WO2023112586A1 - ケーブル収容容器 - Google Patents

ケーブル収容容器 Download PDF

Info

Publication number
WO2023112586A1
WO2023112586A1 PCT/JP2022/042525 JP2022042525W WO2023112586A1 WO 2023112586 A1 WO2023112586 A1 WO 2023112586A1 JP 2022042525 W JP2022042525 W JP 2022042525W WO 2023112586 A1 WO2023112586 A1 WO 2023112586A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom plate
reaction force
force acting
plate portion
container body
Prior art date
Application number
PCT/JP2022/042525
Other languages
English (en)
French (fr)
Inventor
拓也 牧
耕一 前野
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to AU2022415577A priority Critical patent/AU2022415577A1/en
Publication of WO2023112586A1 publication Critical patent/WO2023112586A1/ja
Priority to US18/345,039 priority patent/US20230352918A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/04Installations of electric cables or lines in or on the ground or water in surface ducts; Ducts or covers therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0406Details thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/06Installations of electric cables or lines in or on the ground or water in underground tubes or conduits; Tubes or conduits therefor

Definitions

  • the present invention relates to a cable housing container for housing cables laid underground on roads.
  • a conventional cable storage container includes a container body made of resin having a bottom plate portion and a pair of side plate portions extending upward from both sides in the width direction of the bottom plate portion, and having openings formed on the top surface of the container body. is known to be buried in the ground (see Patent Document 1, for example).
  • Conventional container bodies are formed by pouring resin material into a mold and hardening it, such as by injection molding. For this reason, it is necessary for the conventional container body to have a uniform thickness dimension as a whole in order to prevent distortion, and to form ribs on the outer surface side in order to improve strength.
  • the conventional container body has few flat surfaces on the lower surface side, and when it is installed on the installation surface via mortar, the mortar spread on the installation surface enters the gap on the lower surface side, resulting in It becomes difficult to adjust the height, and there is a possibility that the height may be shifted when arranging a plurality of container bodies.
  • An object of the present invention is to ensure that the vertical positioning of the container body with respect to the installation surface is performed when the container body is installed on the installation surface via mortar, and that the height can be easily adjusted during construction.
  • a cable housing container includes a resin container body having a bottom plate portion and a pair of side plate portions extending upward from both sides in the width direction of the bottom plate portion, and having an opening formed in the upper surface thereof,
  • the bottom plate portion of the container body is provided so as to contact the mortar when the container body is installed on a predetermined installation surface via mortar.
  • a reaction force acting surface is formed on which a reaction force from the mortar acts, and the reaction force acting surface has a thickness of 20 mm or less by forming a recess in the bottom plate portion where the thickness dimension of the bottom plate portion is 30 mm or more. and the area of the reaction force acting surface is 50% or more of the area of the lower surface of the bottom plate portion.
  • the reaction force acting surface has a width dimension of 10 mm or more in a portion where the thickness dimension of the bottom plate portion is 30 mm or more.
  • the reaction force acting surface is located between the plurality of recesses in the portion where the thickness dimension of the bottom plate portion is 30 mm or more.
  • the recess has a circular, triangular, quadrangular, or hexagonal shape.
  • the recess has a depth dimension of 20 mm or more from the reaction force acting surface.
  • the reaction force from the mortar is applied to the reaction force acting surface, so that the positioning in the vertical direction with respect to the installation surface is reliably performed. Therefore, it is possible to easily adjust the height during construction, shorten the construction time, reduce misalignment when arranging multiple container bodies, and reduce the thickness of the bottom plate to 30 mm or more. Since the concave portion is formed in the bottom plate portion so that the reaction force acting surface located in the portion has a width of 20 mm or less, it is possible to suppress distortion during molding of the container body.
  • FIG. 1 is a schematic diagram of a cable container according to the invention.
  • FIG. 2 is a cross-sectional view of a cable container according to the invention.
  • FIG. 3 is a perspective view of essential parts of the lower surface side of the container body according to the present invention.
  • FIG. 4 is a perspective view of a main portion of the lower surface side of a conventional container body.
  • FIG. 5 is a table comparing the container body according to the present invention and the conventional container body.
  • FIG. 1 is a schematic diagram of a cable housing container according to the present invention
  • FIG. 2 is a cross-sectional view of the cable housing container according to the present invention
  • FIG. FIG. 4 is a perspective view of the main part of the lower surface of a conventional container body
  • FIG. 5 is a table comparing the container body according to the present invention and the conventional container body.
  • the cable housing container 1 of the present embodiment is used for transmission lines or distribution lines for transmitting power supplied from a power plant to each demand facility, and for signals transmitted and received between a plurality of wireless base station devices and a switching center. It is for accommodating a plurality of cables 2 such as communication lines for transmission. As shown in FIGS. 1 and 2, the cable storage container 1 is buried so that its upper surface is flush with the road surface G on an asphalt-paved road on which vehicles and pedestrians pass.
  • the cable housing container 1 includes a container body 10 having a U-shaped cross section and an opening 10a formed on the upper surface thereof, and a container body 10 which closes the opening 10a. and a lid 20 .
  • the container body 10 is made of, for example, a recycled resin member containing polyethylene, polypropylene, etc., and is formed by, for example, injection molding.
  • the container body 10 has a bottom plate portion 11 formed in a rectangular plate shape, and a pair of side plate portions 12 in the width direction extending upward from both width direction end sides of the bottom plate portion 11.
  • the bottom plate portion A portion surrounded by 11 and the pair of side plate portions 12 serves as an accommodation space 10b in which the cable 2 is accommodated.
  • the container body 10 is provided with connecting portions 13 at both ends in the longitudinal direction. It is possible to form the accommodation space 10b continuously.
  • the thickness dimension T of the connection portion 13 is less than 30 mm (eg, 10 mm), and the thickness dimension T of the portion other than the connection portion 13 is 30 mm or more (eg, 30 mm). 2 and 3, on the lower surface of the bottom plate portion 11, when the container body 10 is installed on the predetermined installation surface S via the mortar M, it abuts against the mortar M and is A reaction force acting surface 11a on which a reaction force acts is formed on the whole.
  • the reaction force acting surface 11a is 10 mm or more and 20 mm or less by forming a concave portion 11b in the bottom plate portion 11 at a portion where the thickness dimension T of the bottom plate portion 11 is 30 mm or more (a portion of the bottom plate portion 11 other than the connecting portion 13). is formed so as to extend continuously with a width dimension W of .
  • the area of the reaction force acting surface 11 a is formed to be 50% or more and 80% or less of the entire area of the bottom surface of the bottom plate portion 11 .
  • the recess 11b has a depth dimension H of 20 mm or more from the reaction force acting surface 11a.
  • reaction force acting surface 11a extending with the width dimension W of 10 mm or more and 20 mm or less may be formed over the entire lower surface of the portion where the thickness dimension T of the bottom plate portion 11 is 30 mm or more.
  • a plurality of intermittently extending reaction force acting surfaces 11 a divided by recesses with a width dimension W below may be formed on the lower surface of the bottom plate portion 11 .
  • the reaction force acting surface 11a of this embodiment is positioned between the plurality of recesses 11b.
  • the concave portion 11b may have a circular shape as shown in FIG. 3(a), a rectangular shape as shown in FIG. 3(b), a triangular shape as shown in FIG. 3(c), and a hexagonal shape as shown in FIG. 3(d).
  • the lid 20 is made of a rectangular plate member made of resin. As shown in FIGS. 1 and 2, the lid body 20 is formed to have the same size in the longitudinal direction as the container body 10 in the longitudinal direction, and has the same size in the width direction and the thickness direction as the pair of side plate portions 12 . It is formed in a size that can be accommodated in a lid accommodation portion 12a provided on the upper portion of the.
  • the lid 20 is detachably fixed to the container body 10 by a fastening member (not shown).
  • the container body 10 is installed.
  • the container main body 10 installed on the installation surface S contacts the mortar M with the reaction force acting surface 11a formed on the lower surface of the bottom plate portion 11, and the dead weight of the container main body 10 is applied to the mortar M from the reaction force acting surface 11a.
  • a reaction force acts from the mortar M to the reaction force acting surface 11a. Therefore, the container main body 10 installed on the installation surface S is adjusted in horizontal and vertical positions before the mortar M hardens, and then the posture is maintained.
  • the container body 10 that has been installed and positioned on the installation surface S is put in order of sand and gravel around the container body 10, and after rolling using a rolling compaction device such as a tamper, the gravel is paved with asphalt. embedded by applying
  • FIG. 4 is a perspective view of a main portion of the lower surface side of a conventional container body 10' having a small area of the reaction force acting surface 11a'.
  • FIG. 5 shows a conventional container body 10' and a concave portion 11b formed in a reaction force acting surface 11a located at a portion where the thickness dimension T of the bottom plate portion 11 in this embodiment is 30 mm or more.
  • Fig. 10 is a table comparing shapes, triangular shapes, and container bodies 10 formed in hexagonal shapes.
  • the recess interval in the table of FIG. 5 is the interval between the recesses 11b (the reaction force acting surface 11a located at the portion where the thickness dimension T of the bottom plate portion 11 is 30 mm or more) in each container body 10 in this embodiment. width W).
  • the container body 10 of the present embodiment uses more materials than the conventional container body 10', but has a large reaction force acting surface 11a and a bottom plate portion 11. It can be seen that the ratio of the area of the reaction force acting surface 11a to the area of the lower surface of is large. As a result, the container body 10 of the present embodiment can be easily positioned in the vertical direction when installed on the installation surface S via the mortar M, compared to the conventional container body 10'.
  • each container body 10 according to the present embodiment when the interval between recesses is 20 mm, the area of the reaction force acting surface 11a is larger than when the interval between recesses is 10 mm. The ratio of the area of the reaction force acting surface 11a to the area of the lower surface of the portion 11 is increased.
  • the width dimension W of the reaction force acting surface 11a located in the portion where the thickness dimension T of the bottom plate portion 11 is 30 mm or more is large, and therefore, when the container body 10 is molded by injection molding, It can be seen that the strain is increased and the formability is inferior to that of the container body 10 having the recess interval of 10 mm.
  • the amount of material used is greater when the recess spacing is 20 mm than when the recess spacing is 10 mm.
  • the container body 10 with a recess interval of 10 mm is superior to the container body 10 with a recess interval of 20 mm in terms of quality and manufacturing cost.
  • the respective container bodies 10 having a recess interval of 10 mm in the present embodiment are preferably container bodies 10 having circular and rectangular recesses 11b from the viewpoint of the amount of resin material used.
  • the bottom plate portion 11 and the pair of side plate portions 12 extending upward from both sides in the width direction of the bottom plate portion 11 are provided, and the opening portion 10a is formed on the upper surface.
  • the container main body 10 is embedded in the ground, and the container main body 10 is mounted on a predetermined installation surface S with mortar on the bottom plate portion 11 of the container main body 10 .
  • a reaction force acting surface 11a is formed on which a reaction force from the mortar M acts in contact with the mortar M when it is installed through the mortar M.
  • the reaction force acting surface 11a has a thickness T of the bottom plate portion 11 of 30 mm.
  • the recessed portion 11b in the bottom plate portion 11 it is formed to extend continuously or intermittently with a width dimension W of 20 mm or less, and the area of the reaction force acting surface 11a is equal to the lower surface of the bottom plate portion 11. is 50% or more of the area of
  • the reaction force from the mortar M acts on the reaction force acting surface 11a, thereby positioning the installation surface S in the vertical direction. Since it is possible to perform reliably, it is possible to easily adjust the height during construction, shorten the construction time, reduce deviation when arranging a plurality of container bodies 10, and reduce the thickness of the bottom plate part 11. Since the recess 11b is formed in the bottom plate portion 11 so that the reaction force acting surface 11a positioned at a portion where the dimension T is 30 mm or more has a width dimension W of 20 mm or less, distortion during molding of the container body 10 can be reduced. can be suppressed.
  • the reaction force acting surface 11a has a width dimension W of 10 mm or more in a portion where the thickness dimension T of the bottom plate portion 11 is 30 mm or more.
  • reaction force from the mortar M can be applied to the reaction force acting surface 11a, so that the vertical displacement of the container body 10 installed on the installation surface S via the mortar M can be suppressed. becomes possible.
  • reaction force acting surface 11a is located between the plurality of recesses 11b in the portion where the thickness dimension T of the bottom plate portion 11 is 30 mm or more.
  • the reaction force acting surface 11a can be arranged over the entire lower surface of the portion of the bottom plate portion 11 having a thickness T of 30 mm or more. It is possible to more reliably suppress the vertical positional displacement of 10 .
  • the recess 11b preferably has a circular, triangular, quadrangular or hexagonal shape.
  • the manufacturing cost of the container body 10 can be suppressed by simplifying the shape of the concave portion 11b.
  • the recessed portion 11b has a depth dimension H of 20 mm or more from the reaction force acting surface 11a.
  • the bottom plate portion 11 is reinforced by the portion located between the recesses 11b and 11b, so that the strength of the container body 10 can be improved.
  • the cable storage container buried in the road paved with asphalt was shown, but if it is buried in the ground where heavy objects such as vehicles pass, it does not have asphalt pavement. It can also be applied to a cable container buried in the ground of a road surface.
  • the container body 10 is provided with the connection portions 13, which are portions of the bottom plate portion 11 having a thickness T of less than 30 mm, at both ends in the longitudinal direction, but the present invention is not limited to this.
  • the connection portions 13 are portions of the bottom plate portion 11 having a thickness T of less than 30 mm, at both ends in the longitudinal direction, but the present invention is not limited to this.
  • a concave portion is formed over the entire lower surface side of the bottom plate portion, and the width dimension is 20 mm or less and is continuous or intermittent.
  • the reaction force acting surface may be formed so as to extend to In addition, regardless of the presence or absence of the connecting portion, in the case of a container body having a portion of the bottom plate portion with a thickness of less than 30 mm, the portion of the bottom plate portion with a thickness of less than 30 mm extends with a width of 20 mm or less. It is not necessary to form a reaction force acting surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Electric Cable Installation (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)

Abstract

モルタルを介して設置面に容器本体を設置する場合に、設置面に対して上下方向の位置決めを確実に行い、施工時の高さの調整がしやすく、施工時間を短縮し、複数の容器本体を並べる際にずれを軽減することができ、容器本体の製造時における歪みを抑制することのできるケーブル収容容器を提供する。 容器本体10の底板部11には、容器本体10を所定の設置面SにモルタルMを介して設置する際に、モルタルMに当接してモルタルMからの反力が作用する反力作用面11aが形成され、反力作用面11aは、底板部11の厚さ寸法Tが30mm以上の部分において、底板部11に凹部11bを形成することにより、20mm以下の幅寸法Wで連続的または断続的に延びるように形成され、反力作用面11aの面積は、底板部11の下面の面積の50%以上である。

Description

ケーブル収容容器
 本発明は、道路の地中に敷設されるケーブルを収容するケーブル収容容器に関するものである。
 従来のケーブル収容容器としては、底板部と、底板部の幅方向両側から上方に延びる一対の側板部と、を有し、上面に開口部が形成された樹脂製の容器本体を備え、容器本体が地中に埋設されるものが知られている(例えば、特許文献1参照)。
 容器本体の埋設は、地盤を掘削した部分にコンクリートを打設することによって容器本体を設置する設置面を形成し、形成された設置面にモルタルを介して設置することによって位置決めをした後、周囲を砂や砂利で埋める手順で行われるのが一般的である。
特許第4885263号公報
 従来の容器本体は、射出成型等、金型に樹脂材料を流し込んで固めることによって形成されている。このため、従来の容器本体は、歪みを防止するために全体的に厚さ寸法を均一化するとともに、強度を向上させるために外面側にリブを形成する必要がある。
したがって、従来の容器本体は、下面側に平坦な面が少なく、モルタルを介して設置面に設置する際に、設置面に敷かれたモルタルが下面側の隙間に入り込むことになり、施工時の高さ調整がしづらくなり、複数の容器本体を並べる際に高さのずれが生じるおそれがある。
 本発明の目的とするところは、モルタルを介して設置面に容器本体を設置する場合に、設置面に対して上下方向の位置決めを確実に行い、施工時の高さの調整がしやすく、施工時間を短縮し、複数の容器本体を並べる際にずれを軽減することができ、容器本体の製造時における歪みを抑制することのできるケーブル収容容器を提供することにある。
 本発明に係るケーブル収容容器は、底板部と、前記底板部の幅方向両側から上方に延びる一対の側板部と、を有し、上面に開口部が形成された樹脂製の容器本体を備え、前記容器本体が地中に埋設されるケーブル収容容器であって、前記容器本体の前記底板部には、前記容器本体を所定の設置面にモルタルを介して設置する際に、モルタルに当接してモルタルからの反力が作用する反力作用面が形成され、前記反力作用面は、前記底板部の厚さ寸法が30mm以上の部分において、前記底板部に凹部を形成することにより、20mm以下の幅寸法で連続的または断続的に延びるように形成され、前記反力作用面の面積は、前記底板部の下面の面積の50%以上である。
 また、本発明に係るケーブル収容容器は、前記反力作用面が、前記底板部の厚さ寸法が30mm以上の部分において、10mm以上の幅寸法を有している。
 また、本発明に係るケーブル収容容器は、前記反力作用面が、前記底板部の厚さ寸法が30mm以上の部分において、複数の前記凹部の間に位置している。
 また、本発明に係るケーブル収容容器は、前記凹部が、円形状、三角形状、四角形状または六角形状を有している。
 また、本発明に係るケーブル収容容器は、前記凹部が、前記反力作用面から20mm以上の深さ寸法を有している。
 本発明によれば、設置面にモルタルを介して容器本体を設置する際に、反力作用面にモルタルからの反力を作用させることによって、設置面に対して上下方向の位置決めを確実に行うことが可能となるので、施工時の高さの調整がしやすく、施工時間を短縮し、複数の容器本体を並べる際にずれを軽減することができ、底板部の厚さ寸法が30mm以上の部分に位置する反力作用面が20mm以下の幅寸法となるように、底板部に凹部が形成されているので、容器本体の成形の際の歪みを抑制することが可能となる。
図1は、本発明に係るケーブル収容容器の概略図である。 図2は、本発明に係るケーブル収容容器の横断面図である。 図3は、本発明に係る容器本体の下面側の要部斜視図である。 図4は、従来の容器本体の下面側の要部斜視図である。 図5は、本発明に係る容器本体と従来の容器本体を対比する表である。
 図1乃至図5は、本発明の一実施形態を示すものである。図1は本発明に係るケーブル収容容器の概略図であり、図2は本発明に係るケーブル収容容器の横断面図であり、図3は本発明に係る容器本体の下面側の要部斜視図であり、図4は従来の容器本体の下面側の要部斜視図であり、図5は本発明に係る容器本体と従来の容器本体とを対比する表である。
 本実施形態のケーブル収容容器1は、発電所から供給される電力を各需要設備に対して送る送電線または配電線や、複数の無線基地局装置と交換局との間で送受信される信号を送るための通信線等の複数のケーブル2を収容するためのものである。ケーブル収容容器1は、図1および図2に示すように、車両や歩行者が通行するアスファルト舗装された道路において、上面が路面Gと面一となるように埋設される。
 ケーブル収容容器1は、図1および図2に示すように、横断面がU字状に形成され、上面に開口部10aが形成された容器本体10と、容器本体10の開口部10aを閉鎖する蓋体20と、を有している。
 容器本体10は、例えば、ポリエチレン、ポリプロピレン等を含むリサイクルされた樹脂製の部材からなり、例えば射出成型によって形成される。容器本体10は、矩形の板状に形成された底板部11と、底板部11の幅方向の両端側のそれぞれから上方に延出する幅方向一対の側板部12と、を有し、底板部11および一対の側板部12に囲まれる部分が、ケーブル2が収容される収容空間10bとなる。容器本体10は、図3に示すように、長手方向の両端側に連結部13が設けられ、連結部13を他の容器本体10の連結部13と図示しないアダプタを介して連結することにより、収容空間10bを連続して形成することが可能である。
 底板部11は、連結部13の厚さ寸法Tが30mm未満(例えば10mm)であり、連結部13以外の部分の厚さ寸法Tが30mm以上(例えば30mm)である。また、底板部11の下面には、図2および図3に示すように、容器本体10を所定の設置面SにモルタルMを介して設置する際に、モルタルMに当接してモルタルMからの反力が作用する反力作用面11aが全体に形成されている。
 反力作用面11aは、底板部11の厚さ寸法Tが30mm以上の部分(底板部11の連結部13以外の部分)において、底板部11に凹部11bを形成することにより、10mm以上20mm以下の幅寸法Wで連続的に延びるように形成されている。反力作用面11aの面積は、底板部11の下面の全体の面積の50%以上80%以下となるように形成されている。また、凹部11bは、反力作用面11aから20mm以上の深さ寸法Hを有している。ここで、10mm以上20mm以下の幅寸法Wで延びる反力作用面11aは、底板部11の厚さ寸法Tが30mm以上の部分の下面の全体にわたって形成されるものであればよく、例えば、20mm以下の幅寸法Wで凹部によって分断された断続的に延びる複数の反力作用面11aを、底板部11の下面に形成してもよい。
 本実施形態の反力作用面11aは、複数の凹部11bの間に位置している。
 凹部11bは、図3(a)に示す円形状、図3(b)に示す矩形状、図3(c)に示す三角形状、図3(d)に示す六角形状が考えられる。
 蓋体20は、樹脂製の矩形状の板状部材からなる。蓋体20は、図1および図2に示すように、長手方向の大きさが容器本体10の長手方向の大きさと同一に形成され、幅方向および厚さ方向の大きさが一対の側板部12の上部に設けられた蓋体収納部12aに収容可能な大きさに形成されている。蓋体20は、図示しない締結部材によって容器本体10に対して着脱自在に固定される。
 以上のように構成されたケーブル収容容器1を設置する場合には、まず、設置場所およびその周囲の土を掘削し、掘削した部分にコンクリートを打設して上面を平坦面とした設置面Sを形成する。
 次に、設置面SにモルタルMを載置した状態で、容器本体10を設置する。設置面Sに設置された容器本体10は、底板部11の下面に形成された反力作用面11aがモルタルMに当接し、反力作用面11aからモルタルMに対して容器本体10の自重が作用するとともに、モルタルMから反力作用面11aに対して反力が作用する。このため、設置面Sに設置された容器本体10は、モルタルMが固まる前に水平方向および上下方向の位置が調整された後、姿勢が保持される。
 設置面Sに設置されて位置決めがなされた容器本体10は、容器本体10の周りに砂、砂利の順に投入し、タンパー等の転圧機器を用いて転圧した後、砂利の上にアスファルト舗装を施すことによって埋設される。
 ここで、図4は、反力作用面11a´の面積が小さい従来の容器本体10´の下面側の要部斜視図である。また、図5は、従来の容器本体10´と、本実施形態における底板部11の厚さ寸法Tが30mm以上の部分に位置する反力作用面11aに形成された凹部11bが円形状、矩形状、三角形状、六角形状に形成されたそれぞれの容器本体10と、を対比した表である。
 図5の表における凹部間隔は、本実施形態におけるそれぞれの容器本体10において、凹部11bと凹部11bとの間隔(底板部11の厚さ寸法Tが30mm以上の部分に位置する反力作用面11aの幅寸法W)を示している。
 図5に示すように、本実施形態の容器本体10は、それぞれ、従来の容器本体10´と比べて、材料の使用量は多くなるが、反力作用面11aの面積が大きく、底板部11の下面の面積に対する反力作用面11aの面積の比率が大きいことがわかる。これにより、本実施形態の容器本体10は、それぞれ、従来の容器本体10´と比べて、設置面SにモルタルMを介して設置する場合に、上下方向の位置決めが容易である。
 また、図5に示すように、本実施形態におけるそれぞれの容器本体10において、凹部間隔が20mmの場合には、凹部間隔が10mmの場合と比べて、反力作用面11aの面積が大きく、底板部11の下面の面積に対する反力作用面11aの面積の比率が大きくなる。しかし、凹部間隔が20mmの容器本体10は、底板部11の厚さ寸法Tが30mm以上の部分に位置する反力作用面11aの幅寸法Wが大きくなるため、射出成型によって成型した場合に生じる歪みが大きくなり、凹部間隔が10mmの容器本体10と比べて、成形性が劣ることがわかる。さらに、本実施形態におけるそれぞれの容器本体10において、凹部間隔が20mmの場合には、凹部間隔が10mmの場合と比べて、材料の使用量が多いことがわかる。
 このため、本実施形態におけるそれぞれの容器本体10において、凹部間隔が20mmの容器本体10よりも10mmの容器本体10の方が品質および製造コストの面で優れていることがわかる。
 さらに、本実施形態における凹部間隔が10mmのそれぞれの容器本体10は、樹脂材料の使用量の観点から、凹部11bの形状が円形状および矩形状の容器本体10であることが好ましいことがわかる。
 このように、本実施形態のケーブル収容容器1によれば、底板部11と、底板部11の幅方向両側から上方に延びる一対の側板部12と、を有し、上面に開口部10aが形成された樹脂製の容器本体10を備え、容器本体10が地中に埋設されるケーブル収容容器1であって、容器本体10の底板部11には、容器本体10を所定の設置面SにモルタルMを介して設置する際に、モルタルMに当接してモルタルMからの反力が作用する反力作用面11aが形成され、反力作用面11aは、底板部11の厚さ寸法Tが30mm以上の部分において、底板部11に凹部11bを形成することにより、20mm以下の幅寸法Wで連続的または断続的に延びるように形成され、反力作用面11aの面積は、底板部11の下面の面積の50%以上である。
 これにより、設置面SにモルタルMを介して容器本体10を設置する際に、反力作用面11aにモルタルMからの反力を作用させることによって、設置面Sに対して上下方向の位置決めを確実に行うことが可能となるので、施工時の高さの調整がしやすく、施工時間を短縮し、複数の容器本体10を並べる際にずれを軽減することができ、底板部11の厚さ寸法Tが30mm以上の部分に位置する反力作用面11aが20mm以下の幅寸法Wとなるように、底板部11に凹部11bが形成されているので、容器本体10の成形の際の歪みを抑制することが可能となる。
 また、反力作用面11aは、底板部11の厚さ寸法Tが30mm以上の部分において、10mm以上の幅寸法Wを有している、ことが好ましい。
 これにより、モルタルMからの反力を反力作用面11aに作用させることが可能となるので、設置面SにモルタルMを介して設置された容器本体10の上下方向の位置ずれを抑制することが可能となる。
 また、反力作用面11aは、底板部11の厚さ寸法Tが30mm以上の部分において、複数の凹部11bの間に位置している、ことが好ましい。
 これにより、底板部11の厚さ寸法Tが30mm以上の部分の下面の全面にわたって反力作用面11aを配置することが可能となるので、設置面SにモルタルMを介して設置された容器本体10の上下方向の位置ずれをより確実に抑制することが可能となる。
 また、凹部11bは、円形状、三角形状、四角形状または六角形状を有している、ことが好ましい。
 これにより、凹部11bを簡単な形状とすることで、容器本体10の製造コストの抑制を図ることが可能となる。
 また、凹部11bは、反力作用面11aから20mm以上の深さ寸法Hを有している、ことが好ましい。
 これにより、凹部11bと凹部11bとの間に位置する部分によって底板部11が補強されることになるため、容器本体10の強度を向上させることが可能となる。
 尚、前記実施形態では、アスファルト舗装される道路に埋設されるケーブル収容容器を示したが、車両等の重量物が通行する地面の地中に埋設されるものでれば、アスファルト舗装を有しない路面の地中に埋設されるケーブル収容容器に対しても適用可能である。
 また、前記実施形態では、底板部11の厚さ寸法Tが30mm未満の部分である連結部13が長手方向の両端側に設けられた容器本体10を示したが、これに限られるものではない。例えば、連結部を含む底板部の全体の厚さ寸法が30mm以上である容器本体の場合には、底板部の下面側の全体にわたって凹部を形成し、20mm以下の幅寸法で連続的または断続的に延びるように反力作用面を形成すればよい。また、連結部の有無に関わらず、底板部の厚さ寸法が30mm未満の部分を有する容器本体の場合には、底板部の厚さ寸法が30mm未満の部分に、20mm以下の幅寸法で延びる反力作用面を形成する必要はない。
 1 ケーブル収容容器
 10 容器本体
 10a 開口部
 11 底板部
 11a 反力作用面
 11b 凹部
 12 側板部
 S 設置面
 M モルタル

Claims (5)

  1.  底板部と、前記底板部の幅方向両側から上方に延びる一対の側板部と、を有し、上面に開口部が形成された樹脂製の容器本体を備え、前記容器本体が地中に埋設されるケーブル収容容器であって、
     前記容器本体の前記底板部には、前記容器本体を所定の設置面にモルタルを介して設置する際に、モルタルに当接してモルタルからの反力が作用する反力作用面が形成され、
     前記反力作用面は、前記底板部の厚さ寸法が30mm以上の部分において、前記底板部に凹部を形成することにより、20mm以下の幅寸法で連続的または断続的に延びるように形成され、
     前記反力作用面の面積は、前記底板部の下面の面積の50%以上である
     ケーブル収容容器。
  2.  前記反力作用面は、前記底板部の厚さ寸法が30mm以上の部分において、10mm以上の幅寸法を有している
     請求項1に記載のケーブル収容容器。
  3.  前記反力作用面は、前記底板部の厚さ寸法が30mm以上の部分において、複数の前記凹部の間に位置している
    請求項1または2に記載のケーブル収容容器。
  4.  前記凹部は、円形状、三角形状、四角形状または六角形状を有している
     請求項3に記載のケーブル収容容器。
  5.  前記凹部は、前記反力作用面から20mm以上の深さ寸法を有している
     請求項1乃至4のいずれか1項に記載のケーブル収容容器。
PCT/JP2022/042525 2021-12-17 2022-11-16 ケーブル収容容器 WO2023112586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022415577A AU2022415577A1 (en) 2021-12-17 2022-11-16 Cable housing container
US18/345,039 US20230352918A1 (en) 2021-12-17 2023-06-30 Cable housing container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-204771 2021-12-17
JP2021204771A JP2023090039A (ja) 2021-12-17 2021-12-17 ケーブル収容容器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/345,039 Continuation US20230352918A1 (en) 2021-12-17 2023-06-30 Cable housing container

Publications (1)

Publication Number Publication Date
WO2023112586A1 true WO2023112586A1 (ja) 2023-06-22

Family

ID=86774039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042525 WO2023112586A1 (ja) 2021-12-17 2022-11-16 ケーブル収容容器

Country Status (4)

Country Link
US (1) US20230352918A1 (ja)
JP (1) JP2023090039A (ja)
AU (1) AU2022415577A1 (ja)
WO (1) WO2023112586A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535476A1 (de) * 1995-09-23 1997-03-27 Langmatz Lic Gmbh Ständerrohr, insbesondere für einen Kabelkanal, aufgeständertes Kanalelement und Verfahren zum Verlegen eines aufgeständerten Kanals
KR20080074523A (ko) * 2007-02-09 2008-08-13 김명철 케이블 매설용 트로프 및 이의 시공방법
EP2381550A2 (en) * 2010-04-20 2011-10-26 PF MANAGEMENT Holding ApS Cable conduit
US20200277739A1 (en) * 2017-10-03 2020-09-03 Northstone (Ni) Limited Cable trough
WO2020249921A1 (en) * 2019-06-14 2020-12-17 Trojan Services Limited A combined cable trough and walkway

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535476A1 (de) * 1995-09-23 1997-03-27 Langmatz Lic Gmbh Ständerrohr, insbesondere für einen Kabelkanal, aufgeständertes Kanalelement und Verfahren zum Verlegen eines aufgeständerten Kanals
KR20080074523A (ko) * 2007-02-09 2008-08-13 김명철 케이블 매설용 트로프 및 이의 시공방법
EP2381550A2 (en) * 2010-04-20 2011-10-26 PF MANAGEMENT Holding ApS Cable conduit
US20200277739A1 (en) * 2017-10-03 2020-09-03 Northstone (Ni) Limited Cable trough
WO2020249921A1 (en) * 2019-06-14 2020-12-17 Trojan Services Limited A combined cable trough and walkway

Also Published As

Publication number Publication date
US20230352918A1 (en) 2023-11-02
AU2022415577A1 (en) 2023-07-27
JP2023090039A (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
US9574346B2 (en) Modular slab and modular surface system
US5956905A (en) Manhole adjusting extension member
KR101544988B1 (ko) 프리캐스트 콘크리트 패널 및 이를 이용한 포장공법
KR100693993B1 (ko) 조립식 프리캐스트 라멘 교량 및 이의 시공방법
WO2023112586A1 (ja) ケーブル収容容器
KR101544985B1 (ko) 소켓식 프리캐스트 콘크리트 패널 및 이를 이용한 포장공법
KR101658929B1 (ko) 공장제작된 조립식 프리캐스트 박스 구조물 및 이를 이용한 박스 구조물 시공방법.
US20060248847A1 (en) Method for providing a pad to support heavy equipment
JP6340117B1 (ja) 道路敷設物
JP2010168844A (ja) 道路拡幅構造
JP2011106208A (ja) 平板ブロック及び平板ブロック用枠体
WO2023054680A1 (ja) ケーブル収容容器
JP2018044362A (ja) L型プレキャストコンクリート製品を使用したトンネル監視員通路の簡単な構築方法
KR20190028167A (ko) 지중 구조물 하중 분산장치
KR101741022B1 (ko) 재활용 복합수지를 이용한 고·저압 접속함 및 이의 무정전 시공방법
JP2010168845A (ja) 道路拡幅構造
KR20100003438A (ko) 노반용 블럭 및 이를 이용한 도로포장공법
JP3009597U (ja) 地中埋設用鋼板製ケーブル函
CN111779502B (zh) 一种隧道隔震结构及施工工艺
JP2019214885A (ja) ハンドホール
CN111851590B (zh) 一种结合侧石的隐形井盖及井盖安装方法
CN218027865U (zh) 一种复合地基用的装配式桩帽
KR100775550B1 (ko) 강판 구조물의 시공방법 및 강판 구조물
KR20180126319A (ko) 지하차도용 구조물 및 지하차도용 구조물 시공방법
JP2011106207A (ja) 植生舗装構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022415577

Country of ref document: AU

Date of ref document: 20221116

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907117

Country of ref document: EP

Kind code of ref document: A1