WO2023112996A1 - 変性水添ブロック共重合体及び樹脂組成物 - Google Patents

変性水添ブロック共重合体及び樹脂組成物 Download PDF

Info

Publication number
WO2023112996A1
WO2023112996A1 PCT/JP2022/046282 JP2022046282W WO2023112996A1 WO 2023112996 A1 WO2023112996 A1 WO 2023112996A1 JP 2022046282 W JP2022046282 W JP 2022046282W WO 2023112996 A1 WO2023112996 A1 WO 2023112996A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer block
hydrogenated product
modified hydrogenated
resin composition
mass
Prior art date
Application number
PCT/JP2022/046282
Other languages
English (en)
French (fr)
Inventor
真裕 加藤
泰史 千田
遼 佐谷
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023555587A priority Critical patent/JP7430848B2/ja
Publication of WO2023112996A1 publication Critical patent/WO2023112996A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a modified hydrogenated block copolymer and a resin composition, and more particularly to a modified hydrogenated block copolymer and a resin composition containing the modified hydrogenated block copolymer.
  • a block copolymer having a polymer block containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound or a hydrogenated product thereof is modified to increase reactivity.
  • a modified product into which a functional group is introduced can be used as a compatibilizing agent for compatibilizing a polar resin and a non-polar resin.
  • a resin composition in which a polyolefin resin, a polyamide resin, and a compatibilizer are blended uses a modified olefin-based elastomer or a styrene-based elastomer as the compatibilizer.
  • Patent Literatures 1, 2, and 4 describe that the styrene-based elastomer includes a block copolymer of an aromatic vinyl compound and a conjugated diene compound and a hydrogenated product thereof.
  • Patent Document 5 describes a blow molding composition containing a mixture of a polyamide resin and a polyolefin resin containing a modified polyolefin, and the polyolefin resin may contain a polyolefin resin and a modified polyolefin. is described.
  • polar resins and non-polar resins are made more compatible and the properties of the resulting resin compositions are improved so as to be suitable for various uses.
  • modified block copolymers or their hydrogenates as compatibilizers that can be improved.
  • packaging containers are often made of polyolefin resins or laminates of polyolefin resins and polar resins in order to improve barrier properties and strength.
  • Such packaging containers are desired to be recycled from the viewpoint of aiming for a recycling-oriented society by reducing the amount of waste after use and by reducing the amount of fossil resources used and making effective use of them.
  • the actual situation is that there is still room for investigation from the viewpoint of various physical properties of a resin composition containing a polyolefin resin and a polar resin.
  • the present invention provides a modified hydrogenated block copolymer that can obtain a resin composition having an excellent balance of mechanical properties such as tensile strength, tensile breaking strain, and impact resistance by adding
  • the task is to provide Another object of the present invention is to provide the above-mentioned resin composition excellent in the above-mentioned balance of mechanical properties.
  • the present inventors have found a modified hydrogenated product of a specific block copolymer comprising a polymer block containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound
  • a specific block copolymer comprising a polymer block containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound
  • the present invention relates to the following [1] to [17].
  • the conjugated diene compound contains isoprene and a conjugated diene compound other than isoprene,
  • the vinyl bond content of the polymer block (A-2) is 30 mol% or less, having one or more functional groups selected from an alkoxysilyl group, a carboxyl group, an amino group, a hydroxy group, an epoxy group, and an acid anhydride-derived group; Based on JIS K7244-10: 2005, the peak top strength of the loss tangent (tan ⁇ ) measured under the conditions of a strain amount of 0.1%, a frequency of 1 Hz, a measurement temperature of -70 to +120 ° C., and a heating rate of 3 ° C
  • MFR melt flow rate
  • the block copolymer further has a polymer block (A-3) containing structural units derived from isoprene,
  • a polymer block (A-3) containing structural units derived from isoprene When the bond form of the block copolymer is represented by A for polymer block (A-1), B for polymer block (A-2), and C for polymer block (A-3), A The modified hydrogenated product (A) according to any one of the above [1] to [5], which is a tetrablock copolymer represented by -BAC.
  • A The modified hydrogenated product (A) according to [6] or [7] above, wherein the polymer block (A-3) has a vinyl bond content of 2 to 90 mol%.
  • the polyolefin resin (B) is polypropylene, polyethylene, polymethylpentene, ethylene vinyl acetate copolymer, ⁇ -olefin homopolymer or copolymer, and propylene and/or ethylene and ⁇ -olefin.
  • the resin composition according to [12] above which is at least one resin selected from the group consisting of copolymers of [14]
  • the polar resin (C) is at least one resin selected from the group consisting of polyamide-based resins, polyvinyl alcohol-based resins, polyester-based resins, polyphenylene ether-based resins, polyphenylene sulfide-based resins, and polycarbonate-based resins.
  • a modified product of a hydrogenated block copolymer capable of obtaining a resin composition having an excellent balance of mechanical properties such as tensile strength, tensile breaking strain, impact resistance, etc.
  • a resin composition containing the modified product can be provided.
  • FIG. 1 is a transmission electron microscope (TEM) photograph for observing the morphology of Resin Composition 1 of Example 2-1.
  • FIG. 2 is a transmission electron microscope (TEM) photograph for observing the morphology of resin composition 3 of Example 2-3.
  • FIG. 3 is a transmission electron microscope (TEM) photograph for observing the morphology of Resin Composition 4 of Examples 2-4.
  • FIG. 4 is a diagram for explaining flame retardancy evaluation.
  • Embodiments of the present invention will be described below.
  • the present invention also includes aspects in which the items described in this specification are arbitrarily selected or arbitrarily combined.
  • the definition of being preferred can be arbitrarily selected, and it can be said that the combination of the definitions of being preferred is more preferred.
  • the description "XX to YY” means "XX or more and YY or less”.
  • the lower and upper limits described stepwise can be independently combined.
  • the modified hydrogenated product (A) is a polymer block (A-1) containing a structural unit derived from an aromatic vinyl compound and a polymer containing a structural unit derived from a conjugated diene compound.
  • the conjugated diene compound contains isoprene and a conjugated diene compound other than isoprene
  • the vinyl bond content of the polymer block (A-2) is 30 mol% or less, having one or more functional groups selected from an alkoxysilyl group, a carboxyl group, an amino group, a hydroxy group, an epoxy group, and an acid anhydride-derived group;
  • the peak top strength of the loss tangent (tan ⁇ ) measured under the conditions of a strain amount of 0.1%, a frequency of 1 Hz, a measurement temperature of -70 to +120 ° C., and a heating rate of 3 ° C./min. is 0.95 or less
  • the melt flow rate (MFR) measured at a temperature of 230° C. and a load of 21 N is 0.5 g/10 min or more.
  • group derived from an acid anhydride means a group having a structure obtained by dehydration condensation of two carboxylic acid groups possessed by an acid anhydride.
  • anhydride is maleic anhydride, it is, for example, a group having the structure shown below.
  • the block copolymer may be indicated by the code (A0), and the hydrogenated product of the block copolymer (A0) may be indicated by the code (A1). Moreover, the hydrogenated product of the block copolymer (A0) may be referred to as "hydrogenated block copolymer (A1)".
  • the modified hydrogenated product (A) is a modified product of the hydrogenated product (A1) of the block copolymer (A0) or a hydrogenated product of the modified block copolymer (A0).
  • the block copolymer (A0) as a raw material of the modified hydrogenated product (A)
  • mechanical properties such as impact resistance can be imparted to the resin composition described later.
  • the vinyl bond content of the polymer block (A-2) (that is, the content of 3,4-bond units and 1,2-bond units in the polymer block (A-2)) is 30 mol% or less. Thereby, mechanical properties such as tensile strength and tensile strain at break can be enhanced.
  • the properties of the modified hydrogenated product (A), such as flexibility and impact resistance, are likely to be exhibited in the resin composition described later.
  • a predetermined functional group is introduced by modification, compatibility in the resin composition described later can be enhanced, and high adhesiveness to metals and other various materials can be obtained.
  • the constituent components of the block copolymer (A0) or its hydrogenated product (A1), their usage ratio, characteristics, etc. for obtaining the modified hydrogenated product (A) will be described. Although these are substances before modification, the polymer block (A-1) and polymer block (A-2) of the block copolymer (A0) and the hydrogenated block copolymer (A1) are modified. It also has a hydrogenated product (A), and even if it is modified, there is no change in their main skeleton. Therefore, the following descriptions of the polymer block (A-1) and the polymer block (A-2) also apply to the modified hydrogenated product (A).
  • the block copolymer (A0) comprises a polymer block (A-1) containing a structural unit derived from an aromatic vinyl compound and a polymer block (A-2) containing a structural unit derived from a conjugated diene compound. and
  • the polymer block (A-1) and polymer block (A-2) are described below.
  • the polymer block (A-1) constituting the block copolymer (A0) has a structural unit derived from an aromatic vinyl compound used as a monomer from the viewpoint of mechanical properties such as heat resistance and impact resistance. is preferred.
  • the polymer block (A-1) contains 70 mol of a structural unit derived from an aromatic vinyl compound (hereinafter sometimes abbreviated as "aromatic vinyl compound unit") in the polymer block (A-1). %, more preferably 80 mol% or more, still more preferably 90 mol% or more, still more preferably 95 mol% or more from the viewpoint of mechanical properties such as impact resistance, and substantially 100 mol % is particularly preferred.
  • the content of the aromatic vinyl compound units in the polymer block (A-1) is preferably more than 70 mol % and 100 mol % or less.
  • aromatic vinyl compound examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p- Methylstyrene, 2,4,6-trimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2 ,4-dimethylstyrene
  • aromatic vinyl compounds may be used individually by 1 type, and may be used 2 or more types. Among them, styrene, ⁇ -methylstyrene, p-methylstyrene, and mixtures thereof are preferred, and styrene is more preferred, from the viewpoint of production cost and physical property balance.
  • the polymer block (A-1) is a structural unit derived from an unsaturated monomer other than the aromatic vinyl compound (hereinafter referred to as "other unsaturated monomer may be abbreviated as "unit"), preferably 30 mol% or less, more preferably less than 20 mol%, still more preferably less than 15 mol% in the polymer block (A-1), Even more preferably less than 10 mol %, even more preferably less than 5 mol %, particularly preferably 0 mol %.
  • the content of other unsaturated monomer units in polymer block (A-1) is preferably 0 to 30 mol %.
  • Examples of other unsaturated monomers include butadiene, isoprene, ⁇ -farnesene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methyl vinyl ether, ⁇ - At least one selected from the group consisting of pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran and the like.
  • the bonding form is not particularly limited, and may be random or tapered.
  • the block copolymer (A0) may have at least one polymer block (A-1).
  • the polymer blocks (A-1) may be the same or different.
  • “polymer blocks are different” means the monomer units constituting the polymer blocks, the weight average molecular weight, the stereoregularity, and the ratio and covalentity of each monomer unit when there are multiple monomer units. It means that at least one of the polymerization modes (random, tapered, block) is different.
  • the block copolymer (A0) preferably has two polymer blocks (A-1).
  • the weight average molecular weight (Mw) of the polymer block (A-1) is preferably 2,000 to 60,000, more preferably 3,000 to 50,000, and further preferably 3,000 to 50,000, from the viewpoint of moldability and mechanical properties. It is preferably 4,000 to 40,000, more preferably 5,000 to 30,000.
  • the weight-average molecular weight (Mw) of the polymer block (A-1) can be set within the above range, for example, by adjusting the amount of the aromatic vinyl compound relative to the polymerization initiator used for polymerization.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the total Mw of the polymer blocks “A1” and “A2” is the Mw of the block copolymer and 1 H - Calculated from the total content of polymer blocks "A1” and “A2” confirmed by NMR measurement, calculated by GPC measurement, the Mw of the first deactivated polymer block "A1", and subtracted It is also possible to obtain the Mw of the polymer block "A2" by
  • the content of the polymer block (A-1) in the block copolymer (A0) is preferably 50% by mass or less, more It is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less. If the content of the polymer block (A-1) is 50% by mass or less, the block copolymer (A0) or hydrogenated block copolymer (A1) having moderate flexibility can be obtained. Also, the content of the polymer block (A-1) is preferably 4% by mass or more, more preferably 5% by mass or more, and still more preferably 6% by mass or more.
  • the content of the polymer block (A-1) is 4% by mass or more, the block has mechanical properties such as impact resistance suitable for various uses of the resin composition described later, and handleability such as moldability. It can be a copolymer (A0) or a hydrogenated block copolymer (A1).
  • the content of the polymer block (A-1) in the block copolymer (A0) or the hydrogenated block copolymer (A1) is preferably 4-50% by mass.
  • the content of the polymer block (A-1) in the block copolymer is a value determined by 1 H-NMR measurement, more specifically, a value measured according to the method described in Examples.
  • the polymer block (A-2) constituting the block copolymer (A0) is a structural unit derived from a conjugated diene compound (hereinafter sometimes referred to as a "conjugated diene compound unit") from the viewpoint of flexibility and the like. ).
  • the polymer block (A-2) preferably contains 30 mol % or more of conjugated diene compound units. Among them, from the viewpoint of flexibility, the polymer block (A-2) preferably contains conjugated diene compound units of 50 mol% or more, still more preferably 65 mol% or more, still more preferably 80 mol% or more. It is more preferably 90 mol % or more, particularly preferably substantially 100 mol %.
  • the conjugated diene compound contains isoprene and a conjugated diene compound other than isoprene, and preferably contains isoprene and butadiene, from the viewpoint of easily exhibiting excellent strength.
  • isoprene and a conjugated diene compound other than isoprene for example, when the modified hydrogenated product (A) of the present invention is made into a composition together with a plurality of resins having different properties, a good compatibility effect can be brought about. can.
  • a conjugated diene compound as described later, a conjugated diene compound other than isoprene and butadiene may be contained.
  • the content of isoprene in the conjugated diene compound is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 40% by mass or more, and even more preferably It is 45% by mass or more.
  • the conjugated diene compound is a mixture of butadiene and isoprene
  • their mixing ratio [isoprene/butadiene] is preferably 5/95 to 95 from the viewpoint of impact resistance, particularly low-temperature impact resistance. /5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, and particularly preferably 45/55 to 65/35.
  • the mixing ratio [isoprene/butadiene] in terms of molar ratio is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, especially It is preferably 45/55 to 55/45.
  • conjugated diene compounds examples include ⁇ -farnesene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, myrcene, etc., in addition to the above isoprene and butadiene.
  • a conjugated diene compound may be used individually by 1 type, and may be used 2 or more types.
  • the polymer block (A-2) may contain structural units derived from other polymerizable monomers than the conjugated diene compound, as long as the objects and effects of the present invention are not hindered.
  • the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably less than 70 mol%, more preferably less than 50 mol%. , more preferably less than 35 mol %, particularly preferably less than 20 mol %.
  • the lower limit of the content of structural units derived from other polymerizable monomers other than the conjugated diene compound is not particularly limited, but it may be 0 mol%, or 5 mol%. , 10 mol %.
  • Examples of other polymerizable monomers include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, vinyl aromatic vinyl compounds such as naphthalene and vinylanthracene; At least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like is preferably included. Among them, styrene, ⁇ -methylstyrene and p-methylstyrene are preferred, and styrene is more preferred.
  • the block copolymer (A0) may have at least one polymer block (A-2).
  • those polymer blocks (A-2) may be the same or different.
  • the polymer block (A-2) has two or more types of structural units, their binding forms are random, tapered, completely alternating, partially blocky, block, or two or more of these. It may consist of a combination.
  • the bonding form of the conjugated diene compound is not particularly limited as long as it does not impair the object and effect of the present invention.
  • the bond forms of isoprene and butadiene are 1,2-bond and 1,4-bond in the case of butadiene.
  • - bond and in the case of isoprene, it can be 1,2-bond, 3,4-bond, or 1,4-bond. Only one type of these binding forms may be present, or two or more types may be present.
  • the amount of 1,2-bonds in the butadiene units in the polymer block (A-2) is referred to as the amount of vinyl bonds, and the amount of 1,2-bonds in the isoprene units in the polymer block (A-2).
  • the total amount of 2-bonds and 3,4-bonds is referred to as the vinyl bond amount, and the content of the vinyl bond amount in the total bond form of the polymer block (A-2) is referred to as "polymer block (A-2)
  • the content of the vinyl bond amount in the entire block copolymer (A0) is sometimes referred to as the "vinyl bond amount (mol%) of the block copolymer (A0)".
  • the amounts of 1,2-bonds and 3,4-bonds can be calculated by 1 H-NMR measurement in the same manner as in Examples.
  • the total content of 3,4-bond units and 1,2-bond units (that is, vinyl bond content) in the polymer block (A-2) is 30 mol% or less. , preferably 25 mol % or less, more preferably 20 mol % or less, still more preferably 15 mol % or less. If the amount of vinyl bonds in the polymer block (A-2) is 30 mol% or less, the mechanical properties of the resin composition can be improved and the low temperature properties can be exhibited. If the ratio is below, the low-temperature characteristics will be better, and the low-temperature characteristics tend to improve as the amount of vinyl bonds decreases.
  • the vinyl bond content in the polymer block (A-2) may be 2 mol % or more, or 5 mol % or more.
  • the vinyl bond content is a value determined by 1 H-NMR measurement, more specifically, a value measured according to the method described in Examples.
  • the weight average molecular weight (Mw) of the polymer block (A-2) is not particularly limited, but the total Mw of the polymer blocks (A-2) in the block copolymer (A0) before hydrogenation is preferably 10,000 to 200,000, more preferably 20,000 to 180,000, still more preferably 30,000 to 160,000, still more preferably 35,000 to 140,000, still more preferably 40, 000 to 130,000. If the total weight-average molecular weight of the polymer blocks (A-2) is within the above range, excellent flexibility is likely to be exhibited.
  • the content of the polymer block (A-2) in the block copolymer (A0) is preferably 96% by mass or less, more preferably 95% by mass or less, still more preferably 94% by mass or less. If the content of the polymer block (A-2) is 96% by mass or less, the modified hydrogenated product (A) having mechanical properties, mechanical properties, and moldability suitable for various uses, or containing this It becomes easy to set it as a resin composition.
  • the content of the polymer block (A-2) in the block copolymer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and even more preferably 75% by mass. That's it. If the content of the polymer block (A-2) is 50% by mass or more, the modified hydrogenated product (A) can have excellent flexibility.
  • the polymer block (A-2) may contain a structural unit derived from a polymerizable monomer other than the conjugated diene compound as long as it does not interfere with the object and effect of the present invention.
  • the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably less than 50 mol%, more preferably less than 30 mol%. , more preferably less than 20 mol %, even more preferably less than 10 mol %, particularly preferably 0 mol %.
  • the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably 0 mol % or more and less than 50 mol %.
  • examples of other polymerizable monomers include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, aromatic vinyl compounds such as N-vinylcarbazole, vinylnaphthalene and vinylanthracene; -cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, etc. is preferably used.
  • the hydrogenation rate of the polymer block (A-2) is more than 0 mol%. is. That is, at least part of the carbon-carbon double bonds of the polymer block (A-2) are hydrogenated.
  • the hydrogenation rate of the polymer block (A-2) is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 87 mol% or more, from the viewpoint of weather resistance and heat resistance. Although there is no particular upper limit, it can be, for example, 99.8 mol % or less.
  • the hydrogenation rate of polymer block (A-2) is preferably 80 to 99.8 mol%.
  • the hydrogenation rate of the polymer block (A-2) can be set within the above range, for example, by controlling the amount of the hydrogenation catalyst and the hydrogenation reaction time.
  • the hydrogenation rate was obtained by measuring the carbon-carbon double bond content in the structural unit derived from the conjugated diene compound in the polymer block (A-2) by 1 H-NMR measurement after hydrogenation. values, more specifically values measured according to the method described in the Examples.
  • the block copolymer (A0) is not limited in its bonding form as long as the polymer block (A-1) and the polymer block (A-2) are bonded together. It may be either radial or a combination of two or more of these modes. Among them, the bonding form of the polymer block (A-1) and the polymer block (A-2) is preferably linear.
  • polymer block (A-2) is represented by B, a diblock copolymer represented by AB, a triblock copolymer represented by ABA or BAB, A- Tetrablock copolymer represented by BAB, pentablock copolymer represented by ABA or BABAB, (AB) nZ type copolymer A polymer (Z represents a coupling agent residue and n represents an integer of 3 or more) and the like.
  • linear triblock copolymers or diblock copolymers are preferable, and ABA type triblock copolymers are preferably used from the viewpoint of flexibility, ease of production, and the like. .
  • the ABA type triblock copolymers include styrene-hydrogenated butadiene/isoprene-styrene copolymers. That is, the block copolymer preferably contains a styrene-hydrogenated butadiene/isoprene-styrene copolymer.
  • the block copolymer (A0) contains a polymerizable monomer other than the polymer block (A-1) and the polymer block (A-2) within a range that does not impair the object of the present invention.
  • a polymer block (A-3) may be present.
  • the polymer block (A-3) preferably contains structural units derived from isoprene (Ip), and the content of structural units derived from isoprene (Ip) in the polymer block (A-3) is Based on the total mass of block (A-3), it is preferably 30% by mass or more, more preferably 35% by mass or more, and even more preferably 40% by mass or more.
  • the upper limit of the structural unit derived from isoprene (Ip) in the polymer block (A-3) is not particularly limited. -3).
  • the conjugated diene compound constituting the polymer block (A-3) is mainly composed of isoprene (Ip) units, and further includes, for example, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. At least one selected may be included.
  • the content ratio of butadiene (Bd) units and isoprene (Ip) units is preferably 10/90 to 90/10, more preferably 30/70 to 70/30, and particularly preferably 40/60 to 60/40 from the viewpoint of improving performance.
  • the amount of vinyl bonds in polymer block (A-3) is not particularly limited, but is preferably in the range of 2 to 90 mol %.
  • One of preferred embodiments of the modified hydrogenated material (A) of the present invention is a composition containing the modified hydrogenated material (A) and a propylene-based polymer.
  • the propylene-based polymer include polypropylenes such as homopolypropylene (homoPP), random copolymers of propylene and ⁇ -olefin comonomers (random PP) and block polypropylene (block PP), and propylene-based elastomers (ExxonMobil Chemical Co., Ltd.
  • the total amount of 4-linkage units and butadiene (Bd) 1,2-linkage units) is preferably 45 to 90 mol%, more preferably 50 to 90 mol%, still more preferably 55 to 85 in mol %.
  • the polymer block (A-3) is substantially composed of structural units derived from isoprene (Ip).
  • the polymer block contains 100% by mass of the polymer block, or the polymer block contains both butadiene (Bd) units and isoprene (Ip) units, and the polymer block contains both butadiene (Bd) units and isoprene (Ip) units. More preferably, it is a coalescing block.
  • the amount of vinyl bonds in the polymer block (A-3) (1 of isoprene (Ip) is preferably 2 to 30 mol%, more preferably 2 to 25 mol%, still more preferably 3 to 20 mol %, more preferably 4 to 15 mol %, particularly preferably 5 to 10 mol %. It is also one of preferred embodiments of the present invention that the modified hydrogenated product (A) is used together with a polymer other than the propylene-based polymer.
  • the polymer block (A-3) is a polymer block containing substantially 100% by mass of structural units derived from isoprene (Ip), Alternatively, it is preferably a polymer block containing both butadiene (Bd) units and isoprene (Ip) units, more preferably a polymer block containing both butadiene (Bd) units and isoprene (Ip) units.
  • the vinyl bond content of (A-3) is preferably 2 to 30 mol%, more preferably 2 to 25 mol%, still more preferably 3 to 20 mol%, still more preferably 4 to 15 mol %, particularly preferably 5 to 10 mol %.
  • the carbon-carbon double bond possessed by the polymer block (A-3) is, similarly to the polymer block (A-2), the modified hydrogenated product (A) and the polyolefin resin ( From the viewpoint of affinity with B), those at least partially hydrogenated are preferred.
  • the hydrogenation rate (hydrogenation rate) of the polymer block (A-3) in the hydrogenated block copolymer (A1) is preferably 80 mol% or more, more preferably 85 mol% or more, and still more preferably 87 mol%. That's it. Although there is no particular upper limit, it can be, for example, 99.8 mol % or less. In other words, the hydrogenation rate of polymer block (A-3) is preferably 80 to 99.8 mol%.
  • the hydrogenation rate of the polymer block (A-3) can be within the above range, for example, by controlling the hydrogenation reaction time.
  • the hydrogenation rate of the polymer block (A-3) in the hydrogenated block copolymer (A1) is within the above range, the modified hydrogenated product (A) in the resin composition described later becomes the polyolefin resin (B ), and as a result, the impact resistance of such resin compositions tends to be better.
  • the structure of the block copolymer is A A triblock copolymer represented by -BC, a tetrablock copolymer represented by ABCA, a tetrablock copolymer represented by ABAAC, and the like.
  • a tetrablock copolymer represented by ABAC is preferred.
  • the bond form of the block copolymer (C) is a tetrablock represented by A—B—A—B.
  • the ratio of the terminal block B or C in the added block copolymer (A1) is preferably in the entire hydrogenated block copolymer (A1). is 40% by mass or less, more preferably 1 to 35% by mass, still more preferably 4 to 30% by mass, and particularly preferably 12 to 30% by mass.
  • the lower limit is not particularly limited, it may be, for example, 1% by mass.
  • the weight average molecular weight (Mw) of the block copolymer (A0) and the hydrogenated block copolymer (A1) obtained by gel permeation chromatography in terms of standard polystyrene is preferably 10,000 to 400,000, More preferably 30,000 to 300,000, still more preferably 50,000 to 200,000, and particularly preferably 70,000 to 150,000. If the Mw of the block copolymer (A0) and the hydrogenated block copolymer (A1) is 10,000 or more, the heat resistance is high, and if it is 400,000 or less, the modified hydrogenated product (A) is used. The handleability of the containing resin composition, which will be described later, is improved.
  • the molecular weight distribution (Mw/Mn) of the block copolymer (A0) is preferably 1.00 to 2.00, more preferably 1.00 to 1.60, still more preferably 1.00 to 1.40, and more preferably It is more preferably 1.00 to 1.20. When the molecular weight distribution is within the above range, the block copolymer (A0) is easy to handle.
  • the modified hydrogenated product (A) is, for example, a hydrogenated block copolymer (A1) obtained by hydrogenating the above block copolymer (A0), an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a compound having one or more functional groups selected from groups derived from an acid anhydride is reacted to introduce the functional group and modify the hydrogenated block copolymer (A1).
  • the functional group is preferably one or more functional groups selected from an alkoxysilyl group and an acid anhydride-derived group, more preferably a maleic anhydride-derived group. The method for producing the modified hydrogenated product (A) will be described later.
  • the modified hydrogenated product (A) preferably has the above functional group in the side chain.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1 phr or more, more preferably 0.15 phr or more, still more preferably 0.2 phr or more, and even more preferably 0.25 phr or more.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 5.0 phr or less, more preferably 4.0 phr or less, still more preferably 3.0 phr or less, still more preferably 2.0 phr or less, Even more preferably, it is 0.95 phr or less.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1-5.0 phr.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1 mol% or more, more preferably 0.15 mol% or more, still more preferably 0.2 mol% or more, and even more preferably is 0.25 mol % or more.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 5.0 mol% or less, more preferably 4.0 mol% or less, still more preferably 3.0 mol% or less, and even more preferably is 2.0 mol % or less, more preferably 0.95 mol % or less.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1 to 5.0 mol %.
  • the adhesiveness of the resin composition containing the modified hydrogenated product (A) can be excellent.
  • the content (phr) of the functional group means the mass part of the functional group with respect to 100 parts by mass of the modified hydrogenated product (A), and is measured by titration, 1 H-NMR measurement, infrared spectroscopic analysis (IR measurement).
  • the amount of modification in the modified hydrogenated product (A) can be adjusted by adjusting the usage ratio, type, etc. of the modifying agent to be used.
  • the weight average molecular weight (Mw) of the modified hydrogenated product (A) is preferably 10,000 to 400,000, more preferably 30,000 to 300,000, still more preferably 50,000 to 200, 000, particularly preferably 70,000 to 150,000.
  • the Mw of the modified hydrogenated product (A) can be adjusted, for example, by the amount of the polymerization initiator used during polymerization.
  • the glass transition temperature of the modified hydrogenated product (A) is preferably -75 to 0°C, more preferably -70 to -10°C, still more preferably -65 to -20°C, from the viewpoint of low temperature properties.
  • the glass transition temperature is a value measured using a differential scanning calorimeter (DSC) measuring device, and specifically measured by the method described in Examples.
  • the glass transition temperature of the modified hydrogenated product (A) can be adjusted, for example, by adjusting the content of 3,4-bonds and 1,2-bonds in the conjugated diene.
  • the modified hydrogenated product (A) has a melt flow rate of 0.1 g/min or more measured under conditions of a temperature of 230° C. and a load of 21 N, and from the viewpoint of kneading the resin composition, preferably 0.3 to 15 g/10 min, more preferably 0.5 to 10 g/10 min, still more preferably 1 to 7 g/10 min.
  • the melt flow rate is within the above range, the viscosity of the resin composition during kneading is increased, resulting in good dispersion.
  • the tan ⁇ (loss tangent) of the modified hydrogenated product (A) is the ratio of loss elastic modulus / storage elastic modulus at a frequency of 1 Hz in dynamic viscoelasticity measurement, and the peak top temperature and strength of tan ⁇ are the properties of the viscoelastic body. contribute significantly to Here, the peak top intensity of tan ⁇ is the value of tan ⁇ when the peak of tan ⁇ is maximum.
  • the tan ⁇ peak top temperature is the temperature at which the tan ⁇ peak is maximized. The lower the value, the better the elasticity, and the higher the value, the better the viscosity.
  • the peak top temperature and intensity of tan ⁇ of the block copolymer (A0) or the hydrogenated block copolymer (A1) are A single-layer sheet having a thickness of 1.0 mm is produced by applying pressure at a temperature of 230° C. and a pressure of 10 MPa for 3 minutes, and the single-layer sheet is cut into a disk shape and measured as a test piece.
  • the measurement conditions are a strain amount of 0.1%, a frequency of 1 Hz, a measurement temperature of ⁇ 70 to +120° C., and a heating rate of 3° C./min in compliance with JIS K 7244-10:2005.
  • the peak top temperature and tan ⁇ strength of the block copolymer (A0) or the hydrogenated block copolymer (A1) are more specifically values measured according to the method described in Examples.
  • the modified hydrogenated product (A) has a tan ⁇ peak top intensity of 0.95 or less, preferably 0.90 or less, more preferably 0.85 or less, as measured above.
  • a tan ⁇ peak top strength of 0.95 or less is advantageous from the viewpoint of impact resistance.
  • the peak top intensity of tan ⁇ can be set within the above range.
  • the modified hydrogenated product (A) has a tan ⁇ peak top temperature of preferably ⁇ 10° C. or less, more preferably ⁇ 20° C. or less, still more preferably ⁇ 30° C. or less, and even more preferably ⁇ 40° C. or less. be. Within the above temperature range, sufficient impact resistance can be obtained in an actual use environment.
  • the modified hydrogenated product (A) uses at least an aromatic vinyl compound and a conjugated diene compound as monomers, polymerizes them to form a block copolymer (A0), and before hydrogenating the block copolymer (A0) Alternatively, it can be produced by undergoing a modification reaction step using a modifying agent after hydrogenation.
  • the block copolymer (A0) is prepared by using at least an aromatic vinyl compound and a conjugated diene compound as monomers and performing a polymerization reaction to obtain a polymer block (A-1 ) and a polymer block (A-2) containing a structural unit derived from the conjugated diene compound, and optionally a block copolymer further comprising a polymer block (A-3). can be done.
  • the aromatic vinyl compound, the conjugated diene compound, the polymer block (A-1), the polymer block (A-2) and the polymer block (A-3) are the same as those described above.
  • the above polymerization reaction can be produced by, for example, a solution polymerization method, an emulsion polymerization method, or a solid phase polymerization method.
  • a solution polymerization method is preferable, and known methods such as anion polymerization, ionic polymerization such as cationic polymerization, and radical polymerization can be applied.
  • the anionic polymerization method is preferable.
  • an aromatic vinyl compound and a conjugated diene compound are sequentially added in the presence of a solvent, an anionic polymerization initiator, and optionally a Lewis base to obtain a block copolymer, and coupling is performed if necessary. What is necessary is just to add an agent and to make it react.
  • Examples of organic lithium compounds that can be used as polymerization initiators for anionic polymerization in the above method include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
  • Examples of dilithium compounds that can be used as polymerization initiators include naphthalenedilithium and dilithiohexylbenzene.
  • Examples of the coupling agent include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, and phenyl benzoate.
  • the amounts of these polymerization initiators and coupling agents to be used are appropriately determined according to the desired weight-average molecular weight of the block copolymer (A0) or hydrogenated block copolymer (A1).
  • initiators such as alkyllithium compounds and dilithium compounds are used in a proportion of 0.01 to 0.2 parts by mass per 100 parts by mass of the total amount of monomers such as aromatic vinyl compounds and conjugated diene compounds used for polymerization.
  • a coupling agent it is preferably used in a proportion of 0.001 to 0.8 parts by mass per 100 parts by mass of the monomers.
  • the solvent is not particularly limited as long as it does not adversely affect the anionic polymerization reaction.
  • examples include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene. etc.
  • the polymerization reaction is usually carried out at a temperature of 0 to 100°C, preferably 10 to 70°C, for 0.5 to 50 hours, preferably 1 to 30 hours.
  • Lewis bases that can be used include, for example, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, 2,2-di(2-tetrahydrofuryl)propane (DTHFP); ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, Glycol ethers such as tetraethylene glycol dimethyl ether; amines such as triethylamine, N,N,N',N'-tetramethylenediamine, N,N,N',N'-tetramethylethylenediamine (TMEDA) and N-methylmorpholine ; sodium or potassium salts of fatty alcohols such as sodium t-butylate, sodium t-amylate or sodium isopentylate; or sodium or potassium salts of alicyclic alcohols such as dialkyl sodium cyclohexanolate, e.g. metal salts such as potassium salts; and the like.
  • the amount of the Lewis base to be added is usually 1.0% per 1 mol of the alkyllithium compound or dilithium compound used as the polymerization initiator. It is preferably used in an amount of 0 mol or less, preferably 0.5 mol or less.
  • the vinyl bond amount of the isoprene unit and/or butadiene unit constituting the polymer block (A-3) from the viewpoint of adjusting to 2 to 90 mol%, preferably 30 mol% or more the amount of the Lewis base added when forming the polymer block (A-3) should be the alkyllithium compound or dilithium used as the polymerization initiator. It is usually used in an amount of 1.1 to 3.0 mol, preferably 1.5 to 2.0 mol, per 1 mol of the compound.
  • a block copolymer can be obtained by adding an active hydrogen compound such as alcohols, carboxylic acids or water to terminate the polymerization reaction.
  • Hydrogenated block copolymer (A1 ) can be made.
  • the polymer block (A-2) in the block copolymer (A0) and the polymer block (A-3) which may be further present are carbon-carbon double atoms derived from the conjugated diene compound.
  • the bonds are hydrogenated to obtain a hydrogenated product of the block copolymer (A0), that is, a hydrogenated block copolymer (A1).
  • the block copolymer (A0) may be hydrogenated after being modified by the method described below.
  • the hydrogen pressure is about 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa
  • the reaction temperature is about 20 to 250° C., preferably 50 to 180° C., more preferably. is 70 to 180° C. and the reaction time is usually about 0.1 to 100 hours, preferably 1 to 50 hours.
  • Hydrogenation catalysts include, for example, Raney nickel; heterogeneous catalysts in which metals such as Pt, Pd, Ru, Rh, and Ni are supported on carriers such as carbon, alumina, and diatomaceous earth; transition metal compounds, alkylaluminum compounds, and alkyllithium. Ziegler-based catalysts in combination with other compounds; metallocene-based catalysts;
  • the hydrogenated block copolymer (A1) (or the modified hydrogenated product (A)) thus obtained is solidified by pouring the polymerization reaction solution into methanol or the like, and then dried by heating or under reduced pressure. , the polymerization reaction solution is poured into hot water together with steam, subjected to so-called steam stripping in which the solvent is azeotropically removed, and then dried by heating or under reduced pressure.
  • the hydrogenation rate of polymer block (A-2) and polymer block (A-3) is preferably 80 to 99.8 mol %.
  • the modified hydrogenated product (A) is obtained by introducing the above functional group after hydrogenating the block copolymer (A0), or by adding the above functional group before hydrogenating the block copolymer (A0). can be produced by introducing and then hydrogenating.
  • the block copolymer (A0) is hydrogenated to form a hydrogenated block copolymer (A1), and then a specific functional group is introduced to produce the hydrogenated block copolymer (A1). is preferred.
  • the reaction for modifying the hydrogenated block copolymer (A1) by introducing the functional group described above can be carried out by a known method.
  • the modification reaction is carried out, for example, by dissolving the hydrogenated block copolymer (A1) in an organic solvent, adding various modifiers capable of adding the above-described functional groups, and heating at about 50 to 300° C. at 0.5°C. It can be carried out by reacting for about 5 to 10 hours.
  • the modification reaction can be carried out, for example, by melting the hydrogenated block copolymer (A1) using an extruder or the like without using a solvent, and adding various modifiers.
  • the temperature of the modification reaction is generally from the melting point of the hydrogenated block copolymer (A1) or higher to 400°C or lower, preferably 90 to 350°C, more preferably 100 to 300°C, and the reaction time is generally It is about 0.5 to 10 minutes.
  • a radical initiator when performing the modification reaction in a molten state, and an antioxidant may be added from the viewpoint of suppressing side reactions.
  • the modification reaction is preferably carried out by the latter method of modification in a molten state, from the viewpoint of easily achieving excellent workability, vibration damping properties, and thermal stability. That is, in a preferred embodiment of the method for producing the modified hydrogenated product (A), the block copolymer (A0) is hydrogenated to obtain a hydrogenated block copolymer (A1), and then the hydrogenated block copolymer in a molten state is One or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and an acid anhydride-derived group are introduced into the coalescence (A1) using a radical initiator. It further has a step of performing.
  • Modifiers to which the above functional groups can be added include dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and hydroxymethyltriethoxysilane.
  • modifiers include maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and itaconic anhydride. Unsaturated carboxylic acid anhydrides such as can also be used.
  • modifiers capable of adding the above functional groups may be employed from modifiers described in JP-A-2011-132298.
  • the modifier can be used alone or in combination of two or more.
  • maleic anhydride as a modifier to obtain a modified hydrogenated product (A) having a maleic anhydride-derived group.
  • the amount of the modifier to be added may be appropriately determined according to the content of the functional group in the modified hydrogenated product (A) described above so as to achieve the desired content of the functional group.
  • radical initiator organic peroxides or organic peresters such as dialkyl peroxides, diacyl peroxides, peroxyesters, peroxyketals, dialkyl peroxides, and hydroperoxides can be used. Also, azo compounds such as azobisisobutyronitrile and dimethylazoisobutyrate can be used. Among the above radical initiators, organic peroxides are preferred, and dialkyl peroxides are more preferred.
  • the amount of the radical initiator to be added may be appropriately determined depending on the combination of the hydrogenated block copolymer (A1) and the modifier. It is usually about 0.01 to 10 parts by mass, preferably 0.01 to 5 parts by mass, more preferably 0.01 to 3 parts by mass, and still more preferably 0.05 to 2 parts by mass.
  • a pellet according to an embodiment of the present invention is a pellet containing the modified hydrogenated product (A).
  • Such pellets are obtained, for example, by melting the hydrogenated block copolymer (A1) using an extruder or the like without using a solvent, adding various modifiers, and immediately after melt-kneading the modified hydrogenated product.
  • (A) It is obtained by cutting (discharged from the kneading device) with a cutter or the like. More specifically, as a method of pelletizing, for example, the modified hydrogenated material (A) is extruded in a strand from a single-screw or twin-screw extruder, and cut in water with a rotary blade installed in front of the die part.
  • underwater pelletizing and a method of dropping pellets in water after cutting (water ring hot pelletizing); Or a method of cutting with a strand cutter after air cooling; after melting and mixing with an open roll and a Banbury mixer, forming into a sheet with a roll, further cutting the sheet into strips, and then cutting into cubic pellets with a pelletizer. and the like.
  • An anti-blocking agent may be blended in the pellets from the viewpoint of facilitating the prevention of agglutination (blocking) between the pellets.
  • the anti-blocking agent is blended, it is preferably blended in a state adhering to the pellet surface, but it may be contained to some extent inside the pellet.
  • pellets having the antiblocking agent adhered to the surface can be obtained by a method such as putting the above pellets and the antiblocking agent into a container and stirring them.
  • antiblocking agents examples include polyolefin waxes such as polypropylene wax and polyethylene wax; hydrous magnesium silicate (talc), silica; ethylenebisstearylamide; calcium stearate; zinc stearate, magnesium stearate;
  • the average particle size of the antiblocking agent is not particularly limited, it is preferably 1 to 15 ⁇ m, more preferably 2 to 14 ⁇ m, and still more preferably 3 to 13 ⁇ m from the viewpoint of ensuring adhesion to pellets and slipping between pellets. is.
  • the amount of the antiblocking agent is not particularly limited, but from the viewpoint of ensuring blocking resistance and mechanical properties, it is preferably 0.1 per 100 parts by mass of the pellets containing the modified hydrogenated product (A). to 2.0 parts by mass, more preferably 0.1 to 1.0 parts by mass.
  • Embodiments of the present invention also include a resin composition containing the above-described modified hydrogenated product (A) and a polyolefin resin (B) (hereinafter sometimes referred to as "resin composition (D1)" in this specification). ).
  • polyolefin-based resin (B) contained in the resin composition (D1) examples include polypropylene, polyethylene, polymethylpentene, ethylene/vinyl acetate copolymer, and resins in which a plurality of these are combined.
  • polypropylene examples include homopolypropylene, block polypropylene that is a block copolymer with an ⁇ -olefin such as ethylene, and random polypropylene that is a random copolymer with an ⁇ -olefin such as ethylene.
  • polyethylene examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and the like.
  • polymethylpentene examples include homopolymers of 4-methyl-1-pentene, structural units derived from 4-methyl-1-pentene, and ⁇ -olefins having 2 to 20 carbon atoms (wherein 4-methyl- excluding 1-pentene), and copolymers having structural units derived from
  • the ethylene/vinyl acetate copolymer is not particularly limited as long as it is a resin obtained by copolymerizing vinyl acetate with ethylene as a comonomer, and various vinyl acetate group contents (VA contents) can be used.
  • homopolymers or copolymers of ⁇ -olefins, copolymers of propylene and/or ethylene and ⁇ -olefins, and the like can also be used as the polyolefin resin (B).
  • the ⁇ -olefin include 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-heptene, 1 -octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, ⁇ -olefins having 20 or less carbon atoms such as 1-eicosene, one or two of these More than one species can be used.
  • the resin composition (D1) may contain various additives as long as the effects of the present invention are not impaired.
  • Additives include, for example, talc, clay, mica, calcium silicate, glass, hollow glass spheres, glass fiber, calcium carbonate, magnesium carbonate, basic magnesium carbonate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, boron zinc oxide, dawsonite, ammonium polyphosphate, calcium aluminate, hydrotalcite, silica, diatomaceous earth, alumina, titanium oxide, iron oxide, zinc oxide, magnesium oxide, tin oxide, antimony oxide, barium ferrite, strontium ferrite, carbon black, Inorganic fillers such as graphite, carbon fiber, activated carbon, carbon hollow spheres, calcium titanate, lead zirconate titanate, silicon carbide; organic fillers such as wood flour and starch; cellulose fiber, cellulose nanofiber, carbon fiber, carbon nanofiber , and so on.
  • additives examples include tackifying resins, plasticizers, fillers, cross-linking agents (isocyanate-based cross-linking agents, epoxy-based cross-linking agents, metal chelate-based cross-linking agents, aziridine-based cross-linking agents, amine resins, etc.), heat stabilizers, Light stabilizer, UV absorber, Infrared absorber, Antioxidant, Lubricant, Colorant, Antistatic agent, Flame retardant, Water repellent, Waterproof agent, Hydrophilic agent, Electrical conductivity agent, Thermal conductivity agent , electromagnetic wave shielding agent, translucency adjusting agent, fluorescent agent, slidability imparting agent, transparency imparting agent, anti-blocking agent, metal deactivator, antibacterial agent, crystal nucleating agent, anti-cracking agent, ozone Degradation inhibitors, anti-mouse agents, dispersants, thickeners, light stabilizers, weather stabilizers, anti-copper damage agents, reinforcing agents, fungicides, macrocyclic molecules (
  • the above additives may be used singly or in combination of two or more.
  • the content of the additive in the resin composition (D1) is not limited, and can be appropriately adjusted depending on the type of the additive and the application of the resin composition (D1).
  • the content of the additive is, for example, 70% by mass or less, 60% by mass or less, or 50% by mass or less with respect to the total mass of the resin composition (D1). , 45% by mass or less, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, 5% by mass or more.
  • the content of the additive in the resin composition (D1) is preferably 0.01 to 70% by mass.
  • the proportion of the modified hydrogenated product (A) in the resin composition (D1) is preferably 1 to 50% by mass relative to the total mass of the resin composition (D1). From the viewpoint of impact resistance of the composition, it is more preferably 3 to 40% by mass, still more preferably 3 to 30% by mass, and even more preferably 5 to 25% by mass. Further, in the resin composition (D1), when the mass of the modified hydrogenated product (A) is A and the mass of the polyolefin resin (B) is B, A/B is preferably 10 from the viewpoint of adhesion. /90 to 70/30, more preferably 20/80 to 60/40, still more preferably 30/70 to 50/50.
  • the total mass of the modified hydrogenated product (A) and the polyolefin resin (B) contained in the resin composition (D1) is preferably 50% by mass or more from the viewpoint of sufficiently exhibiting adhesiveness. More preferably 65% by mass or more, still more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit of the total mass is not particularly limited, and may be 100% by mass, 99.9% by mass, or 99.5% by mass.
  • the total mass of the modified hydrogenated material (A) and the polyolefin resin (B) contained in the resin composition (D1) is preferably 50-100% by mass.
  • the resin composition (D1) is prepared by mixing the modified hydrogenated material (A), the polyolefin resin (B), and optionally various additives with a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, a conical blender, or the like. or by melt-kneading at about 80 to 350 ° C. using a kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, or a roll. can be manufactured.
  • a kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, or a roll.
  • the resin composition can also be prepared by dissolving and mixing each component in a solvent in which at least the modified hydrogenated product (A) and the polyolefin resin (B) are soluble, and removing the solvent.
  • the resin composition can be in any form such as bales, crumbs, and pellets.
  • the above resin composition is formed by a melt-kneading molding machine, or by using bales, crumbs, pellets, etc. of the resin composition as a raw material, injection molding, injection compression molding, extrusion molding, blow molding, press molding.
  • Various moldings can be made by a method, a vacuum molding method, a foam molding method, or the like.
  • the resin composition (D1) is suitable as a sealant for joints between glass and aluminum sashes and metal openings in windows of automobiles and buildings, and joints between glass and metal frames in solar cell modules and the like. Available.
  • it is useful in a wide range of applications as molded bodies and structures bonded to glass, such as window moldings and gaskets for automobiles and buildings, sealing materials for glass, anti-corrosion materials, and the like.
  • it can be used as an adhesive or coating agent for secondary battery separators used in various information terminal devices such as notebook computers, mobile phones, and video cameras, and hybrid automobiles and fuel cell automobiles.
  • the resin composition (D1) is used for industrial products such as switchboards and motor lead wires, heat-shrinkable tubes, and wire binding tapes; OA equipment; home appliances such as washing machines, dryers, refrigerators, vacuum cleaners, toasters, coolers, air conditioners, TVs, videos, DVDs, digital cameras, mobile phones, CD players, radios, speakers, alarms, surveillance cameras; electronics Microwave ovens, rice cookers, electric heaters, and other electronic devices; game console control cables, LAN cables, multi-core cables, earphones, charging devices, and other electric and electronic device accessories; insulated wire harnesses, car navigation systems, legless chairs , ceiling coverings, carpets, and other automotive, marine, and aircraft parts; vehicle parts, such as straps, awnings, and connecting hoods; wallpapers, flooring materials, interior materials, exterior materials, door materials, balcony blinds, tarpaulins, etc. It can be used for building material products; leisure products such as tents, generators, and lighting; and the like.
  • An embodiment of the present invention is also a resin composition (i.e., resin composition (D1)) containing the modified hydrogenated material (A) and the polyolefin resin (B) described above, and a resin further containing a polar resin (C).
  • resin composition (D2) a resin composition containing the modified hydrogenated material (A) and the polyolefin resin (B) described above, and a resin further containing a polar resin (C).
  • the modified hydrogenated material (A) contained in the resin composition (D1) has a polymer block (A-2) into which specific functional groups are introduced by modification and hydrogenated at a high rate. Therefore, when the resin composition (D1) and the polar resin (C) are melt-kneaded, for example, the modified hydrogenated material (A) promotes compatibility between the polyolefin resin (B) and the polar resin (C). Thus, a resin composition (D2) in which one of the polyolefin resin (B) and the polar resin (C) is well dispersed with the other of the polyolefin resin (B) and the polar resin (C) is obtained.
  • the resin composition (D2) is superior in workability and moldability to the polyolefin resin (B) alone. Also, the amount of the modified hydrogenated product (A) can be reduced. Further, one of the polar resin (C) and the polyolefin resin (B) is easily dispersed in the other of the polar resin (C) and the polyolefin resin (B), so that the resin composition (D2) or its molding Goods look good. In addition, the properties attributed to the block copolymer (A0) used as a raw material tend to appear in the resin composition (D2) or its molded article.
  • the resin composition (D2) uses the modified hydrogenated product (A) obtained from the block copolymer (A0) in which the vinyl bond content of the polymer block (A-2) is 30 mol% or less, the resin The composition (D2) or its molded article can have improved impact resistance and the like.
  • the types of the polar resin (C) and the polyolefin resin (B) the physical properties such as tensile strength and elongation characteristics of the resin composition (D2) or its molded product can be improved. can do.
  • the modified hydrogenated product (A) acts as a compatibilizer for compatibilizing the polar resin (C) and the non-polar resin described above. That is, a compatibilizer containing the modified hydrogenated product (A) is also included as an embodiment of the invention.
  • a compatibilizer may be the modified hydrogenated substance (A) alone, or components other than the modified hydrogenated substance (A), such as processing aids, reinforcing agents, fillers, plasticizers, and communication foam agents.
  • the content of the modified hydrogenated product (A) in the compatibilizer is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass, relative to the total mass of the compatibilizer. That's it.
  • the upper limit may be 100% by mass.
  • the polar resin to be compatibilized by the compatibilizing agent is the same as the polar resin (C) described above, while the non-polar resin includes the polyolefin resin (B) described above, as well as styrene resins and the like. be done.
  • the compatibilizer may be mixed together with the polar resin (C) and the polyolefin resin (B), or may be mixed with the polar resin (C) and then added to the polyolefin resin (B). , the polar resin (C) may be added after mixing with the polyolefin resin (B).
  • the resin composition (D2) is presumed to have one of the following morphologies ( ⁇ ) and ( ⁇ ).
  • a sea-island structure in which domains containing the polar resin (C) are dispersed in islands in a matrix of the polyolefin resin (B); A structure existing along the periphery of a domain mainly composed of resin (C).
  • a sea-island structure in which domains containing the polyolefin resin (B) are dispersed in islands in a matrix of the polar resin (C); A structure existing along the periphery of a domain mainly composed of the system resin (B).
  • the modified hydrogenated material (A) having a polymer block (A-2) hydrogenated at a high rate promotes compatibility between the polyolefin resin (B) and the polar resin (C). Therefore, the size of the domain mainly composed of the polar resin (C) and the size of the domain mainly composed of the polyolefin resin (B), which are formed in the resin composition (D2) and its molded product, are the volume average dispersion It is considered that the diameter or average diameter tends to be as fine as several hundred nanometers or less.
  • the dispersibility of the polar resin (C) in the polyolefin resin (B) or the dispersibility of the polar resin (C) in the polyolefin resin (B) can be improved, and the resin composition (D2) or It is presumed that mechanical properties such as tensile strength, tensile breaking strain and impact resistance of the resin composition (D2) can be improved in a well-balanced manner.
  • the polar resin (C) contained in the resin composition (D2) is a resin having a polar group such as a carboxy group, a sulfonic acid group, a hydroxyl group, a cyano group, an ether bond, an ester bond, an amide bond, a sulfide bond, or the like in the resin. , a resin containing at least one of oxygen, nitrogen, sulfur, and halogen in the molecule, and a resin in which electronic polarization occurs in the molecule and has thermoplasticity.
  • a polar group such as a carboxy group, a sulfonic acid group, a hydroxyl group, a cyano group, an ether bond, an ester bond, an amide bond, a sulfide bond, or the like in the resin.
  • a resin containing at least one of oxygen, nitrogen, sulfur, and halogen in the molecule and a resin in which electronic polarization occurs in the molecule and has thermoplasticity.
  • the polar resin (C) is preferably a resin having a polar group such as a sulfonic acid group or a cyano group; a resin having an ether bond, an ester bond, an amide bond, a sulfide bond, or the like; , sulfur, and halogen, and more preferably a resin containing at least one of an ether bond, an ester bond, and an amide bond.
  • Preferred polar resins are polyamides such as nylon 6, nylon 66, nylon 610, nylon 9, nylon 6/66, nylon 66/610, nylon 6/11, nylon 6/12, nylon 12, nylon 46, amorphous nylon.
  • polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; polyacetal resins such as polyoxymethylene homopolymer and polyoxymethylene copolymer; polyphenylene sulfide (PPS) resins, polyphenylene ether resins, polyarylate resin, polyether sulfone resin, polyurethane resin, polyvinyl alcohol resin, polycarbonate resin, ethylene-vinyl acetate copolymer, ethylene-methacrylic acid copolymer, polyether ketone, polyether ether ketone, poly chloride At least one selected from the group consisting of vinyl, polyvinylidene chloride, polyacrylonitrile, triacetyl cellulose, ABS resin, AS resin, ACS resin, xylene resin, acrylic resin, and polyester thermoplastic elastomer.
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • the polyester thermoplastic elastomer used as the polar resin (C) includes, for example, (i) an aliphatic and/or alicyclic diol having 2 to 12 carbon atoms, (ii) an aromatic dicarboxylic acid or an alkyl ester thereof, (iii) It can be obtained by polycondensation of an oligomer obtained by an esterification reaction or a transesterification reaction using a polyalkylene ether glycol as a raw material.
  • Examples of commercially available polyester-based thermoplastic elastomers include Hytrel 3046 (registered trademark) manufactured by DuPont-Toray Co., Ltd.
  • the resin composition (D2) may contain various additives as long as the effects of the present invention are not impaired.
  • additives include the same as those described for the resin composition (D1).
  • the content of the additive in the resin composition (D2) is not limited, and can be adjusted as appropriate according to the type of the additive and the application of the resin composition (D2).
  • the content of the additive is, for example, 50% by mass or less, 45% by mass or less, or 30% by mass or less with respect to the total mass of the resin composition (D2). , 20% by mass or less, 10% by mass or less, or 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, and 5% by mass or more.
  • the content of the additive in the resin composition (D2) is preferably 0.01 to 50% by mass.
  • the proportion of the modified hydrogenated product (A) in the resin composition (D2) is preferably 1 to 30% by mass relative to the total mass of the resin composition (D2). From the viewpoint of the balance of compatibility and mechanical properties of the composition, it is more preferably 2 to 20% by mass, still more preferably 3 to 15% by mass, and even more preferably 3 to 10% by mass.
  • the total mass of the modified hydrogenated product (A) and the polyolefin resin (B) contained in the resin composition (D2) is preferably 50% by mass or more from the viewpoint of sufficiently exhibiting adhesiveness. More preferably 65% by mass or more, still more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit of the total mass is not particularly limited, and may be 99.9% by mass or 99.5% by mass.
  • the total mass of the modified hydrogenated material (A) and the polyolefin resin (B) contained in the resin composition (D2) is preferably 50 to 99.9 mass%.
  • the ratio of the polar resin (C) in the resin composition (D2) is preferably 10 to 90% by mass with respect to the total mass of the resin composition (D2). From the viewpoint of flexibility of the composition, it is more preferably 10 to 50% by mass, still more preferably 10 to 45% by mass, and even more preferably 10 to 40% by mass. Further, from the viewpoint of mechanical strength, the total mass of the resin composition (D2) is more preferably 50 to 90% by mass, still more preferably 50 to 85% by mass, and even more preferably 50 to 80% by mass. . Further, when the mass of the polyolefin resin (B) in the resin composition (D2) is X and the mass of the polar resin (C) is Y, X/Y is preferably 90/10 to 10/90. .
  • X/Y is preferably 90/10 to 50/50, more preferably 90/10 to 55/45, still more preferably 90/ 10 to 60/40, more preferably 90/10 to 70/30, particularly preferably 90/10 to 75/25.
  • X/Y is preferably 50/50 to 10/90, more preferably 50/50 to 15/85, still more preferably 50/50 to 20. /80, more preferably 50/50 to 30/70, particularly preferably 50/50 to 25/75.
  • the ratio of the total amount of the polyolefin resin (B) and the polar resin (C) in the resin composition (D2) is preferably 50% by mass or more, more preferably 65% by mass or more, and still more preferably 70% by mass or more.
  • the upper limit may be 97% by mass, 95% by mass, or 90% by mass.
  • the resin composition (D2) contains a block copolymer (A0) and its hydrogenated product (A1) in addition to the modified hydrogenated product (A), the polyolefin resin (B), and the polar resin (C). may also be included.
  • the total content of the block copolymer (A0) and its hydrogenated product (A1) is preferably 1 to 20% by mass, more preferably 1 to 20% by mass, based on the total mass of the resin composition (D2), from the viewpoint of mechanical properties. is 1 to 10% by mass, more preferably 1 to 5% by mass.
  • the resin composition (D2) is a composition that does not contain the block copolymer (A0) and its hydrogenated product (A1) at all.
  • the resin composition (D2) may contain resin components other than those described above.
  • a non-polar resin other than the polyolefin resin (B) may be included.
  • the modified hydrogenated material (A), the polyolefin resin (B), the polar resin (C), the block copolymer (A0 ), and the content of the resin component other than the hydrogenated block copolymer (A1) is preferably 0 to 50% by mass, more preferably 0 to 30% by mass, and even more preferably 0 to 20% by mass. , more preferably 0 to 10% by weight, most preferably 0 to 5% by weight.
  • the tensile strength of the resin composition (D2) is preferably 9 MPa to 35 MPa, more preferably 15 MPa to 30 MPa, still more preferably 20 MPa to 30 MPa, from the viewpoint of mechanical strength.
  • the upper limit of the tensile strength is not particularly limited, and can be appropriately specified according to the application.
  • the tensile strength can be measured according to JIS K7127:1999 by preparing a test piece having a length of 150 mm and a width of 15 mm at a tensile speed of 500 mm/min, as described in the examples below. If the tensile strength is within the above range, the material strength will be excellent.
  • Test breaking strain As for the resin composition (D2), a test piece having a length of 150 mm and a width of 15 mm was prepared according to JIS K7127: 1999, and the tensile fracture strain measured under the conditions of a tensile speed of 500 mm / min as described in the examples described later. However, from the viewpoint of mechanical strength, it is preferably 25% or more, more preferably 30% or more, still more preferably 50% or more, even more preferably 75% or more, even more preferably 100% or more, and even more preferably 150% Above, more preferably 200% or more, still more preferably 250% or more, still more preferably 300% or more. If the tensile strain at break is within the above range, it will be flexible and excellent in stretchability.
  • the tensile impact resistance of the resin composition (D2) was measured in accordance with JIS K7160-1996-A (in-base method) from a film obtained from the resin composition (D2), as described in Examples described later, in the TD direction. To evaluate by measuring the tensile impact value (kJ/m 2 ) in the TD direction with a hammer load of 4 J using an "Impact Tester IT" manufactured by Toyo Seiki Seisakusho. can be done.
  • the tensile impact value obtained by such measurement is preferably 650 kJ/m 2 to 2000 kJ/m 2 , more preferably 700 kJ/m 2 to 1900 kJ/m 2 , still more preferably 750 kJ/m 2 to 1800 kJ/m 2 . If the tensile impact value is within the above range, the impact resistance will be excellent.
  • the film obtained from the resin composition (D2) is measured according to JIS K 7136:2000, as described in Examples described later, by Murakami Color Research Laboratory Co., Ltd.
  • the haze (%) measured using HR-100 is preferably 90% or less, more preferably 70% or less, still more preferably 50% or less. If the haze is within the above range, the transparency will be excellent.
  • the flexural modulus of the resin composition (D2) was determined by cutting both ends of an ISO multi-purpose test piece to prepare a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm, as described in Examples described later, and measured according to JIS K7171: 2016 ( ISO 178:2010), using Autograph AGX-V (manufactured by Shimadzu Corporation), the bending elastic modulus measured at a test speed of 2 mm / min is preferably 950 MPa or more, more preferably It is 980 MPa or more, more preferably 1000 MPa or more. If the flexural modulus is within the above range, the rigidity will be excellent.
  • the flexural strength of the resin composition (D2) was measured by cutting both ends of an ISO multi-purpose test piece to prepare a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm, as described in the examples below, and measured according to JIS K7171: 2016 ( ISO 178:2010), Autograph AGX-V (manufactured by Shimadzu Corporation) is used, and the bending strength measured at a test speed of 2 mm / min is preferably 20 MPa or more, more preferably 25 MPa or more, more preferably 30 MPa or more. If the bending strength is within the above range, the rigidity will be excellent.
  • the Charpy impact value of the resin composition (D2) was determined by cutting both ends of an ISO multi-purpose test piece to prepare a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm, as described in the Examples described later. Using a test piece with a remaining width of 8 mm obtained by notching, a digital impact tester IT type (manufactured by Toyo Seiki Seisakusho Co., Ltd.) is used according to JIS K7111-1: 2012, and the hammer load is measured as 2 J.
  • Charpy impact value at 23° C. is preferably 5 kJ/m 2 or more, more preferably 25 kJ/m 2 or more. If the Charpy impact value is within the above range, the impact resistance will be excellent.
  • the resin composition (D2) is a modified hydrogenated product (A), a polyolefin resin (B) and a polar resin (C), or a resin composition (D1) and a polar resin (C), and various It is produced by mixing with additives using a mixer such as a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, a conical blender, or then a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, It can be produced by melt-kneading at about 80 to 350° C. using a kneader such as a roll.
  • a mixer such as a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, a conical blender, or then a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, It can be produced by melt-kneading at about 80
  • the resin composition (D2) is obtained by dissolving and mixing each component in a solvent in which at least the modified hydrogenated product (A), the polyolefin resin (B) and the polar resin (C) are soluble, and removing the solvent. can also be manufactured.
  • the resin composition (D2) can be in any form such as bales, crumbs and pellets.
  • the resin composition (D2) can be prepared by injection molding, injection compression molding, extrusion molding, blow molding, using a melt-kneading molding machine, or using bales, crumbs, or pellets of the resin composition as raw materials.
  • Various molded products can be obtained by press molding, vacuum molding, foam molding, and the like.
  • the order of addition is not limited, from the viewpoint of further improving the dispersibility and the physical properties of the resulting resin composition (D2), the modified hydrogenated product (A) and the polar resin (C) are added, and then the polyolefin resin is added.
  • the order of addition in which (B) is added is preferred.
  • the resin composition (D2) can be used for various purposes.
  • the resin composition (D2) of the present embodiment has well-balanced mechanical properties such as tensile strength, tensile breaking strain and impact resistance, and can be used for various purposes. Therefore, the present invention also provides films, sheets, and the like using the resin composition (D2).
  • the resin composition (D2) can be used for various automotive parts in the automotive field, such as cooling parts such as thermostat housings, radiator tanks, radiator hoses, water outlets, water pump housings, rear joints; intercooler tanks, intercooler cases, turbo Intake and exhaust system parts such as duct pipes, EGR cooler cases, resonators, throttle bodies, intake manifolds, tail pipes; fuel delivery pipes, gasoline tanks, quick connectors, canisters, pump modules, fuel pipes, oil strainers, lock nuts, seal materials
  • Fuel system parts such as; Structural parts such as mount brackets, torque rods, and cylinder head covers; Drive system parts such as bearing retainers, gear tensioners, headlamp actuator gears, HVAC gears, slide door rollers, and clutch peripheral parts; Air brake tubes, etc.
  • brake system parts wire harness connectors in the engine room, motor parts, sensors, ABS bobbins, combination switches, in-vehicle switches, electronic control unit (ECU) boxes, etc.; Inner mirror stay, roof rail, engine mount bracket, air cleaner inlet pipe, door checker, plastic chain, emblem, clip, breaker cover, cup holder, air bag, fender, spoiler, radiator support, radiator grille, louver, air scoop , hood bulges, back doors, fuel sender modules, floor mats, instrument panels, dashboards, dash insulators, damp rubbers, weather strips, and interior and exterior parts such as tires.
  • ECU electronice control unit
  • various recorders such as TVs, Blu-ray recorders and HDD recorders, projectors, game machines, digital cameras, home videos, antennas, speakers, electronic dictionaries, IC recorders, FAX machines, copiers, telephones, intercoms, and rice cookers in the field of consumer electronics.
  • the polymer block (A-2) sampled during the polymerization was subjected to 1 H-NMR measurement, and the total peak area of structural units derived from isoprene and butadiene corresponds to the 3,4-bond unit in the isoprene structural unit.
  • the polymer block (A-2) The amount of vinyl bonds in (total content of 3,4-bond units and 1,2-bond units) was calculated.
  • the amount of vinyl bonds in polymer block (A-3) was calculated using the following formula.
  • Amount of vinyl bond in polymer block (A-3) [amount of vinyl bond in block copolymer x ⁇ content (parts by mass) of polymer block (A-2) + content of polymer block (A-3) amount (parts by mass) ⁇ -vinyl bond amount in polymer block (A-2) x content of polymer block (A-2) (parts by mass)]/content of polymer block (A-3) (mass part)
  • ⁇ Modification amount (phr)> The amounts of modified hydrogenated products (Y-1) to (Y-3) described later with maleic anhydride were measured by the following procedure. After dissolving 5 g of each modified hydrogenated product in 180 ml of toluene, 20 ml of ethanol was added, titration was performed with a 0.1 mol/L potassium hydroxide solution, and the amount of modification was calculated using the following formula.
  • Maleic anhydride modification amount (phr) titration amount x 5.611/sample amount x 98 x 100/56.11 x 1000 ⁇ Modification amount (mol%)> From the maleic anhydride modified amount (phr) calculated above, the modified amount (mol %) was calculated using the following formula.
  • Maleic anhydride modification amount (mol%) ⁇ maleic anhydride modification amount (phr)/maleic anhydride molecular weight ⁇ / ⁇ maleic anhydride modification amount (phr)/maleic anhydride molecular weight + polymer block (A) content/ Polymer block (A) structural unit molecular weight + polymer block (B) content/polymer block (B) structural unit molecular weight ⁇ x 100
  • MFR Melt flow rate
  • modified hydrogenated product [Example 1-1] (Production of modified hydrogenated product (Y-1)) (1) Into a pressure-resistant container that has been purged with nitrogen and dried, 50 kg of cyclohexane as a solvent and 200 g of a cyclohexane solution of sec-butyllithium having a concentration of 10.5% by mass as an anionic polymerization initiator (substantial amount of sec-butyllithium added : 21 g) was charged. After raising the temperature inside the pressure vessel to 50°C, 1.5 kg of styrene (1) was added and polymerized for 1 hour.
  • styrene (2) 1.5 kg was further added and polymerized for 1 hour to obtain a reaction liquid containing a polystyrene-poly(isoprene/butadiene)-polystyrene triblock copolymer.
  • a Ziegler hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours.
  • Y '-1 a hydrogenated polystyrene-poly(isoprene/butadiene)-polystyrene triblock copolymer
  • Example 1-2 (Production of modified hydrogenated product (Y-2)) (1) Into a pressure vessel that has been purged with nitrogen and dried, 50 kg of cyclohexane as a solvent and 210 g of a cyclohexane solution of sec-butyllithium having a concentration of 10.5% by mass as an anionic polymerization initiator (substantial amount of sec-butyllithium added : 22.05 g) was charged. After raising the temperature inside the pressure vessel to 50° C., 1.5 kg of styrene (1) was added and polymerized for 1 hour.
  • styrene (2) 1.5 kg was further added and polymerized for 1 hour to obtain a reaction solution containing a polystyrene-polybutadiene-polystyrene triblock copolymer.
  • a Ziegler-type hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours. After allowing the reaction solution to cool and release the pressure, the catalyst is removed by washing with water and vacuum dried to obtain a hydrogenated polystyrene-polybutadiene-polystyrene triblock copolymer (hereinafter referred to as Y'-2 ).
  • Example 1-3 (Production of modified hydrogenated product (Y-3)) (1) A nitrogen-purged, dried pressure vessel is charged with 50 kg of cyclohexane as a solvent and 130 g of a cyclohexane solution of sec-butyllithium having a concentration of 10.5% by mass as an anionic polymerization initiator (substantial amount of sec-butyllithium added). : 13.65 g) was charged. After raising the temperature inside the pressure vessel to 50°C, 1.1 kg of styrene (1) was added and polymerized for 1 hour. 1.1 kg of styrene (2) was further added and polymerized for 1 hour.
  • the vinyl bond amount of the polymer block (A-2) of the modified hydrogenated product (Y-1) of Example 1-1 and the modified hydrogenated product (Y-3) of Example 1-3 The vinyl bond content of the polymer block (A-2) is 7 mol%, whereas the vinyl bond content of the polymer block (A-2) of the modified hydrogenated product (Y-2) of Example 1-2 is 40 mol %.
  • the modified hydrogenated product (Y-1) exhibits a tan ⁇ peak top strength of 0.57, a tan ⁇ peak top temperature lower than that of the modified hydrogenated product (Y-2), and excellent elasticity. I understand.
  • the modified hydrogenated product (Y-3) exhibits a tan ⁇ peak top strength of 0.60, a tan ⁇ peak top temperature lower than that of the modified hydrogenated product (Y-2), and excellent elasticity. I understand. Furthermore, since the MFRs of the modified hydrogenated products (Y-1) and (Y-3) are lower than that of the modified hydrogenated product (Y-2), shear is easily applied during kneading, and the resin composition (D1) , (D2) have good dispersion. Therefore, the modified hydrogenated products (Y-1) and (Y-3) can be said to have better elasticity and dispersibility in the resin composition than the modified hydrogenated product (Y-2).
  • each resin composition is as follows.
  • Polyamide Polyamide 6 (“UBE nylon 1013B” (trade name), manufactured by Ube Industries, Ltd.)
  • Antioxidant] ⁇ Antioxidant 1: Phenolic antioxidant (“ADEKA STAB AO-60” (trade name), manufactured by ADEKA Co., Ltd.)
  • tensile strength and tensile breaking strain A test piece having a length of 150 mm and a width of 15 mm was prepared from the film obtained from the resin composition of each example, and an autograph (manufactured by Shimadzu Corporation) was prepared according to JIS K7127: 1999. was used to measure the tensile strength (MPa) in the TD direction and the tensile breaking strain (%) at a tensile speed of 500 mm / min.
  • the tensile strength is preferably 9.0 MPa or more, more preferably 17.0 MPa or more
  • the tensile breaking strain is preferably 50% or more, more preferably 200% or more.
  • ⁇ Tensile impact value> From the film obtained from the resin composition of each example, according to JIS K7160-1996-A (Inbase method), 3-shaped test pieces were prepared in the TD direction, and the "impact tester" manufactured by Toyo Seiki Seisakusho Co., Ltd. IT" was used to measure the tensile impact value (kJ/m 2 ) in the TD direction with a hammer load of 4 J.
  • the tensile impact value is preferably 650 kJ/m 2 or more, more preferably 750 kJ/m 2 or more.
  • ⁇ Haze> The haze (%) of the film obtained from the resin composition of each example was measured according to JIS K 7136:2000 using "HR-100" manufactured by Murakami Color Research Laboratory.
  • Table 2 shows the types and amounts of each component used to prepare Resin Compositions 1 to 7, film forming conditions, and physical property measurement results.
  • Examples 2-1 to 2-2 and 2-7 correspond to Examples, and Examples 2-3 to 2-6 correspond to Comparative Examples.
  • the films obtained from resin compositions 1 to 2 and 7 have higher tensile strength, tensile strain at break, and impact resistance than the films obtained from resin compositions 3 to 6. It turns out that it is excellent in balance. It is also found that the resin compositions 1 and 7 using low-density polyethylene as the polyolefin resin are excellent in the transparency of the obtained films.
  • the tensile breaking strain is significantly improved, and the tensile strength is high. It turns out that you are.
  • the modified hydrogenated additive of the present invention has a good effect as a compatibilizer, so that the modified hydrogenated additive forms a core-shell structure having a layer with a thickness of several nanometers around the polyamide, which is a polar resin. It is presumed that the interfacial strength was improved by finely dispersing the polyamide having the core-shell structure in the polyolefin.
  • the resin compositions 1 to 2 and 7 containing the modified hydrogenated products of the present invention and the resin compositions 4 and 6 containing modified hydrogenated products that do not satisfy the provisions of the present invention, the resin compositions of the examples It can be seen that the material tends to increase the tensile impact value. This is because the compatibility of the modified hydrogenated product that does not satisfy the provisions of the present invention is different from that of the modified hydrogenated product of the present invention, there is a bias in the dispersion of the polar resin (C), and the dispersion diameter is also different. This is presumed to be because
  • each resin composition is as follows.
  • [Modified hydrogenated product (A)] ⁇ Modified hydrogenated product Y-1 ⁇ Modified hydrogenated product Y-2 ⁇ Modified hydrogenated product Y-3
  • Poly resin (C)] ⁇ Polybutylene terephthalate: “Toraycon 1401” (trade name), manufactured by Toray Industries, Inc.
  • ⁇ Bending elastic modulus and bending strength> Cut both ends of the ISO multi-purpose test piece to prepare a test piece with a length of 80 mm, a width of 10 mm, and a thickness of 4 mm. Seisakusho) was used to measure the flexural modulus (MPa) and flexural strength (MPa) at a test speed of 2 mm/min. Table 3 shows the measurement results.
  • Both ends of the ISO multi-purpose test piece were cut to prepare a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm.
  • a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm.
  • a digital impact tester IT type manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Charpy impact value at 23 ° C. (kJ / m 2 ) was measured.
  • Table 3 shows the measurement results.
  • the Charpy impact value is preferably 5.0 kJ/m 2 or more, more preferably 25.0 kJ/m 2 or more.
  • Examples 3-1 to 3-2 and 3-7 correspond to Examples, and Examples 3-3 to 3-6 correspond to Comparative Examples.
  • Both ends of the ISO multi-purpose test piece were cut to prepare a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm.
  • a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm.
  • a digital impact tester IT type manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Charpy impact value at 23 ° C. (kJ / m 2 ) was measured.
  • Table 4 shows the measurement results.
  • the Charpy impact value is preferably 20.0 kJ/m 2 or more, more preferably 25.0 kJ/m 2 or more.
  • the flame retardancy evaluation apparatus 10 includes a support member (metal pedestal) 100, a metal rod 200 erected on the support member (metal pedestal) 100, and fixed to the metal rod 200. and a metal container 500 held by the second clamp 400 .
  • a metal container 500 contains water.
  • the prepared test piece 20 is held by the first clamp 300 .
  • A represents 100 ⁇ 1 mm
  • B represents 25 ⁇ 1 mm
  • C represents about 30°.
  • the test procedure for evaluating flame retardancy is as follows. (1) As shown in FIG. 4, the flame 40 from the burner 30 is brought into contact with the test piece 20 for 10 seconds. (2) Next, the flame 40 is moved away from the test piece 20 and time measurement is started. (3) Next, the time until the combustion distance reached 25 mm was measured. Table 4 shows the results. Here, if the combustion stops before the combustion distance reaches 25 mm, it is defined as "nonflammable”. Table 4 shows the evaluation results. In Table 4, the flame retardancy is preferably 1 minute and 30 seconds or longer, and more preferably "nonflammable".
  • Example 4-1 and 4-2 correspond to Examples
  • Example 4-3 corresponds to Comparative Example.
  • the resin composition of the example has tensile strength, tensile breaking strain , excellent balance of mechanical properties such as impact resistance, and improved flame retardancy. This is because the interfacial strength was improved by the interaction between the modified hydrogenated product and magnesium hydroxide (filler), which improved the tensile strength, and the magnesium hydroxide (filler) was more dispersed in the resin composition. This is presumed to be due to the improved flame retardancy.
  • the resin composition containing the modified hydrogenated product of the present invention and a polyolefin resin or a polyolefin resin and a polar resin has an excellent balance of mechanical properties such as tensile strength, tensile breaking strain, and impact resistance. Therefore, the modified hydrogenated product of the present invention can be suitably used when recycling various packaging containers in which polyolefin resins and polar resins are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

添加することにより、引張強さ、引張破壊ひずみ、耐衝撃性などの機械的特性のバランスに優れた樹脂組成物を得ることができる、ブロック共重合体の水素添加物の変性物を提供する。芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック及び共役ジエン化合物に由来する構造単位を含有する重合体ブロックを含むブロック共重合体の変性水素添加物であって、前記共役ジエン化合物が、イソプレンと、イソプレン以外の共役ジエン化合物とを含有し、前記重合体ブロックのビニル結合量が30モル%以下であり、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、損失正接のピークトップ強度が0.95以下であり、メルトフローレート(MFR)が0.5g/10min以上である、変性水素添加物。

Description

変性水添ブロック共重合体及び樹脂組成物
 本発明は、変性水添ブロック共重合体及び樹脂組成物に関し、特に、変性水添ブロック共重合体及び該変性水添ブロック共重合体を含む樹脂組成物に関する。
 芳香族ビニル化合物に由来する構造単位を含有する重合体ブロックと、共役ジエン化合物に由来する構造単位を含有する重合体ブロックとを有するブロック共重合体又はその水素添加物を変性して反応性を有する官能基を導入した変性物は、極性樹脂と非極性樹脂とを相容化するための相容化剤として用い得ることが知られている。
 例えば、特許文献1~4には、ポリオレフィン樹脂と、ポリアミド樹脂と、相容化剤とが配合された樹脂組成物において、相容化剤として、オレフィン系エラストマーやスチレン系エラストマーの変性物が用いられることが記載されている。このうち、特許文献1、2、4には、上記スチレン系エラストマーとして、芳香族ビニル化合物と共役ジエン化合物とのブロック共重合体及びその水素添加物が挙げられることが記載されている。
 また、特許文献5には、ポリアミド樹脂と、変性ポリオレフィンを含むポリオレフィン樹脂との混合物を含むブロー成型用組成物が記載されており、上記ポリオレフィン樹脂がポリオレフィン樹脂と変性ポリオレフィンとを含むものでもよいことが記載されている。
国際公開第2017/169814号 特開2013-147645号公報 特開2013-147648号公報 国際公開第2017/094738号 特開平6-234897号公報
 上記ブロック共重合体又はその水素添加物の変性物の利用が広まるにつれて、様々な用途に適するように、極性樹脂と非極性樹脂とをより良好に相容化し、得られる樹脂組成物の特性を向上し得る、相容化剤としてのブロック共重合体又はその水素添加物の変性物が求められている。
 例えば、包装容器は、一般的にバリア性や強度向上のため、ポリオレフィン系樹脂、又はポリオレフィン系樹脂と極性樹脂との積層体が用いられる場合が多い。このような包装容器は、使用後の廃棄物削減や、化石資源の使用量削減と有効活用による循環型社会を目指す視点で、リサイクル使用が望まれる。
 しかしながら、ポリオレフィン系樹脂と極性樹脂とを含む樹脂組成物については、その各種物性の観点から、なお検討の余地があるのが実情である。
 そこで本発明は、添加することにより、引張強さ、引張破壊ひずみ、耐衝撃性などの機械的特性のバランスに優れた樹脂組成物を得ることができるブロック共重合体の水素添加物の変性物を提供することを課題とする。
 また、本発明は、機械的特性の上記バランスに優れた上記樹脂組成物を提供することを他の課題とする。
 本発明者らは、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック及び共役ジエン化合物に由来する構造単位を含有する重合体ブロックを含む、特定のブロック共重合体の変性水素添加物が、上記課題を解決し得ることを見出し、本発明を完成させるに至った。
 本発明は、下記[1]~[17]に関する。
[1]芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物であって、
 前記共役ジエン化合物が、イソプレンと、イソプレン以外の共役ジエン化合物とを含有し、
 前記重合体ブロック(A-2)のビニル結合量が30モル%以下であり、
 アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
 JIS K7244-10:2005に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+120℃、昇温速度3℃/分の条件で測定した損失正接(tanδ)のピークトップ強度が0.95以下であり、
 JIS K7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレート(MFR)が0.5~15g/10min以上である、変性水素添加物(A)。
[2]重量平均分子量が10,000~400,000である、上記[1]に記載の変性水素添加物(A)。
[3]重合体ブロック(A-2)の水素添加率が80モル%以上である、上記[1]又は[2]に記載の変性水素添加物(A)。
[4]前記官能基の含有量が、前記変性水素添加物(A)に対して、0.1~5.0phrである、上記[1]~[3]のいずれかに記載の変性水素添加物(A)。
[5]無水マレイン酸由来の基を有する、上記[1]~[4]のいずれかに記載の変性水素添加物(A)。
[6]前記ブロック共重合体が、イソプレン由来の構造単位を含む重合体ブロック(A-3)をさらに有し、
 前記ブロック共重合体の結合形式が、重合体ブロック(A-1)をAで、重合体ブロック(A-2)をBで、重合体ブロック(A-3)をCで表したとき、A-B-A-Cで示されるテトラブロック共重合体である、上記[1]~[5]のいずれかに記載の変性水素添加物(A)。
[7]前記ブロック共重合体中の前記重合体ブロック(A-3)の比率が、前記ブロック共重合体全体の40質量%以下である、上記[6]に記載の変性水素添加物(A)。
[8]前記重合体ブロック(A-3)のビニル結合量が2~90モル%である、上記[6]又は[7]に記載の変性水素添加物(A)。
[9]前記重合体ブロック(A-3)中のイソプレンに由来する構造単位の含有量は、前記重合体ブロック(A-3)の合計質量に基づいて、40質量%以上である、上記[6]~[8]のいずれかに記載の変性水素添加物(A)。
[10]前記変性水素添加物(A)における前記重合体ブロック(A-3)の水素添加率(水添率)が80モル%以上である、上記[6]~[9]のいずれかに記載の変性水素添加物(A)。
[11]上記[1]~[10]のいずれかに記載の変性水素添加物(A)を含む、ペレット。
[12]上記[1]~[10]のいずれかに記載の変性水素添加物(A)と、ポリオレフィン系樹脂(B)とを含む樹脂組成物。
[13]ポリオレフィン系樹脂(B)が、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン酢酸ビニル共重合体、α-オレフィンの単独重合体又は共重合体、及び、プロピレン及び/又はエチレンとα-オレフィンとの共重合体からなる群から選択される少なくとも1種の樹脂である、上記[12]に記載の樹脂組成物。
[14]前記樹脂組成物中における変性水素添加物(A)の含有量が1~30質量%である、上記[12]又は[13]に記載の樹脂組成物。
[15]極性樹脂(C)をさらに含む、上記[12]~[14]のいずれかに記載の樹脂組成物。
[16]極性樹脂(C)が、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンサルファイド系樹脂、及びポリカーボネート系樹脂からなる群より選択される少なくとも1種の樹脂である、上記[15]に記載の樹脂組成物。
[17]前記樹脂組成物中の、ポリオレフィン系樹脂(B)の質量をX、極性樹脂(C)の質量をYとするとき、X/Yが90/10~10/90である、上記[15]又は[16]に記載の樹脂組成物。
 本発明により、添加することにより、引張強さ、引張破壊ひずみ、耐衝撃性などの機械的特性のバランスに優れた樹脂組成物を得ることができるブロック共重合体の水素添加物の変性物及び該変性物を含む樹脂組成物を提供することができる。
図1は、例2-1の樹脂組成物1のモルフォロジーの観察のための透過型電子顕微鏡(TEM)による写真である。 図2は、例2-3の樹脂組成物3のモルフォロジーの観察のための透過型電子顕微鏡(TEM)による写真である。 図3は、例2-4の樹脂組成物4のモルフォロジーの観察のための透過型電子顕微鏡(TEM)による写真である。 図4は、難燃性評価を説明するための図である。
 以下、本発明の実施形態について説明する。
 本明細書における記載事項を任意に選択した態様又は任意に組み合わせた態様も本発明に含まれる。
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構造単位」を意味し、例えば「プロピレン単位」とは「プロピレンに由来する構造単位」を意味する。
 本明細書において、「AAを主体とするBB」という場合、BBに少なくともAAが50質量%超含まれていることを意味する。
[変性水素添加物(A)]
 本発明の実施形態に係る変性水素添加物(A)は、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物であって、
 前記共役ジエン化合物が、イソプレンと、イソプレン以外の共役ジエン化合物とを含有し、
 前記重合体ブロック(A-2)のビニル結合量が30モル%以下であり、
 アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
 JIS K7244-10:2005に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+120℃、昇温速度3℃/分の条件で測定した損失正接(tanδ)のピークトップ強度が0.95以下であり、
 JIS K7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレート(MFR)が0.5g/10min以上である。
 なお、本明細書において、「酸無水物由来の基」とは、酸無水物が有していた2つのカルボン酸基を脱水縮合させて得られる構造を備えた基を意味しており、酸無水物が無水マレイン酸の場合、例えば、下記に示す構造を有する基である。
Figure JPOXMLDOC01-appb-C000001
 以下、上記ブロック共重合体を符号(A0)で、ブロック共重合体(A0)の水素添加物を符号(A1)で表すことがある。また、ブロック共重合体(A0)の水素添加物を「水添ブロック共重合体(A1)」ということがある。
 変性水素添加物(A)は、ブロック共重合体(A0)の水素添加物(A1)の変性物、又は、ブロック共重合体(A0)の変性物の水素添加物である。
 変性水素添加物(A)の原料としてブロック共重合体(A0)を用いていることにより、耐衝撃性等の機械的特性を、後述する樹脂組成物に付与することができる。また、ブロック共重合体を水素添加していることにより、熱安定性も高めやすくなる。
 更に、重合体ブロック(A-2)のビニル結合量(つまり、重合体ブロック(A-2)における3,4-結合単位及び1,2-結合単位の含有量)が30モル%以下であることにより、引張強さ、引張破壊ひずみなどの機械的特性を高めることができる。このため、変性水素添加物(A)が有する柔軟性、耐衝撃性等の特性を、後述する樹脂組成物においても発現しやすくなる。
 加えて、変性によって所定の官能基が導入されているため、後述する樹脂組成物における相容性を高めることができるとともに、金属やその他の各種材料に対して高い接着性を持つようになる。
 次に、変性水素添加物(A)を得るための、ブロック共重合体(A0)又はその水素添加物(A1)の構成成分とその使用割合、及び、特性等について説明する。なお、これらは変性前の物質であるが、ブロック共重合体(A0)や水添ブロック共重合体(A1)が有する重合体ブロック(A-1)及び重合体ブロック(A-2)を変性水素添加物(A)も有しており、変性を行ってもそれらの主骨格に変化はない。そのため、以下の重合体ブロック(A-1)及び重合体ブロック(A-2)に関する説明は、変性水素添加物(A)にも共通するものである。
(ブロック共重合体(A0))
 ブロック共重合体(A0)は、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)と、共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)とを有するものである。以下に、重合体ブロック(A-1)及び重合体ブロック(A-2)について説明する。
(重合体ブロック(A-1)の構成)
 ブロック共重合体(A0)を構成する重合体ブロック(A-1)は、耐熱性及び耐衝撃性等の機械的特性の観点から、モノマーとして用いられる芳香族ビニル化合物に由来する構造単位を有することが好ましい。
 重合体ブロック(A-1)は、芳香族ビニル化合物に由来する構造単位(以下、「芳香族ビニル化合物単位」と略称することがある。)を、重合体ブロック(A-1)中70モル%超含有することが好ましく、耐衝撃性等の機械的特性の観点から、より好ましくは80モル%以上、更に好ましくは90モル%以上、より更に好ましくは95モル%以上であり、実質的に100モル%であることが特に好ましい。換言すれば、重合体ブロック(A-1)中の芳香族ビニル化合物単位の含有量は、好ましくは70モル%超100モル%以下である。
 上記芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、2,6-ジメチルスチレン、2,4-ジメチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、2,4,6-トリメチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジイソプロピルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、o-ブロモメチルスチレン、m-ブロモメチルスチレン、p-ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン、N-ビニルカルバゾール等が挙げられる。これらの芳香族ビニル化合物は1種単独で用いてもよく、2種以上用いてもよい。なかでも、製造コストと物性バランスの観点から、スチレン、α-メチルスチレン、p-メチルスチレン、及びこれらの混合物が好ましく、スチレンがより好ましい。
 本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-1)は芳香族ビニル化合物以外の他の不飽和単量体に由来する構造単位(以下、「他の不飽和単量体単位」と略称することがある。)を含有してもよいが、重合体ブロック(A-1)中好ましくは30モル%以下、より好ましくは20モル%未満、更に好ましくは15モル%未満、より更に好ましくは10モル%未満、より更に好ましくは5モル%未満、特に好ましくは0モル%である。換言すれば、重合体ブロック(A-1)中の他の不飽和単量体単位の含有量は、好ましくは0~30モル%である。
 該他の不飽和単量体としては、例えばブタジエン、イソプレン、β-ファルネセン、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン等からなる群から選択される少なくとも1種が挙げられる。重合体ブロック(A-1)が該他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。
 ブロック共重合体(A0)は、前記重合体ブロック(A-1)を少なくとも1つ有していればよい。ブロック共重合体(A0)が重合体ブロック(A-1)を2つ以上有する場合には、それら重合体ブロック(A-1)は、同一であっても異なっていてもよい。なお、本明細書において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、重量平均分子量、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、テーパー、ブロック)のうち少なくとも1つが異なることを意味する。
 ブロック共重合体(A0)は、重合体ブロック(A-1)を2つ有していることが好ましい。
(重合体ブロック(A-1)の重量平均分子量)
 重合体ブロック(A-1)の重量平均分子量(Mw)は、成形加工性及び機械的特性の観点から、好ましくは2,000~60,000、より好ましくは3,000~50,000、更に好ましくは4,000~40,000、より更に好ましくは5,000~30,000である。
 重合体ブロック(A-1)の重量平均分子量(Mw)は、例えば、重合に用いる重合開始剤に対する芳香族ビニル化合物の量を調整することにより、上記範囲とすることができる。
 なお、本明細書及び特許請求の範囲に記載の「重量平均分子量(Mw)」は全て、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算のMwであり、詳細な測定方法は実施例に記載の方法に従うことができる。ブロック共重合体が有する各重合体ブロックのMwは、製造工程において各重合体ブロックの重合が終了する都度、サンプリングした液を測定することで求めることができる。また、例えば、2種類の重合体ブロック(A)を「A1」「A2」、1種類の重合体ブロック(B)を「B」で表したときに、A1-B-A2の構造を有するトリブロック共重合体の場合は、重合体ブロック「A1」及び重合体ブロック「B」のMwを上記方法により求め、ブロック共重合体のMwからそれらを引き算することにより、重合体ブロック「A2」のMwを求めることができる。また、他の方法として、上記A1-B-A2構造を有するトリブロック共重合体の場合は、重合体ブロック「A1」及び「A2」の合計のMwは、ブロック共重合体のMwとH-NMR測定で確認する重合体ブロック「A1」及び「A2」の合計含有量から算出し、GPC測定によって、失活した最初の重合体ブロック「A1」のMwを算出し、これを引き算することによって重合体ブロック「A2」のMwを求めることもできる。
(重合体ブロック(A-1)の含有量)
 ブロック共重合体(A0)における重合体ブロック(A-1)の含有量(複数の重合体ブロック(A-1)を有する場合はそれらの合計含有量)は、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、特に好ましくは25質量%以下である。
 重合体ブロック(A-1)の含有量が50質量%以下であれば、適度な柔軟性を有するブロック共重合体(A0)又は水添ブロック共重合体(A1)とすることができる。また、重合体ブロック(A-1)の含有量は、好ましくは4質量%以上、より好ましくは5質量%以上、更に好ましくは6質量%以上である。重合体ブロック(A-1)の含有量が4質量%以上であれば、後述する樹脂組成物の各種用途に好適な耐衝撃性等の機械的特性、成形加工性等の取扱い性を有するブロック共重合体(A0)又は水添ブロック共重合体(A1)とすることができる。換言すれば、ブロック共重合体(A0)又は水添ブロック共重合体(A1)における重合体ブロック(A-1)の含有量は、好ましくは4~50質量%である。
 なお、ブロック共重合体における重合体ブロック(A-1)の含有量は、H-NMR測定により求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
(重合体ブロック(A-2)の構成)
 ブロック共重合体(A0)を構成する重合体ブロック(A-2)は、柔軟性等の観点から、共役ジエン化合物に由来する構造単位(以下、「共役ジエン化合物単位」と称すことがある。)を有する。
 重合体ブロック(A-2)は、共役ジエン化合物単位を30モル%以上含有することが好ましい。なかでも柔軟性の観点から、重合体ブロック(A-2)は、共役ジエン化合物単位を、より好ましくは50モル%以上、更に好ましくは65モル%以上、より更に好ましくは80モル%以上、より更に好ましくは90モル%以上、実質的に100モル%含有することが特に好ましい。
 上記共役ジエン化合物は、優れた強度を発現しやすい観点から、イソプレンと、イソプレン以外の共役ジエン化合物とを含有し、好ましくはイソプレン及びブタジエンを含有する。
 イソプレンとイソプレン以外の共役ジエン化合物とを含有することによって、例えば、本発明の変性水素添加物(A)を性質の異なる複数の樹脂とともに組成物とした場合、良好な相容効果をもたらすことができる。
 また共役ジエン化合物として、後述する通り、イソプレン及びブタジエン以外の共役ジエン化合物を含有してもよい。一方で、優れた強度を発現しやすい観点から、共役ジエン化合物におけるイソプレンの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは40質量%以上、より更に好ましくは45質量%以上である。
 また、共役ジエン化合物がブタジエンとイソプレンの混合物である場合、それらの混合比率[イソプレン/ブタジエン](質量比)は、耐衝撃性、特に低温耐衝撃性の観点から、好ましくは5/95~95/5、より好ましくは10/90~90/10、更に好ましくは40/60~70/30、特に好ましくは45/55~65/35である。なお、該混合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95~95/5、より好ましくは10/90~90/10、更に好ましくは40/60~70/30、特に好ましくは45/55~55/45である。
 共役ジエン化合物としては、上記イソプレン及びブタジエン以外に、β-ファルネセン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ミルセン等を挙げることができる。共役ジエン化合物は、1種単独で用いてもよく、2種以上用いてもよい。
 また、本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-2)は共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有してもよい。この場合、重合体ブロック(A-2)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは70モル%未満、より好ましくは50モル%未満、更に好ましくは35モル%未満、特に好ましくは20モル%未満である。共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量の下限値に特に制限はないが、0モル%であってもよいし、5モル%であってもよいし、10モル%であってもよい。
 該他の重合性の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。なかでも、スチレン、α-メチルスチレン、p-メチルスチレンが好ましく、スチレンがより好ましい。
 また、ブロック共重合体(A0)は、重合体ブロック(A-2)を少なくとも1つ有していればよい。ブロック共重合体(A0)が重合体ブロック(A-2)を2つ以上有する場合には、それら重合体ブロック(A-2)は、同一であっても異なっていてもよい。重合体ブロック(A-2)が、2種以上の構造単位を有している場合は、それらの結合形態はランダム、テーパー、完全交互、一部ブロック状、ブロック、又はそれらの2種以上の組み合わせからなっていてもよい。
 共役ジエン化合物の結合形態は、本発明の目的及び効果を損なわない限りにおいて、特に制限はない。例えば、重合体ブロック(A-2)を構成する構造単位がイソプレン及びブタジエンの混合物単位である場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。
 なお、本明細書では、重合体ブロック(A-2)におけるブタジエン単位においては、1,2-結合量をビニル結合量といい、重合体ブロック(A-2)におけるイソプレン単位においては、1,2-結合量及び3,4-結合量の合計量をビニル結合量といい、重合体ブロック(A-2)の全結合形態におけるビニル結合量の含有量を「重合体ブロック(A-2)のビニル結合量(モル%)」と称し、ブロック共重合体(A0)全体におけるビニル結合量の含有量を「ブロック共重合体(A0)のビニル結合量(モル%)」と称することもある。1,2-結合量及び3,4-結合量は、実施例と同様に、H-NMR測定によって算出できる。
(重合体ブロック(A-2)のビニル結合量)
 ブロック共重合体(A0)においては、重合体ブロック(A-2)における3,4-結合単位及び1,2-結合単位の含有量(つまりビニル結合量)の合計は30モル%以下であり、好ましくは25モル%以下であり、より好ましくは20モル%以下であり、更に好ましくは15モル%以下である。重合体ブロック(A-2)におけるビニル結合量が30モル%以下であれば樹脂組成物の機械的特性を向上させることができるとともに、低温特性の発現に寄与することができ、更に25モル%以下であれば低温特性がより良好となり、ビニル結合量が減少するに伴い低温特性が向上する傾向がある。
 また、重合体ブロック(A-2)におけるビニル結合量は、2モル%以上であってもよく、5モル%以上であってもよい。
 ここで、ビニル結合量は、H-NMR測定によって求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
(重合体ブロック(A-2)の重量平均分子量)
 重合体ブロック(A-2)の重量平均分子量(Mw)は、特に制限はないが、水素添加前のブロック共重合体(A0)が有する重合体ブロック(A-2)の合計のMwが、好ましくは10,000~200,000、より好ましくは20,000~180,000、更に好ましくは30,000~160,000、より更に好ましくは35,000~140,000、より更に好ましくは40,000~130,000である。重合体ブロック(A-2)の合計の重量平均分子量が、上記範囲内であればより優れた柔軟性を発現しやすくなる。
(重合体ブロック(A-2)の含有量)
 ブロック共重合体(A0)における重合体ブロック(A-2)の含有量は、好ましくは96質量%以下、より好ましくは95質量%以下、更に好ましくは94質量%以下である。重合体ブロック(A-2)の含有量が、96質量%以下であれば、各種用途に好適な機械的特性、力学物性、及び成形性を有する変性水素添加物(A)又はこれを含有する樹脂組成物とすることが容易となる。また、ブロック共重合体における重合体ブロック(A-2)の含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは75質量%以上である。重合体ブロック(A-2)の含有量が、50質量%以上であれば、柔軟性に優れた変性水素添加物(A)とすることができる。
(重合体ブロック(A-2)における他の構造単位)
 重合体ブロック(A-2)は、本発明の目的及び効果の妨げにならない限り、前記共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有していてもよい。この場合、重合体ブロック(A-2)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは50モル%未満、より好ましくは30モル%未満、更に好ましくは20モル%未満、より更に好ましくは10モル%未満、特に好ましくは0モル%である。換言すれば、重合体ブロック(A-2)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは0モル%以上50モル%未満である。
 該他の重合性の単量体としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、N-ビニルカルバゾール、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。
 変性水素添加物(A)、又は、未変性の水添ブロック共重合体である水添ブロック共重合体(A1)においては、重合体ブロック(A-2)の水素添加率は0モル%超である。つまり、重合体ブロック(A-2)が有する炭素-炭素二重結合の少なくとも一部が水素添加されている。
 重合体ブロック(A-2)の水素添加率は、耐候性および耐熱性の観点から、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは87モル%以上である。上限に特に制限はないが、例えば、99.8モル%以下とすることができる。換言すれば、重合体ブロック(A-2)の水素添加率は、好ましくは80~99.8モル%である。
 重合体ブロック(A-2)の水素添加率は、例えば、水素添加触媒の量や水素添加の反応時間を制御することにより、上記範囲にすることができる。
 なお、上記水素添加率は、重合体ブロック(A-2)中の共役ジエン化合物由来の構造単位中の炭素-炭素二重結合の含有量を、水素添加後のH-NMR測定によって求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
(重合体ブロック(A-1)と重合体ブロック(A-2)の結合様式)
 ブロック共重合体(A0)は、重合体ブロック(A-1)と重合体ブロック(A-2)とが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合様式のいずれでもよい。なかでも、重合体ブロック(A-1)と重合体ブロック(A-2)の結合形式は直鎖状であることが好ましく、その例としては重合体ブロック(A-1)をAで、また重合体ブロック(A-2)をBで表したときに、A-Bで示されるジブロック共重合体、A-B-A又はB-A-Bで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-A又はB-A-B-A-Bで示されるペンタブロック共重合体、(A-B)nZ型共重合体(Zはカップリング剤残基を表し、nは3以上の整数を表す)等を挙げることができる。なかでも、直鎖状のトリブロック共重合体、又はジブロック共重合体が好ましく、A-B-A型のトリブロック共重合体が、柔軟性、製造の容易性等の観点から好ましく用いられる。
 A-B-A型のトリブロック共重合体として具体的には、スチレン-水添ブタジエン/イソプレン-スチレン共重合体が挙げられる。すなわち、ブロック共重合体として、スチレン-水添ブタジエン/イソプレン-スチレン共重合体を含むことが好ましい。
 ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は1つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来、厳密にはY-Z-Y(Zはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA-B-Z-B-A(Zはカップリング剤残基を表す)と表記されるべきブロック共重合体はA-B-Aと表記され、トリブロック共重合体の一例として取り扱われる。
 また、ブロック共重合体(A0)には、本発明の目的を損なわない範囲内で、重合体ブロック(A-1)及び重合体ブロック(A-2)以外の、重合性単量体からなる重合体ブロック(A-3)が存在していてもよい。重合体ブロック(A-3)はイソプレン(Ip)由来の構造単位を含むことが好ましく、該重合体ブロック(A-3)中のイソプレン(Ip)に由来する構造単位の含有量は、重合体ブロック(A-3)の合計質量に基づいて、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上である。また、重合体ブロック(A-3)中のイソプレン(Ip)由来の構造単位の上限については特に制限はなく、イソプレン(Ip)由来の構造単位を実質的に100質量%含む重合体ブロック(A-3)とすることもできる。
 重合体ブロック(A-3)を構成する共役ジエン化合物としては、イソプレン(Ip)単位を主体とし、さらに、例えば、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等から選択される少なくとも1種を含んでもよい。
 一方、重合体ブロック(A-3)がブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む場合は、ブタジエン(Bd)単位及びイソプレン(Ip)単位の含有割合(ブタジエン単位/イソプレン単位)(モル比)としては、性能向上等の観点から、好ましくは10/90~90/10、より好ましくは30/70~70/30、特に好ましくは40/60~60/40である。
 重合体ブロック(A-3)のビニル結合量(1,2-結合単位及び3,4-結合単位の合計量)については特に制限はないが、好ましくは2~90モル%の範囲である。本発明の変性水素添加物(A)の好ましい実施態様の1つは、前記変性水素添加物(A)及びプロピレン系ポリマーを含む組成物である。前記プロピレン系ポリマーとしては、ホモポリプロピレン(ホモPP)、プロピレンとα-オレフィンコモノマーとのランダム共重合体(ランダムPP)及びブロックポリプロピレン(ブロックPP)などのポリプロピレンや、プロピレン系エラストマー(エクソンモービルケミカル社製「Vistamaxx」シリーズなど)が挙げられる。前記変性水素添加物(A)と前記プロピレン系ポリマーとの相容性の改善を特に重視する場合、(A-3)のビニル結合量(イソプレン(Ip)の1,2-結合単位及び3,4-結合単位、並びにブタジエン(Bd)の1,2-結合単位の合計量)は、好ましくは45~90モル%であり、より好ましくは50~90モル%であり、更に好ましくは55~85モル%である。
 また、前記変性水素添加物(A)と前記プロピレン系ポリマーとの相容性の改善を特に重視する場合においては、重合体ブロック(A-3)はイソプレン(Ip)由来の構造単位を実質的に100質量%含む重合体ブロック、又はブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む重合体ブロックであることが好ましく、ブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む重合体ブロックであることがより好ましい。一方、前記変性水素添加物(A)及び前記プロピレン系ポリマーを含む組成物の耐衝撃の改善を特に重視する場合、重合体ブロック(A-3)のビニル結合量(イソプレン(Ip)の1,2-結合単位及び3,4-結合単位、並びにブタジエン(Bd)の1,2-結合単位の合計量)は、好ましくは2~30モル%、より好ましくは2~25モル%、更に好ましくは3~20モル%、より更に好ましくは4~15モル%、特に好ましくは5~10モル%である。
 また、前記変性水素添加物(A)が、前記プロピレン系ポリマー以外のポリマーとともに用いられることも、本発明の好ましい実施態様の1つである。前記組成物の耐衝撃性及び/又は耐ヒートショック性を改善する観点からは、重合体ブロック(A-3)はイソプレン(Ip)由来の構造単位を実質的に100質量%含む重合体ブロック、又はブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む重合体ブロックであることが好ましく、ブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む重合体ブロックであることがより好ましい。かかる実施態様の場合、(A-3)のビニル結合量は、好ましくは2~30モル%、より好ましくは2~25モル%、更に好ましくは3~20モル%、より更に好ましくは4~15モル%、特に好ましくは5~10モル%である。
 また、重合体ブロック(A-3)が有する炭素-炭素二重結合は、重合体ブロック(A-2)と同様に、後述する樹脂組成物における変性水素添加物(A)とポリオレフィン系樹脂(B)との親和性の観点から、少なくとも一部が水素添加されているものが好ましい。水添ブロック共重合体(A1)における重合体ブロック(A-3)の水素添加率(水添率)は、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは87モル%以上である。上限に特に制限はないが、例えば、99.8モル%以下とすることができる。換言すれば、重合体ブロック(A-3)の水素添加率は、好ましくは80~99.8モル%である。
 重合体ブロック(A-3)の水素添加率は、例えば、水素添加の反応時間を制御することにより、上記範囲にすることができる。
 水添ブロック共重合体(A1)における重合体ブロック(A-3)の水素添加率が上述の範囲にあることで、後述する樹脂組成物における変性水素添加物(A)がポリオレフィン系樹脂(B)との間に良好な親和性を示し、その結果、かかる樹脂組成物の耐衝撃性がより優れたものとなる傾向がある。
 重合体ブロック(A-1)をAで、重合体ブロック(A-2)をBで、そして重合体ブロック(A-3)をCで表したとき、ブロック共重合体の構造としては、A-B-Cで示されるトリブロック共重合体、A-B-C-Aで示されるテトラブロック共重合体、A-B-A-Cで示されるテトラブロック共重合体、などが挙げられる。この中でも、後述する、本発明の樹脂組成物の耐衝撃性の観点から、A-B-A-Cで示されるテトラブロック共重合体であることが好ましい。かかる本発明の樹脂組成物において、特に成形性と耐衝撃性とのバランスを重視する場合は、ブロック共重合体(C)の結合形式としては、A-B-A-Bで示されるテトラブロック共重合体又はA-B-A-Cで示されるテトラブロック共重合体、すなわち、末端ブロックにB又はCで表される重合体ブロックを有するテトラブロック共重合体であることが好ましい。
 水添ブロック共重合体(A1)が、A-B-A-Bで示されるテトラブロック共重合体又はA-B-A-Cで示されるテトラブロック共重合体の構造を有する場合の、水添ブロック共重合体(A1)中の末端ブロックB又はCの比率は、より優れた成形性と耐衝撃性とのバランスが得られる観点からは、水添ブロック共重合体(A1)全体の好ましくは40質量%以下、より好ましくは1~35質量%、更に好ましくは4~30質量%、特に好ましくは12~30質量%である。下限に特に制限はないが、例えば、1質量%でもよい。
(ブロック共重合体(A0)及び水添ブロック共重合体(A1)の重量平均分子量)
 ブロック共重合体(A0)及び水添ブロック共重合体(A1)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めた重量平均分子量(Mw)は、好ましくは10,000~400,000であり、より好ましくは30,000~300,000であり、更に好ましくは50,000~200,000、特に好ましくは70,000~150,000である。ブロック共重合体(A0)及び水添ブロック共重合体(A1)のMwが10,000以上であれば、耐熱性が高くなり、400,000以下であれば、変性水素添加物(A)を含有する、後述する樹脂組成物の取扱い性が良好となる。
(ブロック共重合体(A0)の分子量分布)
 ブロック共重合体(A0)の分子量分布(Mw/Mn)は、好ましくは1.00~2.00、より好ましくは1.00~1.60、更に好ましくは1.00~1.40、より更に好ましくは1.00~1.20である。分子量分布が前記範囲内であると、ブロック共重合体(A0)の取り扱いが容易である。
(官能基)
 変性水素添加物(A)は、例えば、上記ブロック共重合体(A0)を水素添加した水添ブロック共重合体(A1)に、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有する化合物を反応させて官能基を導入し、水添ブロック共重合体(A1)を変性することで製造することができる。当該官能基は、好ましくはアルコキシシリル基及び酸無水物由来の基から選ばれる1種又は2種以上の官能基であり、より好ましくは無水マレイン酸由来の基である。なお、変性水素添加物(A)の製造方法は後述する。
 水添ブロック共重合体(A1)に上記官能基を導入することにより、変性水素添加物(A)を含む樹脂組成物における相容性を高めることができるとともに、金属やその他の材料に対する高い接着性をもたらすことができる。変性水素添加物(A)は、側鎖に上記官能基を有することが好ましい。側鎖に上記官能基を有する実施態様を採用することにより、変性水素添加物(A)の分子鎖1個当たりの官能基数の導入量を3個以上にすることが容易であり、実施態様に応じた分子設計の拡大が容易になる。
 変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1phr以上、より好ましくは0.15phr以上、更に好ましくは0.2phr以上、より更に好ましくは0.25phr以上である。また、変性水素添加物(A)における上記官能基の含有量は、好ましくは5.0phr以下、より好ましくは4.0phr以下、更に好ましくは3.0phr以下、より更に好ましくは2.0phr以下、より更に好ましくは0.95phr以下である。換言すれば、変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1~5.0phrである。
 また、変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1モル%以上、より好ましくは0.15モル%以上、更に好ましくは0.2モル%以上、より更に好ましくは0.25モル%以上である。また、変性水素添加物(A)における上記官能基の含有量は、好ましくは5.0モル%以下、より好ましくは4.0モル%以下、更に好ましくは3.0モル%以下、より更に好ましくは2.0モル%以下、より更に好ましくは0.95モル%以下である。換言すれば、変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1~5.0モル%である。
 変性水素添加物(A)における上記官能基の含有量が、上記範囲内であれば変性水素添加物(A)を含む樹脂組成物の接着性を優れたものとすることができる。なお、当該官能基の含有量(phr)は、変性水素添加物(A)100質量部に対する官能基の質量部を意味し、滴定やH-NMR測定、赤外分光分析に基づく測定(IR測定)により算出することができる。
 変性水素添加物(A)における変性量は、使用する変性剤の使用割合や種類等を調整することにより、調整することができる。
(変性水素添加物(A)の特性)
 変性水素添加物(A)の重量平均分子量(Mw)は、好ましくは10,000~400,000であり、より好ましくは30,000~300,000であり、更に好ましくは50,000~200,000、特に好ましくは70,000~150,000である。
 変性水素添加物(A)のMwは、例えば、重合時に用いる重合開始剤の量により調整することができる。
 変性水素添加物(A)のガラス転移温度は、低温特性の観点から、好ましくは-75~0℃、より好ましくは-70~-10℃、更に好ましくは-65~-20℃である。
 なお、本明細書において、ガラス転移温度は、示差走査熱量計(DSC)測定装置を用いて測定した値であり、具体的には実施例に記載の方法で測定される。
 変性水素添加物(A)のガラス転移温度は、例えば、共役ジエンの3,4-結合及び1,2-結合の含有量により調整することができる。
 変性水素添加物(A)の、JIS K7210:2014に従って、温度230℃、荷重21Nの条件で測定したメルトフローレートは0.1g/min以上であり、樹脂組成物の混練の観点から、好ましくは0.3~15g/10min、より好ましくは0.5~10g/10min、更に好ましくは1~7g/10minである。
 メルトフローレートが上記範囲にあることで、樹脂組成物の混練時の粘度が高くなり分散が良好となる。
 変性水素添加物(A)のtanδ(損失正接)は、動的粘弾性測定における周波数1Hzにおける損失弾性率/貯蔵弾性率の比であり、tanδのピークトップ温度及び強度は、粘弾性体の性質に大きく寄与する。ここで、tanδのピークトップ強度とは、tanδのピークが最大となるときのtanδの値のことである。また、tanδのピークトップ温度とは、tanδのピークが最大となるときの温度のことである。数値が低いほど弾性に優れ、大きいほど粘性に優れる。
 本明細書においてブロック共重合体(A0)又は水添ブロック共重合体(A1)のtanδのピークトップ温度及び強度は、ブロック共重合体(A0)又は水添ブロック共重合体(A1)を、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmの単層シートを作製し、該単層シートを円板形状に切り出し、これを試験片として測定する。測定条件は、JIS K 7244-10:2005に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+120℃、昇温速度3℃/分である。
 なお、ブロック共重合体(A0)又は水添ブロック共重合体(A1)のピークトップ温度及びtanδ強度は、より詳細には実施例に記載の方法に従って測定した値である。
 変性水素添加物(A)は、上記測定によるtanδのピークトップ強度が0.95以下であり、好ましくは0.90以下であり、より好ましくは0.85以下である。tanδのピークトップ強度が0.95以下であると、耐衝撃性の観点から有利である。重合体ブロック(A-2)のイソプレンとイソプレン以外の共役ジエン化合物の比率やビニル結合量を制御することによって、tanδのピークトップ強度を上記範囲とすることができる。
 また、変性水素添加物(A)は、tanδのピークトップ温度が、好ましくは-10℃以下、より好ましくは-20℃以下、更に好ましくは-30℃以下、より更に好ましくは-40℃以下である。上記温度範囲であれば、実使用環境下において充分な耐衝撃性を得ることができる。
<変性水素添加物(A)の製造方法>
 変性水素添加物(A)は、少なくとも芳香族ビニル化合物及び共役ジエン化合物をモノマーとして用い、これらを重合してブロック共重合体(A0)とし、このブロック共重合体(A0)を水素化する前又は水素化した後に、変性剤を用いて変性反応する工程を経ることによって製造することができる。
(ブロック共重合体(A0)の調製)
 ブロック共重合体(A0)は、モノマーとして少なくとも芳香族ビニル化合物及び共役ジエン化合物を用い、重合反応を行うことによって、上記芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)と、上記共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)とを有し、必要に応じて重合体ブロック(A-3)をさらに有するブロック共重合体として得ることができる。
 なお、上記芳香族ビニル化合物、共役ジエン化合物、重合体ブロック(A-1)、重合体ブロック(A-2)及び重合体ブロック(A-3)は、前述したものと同義である。
 上記重合反応は、例えば、溶液重合法、乳化重合法、又は固相重合法等により製造することができる。なかでも溶液重合法が好ましく、例えば、アニオン重合、カチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。なかでも、アニオン重合法が好ましい。アニオン重合法では、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物及び共役ジエン化合物を逐次添加して、ブロック共重合体を得、必要に応じてカップリング剤を添加して反応させればよい。
 上記方法においてアニオン重合の重合開始剤として使用し得る有機リチウム化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム等が挙げられる。また、重合開始剤として使用し得るジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼン等が挙げられる。
 前記カップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼン、安息香酸フェニル等が挙げられる。
 これらの重合開始剤及びカップリング剤の使用量は、ブロック共重合体(A0)又は水添ブロック共重合体(A1)の所望とする重量平均分子量により適宜決定される。通常は、アルキルリチウム化合物、ジリチウム化合物等の開始剤は、重合に用いる芳香族ビニル化合物及び共役ジエン化合物等の単量体の合計100質量部当たり0.01~0.2質量部の割合で用いられるのが好ましく、カップリング剤を使用する場合は、前記単量体の合計100質量部当たり0.001~0.8質量部の割合で用いられるのが好ましい。
 溶媒としては、アニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。また、重合反応は、通常0~100℃、好ましくは10~70℃の温度で、0.5~50時間、好ましくは1~30時間行う。
 また、共役ジエン化合物の重合の際に共触媒としてルイス塩基を添加する方法により、重合体ブロック(A-2)及び重合体ブロック(A-3)における3,4-結合及び1,2-結合の含有量を調整することができる。
 用いることのできるルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N-メチルモルホリン等のアミン類;ナトリウムt-ブチレート、ナトリウムt-アミレート又はナトリウムイソペンチレート等の脂肪族アルコールのナトリウム又はカリウム塩、あるいは、ジアルキルナトリウムシクロヘキサノレート、例えば、ナトリウムメントレートのような脂環式アルコールのナトリウム又はカリウム塩等の金属塩;等が挙げられる。
 これらのルイス塩基は、1種単独で又は2種以上を組み合わせて用いることができる。
 前記重合体ブロック(A-2)のビニル結合量を30モル%以下に調整する観点から、ルイス塩基の添加量は、重合開始剤として用いられるアルキルリチウム化合物又はジリチウム化合物1モル当たり、通常1.0モル以下、好ましくは0.5モル以下で用いるのが好ましい。
 また、前記重合体ブロック(A-3)が、イソプレン及び/又はブタジエンに由来する構造単位を含む場合は、重合体ブロック(A-3)を構成するイソプレン単位及び/又はブタジエン単位のビニル結合量を2~90モル%、好ましくは30モル%以上に調整する観点から、重合体ブロック(A-3)を形成する際のルイス塩基の添加量は、重合開始剤として用いられるアルキルリチウム化合物又はジリチウム化合物1モル当たり、通常1.1~3.0モル、好ましくは1.5~2.0モルで用いるのが好ましい。
 上記した方法により重合を行なった後、アルコール類、カルボン酸類、水等の活性水素化合物を添加して重合反応を停止させることにより、ブロック共重合体を得ることができる。
(水素添加反応)
 上記の製造方法により得られたブロック共重合体(A0)を、不活性有機溶媒中で水素添加触媒の存在下に水素添加反応(水添反応)することにより、水添ブロック共重合体(A1)を作製することができる。上記水添反応により、ブロック共重合体(A0)における重合体ブロック(A-2)及び、さらに存在してもよい重合体ブロック(A-3)中の共役ジエン化合物由来の炭素-炭素二重結合が水素添加され、ブロック共重合体(A0)の水素添加物、すなわち、水添ブロック共重合体(A1)とすることができる。
 なお、ブロック共重合体(A0)を後述の方法で変性した後に水素添加してもよい。
 水添反応は、水素圧力を0.1~20MPa程度、好ましくは0.5~15MPa、より好ましくは0.5~5MPa、反応温度を20~250℃程度、好ましくは50~180℃、より好ましくは70~180℃、反応時間を通常0.1~100時間程度、好ましくは1~50時間として実施することができる。
 水素添加触媒としては、例えば、ラネーニッケル;Pt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、珪藻土等の担体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物等との組み合わせからなるチーグラー系触媒;メタロセン系触媒等が挙げられる。
 このようにして得られた水添ブロック共重合体(A1)(又は、変性水素添加物(A))は、重合反応液をメタノール等に注ぐことにより凝固させた後、加熱又は減圧乾燥させるか、重合反応液をスチームとともに熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。
 水素添加物とする際の上記重合体ブロック(A-2)及び、さらに存在してもよい重合体ブロック(A-3)中の炭素-炭素二重結合の水素添加率をどの程度にするかは、後述する樹脂組成物の各種用途において所望される性能に応じて特定することができる。
 水素添加物の水素添加率が高い程、耐熱性や耐候性が向上した水素添加物とすることが可能であり、樹脂組成物に用いる変性水素添加物(A)においては、上述したように、重合体ブロック(A-2)及び重合体ブロック(A-3)の水素添加率は、好ましくは80~99.8モル%である。
(変性反応)
 変性水素添加物(A)は、ブロック共重合体(A0)を水素添加した後に前述の官能基を導入することにより、又は、ブロック共重合体(A0)を水素添加する前に前述の官能基を導入し、その後に水素添加することにより生成することができる。ラジカル反応による変性の場合は、反応制御の観点から、ブロック共重合体(A0)を水素添加して水添ブロック共重合体(A1)とした後、特定の官能基を導入して製造することが好ましい。
 また、水添ブロック共重合体(A1)に前述の官能基を導入して変性する反応(以下、「変性反応」と称すことがある)は、公知の方法で行うことができる。
 上記変性反応は、例えば、水添ブロック共重合体(A1)を有機溶媒に溶解し、そこへ前述の官能基を付加することができる各種変性剤を添加し、50~300℃程度、0.5~10時間程度で反応させることにより行うことができる。
 また上記変性反応は、例えば、水添ブロック共重合体(A1)を、溶媒を用いずに押出機等を使用して溶融状態にし、各種変性剤を添加することにより行うことができる。この場合、変性反応の温度は、通常水添ブロック共重合体(A1)の融点以上から400℃以下であり、好ましくは90~350℃、より好ましくは100~300℃であり、反応時間は通常0.5~10分間程度である。
 また、溶融状態で上記変性反応を行う際にラジカル開始剤を添加することが好ましく、副反応を抑制する観点等から老化防止剤を添加してもよい。
 上記変性水素添加物(A)の製造方法において、上記変性反応は、作業性や、制振性及び熱安定性が優れやすくなる観点から、後者の溶融状態で変性する方法により行うことが好ましい。
 すなわち、変性水素添加物(A)の製造方法の好ましい態様は、ブロック共重合体(A0)を水素添加して水添ブロック共重合体(A1)とした後、溶融状態の水添ブロック共重合体(A1)に、ラジカル開始剤を用いて、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を導入する工程を更に有する。
 上記官能基を付加することができる変性剤としては、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ヒドロキシメチルトリエトキシシラン、ビニルベンジルジエチルアミン、ビニルベンジルジメチルアミン、1-グリシジル-4-(2-ピリジル)ピペラジン、1-グリシジル-4-フェニルピペラジン、1-グリシジル-4-メチルピペラジン、1-グリシジル-4-メチルホモピペラジン、1-グリシジルヘキサメチレンイミン、及びテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等が挙げられ、また変性剤として、無水マレイン酸、無水シトラコン酸、無水2,3-ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物も用いることができる。更に、特開2011-132298号公報に記載の変性剤から、上記官能基を付加することができる変性剤を採用してもよい。上記変性剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 中でも、変性剤として無水マレイン酸を用いて、無水マレイン酸由来の基を有する変性水素添加物(A)を得るのが特に好ましい。
 変性剤の添加量は、前述した変性水素添加物(A)における上記官能基の含有量に応じて、所望する上記官能基の含有量となるように適宜決定すればよいが、水添ブロック共重合体(A1)又はブロック共重合体(A0)100質量部に対し、変性剤は通常0.01~10質量部程度、好ましくは0.01~5質量部、より好ましくは0.01~3質量部であり、更に好ましくは0.05~2質量部である。
 ラジカル開始剤としては、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、パーオキシエステル類、パーオキシケタール類、ジアルキルパーオキサイド類、及びハイドロパーオキサイド類等の有機パーオキサイド又は有機パーエステルを用いることができ、またアゾビスイソブチロニトリル、及びジメチルアゾイソブチレート等のアゾ化合物等も用いることができる。上記ラジカル開始剤のなかでも、好ましくは有機パーオキサイドであり、より好ましくはジアルキルパーオキサイド類である。
 ラジカル開始剤の添加量は、水添ブロック共重合体(A1)と変性剤との組み合わせにより適宜決定すればよいが、水添ブロック共重合体(A1)100質量部に対しラジカル開始剤は、通常0.01~10質量部程度、好ましくは0.01~5質量部、より好ましくは0.01~3質量部であり、更に好ましくは0.05~2質量部である。
 本発明の実施形態に係るペレットは、上記の変性水素添加物(A)を含むペレットである。かかるペレットは、例えば、水添ブロック共重合体(A1)を、溶媒を用いずに押出機等を使用して溶融状態にし、各種変性剤を添加した後の溶融混練直後の上記変性水素添加物(A)(混練装置からの吐出物)をカッター等で切断することによって得られる。
 より詳細には、ペレット化の方法として、例えば、一軸又は二軸押出機から上記変性水素添加物(A)をストランド状に押出して、ダイ部前面に設置された回転刃により、水中で切断する方法(アンダーウォーターペレタイジング)や、カット後にペレットを水中に落とす方法(ウォーターリングホットペレタイジング);一軸又は二軸押出機から上記変性水素添加物(A)をストランド状に押出して、水冷又は空冷した後、ストランドカッターにより切断する方法;オープンロール、バンバリーミキサーにより溶融混合した後、ロールによりシート状に成形し、更に当該シートを短冊状にカットし、その後、ペレタイザーにより立方状ペレットに切断する方法;などが挙げられる。
 上記ペレットにおいては、ペレット同士の膠着(ブロッキング)を防止しやすくする観点から、ブロッキング防止剤を配合してもよい。ブロッキング防止剤を配合する場合、ペレット表面に付着した状態で配合されていることが好ましいが、ペレット内部にある程度含まれていても構わない。例えば容器に上記ペレットとブロッキング防止剤を投入して撹拌する等の方法により、ブロッキング防止剤が表面に付着したペレットが得られる。
 かかるブロッキング防止剤としては、例えば、ポリプロピレンワックス、ポリエチレンワックス等のポリオレフィン系ワックス;含水珪酸マグネシウム(タルク)、シリカ;エチレンビスステアリルアミド;ステアリン酸カルシウム;ステアリン酸亜鉛、ステアリン酸マグネシウム;などが挙げられる。
 ブロッキング防止剤の平均粒子径に特に制限はないが、ペレットへの付着性及びペレット同士の滑り性の確保の観点から、好ましくは1~15μm、より好ましくは2~14μm、更に好ましくは3~13μmである。また、ブロッキング防止剤の配合量に特に制限はないが、耐ブロッキング性及び力学特性を確保する観点から、上記変性水素添加物(A)を含むペレット100質量部に対して、好ましくは0.1~2.0質量部、より好ましくは0.1~1.0質量部である。
 本発明の実施態様はまた、上述した変性水素添加物(A)と、ポリオレフィン系樹脂(B)を含む樹脂組成物(以降、本明細書において「樹脂組成物(D1)」と称することもある)である。
<ポリオレフィン系樹脂(B)>
 樹脂組成物(D1)に含まれるポリオレフィン系樹脂(B)としては、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン・酢酸ビニル共重合体、及び、これらのうち複数種類を組み合わせた樹脂が挙げられる。
 上記ポリプロピレンとしては、ホモポリプロピレン、エチレン等のα-オレフィンとのブロック共重合体であるブロックポリプロピレン、エチレン等のα-オレフィンとのランダム共重合体であるランダムポリプロピレン等が挙げられる。
 上記ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン等が挙げられる。
 上記ポリメチルペンテンとしては、4-メチル-1-ペンテンの単独重合体や、4-メチル-1-ペンテンから導かれる構造単位及び炭素原子数2~20のα-オレフィン(但し、4-メチル-1-ペンテンを除く。)から導かれる構造単位を有する共重合体等が挙げられる。
 上記エチレン・酢酸ビニル共重合体としては、酢酸ビニルをコモノマーとしてエチレンと共重合した樹脂であれば特に限定されず、種々の酢酸ビニル基含有率(VA含有率)のものを用いることができる。
 また、α-オレフィンの単独重合体又は共重合体、プロピレン及び/又はエチレンとα-オレフィンとの共重合体等もポリオレフィン系樹脂(B)として使用できる。
 上記α-オレフィンとしては、例えば、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素数20以下のα-オレフィンが挙げられ、これらの1種又は2種以上を用いることができる。
<添加剤>
 樹脂組成物(D1)は、本発明の効果を損なわない範囲において、各種添加剤を含有することができる。
 添加剤としては、例えば、タルク、クレー、マイカ、ケイ酸カルシウム、ガラス、ガラス中空球、ガラス繊維、炭酸カルシウム、炭酸マグネシウム、塩基性炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、ホウ酸亜鉛、ドーソナイト、ポリリン酸アンモニウム、カルシウムアルミネート、ハイドロタルサイト、シリカ、珪藻土、アルミナ、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、酸化スズ、酸化アンチモン、バリウムフェライト、ストロンチウムフェライト、カーボンブラック、グラファイト、炭素繊維、活性炭、炭素中空球、チタン酸カルシウム、チタン酸ジルコン酸鉛、炭化ケイ素等の無機フィラー;木粉、でんぷん等の有機フィラー;セルロースファイバー、セルロースナノファイバー、カーボンファイバー、カーボンナノファイバー、などが挙げられる。
 上記添加剤としては、更に粘着付与樹脂、可塑剤、充填剤、架橋剤(イソシアネート系架橋剤、エポキシ系架橋剤、金属キレート系架橋剤、アジリジン系架橋剤、アミン樹脂等)、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、滑剤、着色剤、帯電防止剤、難燃剤、撥水剤、防水剤、親水性付与剤、導電性付与剤、熱伝導性付与剤、電磁波シールド性付与剤、透光性調整剤、蛍光剤、摺動性付与剤、透明性付与剤、アンチブロッキング剤、金属不活性化剤、防菌剤、結晶核剤、亀裂防止剤、オゾン劣化防止剤、防鼠剤、分散剤、増粘剤、耐光剤、耐候剤、銅害防止剤、補強剤、防かび剤、大環状分子(シクロデキストリン、カリックスアレーン、ククルビツリル等)を挙げることができる。
 上記添加剤は、1種単独で、又は2種以上を組み合わせて用いることができる。
 樹脂組成物(D1)における上記添加剤の含有量に制限はなく、当該添加剤の種類や樹脂組成物(D1)の用途などに応じて適宜調整することができる。樹脂組成物(D1)が上記添加剤を含有する場合、上記添加剤の含有量は樹脂組成物(D1)の全質量に対して、例えば70質量%以下、60質量%以下、50質量%以下、45質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよく、また、0.01質量%以上、0.1質量%以上、1質量%以上、5質量%以上であってもよい。換言すれば、樹脂組成物(D1)中の上記添加剤の含有量は、好ましくは0.01~70質量%である。
<樹脂組成物(D1)中の各成分の割合>
 樹脂組成物(D1)中の変性水素添加物(A)の割合は、樹脂組成物(D1)の全質量に対して、好ましくは1~50質量%である。組成物の耐衝撃性の観点から、より好ましくは3~40質量%、更に好ましくは3~30質量%、より更に好ましくは5~25質量%である。また、樹脂組成物(D1)において、変性水素添加物(A)の質量をA、ポリオレフィン系樹脂(B)の質量をBとするとき、接着性の観点から、A/Bが、好ましくは10/90~70/30、より好ましくは20/80~60/40、更に好ましくは30/70~50/50である。
 また、樹脂組成物(D1)に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計質量は、接着性を十分に発現させる等の観点から、好ましくは50質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上、特に好ましくは90質量%以上である。上記合計質量の上限に特に制限はなく、100質量%であってもよいし、99.9質量%であってもよいし、99.5質量%であってもよい。換言すれば、樹脂組成物(D1)に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計質量は、好ましくは50~100質量%である。
<樹脂組成物(D1)の製造方法>
 樹脂組成物(D1)は、変性水素添加物(A)と、ポリオレフィン系樹脂(B)と、必要に応じて各種添加剤とを、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いて混合することによって製造するか、又はその後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等の混練機を用いて80~350℃程度で溶融混練することによって製造することができる。
 また、少なくとも変性水素添加物(A)及びポリオレフィン系樹脂(B)が可溶な溶媒に各成分を溶解させて混合し、溶媒を除去することによって樹脂組成物を調製することもできる。
 上記樹脂組成物は、ベール、クラム、及びペレット等のいずれの形状にもすることができる。また、上記樹脂組成物は、溶融混練成形機により、又は、樹脂組成物のベール、クラム、あるいはペレット等を原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法、及び発泡成形法等により各種成形品とすることができる。
<樹脂組成物(D1)の用途>
 樹脂組成物(D1)は、自動車や建築物の窓におけるガラスとアルミニウムサッシや金属開口部などとの接合部、太陽電池モジュールなどにおけるガラスと金属製枠体との接続部などのシーラントとして好適に使用できる。また、自動車や建築物のウィンドウモールやガスケット、ガラスのシーリング材、防腐蝕材など、ガラスと接着された成形体や構造体として広い範囲の用途に有用である。更には、ノート型パソコン、携帯電話、ビデオカメラなどの各種情報端末機器や、ハイブリッド自動車、燃料電池自動車などに用いられる二次電池のセパレーターなどの接着剤やコート剤として使用することができる。
 また、樹脂組成物(D1)は、配電盤やモーターの口出し線、熱収縮チューブ、配線結束用のテープ等の工業用途品;TV、プロジェクター、パソコン、プリンター、スキャナー、キーボード、FAX、コピー機等のOA機器;洗濯機、乾燥機、冷蔵庫、掃除機、トースター、クーラー、エアーコンディショナー、TV、ビデオ、DVD、デジタルカメラ、携帯電話、CDプレーヤー、ラジオ、スピーカー、警報機、監視カメラ等の家電;電子レンジ、炊飯器、電子ヒーター等の電子機器;ゲーム機用制御ケーブル、LANケーブル、多心ケーブル、イヤホン、充電装置等の電気・電子機器の付属品;絶縁電線ハーネス、カーナビゲーションシステム、座椅子、天井張り、カーペット等の自動車用・船舶用・航空機用部品;吊革、日除け、連結幌等の車輌部品;壁紙、床材、内装材、外装材、ドア材、ベランダの目隠し板、ターポリン等の建材用途品;テント、発電機、照明などのレジャー用途品;などに使用することができる。
 本発明の実施態様はまた、上述した変性水素添加物(A)と、ポリオレフィン系樹脂(B)を含む樹脂組成物(すなわち樹脂組成物(D1))に、極性樹脂(C)をさらに含む樹脂組成物(以降、本明細書において「樹脂組成物(D2)」と称することもある)である。
 樹脂組成物(D1)に含まれる変性水素添加物(A)は、変性によって特定の官能基が導入され、かつ、高い割合で水素添加された重合体ブロック(A-2)を有する。このため、樹脂組成物(D1)と極性樹脂(C)とを、例えば溶融混練すると、変性水素添加物(A)がポリオレフィン系樹脂(B)と極性樹脂(C)との相容化を促進すると考えられ、ポリオレフィン系樹脂(B)及び極性樹脂(C)のうち一方にポリオレフィン系樹脂(B)及び極性樹脂(C)のうち他方が良好に分散した樹脂組成物(D2)が得られる。したがって、樹脂組成物(D2)は、ポリオレフィン系樹脂(B)単体に比べて加工性や成形性に優れている。また、変性水素添加物(A)の量を少なくすることができる。
 また、極性樹脂(C)及びポリオレフィン系樹脂(B)のうち一方が極性樹脂(C)及びポリオレフィン系樹脂(B)のうち他方に分散されやすくなることにより、樹脂組成物(D2)又はその成形品は、外観が良好である。
 加えて、樹脂組成物(D2)又はその成形品において、原料として用いたブロック共重合体(A0)に起因する特性が現れやすくなる。上記樹脂組成物(D2)は、重合体ブロック(A-2)のビニル結合量が30モル%以下であるブロック共重合体(A0)から得た変性水素添加物(A)を用いるので、樹脂組成物(D2)又はその成形品において、耐衝撃性等を高めることができる。また、極性樹脂(C)やポリオレフィン系樹脂(B)の種類等を適切に選択することにより、上記樹脂組成物(D2)又はその成形品の引張強度や伸び特性等の物性を優れたものとすることができる。
 変性水素添加物(A)は、上述した極性樹脂(C)と非極性樹脂とを相容化させるための相容化剤として作用すると言える。すなわち、変性水素添加物(A)を含む相容化剤も、発明の実施態様として挙げられる。
 かかる相容化剤は、変性水素添加物(A)単体であってもよく、変性水素添加物(A)以外の成分、例えば、加工助剤、補強剤、充填剤、可塑剤、連通気泡剤、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、滑剤、帯電防止剤、防菌剤、防かび剤、分散剤、着色剤、発泡剤、発泡助剤、難燃剤、撥水剤、防水剤、導電性付与剤、熱伝導性付与剤、電磁波シールド性付与剤、蛍光剤、結晶核剤等を含んでいてもよい。
 上記相容化剤における変性水素添加物(A)の含有量は、相容化剤の全質量に対して、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上である。上限は100質量%でもよい。
 上記相容化剤の相容化の対象となる極性樹脂は上述の極性樹脂(C)と同様であり、一方非極性樹脂は上述のポリオレフィン系樹脂(B)のほか、スチレン系樹脂等も挙げられる。
 上記相容化剤は、極性樹脂(C)及びポリオレフィン系樹脂(B)とともに混合してもよいし、極性樹脂(C)と混合してからポリオレフィン系樹脂(B)を添加してもよいし、ポリオレフィン系樹脂(B)と混合してから極性樹脂(C)を添加してもよい。
<樹脂組成物(D2)のモルフォロジー>
 樹脂組成物(D2)は、以下の(α)及び(β)のいずれかのモルフォロジーを有するものと推測される。
 (α)ポリオレフィン系樹脂(B)のマトリクス中に、極性樹脂(C)を含むドメインが島状に分散した海島構造、より好ましくは、変性水素添加物(A)を主体とする成分が、極性樹脂(C)を主体とするドメインの周囲に沿って存在する構造。
 (β)極性樹脂(C)のマトリクス中に、ポリオレフィン系樹脂(B)を含むドメインが島状に分散した海島構造、より好ましくは、変性水素添加物(A)を主体とする成分が、ポリオレフィン系樹脂(B)を主体とするドメインの周囲に沿って存在する構造。
 上述したように、高い割合で水素添加された重合体ブロック(A-2)を有する変性水素添加物(A)が、ポリオレフィン系樹脂(B)と極性樹脂(C)との相容化を促進するため、樹脂組成物(D2)やその成形品において形成される、極性樹脂(C)を主体とするドメインの大きさやポリオレフィン系樹脂(B)を主体とするドメインの大きさが、体積平均分散径又は平均径として数百nm以下の微細なものとなりやすいと考えられる。
 そのため、ポリオレフィン系樹脂(B)中の極性樹脂(C)の分散性又は極性樹脂(C)のポリオレフィン系樹脂(B)中の分散性を良好にすることができ、樹脂組成物(D2)又は樹脂組成物(D2)の成形品の引張強さ、引張破壊ひずみ及び耐衝撃性等の機械的特性をバランスよく向上させることができると推測される。
<極性樹脂(C)>
 樹脂組成物(D2)に含まれる極性樹脂(C)は、カルボキシ基、スルホン酸基、水酸基、シアノ基等の極性基を有する樹脂、樹脂中にエーテル結合、エステル結合、アミド結合、スルフィド結合等を有する樹脂、分子中に、酸素、窒素、硫黄、ハロゲンのうち少なくとも1つを含む樹脂等を指し、分子内で電子的に分極が発生する樹脂であって、熱可塑性を有するものである。
 極性樹脂(C)は、好ましくは、スルホン酸基、シアノ基等の極性基を有する樹脂、樹脂中にエーテル結合、エステル結合、アミド結合、スルフィド結合等を有する樹脂、分子中に、酸素、窒素、硫黄、ハロゲンのうち少なくとも1つを含む樹脂等であり、より好ましくは、樹脂中にエーテル結合、エステル結合、及び、アミド結合のうち少なくも1つを有する樹脂を含む樹脂である。
 好ましい極性樹脂は、ナイロン6、ナイロン66、ナイロン610、ナイロン9、ナイロン6/66、ナイロン66/610、ナイロン6/11、ナイロン6/12、ナイロン12、ナイロン46、非晶質ナイロン等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマー等のポリアセタール系樹脂;ポリフェニレンサルファイド(PPS)系樹脂、ポリフェニレンエーテル系樹脂、ポリアリレート系樹脂、ポリエーテルサルフォン系樹脂、ポリウレタン系樹脂、ポリビニルアルコール系樹脂、ポリカーボネート系樹脂、エチレン・酢酸ビニル共重合体、エチレン・メタクリル酸共重合体、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、トリアセチルセルロース、ABS樹脂、AS樹脂、ACS樹脂、キシレン樹脂、アクリル樹脂、及び、ポリエステル系熱可塑性エラストマーからなる群より選ばれる少なくとも1種である。
 より好ましくは、ポリアミド系樹脂、ポリアセタール系樹脂、ポリウレタン系樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンサルファイド系樹脂、ポリカーボネート系樹脂、及びポリエステル系熱可塑性エラストマーから選ばれる少なくとも1種であり、更に好ましくは、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンサルファイド系樹脂、及びポリカーボネート系樹脂から選択される少なくとも1種の樹脂である。
 極性樹脂(C)として用いられるポリエステル系熱可塑性エラストマーは、例えば、(i)炭素数2~12の脂肪族及び/又は脂環族ジオールと、(ii)芳香族ジカルボン酸又はそのアルキルエステルと、(iii)ポリアルキレンエーテルグリコールと、を原料とし、エステル化反応、又は、エステル交換反応により得られたオリゴマーを重縮合反応させて得ることができる。
 市販のポリエステル系熱可塑性エラストマーとしては、例えば、東レ・デュポン株式会社製ハイトレル3046(登録商標)が挙げられる。
<添加剤>
 樹脂組成物(D2)には、本発明の効果を損なわない範囲において、各種添加剤を含有することができる。このような添加剤としては、樹脂組成物(D1)で述べたものと同様のものが挙げられる。
 樹脂組成物(D2)における上記添加剤の含有量に制限はなく、当該添加剤の種類や樹脂組成物(D2)の用途などに応じて適宜調整することができる。樹脂組成物(D2)が上記添加剤を含有する場合、上記添加剤の含有量は樹脂組成物(D2)の全質量に対して、例えば50質量%以下、45質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよく、また0.01質量%以上、0.1質量%以上、1質量%以上、5質量%以上であってもよい。換言すれば、樹脂組成物(D2)中の上記添加剤の含有量は、好ましくは0.01~50質量%である。
<樹脂組成物(D2)中の各成分の割合>
 樹脂組成物(D2)中の変性水素添加物(A)の割合は、樹脂組成物(D2)の全質量に対して、好ましくは1~30質量%である。組成物の相容性と機械的物性のバランスの観点から、より好ましくは2~20質量%、更に好ましくは3~15質量%、より更に好ましくは3~10質量%である。
 また、樹脂組成物(D2)に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計質量は、接着性を十分に発現させる等の観点から、好ましくは50質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上、特に好ましくは90質量%以上である。上記合計質量の上限に特に制限はなく、99.9質量%であってもよいし、99.5質量%であってもよい。換言すれば、樹脂組成物(D2)に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計質量は、好ましくは50~99.9質量%である。
 樹脂組成物(D2)中の極性樹脂(C)の割合は、樹脂組成物(D2)の全質量に対して、好ましくは10~90質量%である。組成物の柔軟性の観点から、より好ましくは10~50質量%、更に好ましくは10~45質量%、より更に好ましくは10~40質量%である。また、機械強度の観点から、樹脂組成物(D2)の全質量に対して、より好ましくは50~90質量%、更に好ましくは50~85質量%、より更に好ましくは50~80質量%である。
 また、樹脂組成物(D2)中のポリオレフィン系樹脂(B)の質量をX、極性樹脂(C)の質量をYとするとき、X/Yが90/10~10/90であるのが好ましい。
 より詳細には、樹脂組成物(D2)の柔軟性の観点からは、X/Yは、好ましくは90/10~50/50、より好ましくは90/10~55/45、更に好ましくは90/10~60/40、より更に好ましくは90/10~70/30、特に好ましくは90/10~75/25である。また、樹脂組成物(D2)の機械強度の観点からは、X/Yは、好ましくは50/50~10/90、より好ましくは50/50~15/85、更に好ましくは50/50~20/80である、より更に好ましくは50/50~30/70、特に好ましくは50/50~25/75である。
 X/Yが上記範囲にあることで、ポリオレフィン系樹脂(B)及び極性樹脂(C)のそれぞれの物性を活かし、引張強さ、引張破壊ひずみ及び耐衝撃性等の機械的特性をバランスよく向上させることができる。
 樹脂組成物(D2)中のポリオレフィン系樹脂(B)と極性樹脂(C)の合計量の割合は、好ましくは50質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上であり、またその上限は97質量%であっても、95質量%であっても、90質量%であってもよい。
 樹脂組成物(D2)には、変性水素添加物(A)、ポリオレフィン系樹脂(B)、及び極性樹脂(C)に加えて、ブロック共重合体(A0)やその水素添加物(A1)が更に含まれていてもよい。ブロック共重合体(A0)及びその水素添加物(A1)の合計含有量は、力学物性の観点から、樹脂組成物(D2)の全質量に対して、好ましくは1~20質量%、より好ましくは1~10質量%、更に好ましくは1~5質量%である。一方、樹脂組成物(D2)が、ブロック共重合体(A0)及びその水素添加物(A1)を全く含まない組成物であることも、好ましい実施態様の1つである。
 なお、樹脂組成物(D2)には、上記以外の樹脂成分が含まれていてもよい。例えば、ポリオレフィン系樹脂(B)以外の非極性樹脂が含まれていてもよい。
 樹脂組成物(D2)の力学物性を確保する観点から、樹脂組成物(D2)において、変性水素添加物(A)、ポリオレフィン系樹脂(B)、極性樹脂(C)、ブロック共重合体(A0)、及び、水添ブロック共重合体(A1)以外に含まれる樹脂成分の含有量は、好ましくは0~50質量%、より好ましくは0~30質量%、より更に好ましくは0~20質量%、より更に好ましくは0~10質量%、最も好ましくは0~5質量%である。
<樹脂組成物(D2)の特性>
(引張強さ)
 樹脂組成物(D2)の引張強さは、機械強度の観点から、好ましくは9MPa~35MPa、より好ましくは15MPa~30MPa、更に好ましくは20MPa~30MPaである。引張強さの上限については特に制限はなく、用途に応じ適宜特定することができる。
 引張強さは、後述する実施例の通り、JIS K7127:1999に準じて、長さ150mm×幅15mmの試験片を作製し、引張速度500mm/minの条件で測定することができる。引張強さが上記範囲であれば、材料強度に優れたものとなる。
(引張破壊ひずみ)
 樹脂組成物(D2)は、後述する実施例の通り、JIS K7127:1999に準じて、長さ150mm×幅15mmの試験片を作製し、引張速度500mm/minの条件で測定される引張破壊ひずみが、機械強度の観点から、好ましくは25%以上、より好ましくは30%以上、更に好ましくは50%以上、より更に好ましくは75%以上、より更に好ましくは100%以上、より更に好ましくは150%以上、より更に好ましくは200%以上、より更に好ましくは250%以上、より更に好ましくは300%以上である。引張破壊ひずみが上記範囲であれば、柔軟で延伸性に優れたものとなる。
(引張衝撃性)
 樹脂組成物(D2)の引張衝撃性は、後述する実施例の通り、樹脂組成物(D2)から得られたフィルムより、JIS K7160-1996-A(インベース法)に準拠して、TD方向で3形の試験片を作製し、東洋精機製作所製の「衝撃試験機IT」を用いて、ハンマー荷重4Jで、TD方向の引張衝撃値(kJ/m)を測定することにより評価することができる。
 かかる測定により得られる引張衝撃値が、好ましくは650kJ/m~2000kJ/m、より好ましくは700kJ/m~1900kJ/m、更に好ましくは750kJ/m~1800kJ/mである。引張衝撃値が上記範囲であれば、耐衝撃性に優れたものとなる。
(ヘイズ)
 樹脂組成物(D2)のヘイズは、後述する実施例の通り、樹脂組成物(D2)から得られたフィルムについて、JIS K 7136:2000に準拠して、株式会社村上色彩技術研究所製の「HR-100」を用いて測定されるヘイズ(%)が好ましくは90%以下、より好ましくは70%以下、更に好ましくは50%以下である。ヘイズが上記範囲であれば、透明性に優れたものとなる。
(曲げ弾性率)
 樹脂組成物(D2)の曲げ弾性率は、後述する実施例の通り、ISO多目的試験片の両端を切削し、長さ80mm、幅10mm、厚み4mmの試験片を作製し、JIS K7171:2016(ISO 178:2010)に準拠して、オートグラフ AGX-V(株式会社島津製作所製)を使用し、試験速度2mm/minの条件で測定される曲げ弾性率が、好ましくは950MPa以上、より好ましくは980MPa以上、更に好ましくは1000MPa以上である。曲げ弾性率が上記範囲であれば、剛性に優れたものとなる。
(曲げ強さ)
 樹脂組成物(D2)の曲げ強さは、後述する実施例の通り、ISO多目的試験片の両端を切削し、長さ80mm、幅10mm、厚み4mmの試験片を作製し、JIS K7171:2016(ISO 178:2010)に準拠して、オートグラフ AGX-V(株式会社島津製作所製)を使用し、試験速度2mm/minの条件で測定される曲げ強さが、好ましくは20MPa以上、より好ましくは25MPa以上、更に好ましくは30MPa以上である。曲げ強さが上記範囲であれば、剛性に優れたものとなる。
(シャルピー衝撃値)
 樹脂組成物(D2)のシャルピー衝撃値は、後述する実施例の通り、ISO多目的試験片の両端を切削し、長さ80mm、幅10mm、厚み4mmの試験片を作製し、試験片中央部をノッチ加工して得た残り幅8mmの試験片を用い、JIS K7111-1:2012に準じて、デジタル衝撃試験機 IT型(株式会社東洋精機製作所製)を使用して、ハンマー荷重を2Jとして測定される、23℃におけるシャルピー衝撃値が、好ましくは5kJ/m以上、より好ましくは25kJ/m以上である。シャルピー衝撃値が上記範囲であれば、耐衝撃性に優れたものとなる。
<樹脂組成物(D2)の製造方法>
 樹脂組成物(D2)は、変性水素添加物(A)、ポリオレフィン系樹脂(B)及び極性樹脂(C)を、あるいは樹脂組成物(D1)及び極性樹脂(C)を、必要に応じて各種添加剤と共に、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いて混合することによって製造するか、又はその後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等の混練機を用いて80~350℃程度で溶融混練することによって製造することができる。
 また、少なくとも変性水素添加物(A)、ポリオレフィン系樹脂(B)及び極性樹脂(C)が可溶な溶媒に各成分を溶解させて混合し、溶媒を除去することによって樹脂組成物(D2)を製造することもできる。
 樹脂組成物(D2)は、ベール、クラム、及びペレット等のいずれの形状にもすることができる。また、樹脂組成物(D2)は、溶融混練成形機により、又は、樹脂組成物のベール、クラム、あるいはペレット等を原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法、及び発泡成形法等により各種成形品とすることができる。
 添加順序に制限はないが、分散性や、得られる樹脂組成物(D2)の物性をより向上させる観点から、変性水素添加物(A)と極性樹脂(C)を添加したのちにポリオレフィン系樹脂(B)を添加する添加順序が好ましい。
<樹脂組成物(D2)の用途>
 樹脂組成物(D2)は、各種用途に使用することができる。
 本実施形態の樹脂組成物(D2)は、引張強さ、引張破壊ひずみ及び耐衝撃性等の機械的特性をバランスよく有しており、各種用途に用いることができる。そのため、本発明は、上記樹脂組成物(D2)を用いたフィルム及びシート等も提供する。
 また上記樹脂組成物(D2)は、自動車分野における各種の自動車用部材、例えばサーモスタットハウジング、ラジエータータンク、ラジエーターホース、ウォーターアウトレット、ウォーターポンプハウジング、リアジョイント等の冷却部品;インタークーラータンク、インタークーラーケース、ターボダクトパイプ、EGRクーラーケース、レゾネーター、スロットルボディ、インテークマニホールド、テールパイプ等の吸排気系部品;燃料デリバリーパイプ、ガソリンタンク、クイックコネクタ、キャニスター、ポンプモジュール、燃料配管、オイルストレーナー、ロックナット、シール材等の燃料系部品;マウントブラケット、トルクロッド、シリンダヘッドカバー等の構造部品;ベアリングリテイナー、ギアテンショナー、ヘッドランプアクチュエータギア、HVACギア、スライドドアローラー、クラッチ周辺部品等の駆動系部品;エアブレーキチューブ等のブレーキ系統部品;エンジンルーム内のワイヤーハーネスコネクタ、モーター部品、センサー、ABSボビン、コンビネーションスイッチ、車載スイッチ、電子制御ユニット(ECU)ボックス等の車載電装部品;スライドドアダンパー、ドアミラーステイ、ドアミラーブラケット、インナーミラーステイ、ルーフレール、エンジンマウントブラケット、エアクリーナーのインレートパイプ、ドアチェッカー、プラチェーン、エンブレム、クリップ、ブレーカーカバー、カップホルダー、エアバック、フェンダー、スポイラー、ラジエーターサポート、ラジエーターグリル、ルーバー、エアスクープ、フードバルジ、バックドア、フューエルセンダーモジュール、フロアマット、インストルメントパネル、ダッシュボード、ダッシュインシュレーター、ダムラバー、ウェザーストリップ、タイヤ等の内外装部品等に用いることもできる。
 また、家電分野におけるテレビ、ブルーレイレコーダーやHDDレコーダー等の各種レコーダー類、プロジェクター、ゲーム機、デジタルカメラ、ホームビデオ、アンテナ、スピーカー、電子辞書、ICレコーダー、FAX、コピー機、電話機、ドアホン、炊飯器、電子レンジ、オーブンレンジ、冷蔵庫、食器洗い機、食器乾燥機、IHクッキングヒーター、ホットプレート、掃除機、洗濯機、充電器、ミシン、アイロン、乾燥機、電動自転車、空気清浄機、浄水器、電動歯ブラシ、照明器具、エアコン、エアコンの室外機、除湿機、加湿機等の各種電気製品における、シール材、接着剤、粘着剤、パッキン、Oリング、ベルト、防音材等に利用可能である。繊維として用いることもできる。
 以下、本発明を実施例等により具体的に説明するが、本発明はこれらに限定されない。
 後述の製造例で得られたブロック共重合体、ブロック共重合体の水素添加物、及び、変性水素添加物の物性評価方法を以下に示す。
 なお、H-NMR測定は、特記しない限り下記の装置及び測定条件で行った。
・装置:核磁気共鳴装置「AVANCE 400 Nanobay」(Bruker社製)
・溶媒:CDCl
・測定温度:30℃
・積算回数:1024回
・サンプル濃度:50mg/ml
[各物性の測定方法]
<重合体ブロック(A-1)の含有量>
 水添前のブロック共重合体のH-NMR測定を行い、スチレンに由来するピーク強度とジエンに由来するピーク強度の比から重合体ブロック(A-1)の含有量を算出した。
<重量平均分子量(Mw)および分子量分布(Mw/Mn)>
 下記条件のゲルパーミエーションクロマトグラフィー(GPC)測定により、重合体ブロック(A-1)、重合体ブロック(A-2)、ブロック共重合体(A0)、ブロック共重合体の水素添加物、及び、変性水素添加物のポリスチレン換算の重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。
(GPC測定装置及び測定条件)
・装置    :GPC装置「HLC-8020」(東ソー株式会社製)
・分離カラム :東ソ-株式会社製の「TSKgel GMHXL」、「G4000HXL」及び「G5000HXL」を直列に連結した。
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
<重合体ブロック(A-2)および(A-3)における水素添加率>
 ブロック共重合体中の共役ジエン由来の構造単位における炭素-炭素二重結合の水素添加率(重合体ブロック(A-2)および(A-3)における水素添加率)は、得られたスペクトルの4.5~6.0ppmに現れる炭素-炭素二重結合が有するプロトンのピークから、下記式により算出した。
   水素添加率(モル%)={1-(水添ブロック共重合体1モルあたりに含まれる炭素-炭素二重結合のモル数)/(未水添ブロック共重合体1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
<重合体ブロック(A-2)におけるビニル結合量>
 重合途中にサンプリングした重合体ブロック(A-2)のH-NMR測定を行い、イソプレン及びブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位に対応するピーク面積の比、イソプレン構造単位における1,2-結合単位に対応するピーク面積の比、及び、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量(3,4-結合単位及び1,2-結合単位の含有量の合計)を算出した。
<重合体ブロック(A-3)におけるビニル結合量>
 水添前のブロック共重合体のH-NMR測定を行い、イソプレン及びブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位に対応するピーク面積の比、イソプレン構造単位における1,2-結合単位に対応するピーク面積の比、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ブロック共重合体のビニル結合量(3,4-結合単位及び1,2-結合単位の含有量の合計)を算出した。次いで、重合途中にサンプリングした重合体ブロック(A-2)のH-NMR測定を行い、イソプレン及びブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位に対応するピーク面積の比、イソプレン構造単位における1,2-結合単位に対応するピーク面積の比、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、重合体ブロック(A-2)におけるビニル結合量(3,4-結合単位及び1,2-結合単位の含有量の合計)を算出した。下記式を用いて重合体ブロック(A-3)におけるビニル結合量を算出した。
重合体ブロック(A-3)におけるビニル結合量=[ブロック共重合体におけるビニル結合量×{重合体ブロック(A-2)の含有量(質量部)+重合体ブロック(A-3)の含有量(質量部)}-重合体ブロック(A-2)におけるビニル結合量×重合体ブロック(A-2)の含有量(質量部)]/重合体ブロック(A-3)の含有量(質量部)
<変性量(phr)>
 後述する変性水素添加物(Y-1)~(Y-3)の無水マレイン酸変性量は、以下の手順で測定した。各変性水素添加物5gをトルエン180mlに溶解した後、エタノール20mlを加え、0.1モル/L水酸化カリウム溶液で滴定し、下記計算式を用い変性量を算出した。
無水マレイン酸変性量(phr)=滴定量×5.611/サンプル量×98×100/56.11×1000
<変性量(モル%)>
 上記で算出した無水マレイン酸変性量(phr)から、下記計算式を用い変性量(モル%)を算出した。
無水マレイン酸変性量(モル%)={無水マレイン酸変性量(phr)/無水マレイン酸分子量}/{無水マレイン酸変性量(phr)/無水マレイン酸分子量+重合体ブロック(A)含有量/重合体ブロック(A)構造単位分子量+重合体ブロック(B)含有量/重合体ブロック(B)構造単位分子量}×100
<動的粘弾性測定(tanδ)>
 後述する変性水素添加物(Y-1)~(Y-3)のそれぞれについて、プレス成形装置「NF-50H」(株式会社神藤金属工業所製)により、温度230℃で1分間予熱後、同温度にてスペーサーを介して圧力10MPaで3分間加圧して、厚み1.0mmの単層シートを作製した。該単層シートを円板形状に切り出し、これを試験シートとした。
 測定には、JIS K 7244-10:2005に基づいて、平行平板振動レオメータとして、円板の直径が8mmのゆがみ制御型動的粘弾性装置「ARES-G2」(ティー・エイ・インスツルメント・ジャパン社製)を用いた。
 上記試験シートによって2枚の平板間の隙間を完全に充填し、歪み量0.1%で、上記試験シートに1Hzの周波数で、剪断モードで振動を与え、-70℃から+200℃まで3℃/分の定速で昇温し、tanδのピーク強度の最大値(ピークトップ強度)及び該最大値が得られた温度(ピークトップ温度)を求めた。
<メルトフローレート(MFR)>
 JIS K7210:2014に準じて、温度230℃、荷重21Nの条件で、メルトインデクサ(株式会社立山科学ハイテクノロジーズ製MELT INDEXER L241)を用いて、後述する変性水素添加物(Y-1)~(Y-3)のMFRを測定した。
1.変性水素添加物の製造例と評価
[例1-1]
(変性水素添加物(Y-1)の製造)
(1)窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液200g(sec-ブチルリチウムの実質的な添加量:21g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.5kgを加えて1時間重合させ、容器内温度50℃で、イソプレン7.2kg及びブタジエン4.8kgの混合液を5時間かけて加えた後2時間重合させ、更にスチレン(2)1.5kgを加えて1時間重合させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体を含む反応液を得た。
(2)該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体の水素添加物(以下、Y’-1と称する)を得た。
(3)Coperion社製二軸押出機「ZSK26mc」(26mmφ、L/D=56)を230℃にて使用し、上記で得られた水添ブロック共重合体Y’-1を10kg配合して溶融状態とし、ラジカル開始剤として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(開始剤1:パーヘキサ25B-40、日本油脂株式会社製)を0.02kg、変性剤として無水マレイン酸0.15kgを配合して、変性反応を行い、二軸押出機からの吐出物を、アンダーウォーターカッターでペレット化することで、変性水素添加物(Y-1)をペレットとして得た。
[例1-2]
(変性水素添加物(Y-2)の製造)
(1)窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液210g(sec-ブチルリチウムの実質的な添加量:22.05g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.5kgを加えて1時間重合させ、容器内温度50℃で、ルイス塩基としてテトラヒドロフラン100gを加え、ブタジエン11.9kgを3時間かけて加えた後2時間重合させ、更にスチレン(2)1.5kgを加えて1時間重合させることにより、ポリスチレン-ポリブタジエン-ポリスチレントリブロック共重合体を含む反応液を得た。
(2)該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリブタジエン-ポリスチレントリブロック共重合体の水素添加物(以下、Y’-2と称する)を得た。
(3)上記で得られた水添ブロック共重合体Y’-2を、無水マレイン酸を表1に示す量に変更した以外は例1-1の(3)と同様の手順にて変性反応を行い、変性水素添加物(Y-2)をペレットとして得た。
[例1-3]
(変性水素添加物(Y-3)の製造)
(1)窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液130g(sec-ブチルリチウムの実質的な添加量:13.65g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.1kgを加えて1時間重合させ、容器内温度50℃で、イソプレン4.1kg及びブタジエン3.6kgの混合液を4時間かけて加えた後2時間重合させ、更にスチレン(2)1.1kgを加えて1時間重合させ、更に容器内温度40℃で、ルイス塩基としてテトラヒドロフラン300gを加え、イソプレン1.3kg及びブタジエン1.2kgの混合液を1時間かけて加えた後2時間重合させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレン-ポリ(イソプレン/ブタジエン)テトラブロック共重合体を含む反応液を得た。
(2)該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレン-ポリ(イソプレン/ブタジエン)テトラブロック共重合体の水素添加物(以下、Y’-3と称する)を得た。
(3)上記で得られた水添ブロック共重合体Y’-3を用いたこと以外は例1-1の(3)と同様の手順にて変性反応を行い、変性水素添加物(Y-3)をペレットとして得た。
 例1-1、例1-2、及び例1-3で得られた各ブロック共重合体、ブロック共重合体の水素添加物、及び変性水素添加物について、上述した測定手順に従って各種物性の測定を行った。
 測定結果をその組成とともに表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、例1-1の変性水素添加物(Y-1)の重合体ブロック(A-2)のビニル結合量及び例1-3の変性水素添加物(Y-3)の重合体ブロック(A-2)のビニル結合量は7モル%であるのに対して、例1-2の変性水素添加物(Y-2)の重合体ブロック(A-2)のビニル結合量は40モル%である。また、変性水素添加物(Y-1)は、tanδのピークトップ強度が0.57を示し、tanδのピークトップ温度は変性水素添加物(Y-2)に比べて低く、弾性に優れることが分かる。さらに、変性水素添加物(Y-3)は、tanδのピークトップ強度が0.60を示し、tanδのピークトップ温度は変性水素添加物(Y-2)に比べて低く、弾性に優れることが分かる。
 さらに、変性水素添加物(Y-1)及び(Y-3)のMFRは変性水素添加物(Y-2)に比べて低いため、混練時のせん断が掛かりやすくなり、樹脂組成物(D1)、(D2)の分散が良好になる。
 このため、変性水素添加物(Y-1)及び(Y-3)は、変性水素添加物(Y-2)に比べて、弾性および樹脂組成物の分散性が良好といえる。
2.樹脂組成物の製造例及び評価
[例2-1~2-7]
 表2に示す配合で、単軸押出機(主:ジーエムエンジニアリング社製「GM-30」、L/D=28)(副:ジーエムエンジニアリング社製「GM-25」、L/D=25)を経由して、樹脂組成物1~7の溶融混練物をTダイ(ハンガーコートダイ;リップ幅300mm、リップ厚み1mm)より押出し、表2に示すフィルム厚み、成形温度、及び巻取り速度にてフィルムに成形した。
 各樹脂組成物の作製に用いた成分は以下のとおりである。
[変性水素添加物(A)]
・変性水素添加物Y-1
・変性水素添加物Y-2
・変性水素添加物Y-3
[ポリオレフィン系樹脂(B)]
・ポリオレフィン1:低密度ポリエチレン(「ノバテックLD LF443」(商品名、ノバテックは登録商標)、日本ポリエチレン株式会社製、メルトインデックス(MI)=1.5g/10min)
・ポリオレフィン2:ランダムポリプロピレン(「プライムポリプロF327」(商品名)、株式会社プライムポリマー製、メルトインデックス(MI)=7g/10min)
[極性樹脂(C)]
・ポリアミド:ポリアミド6(「UBE nylon 1013B」(商品名)、宇部興産株式会社製)
[酸化防止剤]
・酸化防止剤1:フェノール系酸化防止剤(「アデカスタブAO-60」(商品名)、株式会社ADEKA製)
 樹脂組成物1~7より得られたフィルムについて、以下の物性を測定した。
<引張強さ及び引張破壊ひずみ>
 各例の樹脂組成物から得られたフィルムより、TD方向を長さとする、長さ150mm×幅15mmの試験片を作製し、JIS K7127:1999に準じて、オートグラフ(株式会社島津製作所製)を用いて、引張速度500mm/minにて、TD方向の引張強さ(MPa)及び引張破壊ひずみ(%)を測定した。
 なお、表2において、引張強さは、好ましくは9.0MPa以上、より好ましくは17.0MPa以上であり、また、引張破壊ひずみは、好ましくは50%以上、より好ましくは200%以上である。
<引張衝撃値>
 各例の樹脂組成物から得られたフィルムより、JIS K7160-1996-A(インベース法)に準拠して、TD方向で3形の試験片を作製し、東洋精機製作所製の「衝撃試験機IT」を用いて、ハンマー荷重4Jで、TD方向の引張衝撃値(kJ/m)を測定した。
 なお、表2において、引張衝撃値は、好ましくは650kJ/m以上、より好ましくは750kJ/m以上である。
<ヘイズ>
 各例の樹脂組成物から得られたフィルムについて、JIS K 7136:2000に準拠して、株式会社村上色彩技術研究所製の「HR-100」を用いて、ヘイズ(%)を測定した。
<透過型電子顕微鏡(TEM)による観察>
 樹脂組成物1、3及び4のモルフォロジーの観察のために、ウルトラミクロトーム(商品名:Leica EM FC7、Leica Microsystem社製)で薄膜切削したのち、四酸化ルテニウム0.5%水溶液で染色してサンプルを作製し、このサンプルを透過型電子顕微鏡(TEM)(商品名:HT7700、株式会社日立ハイテク製)で観察した。それぞれの透過型電子顕微鏡(TEM)による写真を図1~3に示す。
 樹脂組成物1~7を作製するのに用いた各成分の種類及び使用量、フィルム成形条件、物性測定結果を以下の表2に示す。
 なお、例2-1~2-2及び2-7は実施例に該当し、例2-3~2-6は比較例に該当する。
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように、樹脂組成物1~2及び7より得られたフィルムは、樹脂組成物3~6より得られたフィルムと比べて、引張強さ、引張破壊ひずみ、耐衝撃性のバランスに優れることが判る。また、ポリオレフィン系樹脂として低密度ポリエチレンを用いた樹脂組成物1及び7は、得られるフィルムの透明性にも優れることが判る。
 本発明の変性水素添加物を含む樹脂組成物1~2及び7と、変性水素添加物を含まない樹脂組成物3及び5と比較すると、引張破壊ひずみが著しく改善され、高い引張強さを有していることが判る。これは、本発明の変性水素添加物の相容化剤としての作用が良好なため、極性樹脂であるポリアミドの周囲に変性水素添加物が数nm程度の厚みで層を有するコアシェル構造を形成し、ポリオレフィン中に上記コアシェル構造のポリアミドが微分散することにより、界面強度が向上したものと推測される。
 また、本発明の変性水素添加物を含む樹脂組成物1~2及び7と、本発明の規定を満たさない変性水素添加物を含む樹脂組成物4及び6との比較から、実施例の樹脂組成物は引張衝撃値を高めやすいことが判る。これは、本発明の規定を満たさない変性水素添加物の相容性は本発明の変性水素添加物とは異なり、極性樹脂(C)の分散に偏りが存在し、かつ、その分散径も異なっているためと推測される。
[例3-1~3-7]
 表3に示す配合で、Coperion社製二軸押出機「ZSK26mc」(26mmφ、L/D=56)を用い、シリンダー温度250℃、スクリュー回転300rpm、吐出量10kg/hで溶融混練し、樹脂組成物8~14を作製した。得られた樹脂組成物を東芝機械株式会社製射出成形機「EC-75SX」を用い、シリンダー温度250℃、金型温度80℃の条件でISO多目的試験片A1型の試験片を作製した。
各樹脂組成物の作製に用いた成分は以下のとおりである。
[変性水素添加物(A)]
・変性水素添加物Y-1
・変性水素添加物Y-2
・変性水素添加物Y-3
[ポリオレフィン系樹脂(B)]
・ポリオレフィン3:ランダムポリプロピレン(「プライムポリプロ」J226T、株式会社プライムポリマー製、メルトインデックス(MI)=20g/10min)
[極性樹脂(C)]
・ポリブチレンテレフタレート:「トレコン1401」(商品名)、東レ株式会社製
・ポリカーボネート:「ユーピロンS3000」(商品名)、三菱エンジニアリングプラスチックス株式会社製
[酸化防止剤]
・酸化防止剤1:フェノール系酸化防止剤(「アデカスタブAO-60」(商品名)、株式会社ADEKA製)
 樹脂組成物8~14より得られた試験片について、以下の物性を測定した。
<引張強さ及び引張破壊ひずみ>
 JIS K7161-1:2014(ISO 527-1:2012)に準拠して、オートグラフ AGX-V(株式会社島津製作所製)を使用し、試験速度50mm/min、チャック間距離115mm、標線間距離50mmの条件で引張強さ(MPa)および引張破壊ひずみ(%)を測定した。測定結果を表3に示す。
 なお、表3において、引張強さは、好ましくは15MPa以上、より好ましくは17MPa以上であり、また、引張破壊ひずみは、好ましくは50%以上、より好ましくは200%以上である。
<曲げ弾性率及び曲げ強さ>
 ISO多目的試験片の両端を切削し、長さ80mm、幅10mm、厚み4mmの試験片を作製し、JIS K7171:2016(ISO 178:2010)に準拠して、オートグラフ AGX-V(株式会社島津製作所製)を使用し、試験速度2mm/minの条件で曲げ弾性率(MPa)および曲げ強さ(MPa)を測定した。測定結果を表3に示す。
<シャルピー衝撃値>
 ISO多目的試験片の両端を切削し、長さ80mm、幅10mm、厚み4mmの試験片を作製し、試験片中央部にノッチ加工して残り幅8mmの試験片を得た。上記試験片を用い、JIS K7111-1:2012に準じて、デジタル衝撃試験機 IT型(株式会社東洋精機製作所製)を使用して、ハンマー荷重を2Jとし、23℃におけるシャルピー衝撃値(kJ/m)を測定した。測定結果を表3に示す。
 なお、表3において、シャルピー衝撃値は、好ましくは5.0kJ/m以上、より好ましくは25.0kJ/m以上である。
 なお、例3-1~3-2及び3-7は実施例に該当し、例3-3~3-6は比較例に該当する。
Figure JPOXMLDOC01-appb-T000004
 極性樹脂の種類を変更した場合においても、ポリアミドを用いた場合に見られたのと同様の傾向がみられた。
[例4-1~4-3]
 表4に示す配合で、Coperion社製二軸押出機「ZSK26mc」(26mmφ、L/D=56)を用い、シリンダー温度230℃、スクリュー回転300rpm、吐出量10kg/hで溶融混練し、樹脂組成物15~17を作製した。得られた樹脂組成物を東芝機械株式会社製射出成形機「EC-75SX」を用い、シリンダー温度230℃、金型温度80℃の条件でISO多目的試験片A1型の試験片を作製した。
 各樹脂組成物の作製に用いた成分は以下のとおりである。
[変性水素添加物(A)]
・変性水素添加物Y-1
[水素添加物(A1)]
・水素添加物Y’-1
[ポリオレフィン系樹脂(B)]
・ポリオレフィン1:低密度ポリエチレン(「ノバテックLD LF443」(商品名、ノバテックは登録商標)、日本ポリエチレン株式会社製、メルトインデックス(MI)=1.5g/10min)
[水酸化マグネシウム]
・水酸化マグネシウム:水酸化マグネシウム(「キスマ5P」(商品名)、協和化学工業株式会社製)
[酸化防止剤]
・酸化防止剤1:フェノール系酸化防止剤(「アデカスタブAO-60」(商品名)、株式会社ADEKA製)
 樹脂組成物15~17より得られた試験片について、以下の物性を測定した。
<引張強さ及び引張破壊ひずみ>
 JIS K7161-1:2014(ISO 527-1:2012)に準拠して、オートグラフ AGX-V(株式会社島津製作所製)を使用し、試験速度50mm/min、チャック間距離115mm、標線間距離50mmの条件で引張強さ(MPa)および引張破壊ひずみ(%)を測定した。測定結果を表4に示す。
 なお、表4において、引張強さは、好ましくは15MPa以上、より好ましくは17MPa以上であり、また、引張破壊ひずみは、好ましくは50%以上、より好ましくは200%以上である。
<シャルピー衝撃値>
 ISO多目的試験片の両端を切削し、長さ80mm、幅10mm、厚み4mmの試験片を作製し、試験片中央部にノッチ加工して残り幅8mmの試験片を得た。上記試験片を用い、JIS K7111-1:2012に準じて、デジタル衝撃試験機 IT型(株式会社東洋精機製作所製)を使用して、ハンマー荷重を2Jとし、23℃におけるシャルピー衝撃値(kJ/m)を測定した。測定結果を表4に示す。
 なお、表4において、シャルピー衝撃値は、好ましくは20.0kJ/m以上、より好ましくは25.0kJ/m以上である。
<難燃性>
 ISO多目的試験片の両端を切削し、長さ125mm、幅10mm、厚み4mmの試験片を作製した。
 次に、作製した試験片を難燃性評価装置に設置した。詳細には、図4に示すように、難燃性評価装置10は、支持部材(金属台座)100と、支持部材(金属台座)100に立設された金属棒200と、金属棒200に固定された第1クランプ300及び第2クランプ400と、第2クランプ400に保持された金属製容器500とを備える。金属製容器500には水が入っている。作製した試験片20は、第1クランプ300に保持される。なお、図4において、Aは100±1mmを表し、Bは25±1mmを表し、Cは約30°を表す。
 難燃性評価の試験手順は以下の通りである。
 (1)図4に示すように試験片20にバーナー30による炎40を10秒間接触させる。
 (2)次に、試験片20から炎40を遠ざけて時間計測を開始する。
 (3)次に、燃焼距離が25mmとなるまでの時間を計測した。結果を表4に示す。ここで、燃焼距離が25mmに達する前に燃焼が止まった場合は、「不燃性」とする。
 評価結果を表4に示す。
 なお、表4において、難燃性は、好ましくは1分30秒以上であり、より好ましくは「不燃性」である。
 なお、例4-1~4-2は実施例に該当し、例4-3は比較例に該当する。
Figure JPOXMLDOC01-appb-T000005
 本発明の変性水素添加物を含む樹脂組成物15及び16と、本発明の変性水素添加物を含まない樹脂組成物17との比較から、実施例の樹脂組成物は引張強さ、引張破壊ひずみ、耐衝撃性などの機械的特性のバランスに優れ、且つ、難燃性が向上されたことが判る。これは、変性水素添加物と水酸化マグネシウム(フィラー)との相互作用により界面強度が向上したことで引張強さが向上し、且つ、水酸化マグネシウム(フィラー)が樹脂組成物内でより分散したことで難燃性が向上したことによるものと推測される。
 本発明の変性水素添加物とポリオレフィン系樹脂、又はポリオレフィン系樹脂と極性樹脂とを含む樹脂組成物は、引張強さ、引張破壊ひずみ、耐衝撃性などの機械的特性のバランスに優れる。したがって、本発明の変性水素添加物は、ポリオレフィン系樹脂及び極性樹脂が用いられている各種包装容器をリサイクルする際に好適に用いることが可能である。

Claims (17)

  1.  芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物であって、
     前記共役ジエン化合物が、イソプレンと、イソプレン以外の共役ジエン化合物とを含有し、
     前記重合体ブロック(A-2)のビニル結合量が30モル%以下であり、
     アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
     JIS K7244-10:2005に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+120℃、昇温速度3℃/分の条件で測定した損失正接(tanδ)のピークトップ強度が0.95以下であり、
     JIS K7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレート(MFR)が0.5~15g/10minである、変性水素添加物(A)。
  2.  重量平均分子量が10,000~400,000である、請求項1に記載の変性水素添加物(A)。
  3.  重合体ブロック(A-2)の水素添加率が80モル%以上である、請求項1又は2に記載の変性水素添加物(A)。
  4.  前記官能基の含有量が、前記変性水素添加物(A)に対して、0.1~5.0phrである、請求項1~3のいずれか1項に記載の変性水素添加物(A)。
  5.  無水マレイン酸由来の基を有する、請求項1~4のいずれか1項に記載の変性水素添加物(A)。
  6.  前記ブロック共重合体が、イソプレン由来の構造単位を含む重合体ブロック(A-3)をさらに有し、
     前記ブロック共重合体の結合形式が、重合体ブロック(A-1)をAで、重合体ブロック(A-2)をBで、重合体ブロック(A-3)をCで表したとき、A-B-A-Cで示されるテトラブロック共重合体である、請求項1~5のいずれか1項に記載の変性水素添加物(A)。
  7.  前記ブロック共重合体中の前記重合体ブロック(A-3)の比率が、前記ブロック共重合体全体の40質量%以下である、請求項6に記載の変性水素添加物(A)。
  8.  前記重合体ブロック(A-3)のビニル結合量が2~90モル%である、請求項6又は7に記載の変性水素添加物(A)。
  9.  前記重合体ブロック(A-3)中のイソプレンに由来する構造単位の含有量は、前記重合体ブロック(A-3)の合計質量に基づいて、40質量%以上である、請求項6~8のいずれか1項に記載の変性水素添加物(A)。
  10.  前記変性水素添加物(A)における前記重合体ブロック(A-3)の水素添加率(水添率)が80モル%以上である、請求項6~9のいずれか1項に記載の変性水素添加物(A)。
  11.  請求項1~10のいずれか1項に記載の変性水素添加物(A)を含む、ペレット。
  12.  請求項1~10のいずれか1項に記載の変性水素添加物(A)と、ポリオレフィン系樹脂(B)とを含む樹脂組成物。
  13.  ポリオレフィン系樹脂(B)が、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン酢酸ビニル共重合体、α-オレフィンの単独重合体又は共重合体、及び、プロピレン及び/又はエチレンとα-オレフィンとの共重合体からなる群から選択される少なくとも1種の樹脂である、請求項12に記載の樹脂組成物。
  14.  前記樹脂組成物中における変性水素添加物(A)の含有量が1~30質量%である、請求項12又は13に記載の樹脂組成物。
  15.  極性樹脂(C)をさらに含む、請求項12~14のいずれか1項に記載の樹脂組成物。
  16.  極性樹脂(C)が、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンサルファイド系樹脂、及びポリカーボネート系樹脂からなる群より選択される少なくとも1種の樹脂である、請求項15に記載の樹脂組成物。
  17.  前記樹脂組成物中の、ポリオレフィン系樹脂(B)の質量をX、極性樹脂(C)の質量をYとするとき、X/Yが90/10~10/90である請求項15又は16に記載の樹脂組成物。
PCT/JP2022/046282 2021-12-17 2022-12-15 変性水添ブロック共重合体及び樹脂組成物 WO2023112996A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023555587A JP7430848B2 (ja) 2021-12-17 2022-12-15 変性水添ブロック共重合体及び樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-205330 2021-12-17
JP2021205330 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112996A1 true WO2023112996A1 (ja) 2023-06-22

Family

ID=86774418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046282 WO2023112996A1 (ja) 2021-12-17 2022-12-15 変性水添ブロック共重合体及び樹脂組成物

Country Status (3)

Country Link
JP (1) JP7430848B2 (ja)
TW (1) TW202337932A (ja)
WO (1) WO2023112996A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320459A (ja) * 2004-05-10 2005-11-17 Kraton Jsr Elastomers Kk 粘接着組成物
WO2016136760A1 (ja) * 2015-02-24 2016-09-01 株式会社クラレ 水添ブロック共重合体、樹脂組成物、粘着剤、接着剤、成形体、液体包装容器、医療用具、医療用チューブ、ウェザーシール用コーナー部材及びウェザーシール
WO2019103048A1 (ja) * 2017-11-22 2019-05-31 株式会社クラレ ブロック共重合体又はその水素添加物
WO2019230527A1 (ja) * 2018-05-31 2019-12-05 株式会社クラレ 変性水素添加物及びその製造方法、樹脂組成物、並びにこれらの各種用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320459A (ja) * 2004-05-10 2005-11-17 Kraton Jsr Elastomers Kk 粘接着組成物
WO2016136760A1 (ja) * 2015-02-24 2016-09-01 株式会社クラレ 水添ブロック共重合体、樹脂組成物、粘着剤、接着剤、成形体、液体包装容器、医療用具、医療用チューブ、ウェザーシール用コーナー部材及びウェザーシール
WO2019103048A1 (ja) * 2017-11-22 2019-05-31 株式会社クラレ ブロック共重合体又はその水素添加物
WO2019230527A1 (ja) * 2018-05-31 2019-12-05 株式会社クラレ 変性水素添加物及びその製造方法、樹脂組成物、並びにこれらの各種用途

Also Published As

Publication number Publication date
JP7430848B2 (ja) 2024-02-13
TW202337932A (zh) 2023-10-01
JPWO2023112996A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
KR102633882B1 (ko) 블록 공중합체 또는 그 수소 첨가물
JP7194179B2 (ja) 変性水素添加物及びその製造方法、樹脂組成物、並びにこれらの各種用途
JP7454566B2 (ja) 樹脂組成物、樹脂組成物の製造方法、及び、成形品
JP6609397B2 (ja) ブロック共重合体の水素添加物、樹脂組成物、及びこれらの各種用途
US11492438B2 (en) Block copolymer hydrogenate, resin composition, and various applications thereof
US20230272205A1 (en) Resin composition, adhesive agent, and compatibilizer
WO2023112996A1 (ja) 変性水添ブロック共重合体及び樹脂組成物
JP7364672B2 (ja) 水添ブロック共重合体、樹脂組成物、及び、それらの各種用途
WO2021235457A1 (ja) 樹脂組成物、樹脂改質剤、分散体組成物、自動車用部材、及び、樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555587

Country of ref document: JP