3)와 동일한 온도에서 가압 및 감압이 적어도 1회 수행될 수 있다.That is, in the first pressure reduction step (S100), pressurization and pressure reduction may be performed at least once at the same temperature as the third temperature (T 3 ) of the standby step (S300), which is a process preparation step for substrate processing.
다른 예로서, 상기 제1가감압단계(S100)는, 제1온도(T1)가 제3온도(T3)보다 크고 제2온도(T2)보다는 작도록 설정될 수 있음은 또한 물론이다.As another example, in the first pressure reduction step (S100), the first temperature (T 1 ) may be set to be greater than the third temperature (T 3 ) and smaller than the second temperature (T 2 ), of course. .
한편, 상기 제1가감압단계(S100)는, 공정가스를 통해 기판처리를 수행할 수 있으며, 이때 공정가스는 수소(H2)가스를 포함할 수 있다.Meanwhile, in the first pressure reduction step (S100), substrate processing may be performed using a process gas, and at this time, the process gas may include hydrogen (H 2 ) gas.
보다 구체적으로, 상기 공정가스는, 수소(H), 산소(O), 질소(N), 염소(Cl), 불소(F) 중 적어도 하나의 원소를 포함하는 가스일 수 있다.More specifically, the process gas may be a gas containing at least one element of hydrogen (H), oxygen (O), nitrogen (N), chlorine (Cl), and fluorine (F).
즉, 상기 제1가감압단계(S100)는, 수소(H2) 가스를 챔버 내에 공급함으로써 기판에 대한 처리를 수행할 수 있으며, 보다 구체적으로는 기판 및 기판에 형성되는 박막 표면에 불순물과 불필요한 가스를 제거할 수 있다.That is, in the first pressure reduction step (S100), the substrate may be treated by supplying hydrogen (H 2 ) gas into the chamber, and more specifically, the substrate and the surface of the thin film formed on the substrate may have impurities and unnecessary gas can be removed.
이때의 불순물을 제거하는 구체적인 메커니즘에 대하여는 종래 개시된 한국 특허출원 제10-2020-0006422A에 제시된 바 있으며, 이와 관련한 구성을 포함할 수 있다.A specific mechanism for removing impurities at this time has been proposed in Korean Patent Application No. 10-2020-0006422A previously disclosed, and may include a related configuration.
이때, 상기 제1가감압단계(S100)는, 후술하는 제2가감압단계(S200)와 동일한 공정가스가 적용되어 기판처리가 수행될 수 있으며, 이때의 공정가스는 수소(H2) 가스를 포함하는 가스일 수 있다.At this time, in the first pressure reduction step (S100), substrate treatment may be performed by applying the same process gas as that of the second pressure reduction step (S200) to be described later, and the process gas at this time is hydrogen (H 2 ) gas. It may be a gas containing
한편, 다른 예로서, 상기 제1가감압단계(S100)는, 후술하는 제2가감압단계(S200)와 서로 상이한 공정가스로 기판처리가 수행될 수 있으며, 이와 관련해서는 후술한다. On the other hand, as another example, the substrate treatment may be performed in the first pressurizing/reducing step (S100) with a process gas different from that of the second pressurizing/reducing step (S200), which will be described later in this regard.
상기 제1가감압단계(S100)는, 챔버 내의 압력을 대기압보다 큰 제1압력(P1) 이하로 상승시키는 제1가압단계와, 제1가압단계 이후에 챔버 내의 압력을 제1압력(P1)보다 낮은 제2압력(P2) 이상으로 하강시키는 제1감압단계를 포함할 수 있다.The first pressure reduction step (S100), the first pressure step of raising the pressure in the chamber to a first pressure (P 1 ) or less greater than the atmospheric pressure, and after the first pressure step, the pressure in the chamber to the first pressure (P 1 ) lower than the second pressure (P 2 ) It may include a first decompression step of lowering.
즉, 상기 제1가감압단계(S100)는, 제1압력(P1)을 최대값으로 하고 제2압력(P2)을 최소값으로 하는 압력범위 내에서 가압 및 감압이 적어도 1회 수행될 수 있다.That is, in the first pressure reduction step (S100), pressurization and pressure reduction may be performed at least once within a pressure range in which the first pressure (P 1 ) is the maximum value and the second pressure (P 2 ) is the minimum value. there is.
이때, 상기 제1가압단계는, 챔버 내의 압력을 상승시키는 압력상승단계와, 압력상승단계를 통해 상승한 챔버 내의 압력을 일정하게 유지하는 압력유지단계를 포함할 수 있다.At this time, the first pressurizing step may include a pressure raising step of increasing the pressure in the chamber, and a pressure maintaining step of maintaining the pressure in the chamber that has risen through the pressure raising step to be constant.
즉, 상기 제1가압단계는, 챔버 내의 압력을 제1압력(P1)으로 상승시키는 압력상승단계를 포함할 수 있으며, 제1압력(P1) 도달 시 챔버 내의 압력을 제1압력(P1)으로 미리 설정된 시간만큼 일정하게 유지하는 압력유지단계를 포함할 수 있다.That is, the first pressurizing step may include a pressure raising step of raising the pressure in the chamber to the first pressure P 1 , and when the first pressure P 1 is reached, the pressure in the chamber is reduced to the first pressure P 1 . 1 ) may include a pressure maintaining step of maintaining a constant for a preset time.
한편, 전술한 바와 달리, 상기 제1가압단계는, 도 1에 도시된 바와 같이, 챔버 내의 압력을 제1압력(P1)으로 상승시키고 뒤이어 곧바로 제1감압단계가 수행될 수 있음은 또한 물론이다.On the other hand, unlike the above, the first pressurization step, as shown in Figure 1, the pressure in the chamber is raised to the first pressure (P 1 ) And the first depressurization step can be performed immediately afterwards, of course. am.
상기 제1가감압단계(S100)는, 제1가압단계와 제1감압단계를 하나의 단위 사이클로 하여, 제1압력(P1)을 최대값 제2압력(P2)을 최소값으로 하는 압력범위 내에서 n회(n≥1) 수행할 수 있다.In the first pressure reduction step (S100), the first pressure step and the first pressure reduction step are set as one unit cycle, and the first pressure (P 1 ) is the maximum value and the second pressure (P 2 ) The pressure range of the minimum value It can be performed n times (n≥1) within
즉, 상기 제1가감압단계(S100)는, 제1가압단계와 제1감압단계를 하나의 단위 사이클로 하여, 반복 수행될 수 있으며, 이 과정에서 각 사이클 내 압력 최대값과 최소값은 동일하거나 서로 다르게 설정될 수 있다.That is, the first pressure reduction step (S100) may be repeatedly performed with the first pressure step and the first pressure pressure step as one unit cycle, and in this process, the maximum and minimum pressure values in each cycle are the same or different. may be set differently.
보다 구체적으로, 제1압력(P1)을 최대값 제2압력(P2)을 최소값으로 하는 압력범위 내에서 단위 사이클이 반복 수행될 수 있으며, 단위 사이클 마다 압력의 최대값과 최소값은 전술한 압력범위 내에서 서로 같거나 서로 다를 수 있다.More specifically, the unit cycle may be repeatedly performed within a pressure range in which the first pressure (P 1 ) is the maximum value and the second pressure (P 2 ) is the minimum value, and the maximum and minimum values of the pressure for each unit cycle are as described above. They may be the same or different within the pressure range.
한편, 상기 제2압력(P2)은, 대기압보다 크거나 같은 압력일 수 있으며, 이를 통해 제2가감압단계(S200)인 메인공정 전 챔버 내부에 대한 진공상태 조성에 따른 외기 유입을 차단할 수 있다.On the other hand, the second pressure (P 2 ) may be greater than or equal to the atmospheric pressure, and through this, the inflow of outside air according to the formation of a vacuum state for the inside of the chamber before the main process, which is the second pressure reduction step (S200), can be blocked. there is.
일예로서, 상기 제1압력(P1)은, 2atm 내지 5atm 내 미리 설정된 압력값일 수 있으며, 제2압력(P2)은 1atm으로서 상압, 즉 대기압일 수 있다.As an example, the first pressure (P 1 ) may be a preset pressure value within a range of 2 atm to 5 atm, and the second pressure (P 2 ) may be 1 atm, that is, atmospheric pressure.
상기 제2가감압단계(S200)는, 제1가감압단계(S100) 이후에, 제1가감압단계(S100) 보다 높은 온도에서 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 단계일 수 있다.The second pressure reduction step (S200) may be a step of performing pressurization and pressure reduction in the chamber at least once at a higher temperature than the first pressure reduction step (S100) after the first pressure reduction step (S100). .
이때, 상기 제2가감압단계(S200)는, 제1가감압단계(S100)에 뒤이어 상대적으로 고온에서 기판처리가 수행되는 단계로서 기판 및 박막의 불순물 및 불필요한 가스를 제거하는 메인공정일 수 있다.At this time, the second pressure reduction step (S200) is a step in which substrate processing is performed at a relatively high temperature following the first pressure reduction step (S100), and may be a main process for removing impurities and unnecessary gases from the substrate and thin film. .
상기 제2가감압단계(S200)는, 제1온도(T1)보다 높은 제2온도(T2)에서 기판처리가 수행될 수 있으며, 전체 단계동안 제2온도(T2)를 일정하게 유지하거나, 제2온도(T2) 전후에 온도가 변화하는 가온구간을 포함할 수 있다.In the second pressure reduction step (S200), the substrate treatment may be performed at a second temperature (T 2 ) higher than the first temperature (T 1 ), and the second temperature (T 2 ) is constantly maintained during the entire step. Alternatively, a heating section in which the temperature changes before and after the second temperature T 2 may be included.
한편, 상기 제2가감압단계(S200)는, 전술한 바와 같이 제1가감압단계(S100)와 동일한 공정가스를 통해 기판처리가 수행될 수 있으며, 이때 공정가스는 수소(H2) 가스를 포함하는 가스일 수 있다.On the other hand, in the second pressure reduction step (S200), as described above, substrate processing may be performed through the same process gas as the first pressure reduction step (S100), wherein the process gas is hydrogen (H 2 ) gas. It may be a gas containing
이때, 수소(H2) 가스를 포함하는 공정가스가 사용되는 상기 제1가감압단계(S100)와 상기 제2가감압단계(S200)는 처리대상 기판이 금속전극이 형성되는 구성일 수 있으며, 일예로서, TiN, Mo, Ru와 같은 막일 수 있다.At this time, the first pressure reduction step (S100) and the second pressure reduction step (S200) in which a process gas containing hydrogen (H 2 ) gas is used may be a configuration in which a metal electrode is formed on the substrate to be processed, As an example, it may be a film such as TiN, Mo, or Ru.
또한, 다른 예로서, 상기 제2가감압단계(S200)는, 제1가감압단계(S100)와 상이한 공정가스를 통해 기판처리가 수행될수 있다.In addition, as another example, the substrate processing may be performed in the second pressure reduction step ( S200 ) using a process gas different from that of the first pressure reduction step ( S100 ).
보다 구체적으로, 상기 제2가감압단계(S200)는, 수소(H2)가스를 포함하는 제1가스를 이용하여 기판처리가 수행되는 제1가감압단계(S100)와는 달리 질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함하는 제2가스를 사용하여 기판처리를 수행할 수 있다. More specifically, the second pressure reduction step (S200), unlike the first pressure reduction step (S100) in which the substrate processing is performed using a first gas containing hydrogen (H 2 ) gas, nitrogen (N 2 ) And oxygen (O 2 ) It is possible to perform the substrate treatment using a second gas containing at least one gas.
이 경우, 상기 제2가감압단계(S200)는, 기판에 대한 별도의 불순물 제거 공정을 수행하지 않고, 기판에 형성되는 박막을 안정화하기 위한 박막 안정화를 수행할 수 있으며 이때 질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함하는 제2가스를 사용할 수 있다.In this case, the second pressure reduction step (S200) may perform thin film stabilization for stabilizing the thin film formed on the substrate without performing a separate impurity removal process on the substrate. At this time, nitrogen (N 2 ) and A second gas including at least one of oxygen (O 2 ) gases may be used.
또한 이때 상기 제1가스는 보다 구체적으로, 수소(H), 산소(O), 질소(N), 염소(Cl), 불소(F) 중 적어도 하나의 원소를 포함하는 가스일 수 있다.In addition, the first gas may be more specifically, a gas containing at least one element of hydrogen (H), oxygen (O), nitrogen (N), chlorine (Cl), and fluorine (F).
또한, 다른 예로서, 상기 제2가감압단계(S200)는, 기판 및 기판에 형성되는 박막에 대한 불순물을 제거하는 불순물제거단계와, 기판 및 박막에 대한 안정화를 수행하는 안정화단계를 모두 포함할 수 있다.In addition, as another example, the second pressure reduction step (S200) may include both an impurity removal step of removing impurities from the substrate and a thin film formed on the substrate, and a stabilization step of stabilizing the substrate and the thin film. can
이때, 상기 제2가감압단계(S200)는, 수소(H2) 가스를 포함하는 제1가스를 이용하여 불순물제거단계가 수행될 수 있으며, 질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함하는 제2가스를 사용하여 안정화단계가 수행될 수 있다.At this time, in the second pressure reduction step (S200), the impurity removal step may be performed using a first gas containing hydrogen (H 2 ) gas, and among nitrogen (N 2 ) and oxygen (O 2 ) gases. The stabilization step may be performed using a second gas containing at least one gas.
이 경우, 상기 제1가스를 이용하여 기판처리가 수행되는 제1가감압단계(S100)와, 제1가스 및 제2가스를 순차적으로 사용하여 기판처리가 수행되는 제2가감압단계(S200)는, 기판에 유전막이 형성되는 경우 수행될 수 있으며, 일예로 ZrO2, HfO2, Al2O3가 적용될 수 있다.In this case, a first pressure reduction step (S100) in which substrate processing is performed using the first gas, and a second pressure reduction step (S200) in which substrate processing is performed using the first gas and the second gas sequentially may be performed when a dielectric film is formed on the substrate, and for example, ZrO2, HfO2, and Al2O3 may be applied.
상기 안정화단계는, HfO2나 ZrO2와 같은 유전막에 불순물제거단계의 수소가스(H2)를 통해 제거된 탄소(C) 자리에 산소(O)를 채워넣음으로써 안정적인 유전막 형성을 가능하도록 할 수 있다.In the stabilization step, a dielectric film such as HfO 2 or ZrO 2 is filled with oxygen (O) in place of the carbon (C) removed through the hydrogen gas (H 2 ) in the impurity removal step, thereby enabling a stable dielectric film to be formed. there is.
한편, 상기 제2가감압단계(S200)는, 상기 챔버 내의 압력을 대기압보다 큰 제3압력(P3) 이하로 상승시키는 제2가압단계와, 상기 제2가압단계를 통해 상승된 상기 챔버 내의 압력을 고압상태로 유지하는 고압유지단계와, 상기 고압유지단계 이후에 상기 챔버 내의 압력을 상기 제3압력(P3)보다 낮은 제4압력(P4) 이상으로 하강시키는 제2감압단계를 포함할 수 있다.On the other hand, the second pressurization step (S200), the second pressurization step of raising the pressure in the chamber to a third pressure (P 3 ) or less greater than the atmospheric pressure, and the inside of the chamber raised through the second pressurization step A high pressure maintaining step of maintaining the pressure in a high pressure state, and a second pressure reducing step of lowering the pressure in the chamber to a fourth pressure (P 4 ) or higher lower than the third pressure (P 3 ) after the high pressure maintaining step. can do.
즉, 상기 제2가감압단계(S200)는, 전술한 제1가감압단계(S100)와 유사하게, 제3압력(P3)을 최대값 제4압력(P4)을 최소값으로 하는 압력범위 내에서 가압 및 감압이 적어도 1회 수행될 수 있다.That is, the second pressure reduction step (S200), similar to the above-described first pressure reduction step (S100), the pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value. Pressurization and depressurization may be performed at least once.
상기 제2가감압단계(S200)는, 챔버 내의 압력을 제3압력(P3)으로 상승시키는 제2가압단계와 제3압력(P3) 도달 시 챔버 내의 압력을 제3압력(P3)으로 미리 설정된 시간만큼 일정하게 유지하는 고압유지단계를 포함할 수 있다.The second pressure reduction step (S200), the second pressure step of increasing the pressure in the chamber to the third pressure (P 3 ) and the third pressure (P 3 ) when the pressure in the chamber reaches the third pressure (P 3 ) It may include a high pressure maintaining step for maintaining constant as long as a preset time.
한편, 전술한 바와 달리, 챔버 내의 압력을 제3압력(P3)으로 상승시키는 상기 제2가압단계에 뒤이어 곧바로 제2감압단계가 수행될 수 있음은 또한 물론이다.On the other hand, unlike the above, of course, the second decompression step may be performed immediately following the second depressurization step of raising the pressure in the chamber to the third pressure P 3 .
상기 제2가감압단계(S200)는, 제2가압단계와 제2감압단계를 하나의 단위 사이클로 하여, 제3압력(P3)을 최대값 제4압력(P4)을 최소값으로 하는 압력범위 내에서 n회(n≥1) 수행할 수 있다.In the second pressure reduction step (S200), the second pressure step and the second pressure reduction step are used as one unit cycle, and the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is a pressure range of the minimum value It can be performed n times (n≥1) within
즉, 상기 제2가감압단계(S200)는, 제2가압단계와 제2감압단계를 하나의 단위 사이클로 하여, 반복 수행될 수 있으며, 이 과정에서 각 사이클 내 압력 최대값과 최소값은 동일하거나 서로 다르게 설정될 수 있다.That is, the second pressure reduction step (S200) may be repeatedly performed by taking the second pressure step and the second pressure pressure step as one unit cycle, and in this process, the maximum and minimum pressure values in each cycle are the same or different. may be set differently.
보다 구체적으로, 제3압력(P3)을 최대값 제4압력(P4)을 최소값으로 하는 압력범위 내에서 단위 사이클이 반복 수행될 수 있으며, 단위 사이클 마다 압력의 최대값과 최소값은 전술한 압력범위 내에서 서로 같거나 서로 다를 수 있다.More specifically, the unit cycle may be repeatedly performed within a pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value, and the maximum and minimum values of the pressure for each unit cycle are as described above. They may be the same or different within the pressure range.
한편, 상기 제3압력(P3)은, 제1압력(P1)과 동일한 압력값을 가질 수 있으며, 이로써 제1가감압단계(S100)의 압력최대값과 제2가감압단계(S200)의 압력최대값이 서로 동일할 수 있다.On the other hand, the third pressure (P 3 ) may have the same pressure value as the first pressure (P 1 ), whereby the maximum pressure value of the first pressure reduction step (S100) and the second pressure reduction step (S200) The maximum pressure values of may be equal to each other.
상기 제4압력(P4)은, 대기압보다 낮은 압력일 수 있으며, 이를 통해 제2가감압단계(S200)는, 제1가감압단계(S100)와는 달리, 상압보다 상대적으로 큰 제3압력(P3)과 진공상태의 제4압력(P4) 사이의 급격한 압력변화를 유도할 수 있다.The fourth pressure (P 4 ) may be a pressure lower than atmospheric pressure, and through this, the second pressure reduction step (S200), unlike the first pressure reduction step (S100), the third pressure relatively greater than the atmospheric pressure ( A rapid pressure change between P 3 ) and the fourth pressure P 4 in a vacuum state can be induced.
이를 위해, 상기 제3압력(P3)은, 2atm 내지 5atm 범위 내의 압력값을 가질 수 있으며, 제4압력(P4)은, 상압 미만인 10torr의 진공상태의 압력값일 수 있다.To this end, the third pressure (P 3 ) may have a pressure value within a range of 2 atm to 5 atm, and the fourth pressure (P 4 ) may be a pressure value in a vacuum state of 10 torr less than normal pressure.
한편, 상기 제2가감압단계(S200)는, 챔버 내의 온도를 제1온도(T1)로부터 제2온도(T2)로 상승시키는 승온단계와, 챔버 내의 온도를 제2온도(T2)로 유지하는 고온유지단계와, 챔버 내의 온도를 제2온도(T2)에서 제4온도(T4)로 하강시키는 감온단계를 포함할 수 있다.On the other hand, the second pressure reduction step (S200), a temperature raising step of raising the temperature in the chamber from the first temperature (T 1 ) to the second temperature (T 2 ), the temperature in the chamber to the second temperature (T 2 ) It may include a high-temperature maintaining step of maintaining the temperature and a temperature reduction step of lowering the temperature in the chamber from the second temperature T 2 to the fourth temperature T 4 .
이 경우, 상기 제2가감압단계(S200)는, 제3압력(P3)을 최대값 상기 제4압력(P4)을 최소값으로 하는 압력범위 내에서, 상기 제2가압단계와 상기 제2감압단계를 하나의 단위 사이클로 하여 n회(n≥1) 수행될 수 있고, 이때의 적어도 하나의 단위 사이클은, 고온유지단계에서 수행될 수 있다.In this case, in the second pressure reduction step (S200), the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is within a pressure range of the minimum value, the second pressure step and the second pressure range The depressurization step may be performed n times (n≥1) as one unit cycle, and at least one unit cycle at this time may be performed in the high temperature maintaining step.
즉, 상기 제2가압단계와 제2감압단계로 이루어지는 단위 사이클 중 적어도 하나는 고온유지단계에서 수행됨으로써, 기판 불순물을 제거하기 위한 반응을 보다 촉진할 수 있다.That is, at least one of the unit cycles consisting of the second pressurization step and the second depressurization step is performed in the high-temperature maintaining step, so that the reaction for removing impurities from the substrate can be further promoted.
보다 구체적으로, 고온상태에서 가압단계와 감압단계를 반복적으로 수행함으로써, 원자들의 열진동을 증가시키고, 이를 통해 기판 또는 박막과 약한 결합을 이루고 있는 불순물의 결합을 분해하도록 촉진할 수 있으며, 더 나아가 수소와 같은 제1가스의 구성물질에 대한 기판 또는 박막 표면 불순물과의 결합을 향상시킬 수 있다. More specifically, by repeatedly performing the pressurization step and the depressurization step in a high temperature state, the thermal vibration of atoms can be increased, and through this, it is possible to promote decomposition of the bond of impurities forming a weak bond with the substrate or thin film. It is possible to improve the binding between the constituting material of the first gas, such as hydrogen, and impurities on the surface of the substrate or thin film.
상기 승온단계는, 챔버 내의 온도를 제1온도(T1)로부터 제2온도(T2)로 상승시키는 단계일 수 있다.The temperature raising step may be a step of raising the temperature in the chamber from the first temperature T 1 to the second temperature T 2 .
즉, 상기 승온단계는, 불순물 제거를 위한 온도 분위기를 조성하기 위하여 챔버 내의 온도를 상승시킬 수 있으며, 이로써, 기판처리를 위한 온도조건이 조성될 수 있다. That is, in the temperature raising step, the temperature in the chamber may be raised to create a temperature atmosphere for removing impurities, thereby creating temperature conditions for substrate processing.
이때, 상기 승온단계는, 제2가감압단계(S200) 중 챔버 내의 압력이 대기압 이상인 경우에 수행될 수 있다.At this time, the temperature raising step may be performed when the pressure in the chamber is equal to or greater than atmospheric pressure during the second pressure reduction step (S200).
상기 고온유지단계는, 챔버 내의 온도를 제2온도(T2)를 유지하는 단계로서 제2가압단계 및 제2감압단계가 수행됨으로써, 효과적으로 기판 및 박막의 불순물 및 불필요한 가스를 제거할 수 있다.The high-temperature maintaining step is a step of maintaining the temperature in the chamber at the second temperature T2, and the second pressing step and the second depressurizing step are performed, so that impurities and unnecessary gases can be effectively removed from the substrate and the thin film.
상기 감온단계는, 제2온도(T2)에서 제4온도(T4)로 챔버 내의 온도를 하강시키는 단계일 수 있다.The temperature reduction step may be a step of lowering the temperature in the chamber from the second temperature T 2 to the fourth temperature T 4 .
이때 상기 제4온도(T4)는, 후술하는 대기단계(S300) 시 적용되는 챔버 온도인 제3온도(T3)와 동일한 온도일 수 있으며, 다른 예로서, 제3온도(T3)보다 낮은 온도일 수 있고, 전술한 바와 같이, 제1온도(T1)와 같거나 후속공정에 따라 다른 온도일 수 있다. At this time, the fourth temperature (T 4 ) may be the same temperature as the third temperature (T 3 ), which is a chamber temperature applied during the standby step (S300) to be described later, and, as another example, a temperature higher than the third temperature (T 3 ). It may be a low temperature, and as described above, it may be the same as the first temperature (T 1 ) or a different temperature depending on subsequent processes.
한편, 상기 감온단계는, 제2가압단계 및 고압유지단계 중 어느 하나의 단계동안 수행될 수 있으며, 보다 구체적으로는 챔버 내의 압력이 대기압보다 큰 고압상태인 제1압력(P1)으로 유지되는 기간동안 제2온도(T2)에서 제4온도(T4)로 감온할 수 있다. On the other hand, the temperature reduction step may be performed during any one of the second pressurization step and the high pressure maintaining step, and more specifically, the pressure in the chamber is maintained at a first pressure P 1 , which is a high pressure state greater than atmospheric pressure. During the period, the temperature can be reduced from the second temperature (T 2 ) to the fourth temperature (T 4 ).
보다 구체적으로, 종래 챔버 내부에 O2가 잔존하는 상태에서 압력이 대기압보다 낮을 때, 챔버 내부의 온도가 승온되거나 챔버 내부의 온도가 감온되는 경우 챔버 내부에 잔존하는 O2가 outgassing됨에 따라 박막과 반응하는 문제점이 있다.More specifically, when the pressure is lower than atmospheric pressure in a state where O 2 remains inside the conventional chamber, when the temperature inside the chamber rises or the temperature inside the chamber decreases, as O 2 remaining inside the chamber is outgassed, the thin film and There is a problem with reacting.
이러한 문제점을 개선하기 위하여 상기 승온단계 및 감온단계는, 제2가감압단계(S200) 중 챔버 내 압력이 대기압 이상인 경우에 수행될 수 있으며, 보다 바람직하게는, 고압상태를 유지하는 고압유지단계 동안 수행될 수 있다.In order to solve this problem, the temperature raising step and the temperature decreasing step may be performed when the pressure in the chamber is higher than atmospheric pressure during the second increasing/decreasing step (S200), and more preferably, during the high pressure maintaining step maintaining the high pressure state. can be performed
보다 구체적으로, 승온단계의 승온시점, 승온종점, 감온단계의 감온시점 및 감온종점을 박막의 열화를 최소화할 수 있는 시점으로 특정할 수 있다. More specifically, the temperature increase time point and temperature increase end point of the temperature increase step, and the temperature decrease point and temperature decrease end point of the temperature decrease step can be specified as points at which deterioration of the thin film can be minimized.
예를 들면, 상기 승온단계는, 제2가압단계의 수행 중 또는 제2가압단계의 수행 후 미리 설정된 승온시점부터 승온종점까지 온도분위기를 제1온도(T1)에서 제2온도(T2)로 승온시킬 수 있다.For example, in the temperature raising step, the temperature atmosphere is changed from the first temperature T 1 to the second temperature T 2 from the preset temperature rising time point to the temperature rising end point during or after the second pressing step is performed. can be heated with
이때, 상기 승온단계에서의 승온시점 및 승온종점은 제2가압단계의 시작시점(제3압력(P3)으로 가압이 시작되는 시점) 및 제2감압단계의 시작시점(제4압력(P4)으로 감압이 시작되는 시점) 사이로 설정될 수 있다. At this time, the temperature rising point and the temperature rising end point in the temperature raising step are the start point of the second pressurization step (the point at which pressurization starts with the third pressure P 3 ) and the start point of the second decompression step (the fourth pressure P 4 ) to the point at which decompression begins).
일예로서, 상기 승온단계는, 제2가압단계의 수행 중 미리 설정된 승온시점부터 승온종점까지 온도를 승온시킬 수 있다. As an example, in the temperature raising step, the temperature may be raised from a preset temperature raising time point to a temperature raising end point during the performance of the second pressurizing step.
여기서 상기 승온시점은, 상기 제2가압단계의 시작시점 이후라면 어떠한 시점에서나 설정될 수 있으나, 챔버 내부가 O2 가스로부터 충분히 보호될 수 있도록 일정량의 제1가스 또는 제2가스가 투입되어 공정압이 대기압 이상으로 가압된 이후의 시점으로 설정됨이 바람직하다.Here, the temperature increase time point may be set at any time point after the start point of the second pressurization step, but the inside of the chamber is blocked by O 2 gas. It is preferable to set a time point after a certain amount of the first gas or the second gas is introduced so that the process pressure is pressurized above the atmospheric pressure so as to be sufficiently protected.
더 나아가, 이때 승온시점 및 승온종점은, 챔버 내 공정압이 제2가압단계를 통해 제3압력(P3) 수준의 충분한 고압으로 가압된 상태에서 압력이 유지되는 고압유지단계 내로 설정됨이 바람직하다.Furthermore, at this time, the temperature rising point and the temperature rising end point are preferably set within a high pressure maintaining step in which the pressure is maintained in a state in which the process pressure in the chamber is pressurized to a sufficiently high pressure of the third pressure level (P 3 ) through the second pressing step. do.
상기 감온단계는, 전술한 승온단계와 같이, 제2가압단계의 수행 중 또는 제2가압단계의 수행 후 미리 설정된 감온시점부터 감온종점까지 온도분위기를 제4온도(T4)로 감온시킬 수 있다.In the temperature reduction step, like the above-described temperature raising step, the temperature atmosphere can be reduced to the fourth temperature T 4 from a preset temperature reduction time point to a temperature reduction end point during or after the second pressure step is performed. .
이때, 상기 감온단계에서의 감온시점 및 감온종점은 제2가압단계의 시작시점(제3압력(P3)으로 가압이 시작되는 시점) 및 제2감압단계의 시작시점(제4압력(P4)으로 감압이 시작되는 시점) 사이로 설정될 수 있다. At this time, the temperature reduction start point and the temperature reduction end point in the temperature reduction step are the start point of the second pressure step (the point at which pressurization starts with the third pressure (P 3 )) and the start point of the second pressure reduction step (the fourth pressure (P 4 ) ). ) to the point at which decompression begins).
일예로서, 상기 감온단계는, 제2가압단계 및 고압유지단계 중 어느 하나의 수행 중 미리 설정된 감온시점부터 감온종점까지 온도를 감온시킬 수 있다. For example, in the temperature reduction step, the temperature may be reduced from a predetermined temperature reduction time point to a temperature reduction end point during any one of the second pressurization step and the high pressure maintaining step.
여기서 상기 감온시점은, 상기 가압단계의 시작시점 이후라면 어떠한 시점에서나 설정될 수 있으나, 챔버 내부가 O2 가스로부터 충분히 보호될 수 있도록 일정량의 제1가스 또는 제2가스가 투입되어 공정압이 대기압 이상으로 가압된 이후의 시점으로 설정됨이 바람직하며, 같은 상황으로서, 감압단계의 종료시점 이전으로서 챔버 내부의 공정압이 대기압 이하로 감압되기 이전의 시점으로 설정될 수 있다.Here, the temperature reduction time point may be set at any time point after the start point of the pressurization step, but the inside of the chamber is free from O 2 gas. It is preferable to set the time point after a certain amount of the first gas or the second gas is introduced so as to be sufficiently protected and the process pressure is pressurized above the atmospheric pressure. It may be set to a time point before the pressure is reduced to below atmospheric pressure.
더 나아가, 이때 감온시점 및 감온종점은, 챔버 내 공정압이 제2가압단계를 통해 제3압력(P3) 수준의 충분한 고압으로 가압된 상태에서 압력이 유지되는 고압유지단계 내로 설정됨이 바람직하다. Furthermore, at this time, the temperature reduction start point and temperature reduction end point are preferably set within a high pressure maintenance step in which the pressure is maintained in a state in which the process pressure in the chamber is pressurized to a sufficiently high pressure of the level of the third pressure (P 3 ) through the second pressurization step. do.
한편, 일예로서, 상기 감온단계는, 제2가압단계와 제2감압단계를 하나의 단위 사이클로하여, n번 반복 수행될 때, 마지막 n번째 고압유지단계 동안 수행될 수 있다.Meanwhile, as an example, the temperature reduction step may be performed during the last n-th high-pressure maintaining step when the second pressure step and the second pressure step are repeated n times as one unit cycle.
즉, 단위 사이클의 1회부터 n-1회 동안의 반복 수행 과정에서는, 챔버 내의 온도가 제2온도(T2)로 유지될 수 있으며, 후속공정의 온도조건을 위하여 감온단계는 n회째의 압력유지단계 동안 수행될 수 있다. That is, in the process of repeating from 1 to n-1 times of the unit cycle, the temperature in the chamber may be maintained at the second temperature (T 2 ), and the temperature reduction step is performed at the nth pressure for the temperature condition of the subsequent process. This can be done during the maintenance phase.
이에 따라 처리되는 기판의 면저항(RS)을 줄여 고품질의 기판처리가 가능한 효과가 있다.Accordingly, there is an effect of enabling high-quality substrate processing by reducing the sheet resistance (R S ) of the substrate to be processed.
한편 전술한 상기 제4온도(T4)는, 상기 제1온도(T1)와 같거나 낮은 온도일 수 있다.Meanwhile, the aforementioned fourth temperature T 4 may be equal to or lower than the first temperature T 1 .
상기 대기단계(S300)는, 제1가감압단계(S100) 이전에, 기판에 대한 기판처리를 준비하는 단계일 수 있다.The waiting step (S300) may be a step of preparing a substrate treatment for the substrate before the first pressure reduction step (S100).
예를 들면, 상기 대기단계(S300)는, 도 2에 도시된 바와 같이, 제1가감압단계(S100) 이전에 기판처리를 준비하도록 챔버 내의 온도를 제3온도(T3)로 일정하게 유지하는 단계일 수 있다.For example, in the waiting step (S300), as shown in FIG. 2, the temperature in the chamber is constantly maintained at the third temperature (T 3 ) to prepare for substrate processing before the first pressure reduction step (S100). It may be a step to
이때, 상기 제3온도(T3)는, 전술한 바와 같이 제1온도(T1)와 같거나 제1온도(T1)보다 낮은 온도일 수 있다.In this case, the third temperature T 3 , as described above , may be equal to or lower than the first temperature T 1 .
상기 제3온도(T3)가 제1온도(T1)보다 낮은 경우, 상기 대기단계(S300)는, 기판처리를 준비하는 스탠바이상태에서 챔버 내의 온도를 제3온도(T3)로 유지하는 온도유지단계와, 온도유지단계 이후에 제1가감압단계(S100)를 위하여 챔버 내의 온도를 제1온도(T1)로 상승시키는 온도상승단계를 포함할 수 있다.When the third temperature (T 3 ) is lower than the first temperature (T 1 ), in the standby step (S300), the temperature in the chamber is maintained at the third temperature (T 3 ) in a standby state preparing for substrate processing. It may include a temperature maintaining step and a temperature raising step of raising the temperature in the chamber to the first temperature T 1 for the first pressure reduction step S100 after the temperature maintaining step.
한편, 이하에서는 첨부된 도 4를 참조하여, 본 발명에 따른 효과를 상세히 설명한다.On the other hand, hereinafter, with reference to the attached Figure 4, the effect according to the present invention will be described in detail.
도 4는 종래 기판처리방법과 본 발명에 따른 기판처리방법을 통한 기판처리 실험결과를 비교한 그래프로서, 다음과 같은 상황에서 실험을 진행하였다.4 is a graph comparing substrate processing experiment results through a conventional substrate processing method and a substrate processing method according to the present invention, and the experiment was conducted in the following situation.
종래 기판처리방법은, 대기단계(S300)에서 챔버 내의 온도를 300℃를 유지하고, 메인 공정인 본 발명의 제2가감압단계(S200)에 대응되는 공정을 400℃ 온도 하에서 3사이클 반복 수행하였다.In the conventional substrate processing method, the temperature in the chamber was maintained at 300 ° C in the standby step (S300), and the process corresponding to the second pressure reduction step (S200) of the present invention, which is the main process, was repeatedly performed at 400 ° C. for three cycles. .
본 발명에 따른 기판처리방법은, 대기단계(S300)에서 챔버 내의 온도를 300℃를 유지하고, 제1가감압단계(S100)를 동일한 300℃ 하에서 수행한 뒤, 제2가감압단계(S200)를 400℃ 하에서 1사이클 수행하였으며, 이때 제1가감압단계(S100) 및 제2가감압단계(S200)는 모두 수소(H2) 가스를 사용하였다. In the substrate processing method according to the present invention, the temperature in the chamber is maintained at 300 ° C in the standby step (S300), the first pressure reduction step (S100) is performed at the same 300 ° C, and then the second pressure reduction step (S200) was performed one cycle under 400 ° C., wherein both the first pressure reduction step (S100) and the second pressure reduction step (S200) used hydrogen (H 2 ) gas.
결과적으로, 본 발명에 따른 기판처리방법 수행 시, 면저항(Rs)이 개선되어 기판 특성이 개선된 것으로 확인할 수 있으며, 특히, 공정 중 최고온도에서 수행되는 기판처리 시간으로 확인 가능한 열수지(Heat budget)를 낮춰 기판 및 박막에 대한 데미지를 줄이면서도, 면저항(Rs)이 개선되는 효과를 확인할 수 있다. As a result, when performing the substrate processing method according to the present invention, it can be confirmed that the sheet resistance (R s ) is improved and the substrate characteristics are improved. ) to reduce damage to the substrate and the thin film, while improving the sheet resistance (R s ) can be confirmed.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.Since the above has only been described with respect to some of the preferred embodiments that can be implemented by the present invention, as noted, the scope of the present invention should not be construed as being limited to the above embodiments, and the scope of the present invention described above It will be said that the technical idea and the technical idea together with the root are all included in the scope of the present invention.

Claims (22)

  1. 기판이 처리되는 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 제1가감압단계(S100)와;a first pressure reduction step (S100) of performing pressurization and decompression of the chamber in which the substrate is processed at least once;
    상기 제1가감압단계(S100) 이후에, 상기 제1가감압단계(S100) 보다 높은 온도에서 상기 챔버 내에 대한 가압 및 감압을 적어도 1회 수행하는 제2가감압단계(S200)를 포함하는 것을 특징으로 하는 기판처리방법. After the first pressure reducing step (S100), including a second pressure reducing step (S200) of performing pressurization and pressure reduction in the chamber at least once at a higher temperature than the first pressure reducing step (S100). Characterized by a substrate processing method.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 제1가감압단계(S100)는, 제1온도(T1)로 일정하게 유지되며, In the first pressure reduction step (S100), the first temperature (T 1 ) is maintained constant,
    상기 제2가감압단계(S200)는, 상기 제1온도(T1)보다 높은 제2온도(T2)에서 기판처리가 수행되는 것을 특징으로 하는 기판처리방법. In the second increasing/decreasing step (S200), the substrate processing method is characterized in that the substrate processing is performed at a second temperature (T 2 ) higher than the first temperature (T 1 ).
  3. 청구항 1에 있어서,The method of claim 1,
    상기 제1가감압단계(S100)는, The first pressure reduction step (S100),
    상기 제2가감압단계(S200)가 수행되는 온도까지 지속적 및 단계적 중 어느 하나 또는 이들의 조합으로 온도를 상승시키는 것을 특징으로 하는 기판처리방법. The substrate processing method characterized in that the temperature is raised by any one or a combination of continuous and stepwise to the temperature at which the second pressure reduction step (S200) is performed.
  4. 청구항 2에 있어서,The method of claim 2,
    상기 제1가감압단계(S100) 이전에, 상기 기판에 대한 기판처리를 준비하며 상기 챔버 내의 온도를 제3온도(T3)로 유지하는 대기단계(S300)를 추가로 포함하는 것을 특징으로 하는 기판처리방법.Prior to the first pressure reduction step (S100), a standby step (S300) of preparing a substrate treatment for the substrate and maintaining the temperature in the chamber at a third temperature (T 3 ) Characterized in that it further comprises Substrate treatment method.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 제1온도(T1)는,The first temperature (T 1 ) is,
    상기 제3온도(T3)와 동일한 온도인 것을 특징으로 하는 기판처리방법.The third temperature (T 3 ) Substrate processing method, characterized in that the same temperature.
  6. 청구항 4에 있어서,The method of claim 4,
    상기 제1온도(T1)는, The first temperature (T 1 ) is,
    상기 제3온도(T3) 초과 상기 제2온도(T2) 미만인 것을 특징으로 하는 기판처리방법. The substrate processing method, characterized in that the temperature is higher than the third temperature (T 3 ) and lower than the second temperature (T 2 ).
  7. 청구항 1에 있어서,The method of claim 1,
    상기 제1가감압단계(S100) 및 상기 제2가감압단계(S200)는, The first pressure reduction step (S100) and the second pressure reduction step (S200),
    서로 동일한 공정가스를 사용하는 것을 특징으로 하는 기판처리방법. A substrate processing method characterized by using the same process gas as each other.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 공정가스는, The process gas,
    수소(H2) 가스를 포함하는 것을 특징으로 하는 기판처리방법.A substrate processing method comprising hydrogen (H 2 ) gas.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 제1가감압단계(S100)는, 제1가스를 이용하여 기판처리를 수행하며,In the first pressure reduction step (S100), substrate processing is performed using a first gas,
    상기 제2가감압단계(S200)는, 상기 제1가스와 상이한 제2가스를 이용하여 기판처리를 수행하는 것을 특징으로 하는 기판처리방법.In the second pressure reduction step (S200), the substrate processing method is characterized in that the substrate processing is performed using a second gas different from the first gas.
  10. 청구항 9에 있어서,The method of claim 9,
    상기 제1가스는, 수소(H2) 가스를 포함하며,The first gas includes hydrogen (H 2 ) gas,
    상기 제2가스는, 질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함하며,The second gas includes at least one of nitrogen (N 2 ) and oxygen (O 2 ) gas,
    상기 제2가감압단계(S200)는, The second pressure reduction step (S200),
    상기 제2가스를 사용하여 상기 기판에 형성되는 박막에 대한 안정화를 수행하는 것을 특징으로 하는 기판처리방법. A substrate processing method characterized in that performing stabilization of the thin film formed on the substrate using the second gas.
  11. 청구항 1에 있어서,The method of claim 1,
    상기 제1가감압단계(S100)는, The first pressure reduction step (S100),
    수소(H2) 가스를 포함하는 제1가스를 사용하며,A first gas containing hydrogen (H 2 ) gas is used,
    상기 제2가감압단계(S200)는, The second pressure reduction step (S200),
    상기 제1가스를 사용하여 상기 기판 및 상기 기판에 형성되는 박막에 대한 불순물을 제거하는 불순물제거단계와, 상기 박막에 대한 안정화를 수행하는 안정화단계를 포함하며, a step of removing impurities from the substrate and a thin film formed on the substrate using the first gas; and a stabilization step of stabilizing the thin film,
    상기 안정화단계는, The stabilization step is
    질소(N2) 및 산소(O2) 가스 중 적어도 하나를 포함하는 제2가스를 사용하는 것을 특징으로 하는 기판처리방법. A substrate processing method comprising using a second gas containing at least one of nitrogen (N 2 ) and oxygen (O 2 ) gases.
  12. 청구항 1에 있어서, The method of claim 1,
    상기 제1가감압단계(S100)는, The first pressure reduction step (S100),
    상기 챔버 내의 압력을 대기압보다 큰 제1압력(P1) 이하로 상승시키는 제1가압단계와, 상기 제1가압단계 이후에 상기 챔버 내의 압력을 상기 제1압력(P1)보다 낮은 제2압력(P2) 이상으로 하강시키는 제1감압단계를 포함하는 것을 특징으로 하는 기판처리방법. A first pressurizing step of raising the pressure in the chamber to a first pressure (P 1 ) or less greater than the atmospheric pressure, and a second pressure lowering the pressure in the chamber after the first pressurizing step is lower than the first pressure (P 1 ) (P 2 ) A substrate processing method characterized in that it comprises a first pressure reduction step to lower.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 제1가압단계는,In the first pressing step,
    상기 챔버 내의 압력을 상승시키는 압력상승단계와, 상기 압력상승단계를 통해 상승한 상기 챔버 내의 압력을 일정하게 유지하는 압력유지단계를 포함하는 것을 특징으로 하는 기판처리방법. A substrate processing method comprising: a pressure raising step of increasing the pressure in the chamber; and a pressure maintaining step of maintaining the pressure in the chamber, which has risen through the pressure raising step, constant.
  14. 청구항 12에 있어서,The method of claim 12,
    상기 제1가감압단계(S100)는,The first pressure reduction step (S100),
    상기 제1가압단계와 상기 제1감압단계를 하나의 단위 사이클로 하여, 제1압력(P1)을 최대값 상기 제2압력(P2)을 최소값으로 하는 압력범위 내에서 n회(n≥1) 수행하는 것을 특징으로 하는 기판처리방법. The first pressurization step and the first decompression step are regarded as one unit cycle, and the first pressure (P 1 ) is the maximum value and the second pressure (P 2 ) n times (n≥1) within a pressure range of the minimum value ) Substrate processing method, characterized in that for performing.
  15. 청구항 12에 있어서,The method of claim 12,
    상기 제2압력(P2)은,The second pressure (P 2 ) is,
    대기압보다 크거나 같은 압력인 것을 특징으로 하는 기판처리방법. A substrate processing method characterized in that the pressure is greater than or equal to atmospheric pressure.
  16. 청구항 12에 있어서,The method of claim 12,
    상기 제2가감압단계(S200)는, The second pressure reduction step (S200),
    상기 챔버 내의 압력을 대기압보다 큰 제3압력(P3) 이하로 상승시키는 제2가압단계와, 상기 제2가압단계 이후에 상기 챔버 내의 압력을 상기 제3압력(P3)보다 낮은 제4압력(P4) 이상으로 하강시키는 제2감압단계를 포함하는 것을 특징으로 하는 기판처리방법. A second pressurization step of raising the pressure in the chamber to a third pressure (P 3 ) or less greater than the atmospheric pressure, and a fourth pressure lower than the third pressure (P 3 ) after the second pressurization step in the chamber. (P 4 ) A substrate processing method characterized in that it comprises a second pressure reduction step to lower.
  17. 청구항 16에 있어서,The method of claim 16
    상기 제1압력(P1)은,The first pressure (P 1 ) is,
    상기 제3압력(P3)과 동일한 압력값인 것을 특징으로 하는 기판처리방법. The third pressure (P 3 ) Substrate processing method, characterized in that the same pressure value.
  18. 청구항 16에 있어서,The method of claim 16
    상기 제4압력(P4)은, The fourth pressure (P 4 ) is,
    대기압보다 낮은 압력인 것을 특징으로 하는 기판처리방법. A substrate processing method characterized in that the pressure is lower than atmospheric pressure.
  19. 청구항 16에 있어서,The method of claim 16
    상기 제2가감압단계(S200)는, The second pressure reduction step (S200),
    상기 챔버 내의 온도를 제2온도(T2)로 상승시키는 승온단계와, 상기 챔버 내의 온도를 상기 제2온도(T2)로 유지하는 고온유지단계와, 상기 챔버 내의 온도를 상기 제2온도(T2)에서 제4온도(T4)로 하강시키는 감온단계를 포함하는 것을 특징으로 하는 기판처리방법. A temperature raising step of raising the temperature in the chamber to a second temperature (T 2 ), a high temperature maintaining step of maintaining the temperature in the chamber at the second temperature (T 2 ), and raising the temperature in the chamber to the second temperature ( A substrate processing method comprising a step of reducing the temperature from T 2 ) to a fourth temperature (T 4 ).
  20. 청구항 19에 있어서, The method of claim 19
    상기 제2가감압단계(S200)는, The second pressure reduction step (S200),
    제3압력(P3)을 최대값 상기 제4압력(P4)을 최소값으로 하는 압력범위 내에서, 상기 제2가압단계와 상기 제2감압단계를 하나의 단위 사이클로 하여 n회(n≥1) 수행되며,Within the pressure range in which the third pressure (P 3 ) is the maximum value and the fourth pressure (P 4 ) is the minimum value, n times (n≥1 ) is performed,
    적어도 하나의 단위 사이클은, At least one unit cycle is
    상기 고온유지단계에서 수행되는 것을 특징으로 하는 기판처리방법.Substrate processing method, characterized in that carried out in the high temperature maintaining step.
  21. 청구항 16에 있어서, The method of claim 16
    상기 제2가감압단계(S200)는, The second pressure reduction step (S200),
    상기 챔버 내의 온도를 제2온도(T2)로 상승시키는 승온단계와, 상기 챔버 내의 온도를 상기 제2온도(T2)에서 제4온도(T4)로 하강시키는 감온단계를 포함하며,A temperature raising step of raising the temperature in the chamber to a second temperature (T 2 ) and a temperature decreasing step of lowering the temperature in the chamber from the second temperature (T 2 ) to a fourth temperature (T 4 ),
    상기 승온단계 및 상기 감온단계 중 적어도 하나는, At least one of the temperature raising step and the temperature decreasing step,
    상기 챔버 내 압력이 대기압 이상일 때 수행되는 것을 특징으로 하는 기판처리방법. A substrate processing method, characterized in that carried out when the pressure in the chamber is equal to or greater than atmospheric pressure.
  22. 청구항 19 또는 청구항 21에 있어서, According to claim 19 or claim 21,
    상기 제4온도(T4)는,The fourth temperature (T 4 ) is,
    상기 제1온도(T1)와 같거나 낮은 온도인 것을 특징으로 하는 기판처리방법. The substrate processing method, characterized in that the temperature is equal to or lower than the first temperature (T 1 ).
PCT/KR2022/010529 2021-12-15 2022-07-19 Substrate treatment method WO2023113130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0179979 2021-12-15
KR1020210179979A KR20230090855A (en) 2021-12-15 2021-12-15 Substrate processing method

Publications (1)

Publication Number Publication Date
WO2023113130A1 true WO2023113130A1 (en) 2023-06-22

Family

ID=86772836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010529 WO2023113130A1 (en) 2021-12-15 2022-07-19 Substrate treatment method

Country Status (3)

Country Link
KR (1) KR20230090855A (en)
TW (1) TW202325877A (en)
WO (1) WO2023113130A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332129B1 (en) * 1995-12-29 2002-11-07 주식회사 하이닉스반도체 Method for forming oxide layer in semiconductor device
KR20100057101A (en) * 2005-03-08 2010-05-28 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor device manufacturing method and substrate treatment device
US20170233866A1 (en) * 2016-02-15 2017-08-17 Tokyo Electron Limited Film Forming Apparatus, Film Forming Method, and Computer-Readable Storage Medium
KR20200006422A (en) * 2018-07-10 2020-01-20 주식회사 원익아이피에스 Method for manufacturing a semiconductor device
KR20210045296A (en) * 2019-10-16 2021-04-26 주식회사 원익아이피에스 Processing method for substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332129B1 (en) * 1995-12-29 2002-11-07 주식회사 하이닉스반도체 Method for forming oxide layer in semiconductor device
KR20100057101A (en) * 2005-03-08 2010-05-28 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor device manufacturing method and substrate treatment device
US20170233866A1 (en) * 2016-02-15 2017-08-17 Tokyo Electron Limited Film Forming Apparatus, Film Forming Method, and Computer-Readable Storage Medium
KR20200006422A (en) * 2018-07-10 2020-01-20 주식회사 원익아이피에스 Method for manufacturing a semiconductor device
KR20210045296A (en) * 2019-10-16 2021-04-26 주식회사 원익아이피에스 Processing method for substrate

Also Published As

Publication number Publication date
TW202325877A (en) 2023-07-01
KR20230090855A (en) 2023-06-22

Similar Documents

Publication Publication Date Title
KR100870246B1 (en) Semiconductor device manufacturing method and substrate treating apparatus
WO2021096326A1 (en) Method for forming thin film using surface protection material
WO2017171346A1 (en) Method for selectively etching silicon oxide film
TW509963B (en) Method for manufacturing a semiconductor device and device for manufacturing a semiconductor
WO2019098665A1 (en) Zirconium alloy cladding with improved oxidation resistance at high temperature and method for manufacturing same
WO2018194366A1 (en) Electrostatic chuck sealed with sealant and method for manufacturing same
WO2017176027A1 (en) Method for selectively etching silicon oxide film
WO2023113130A1 (en) Substrate treatment method
KR950001953A (en) Wafer heat treatment method
WO2012083562A1 (en) Electrically conductive film, perparation method and application therefor
WO2018199680A1 (en) Carbon material having coating layer comprising tac, and method for producing said carbon material
WO2017122963A2 (en) Method for manufacturing epitaxial wafer
WO2020067617A1 (en) Method for recovering electrical properties and improving oxidation stability in two-dimensional material
JP2909481B2 (en) Processing method of object to be processed in vertical processing apparatus
WO2023140552A1 (en) High-pressure wafer processing method using dual high-pressure wafer processing facility
JP2649611B2 (en) Heat treatment method for semiconductor substrate
WO2010087638A2 (en) Batch-type substrate-processing apparatus
JPH0355841A (en) Vertical type processing equipment
WO2023068466A1 (en) Substrate processing apparatus and substrate processing method using same
WO2024090945A1 (en) Electrode formation method for semiconductor device
WO2000079580A1 (en) Method of manufacturing semiconductor device
WO2023277559A1 (en) Electrostatic chuck, electrostatic chuck heater comprising same, and semiconductor holding device
KR20230067944A (en) Substrate processing method
WO2020256515A1 (en) Method for selectively manufacturing material layer and target pattern
WO2021172682A1 (en) Mold for forming glass lens and manufacturing method of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907601

Country of ref document: EP

Kind code of ref document: A1