WO2021172682A1 - Mold for forming glass lens and manufacturing method of same - Google Patents

Mold for forming glass lens and manufacturing method of same Download PDF

Info

Publication number
WO2021172682A1
WO2021172682A1 PCT/KR2020/013483 KR2020013483W WO2021172682A1 WO 2021172682 A1 WO2021172682 A1 WO 2021172682A1 KR 2020013483 W KR2020013483 W KR 2020013483W WO 2021172682 A1 WO2021172682 A1 WO 2021172682A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
glass lens
forming
coating layer
layer
Prior art date
Application number
PCT/KR2020/013483
Other languages
French (fr)
Korean (ko)
Inventor
김종국
장영준
김지수
박창하
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2021172682A1 publication Critical patent/WO2021172682A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon

Definitions

  • the present invention relates to a mold for forming a glass lens and a method for manufacturing the same.
  • Patent Document 0001 Republic of Korea Patent Publication No. 10-2011-0115291: DLC coating device
  • a mold for forming a glass lens coated with a coating layer including a ta-C layer doped with 3 at% to 20 at% Si is provided.
  • the mold for forming a glass lens provided in one aspect of the present invention can successfully produce a glass lens without problems such as carbonization even in a high-temperature glass lens forming process. can be maximized.
  • it is possible to quickly remove the coating layer through oxygen etching when a problem occurs in the coating layer, only the coating layer is removed through oxygen etching and re-coating is performed without reprocessing the mold, which takes a long time and high cost. time can be significantly reduced.
  • FIG. 1 shows a coating apparatus of a magnetic field filtering arc method used to form a ta-C coating layer in an embodiment of the present invention
  • Figure 2 schematically shows a mold coating process for forming a glass lens of an embodiment of the present invention
  • Figure 3 schematically shows a coating layer in the form of a multi-layer and a single layer that can be prepared according to an embodiment of the present invention
  • Example 4 sample is an image showing the experimental results of the Example 4 sample, according to an experimental example of the present invention.
  • Example 6 is an image showing the experimental results of the sample of Example 5, according to an experimental example of the present invention.
  • FIG. 7 is an image showing an experimental result of a comparative example sample according to an experimental example of the present invention.
  • a mold for forming a glass lens coated with a coating layer including a ta-C layer doped with 3 at% to 20 at% Si is provided.
  • the mold for forming a glass lens provided in one aspect of the present invention may include a base material of the mold.
  • the base material of the mold may be at least one selected from the group consisting of SiC, Si 3 N 4 , WC, TiC, TaC, BN, TiN, ZrO 2 , cermet, stainless steel, STAVAX, and alloys thereof.
  • the mold for forming a glass lens provided in one aspect of the present invention may include a coating layer.
  • the surface in contact with the glass lens to be molded may be coated with the coating layer.
  • the coating layer may include a ta-C layer doped with 3 at% to 20 at% Si. Preferably, it may be doped with Si of 5 at% to 15 at%, and more preferably, it may be doped with Si of 7 at% to 17 at%.
  • Si is doped at less than 3 at%, there is a problem in that it is difficult to sufficiently secure the mold releasability when molding the glass lens, and there is a problem that the film is removed immediately after one-time molding when the mold is used because the releasability is not secured. If Si is doped in excess of 20 at%, the wear resistance of the mold may be reduced, and when a problem occurs in the coating layer, it must be removed and re-coating is performed.
  • the coating layer may be formed as a single layer of the ta-C layer doped with 3 at% to 20 at%.
  • the coating layer may be formed in the form of a double layer consisting of a ta-C layer and a ta-C layer doped with 3 at% to 20 at% Si.
  • the thickness of the coating layer may be 30 nm to 300 nm, preferably 50 nm to 250 nm, more preferably 100 nm to 200 nm.
  • the thickness of the coating layer is less than 30 nm, there is a problem that it may be difficult to sufficiently secure the durability of the mold, and when the thickness of the coating layer exceeds 300 nm, there is a problem that the removal of the coating layer may be relatively difficult.
  • the thicker the coating layer the higher the possibility of peeling due to the stress of the coating layer, which may cause defects in the coating process.
  • the coating layer as described above allows the mold for forming a glass lens to have excellent releasability and durability, it is possible to maximize the service life of the mold and the production efficiency of the glass lens.
  • a coating layer may be formed on the surface of the mold for forming a glass by using a vacuum arc deposition method of a magnetic field filtration arc method on the surface in contact with the glass lens.
  • the vacuum arc deposition method of the magnetic field filtration arc method comprises the steps of generating a spark in a target body of graphite material to generate plasmaized ions; removing non-ionized particles from the plasmaized ions by magnetic force; and forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens.
  • the vacuum arc deposition method of the magnetic field filtering arc method includes: an arc plasma generating unit generating a plasma ion by generating a spark in a target body of a graphite material; a transport pipe providing a transport path for transporting plasmaized ions to an optical lens to be coated; a magnetic force generating unit for concentrating non-ionized particles of the material transferred through the transfer pipe to the inner wall side by magnetic force; and at least one filter plate formed to block the transfer of the non-ionized particles in the transfer pipe.
  • the magnetic field filtration arc type coating device may have various forms, for example, may exist in various forms, such as a double bend form, a 90 degree bent form, a 45 degree bent form.
  • the sp 3 fraction is high and an amorphous carbon protective film without hydrogen can be formed.
  • the step of forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens is specifically, while supplying an organic solvent containing Si in gaseous form, the glass of the mold for forming a glass lens with the plasmaized ions.
  • the method may include forming a coating layer including a ta-C layer doped with 3 at% to 20 at% Si on a surface in contact with the lens.
  • the organic solvent containing Si may be at least one selected from the group consisting of tetramethylsilane (TMS), hexamethyldisilazane (HMDS), and hexamethyldisiloxane (HMDSO).
  • TMS tetramethylsilane
  • HMDS hexamethyldisilazane
  • HMDSO hexamethyldisiloxane
  • the organic solvent may be supplied in the form of a gas.
  • the organic solvent containing Si may be tetramethylsilane (TMS).
  • TMS tetramethylsilane
  • the tetramethylsilane may be doped in the form of -CH X dangling bond in a state in which the Si-CH 4 structure is not completely decomposed, thereby lowering the surface energy and reducing the chemical reaction through this to achieve low friction properties of the surface can do.
  • the amount of Si doping can be easily controlled by adjusting the flow rate of the organic solvent in the gaseous form containing Si. do.
  • a porous film may be formed due to an increase in the degree of vacuum according to an increase in the amount of Ar gas injected, which may decrease the performance of the coating layer. It is preferable to be able to
  • a structure having mainly Si-C bonds may be formed as pure Si deposition is performed.
  • Ar gas due to the nature of the sputtering process, Ar gas must be used, which increases the process pressure and reduces ion deposition energy.
  • the Si-CH 3 bond contained in the gaseous organic solvent is partially decomposed to form the surface of the film. Since the degree of slippage of the surface can be improved by including the hydrophobic Si-CH bond, the releasability can be improved.
  • the coating layer may include a ta-C layer doped with 3 at% to 20 at% Si. Preferably, it may be doped with Si of 5 at% to 15 at%, and more preferably, it may be doped with Si of 7 at% to 17 at%.
  • Si is doped at less than 3 at%, there is a problem in that it is difficult to sufficiently secure the mold releasability when molding the glass lens, and there is a problem that the film is removed immediately after one-time molding when the mold is used because the releasability is not secured. If Si is doped in excess of 20 at%, the wear resistance of the mold may be reduced, and when a problem occurs in the coating layer, it must be removed and re-coating is performed.
  • the coating layer may be formed as a single layer of the ta-C layer doped with 3 at% to 20 at%.
  • the coating layer may be formed in the form of a double layer consisting of a ta-C layer and a ta-C layer doped with 3 at% to 20 at% Si.
  • the forming of the coating layer includes forming a ta-C layer on the surface in contact with the glass lens of the mold for forming a glass lens with the plasmaized ions and an organic solvent containing Si while supplying in gaseous form, forming a ta-C layer doped with 3 at% to 20 at% of Si on the ta-C layer with the plasmaized ions.
  • the thickness of the coating layer may be 30 nm to 300 nm, preferably 50 nm to 250 nm, more preferably 100 nm to 200 nm.
  • the thickness of the coating layer is less than 30 nm, there is a problem that it may be difficult to sufficiently secure the durability of the mold, and when the thickness of the coating layer exceeds 300 nm, there is a problem that the removal of the coating layer may be relatively difficult.
  • the thicker the coating layer the higher the possibility of peeling due to the stress of the coating layer, which may cause defects in the coating process.
  • the method for manufacturing a mold for molding a glass lens includes the step of etching the mold for molding a glass lens before forming a coating layer on the surface in contact with the glass lens of the mold for molding a glass lens. may include more.
  • the step of forming a glass lens using a mold for forming a glass lens having the coating layer formed thereon may be performed at a high temperature of 600° C. or higher. More specifically, it may be 650°C or higher, and more specifically 680°C or higher.
  • an abnormality occurs in the coating layer in the step of molding the glass lens, it may include removing the coating layer and re-coating the mold for molding the glass lens.
  • the step of removing the coating layer may be performed through etching, and in one embodiment, may be performed through oxygen etching.
  • the method for forming a glass lens provided in another aspect of the present invention includes a ta-C layer doped with Si in an appropriate amount, when an abnormality occurs in the coating layer, the coating layer can be easily removed.
  • the existing mold for forming a glass lens if there is a problem in the coating layer, there was a problem that the cost occurred and the required time increased as the mold was reprocessed. You can avoid these problems by removing them.
  • the base material for forming a glass lens made of WC was etched using argon gas for 150 minutes to clean the surface and remove moisture.
  • ta-C coating was first performed on the mold base material for glass lens molding without gas injection for the purpose of securing durability.
  • the substrate bias voltage was set to 130 V, and the coating layer was formed with a thickness of about 100 nm.
  • TMS tetramethylsilane
  • the bias voltage was set to 150 V. It can be understood with reference to FIG. 2 .
  • a coating layer of 50 nm level was formed, and a total coating layer of 150 nm level was formed.
  • Carbon coating was performed using arc plasma of the graphite target, and the magnetic field filtration arc method was used to make it an anhydrous process.
  • the base material for forming a glass lens made of WC was etched using argon gas for 50 minutes to clean the surface and remove moisture.
  • a typical anhydrous ta-C coating was applied using the coating device of the filtered cathodic vacuum arc method of FIG. 1 . Unlike the example, a gas was not separately supplied.
  • Carbon coating was performed using arc plasma of the graphite target, and the magnetic field filtration arc method was used to make it an anhydrous process.
  • an adhesive layer with a thickness of 20 nm was formed while applying a bias of 300 V, and an abrasion resistance layer of 20 nm level was formed while applying a bias of 150 V on it, and 110 V was applied thereon.
  • a release layer securing layer of nm level was formed.
  • Example 4 As shown in the scratch test results of FIG. 5 , in the case of Example 4, it can be seen that the average frictional force was 0.1 level, and the frictional force was reduced by about 50% compared to Example 1 of 0.2 level.
  • Example 4 a photograph of the experimental result for Example 4 is shown in FIG. 5
  • Example 5 a photograph of the experimental result for Example 5 is shown in FIG. 6 .
  • the coating layer may immediately come off after 1 shot due to lack of releasability (FIG. 7).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Disclosed is a mold for forming a glass lens, the mold having a surface that comes in contact with a glass lens being formed is coated with a coating layer comprising a ta-C layer doped with 3 at% to 20 at% of Si. The mold for forming a glass lens provided according to one aspect of the present invention enables successful production of the glass lens without causing issues such as carbonization even in a high-temperature glass lens forming process, and due to excellent releasability and durability, can maximize the lifetime of the mold and lens manufacturing efficiency. Further, the present invention enables a rapid removal of the coating layer by means of oxygen etching, and thus, in case of the occurrence of a defect in the coating layer, can perform re-coating by only removing the coating layer by means of oxygen etching without a high-cost, time-consuming mold reprocessing process, thereby significantly reducing the cost and time required for mold reprocessing.

Description

유리렌즈 성형용 몰드 및 그 제조방법Glass lens molding mold and method for manufacturing the same
본 발명은 유리렌즈 성형용 몰드 및 그 제조방법에 관한 것이다.The present invention relates to a mold for forming a glass lens and a method for manufacturing the same.
기존의 렌즈 성형을 위한 금형 코팅 기술은 저온 렌즈 성형공정에 맞추어 귀금속(Ir, Re) 등의 코팅이나 일반적인 a-C:H 구조의 DLC 코팅이 적용되어 왔다. 또한 ta-C(tetrahedral amorphous carbon)의 적용도 근래에 이루어지고 있다. 그러나, 렌즈의 활용 범위가 넓어짐에 따라 가혹한 사용 환경에 노출되기 시작하면서 렌즈 자체의 높은 내구성이 요구되게 되었으며, 따라서 렌즈 소재가 고온 성형이 불가피한 소재로 변경되고 있다. In the conventional mold coating technology for lens molding, a coating of noble metals (Ir, Re), etc. or a general a-C:H structure DLC coating has been applied according to the low-temperature lens molding process. In addition, the application of ta-C (tetrahedral amorphous carbon) has been made recently. However, as the scope of use of the lens is widened, as it begins to be exposed to a harsh use environment, high durability of the lens itself is required, and accordingly, the lens material is being changed to a material that requires high temperature molding.
Lidar system과 같은 인지/감지 센서에 활용되는 고온 성형 유리렌즈의 수요가 증가하였으며, 기존 레이저 광원 장비가 높은 가격 및 큰 부피로 인하여 경량화 레이저 광원의 활용 수요가 증가함에 따라 이의 사용 파장 영역에서 고 이득을 가지는 유리렌즈가 소재로서 사용되고 있다. 또한 CCTV 등 외부 노출 환경이 잦은 제품에까지 이러한 유리렌즈가 사용됨에 따라, 렌즈의 내구성 확보를 위해 소재가 변경될 필요가 있다.The demand for high-temperature molded glass lenses used in recognition/sensing sensors such as lidar systems has increased, and as the demand for lightweight laser light sources increases due to the high price and large volume of existing laser light source equipment, high gains in the wavelength range A glass lens with In addition, as these glass lenses are used in products that are frequently exposed to external environments such as CCTV, the material needs to be changed to ensure durability of the lens.
이러한 관점에서 기존의 몰드의 코팅들은 고온(650℃ 이상)에서 성형이 수행되는 공정에 적용할 경우, 내열성 부족으로 인한 탈막 현상이나 내마모성의 감소가 두드러지고 있어 사용이 어렵다. 따라서 고온 성형에서 몰드의 내구성을 향상시킴과 동시에 이형성을 증대시켜 생산 효율을 극대화 시킬 수 있는 코팅에 대한 수요가 증가하는 추세이다.From this point of view, when the coatings of the existing mold are applied to a process in which molding is performed at a high temperature (650° C. or higher), it is difficult to use because the film removal phenomenon or abrasion resistance decrease due to lack of heat resistance is remarkable. Therefore, the demand for coatings that can maximize production efficiency by improving mold durability and releasability in high-temperature molding is on the rise.
[선행기술문헌][Prior art literature]
(특허문헌 0001) 대한민국 공개특허 제10-2011-0115291호: DLC 코팅장치(Patent Document 0001) Republic of Korea Patent Publication No. 10-2011-0115291: DLC coating device
본 발명의 일측면에서의 목적은 유리렌즈 성형 시 고온 성형에서 사용될 수 있도록 Si 도핑된 ta-C층을 포함하는 코팅층으로 코팅된 유리렌즈 성형용 몰드를 제공하는 데 있다.It is an object of the present invention to provide a mold for molding a glass lens coated with a coating layer including a Si-doped ta-C layer so that it can be used in high-temperature molding when molding a glass lens.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에서In order to achieve the above object, in one aspect of the present invention
유리렌즈 성형용 몰드에 있어서,In the mold for forming a glass lens,
성형되는 유리렌즈와 접촉하는 표면은The surface in contact with the glass lens being molded is
3 at% 내지 20 at%의 Si로 도핑된 ta-C층을 포함하는 코팅층으로 코팅된 유리렌즈 성형용 몰드가 제공된다.A mold for forming a glass lens coated with a coating layer including a ta-C layer doped with 3 at% to 20 at% Si is provided.
또한, 본 발명의 다른 측면에서In addition, in another aspect of the present invention
흑연소재의 타겟체에 스파크를 발생시켜 플라즈마화된 이온을 생성하는 단계;generating plasma-ized ions by generating a spark in a target body made of graphite;
상기 플라즈마화된 이온 중 비이온화된 입자를 자력에 의해 제거하는 단계; 및 removing non-ionized particles from the plasmaized ions by magnetic force; and
Si를 포함하는 유기용제를 기체 형태로 공급하면서, 상기 플라즈마화된 이온으로 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 Si가 3 at% 내지 20 at% 도핑된 ta-C층을 포함하는 코팅층을 형성하는 단계;A ta-C layer doped with 3 at% to 20 at% of Si on the surface in contact with the glass lens of the mold for forming a glass lens with the plasmaized ions while supplying the organic solvent containing Si in gaseous form forming a coating layer to
를 포함하는 유리렌즈 성형용 몰드 제조방법이 제공된다.There is provided a method for manufacturing a mold for forming a glass lens comprising a.
나아가, 본 발명의 또 다른 측면에서Furthermore, in another aspect of the present invention
상기 유리렌즈 성형용 몰드 제조방법을 통하여, 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면에 코팅층을 형성하는 단계; 및forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens through the method for manufacturing a mold for forming a glass lens; and
상기 코팅층이 형성된 유리렌즈 성형용 몰드를 이용하여 유리렌즈를 성형하는 단계;forming a glass lens using a mold for forming a glass lens having the coating layer formed thereon;
를 포함하는 유리렌즈 성형방법이 제공된다.There is provided a method of forming a glass lens comprising a.
본 발명의 일 측면에서 제공되는 유리렌즈 성형용 몰드는 고온 유리렌즈 성형 공정에서도 탄화 등의 문제없이 성공적으로 유리렌즈의 생산이 가능하며, 우수한 이형성 및 내구성으로 인해 몰드의 사용 수명 및 렌즈 생산 효율을 극대화 할 수 있다. 또한, 산소 에칭을 통한 빠른 코팅층의 제거가 가능하여 코팅층에 문제 발생 시 높은 비용과 긴 시간이 소요되는 몰드의 재가공 없이 산소 에칭을 통해 코팅층만 제거하고 재코팅을 수행함으로써 몰드 재가공에 소요되는 비용과 시간을 현저히 감소시킬 수 있다.The mold for forming a glass lens provided in one aspect of the present invention can successfully produce a glass lens without problems such as carbonization even in a high-temperature glass lens forming process. can be maximized. In addition, since it is possible to quickly remove the coating layer through oxygen etching, when a problem occurs in the coating layer, only the coating layer is removed through oxygen etching and re-coating is performed without reprocessing the mold, which takes a long time and high cost. time can be significantly reduced.
도 1은 본 발명의 일 실시예에서 ta-C 코팅층을 형성하기 위하여 사용되는 자장여과아크 방식의 코팅장치를 나타낸 것이고,1 shows a coating apparatus of a magnetic field filtering arc method used to form a ta-C coating layer in an embodiment of the present invention,
도 2는 본 발명의 일 실시예의 유리렌즈 성형용 몰드 코팅 공정을 모식적으로 나타낸 것이고,Figure 2 schematically shows a mold coating process for forming a glass lens of an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따라 제조될 수 있는 다중층 및 단일층 형태의 코팅층을 모식적으로 나타낸 것이고,Figure 3 schematically shows a coating layer in the form of a multi-layer and a single layer that can be prepared according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에서의 TMS 가스 유량에 다른 Si의 도핑량을 나타낸 그래프이고,4 is a graph showing the doping amount of Si according to the TMS gas flow rate in an embodiment of the present invention,
도 5는 본 발명의 일 실험예에 따라, 실시예 4 샘플의 실험 결과를 보여주는 이미지이고,5 is an image showing the experimental results of the Example 4 sample, according to an experimental example of the present invention;
도 6은 본 발명의 일 실험예에 따라, 실시예 5 샘플의 실험 결과를 보여주는 이미지이고,6 is an image showing the experimental results of the sample of Example 5, according to an experimental example of the present invention;
도 7은 본 발명의 일 실험예에 따라, 비교예 샘플의 실험 결과를 보여주는 이미지이다.7 is an image showing an experimental result of a comparative example sample according to an experimental example of the present invention.
본 발명은 여러 변경을 가할 수 있으며 이에 따라 다양한 실시예가 나올 수 있는 바, 특정 실시예를 하단에 제시하고 상세하게 설명하고자 한다.Since the present invention can make various changes and thus various embodiments can be made, specific embodiments will be presented below and described in detail.
또한 특별히 정의가 되지 않은 본 명세서에서의 모든 용어들은 본 발명이 속하는 기술분야의 통상적인 지식을 가진 자 모두에게 이해가 가능한 의미로 사용할 수 있을 것이다.In addition, all terms in this specification that are not specifically defined may be used in a meaning that is understandable to all those of ordinary skill in the art to which the present invention belongs.
그러나 이는 본 발명은 하단에 기술될 특정한 실시예에만 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, it should be understood that the present invention is not intended to be limited only to the specific embodiments to be described below, and includes all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
따라서 본 명세서에 기재된 실시예와 다른 균등물과 변형 예들이 있을 수 있으며, 본 명세서에서 제시하는 실시예는 가장 바람직한 실시예일 뿐이다.Accordingly, there may be other equivalents and modifications to the embodiments described herein, and the embodiments presented herein are only the most preferred embodiments.
본 발명의 일 측면에서In one aspect of the invention
유리렌즈 성형용 몰드에 있어서,In the mold for forming a glass lens,
성형되는 유리렌즈와 접촉하는 표면은The surface in contact with the glass lens being molded is
3 at% 내지 20 at%의 Si로 도핑된 ta-C층을 포함하는 코팅층으로 코팅된 유리렌즈 성형용 몰드가 제공된다.A mold for forming a glass lens coated with a coating layer including a ta-C layer doped with 3 at% to 20 at% Si is provided.
이하, 본 발명의 일 측면에서 제공되는 유리렌즈 성형용 몰드를 각 구성별로 상세히 설명한다.Hereinafter, the mold for forming a glass lens provided in one aspect of the present invention will be described in detail for each configuration.
먼저, 본 발명의 일 측면에서 제공되는 유리렌즈 성형용 몰드는 몰드의 모재를 포함할 수 있다.First, the mold for forming a glass lens provided in one aspect of the present invention may include a base material of the mold.
몰드의 모재는 SiC, Si 3N 4, WC, TiC, TaC, BN, TiN, ZrO 2, 서멧, 스테인리스, STAVAX 및 이들의 합금으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.The base material of the mold may be at least one selected from the group consisting of SiC, Si 3 N 4 , WC, TiC, TaC, BN, TiN, ZrO 2 , cermet, stainless steel, STAVAX, and alloys thereof.
다음으로, 본 발명의 일 측면에서 제공되는 유리렌즈 성형용 몰드는 코팅층을 포함할 수 있다.Next, the mold for forming a glass lens provided in one aspect of the present invention may include a coating layer.
상기 몰드의 모재에서, 성형되는 유리렌즈와 접촉하는 표면은 상기 코팅층으로 코팅될 수 있다.In the base material of the mold, the surface in contact with the glass lens to be molded may be coated with the coating layer.
상기 코팅층은 3 at% 내지 20 at%의 Si로 도핑된 ta-C층을 포함할 수 있다. 바람직하게는 5 at% 내지 15 at%의 Si로 도핑될 수 있으며, 더욱 바람직하게는 7 at% 내지 17 at%의 Si로 도핑될 수 있다.The coating layer may include a ta-C layer doped with 3 at% to 20 at% Si. Preferably, it may be doped with Si of 5 at% to 15 at%, and more preferably, it may be doped with Si of 7 at% to 17 at%.
Si가 3 at% 미만으로 도핑되는 경우, 유리렌즈 성형 시 몰드의 이형성을 충분히 확보하기 어렵다는 문제가 있으며, 이형성 확보가 되지 않아 금형 사용 시 1회 성형 후 즉시 탈막이 발생하는 문제점이 있다. Si가 20 at% 초과하여 도핑되는 경우, 몰드의 내마모도가 떨어질 수 있으며, 코팅층에 문제가 생겼을 경우, 이를 제거하고 재코팅을 수행해야 하므로, 잦은 불량에 따른 생산성 저하의 문제가 발생할 수 있다.When Si is doped at less than 3 at%, there is a problem in that it is difficult to sufficiently secure the mold releasability when molding the glass lens, and there is a problem that the film is removed immediately after one-time molding when the mold is used because the releasability is not secured. If Si is doped in excess of 20 at%, the wear resistance of the mold may be reduced, and when a problem occurs in the coating layer, it must be removed and re-coating is performed.
일 구체예에서, 상기 코팅층은 3 at% 내지 20 at%로 도핑된 ta-C층의 단일층으로 형성될 수 있다.In one embodiment, the coating layer may be formed as a single layer of the ta-C layer doped with 3 at% to 20 at%.
다른 일 구체예에서, 상기 코팅층은 ta-C층 및 3 at% 내지 20 at%의 Si로 도핑된 ta-C층으로 이루어진 이중층 형태로 형성될 수 있다.In another embodiment, the coating layer may be formed in the form of a double layer consisting of a ta-C layer and a ta-C layer doped with 3 at% to 20 at% Si.
이와 같이 이중층 형태로 구성되는 경우, 경도가 높은 ta-C층을 통하여 충분한 내마모도를 확보하는 한편, 몰드 표면에서 성형되는 유리렌즈와 맞닿는 부분에 Si로 도핑된 ta-C층을 통하여 이형성을 충분히 확보할 수 있는 바, 이형성 및 내마모도를 동시에 확보할 수 있다는 점에서 바람직하다.In the case of a double-layer configuration, sufficient wear resistance is ensured through the ta-C layer with high hardness, and the release property is sufficiently ensured through the ta-C layer doped with Si on the part in contact with the glass lens being molded on the surface of the mold. As such, it is preferable in that it is possible to simultaneously secure release properties and wear resistance.
상기 코팅층의 두께는 30 nm 내지 300 nm일 수 있으며, 바람직하게는 50 nm 내지 250 nm, 더욱 바람직하게는 100 nm 내지 200 nm일 수 있다.The thickness of the coating layer may be 30 nm to 300 nm, preferably 50 nm to 250 nm, more preferably 100 nm to 200 nm.
상기 코팅층의 두께가 30 nm 미만인 경우, 몰드의 내구도를 충분히 확보하기 어려울 수 있다는 문제점이 있으며, 코팅층의 두께가 300 nm 초과하는 경우, 코팅층의 제거가 비교적 어려울 수 있다는 문제점이 있다. 또한, 코팅층의 두께가 두꺼울수록 코팅층의 응력으로 인한 박리 발생의 가능성이 높아 코팅 공정에서 불량이 발생할 수 있어 몰드의 내구성 및 밀착력을 확보할 수 있는 한 300 nm 이하의 두께를 적용하는 것이 바람직하다.When the thickness of the coating layer is less than 30 nm, there is a problem that it may be difficult to sufficiently secure the durability of the mold, and when the thickness of the coating layer exceeds 300 nm, there is a problem that the removal of the coating layer may be relatively difficult. In addition, the thicker the coating layer, the higher the possibility of peeling due to the stress of the coating layer, which may cause defects in the coating process.
상기와 같은 코팅층은 유리렌즈 성형용 몰드가 우수한 이형성 및 내구성을 갖도록 할 수 있기에, 몰드의 사용 수명 및 유리렌즈 생산 효율을 극대화 할 수 있다.Since the coating layer as described above allows the mold for forming a glass lens to have excellent releasability and durability, it is possible to maximize the service life of the mold and the production efficiency of the glass lens.
본 발명의 다른 측면에서In another aspect of the invention
흑연소재의 타겟체에 스파크를 발생시켜 플라즈마화된 이온을 생성하는 단계;generating plasma-ized ions by generating a spark in a target body made of graphite;
상기 플라즈마화된 이온 중 비이온화된 입자를 자력에 의해 제거하는 단계; 및 removing non-ionized particles from the plasmaized ions by magnetic force; and
Si를 포함하는 유기용제를 기체 형태로 공급하면서, 상기 플라즈마화된 이온으로 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 Si가 3 at% 내지 20 at% 도핑된 ta-C층을 포함하는 코팅층을 형성하는 단계;A ta-C layer doped with 3 at% to 20 at% of Si on the surface in contact with the glass lens of the mold for forming a glass lens with the plasmaized ions while supplying the organic solvent containing Si in gaseous form forming a coating layer to
를 포함하는 유리렌즈 성형용 몰드 제조방법이 제공된다.There is provided a method for manufacturing a mold for forming a glass lens comprising a.
이하, 본 발명의 다른 측면에서 제공되는 유리렌즈 성형용 몰드 제조방법을 각 단계별로 상세히 설명한다.Hereinafter, a method for manufacturing a mold for forming a glass lens provided in another aspect of the present invention will be described in detail for each step.
먼저, 본 발명의 다른 측면에서 제공되는 유리렌즈 성형용 몰드 제조방법은 유리 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 자장여과아크 방식의 진공아크증착법을 이용하여, 코팅층을 형성할 수 있다.First, in the method for manufacturing a mold for forming a glass lens provided in another aspect of the present invention, a coating layer may be formed on the surface of the mold for forming a glass by using a vacuum arc deposition method of a magnetic field filtration arc method on the surface in contact with the glass lens.
구체적으로, 상기 자장여과아크 방식의 진공아크증착법은 흑연소재의 타겟체에 스파크를 발생시켜 플라즈마화된 이온을 생성하는 단계; 상기 플라즈마화된 이온 중 비이온화된 입자를 자력에 의해 제거하는 단계; 및 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 코팅층을 형성하는 단계;를 포함할 수 있다.Specifically, the vacuum arc deposition method of the magnetic field filtration arc method comprises the steps of generating a spark in a target body of graphite material to generate plasmaized ions; removing non-ionized particles from the plasmaized ions by magnetic force; and forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens.
상기 단계들은 상기 자장여과아크 방식의 진공아크증착법은 흑연소재의 타겟체에 스파크를 발생시켜 플라즈마화된 이온을 생성하는 아크 플라즈마 발생부; 플라즈마화된 이온을 코팅대상인 광학렌즈까지 이송되는 이송경로를 제공하는 이송관; 상기 이송관을 통해 이송되는 물질 중 비이온화된 입자를 자력에 의해 내벽측에 집속되게 하는 자력 생성부; 및 상기 이송관 내에 상기 비이온화된 입자의 이송을 저지시킬 수 있도록 형성된 적어도 하나의 필터판;을 포함하는 자장여과아크 방식의 코팅장치를 이용하여 수행될 수 있다(도 1).In the above steps, the vacuum arc deposition method of the magnetic field filtering arc method includes: an arc plasma generating unit generating a plasma ion by generating a spark in a target body of a graphite material; a transport pipe providing a transport path for transporting plasmaized ions to an optical lens to be coated; a magnetic force generating unit for concentrating non-ionized particles of the material transferred through the transfer pipe to the inner wall side by magnetic force; and at least one filter plate formed to block the transfer of the non-ionized particles in the transfer pipe.
상기 자장여과아크 방식의 코팅장치는 다양한 형태를 가질 수 있으며, 예를 들어, Double bend의 형태, 90도 꺾인 형태, 45도 꺾인 형태 등의 다양한 형태로 존재할 수 있다.The magnetic field filtration arc type coating device may have various forms, for example, may exist in various forms, such as a double bend form, a 90 degree bent form, a 45 degree bent form.
이와 같은 자장여과아크 방식의 진공아크증착법을 이용하는 경우, 비이온화된 마이크론 크기의 거대입자가 보호막으로 들어가 막질을 저하시키는 문제를 해결할 수 있다는 점에서 바람직하다.In the case of using the vacuum arc deposition method of the magnetic field filtration arc method, it is preferable in that it can solve the problem that non-ionized micron-sized large particles enter the protective film and deteriorate the film quality.
또한, 자장여과아크방식을 이용하는 경우, sp 3 분율이 높으며, 수소가 없는 무수소 비정질 탄소 보호막을 형성할 수 있기 때문에, 자장여과아크방식을 사용하지 않는 경우에 비하여 높은 경도의 ta-C 보호막을 형성할 수 있다.In addition, when the magnetic field filtration arc method is used, the sp 3 fraction is high and an amorphous carbon protective film without hydrogen can be formed. can be formed
상기 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 코팅층을 형성하는 단계는 구체적으로, Si를 포함하는 유기용제를 기체 형태로 공급하면서, 상기 플라즈마화된 이온으로 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 Si가 3 at% 내지 20 at% 도핑된 ta-C층을 포함하는 코팅층을 형성하는 단계를 포함할 수 있다.The step of forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens is specifically, while supplying an organic solvent containing Si in gaseous form, the glass of the mold for forming a glass lens with the plasmaized ions. The method may include forming a coating layer including a ta-C layer doped with 3 at% to 20 at% Si on a surface in contact with the lens.
상기 Si를 포함하는 유기용제는 테트라메틸실레인(Tetramethylsilane, TMS), 헥사메틸디실라잔(hexamethyldisilazane, HMDS) 및 헥사메틸디실록산(Hexamethyldisiloxane, HMDSO)으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.The organic solvent containing Si may be at least one selected from the group consisting of tetramethylsilane (TMS), hexamethyldisilazane (HMDS), and hexamethyldisiloxane (HMDSO).
상기 유기용제는 기체의 형태로 공급될 수 있다.The organic solvent may be supplied in the form of a gas.
일 실시예에서 상기 Si를 포함하는 유기용제는 테트라메틸실레인(Tetramethylsilane, TMS)일 수 있다. 상기 테트라메틸실레인은 Si-CH 4 구조가 완전히 분해되지 않은 상태로 -CH X dangling bond의 형태로 도핑될 수 있으며, 이에 따라 표면 에너지를 낮추고 이를 통하여 화학적 반응을 줄여 표면의 저마찰 특성을 달성할 수 있다.In an embodiment, the organic solvent containing Si may be tetramethylsilane (TMS). The tetramethylsilane may be doped in the form of -CH X dangling bond in a state in which the Si-CH 4 structure is not completely decomposed, thereby lowering the surface energy and reducing the chemical reaction through this to achieve low friction properties of the surface can do.
또한, 스퍼터링과 같은 Si를 도핑하는 다른 방법의 경우, 추가적인 스퍼터 장치 등을 필요로 하는 바, 공정이 복잡해지고 장비 비용이 증가하는 단점이 있지만, Si를 포함하는 유기용제를 이용한 도핑의 경우, 기존의 자장여과아크공정 장비를 이용 시, 기체 형태의 유기용제만 주입하면 바로 공정을 수행할 수 있어, 공정 시간의 증가가 없으며, 장비 비용의 증가 또한 없다는 장점이 있다.In addition, in the case of other methods of doping Si such as sputtering, an additional sputtering apparatus is required, and the process is complicated and equipment cost is increased. However, in the case of doping using an organic solvent containing Si, the existing When using the magnetic filtration arc process equipment of
또한 스퍼터링을 통하여 Si를 도핑하는 방법에 비하여, Si를 포함하는 유기용제를 이용한 도핑의 경우 Si 도핑량을 Si를 포함하는 기체 형태의 유기용제의 유량을 조절함에 따라 용이하게 조절할 수 있다는 점에서 바람직하다.In addition, compared to the method of doping Si through sputtering, in the case of doping using an organic solvent containing Si, the amount of Si doping can be easily controlled by adjusting the flow rate of the organic solvent in the gaseous form containing Si. do.
또한, 스퍼터링과 같은 공정의 경우, Ar 기체의 주입량 증가에 따른 진공도 증가로 다공성의 막이 형성되어 코팅층의 성능을 떨어뜨릴 수 있는데, Si를 포함하는 기체 형태의 유기용제를 이용한 도핑의 경우 이를 방지할 수 있다는 점에서 바람직하다.In addition, in the case of a process such as sputtering, a porous film may be formed due to an increase in the degree of vacuum according to an increase in the amount of Ar gas injected, which may decrease the performance of the coating layer. It is preferable to be able to
스퍼터링을 이용한 ta-C의 증착은 순수한 Si 증착이 이루어짐에 따라 주로 Si-C 결합을 갖는 구조가 형성될 수 있다. 또한 스퍼터링 공정의 특성상 Ar 가스를 필수적으로 활용해야 하여 공정 압력이 높아지고 이에 따른 이온 증착 에너지가 감소하게 된다.In the deposition of ta-C using sputtering, a structure having mainly Si-C bonds may be formed as pure Si deposition is performed. In addition, due to the nature of the sputtering process, Ar gas must be used, which increases the process pressure and reduces ion deposition energy.
반면 Si를 포함하는 기체 형태의 유기용제의 주입을 통한 아크 플라즈마 기반의 Si 도핑된 ta-C의 경우, 상기 기체 형태의 유기용제가 포함하고 있는 Si-CH 3 결합이 부분적으로 분해되면서 막의 표면에 소수성을 가지는 Si-C-H 결합이 포함됨으로써 표면의 미끌림 정도를 향상시킬 수 있기 때문에 이형성이 향상될 수 있다.On the other hand, in the case of Si-doped ta-C based on arc plasma through the injection of a gaseous organic solvent containing Si, the Si-CH 3 bond contained in the gaseous organic solvent is partially decomposed to form the surface of the film. Since the degree of slippage of the surface can be improved by including the hydrophobic Si-CH bond, the releasability can be improved.
상기 코팅층은 3 at% 내지 20 at%의 Si로 도핑된 ta-C층을 포함할 수 있다. 바람직하게는 5 at% 내지 15 at%의 Si로 도핑될 수 있으며, 더욱 바람직하게는 7 at% 내지 17 at%의 Si로 도핑될 수 있다.The coating layer may include a ta-C layer doped with 3 at% to 20 at% Si. Preferably, it may be doped with Si of 5 at% to 15 at%, and more preferably, it may be doped with Si of 7 at% to 17 at%.
Si가 3 at% 미만으로 도핑되는 경우, 유리렌즈 성형 시 몰드의 이형성을 충분히 확보하기 어렵다는 문제가 있으며, 이형성 확보가 되지 않아 금형 사용 시 1회 성형 후 즉시 탈막이 발생하는 문제점이 있다. Si가 20 at% 초과하여 도핑되는 경우, 몰드의 내마모도가 떨어질 수 있으며, 코팅층에 문제가 생겼을 경우, 이를 제거하고 재코팅을 수행해야 하므로, 잦은 불량에 따른 생산성 저하의 문제가 발생할 수 있다.When Si is doped at less than 3 at%, there is a problem in that it is difficult to sufficiently secure the mold releasability when molding the glass lens, and there is a problem that the film is removed immediately after one-time molding when the mold is used because the releasability is not secured. If Si is doped in excess of 20 at%, the wear resistance of the mold may be reduced, and when a problem occurs in the coating layer, it must be removed and re-coating is performed.
일 구체예에서, 상기 코팅층은 3 at% 내지 20 at%로 도핑된 ta-C층의 단일층으로 형성될 수 있다.In one embodiment, the coating layer may be formed as a single layer of the ta-C layer doped with 3 at% to 20 at%.
다른 일 구체예에서, 상기 코팅층은 ta-C층 및 3 at% 내지 20 at%의 Si로 도핑된 ta-C층으로 이루어진 이중층 형태로 형성될 수 있다.In another embodiment, the coating layer may be formed in the form of a double layer consisting of a ta-C layer and a ta-C layer doped with 3 at% to 20 at% Si.
이와 같이 이중층 형태로 구성되는 경우, 경도가 높은 ta-C층을 통하여 충분한 내마모도를 확보하는 한편, 몰드 표면에서 성형되는 유리렌즈와 맞닿는 부분에 Si로 도핑된 ta-C층을 통하여 이형성을 충분히 확보할 수 있는 바, 이형성 및 내마모도를 동시에 확보할 수 있다는 점에서 바람직하다.In the case of a double-layer configuration as described above, sufficient wear resistance is ensured through the ta-C layer with high hardness, and the release property is sufficiently secured through the ta-C layer doped with Si on the part in contact with the glass lens to be molded on the surface of the mold. As such, it is preferable in that it is possible to simultaneously secure release properties and wear resistance.
상기 이중층 형태로 구성되는 경우, 상기 코팅층을 형성하는 단계는 상기 플라즈마화된 이온으로 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 ta-C층을 형성하는 단계 및 Si를 포함하는 유기용제를 기체 형태로 공급하면서, 상기 플라즈마화된 이온으로 상기 ta-C층 상에 Si가 3 at% 내지 20 at% 도핑된 ta-C층을 형성하는 단계를 포함할 수 있다.When configured in the double-layered form, the forming of the coating layer includes forming a ta-C layer on the surface in contact with the glass lens of the mold for forming a glass lens with the plasmaized ions and an organic solvent containing Si while supplying in gaseous form, forming a ta-C layer doped with 3 at% to 20 at% of Si on the ta-C layer with the plasmaized ions.
상기 코팅층의 두께는 30 nm 내지 300 nm일 수 있으며, 바람직하게는 50 nm 내지 250 nm, 더욱 바람직하게는 100 nm 내지 200 nm일 수 있다.The thickness of the coating layer may be 30 nm to 300 nm, preferably 50 nm to 250 nm, more preferably 100 nm to 200 nm.
상기 코팅층의 두께가 30 nm 미만인 경우, 몰드의 내구도를 충분히 확보하기 어려울 수 있다는 문제점이 있으며, 코팅층의 두께가 300 nm 초과하는 경우, 코팅층의 제거가 비교적 어려울 수 있다는 문제점이 있다. 또한, 코팅층의 두께가 두꺼울수록 코팅층의 응력으로 인한 박리 발생의 가능성이 높아 코팅 공정에서 불량이 발생할 수 있어 몰드의 내구성 및 밀착력을 확보할 수 있는 한 300 nm 이하의 두께를 적용하는 것이 바람직하다.When the thickness of the coating layer is less than 30 nm, there is a problem that it may be difficult to sufficiently secure the durability of the mold, and when the thickness of the coating layer exceeds 300 nm, there is a problem that the removal of the coating layer may be relatively difficult. In addition, the thicker the coating layer, the higher the possibility of peeling due to the stress of the coating layer, which may cause defects in the coating process.
또한, 본 발명의 다른 측면에서 제공되는 유리렌즈 성형용 몰드 제조방법은 상기 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 코팅층을 형성하기 전에, 상기 유리렌즈 성형용 몰드를 에칭하는 단계를 더 포함할 수 있다.In addition, the method for manufacturing a mold for molding a glass lens provided in another aspect of the present invention includes the step of etching the mold for molding a glass lens before forming a coating layer on the surface in contact with the glass lens of the mold for molding a glass lens. may include more.
상기 단계를 통하여 몰드 상의 표면 세정 및 수분 제거를 할 수 있다.Through the above steps, it is possible to clean the surface of the mold and remove moisture.
본 발명의 또 다른 측면에서In another aspect of the invention
상기 유리렌즈 성형용 몰드 제조방법을 통하여, 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면에 코팅층을 형성하는 단계; 및forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens through the method for manufacturing a mold for forming a glass lens; and
상기 코팅층이 형성된 유리렌즈 성형용 몰드를 이용하여 유리렌즈를 성형하는 단계;forming a glass lens using a mold for forming a glass lens having the coating layer formed thereon;
를 포함하는 유리렌즈 성형방법이 제공된다.There is provided a method of forming a glass lens comprising a.
상기 유리렌즈 성형용 몰드 제조방법을 통하여, 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면에 코팅층을 형성하는 단계는 앞서 설명하였는 바, 중복하여 설명하지 않는다.The step of forming a coating layer on the surface of the mold for forming a glass lens in contact with the glass lens through the method for manufacturing the mold for forming a glass lens has been described above, and thus will not be repeated.
상기 상기 코팅층이 형성된 유리렌즈 성형용 몰드를 이용하여 유리렌즈를 성형하는 단계는 600℃ 이상의 고온에서 수행될 수 있다. 보다 상세하게는 650℃ 이상, 더욱 상세하게는 680℃ 이상일 수 있다.The step of forming a glass lens using a mold for forming a glass lens having the coating layer formed thereon may be performed at a high temperature of 600° C. or higher. More specifically, it may be 650°C or higher, and more specifically 680°C or higher.
상기 유리렌즈를 성형하는 단계에서 코팅층에 이상이 발생하는 경우, 상기 코팅층을 제거하는 단계 및 상기 유리렌즈 성형용 몰드를 재코팅하는 단계를 포함할 수 있다.When an abnormality occurs in the coating layer in the step of molding the glass lens, it may include removing the coating layer and re-coating the mold for molding the glass lens.
상기 코팅층을 제거하는 단계는 에칭을 통하여 수행될 수 있으며, 일 구체예에서 산소 에칭을 통하여 수행될 수 있다.The step of removing the coating layer may be performed through etching, and in one embodiment, may be performed through oxygen etching.
본 발명의 또 다른 측면에서 제공되는 유리렌즈 성형방법은 적절한 양으로 Si 도핑된 ta-C 층을 포함하기에, 코팅층에 이상이 생겼을 경우, 코팅층을 손쉽게 제거할 수 있다. 기존의 유리렌즈 성형용 몰드의 경우, 코팅층에 문제가 생기면 몰드를 재가공함에 따라 비용이 발생 및 소요 시간 증가한다는 문제점이 있었는데, 본 발명의 또 다른 측면에서 제공되는 유리렌즈 성형방법은 단지 코팅층만을 손쉽게 제거함에 따라 이러한 문제를 방지할 수 있다.Since the method for forming a glass lens provided in another aspect of the present invention includes a ta-C layer doped with Si in an appropriate amount, when an abnormality occurs in the coating layer, the coating layer can be easily removed. In the case of the existing mold for forming a glass lens, if there is a problem in the coating layer, there was a problem that the cost occurred and the required time increased as the mold was reprocessed. You can avoid these problems by removing them.
이하, 실시예 및 실험예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.Hereinafter, the present invention will be described in more detail through Examples and Experimental Examples. The scope of the present invention is not limited to specific embodiments, and should be construed by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
<실시예 1><Example 1>
WC로 이루어진 유리렌즈 성형용 몰드 모재에 대하여 표면 세정 및 수분 제거를 위하여 150분 동안 아르곤 가스를 활용하여 에칭하였다.The base material for forming a glass lens made of WC was etched using argon gas for 150 minutes to clean the surface and remove moisture.
도 1의 자장여과아크(filtered cathodic vacuum arc) 방식의 코팅장치를 이용하여, 상기 유리렌즈 성형용 몰드 모재 상에 내구성 확보의 목적으로 가스 주입이 없는 상태로 ta-C 코팅을 우선 수행하였다. ta-C 코팅 시 기판 bias 전압은 130 V로 설정하였으며 두께는 약 100 nm 수준으로 코팅층을 형성하였다.Using the magnetic field filtering arc (filtered cathodic vacuum arc) type coating device of FIG. 1, ta-C coating was first performed on the mold base material for glass lens molding without gas injection for the purpose of securing durability. During ta-C coating, the substrate bias voltage was set to 130 V, and the coating layer was formed with a thickness of about 100 nm.
이후 코팅된 ta-C 상에 이형성 확보의 목적으로 테트라메틸실레인(Tetramethylsilane, TMS) 기체를 0, 2, 4, 6, 8, 10, 12 sccm의 유량으로 공급하며, ta-C 코팅을 실시하였다. bias 전압은 150 V로 설정하였다. 도 2를 참조하여 이해할 수 있다. 50 nm 수준의 코팅층이 형성되어 총 150 nm 수준의 코팅층이 형성되었다.Then, tetramethylsilane (TMS) gas is supplied at a flow rate of 0, 2, 4, 6, 8, 10, 12 sccm for the purpose of securing releasability on the coated ta-C, and ta-C coating is performed. did. The bias voltage was set to 150 V. It can be understood with reference to FIG. 2 . A coating layer of 50 nm level was formed, and a total coating layer of 150 nm level was formed.
흑연 타겟의 아크 플라즈마를 활용한 탄소 코팅을 실시하였으며, 자장여과아크 방식을 활용하여 무수소 공정이 될 수 있도록 진행하였다.Carbon coating was performed using arc plasma of the graphite target, and the magnetic field filtration arc method was used to make it an anhydrous process.
각 TMS 가스 공급 유량에 따른 구체적인 코팅 조건은 아래의 표 1와 같다(도 4 참조).Specific coating conditions according to each TMS gas supply flow rate are shown in Table 1 below (see FIG. 4 ).
가스유량
(sccm)
gas flow
(sccm)
Si원자비
(at%)
Si atomic ratio
(at%)
증착속도
(nm/min)
deposition rate
(nm/min)
코팅소요시간
(min)
Coating time
(min)
작동압력
(Torr)
working pressure
(Torr)
실시예 1Example 1 00 -- 4.234.23 3636 1.1×10 -6 1.1×10 -6
실시예 2Example 2 22 3.333.33 5.225.22 2828 5.1×10 -6 5.1×10 -6
실시예 3Example 3 44 5.685.68 6.356.35 2424 5.7×10 -6 5.7×10 -6
실시예 4Example 4 66 8.438.43 7.667.66 2020 6.2×10 -6 6.2×10 -6
실시예 5Example 5 88 10.2210.22 8.348.34 1818 6.8×10 -6 6.8×10 -6
실시예 6Example 6 1010 16.5516.55 10.2110.21 1515 7.1×10 -6 7.1×10 -6
실시예 7Example 7 1212 21.3421.34 15.6415.64 1010 7.5×10 -6 7.5×10 -6
모든 TMS 가스유량 조건에 대하여, 형성된 코팅층은 모두 양호하였다.For all TMS gas flow conditions, the formed coating layers were all good.
<비교예><Comparative example>
WC로 이루어진 유리렌즈 성형용 몰드 모재에 대하여 표면 세정 및 수분 제거를 위하여 50분 동안 아르곤 가스를 활용하여 에칭하였다.The base material for forming a glass lens made of WC was etched using argon gas for 50 minutes to clean the surface and remove moisture.
도 1의 자장여과아크(filtered cathodic vacuum arc) 방식의 코팅장치를 이용하여, 일반적인 무수소 ta-C 코팅을 적용하였다. 실시예와는 달리 별도로 가스를 공급하지는 않았다.A typical anhydrous ta-C coating was applied using the coating device of the filtered cathodic vacuum arc method of FIG. 1 . Unlike the example, a gas was not separately supplied.
흑연 타겟의 아크 플라즈마를 활용한 탄소 코팅을 실시하였으며, 자장여과아크 방식을 활용하여 무수소 공정이 될 수 있도록 진행하였다.Carbon coating was performed using arc plasma of the graphite target, and the magnetic field filtration arc method was used to make it an anhydrous process.
코팅층 코팅 시, 300 V의 바이어스를 가하면서 20 nm 두께의 밀착층을 형성하였으며, 그 위에, 150 V의 바이어스를 가하면서 20 nm 수준의 내마모층을 형성하였고, 그 위에 70 V를 가하면서 110 nm 수준의 이형층 확보층을 형성하였다.When coating the coating layer, an adhesive layer with a thickness of 20 nm was formed while applying a bias of 300 V, and an abrasion resistance layer of 20 nm level was formed while applying a bias of 150 V on it, and 110 V was applied thereon. A release layer securing layer of nm level was formed.
<실험예 1><Experimental Example 1>
실시예 1, 실시예4, 실시예 7 샘플에 대하여, 질소 환경(실제 성형 환경) 하에서 스크래치 분석을 통해 밀착력 및 이형성을 평가하였다.Examples 1, 4, and 7 Samples were evaluated for adhesion and releasability through scratch analysis under a nitrogen environment (actual molding environment).
도 5의 스크래치 테스트 결과에 나타난 바와 같이 실시예 4의 경우 평균 마찰력이 0.1 수준으로, 0.2 수준의 실시예 1에 비하여 마찰력이 50% 가량 감소함을 알 수 있다.As shown in the scratch test results of FIG. 5 , in the case of Example 4, it can be seen that the average frictional force was 0.1 level, and the frictional force was reduced by about 50% compared to Example 1 of 0.2 level.
또한, 도 6의 스크래치 트랙에서 볼 수 있듯이, 밀착력이 L c3 기준으로, 실시예 1의 경우 15 N에서, 실시예 4의 경우 21 N으로 약 40% 가량 향상됨을 확인할 수 있다.In addition, as can be seen from the scratch track of FIG. 6 , it can be confirmed that the adhesion is improved by about 40% from 15 N in Example 1 to 21 N in Example 4 based on L c3 .
<실험예 2><Experimental Example 2>
실시예 1 내지 실시예 7 샘플에 대하여, 650℃ 성형 공정에 적용하여, 성형 내구성, 이형성, 코팅층 제거 소요시간 등을 측정하여 아래의 표 2에 나타내었다.For the samples of Examples 1 to 7, it was applied to a molding process at 650° C., and the molding durability, releasability, and the time required to remove the coating layer were measured and shown in Table 2 below.
Si원자비
(at%)
Si atomic ratio
(at%)
성형 내구성
(shot)
molded durability
(shot)
이형 소요시간
(min)
Mold release time
(min)
코팅층 제거 소요시간 (min)Coating layer removal time (min)
실시예 1Example 1 -- 1One 30분 이내within 30 minutes 30분 이내within 30 minutes
실시예 2Example 2 3.333.33 111111 15분 이내within 15 minutes 30분 이내within 30 minutes
실시예 3Example 3 5.685.68 142142 10분 이내within 10 minutes 30분 이내within 30 minutes
실시예 4Example 4 8.438.43 223223 10분 이내within 10 minutes 30분 이내within 30 minutes
실시예 5Example 5 10.2210.22 498498 10분 이내within 10 minutes 30분 이내within 30 minutes
실시예 6Example 6 16.5516.55 262262 10분 이내within 10 minutes 30분 이내within 30 minutes
실시예 7Example 7 21.3421.34 50 이하50 or less 10분 이내within 10 minutes 30분 이내within 30 minutes
실시예 2 내지 실시예 6의 경우, 100 shot 이상을 수행하여도 내구성에 문제가 없음을 확인할 수 있으며, 이형성 확보를 위한 소요시간도 15분 이내이며, 코팅층 제거 또한 30분 이내에 가능함을 확인할 수 있다.In the case of Examples 2 to 6, it can be confirmed that there is no problem in durability even when 100 shots or more are performed, the time required for securing releasability is also within 15 minutes, and it can be confirmed that the removal of the coating layer is also possible within 30 minutes. .
또한, 이러한 최적화 조건을 적용하였을 때, 일반적으로 4회의 산소 에칭과정 및 재코팅 과정을 거칠 수 있는 바, 실시예 5의 경우, 최대 2000 shot 수준의 성형 내구성을 확보할 수 있다.In addition, when these optimization conditions are applied, in general, 4 times of oxygen etching process and re-coating process can be performed, and in the case of Example 5, molding durability of up to 2000 shot level can be secured.
또한, 실시예 4에 대한 실험 결과 사진을 도 5에, 실시예 5에 대한 실험 결과 사진을 도 6에 나타내었다.In addition, a photograph of the experimental result for Example 4 is shown in FIG. 5 , and a photograph of the experimental result for Example 5 is shown in FIG. 6 .
특히 실시예 4 및 5의 경우, 1000 shot 이상까지도 성형에 문제 없는 내구성을 가짐을 확인할 수 있다.In particular, in the case of Examples 4 and 5, it can be confirmed that even 1000 shots or more have durability without a problem in molding.
<실험예 3><Experimental Example 3>
600℃ 내지 688℃의 온도의 질소 분위기 하에서, 최대 0.7 MPa의 압력으로 성형하는 유리렌즈 성형 공정 하에서, 비교예의 샘플에서, 이형층 형성 시의 바이어스에 따른 성형 내구성, 이형성, 코팅층 제거 소요시간 등을 평가하였다.Under a nitrogen atmosphere at a temperature of 600°C to 688°C, under a glass lens molding process of molding at a pressure of up to 0.7 MPa, in the sample of Comparative Example, molding durability, releasability, and time required to remove the coating layer according to the bias during the formation of the release layer, etc. evaluated.
그 결과를 아래 표 3에 나타내었다.The results are shown in Table 3 below.
BiasBias 성형 내구성
(shot)
molded durability
(shot)
이형 소요시간Mold release time 코팅층 제거 소요시간 (min)Coating layer removal time (min)
00 1One 1시간 이상1 hour or more 30분 이내within 30 minutes
1One 1One 1시간 이상1 hour or more 30분 이내within 30 minutes
100100 >100>100 1시간 이상1 hour or more 30분 이내within 30 minutes
200200 >200>200 1시간 이상1 hour or more 30분 이내within 30 minutes
높은 bias를 적용할 경우, 초기 이형성은 확보되어 성형 후 바로 이형이 가능할 수는 있으나, 시간이 지남에 따라 이형성이 악화되어 막 중심부의 코팅층이 이탈될 수 있다.When a high bias is applied, initial releasability is secured and release may be possible immediately after molding, but over time, releasability deteriorates and the coating layer at the center of the film may come off.
또한, 낮은 bias를 적용할 경우, 이형성 부족으로 인하여 1 shot 후 코팅층이 바로 이탈될 수 있다(도 7).In addition, when a low bias is applied, the coating layer may immediately come off after 1 shot due to lack of releasability (FIG. 7).
[부호의 설명][Explanation of code]
10 모재10 Base material
20 코팅층20 coating layer
21 ta-C층21 ta-C layer
22 Si 도핑된 ta-C층22 Si-doped ta-C layer
100 유리렌즈 성형용 몰드100 Glass lens molding mold
200 자장여과아크 코팅장치200 magnetic field filtration arc coating device
210 챔버 210 chamber
211 베이스 플레이트(Base plate)211 Base plate
212 기판212 board
221 출구 자석(Outlet magnet, OM)221 Outlet magnet (OM)
222 추출 자석(Extraction magnet, EM)222 Extraction magnet (EM)
223 소스 자석(Source magnet, SM)223 Source magnet (SM)
224 배플(Baffle)224 Baffle
231 기판 바이어스 전력 공급부(Substrate bias power supply)231 Substrate bias power supply
232 덕트 바이어스 전력 공급부(Duct bias power supply)232 Duct bias power supply
233 아크 방전 전력 공급부(Arc discharge power supply)233 Arc discharge power supply
241 음극(Cathod)241 Cathode
242 양극(Anode)242 Anode
243 아크 스팟(Arc spot)243 Arc spot
244 트리거(Trigger)244 Trigger

Claims (11)

  1. 유리렌즈 성형용 몰드에 있어서,In the mold for forming a glass lens,
    성형되는 유리렌즈와 접촉하는 표면은The surface in contact with the glass lens being molded is
    3 at% 내지 20 at%의 Si로 도핑된 ta-C층을 포함하는 코팅층으로 코팅된 유리렌즈 성형용 몰드.A mold for forming a glass lens coated with a coating layer comprising a ta-C layer doped with Si of 3 at% to 20 at%.
  2. 제1항에 있어서,According to claim 1,
    상기 코팅층은The coating layer is
    ta-C층; 및ta-C layer; and
    3 at% 내지 20 at%의 Si로 도핑된 ta-C층;ta-C layer doped with 3 at% to 20 at% Si;
    을 포함하는 것을 특징으로 하는 유리렌즈 성형용 몰드.A mold for forming a glass lens, characterized in that it comprises a.
  3. 제1항에 있어서,According to claim 1,
    상기 유리렌즈 성형용 몰드의 모재는 SiC, Si 3N 4, WC, TiC, TaC, BN, TiN, ZrO 2, 서멧, 스테인리스, STAVAX 및 이들의 합금으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 유리렌즈 성형용 몰드.The base material of the mold for forming the glass lens is at least one selected from the group consisting of SiC, Si 3 N 4 , WC, TiC, TaC, BN, TiN, ZrO 2 , cermet, stainless steel, STAVAX, and alloys thereof. A mold for forming glass lenses.
  4. 제1항에 있어서,According to claim 1,
    상기 Si 도핑된 ta-C 층의 두께는 30 nm 내지 300 nm인 것을 특징으로 하는 유리렌즈 성형용 몰드.The Si-doped ta-C layer has a thickness of 30 nm to 300 nm.
  5. 흑연소재의 타겟체에 스파크를 발생시켜 플라즈마화된 이온을 생성하는 단계;generating plasma-ized ions by generating a spark in a target body made of graphite;
    상기 플라즈마화된 이온 중 비이온화된 입자를 자력에 의해 제거하는 단계; 및 removing non-ionized particles from the plasmaized ions by magnetic force; and
    Si를 포함하는 유기용제를 기체 형태로 공급하면서, 상기 플라즈마화된 이온으로 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 Si가 3 at% 내지 20 at% 도핑된 ta-C층을 포함하는 코팅층을 형성하는 단계;A ta-C layer doped with 3 at% to 20 at% of Si on the surface in contact with the glass lens of the mold for forming a glass lens with the plasmaized ions while supplying the organic solvent containing Si in gaseous form forming a coating layer to
    를 포함하는 유리렌즈 성형용 몰드 제조방법.A method of manufacturing a mold for forming a glass lens comprising a.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 Si를 포함하는 유기용제는 테트라메틸실레인(Tetramethylsilane, TMS), 헥사메틸디실라잔(hexamethyldisilazane, HMDS) 및 헥사메틸디실록산(Hexamethyldisiloxane, HMDSO)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 유리렌즈 성형용 몰드 제조방법.The organic solvent containing Si is characterized in that at least one selected from the group consisting of tetramethylsilane (TMS), hexamethyldisilazane (HMDS) and hexamethyldisiloxane (HMDSO). A method for manufacturing a mold for forming a glass lens.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 유리렌즈 성형용 몰드의 모재는 SiC, Si 3N 4, WC, TiC, TaC, BN, TiN, ZrO 2, 서멧, 스테인리스 및 이들의 합금으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 유리렌즈 성형용 몰드 제조방법.The base material of the mold for forming a glass lens is at least one selected from the group consisting of SiC, Si 3 N 4 , WC, TiC, TaC, BN, TiN, ZrO 2 , cermet, stainless steel, and alloys thereof. Glass, characterized in that A method for manufacturing a mold for lens molding.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 코팅층을 형성하는 단계 전에 상기 유리렌즈 성형용 몰드를 에칭하는 단계를 더 포함하는 것을 특징으로 하는 유리렌즈 성형용 몰드 제조방법.Method for manufacturing a mold for molding a glass lens, characterized in that it further comprises the step of etching the mold for molding the glass lens before the step of forming the coating layer.
  9. 제5항에 있어서,6. The method of claim 5,
    상기 코팅층은 The coating layer is
    ta-C층; 및ta-C layer; and
    3 at% 내지 20 at%의 Si로 도핑된 ta-C층;ta-C layer doped with 3 at% to 20 at% Si;
    을 포함하는 것을 특징으로 하는 유리렌즈 성형용 몰드 제조방법.A method for manufacturing a mold for forming a glass lens, comprising:
  10. 제9항에 있어서,10. The method of claim 9,
    상기 코팅층을 형성하는 단계는The step of forming the coating layer is
    상기 플라즈마화된 이온으로 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면 상에 ta-C층을 형성하는 단계; 및forming a ta-C layer on a surface in contact with a glass lens of a mold for forming a glass lens with the plasmaized ions; and
    Si를 포함하는 유기용제를 기체 형태로 공급하면서, 상기 플라즈마화된 이온으로 상기 ta-C층 상에 Si가 3 at% 내지 20 at% 도핑된 ta-C층을 형성하는 단계;forming a ta-C layer doped with 3 at% to 20 at% of Si on the ta-C layer with the plasmaized ions while supplying an organic solvent containing Si in gaseous form;
    를 포함하는 것을 특징으로 하는 유리렌즈 성형용 몰드 제조방법.A method for manufacturing a mold for forming a glass lens, comprising:
  11. 제5항의 유리렌즈 성형용 몰드 제조방법을 통하여, 유리렌즈 성형용 몰드의 유리렌즈와 접촉하는 표면에 코팅층을 형성하는 단계; 및Forming a coating layer on the surface in contact with the glass lens of the mold for forming a glass lens through the method for manufacturing a mold for forming a glass lens of claim 5; and
    상기 코팅층이 형성된 유리렌즈 성형용 몰드를 이용하여 유리렌즈를 성형하는 단계;forming a glass lens using a mold for forming a glass lens having the coating layer formed thereon;
    를 포함하는 유리렌즈 성형방법.A method of forming a glass lens comprising a.
PCT/KR2020/013483 2020-02-24 2020-10-05 Mold for forming glass lens and manufacturing method of same WO2021172682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0022429 2020-02-24
KR1020200022429A KR102289255B1 (en) 2020-02-24 2020-02-24 Glass lens molding mold and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021172682A1 true WO2021172682A1 (en) 2021-09-02

Family

ID=77313525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013483 WO2021172682A1 (en) 2020-02-24 2020-10-05 Mold for forming glass lens and manufacturing method of same

Country Status (2)

Country Link
KR (1) KR102289255B1 (en)
WO (1) WO2021172682A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263350A (en) * 1979-12-31 1981-04-21 Ppg Industries, Inc. Silane release surfaces on glass
KR20140067788A (en) * 2012-11-27 2014-06-05 주식회사 티씨케이 Forming mold for glass and menufacturing method thereof
KR20160009785A (en) * 2014-07-16 2016-01-27 한국광기술원 DLC coating apparatus using filtered cathode vacuum arc
KR101653325B1 (en) * 2015-06-15 2016-09-02 한국광기술원 ta-C coating method for protective layer of infrared ray optical lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110115291A (en) 2010-04-15 2011-10-21 경북대학교 산학협력단 Dlc coating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263350A (en) * 1979-12-31 1981-04-21 Ppg Industries, Inc. Silane release surfaces on glass
KR20140067788A (en) * 2012-11-27 2014-06-05 주식회사 티씨케이 Forming mold for glass and menufacturing method thereof
KR20160009785A (en) * 2014-07-16 2016-01-27 한국광기술원 DLC coating apparatus using filtered cathode vacuum arc
KR101653325B1 (en) * 2015-06-15 2016-09-02 한국광기술원 ta-C coating method for protective layer of infrared ray optical lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANG, Y. J.; CHOI, J. H.; KIM, J. H.; KIM, H. J.: "The effect of ta-C coating on hardness of WC mold for glass molding process", KOREA LUBRICATION SOCIETY CONFERENCE, 1 April 2015 (2015-04-01), pages 43 - 44, XP009529987 *

Also Published As

Publication number Publication date
KR102289255B1 (en) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2017188785A1 (en) Pressurization type method for manufacturing metal monoatomic layer, metal monoatomic layer structure, and pressurization type apparatus for manufacturing metal monoatomic layer
WO2010038963A2 (en) Apparatus for manufacturing a stratified structure
WO2011021824A2 (en) Electrostatic chuck and method for manufacturing same
WO2014104693A1 (en) Graphene, composition for preparing graphene, and method for preparing graphene using same
WO2013005897A1 (en) Method for packaging a thin film battery and apparatus for manufacturing a thin film battery package
WO2017007138A1 (en) Repeller for ion implanter, cathode, chamber wall, slit member, and ion generating device comprising same
WO2014193100A1 (en) Method of manufacturing multi-layer thin film, member including the same and electronic product including the same
WO2018135865A1 (en) Oled panel lower part protection film, and organic light-emitting display apparatus comprising same
WO2019093731A1 (en) Photocurable composition and coating layer including cured product thereof
WO2021172682A1 (en) Mold for forming glass lens and manufacturing method of same
WO2013025000A2 (en) Production method for thermochromatic glass in which use is made of a low-temperature metal-vapour-deposition process, and thermochromatic glass obtained thereby
WO2018199680A1 (en) Carbon material having coating layer comprising tac, and method for producing said carbon material
WO2020213836A1 (en) Sic edge ring
WO2019054617A1 (en) Plasma etching apparatus member having improved plasma-resistant properties and manufacturing method therefor
WO2019083261A1 (en) Deposition device
WO2018101540A1 (en) Method for manufacturing flexible transparent electrode having pattern
WO2011065776A2 (en) Tray and substrate processing apparatus using same and method for manufacturing tray
WO2020130244A1 (en) Organic light-emitting display device, and method for manufacturing organic light-emitting display device
WO2019117559A1 (en) Transition metal-dichalcogenide thin film and manufacturing method therefor
WO2015152481A1 (en) High-hardness thin film-type transparent sheet glass, manufacturing method therefor, high-hardness thin film-type transparent sheet conductive glass and touch panel including same
WO2021132924A1 (en) Encapsulation composition, encapsulation layer comprising same, and encapsulated apparatus comprising encapsulation layer
WO2024025333A1 (en) Load-lock chamber and coating process system
WO2010126274A2 (en) Cigt thin film and method for fabricating same
WO2015130140A1 (en) Atomic layer deposition apparatus and atomic layer deposition system
WO2024101562A1 (en) Polymer composite for ureteral insertion, method for preparing same, and ureteral stent using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921669

Country of ref document: EP

Kind code of ref document: A1