WO2023113069A1 - 전단파 파라미터 측정 방법 및 초음파 장치 - Google Patents

전단파 파라미터 측정 방법 및 초음파 장치 Download PDF

Info

Publication number
WO2023113069A1
WO2023113069A1 PCT/KR2021/019129 KR2021019129W WO2023113069A1 WO 2023113069 A1 WO2023113069 A1 WO 2023113069A1 KR 2021019129 W KR2021019129 W KR 2021019129W WO 2023113069 A1 WO2023113069 A1 WO 2023113069A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear wave
data
sequence
arfi
measuring
Prior art date
Application number
PCT/KR2021/019129
Other languages
English (en)
French (fr)
Inventor
윤철희
장선엽
박성배
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Publication of WO2023113069A1 publication Critical patent/WO2023113069A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules

Definitions

  • the present invention relates to a technique for providing an elastic image using a shear wave, and more particularly, to a technique for measuring a parameter of a shear wave.
  • PSWE Point Shear Wave Elastography
  • Shear wave elastography evaluates tissue stiffness non-invasively, and biopsy can be performed without tissue extraction. Shear wave elastography is used for diagnosing liver tumors and liver cirrhosis, measuring spleen stiffness for diagnosing hypertension, and diagnosing and monitoring kidney stiffness.
  • the present invention proposes a shear wave parameter measurement method and an ultrasonic device for improving the accuracy and reliability of shear wave data.
  • a method for measuring shear wave parameters includes acquiring a plurality of shear wave data by repeating a plurality of shear wave acquisition sequences, and measuring mechanical parameters of the obtained plurality of shear wave data,
  • the plurality of shear wave acquisition sequences include a first sequence and a second sequence, and the first sequence is a first acoustic radiation force impulse (ARFI, hereinafter referred to as 'ARFI') for generating a shear wave in the region of interest.
  • ARFI first acoustic radiation force impulse
  • the step of measuring the mechanical parameters of the plurality of shear wave data includes the step of measuring the particle velocity of each shear wave, the step of measuring the time delay of each shear wave, the step of measuring the velocity of each shear wave, It may include measuring the modulus of elasticity of the shear wave.
  • the shear wave parameter measurement method includes the steps of overlapping a plurality of shear wave velocity data, determining the effective value (Inlier) of each shear wave velocity data for each depth when overlapping, and handling outliers It may further include steps to do.
  • the corresponding depth may be determined as an invalid position.
  • the step of determining the valid value of each shear wave velocity data if at least one of the first shear wave velocity data and the second shear wave velocity data of the same depth is an inlier, the corresponding depth is determined as a valid position. can do.
  • the method of measuring the shear wave parameter may further include measuring a validation index using a valid position of the shear wave velocity data.
  • the shear wave parameter measurement method includes the steps of measuring the signal-to-noise ratio (SNR) of each shear wave velocity data, determining the effective value of each shear wave velocity data using the SNR of each shear wave velocity energy, and the outlier ( Outliers may be further included.
  • SNR signal-to-noise ratio
  • a method for measuring shear wave parameters includes acquiring a plurality of shear wave data by repeating a plurality of shear wave acquisition sequences, and measuring mechanical parameters of the obtained plurality of shear wave data
  • the plurality of shear wave acquisition sequences may include a first sequence and a second sequence, wherein the first sequence is a first ARFI pushing for generating a shear wave in a region of interest and a shear wave generated by the first ARFI pushing. It may include an operation of detecting in one detection line, and the second sequence includes a second ARFI pushing for generating a shear wave in the ROI and an operation of detecting the shear wave generated by the second ARFI pushing in the second detection line.
  • the first sequence is a first ARFI pushing for generating a shear wave in a region of interest and a shear wave generated by the first ARFI pushing. It may include an operation of detecting in one detection line
  • the second sequence includes a second ARFI pushing for generating a shear wave in the ROI and an operation of detecting the she
  • the shear wave parameter measurement method includes the steps of overlapping a plurality of shear wave velocity data, determining the effective value (Inlier) of each shear wave velocity data for each depth when overlapping, and handling outliers It may further include steps to do.
  • An ultrasound apparatus includes an ultrasound probe that acquires a plurality of shear wave data by repeating a plurality of shear wave acquisition sequences, and a processor that measures mechanical parameters of the shear wave data acquired through the ultrasound probe,
  • the plurality of shear wave acquisition sequences include a first sequence and a second sequence, and the first sequence includes a first ARFI pushing for generating a shear wave in the region of interest and a plurality of detections of the shear wave generated by the first ARFI pushing. line, and the second sequence includes a second ARFI pushing for generating a shear wave in the region of interest and an operation of detecting the shear wave generated by the second ARFI pushing in the plurality of detection lines.
  • the number of shear wave speed samples is the depth ( It increases for each depth, and outliers can be efficiently handled as data valid values are determined.
  • data validity can be improved by minimizing the shear wave data detection position and motion artifact variables.
  • 1 is a diagram showing the flow of a general shear wave parameter measurement method
  • FIG. 2 is a diagram showing the flow of a shear wave parameter acquisition method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a Multiple pushing + Multi-line detecting method according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing a repeated shear wave acquisition sequence (a) and a geometric structure (b) of an ultrasound device according to an embodiment of the present invention
  • FIG. 5 is a diagram showing the flow and data of the shear wave velocity measurement method according to an embodiment of the present invention.
  • FIG. 6 is a graph (c) in which a plurality of shear wave data (a, b) and shear wave velocity data obtained by Multiple pushing + Multi-line detecting method according to an embodiment of the present invention are superimposed;
  • FIG. 7 is a diagram illustrating an example of outlier handling according to an embodiment of the present invention.
  • 1 is a diagram showing the flow of a general shear wave parameter measurement method.
  • An ultrasound device continuously pushes a beam ultrasound signal (hereinafter referred to as a 'push beam') for pushing a region of interest of an object to an object through an ultrasound probe to generate shear waves.
  • a 'push beam' a beam ultrasound signal for pushing a region of interest of an object to an object through an ultrasound probe to generate shear waves.
  • the ultrasound apparatus transmits push beam pulses to a region of interest of an object using channels of an ultrasound probe.
  • the ultrasound apparatus may transmit a focused push beam to a region of interest of an object.
  • shear waves are generated by the push beam in the region of interest.
  • a shear wave may be generated around a region pushed by ARFI.
  • ARFI Acoustic Radiation Force Impulse
  • the shear wave propagates in a direction substantially orthogonal to the direction of the ARFI. Shear waves are a form of displacement.
  • the ultrasound apparatus acquires time-series data from the detection area and converts it into a tissue displacement map (120).
  • the ultrasound device measures a mechanical parameter of the shear wave that is proportional to tissue stiffness using the tissue displacement map (130).
  • the ultrasonic device measures a shear wave speed and measures a shear modulus of elasticity. Since the speed of the shear wave (eg, 1-10 m/s) is much slower than the average speed of the ultrasound signal within the object (ie, 1540 m/s), the ultrasound device is equipped with an ultrasound signal (for example, 1-10 m/s) for detecting the shear wave.
  • detection ultrasound can be used.
  • an ultrasound device may measure a mechanical parameter (eg, velocity) of a shear wave by transmitting detection ultrasound waves while the shear wave propagates.
  • FIG. 2 is a flow diagram illustrating a method for obtaining a shear wave parameter according to an embodiment of the present invention.
  • the ultrasound apparatus acquires a plurality of shear wave data by repeating a plurality of shear wave acquisition sequences (210).
  • a plurality of shear wave acquisition sequences are composed of a plurality of ARFI pushing-detection operations (push-detection) of data in a plurality of detection lines.
  • the plurality of shear wave acquisition sequences include a first sequence and a second sequence, and the first sequence includes a first ARFI pushing for generating a shear wave in a region of interest and a shear wave generated by the first ARFI pushing.
  • the second sequence includes a second ARFI pushing for generating a shear wave in the region of interest and an operation of detecting the shear wave generated by the second ARFI pushing in the plurality of detection lines. includes Since this method transmits multiple ARFIs (Multiple pushing) and detects shear wave data in multiple detection lines (Multi-line detecting), it is called Multiple pushing + Multi-line detecting method.
  • the ultrasound device measures the mechanical parameters of the obtained shear wave (220). At this time, the ultrasonic device can measure the particle velocity of the shear wave, the time delay of the shear wave, the velocity of the shear wave, and the modulus of elasticity of the shear wave.
  • the ultrasound apparatus determines an effective value (Inlier) of the shear wave data and handles an outlier (230).
  • the ultrasound apparatus may overlap a plurality of shear wave data based on the shear wave velocity, and then determine an effective value of each shear wave data for each depth when the plurality of shear wave data are overlapped. For example, if both the first shear wave velocity data and the second shear wave velocity data of the same depth are outliers, the ultrasound apparatus determines the corresponding depth as an invalid position. In contrast, if at least one of the first shear wave velocity data and the second shear wave velocity data of the same depth is an inlier, the ultrasound apparatus determines the corresponding depth as a valid position.
  • the ultrasound apparatus measures a validation index using a valid position of the shear wave data (240).
  • FIG. 3 is a diagram illustrating a multiple pushing + multi-line detecting method according to an embodiment of the present invention.
  • an ultrasound device transmits ARFI to a region of interest (ROI) evaluation area
  • shear waves are propagated and shear wave data is detected in a detection area.
  • the detection area includes a plurality of detection lines.
  • the sequence consists of 1st ARFI pushing -> detecting shear wave data in multiple detection lines -> 2nd ARFI pushing -> detecting shear wave data in multiple detection lines.
  • the multiple pushing + multi-line detecting method has no effect on beam spacing and no shearing.
  • the arrival time of the shear wave is the same according to the tracking line. Therefore, it is possible to determine the detection effectiveness of the detection area, and it is possible to improve reliability by selectively deriving a result value.
  • the single pushing + multi-line detecting method which transmits a single ARFI, is affected by beam spacing, has a high measurement variance, and has a large difference in arrival time depending on the tracking line. Therefore, correlation coefficient and shear modulus errors occur depending on the measurement depth, and shearing occurs.
  • the multiple pushing + single line detecting method which is a method of detecting shear wave data in a single detection line
  • the detection line is located in an area where detection is difficult, there is an area in which shear wave data cannot be detected.
  • the ROI is located in a measurable condition (a place least affected by heartbeat or respiration)
  • the measurement result is affected by the location of the detection region.
  • the measurement result is unstable, it is difficult to determine what factor is caused by it.
  • the multiple pushing + multi-line detecting method acquires various data by diversifying the location of the detection area, so outliers are easy and data validity can be determined, thereby improving reliability and accuracy of measurement.
  • FIG. 4 is a diagram illustrating a repeated shear wave acquisition sequence (a) and a geometric structure (b) of an ultrasound device according to an embodiment of the present invention.
  • the repeated shear wave acquisition sequence includes, for example, a first pushing sequence (first ARFI pushing (P1) -> shear wave data detection in the first detection line (T1)) and a second pushing sequence. (Second ARFI pushing (P2) -> shear wave data detection in the second detection line (T2)).
  • the ultrasonic device repeatedly performs a shear wave acquisition sequence.
  • This method has a plurality of shear wave acquisition sequences and detects shear wave data in a single detection line having different positions in each shear wave acquisition sequence, and is referred to as a multiple-sequence method.
  • the multiple-sequence method acquires shear wave speed samples using the data obtained by repeating the shear wave acquisition sequence, so the number of shear wave speed samples increases for each depth, and the effective data value According to the judgment, outliers can be efficiently handled. In addition, data validity can be improved by minimizing the shear wave data detection position and motion artifact variables.
  • FIG. 5 is a diagram showing the flow and data of a shear wave velocity measurement method according to an embodiment of the present invention.
  • the ultrasonic device obtains (510) a plurality of shear wave data by multiple pushing + multi-line detecting method and measures particle velocity of the plurality of shear waves (520).
  • auto-correlation between a plurality of shear wave data may be used.
  • the ultrasonic device measures the shear wave delay time (Lag) (530).
  • Lag shear wave delay time
  • auto-correlation between a plurality of shear wave data may be used.
  • the ultrasonic device measures the shear-wave speed (540).
  • the shear wave velocity [m/s] may be a pushing distance [m] / delay time (Lag) [sec].
  • the ultrasonic device then measures the shear wave modulus.
  • the elastic modulus [kPa] may be 3 ⁇ (shear wave velocity) [m/s2] ⁇ density [g/cc].
  • FIG. 6 is a diagram showing a graph (c) in which a plurality of shear wave data (a, b) and shear wave velocity data obtained by Multiple pushing + Multi-line detecting method are superimposed according to an embodiment of the present invention. .
  • the ultrasonic device acquires first data (a) and second data (b), and each data is first shear wave velocity data (Push 1 particle velocity data). , and the second shear wave velocity data (Push 2 particle velocity data).
  • the ultrasonic device overlaps a plurality of shear wave velocity data based on the shear wave velocity, and determines an effective value (Inlier) of each shear wave velocity data for each depth when the plurality of shear wave velocity data is overlapped. For example, if both the first shear wave velocity data and the second shear wave velocity data of the same depth are outliers, the ultrasound apparatus determines the corresponding depth as an invalid position, and determines the depth to be an invalid position, and determines the first shear wave velocity data of the same depth. If at least one of the wave velocity data and the second shear wave velocity data is an inlier, the corresponding depth is determined as a valid position.
  • the data superimposition result includes valid values (inlier) and outlier values (Outlier-sequence 1 and Outlier-sequence 2).
  • the ultrasound device may improve the accuracy and reliability of the data by complementing the valid regions of each data.
  • FIG. 7 is a diagram illustrating an example of outlier handling according to an embodiment of the present invention.
  • the ultrasound apparatus overlaps shear wave velocity data 1 (sequence 1) and shear wave velocity data 2 (sequence 2), and then determines the validity of the data for each depth.
  • Data results include valid values (inlier) and outliers (Outlier-sequence 1, Outlier-sequence 2). Overlaying multiple data can increase inliers and inliers, thereby improving data accuracy and reliability.
  • the ultrasound device excludes an outlier, which is data in which propagation of a shear wave generated by ARFI pushing is not successfully detected, from the data.
  • an outlier which is data in which propagation of a shear wave generated by ARFI pushing is not successfully detected
  • SNR signal-to-noise ratio
  • the ultrasound apparatus may measure a validation index using a valid position of the shear wave velocity data.
  • the ultrasonic device uses a ratio of an area in which an inlier used for a result is located in a measurement area as a reliability indicator.
  • the reliability index is The number of inlier depth positions/The number of total axial positions. The more valid values for each depth, the higher the accuracy and reliability of the data.
  • FIG. 7 is a diagram showing the configuration of an ultrasonic device according to an embodiment of the present invention.
  • an ultrasound device 7 includes an ultrasound probe 70 , a processor 72 and an output unit 74 .
  • the ultrasound probe 70 transmits an ultrasound signal to an object according to a driving signal applied from an ultrasound transmitter and receives an echo signal reflected from the object.
  • the ultrasonic probe 70 includes a plurality of transducers, and the plurality of transducers vibrate according to transmitted electrical signals and generate ultrasonic waves as acoustic energy.
  • the ultrasound probe 70 may be connected to the body of the ultrasound device by wire or wirelessly, and the ultrasound device may include a plurality of ultrasound probes 70 according to an implementation form.
  • the ultrasound probe 70 may induce a shear wave by pushing a plurality of ARFIs to the region of interest of the object. Subsequently, the ultrasound probe 70 may acquire a plurality of shear wave data by transmitting a plurality of detection ultrasound waves tracking shear waves to the object and receiving a response signal for each detection ultrasound wave from the object. At this time, the ultrasonic probe 70 transmits detection ultrasound to a detection area including a plurality of detection lines, receives a response signal from the detection area, and acquires shear wave data.
  • the processor 72 may signal-process the response signal received from the ultrasonic probe 70 .
  • the processor 72 generates shear wave data by processing an echo signal received from the ultrasonic probe 70 for signal processing, and includes an amplifier, an analog digital converter (ADC), a reception delay unit, and A summing unit may be included.
  • ADC analog digital converter
  • the processor 72 measures a mechanical parameter of the shear wave data based on the shear wave data received through the ultrasound probe 70 and generates an elasticity image of the object.
  • the output unit 74 displays the image processing result including the generated elasticity image on the screen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Vascular Medicine (AREA)

Abstract

전단 파 파라미터 측정 방법 및 초음파 장치가 개시된다. 일 실시 예에 따른 전단 파 파라미터 측정 방법은, 복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 단계와, 획득된 복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계를 포함하고, 복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함하고, 제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 음향 복사력 임펄스(Acoustic Radiation Force Impulse: ARFI, 이하 'ARFI'라 칭함) 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함하고, 제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 상기 복수의 검출 라인에서 검출하는 동작을 포함한다.

Description

전단파 파라미터 측정 방법 및 초음파 장치
본 발명은 전단파(shear wave)를 이용하여 탄성영상을 제공하는 기술에 관한 것으로, 보다 상세하게는 전단 파의 파라미터를 측정하는 기술에 관한 것이다.
전단 파 탄성 측정법(Point Shear Wave Elastography: PSWE)은 미리 정의 한 관심 영역(Region Of Interest: ROI) 내에서 해당 조직의 강성 값(stiffness)을 비침습적 및 비파괴적으로 측정하는 방법이다.
전단 파 탄성 측정법은 조직의 강성을 비침습적으로 평가하고, 생체 조직 검사를 조직 추출 없이 할 수 있다. 전단 파 탄성 측정법은 간 종양 및 간 경화 진단, 고혈압 진단을 위한 비장 강직도 측정, 신장 경직도 진단 및 모니터링 등에 사용된다.
본 발명은 전단 파 데이터의 정확도 및 신뢰도를 향상시키기 위한 전단 파 파라미터 측정 방법 및 초음파 장치를 제안한다.
일 실시 예에 따른 전단 파 파라미터 측정 방법은, 복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 단계와, 획득된 복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계를 포함하고, 복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함하고, 제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 음향 복사력 임펄스(Acoustic Radiation Force Impulse: ARFI, 이하 ‘ARFI’라 칭함) 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함하고, 제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 상기 복수의 검출 라인에서 검출하는 동작을 포함한다.
복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계는, 각 전단 파의 입자 속도를 측정하는 단계와, 각 전단 파의 시간 지연을 측정하는 단계와, 각 전단 파의 속도를 측정하는 단계와, 각 전단 파의 탄성 계수를 측정하는 단계를 포함할 수 있다.
전단 파 파라미터 측정 방법은, 복수의 전단 파 속도 데이터를 중첩하는 단계와, 중첩했을 때 깊이 별로 각 전단 파 속도 데이터의 유효치(Inlier)을 판단하는 단계와, 이상치(Outlier)를 처리(handling) 하는 단계를 더 포함할 수 있다.
각 전단 파 속도 데이터의 유효치를 판단하는 단계는, 동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터가 모두 이상치(outlier)이면 해당 깊이를 무효 위치(Invalid position)로 판단할 수 있다.
각 전단 파 속도 데이터의 유효치를 판단하는 단계는, 동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터 중 적어도 하나가 유효치(inlier) 이면 해당 깊이를 유효 위치(Valid position)로 판단할 수 있다.
전단 파 파라미터 측정 방법은, 전단 파 속도 데이터의 유효 위치(valid position)을 이용하여 신뢰도 지표(Validation index)를 측정하는 단계를 더 포함할 수 있다.
전단 파 파라미터 측정 방법은, 각 전단 파 속도 데이터의 신호 대 잡음비(SNR)를 측정하는 단계와, 각 전단 파 속도 에너지의 SNR을 이용하여 각 전단 파 속도 데이터의 유효치를 판단하는 단계와, 이상치(Outlier)를 처리(handling) 하는 단계를 더 포함할 수 있다.
다른 실시 예에 따른 전단 파 파라미터 측정 방법은, 복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 단계와, 획득된 복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계를 포함하고, 복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함할 수 있고, 제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 ARFI 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 제1 검출 라인에서 검출하는 동작을 포함할 수 있고, 제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 제2 검출 라인에서 검출하는 동작을 포함할 수 있다.
전단 파 파라미터 측정 방법은, 복수의 전단 파 속도 데이터를 중첩하는 단계와, 중첩했을 때 깊이 별로 각 전단 파 속도 데이터의 유효치(Inlier)을 판단하는 단계와, 이상치(Outlier)를 처리(handling) 하는 단계를 더 포함할 수 있다.
다른 실시 예에 따른 초음파 장치는, 복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 초음파 프로브와, 초음파 프로브를 통해 획득된 전단 파 데이터의 기계적 파라미터를 측정하는 프로세서를 포함하며, 복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함하고, 제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 ARFI 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함하고, 제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 상기 복수의 검출 라인에서 검출하는 동작을 포함할 수 있다.
일 실시 예에 따른 전단 파 파라미터 측정 방법 및 초음파 장치에 따르면, 전단 파 획득 시퀀스 반복에 따라 획득되는 데이터를 이용하여 전단 파 속도 샘플(shear wave speed sample)을 획득하므로, 전단 파 속도 샘플 수가 깊이(depth) 별로 증가하고, 데이터 유효치를 판단함에 따라 이상치(Outlier)를 효율적으로 처리(handling)할 수 있다. 또한, 전단 파 데이터 검출 위치 및 motion artifact 변수를 최소화함에 따라 데이터 유효성을 향상시킬 수 있다.
도 1은 일반적인 전단 파 파라미터 측정 방법의 흐름을 도시한 도면,
도 2는 본 발명의 일 실시 예에 따른 전단 파 파라미터 획득 방법의 흐름을 도시한 도면,
도 3은 본 발명의 일 실시 예에 따른 Multiple pushing + Multi-line detecting 방식을 도식화한 도면,
도 4는 본 발명의 일 실시 예에 따른 반복되는 전단 파 획득 시퀀스(a)와 초음파 장치의 기하학적 구조(b)를 도시한 도면,
도 5는 본 발명의 일 실시 예에 따른 전단 파 속도 측정 방법의 흐름 및 데이터를 도시한 도면,
도 6은 본 발명의 일 실시 예에 따른 Multiple pushing + Multi-line detecting 방식에 의해 획득되는 복수의 전단 파 데이터(a, b) 및 전단 파 속도 데이터를 중첩한 그래프(c)를 도시한 도면,
도 7은 본 발명의 일 실시 예에 따른 이상치 처리(Outlier handling) 예를 도시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이며, 후술되는 용어들은 본 발명의 실시 예에서의 기능을 반영하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다. 그러나 다음에 예시하는 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시 예에 한정되는 것은 아니다. 본 발명의 실시 예는 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공된다.
도 1은 일반적인 전단 파 파라미터 측정 방법의 흐름을 도시한 도면이다.
초음파 장치는 초음파 프로브(Ultrasound probe)를 통해 대상체의 관심 영역을 푸싱하기 위한 빔 초음파 신호(이하, ‘푸시 빔’라 함)를 대상체에 연속으로 송신(Successive pushes)하여 전단 파(shear wave)를 생성한다(110).
초음파 장치는 푸시 빔 펄스를 초음파 프로브의 채널들을 이용하여 대상체의 관심 영역에 송신한다. 초음파 장치는 집속된(focused) 푸시 빔을 대상체의 관심 영역으로 송신할 수 있다. 이 경우, 관심 영역에서 푸시 빔에 의해 전단 파가 생성된다. 예를 들어, ARFI에 의해 푸시된 영역을 중심으로 전단 파가 생성될 수 있다. 푸시 빔의 펄스에 의해 전단 파가 직접 생성되면, 푸시 빔을 음향 복사력 임펄스(Acoustic Radiation Force Impulse: ARFI, 이하 ‘ARFI’라 칭함)라 한다. 전단 파는 ARFI의 방향과 실질적으로 직교하는 방향으로 전파된다. 전단 파는 변위(displacement)의 한 형태이다.
이어서, 초음파 장치는 검출 영역에서 시계열 데이터(Time-series data)를 획득하여 이를 조직 변위 맵(tissue displacement map)으로 변환한다(120).
이어서, 초음파 장치는 조직 변위 맵을 이용하여 조직의 강성에 비례하는 전단 파의 기계적 파라미터를 측정한다(130). 예를 들어, 초음파 장치는 전단 파의 속도(Shear wave speed)를 측정하고, 전단 파의 탄성 계수(Shear modulus)를 측정한다. 전단 파의 속도(예를 들어, 1-10 m/s)는 대상체 내에서 초음파 신호의 평균 속도(즉, 1540 m/s) 보다 매우 느리기 때문에, 초음파 장치는 전단 파를 검출하기 위한 초음파 신호(이하, 검출 초음파)를 이용할 수 있다. 예를 들어, 초음파 장치는 전단 파가 전파되는 동안 검출 초음파를 송신함으로써 전단 파의 기계적 파라미터(예를 들어, 속도)를 측정할 수 있다.
도 2는 본 발명의 일 실시 예에 따른 전단 파 파라미터 획득 방법의 흐름을 도시한 도면이다.
도 2를 참조하면, 초음파 장치는 복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득한다(210). 복수의 전단 파 획득 시퀀스는 복수의 ARFI 푸싱-복수의 검출 라인에서 데이터를 검출하는 동작(push-detection)으로 구성된다. 예를 들어, 복수의 전단 파 획득 시퀀스는 제1 시퀀스와 제2 시퀀스를 포함하며, 제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 ARFI 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함하고, 제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함한다. 해당 방식은 복수의 ARFI(Multiple pushing)을 전송하고, 복수의 검출 라인(Multi-line)에서 전단 파 데이터를 검출(Multi-line detecting) 하는 방식이므로, Multiple pushing + Multi-line detecting 방식이라 칭한다.
이어서, 초음파 장치는 획득된 전단 파의 기계적 파라미터를 측정한다(220). 이때, 초음파 장치는 전단 파의 Particle velocity, 전단 파의 시간 지연, 전단 파의 속도, 전단 파의 탄성 계수를 측정할 수 있다.
이어서, 초음파 장치는 전단 파 데이터의 유효치(Inlier)을 판단하여, 이상치(Outlier)를 처리(handling) 한다(230). 이때, 초음파 장치는 전단 파 속도를 기준으로 복수의 전단 파 데이터를 중첩한 후, 중첩했을 때 깊이 별로 각 전단 파 데이터의 유효치를 판단할 수 있다. 예를 들어, 초음파 장치는 동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터가 모두 이상치(outlier)이면, 해당 깊이를 무효 위치(Invalid position)로 판단한다. 이에 비해, 초음파 장치는 동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터 중 적어도 하나가 유효치(inlier) 이면, 해당 깊이를 유효 위치(Valid position)로 판단한다.
이어서, 초음파 장치는 전단 파 데이터의 유효 위치(valid position)을 이용하여 신뢰도 지표(Validation index)를 측정한다(240).
도 3은 본 발명의 일 실시 예에 따른 Multiple pushing + Multi-line detecting 방식을 도식화한 도면이다.
도 3을 참조하면, 초음파 장치가 ARFI를 관심 영역인 관심 영역(ROI)?평가영역(evaluation area)에 전송하면, 전단 파가 전파되고, 검출 영역에서 전단 파 데이터를 검출한다. 이때, ARFI는 복수 개이고, 검출 영역은 복수의 검출 라인을 포함한다. 시퀀스는 제1 ARFI 푸싱-> 복수의 검출 라인에서 전단 파 데이터 검출 -> 제2 ARFI 푸싱 -> 복수의 검출 라인에서 전단 파 데이터 검출로 구성된다. Multiple pushing + Multi-line detecting 방식은 빔 스페이싱(Beam spacing) 영향이 없고, 시어링(Shearing) 현상이 없다. 검출 라인(Tracking line)에 따라 전단 파의 도착 시간이 동일하다. 따라서, 검출 영역의 검출 유효성을 판별 가능하고, 선택적으로 결과 값을 도출하여 신뢰도를 향상할 수 있다.
이에 비해, 단일의 ARFI를 전송하는 방식인 Single pushing + Multi-line detecting 방식은 Beam spacing에 영향을 받으며, 측정 variance가 높고, Tracking line에 따라 도착 시간의 차이가 크다. 따라서, 측정 깊이에 따라 correlation coefficient, shear modulus 오류가 발생하며, Shearing 현상이 나타난다.
또한, 단일의 검출 라인에서 전단 파 데이터를 검출하는 방식인 Multiple pushing + Single line detecting 방식은 검출이 어려운 영역에 검출 라인에 위치할 때, 전단 파 데이터 검출이 불가한 영역이 존재한다. 예를 들어, ROI가 측정 가능 조건(심장 박동, 호흡의 영향을 가장 덜 받는 곳)에 위치하더라도, 검출 영역의 위치에 따라 측정 결과가 영향을 받는다. 측정 결과가 불안정 할 때, 어떤 요인에 의한 것인지 파악하기 힘들다.
이에 비해, Multiple pushing + Multi-line detecting 방식은 검출 영역 위치를 다양화하여 여러 데이터를 획득함에 따라, 이상치(Outlier)이 용이하며 데이터 유효성을 판별할 수 있어서 측정의 신뢰도 및 정확도가 향상된다.
도 4는 본 발명의 일 실시 예에 따른 반복되는 전단 파 획득 시퀀스(a)와 초음파 장치의 기하학적 구조(b)를 도시한 도면이다.
도 4를 참조하면, 반복되는 전단 파 획득 시퀀스는 예를 들어, 제1 푸싱 시퀀스(제1 ARFI 푸싱(P1)-> 제1 검출 라인(T1)에서 전단 파 데이터 검출)와, 제2 푸싱 시퀀스(제2 ARFI 푸싱(P2) -> 제2 검출 라인(T2)에서 전단 파 데이터 검출)을 포함한다. 초음파 장치는 전단 파 획득 시퀀스를 반복적으로 수행한다. 바람직하게는 반복되는 전단 파 획득 시퀀스가 3개 이상일 수 있다. 해당 방식은 전단 파 획득 시퀀스가 복수 개이고, 각 전단 파 획득 시퀀스에서 위치가 서로 상이한 단일의 검출 라인에서 전단 파 데이터를 검출하는 방식이며, 이를 Multiple-Sequence 방식이라 칭한다. Multiple-Sequence 방식은 전단 파 획득 시퀀스의 반복에 따라, 획득되는 데이터를 이용하여 전단 파 속도 샘플(shear wave speed sample)을 획득하므로, 전단 파 속도 샘플 수가 깊이(depth) 별로 증가하고, 데이터 유효치를 판단함에 따라 이상치(Outlier)를 효율적으로 처리(handling)할 수 있다. 또한, 전단 파 데이터 검출 위치 및 motion artifact 변수를 최소화함에 따라 데이터 유효성을 향상시킬 수 있다.
도 5는 본 발명의 일 실시 예에 따른 전단 파 속도 측정 방법의 흐름 및 데이터를 도시한 도면이다.
도 5를 참조하면, 초음파 장치는 Multiple pushing + Multi-line detecting 방식에 의해 복수의 전단 파 데이터를 획득(510) 하고, 복수의 전단 파의 입자 속도(particle velocity)를 측정한다(520). 이때, 복수의 전단 파 데이터 간의 자기상관(auto-correlation)을 이용할 수 있다.
이어서, 초음파 장치는 전단 파 지연시간(Lag)를 측정한다(530). 이때, 복수의 전단 파 데이터 간의 자기상관(auto-correlation)을 이용할 수 있다.
이어서, 초음파 장치는 전단 파 속도(Shear-wave speed)를 측정한다(540). 전단 파 속도[m/s]는, 푸싱 거리(Pushing distance)[m] / 지연시간(Lag)[sec]일 수 있다.
이어서, 초음파 장치는 전단 파 탄성 계수(modulus)를 측정한다. 이때, 탄성 계수[kPa]는 3 × (전단 파 속도)[m/s2] × 밀도(density)[g/cc]일 수 있다.
도 5의 (a), (b)는 Multiple pushing + Multi-line detecting 방식에 의해 획득되는 전단 파 데이터들의 입자 속도(Push 1 particle velocity, Push 2 particle velocity), (c)는 전단 파 지연시간, (d)는 전단 파 속도, (e)는 전단 파 탄성계수를 도시한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 Multiple pushing + Multi-line detecting 방식에 의해 획득되는 복수의 전단 파 데이터(a, b) 및 전단 파 속도 데이터를 중첩한 그래프(c)를 도시한 도면이다.
도 6을 참조하면, 초음파 장치는 제1 데이터(First data)(a)와 제2 데이터(Second data)(b)를 획득하며, 각 데이터는 제1 전단 파 속도 데이터(Push 1 particle velocity data), 제2 전단 파 속도 데이터(Push 2 particle velocity data)를 포함한다.
초음파 장치는 전단 파 속도를 기준으로 복수의 전단 파 속도 데이터를 중첩하고, 중첩했을 때 깊이 별로 각 전단 파 속도 데이터의 유효치(Inlier)을 판단한다. 예를 들어, 초음파 장치는 동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터가 모두 이상치(outlier)이면, 해당 깊이를 무효 위치(Invalid position)로 판단하고, 동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터 중 적어도 하나가 유효치(inlier) 이면, 해당 깊이를 유효 위치(Valid position)로 판단한다.
도 6(c)를 참조하면, 데이터 중첩 결과는 유효치(inlier), 이상치(Outlier-sequence 1, Outlier-sequence 2)를 포함한다. 초음파 장치는 각 데이터의 유효 영역을 서로 보완해서 데이터의 정확도 및 신뢰도를 향상시킬 수 있다.
도 7은 본 발명의 일 실시 예에 따른 이상치 처리(Outlier handling) 예를 도시한 도면이다.
도 7을 참조하면, 초음파 장치는 전단 파 속도 데이터 1(sequence 1)과 전단 파 속도 데이터 2(sequence 2)를 중첩한 후, 깊이(depth) 별로 데이터의 유효성을 판단한다. 데이터 결과에는 유효치(inlier), 이상치(Outlier-sequence 1, Outlier-sequence 2)가 포함된다. 여러 데이터를 중첩하면, 유효치(inlier)와 유효 영역을 증가시킬 수 있으므로 데이터의 정확도 및 신뢰도가 향상된다.
다른 예로, 초음파 장치는 ARFI 푸싱에 의해 발생한 전단 파의 전파가 성공적으로 검출되지 않는 데이터인 이상치를 데이터에서 제외한다. 이를 위해, 전단 파 입자 속도를 측정한 후, 전단 파 속도 데이터의 신호 대 잡음비(signal-to-noise ratio: SNR, 이하 ‘SNR’이라 칭함)을 계산한다. 이때, 일정 이하 값의 전단 파 SNR은 유효하지 않다고 판단하여, 이상치(Outlier)로 처리한다.
초음파 장치는 전단 파 속도 데이터의 유효 위치(valid position)을 이용하여 신뢰도 지표(Validation index)를 측정할 수 있다. 초음파 장치는 측정 영역에서 결과에 사용된 유효치(inlier)가 있는 영역의 비율을 신뢰도 지표로 사용한다. 예를 들어, 신뢰도 지표는, 유효치 깊이 위치의 총 수(The number of inlier depth position) / 전체 축 위치의 총 수(The number of total axial position)이다. 깊이 별 유효치가 많을수록 데이터의 정확도 및 신뢰도가 높다.
도 7은 본 발명의 일 실시 예에 따른 초음파 장치의 구성을 도시한 도면이다.
도 7을 참조하면, 초음파 장치(7)는 초음파 프로브(70), 프로세서(72) 및 출력부(74)를 포함한다.
초음파 프로브(70)는 초음파 송신부로부터 인가된 구동 신호(driving signal)에 따라 대상체로 초음파 신호를 송출하고, 대상체로부터 반사된 에코신호를 수신한다. 초음파 프로브(70)는 복수의 트랜스듀서를 포함하며, 복수의 트랜스듀서는 전달되는 전기적 신호에 따라 진동하며 음향 에너지인 초음파를 발생시킨다. 또한, 초음파 프로브(70)는 초음파 장치의 본체와 유선 또는 무선으로 연결될 수 있으며, 초음파 장치는 구현 형태에 따라 복수 개의 초음파 프로브(70)를 구비할 수 있다.
초음파 프로브(70)는, 대상체의 관심 영역에 복수의 ARFI를 푸싱하여 전단 파를 유도할 수 있다. 이어서, 초음파 프로브(70)는 전단 파를 추적하는 복수의 검출 초음파를 대상체로 송신하고, 각 검출 초음파에 대한 응답신호를 대상체로부터 수신하여 복수의 전단 파 데이터를 획득할 수 있다. 이때, 초음파 프로브(70)는 복수의 검출 라인을 포함하는 검출 영역에 검출 초음파를 송신하고, 검출 영역에서 응답신호를 수신하여 전단 파 데이터를 획득한다.
프로세서(72)는 초음파 프로브(70)로부터 수신된 응답신호를 신호처리 할 수 있다. 예를 들어, 프로세서(72)는 신호 처리를 위해 초음파 프로브(70)로부터 수신되는 에코신호를 처리하여 전단 파 데이터를 생성하며, 증폭기, 아날로그 디지털 컨버터(Analog Digital converter: ADC), 수신 지연부 및 합산부를 포함할 수 있다.
일 실시 예에 따른 프로세서(72)는 초음파 프로브(70)를 통해 수신된 전단 파 데이터에 기초하여 전단 파 데이터의 기계적 파라미터를 측정하며, 대상체의 탄성 영상을 생성한다.
출력부(74)는 생성된 탄성 영상을 포함한 영상 처리결과를 화면에 표시한다.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 반영되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 발명청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 초음파 장치를 이용한 전단 파 파라미터 측정 방법에 있어서, 초음파 장치가
    복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 단계; 및
    획득된 복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계; 를 포함하고,
    복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함하고,
    제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 음향 복사력 임펄스(Acoustic Radiation Force Impulse: ARFI, 이하 ‘ARFI’라 칭함) 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함하고,
    제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 상기 복수의 검출 라인에서 검출하는 동작을 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  2. 제 1 항에 있어서, 복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계는
    각 전단 파의 입자 속도를 측정하는 단계;
    각 전단 파의 시간 지연을 측정하는 단계;
    각 전단 파의 속도를 측정하는 단계; 및
    각 전단 파의 탄성 계수를 측정하는 단계;
    를 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  3. 제 1 항에 있어서, 전단 파 파라미터 측정 방법은
    복수의 전단 파 속도 데이터를 중첩하는 단계;
    중첩했을 때 깊이 별로 각 전단 파 속도 데이터의 유효치(Inlier)을 판단하는 단계: 및
    이상치(Outlier)를 처리(handling) 하는 단계;
    를 더 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  4. 제 3 항에 있어서, 각 전단 파 속도 데이터의 유효치를 판단하는 단계는
    동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터가 모두 이상치(outlier)이면 해당 깊이를 무효 위치(Invalid position)로 판단하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  5. 제 3 항에 있어서, 각 전단 파 속도 데이터의 유효치를 판단하는 단계는
    동일한 깊이의 제1 전단 파 속도 데이터와 제2 전단 파 속도 데이터 중 적어도 하나가 유효치(inlier) 이면 해당 깊이를 유효 위치(Valid position)로 판단하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  6. 제 5 항에 있어서, 전단 파 파라미터 측정 방법은
    전단 파 속도 데이터의 유효 위치(valid position)을 이용하여 신뢰도 지표(Validation index)를 측정하는 단계;
    를 더 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  7. 제 1 항에 있어서, 전단 파 파라미터 측정 방법은
    각 전단 파 속도 데이터의 신호 대 잡음비(SNR)를 측정하는 단계;
    각 전단 파 속도 데이터의 SNR을 이용하여 각 전단 파 속도 데이터의 유효치를 판단하는 단계; 및
    이상치(Outlier)를 처리(handling) 하는 단계;
    를 더 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  8. 초음파 장치를 이용한 전단 파 파라미터 측정 방법에 있어서, 초음파 장치가
    복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 단계; 및
    획득된 복수의 전단 파 데이터의 기계적 파라미터를 측정하는 단계; 를 포함하고,
    복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함하고,
    제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 ARFI 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 제1 검출 라인에서 검출하는 동작을 포함하고,
    제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 제2 검출 라인에서 검출하는 동작을 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  9. 제 8 항에 있어서, 전단 파 파라미터 측정 방법은
    복수의 전단 파 속도 데이터를 중첩하는 단계;
    중첩했을 때 깊이 별로 각 전단 파 속도 데이터의 유효치(Inlier)을 판단하는 단계: 및
    이상치(Outlier)를 처리(handling) 하는 단계;
    를 더 포함하는 것을 특징으로 하는 전단 파 파라미터 측정 방법.
  10. 복수의 전단 파 획득 시퀀스를 반복하여 복수의 전단 파 데이터를 획득하는 초음파 프로브; 및
    초음파 프로브를 통해 획득된 전단 파 데이터의 기계적 파라미터를 측정하는 프로세서; 를 포함하며,
    복수의 전단 파 획득 시퀀스는 제1 시퀀스 및 제2 시퀀스를 포함하고,
    제1 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제1 ARFI 푸싱 및 제1 ARFI 푸싱에 의해 생성된 전단 파를 복수의 검출 라인에서 검출하는 동작을 포함하고,
    제2 시퀀스는 관심 영역에 전단 파를 생성하기 위한 제2 ARFI 푸싱 및 제2 ARFI 푸싱에 의해 생성된 전단 파를 상기 복수의 검출 라인에서 검출하는 동작을 포함하는 것을 특징으로 하는 초음파 장치.
PCT/KR2021/019129 2021-12-13 2021-12-15 전단파 파라미터 측정 방법 및 초음파 장치 WO2023113069A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210178118A KR20230089632A (ko) 2021-12-13 2021-12-13 전단 파 파라미터 측정 방법 및 초음파 장치
KR10-2021-0178118 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023113069A1 true WO2023113069A1 (ko) 2023-06-22

Family

ID=86774551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019129 WO2023113069A1 (ko) 2021-12-13 2021-12-15 전단파 파라미터 측정 방법 및 초음파 장치

Country Status (2)

Country Link
KR (2) KR20230089632A (ko)
WO (1) WO2023113069A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468421B2 (en) * 2012-02-16 2016-10-18 Siemens Medical Solutions Usa, Inc. Visualization of associated information in ultrasound shear wave imaging
JP2017533031A (ja) * 2014-10-29 2017-11-09 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ 超音波トランスデューサの連続振動による超音波エラストグラフィのための方法
KR101874101B1 (ko) * 2013-08-12 2018-07-03 삼성전자주식회사 탄성 영상을 생성하는 방법 및 초음파 진단 장치
JP6741012B2 (ja) * 2015-10-08 2020-08-19 コニカミノルタ株式会社 超音波診断装置、及び超音波信号処理方法
KR102187153B1 (ko) * 2017-01-23 2020-12-04 지멘스 메디컬 솔루션즈 유에스에이, 인크. 코히어런스를 사용하는 전단 속력 이미징

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468421B2 (en) * 2012-02-16 2016-10-18 Siemens Medical Solutions Usa, Inc. Visualization of associated information in ultrasound shear wave imaging
KR101874101B1 (ko) * 2013-08-12 2018-07-03 삼성전자주식회사 탄성 영상을 생성하는 방법 및 초음파 진단 장치
JP2017533031A (ja) * 2014-10-29 2017-11-09 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ 超音波トランスデューサの連続振動による超音波エラストグラフィのための方法
JP6741012B2 (ja) * 2015-10-08 2020-08-19 コニカミノルタ株式会社 超音波診断装置、及び超音波信号処理方法
KR102187153B1 (ko) * 2017-01-23 2020-12-04 지멘스 메디컬 솔루션즈 유에스에이, 인크. 코히어런스를 사용하는 전단 속력 이미징

Also Published As

Publication number Publication date
KR20230089632A (ko) 2023-06-21
KR20230169902A (ko) 2023-12-18

Similar Documents

Publication Publication Date Title
WO2018199346A1 (ko) 평면파 합성을 이용한 초음파 벡터 도플러 영상의 생성 장치 및 방법
WO2019143123A1 (en) Ultrasound imaging apparatus and method of controlling the same
US8164976B2 (en) Acoustic system quality assurance and testing
CN110687208A (zh) 一种基于双曲线定位的无基准Lamb波损伤监测方法
CN110301939A (zh) 组织成像和参数检测系统
US6164135A (en) Method and device for the structure analysis and/or for detecting the position of layered objects
US8169853B2 (en) Acoustic system quality assurance and testing
US20060025690A1 (en) Acoustic body examination
EP1156345A3 (en) Method of generating image data and ultrasonic diagnostic apparatus using the same
WO2013002480A1 (ko) 초음파 영상의 벡터 보간 장치 및 방법
WO2017069451A1 (en) Ultrasound imaging apparatus and controlling method for the same
JPS6111659A (ja) 超音波検査装置
WO2023113069A1 (ko) 전단파 파라미터 측정 방법 및 초음파 장치
EP1557126A1 (en) Bone strength measuring instrument
JP2003230560A (ja) 超音波画像診断装置
WO2017171210A1 (ko) 새로운 평면파 합성을 이용한 초음파 도플러 영상 장치 및 그 제어 방법
JP6381979B2 (ja) 超音波診断装置及び制御プログラム
WO2013122275A1 (ko) 가중치 보간 방법 및 이를 이용한 초음파 진단장치
JP4500391B2 (ja) 超音波探傷画像表示方法及び超音波探傷画像表示装置
WO2014208802A1 (ko) 다수의 어레이가 병렬구조로 연결된 초음파 프로브 및 이를 구비한 초음파 영상 진단장치
JP2600253B2 (ja) 超音波診断装置
CN118354723A (zh) 剪切波参数测量方法及超声波装置
WO2017183891A1 (ko) 조직 감쇄 값의 로컬 측정에 기반한 빔집속 방법
JP2001249119A (ja) 超音波探傷画像表示方法及び超音波探傷画像表示装置
JPH0556975A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021968278

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021968278

Country of ref document: EP

Effective date: 20240628