WO2023112566A1 - Air-conditioner, refrigerator, and transport container - Google Patents

Air-conditioner, refrigerator, and transport container Download PDF

Info

Publication number
WO2023112566A1
WO2023112566A1 PCT/JP2022/041900 JP2022041900W WO2023112566A1 WO 2023112566 A1 WO2023112566 A1 WO 2023112566A1 JP 2022041900 W JP2022041900 W JP 2022041900W WO 2023112566 A1 WO2023112566 A1 WO 2023112566A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
gas separation
separation membrane
air conditioner
water
Prior art date
Application number
PCT/JP2022/041900
Other languages
French (fr)
Japanese (ja)
Inventor
憲人 渋谷
渉 平田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023112566A1 publication Critical patent/WO2023112566A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present disclosure relates to air conditioners, refrigerators, and shipping containers.
  • Patent Literature 1 discloses an air conditioning device that adjusts the composition of the internal air in the internal space.
  • An air conditioner includes a gas separation membrane. When the air to be treated flows through the gas separation membrane, some components (for example, oxygen and carbon dioxide) in the air to be treated permeate the gas separation membrane. The air whose composition has been adjusted in this manner is supplied to the internal space.
  • the purpose of the present disclosure is to suppress the performance deterioration of the separation membrane due to the shutdown of the air conditioner.
  • a first aspect is an air conditioning device that adjusts the composition of internal air in an internal space (5), A gas separation membrane (124) to which the air to be treated is supplied, and a control unit (191) for executing a first operation for suppressing deterioration of the performance of the gas separation membrane (124) due to stoppage of the air conditioner for a predetermined period. ).
  • the performance of the gas separation membrane (124) can be suppressed from deteriorating due to the stoppage of the air conditioner for a predetermined period of time by the control unit (191) executing the first operation.
  • a second aspect in the first aspect, includes a preliminary operation in which the first operation supplies the air to be treated to the gas separation membrane (124).
  • preliminary operation is performed as the first operation, and the air to be treated is supplied to the gas separation membrane (124).
  • the air to be treated flows through the gas separation membrane (124), thereby enlarging the pores of the gas separation membrane (124) and suppressing deterioration of the performance of the gas separation membrane (124).
  • a third aspect is the second aspect, wherein the control unit (191) starts the preliminary operation after a predetermined time has elapsed since the air conditioning device was stopped.
  • control unit (191) starts the preliminary operation after a predetermined time has elapsed since the air conditioner stopped. This prevents the air to be treated from flowing through the gas separation membrane (124) for a long period of time, thereby suppressing deterioration in the performance of the gas separation membrane (124).
  • a fourth aspect is the second aspect, wherein the control unit (191) starts the preliminary operation a predetermined time before the start of the normal operation of the air conditioner.
  • the preliminary operation is started a predetermined time before the start of normal operation of the air conditioner, deterioration of the performance of the gas separation membrane (124) can be suppressed before normal operation. This can prevent the gas separation membrane (124) from achieving sufficient performance in normal operation.
  • a fifth aspect is the third or fourth aspect, wherein in the preliminary operation, the first air and the second air separated by the gas separation membrane (124) are discharged to the outside space (6). with road (103).
  • the first air and the second air that have passed through the gas separation membrane (124) are discharged to the outside space (6) via the exhaust flow path (103). Therefore, it is possible to prevent the composition of the air in the internal space (5) from changing due to the execution of the preliminary operation.
  • a sixth aspect in any one of the third to fifth aspects, is provided with a heating section (175) for heating the air supplied to the gas separation membrane (124) in the preliminary operation.
  • the air heated by the heating section (175) is supplied to the gas separation membrane (124). This can improve the effect of recovering the performance of the gas separation membrane (124).
  • a seventh aspect in any one of the third to sixth aspects, includes a pressurizing section (110) that pressurizes the air supplied to the gas separation membrane (124) in the preliminary operation.
  • the air pressurized by the pressurizing section (110) is supplied to the gas separation membrane (124). This can improve the effect of recovering the performance of the gas separation membrane (124).
  • a dehumidification section (111, 113, 130) is provided to reduce moisture in the air supplied to the gas separation membrane (124) in the preliminary operation.
  • the air whose water content has been reduced in the dehumidification section (111, 113, 130) is supplied to the gas separation membrane (124).
  • the gas separation membrane (124) As a result, it is possible to suppress deterioration in the performance of the gas separation membrane (124) due to the influence of water molecules in the air during the preliminary operation.
  • a ninth aspect is any one of the first to eighth aspects, wherein the first operation includes an operation for prompting the person to operate the air conditioner.
  • the operation of prompting the person to operate the air conditioner is performed, thereby preventing the air conditioner (100) from being stopped for a long period of time.
  • the performance of the gas separation membrane (124) is possible to prevent the performance of the gas separation membrane (124) from deteriorating due to the suspension of the air conditioner for a predetermined period.
  • control section (191) outputs information regarding the performance of the gas separation membrane (124).
  • a person such as a user can grasp information about the performance of the gas separation membrane (124).
  • An eleventh aspect is a refrigeration system comprising the air conditioner (100) of any one of the first to tenth aspects and a refrigerant circuit (30) for adjusting the temperature inside the internal space (5). be.
  • a twelfth aspect is a shipping container comprising the refrigerating device (10) of the eleventh aspect and a container body (2) provided with the refrigerating device (10).
  • FIG. 1 is a perspective view of the shipping container of the embodiment as viewed from the front side.
  • FIG. 2 is a schematic longitudinal sectional view showing the internal structure of the shipping container of the embodiment.
  • FIG. 3 is a piping system diagram of a refrigerant circuit of the transport refrigeration system of the embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of the shipping container of the embodiment.
  • FIG. 5 is a piping system diagram showing the configuration of the air conditioner of the embodiment.
  • FIG. 6 is a schematic cross-sectional view of a gas separation module provided in the air conditioner of the embodiment.
  • FIG. 7 is a schematic cross-sectional view of a water separation module provided in the air conditioner of the embodiment.
  • FIG. 8 is a diagram corresponding to FIG.
  • FIG. 5 showing the first operation of the air conditioner of the embodiment.
  • FIG. 9 is a diagram corresponding to FIG. 5 showing the second operation of the air conditioner of the embodiment.
  • FIG. 10 is a diagram corresponding to FIG. 5 showing the third operation of the air conditioner of the embodiment.
  • FIG. 11 is a diagram corresponding to FIG. 5 showing the fourth operation of the air conditioner of the embodiment.
  • FIG. 12 is a diagram corresponding to FIG. 5 showing the fifth operation of the air conditioner of the embodiment.
  • FIG. 13 is a flowchart of control related to determination of start of preliminary operation of the air conditioner of the embodiment.
  • FIG. 14 is a flowchart of control related to preliminary operation of the air conditioner of Modification 1.
  • FIG. FIG. 15 is a diagram corresponding to FIG. 5 of the air conditioner of Modification 2.
  • FIG. 16 is a diagram corresponding to FIG. 5 showing preliminary operation of the air conditioner of Modification 2.
  • FIG. 17 is a diagram corresponding to FIG. 5 of the air conditioner of Modification 3.
  • FIG. 18 is a flowchart of control regarding the first operation of the air conditioner of Modification 4.
  • FIG. 19 is a flow chart of control for the second operation of the air conditioner of Modification 5.
  • FIG. 20 is a diagram corresponding to FIG. 5 of the air conditioner of Modification 6.
  • the shipping container (1) is a temperature-controlled reefer container. Shipping containers (1) are used to transport perishables such as fruits, vegetables and flowers. Perishables take in oxygen (O 2 ) from the air and release carbon dioxide (CO 2 ).
  • O 2 oxygen
  • CO 2 carbon dioxide
  • the shipping container (1) comprises a container body (2) and a shipping refrigeration equipment (10) provided in the container body (2).
  • Shipping containers (1) are used for maritime transport.
  • a shipping container (1) is transported by a marine vehicle such as a ship.
  • the shipping container (1) is equipped with an air conditioner (100).
  • the air conditioner (100) adjusts the composition of the air inside the container body (2).
  • Container Main Body The container main body (2) is a storage for storing perishables.
  • the container body (2) is formed in a hollow box shape.
  • the container body (2) is formed horizontally.
  • An opening is formed at one longitudinal end of the container body (2).
  • the opening of the container body (2) is closed by a transportation refrigeration system (10).
  • a storage space (5) is formed as an internal space for storing objects to be transported.
  • Refrigeration Equipment for Transportation The refrigeration equipment for transportation (10) is attached to the opening of the container body (2).
  • a transportation refrigeration system (10) includes a casing (11) and a refrigerant circuit (30). The transportation refrigeration equipment (10) adjusts the temperature of the air (inside air) in the storage space (5).
  • the casing (11) has a partition wall (12) and a partition plate (15).
  • An internal flow path (20) is formed inside the partition wall (12).
  • the internal flow path (20) and the external chamber (25) are separated by a partition wall (12).
  • the partition wall (12) includes an outer wall (13) and an inner wall (14).
  • the outer wall (13) of the warehouse is positioned outside the container body (2).
  • the inner wall (14) is positioned inside the container body (2).
  • the outer wall of the warehouse (13) blocks the opening of the container body (2).
  • the outer wall (13) is attached to the periphery of the opening of the container body (2).
  • the lower part of the outer wall (13) protrudes toward the inside of the container body (2).
  • the outer chamber (25) is formed inside the bulging outer wall (13).
  • the inner wall (14) faces the outer wall (13).
  • the inner wall (14) has a shape along the outer wall (13).
  • a heat insulating material (16) is provided between the inner wall (14) and the outer wall (13).
  • the partition plate (15) is arranged inside the container body (2) rather than the inner wall (14).
  • An internal flow path (20) is formed between the partition wall (12) and the partition plate (15).
  • An inlet (21) is formed between the upper end of the partition plate (15) and the top plate of the container body (2).
  • An outflow port (22) is formed between the lower end of the partition plate (15) and the lower end of the partition wall (12).
  • the internal flow path (20) is formed from the inlet (21) to the outlet (22).
  • the refrigerant circuit (30) has a refrigerant filled therein.
  • the refrigerant circuit (30) performs a vapor compression refrigeration cycle by circulating refrigerant.
  • the refrigerant circuit (30) includes a compressor (31), an outside heat exchanger (32), an expansion valve (33), an inside heat exchanger (51), and refrigerant piping connecting these.
  • the compressor (31) is arranged in the lower part of the outer chamber (25).
  • the outside heat exchanger (32) is arranged above the outside chamber (25).
  • the outside heat exchanger (32) is a fin-and-tube heat exchanger that exchanges heat between refrigerant and outside air.
  • the shape of the outside heat exchanger (32) is generally rectangular tubular.
  • the internal heat exchanger (51) is arranged in the internal flow path (20).
  • the indoor heat exchanger (51) is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and the indoor air.
  • the transportation refrigeration equipment (10) has one outside fan (34).
  • the outside fan (34) is a propeller fan.
  • the outdoor fan (34) is arranged in the outdoor chamber (25).
  • the external fan (34) is arranged inside the cylindrical external heat exchanger (32).
  • the outside fan (34) sends outside air to the outside heat exchanger (32).
  • the transportation refrigeration equipment (10) is equipped with two internal fans (35).
  • the internal fan (35) is a propeller fan.
  • the internal fan (35) is arranged in the internal flow path (20).
  • the internal fan (35) is arranged above the internal heat exchanger (51).
  • the internal fan (35) sends internal air to the internal heat exchanger (51).
  • the transportation refrigeration system (10) has a heater (52).
  • the heater (52) is arranged below the internal heat exchanger (51).
  • the heater (52) is used to melt frost adhering to the internal heat exchanger (51).
  • the transport refrigeration system (10) has an electrical component box (36).
  • the electrical component box (36) is arranged above the outer chamber (25). Electrical components such as an inverter board and a control board are housed inside the electrical component box (36).
  • the refrigerant circuit (30) includes, as main components, a compressor (31), an external heat exchanger (32), and an expansion valve (33). , and an internal heat exchanger (51).
  • the expansion valve (33) is an electronic expansion valve whose degree of opening is adjustable.
  • the refrigerant circuit (30) has a discharge pipe (41) and a suction pipe (42). One end of the discharge pipe (41) is connected to the discharge portion of the compressor (31). The other end of the discharge pipe (41) is connected to the gas end of the outside heat exchanger (32). One end of the suction pipe (42) is connected to the suction portion of the compressor (31). The other end of the suction pipe (42) is connected to the gas end of the internal heat exchanger (51).
  • the refrigerant circuit (30) includes a liquid pipe (43), a receiver (44), a cooling heat exchanger (45), a first on-off valve (46), a communication pipe (47), a second on-off valve (48), and an injection pipe. (49), and an injection valve (50).
  • a receiver (44) is provided in the liquid pipe (43).
  • the receiver (44) is a container that stores refrigerant.
  • the cooling heat exchanger (45) has a first flow path (45a) and a second flow path (45b).
  • the cooling heat exchanger (45) exchanges heat between the refrigerant in the first flow path (45a) and the refrigerant in the second flow path (45b).
  • the cooling heat exchanger (45) is, for example, a plate heat exchanger.
  • the first flow path (45a) is part of the liquid pipe (43).
  • the second flow path (45b) is part of the injection pipe (49).
  • the cooling heat exchanger (45) cools the refrigerant flowing through the liquid pipe (43).
  • the first on-off valve (46) is provided in a portion of the liquid pipe (43) between the receiver (44) and the first flow path (45a).
  • the first on-off valve (46) is an openable/closable electromagnetic valve.
  • the communication pipe (47) communicates the high pressure line and the low pressure line of the refrigerant circuit (30). One end of the communication pipe (47) is connected to the discharge pipe (41). The other end of the communication pipe (47) is connected to a portion of the liquid pipe (43) between the expansion valve (33) and the internal heat exchanger (51).
  • the second on-off valve (48) is provided on the communicating pipe (47).
  • the second on-off valve (48) is an electromagnetic valve that can be opened and closed.
  • the injection pipe (49) introduces refrigerant into the intermediate pressure section of the compressor (31).
  • One end of the injection pipe (49) is connected to a portion of the liquid pipe (43) between the receiver (44) and the first flow path (45a).
  • the other end of the injection pipe (49) is connected to the intermediate pressure section of the compressor (31).
  • the intermediate pressure which is the pressure of the intermediate pressure section, is higher than the suction pressure of the compressor (31) and lower than its discharge pressure.
  • the injection valve (50) is provided in a portion of the injection pipe (49) on the upstream side of the second flow path (45b).
  • the injection valve (50) is an electronic expansion valve whose degree of opening is adjustable.
  • the transportation refrigeration system (10) comprises a first control unit (90).
  • the first control unit (90) includes a display section (91), an operation section (92), and a first control section (93).
  • the display section (91) is composed of, for example, a liquid crystal panel.
  • the display section (91) displays information regarding the operation of the transportation refrigeration system (10) and the air conditioner (100).
  • the operation unit (92) is composed of operation buttons.
  • the operation section (92) may be a touch panel that doubles as a liquid crystal panel as the display section (91).
  • a person operates the transportation refrigeration system (10) using the operation unit (92).
  • a person sets the operating conditions of the transport refrigeration system (10) using the operation unit (92).
  • the first control unit (93) includes an MCU (Micro Control Unit, microcontroller unit), electric circuits, and electronic circuits.
  • the MCU includes a CPU (Central Processing Unit), memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
  • the first control section (93) controls the outside fan (34), the inside fan (35), the heater (52), and the refrigerant circuit (30). Specifically, the first control section (93) controls the outside fan (34), the inside fan (35), the heater (52), and the compressor (31). The first control section (93) controls the rotation speed of the outside fan (34), the rotation speed of the inside fan (35), and the rotation speed (operating frequency) of the compressor (31). The first control section (93) controls opening degrees of the expansion valve (33), the first on-off valve (46), the second on-off valve (48), and the injection valve (50).
  • the basic operation behavior of the refrigeration equipment for transportation (10) will be described.
  • the first control section (93) operates the compressor (31), the outside fan (34), and the inside fan (35).
  • the first control section (93) opens the first on-off valve (46) and closes the second on-off valve (48).
  • the first control section (93) adjusts the degree of opening of the expansion valve (33).
  • a first control section (93) adjusts the opening of the injection valve (50).
  • the refrigerant compressed by the compressor (31) flows through the outside heat exchanger (32).
  • the refrigerant radiates heat to the outside air and condenses.
  • the condensed refrigerant passes through the receiver (44).
  • Part of the refrigerant that has passed through the receiver (44) flows through the first flow path (45a) of the cooling heat exchanger (45).
  • the remainder of the refrigerant that has passed through the receiver (44) flows through the injection pipe (49) and is reduced to intermediate pressure at the injection valve (50).
  • the depressurized refrigerant is introduced into the intermediate pressure section of the compressor (31).
  • the refrigerant in the second flow path (45b) absorbs heat from the refrigerant in the first flow path (45a) and evaporates. This cools the coolant in the first flow path (45a). In other words, the degree of supercooling of the refrigerant flowing through the first flow path (45a) increases.
  • the refrigerant cooled by the cooling heat exchanger (45) is decompressed to a low pressure by the expansion valve (33).
  • the depressurized refrigerant flows through the internal heat exchanger (51).
  • the indoor heat exchanger (51) the refrigerant absorbs heat from the indoor air and evaporates.
  • the indoor heat exchanger (51) cools the indoor air.
  • the evaporated refrigerant is sucked into the compressor (31) and compressed again.
  • the air inside the container body (2) circulates through the storage space (5) and the inside channel (20).
  • the in-chamber air is cooled by the in-chamber heat exchanger (51).
  • the inside air of the storage space (5) can be cooled, and the inside air can be adjusted to a predetermined temperature.
  • Air conditioner The transport refrigeration system (10) of the present embodiment includes an air conditioner (100).
  • the air conditioner (100) is provided in the transportation refrigeration equipment (10) for so-called CA (Controlled Atmosphere) transportation.
  • CA Controlled Atmosphere
  • the air conditioner (100) regulates the composition of the air in the storage space (5) of the shipping container (1) to be different from the composition of the atmosphere.
  • the air conditioner (100) has an air flow path (A) into which air to be treated is introduced.
  • the air to be treated includes outside air and inside air.
  • the air flow path (A) may be composed of a hard pipe, a flexible hose, or a combination of a pipe and a hose.
  • An air pump (110), a gas separation module (120), and a sensor unit (140) are provided in the air flow path (A).
  • the air pump (110) conveys air in the air flow path (A).
  • a gas separation module (120) regulates the composition of the air.
  • a gas separation module (120) separates the air to be treated into primary air and secondary air.
  • a sensor unit (140) measures the composition of the air.
  • Air flow path (A) includes an inflow flow path (101), an air supply flow path (102), an exhaust flow path (103), an internal exhaust flow path (104), a bypass flow path (105 ), and a sensor channel (106).
  • the inflow channel (101) is a channel for sending the air to be treated to the gas separation module (120).
  • the inflow channel (101) includes a first inflow channel (101a), a second inflow channel (101b), and an inflow main channel (101c).
  • the first inflow path (101a) is a flow path for introducing outside air into the air flow path (A).
  • the inlet end of the first inflow path (101a) opens to the outside space (6).
  • a first air filter (F1) is provided in the first inflow path (101a).
  • the first air filter (F1) captures dust, salt, and the like contained in outside air.
  • the first air filter (F1) is composed of, for example, a membrane filter.
  • the second inflow path (101b) is a flow path for introducing internal air into the air flow path (A).
  • the inlet end of the second inflow path (101b) opens into the storage space (5).
  • a second air filter (F2) is provided in the second inflow path (101b).
  • the second air filter (F2) captures dust and the like contained in the air inside the refrigerator.
  • the second air filter (F2) is composed of, for example, a membrane filter.
  • a first water separator (111) is provided in the second inflow passage (101b).
  • the outlet end of the first inflow channel (101a) and the outlet end of the second inflow channel (101b) are connected to the inlet end of the inflow trunk (101c).
  • the outlet end of the inlet conduit (101c) is connected to the first inlet port (I1) of the gas separation module (120).
  • the inflow trunk (101c) is provided with an air pump (110), a condensation circuit (112), a second water separator (113), and a water separation module (130) from the upstream side to the downstream side of the air flow. be done.
  • the air supply channel (102) is a channel for sending the air separated by the gas separation module (120) to the storage space (5).
  • the air supply channel (102) includes a first air supply channel (102a), a second air supply channel (102b), and an air supply trunk (102c).
  • the first air supply path (102a) is a flow path for sending the first air separated by the gas separation module (120) to the storage space (5).
  • the inlet end of the first air supply line (102a) is connected to the first outlet port (O1) of the gas separation module (120).
  • the second air supply path (102b) is a flow path for sending the second air separated by the gas separation module (120) to the storage space (5).
  • the inlet end of the second air supply line (102b) is connected to the second outlet port (O2) of the gas separation module (120).
  • the outlet end of the first air supply passage (102a) and the outlet end of the second air supply passage (102b) are connected to the inlet end of the air supply trunk (102c).
  • the outlet end of the air supply trunk (102c) opens into the storage space (5). Strictly speaking, the outlet end of the air supply trunk (102c) opens into the flow path downstream of the internal fan (35) in the internal flow path (20) of the transportation refrigeration equipment (10).
  • the exhaust channel (103) is a channel for discharging the air separated by the gas separation module (120) to the outside space (6).
  • This air includes one or both of primary air and secondary air.
  • the exhaust passageway (103) includes a first exhaust passageway (103a), a second exhaust passageway (103b), and an exhaust trunk passageway (103c).
  • the first exhaust path (103a) is a flow path for discharging the first air to the outside space (6).
  • the inlet end of the first exhaust channel (103a) is connected to the first air supply channel (102a).
  • the second exhaust path (103b) is a flow path for discharging the second air to the outside space (6).
  • the inlet end of the second exhaust path (103b) connects to the second air supply path (102b).
  • the outlet end of the first exhaust passage (103a) and the outlet end of the second exhaust passage (103b) are connected to the inlet end of the exhaust trunk (103c).
  • the exit end of the exhaust trunk (103c) opens to the outside space (6).
  • the inside exhaust path (104) is a flow path for discharging the air in the storage space (5) to the outside space (6).
  • the inlet end of the inside exhaust channel (104) is connected to the middle part of the second inflow channel (101b). Strictly speaking, the inlet end of the inside exhaust passage (104) is connected to the first switching valve (151). The exit end of the inside exhaust passage (104) opens to the outside space (6).
  • the bypass channel (105) is connected to the inlet trunk (101c) so that the air bypasses the gas separation module (120).
  • the inlet end of the bypass channel (105) connects to the inflow trunk (101c). Strictly speaking, the inlet end of the bypass flow path (105) is connected to the second switching valve (152).
  • the outlet end of the bypass channel (105) is connected to the first air supply channel (102a).
  • the sensor channel (106) is a channel for sending air to the sensor unit (140).
  • the sensor channel (106) includes a first sensor channel (106a) and a second sensor channel (106b).
  • the inlet end of the first sensor channel (106a) connects to the first air supply channel (102a).
  • the outlet end of the first sensor path (106a) connects to the sensor unit (140).
  • the inlet end of the second sensor path (106b) connects to the sensor unit (140).
  • the exit end of the second sensor channel (106b) opens into the storage space (5). Strictly speaking, the outlet end of the second sensor path (106b) opens into the flow path upstream of the internal fan (35) in the internal flow path (20) of the transportation refrigeration apparatus (10).
  • the air pump (110) is an example of an air conveying section.
  • the air pump (110) has a suction port and a discharge port.
  • the air pump (110) pressurizes the air sucked through the suction port and discharges the pressurized air through the discharge port.
  • the air pump (110) is an example of a pressurizing section that pressurizes the air supplied to the gas separation membrane (124).
  • the gas separation module (120) separates the air to be treated into first air and second air having different compositions.
  • the gas separation module (120) includes a first case (121), a first partition (122), a second partition (123), and a plurality of gas separation membranes (124).
  • the first partition (122) and the second partition (123) are arranged inside the first case (121).
  • a plurality of gas separation membranes (124) are disposed between the first partition (122) and the second partition (123).
  • the first case (121) is a cylindrical container with both ends closed.
  • the first case (121) extends in its axial direction.
  • a first inlet port (I1) is connected to one axial end of the first case (121).
  • a first outlet port (O1) is connected to the other axial end of the first case (121).
  • a second outlet port (O2) is connected to the peripheral wall of the first case (121).
  • the first partition (122) is arranged near one end of the first case (121).
  • the second partition (123) is arranged near the other end of the first case (121).
  • the first partition (122) and the second partition (123) are partition members for partitioning the inner space of the first case (121) in the axial direction.
  • the first partition (122) and the second partition (123) are provided across the first case (121).
  • a first lead-in chamber (125), a first lead-out chamber (126), and a second lead-out chamber (127) are formed inside the first case (121).
  • the first introduction chamber (125) is formed between one end of the first case (121) and the first partition (122).
  • the first lead-out chamber (126) is formed between the other end of the first case (121) and the second partition (123).
  • the second lead-out chamber (127) includes a plurality of gas separation membranes ( 124).
  • the gas separation membrane (124) is composed of a resin hollow fiber membrane.
  • the gas separation membrane (124) is shaped like a hollow fiber or an elongated tube.
  • the outer diameter of one gas separation membrane (124) is 1 mm or less.
  • the gas separation membranes (124) have substantially the same thickness.
  • Each gas separation membrane (124) extends in the axial direction of the first case (121) across the first partition (122) and the second partition (123).
  • One end (inlet end) of the gas separation membrane (124) penetrates the first partition (122) and opens into the first introduction chamber (125).
  • the other end (outlet end) of the gas separation membrane (124) penetrates the second partition (123) and opens into the first outlet chamber (126).
  • the first introduction chamber (125) and the first discharge chamber (126) communicate with each other through the gas separation membrane (124).
  • the second outlet chamber (127) does not substantially communicate with the interiors of the first inlet chamber (125), the first outlet chamber (126), and the gas separation membrane (124).
  • the gas separation membrane (124) is a polymeric non-porous membrane.
  • the gas separation membrane (124) separates the components contained in the mixed gas by utilizing the fact that the speed of molecules permeating through the gas separation membrane (124) differs for each substance.
  • the gas separation membrane (124) has a characteristic that the nitrogen permeation rate is lower than both the oxygen permeation rate and the carbon dioxide permeation rate. In other words, the gas separation membrane (124) has a characteristic that the nitrogen permeability is lower than both the oxygen permeability and the carbon dioxide permeability.
  • the gas separation membrane (124) has a nitrogen permeability lower than that of oxygen and carbon dioxide. In other words, nitrogen in the air is less permeable through the gas separation membrane (124) than oxygen and carbon dioxide. Therefore, as the air flowing inside the gas separation membrane (124) approaches the first outlet chamber (126), its nitrogen concentration increases, and simultaneously its oxygen concentration and carbon dioxide concentration decrease. Oxygen and carbon dioxide contained in the air flowing through the gas separation membrane (124) pass through the gas separation membrane (124) and move to the second outlet chamber (127).
  • the concentration of nitrogen in the air flowing out to the first lead-out chamber (126) is higher than the concentration of nitrogen in the air in the first introduction chamber (125).
  • the concentrations of oxygen and carbon dioxide in the air that flowed out to the first lead-out chamber (126) are lower than the concentrations of oxygen and carbon dioxide in the air in the first introduction chamber (125).
  • the air in the first outlet chamber (126) is primary air. The first air flows out to the first air supply passage (102a) through the first outlet port (O1).
  • the nitrogen concentration in the air flowing out to the second lead-out chamber (127) is lower than the nitrogen concentration in the air in the first introduction chamber (125).
  • the concentrations of oxygen and carbon dioxide in the air that flowed out to the second lead-out chamber (127) are higher than the concentrations of oxygen and carbon dioxide in the air in the first lead-in chamber (125).
  • the air in the second outlet chamber (127) is secondary air. The second air flows out to the second air supply passage (102b) through the second outlet port (O2).
  • the first water separator (111) is located downstream of the second air filter (F2) in the second inflow passage (101b). be provided.
  • the first water separator (111) removes liquid water contained in the air.
  • the first water separator (111) is a cyclone gas-liquid separator that removes liquid water contained in the air by centrifugal force.
  • the first water separator (111) is an example of a dehumidification section that reduces moisture in the air supplied to the gas separation membrane (124).
  • the condensation circuit (112) is arranged in the inflow trunk (101c) between the air pump (110) and the second water separator (113).
  • the condensation circuit (112) is composed of heat transfer tubes arranged in the internal space (5). When the air flows through the condensation circuit (112), the air is cooled by the inside air. As a result, moisture in the air in the condensation circuit (112) is condensed to produce condensed water.
  • the second water separator (113) is arranged between the condensation circuit (112) and the water separation module (130) in the inflow trunk (101c).
  • the second water separator (113) removes moisture contained in the air.
  • the second water separator (113) is a cyclone gas-liquid separator that removes liquid water contained in the air by centrifugal force.
  • the second water separator (113) is an example of a dehumidification section that reduces moisture in the air supplied to the gas separation membrane (124).
  • the water separation module (130) is arranged upstream of the gas separation membrane (124) in the inflow trunk (101c).
  • the water separation module (130) removes water contained in the air. Strictly speaking, the water separation module (130) separates water molecules contained in the air.
  • the water separation module (130) of this example is a membrane dryer made of Sunsep (registered trademark).
  • the water separation module (130) includes a second case (131), a third partition (132), a fourth partition (133), and a plurality of water separation membranes (134).
  • the third partition (132) and the fourth partition (133) are arranged inside the second case (131).
  • a plurality of water separation membranes (134) are arranged between the third partition (132) and the fourth partition (133).
  • the second case (131) is a cylindrical container with both ends closed.
  • the second case (131) extends in its axial direction.
  • a second inlet port (I2) is connected to one axial end of the second case (131).
  • a third outlet port (O3) is connected to the other axial end of the second case (131).
  • a third inlet port (I3) and a fourth outlet port (O4) are connected to the peripheral wall of the second case (131).
  • the third inlet port (I3) is located near the other end of the second case (131) in the peripheral wall of the second case (131).
  • the fourth outlet port (O4) is located near one end of the second case (131) in the peripheral wall of the second case (131).
  • the second inlet port (I2) is connected to the upstream channel of the water separation module (130) in the inflow trunk (101c).
  • the third outlet port (O3) is connected to the upstream channel of the gas separation module (120) in the inflow trunk (101c).
  • the air channel (A) has an introduction channel (107) and a water supply channel (108).
  • the inlet (107) and water supply (108) connect to the water separation module (130).
  • the introduction channel (107) is a channel for supplying relatively low-humidity air to the water separation module (130).
  • the inlet end of the introduction path (107) connects to the air supply trunk (102c).
  • the outlet end of the inlet channel (107) connects to the third inlet port (I3) of the water separation module (130).
  • the water supply channel (108) is a channel for sending air containing water separated by the water separation module (130) to the storage space (5).
  • the inlet end of the water supply channel (108) connects to the fourth outlet port (O4) of the water separation module (130).
  • the outlet end of the water supply channel (108) is connected downstream of the inlet end of the introduction channel (107) in the air supply trunk (102c). Strictly speaking, the outlet end of the water supply path (108) is connected downstream of the fifth switching valve (155).
  • a second introduction chamber (135), a third discharge chamber (136), and a fourth discharge chamber (137) are formed inside the second case (131).
  • the second introduction chamber (135) is formed between one end of the second case (131) and the third partition (132).
  • the third lead-out chamber (136) is formed between the other end of the second case (131) and the fourth partition (133).
  • the fourth lead-out chamber (137) includes a plurality of water separation membranes ( 134).
  • Each water separation membrane (134) extends in the axial direction of the second case (131) across the third partition (132) and the fourth partition (133).
  • One end (inlet end) of the water separation membrane (134) penetrates the third partition (132) and opens into the second introduction chamber (135).
  • the other end (outlet end) of the water separation membrane (134) penetrates the fourth partition (133) and opens into the third lead-out chamber (136).
  • the second inlet chamber (135) and the third outlet chamber (136) communicate with each other via the water separation membrane (134).
  • the fourth outlet chamber (137) does not substantially communicate with the second inlet chamber (135), the third outlet chamber (136), and the interior of the water separation membrane (134).
  • the water separation membrane (134) is composed of a resin hollow fiber membrane. In other words, the water separation membrane (134) is shaped like a hollow fiber or an elongated tube.
  • the water separation membrane (134) is made of a fluorinated ion exchange resin.
  • the water separation membrane (134) has a property of permeating water molecules in the air.
  • a water separation module (130) having a water separation membrane (134) is an example of a dehumidifying section that reduces moisture in the air supplied to the gas separation membrane (124).
  • Water molecules in the air inside the water separation membrane (134) permeate the water separation membrane (134) and move to the fourth outlet chamber (137). As a result, the water molecules that permeate the water separation membrane (134) are added to the air flowing through the fourth outlet chamber (137).
  • the air inside the water separation membrane (134) is dehumidified by losing water molecules and flows out to the third outlet chamber (136). Air in the third outlet chamber (136) exits through the third outlet port (O3) into the inlet conduit (101c) and is supplied to the gas separation module (120).
  • the air humidified in the fourth outlet chamber (137) flows out to the water supply path (108) through the fourth outlet port (O4).
  • the air in the water supply channel (108) flows out to the air supply trunk channel (102c) and is sent to the storage space (5).
  • the sensor unit (140) includes an oxygen sensor (141), a carbon dioxide sensor (142), and a sensor case (143).
  • the oxygen sensor (141) is a zirconia current type sensor that measures the oxygen concentration of mixed gases such as air.
  • the carbon dioxide sensor (142) is a non-dispersive infrared (NDIR) type sensor that measures the concentration of carbon dioxide in a mixed gas such as air.
  • the oxygen sensor (141) and the carbon dioxide sensor (142) are housed in the sensor case (143).
  • the sensor case (143) is a box-shaped member.
  • the sensor case (143) has a third air filter (F3).
  • the third air filter (F3) is a membrane filter for capturing dust and the like contained in the inside air.
  • the third air filter (F3) filters the indoor air flowing into the sensor case (143).
  • the air channel (A) is provided with a channel switching mechanism for changing the air flow.
  • the channel switching mechanism includes a first switching valve (151), a second switching valve (152), a third switching valve (153), a fourth switching valve (154) and a fifth switching valve (155). These switching valves (151, 152, 153, 154, 155) are composed of three-way valves.
  • the first switching valve (151) is provided at the connecting portion between the second inflow passage (101b) and the inside exhaust passage (104).
  • the first switching valve (151) switches between a first state in which the internal air is supplied to the gas separation module (120) and a second state in which the internal air is discharged to the external space (6).
  • the first switching valve (151) in the first state allows communication between the storage space (5) and the inflow trunk (101c) and isolates the storage space (5) from the outside space (6). do.
  • the second switching valve (152) in the second state cuts off the storage space (5) and the inflow trunk (101c) and allows communication between the storage space (5) and the outside space (6).
  • the second switching valve (152) is provided at the connecting portion between the inflow trunk (101c) and the bypass channel (105).
  • the second switching valve (152) is provided upstream of the gas separation membrane (124) in the inflow trunk (101c).
  • the second switching valve (152) has a first state in which the air in the inflow channel (101) is supplied to the gas separation module (120) and a state in which the air in the inflow channel (101) bypasses the gas separation module (120). and the second state to Specifically, the second switching valve (152) in the first state allows communication between the inflow trunk (101c) and the gas separation membrane (124), and the inflow trunk (101c) and the bypass channel (105). block the The second switching valve (152) in the second state shuts off the inflow trunk (101c) and the gas separation membrane (124) and allows communication between the inflow trunk (101c) and the bypass channel (105).
  • the third switching valve (153) is provided at the connecting portion between the first air supply path (102a) and the first exhaust path (103a).
  • the third switching valve (153) is provided in the first air supply path (102a) between the connecting portion of the sensor flow path (106) and the outlet end of the first air supply path (102a).
  • the third switching valve (153) has a first state in which the air in the first air supply passage (102a) is supplied to the storage space (5), and a state in which the air in the first air supply passage (102a) is supplied to the outside space (6). ).
  • the third switching valve (153) in the first state communicates the first air supply path (102a) with the storage space (5), and the first air supply path (102a) communicates with the first exhaust path. (103a) and cut off.
  • the third switching valve (153) in the second state isolates the first air supply path (102a) from the storage space (5) and disconnects the first air supply path (102a) from the first exhaust path (103a). communicate.
  • the fourth switching valve (154) is provided at the connecting portion between the second air supply path (102b) and the second exhaust path (103b). In other words, the fourth switching valve (154) is positioned in the second air supply line (102b) between the second outlet port (O2) of the gas separation module (120) and the outlet end of the second air supply line (102b). provided in between.
  • the fourth switching valve (154) has a first state in which the air in the second air supply passage (102b) is supplied to the storage space (5), and a state in which the air in the second air supply passage (102b) is supplied to the outside space (6). ).
  • the fourth switching valve (154) in the first state communicates the second air supply path (102b) with the storage space (5), and the second air supply path (102b) communicates with the second exhaust path (102b). (103b) and cut off.
  • the fourth switching valve (154) in the second state isolates the second air supply path (102b) from the storage space (5) and disconnects the second air supply path (102b) from the second exhaust path (103b). communicate.
  • the fifth switching valve (155) is provided at the connecting portion between the air supply trunk (102c) and the introduction passage (107). In other words, the fifth switching valve (155) is provided upstream of the water supply path (108) in the air supply trunk (102c).
  • the fifth switching valve (155) is in a first state in which the air in the air supply channel (102) is supplied to the storage space (5) without passing through the water separation module (130), of air is supplied to the storage space (5) via the water separation module (130).
  • the fifth switching valve (155) in the first state allows the air supply trunk (102c) and the introduction passage (107) to communicate, and the air supply trunk (102c) and the storage space (5) to communicate with each other.
  • the The fifth switching valve (155) in the second state cuts off the air supply trunk (102c) and the introduction passage (107) and allows the air supply trunk (102c) to communicate with the storage space (5).
  • the channel switching mechanism includes an air on-off valve (156) provided in the air channel (A).
  • An air on/off valve (156) is provided in the first sensor path (106a).
  • the air on/off valve (156) is composed of, for example, an electromagnetic valve, and opens and closes the sensor channel (106).
  • the air flow path (A) is provided with a first check valve (157) and a second check valve (158).
  • the first check valve (157) is provided in the first air supply path (102a). Specifically, the first check valve (157) connects the first outlet port (O1) of the gas separation module (120) and the bypass channel (105) in the first air supply path (102a). provided between The first check valve (157) allows air flow from the first outlet port (O1) of the gas separation module (120) to the outlet end of the first air supply line (102a) and vice versa. Prohibit air flow.
  • the second check valve (158) is provided in the second air supply path (102b). Specifically, the second check valve (158) connects the second outlet port (O2) of the gas separation module (120) and the second exhaust line (103b) in the second air supply line (102b). provided between The second check valve (158) allows air flow from the second outlet port (O2) of the gas separation module (120) to the outlet end of the second air supply line (102b) and vice versa. Prohibit air flow.
  • a first pressure sensor (161), a second pressure sensor (162), and a third pressure sensor (163) are provided in the air flow path (A). These pressure sensors (161, 162, 163) detect air pressure.
  • the first pressure sensor (161) is provided downstream of the water separation module (130) in the inflow channel (101). Specifically, the first pressure sensor (161) is provided between the first outlet port (O1) of the water separation module (130) and the second switching valve (152) in the inflow trunk (101c). .
  • a first pressure sensor (161) detects the pressure inside the water separation module (130). Specifically, the first pressure sensor (161) detects the internal pressure of the third lead-out chamber (136) or the water separation membrane (134).
  • the second pressure sensor (162) is provided downstream of the gas separation module (120) in the first air supply path (102a). Specifically, the second pressure sensor (162) is positioned between the first outlet port (O1) of the gas separation module (120) and the third switching valve (153) in the first air supply line (102a). be provided.
  • a second pressure sensor (162) detects the pressure inside the gas separation module (120). Specifically, the second pressure sensor (162) detects the pressure in the first outlet chamber (126) or the internal pressure of the gas separation membrane (124).
  • the third pressure sensor (163) is provided downstream of the gas separation module (120) in the second air supply path (102b). Specifically, the third pressure sensor (163) is positioned between the second outlet port (O2) of the gas separation module (120) and the fourth switching valve (154) in the second air supply line (102b). be provided. A third pressure sensor (163) detects the pressure in the second outlet chamber (127) of the gas separation module (120).
  • the air flow path (A) is provided with a first pressure control valve (171) and a second pressure control valve (172).
  • These pressure control valves (171, 172) are an example of a pressure control section that controls air pressure.
  • the first pressure control valve (171) is provided downstream of the water separation module (130) in the inflow channel (101). Specifically, the first pressure control valve (171) is provided between the first pressure sensor (161) and the second switching valve (152) in the inflow trunk (101c).
  • the first pressure control valve (171) regulates the pressure inside the water separation module (130). Specifically, the first pressure control valve (171) regulates the pressure in the third outlet chamber (136) of the water separation module (130) or the internal pressure of the water separation membrane (134).
  • the opening of the first pressure control valve (171) may be adjusted based on the pressure detected by the first pressure sensor (161). By adjusting the pressure inside the water separation module (130) with the first pressure control valve (171), the water separation module (130) can be dehumidified appropriately.
  • the second pressure control valve (172) is provided downstream of the gas separation module (120) in the first air supply path (102a). Specifically, the second pressure control valve (172) is provided between the second pressure sensor (162) and the third switching valve (153) in the first air supply passage (102a).
  • a second pressure control valve (172) regulates the pressure inside the gas separation module (120). Specifically, the second pressure control valve (172) regulates the pressure in the first outlet chamber (125) of the gas separation module (120) or the internal pressure of the gas separation membrane (124). For example, the opening of the second pressure control valve (172) may be adjusted based on the pressure detected by the second pressure sensor (162).
  • the second pressure regulating valve (172) regulates the internal pressure of the gas separation module (120) so that separation in the gas separation module (120) can be properly performed.
  • the air conditioner (100) includes a second control unit (190).
  • the second control unit (190) is connected to the first control unit (90) via a communication line (W).
  • the communication line (W) exchanges signals and information between the first control unit (90) and the second control unit (190).
  • the communication line (W) is wired, but may be wireless.
  • the second control unit (190) includes a second control section (191).
  • the second control section (191) is an example of the control section of the present disclosure.
  • the second control unit (191) includes an MCU (Micro Control Unit), electric circuits, and electronic circuits.
  • the MCU includes a CPU (Central Processing Unit), memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
  • the second control unit (191) receives signals detected by the first pressure sensor (161), the second pressure sensor (162), and the third pressure sensor (163).
  • the second control section (191) controls the air pump (110), the channel switching mechanism, and the pressure control valves (171, 172). Specifically, the second control section (191) controls the operation of the air pump (110).
  • a second control section (191) switches each switching valve (151, 152, 153, 154, 155) between a first state and a second state.
  • the second control section (191) opens and closes the air on/off valve (156).
  • the second control section (191) adjusts the opening degrees of the pressure control valves (171, 172).
  • the operating behavior of the air conditioner (100) will be described.
  • the operation of the air conditioner (100) includes first to fifth operations described below.
  • the second control section (191) sets the fifth switching valve (155) to the first state. Therefore, in these operations, the water separation module (130) operates to remove moisture from the air.
  • the second control section (191) switches the first switching valve (151) to the first state, the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state.
  • the valve (153) is set to the first state
  • the fourth switching valve (154) is set to the second state
  • the fifth switching valve (155) is set to the first state
  • the air on/off valve (156) is set to the closed state.
  • the indoor air flowing through the second inflow path (101b) flows through the first water separator (111).
  • the first water separator (111) separates water (liquid) from the inside air.
  • the air that has passed through the first water separator (111) and the outside air that flows through the first inflow path (101a) flow into the inflow path (101c) and are mixed together, and then pumped through an air pump (110) as air to be treated. ).
  • the air pump (110) pressurizes and discharges the sucked air.
  • the air discharged from the air pump (110) flows through the second water separator (113) after being cooled by the condensation circuit (112).
  • the second water separator (113) separates water condensed from the air to be treated while the air to be treated passes through the condensing circuit (112).
  • the air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130).
  • the air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120).
  • the air to be treated is separated into primary air and secondary air.
  • the first air which has a lower oxygen concentration than the air to be treated, flows through the first air supply path (102a) and the introduction path (107) in order, and flows through the third outlet chamber (136) of the water separation module (130).
  • the third outlet chamber (136) water molecules permeating the water separation membrane (134) are applied to the primary air.
  • the primary air humidified by the water separation module (130) sequentially flows through the water supply channel (108) and the air supply main channel (102c), and is supplied to the internal space (5).
  • the second air which has a higher oxygen concentration than the air to be treated, flows through the second air supply path (102b), the second exhaust path (103b), and the exhaust main path (103c) in order, and is discharged to the outside space (6). be done.
  • the flow rate of the outside air flowing into the first inflow passage (101a) through the first air filter (F1) is higher than the flow rate of the second air discharged to the outside space (6).
  • the air pressure in the storage space (5) is higher than the air pressure outside the shipping container (1) (ie atmospheric pressure).
  • the storage space (5) is thereby kept at a positive pressure.
  • Second operation In the second operation, the outside air is treated air, the first air is supplied to the inside space (5), and the second air is discharged to the outside space (6). It is driving to do. This second operation is performed to reduce the oxygen concentration of the air inside the storage space (5).
  • the second control section (191) switches the first switching valve (151) to the second state, switches the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state.
  • the valve (153) is set to the first state
  • the fourth switching valve (154) is set to the second state
  • the fifth switching valve (155) is set to the first state
  • the air on/off valve (156) is set to the closed state.
  • outside air flowing through the first inflow path (101a) is pressurized by the air pump (110) and then passes through the condensation circuit (112) and the second water separator (113).
  • the air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130).
  • the air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120).
  • the air to be treated is separated into primary air and secondary air.
  • the first air, which has a lower oxygen concentration than the air to be treated, is humidified by the water separation module (130), then flows through the water supply channel (108) and the air supply trunk channel (102c) in order, and flows into the internal space (5). supplied to
  • the second air which has a higher oxygen concentration than the air to be treated, flows through the second air supply path (102b), the second exhaust path (103b), and the exhaust main path (103c) in order, and is discharged to the outside space (6). be done.
  • the storage space (5) is kept at positive pressure. Therefore, the air in the internal space (5) flows through the second inflow passage (101b) and the internal exhaust passage (104) and is discharged to the external space (6). As a result, the air in the storage space (5) is gradually replaced with the first air.
  • the third operation is an operation in which both the outside air and the inside air are treated as the air to be treated, the first air is discharged outside the refrigerator, and the second air is supplied to the inside of the refrigerator. is. This third operation is performed to raise the oxygen concentration of the air inside the storage space (5).
  • the second control section (191) switches the first switching valve (151) to the first state, switches the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state.
  • the valve (153) is set to the second state
  • the fourth switching valve (154) is set to the first state
  • the fifth switching valve (155) is set to the first state
  • the air on/off valve (156) is set to the closed state.
  • the air (to-be-treated air) mixed with the outside air flowing through the first inflow passage (101a) and the inside air flowing through the second inflow passage (101b) is pressurized by the air pump (110). After being filtered, it passes through a condensation circuit (112) and a second water separator (113). The air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130). The air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120). In the gas separation module (120), the air to be treated is separated into primary air and secondary air. The first air, which has a lower oxygen concentration than the air to be treated, flows through the first air supply passage (102a), the first exhaust passage (103a), and the exhaust passage (103c) in order, and is discharged to the outside space (6). be done.
  • the second air which has a higher oxygen concentration than the air to be treated, flows through the second air supply path (102b) and the introduction path (107) in order, and flows through the third outlet chamber (136) of the water separation module (130).
  • the third outlet chamber (136) water molecules permeating the water separation membrane (134) are added to the secondary air.
  • the secondary air humidified by the water separation module (130) flows through the water supply path (108) and the air supply trunk (102c) in order, and is supplied to the internal space (5).
  • the storage space (5) is kept at positive pressure.
  • the fourth operation is an operation in which the air outside the refrigerator is treated as the air to be treated, the first air is discharged outside the refrigerator, and the second air is supplied into the refrigerator. This fourth operation is performed to raise the oxygen concentration of the air inside the storage space (5).
  • the second control section (191) switches the first switching valve (151) to the second state, switches the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state.
  • the valve (153) is set to the second state
  • the fourth switching valve (154) is set to the first state
  • the fifth switching valve (155) is set to the first state
  • the air on/off valve (156) is set to the closed state.
  • outside air (air to be treated) flowing through the first inflow passage (101a) is pressurized by the air pump (110) and then passes through the condensation circuit (112) and the second water separator (113).
  • the air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130).
  • the air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120).
  • the air to be treated is separated into primary air and secondary air.
  • the second air, which has a higher oxygen concentration than the air to be treated is humidified by the water separation module (130), then flows through the water supply channel (108) and the air supply main channel (102c) in order, and flows into the internal space (5). supplied to
  • the first air which has an oxygen concentration lower than that of the air to be treated, sequentially flows through the second air supply path (102b), the second exhaust path (103b), and the exhaust main path (103c), and is discharged to the outside space (6). be done.
  • the storage space (5) is kept at positive pressure. Therefore, the air in the internal space (5) flows through the second inflow passage (101b) and the internal exhaust passage (104) and is discharged to the external space (6). As a result, the air in the storage space (5) is gradually replaced with the second air.
  • the fifth operation is an operation in which outside air is supplied to the inside of the refrigerator as it is. This fifth operation is performed to raise the oxygen concentration of the air inside the storage space (5).
  • the second control section (191) switches the first switching valve (151) to the second state, switches the second switching valve (152) to the second state, and switches the third switching valve (152) to the second state.
  • the valve (153) is set to the first state
  • the fourth switching valve (154) is set to the second state
  • the fifth switching valve (155) is set to the first state
  • the air on/off valve (156) is set to the closed state.
  • outside air flowing through the first inflow path (101a) is pressurized by the air pump (110) and then passes through the condensation circuit (112) and the second water separator (113).
  • the air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130).
  • Air dehumidified in the water separation module (130) flows through the bypass channel (105) to bypass the gas separation module (120).
  • the air flowing out of the bypass channel (105) sequentially flows through the first air supply channel (102a) and the introduction channel (107), and then flows through the third outlet chamber (136) of the water separation module (130).
  • water molecules that permeate the water separation membrane (134) are added to the air.
  • the air humidified by the water separation module (130) sequentially flows through the water supply path (108) and the air supply trunk (102c) and is supplied to the internal space (5).
  • the storage space (5) is kept at positive pressure. Therefore, the air in the internal space (5) flows through the second inflow passage (101b) and the internal exhaust passage (104) and is discharged to the external space (6). As a result, the air in the storage space (5) is gradually replaced with the outside air.
  • the air conditioner (100) of the present embodiment performs the first operation to solve the above problem.
  • the second control section (191) performs a first operation of suppressing deterioration of the performance of the gas separation membrane (124) due to the suspension of the air conditioner (100) for a predetermined period of time.
  • the first operation of this embodiment includes a preliminary operation of supplying the air to be treated to the gas separation membrane (124).
  • the second control section (191) starts the preliminary operation after a predetermined period of time has passed since the air conditioner (100) stopped.
  • step ST1 when the second control section (191) receives an operation command for normal operation, in step ST2, the second control section (191) controls the air conditioner (100) to perform normal operation.
  • the normal operation is an operation in which the air to be treated is separated by the gas separation module (120), and includes the first operation, second operation, third operation and fourth operation described above. Normal operation aims at adjusting the composition of the air in the containment space (5).
  • step ST3 when the second control section (191) receives a command to stop normal operation, in step ST4, the second control section (191) stops the air conditioner (100).
  • step ST5 when the predetermined time T1 has passed since the operation of the air conditioner (100) stopped, in step ST6, the second control section (191) causes the preliminary operation to be performed.
  • the operation here includes normal operation and preliminary operation.
  • the predetermined time T1 is set in consideration of the deterioration of the performance of the gas separation membrane (124) due to stoppage of the air conditioner (100) or non-use of the gas separation membrane (124).
  • the predetermined time T1 is set, for example, from several days to several tens of days.
  • step ST7 when the conditions for stopping the preliminary operation are satisfied, in step ST8, the second control unit (191) stops the preliminary operation.
  • the condition for stopping the preliminary operation in this example is that a predetermined time T2 has passed since the preliminary operation started.
  • Preliminary operation is an operation to supply air to be treated to the gas separation membrane (124).
  • the preliminary operation is an operation performed for the purpose of suppressing deterioration in the performance of the gas separation membrane (124) due to the suspension of the air conditioner (100) for a predetermined period. Therefore, the air conditioner (100) in preliminary operation may perform the same operations as in the first, second, third, and fourth operations described above.
  • the preliminary operation of this embodiment differs from the above-described normal operation in that it is not executed by an operation command accompanying a human operation such as a user.
  • the air to be treated flows through the gas separation module (120).
  • the air to be treated that has flowed into the first introduction chamber (125) flows through each gas separation membrane (124).
  • the gas separation membrane (124) expands, increasing the size of each pore. This recovers the oxygen and carbon dioxide separation performance of the gas separation membrane (124).
  • the air pump (110) constitutes a pressurizing section that pressurizes the air supplied to the gas separation membrane (124). Specifically, the air pump (110) pressurizes the air to be treated so that the internal pressure of the gas separation membrane (124) in preliminary operation is equal to or higher than the internal pressure P1 of the gas separation membrane (124) in normal operation. . The air pump (110) pressurizes the air to be treated so that the internal pressure of the gas separation membrane (124) does not exceed its withstand pressure P2.
  • the internal pressure of the gas separation membrane (124) can be adjusted by the second pressure control valve (172). Specifically, the second control section (191) controls the degree of opening of the second pressure control valve (172) so that the pressure detected by the second pressure sensor (162) is greater than or equal to P1 and less than P2.
  • the internal pressure of the gas separation membrane (124) during preliminary operation is maintained at, for example, 700 [kPa].
  • the gas separation membrane (124) is easily expanded, and the pore size is easily widened. As a result, the performance recovery effect of the gas separation membrane (124) is improved.
  • the air conditioner (100) has a first water separation membrane (134), a second water separation membrane (134), and a water separation module (130) as a dehumidifier. These dehumidifiers reduce the moisture in the air supplied to the gas separation membrane (124). Here, when moisture in the air supplied to the gas separation membrane (124) adheres to the gas separation membrane (124), this moisture clogs the pores, thereby degrading the separation performance of the gas separation membrane (124). Sometimes I end up On the other hand, the first water separation membrane (134), the second water separation membrane (134), and the water separation module (130) dehumidify the air as the dehumidifying section, so that the moisture is removed from the gas separation membrane (124).
  • the dehumidifying section may be one or two of the first water separator (111), the second water separator (113), and the water separation module (130), or other It may be a dehumidifying part of the system.
  • the second control section (191) continues the preliminary operation for the predetermined time T2.
  • the predetermined time T2 is set to 24 hours, for example.
  • the pore size of the gas separation membrane (124) can be sufficiently widened.
  • the air conditioner (100) of the above-described embodiment includes a second control unit ( 191). Therefore, even when the gas separation membrane (124) contracts and its performance deteriorates, the first operation can suppress the deterioration of the performance of the gas separation membrane (124).
  • a first operation includes a preliminary operation in which air to be treated is supplied to the gas separation membrane (124).
  • the gas separation membrane (124) can be expanded and its pore size can be enlarged. As a result, the performance of the gas separation membrane (124) can be easily and quickly recovered.
  • the second control section (191) starts the preliminary operation when a predetermined time has elapsed since the air conditioner (100) stopped. Therefore, the performance of the gas separation membrane (124) can be reliably recovered at the timing when the performance of the gas separation membrane (124) is lowered due to the shutdown of the air conditioner (100).
  • the air conditioner (100) has an air pump (110) that pressurizes the air supplied to the gas separation membrane (124) in preliminary operation. This makes it easier to expand the gas separation membrane (124), so that the performance of the gas separation membrane (124) can be quickly and reliably recovered.
  • the air conditioner (100) includes a dehumidifying section (111, 113, 130) that reduces moisture in the air supplied to the gas separation membrane (124) in preliminary operation. This can prevent moisture from clogging the pores of the gas separation membrane (124), thereby suppressing deterioration of the performance of the gas separation membrane (124).
  • the second control section (191) determines the start time of normal operation.
  • the second control section (191) may estimate the start time of normal operation.
  • the second control unit (191) estimates the start time of normal operation based on, for example, the transport route of the transport container (1). For example, by installing a GPS (Global Positioning System) in a shipping container (1) or a ship that transports the shipping container (1), the second control unit (191) can control the shipping container ( 1) You can get the transportation route.
  • the second control unit (191) identifies, for example, the arrival of the shipping container (1) at the port based on GPS, and estimates the start time of normal operation in conjunction with this timing.
  • the shipping container (1) arrives at the port the following perishables are transported to the container body (2), and it is necessary to cool the air in the storage space (5) and adjust the composition of this air. is.
  • the normal operation start time may be an input value determined in advance by the user.
  • the user determines the normal operation start time using the operation unit (92).
  • the second control section (191) determines the time input via the operation section (92) as the normal operation start time.
  • the second control section (191) determines the start time of the preliminary operation.
  • the start time of the preliminary operation is the time obtained by subtracting the execution time of the preliminary operation (for example, T2 described above) from the start time of the normal operation.
  • the second control section (191) causes the air conditioning device (100) to perform preliminary operation from the start time obtained at step ST12.
  • the air to be treated is supplied to the gas separation membrane (124), similar to the embodiments described above. Therefore, the performance of the gas separation membrane (124) can be recovered.
  • the second control section (191) executes normal operation in step ST14. Specifically, in normal operation, for example, the above-described first, second, third, or fourth operation is performed. Preliminary operation is performed immediately before normal operation to restore the performance of the gas separation membrane (124). Therefore, in normal operation, gas separation performance of the gas separation membrane (124) can be fully exhibited.
  • preliminary operation and normal operation may be performed continuously.
  • the preliminary operation preferably performs the same operation as the normal operation.
  • the second control section (191) causes the air conditioner (100) to perform the first operation.
  • the second control section (191) causes the air conditioner (100) to perform the first operation even in the preliminary operation to restore the performance of the gas separation membrane (124).
  • the second control section (191) continuously executes the first operation as the normal operation after the execution time of the first operation as the preliminary operation has elapsed.
  • the performance of the gas separation membrane (124) can be sufficiently obtained from the start time of normal operation without stopping the air conditioner (100).
  • the air conditioner (100) according to Modification 2 includes a water separation module (130) according to the embodiment, an introduction passage (107), a water supply passage (108), and a fifth switching valve ( 155).
  • the air conditioner (100) of Modification 2 performs the first operation, the second operation, the third operation, the fourth operation, and the fifth operation in the same manner as in the embodiment.
  • the modification 2 differs from the embodiment in that the air in the air supply trunk (102c) is sent directly to the storage space (5) without passing through the introduction path (107) and the water supply path (108).
  • the first air and the second air separated by the gas separation module (120) are discharged to the outside space (6).
  • the exhaust channel (103) of Modification 2 discharges the first air and the second air separated by the gas separation membrane (124) to the outside space (6).
  • the second control section (191) sets the third switching valve (153) to the second state and the fourth switching valve (154) to the second state.
  • the second control section (191) sets, for example, the second switching valve (152) to the first state and the air on/off valve (156) to the closed state.
  • the second control section (191) sets the first switching valve (151) to the first state.
  • the second control section (191) may set the first switching valve (151) to the second state.
  • the air dehumidified in the first water separator (111) is supplied to the gas separation membrane (124) of the gas separation module (120). This restores the performance of the gas separation membrane (124).
  • the first air separated by the gas separation module (120) sequentially flows through the first air supply line (102a) and the first exhaust line (103a), and then flows out to the exhaust trunk line (103c).
  • the second air separated by the gas separation module (120) sequentially flows through the second air supply line (102b) and the second exhaust line (103b), and then flows out to the exhaust trunk line (103c).
  • the air merged in the exhaust trunk (103c) is discharged to the outside space (6).
  • the air dehumidified in the second water separator (113) is also dehumidified in the gas separation module (120). It is fed to the gas separation membrane (124). This restores the performance of the gas separation membrane (124).
  • the first air and the second air separated by the gas separation membrane (124) are discharged to the outside space (6) in the preliminary operation.
  • the first air and the second air are not supplied to the storage space (5), which is the internal space. Therefore, it is possible to avoid a change in the composition of the air in the storage space (5) due to the execution of the preliminary operation.
  • the second inflow path (101b) is omitted, the storage space (5) is not connected to the inflow path (101), and the storage space (5) is connected to the inside exhaust path. It may be connected to the outside space (6) via (104).
  • an on-off valve is provided in the inside exhaust passage (104).
  • the air conditioner (100) of Modification 3 is provided with a heating section (175) in the air flow path (A).
  • the heating section (175) heats the air supplied to the gas separation membrane (124) in preliminary operation.
  • the heating part (175) of this example is configured by an electric heater.
  • the heating section (175) is provided in the inflow trunk (101c). Specifically, the heating section (175) is provided between the water separation module (130) and the gas separation module (120).
  • the air to be treated heated to a predetermined temperature by the heating unit (175) is supplied to the gas separation membrane (124).
  • the components in the air can improve the recovery performance of the gas separation membrane (124). This is attributed to the increase in the diffusion coefficient of gas in the gas separation membrane (124) as the air temperature rises and the decrease in relative humidity in the air as the air temperature rises. I can guess.
  • the heating unit (175) may be a device that is provided in the refrigeration system (10) and heats air by exhaust heat.
  • This equipment includes, for example, a compressor (31).
  • the second control section (191) determines whether or not a first condition indicating that the performance of the gas separation membrane (124) is degraded is met.
  • the first condition is that a predetermined period of time has passed since the air conditioner (100) stopped and that the gas separation membrane (124) has not been used for a predetermined period of time or longer. This is because when these conditions are satisfied, the pore size of the gas separation membrane (124) becomes small.
  • step S22 the second control section (191) outputs a first signal for prompting the person to operate the air conditioner (100).
  • the first signal output from the second control section (191) is input to the first control section (93) of the first control unit (90) via the communication line (W).
  • the first control section (93) controls the display section (91) to prompt the user to operate the air conditioner (100).
  • the first control section (93) which has received the first signal, controls the display section (91) so as to prompt the person to drive normally.
  • the display section (91) is an example of a first notification section that informs the person that the operation of the air conditioner (100) is to be urged.
  • the display section (91) prompts the user to operate the air conditioner (100) normally using characters, graphics, symbols, signs, or the like. A person who has confirmed the display (91) causes the air conditioner (100) to operate normally by operating the operation section (92).
  • the first operation, second operation, third operation, or fourth operation is performed.
  • the fifth operation may be performed.
  • an operation similar to the preliminary operation described in modification 2 may be performed.
  • an operation similar to the preliminary operation described in modification 3 may be performed.
  • the first reporting unit may be a light-emitting unit such as an LED that uses light to prompt normal operation of the air conditioner (100).
  • the first notification section may be a sound generation section that prompts the normal operation of the air conditioner (100) with a sound such as voice.
  • the first notification section such as the display section (91) may be provided in the second control unit (190).
  • the display section (91) of the air conditioner (100) prompts the user to operate the air conditioner (100) normally.
  • the second control section (191) of Modification 5 outputs information about the performance of the gas separation membrane (124). Control regarding this operation will be described in detail with reference to FIG.
  • the control according to FIG. 19 is added to the air conditioner (100) of the embodiment described above.
  • the air conditioner (100) of Modification 5 performs an operation (second operation) of outputting information about the performance of the gas separation membrane (124) in addition to the first operation.
  • the second control section (191) causes the air conditioner (100) to perform preliminary operation.
  • the second control section (191) estimates information about the performance of the gas separation membrane (124). Specifically, the second control section (191) estimates the time until the performance of the gas separation membrane (124) recovers.
  • the second control unit (191) stores data indicating the relationship between the speed change of the internal pressure of the gas separation membrane (124) and the elapsed time of the preliminary operation. While the pore diameter of the gas separation membrane (124) is small immediately after the start of the preliminary operation, the pore diameter gradually increases as the preliminary operation is performed. As the preliminary operation progresses, the pores become sufficiently large, and the rate of change in the diameter of the pores becomes small. Therefore, the amount of decrease in the internal pressure of the gas separation membrane (124) is relatively large immediately after the start of the preliminary operation, and then gradually decreases. That is, immediately after the start of the preliminary operation, the rate of decrease of the internal pressure of the gas separation membrane (124) is relatively high, and then the rate of decrease gradually decreases. Therefore, if the rate of decrease of the internal pressure of the gas separation membrane (124) at a certain timing is known, it is possible to estimate how long it will take for the performance of the gas separation membrane (124) to recover.
  • step ST32 the second control section (191) obtains the decrease speed of the pressure detection value of the second pressure sensor (162) at a predetermined timing after starting the preliminary operation.
  • the second control section (191) estimates the time or time until the performance of the gas separation membrane (124) recovers based on this rate of decrease and the above data.
  • step ST32 when obtaining the rate of decrease of the internal pressure of the gas separation membrane (124), basically, the second control section (191) adjusts the degree of opening of the second pressure control valve (172). not performed.
  • step S33 the second control unit (191) outputs information about the estimated time and time as information about the performance of the gas separation membrane (124).
  • the second control section (191) outputs this information to the first control section (93) of the first control unit (90).
  • the first control section (93) having received this information controls the display section (91) so as to inform people of this time.
  • the display section (91) is an example of a second notification section that informs a person of information regarding the performance of the gas separation membrane (124).
  • step S34 the display section (91) displays the time and time until the performance of the gas separation membrane (124) recovers, using characters, graphics, symbols, signs, and the like. In this way, a person can know the time and time until the performance of the gas separation membrane (124) recovers through the display section (91). Therefore, the reliability of the air conditioner (100) can be ensured.
  • the second reporting unit may be a light emitting unit that uses light to notify people of information about the performance of the gas separation membrane (124).
  • the second notification part may be a sound generation part that notifies a person of information regarding the performance of the gas separation membrane (124) by means of sound such as voice.
  • a second notification section such as the display section (91) may be provided in the second control unit (190).
  • the display section (91) of the air conditioner (100) informs the person of information regarding the performance of the gas separation membrane (124).
  • the information about the performance of the gas separation membrane (124) is the time and time until the performance of the gas separation membrane (124) recovers, but this information is the performance of the gas separation membrane (124) itself. It may be the degree of deterioration of the performance of the gas separation membrane (124).
  • Modification 6 The fifth switching valve (155) according to the embodiment is omitted from the air conditioner (100) of Modified Example 6 shown in FIG.
  • the air supplied into the storage always flows through the introduction channel (107) and the water supply channel (108) and is sent to the storage space (5).
  • the introduction passageway (107) and the water supply passageway (108) form part of the air supply trunk passageway (102c).
  • Reference Example The air conditioner (100) of Reference Example does not perform the first operation according to the embodiment and Modifications 1-4. In other words, the air conditioner (100) of the reference example does not perform an operation to suppress deterioration of the performance of the gas separation membrane (124) due to the suspension of the air conditioner (100) for a predetermined period.
  • the air conditioner (100) of the reference example performs the second action according to the fifth modification. This allows a person to know information about the performance of the gas separation membrane (124). Therefore, the reliability of the air conditioner (100) can be ensured.
  • the pressurizing section may be other than the air pump (110), and may be a compressor that compresses air or a fan that conveys air.
  • the fifth switching valve (155) may be omitted.
  • the air conditioner (100), transport refrigeration system (10), or transport container may have a rechargeable auxiliary power source such as a battery.
  • the auxiliary power supply is configured to be able to supply power to the air conditioner. Electric power can be supplied from the auxiliary power source to the air conditioner (100) even when the air conditioner (100) is powered off and the air conditioner (100) is stopped. As a result, even when the air conditioner (100) is in a stopped state, the air conditioner (100) can reliably perform the preliminary operation.
  • the shipping container (1) may be used for land transportation.
  • the shipping container (1) is transported by land transport such as a vehicle.
  • the shipping container (1) is loaded onto a trailer.
  • the air conditioner (100) may be used in stationary warehouses to adjust the composition of the air inside the warehouse.
  • the air conditioner (100) may be provided in a warehouse for storing perishables such as fruits, vegetables, and flowers.
  • a storage space (5) is formed as an internal space for storing objects to be stored in the warehouse.
  • the present disclosure is useful for air conditioners, refrigerators, and shipping containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

This air-conditioner comprises: a gas separation membrane (124) to which a gas to be processed is supplied; and a controller (191) for performing a first operation for limiting a decrease in the performance of the gas separation membrane due to the air-conditioner being stopped for a designated period of time.

Description

空気調節装置、冷凍装置、および輸送用コンテナAir conditioners, refrigeration equipment, and shipping containers
 本開示は、空気調節装置、冷凍装置、および輸送用コンテナに関する。 The present disclosure relates to air conditioners, refrigerators, and shipping containers.
 特許文献1には、庫内空間の庫内空気の組成を調節する空気調節装置が開示されている。空気調節装置は、ガス分離膜を備える。被処理空気がガス分離膜を流れると、被処理空気中の一部の成分(例えば酸素および二酸化炭素)がガス分離膜を透過する。このようにして組成が調節された空気が庫内空間へ供給される。 Patent Literature 1 discloses an air conditioning device that adjusts the composition of the internal air in the internal space. An air conditioner includes a gas separation membrane. When the air to be treated flows through the gas separation membrane, some components (for example, oxygen and carbon dioxide) in the air to be treated permeate the gas separation membrane. The air whose composition has been adjusted in this manner is supplied to the internal space.
特開2019-66169号公報JP 2019-66169 A
 特許文献1に記載のような空気調節装置を長期間に亘って停止すると、分離膜が収縮し、分離膜の細孔が小さくなってしまう。この結果、分離膜の性能が低下してしまう問題があった。 If the air conditioner as described in Patent Document 1 is stopped for a long period of time, the separation membrane will shrink and the pores of the separation membrane will become smaller. As a result, there is a problem that the performance of the separation membrane deteriorates.
 本開示の目的は、空気調節装置の停止に伴って分離膜の性能が低下するのを抑制することである。 The purpose of the present disclosure is to suppress the performance deterioration of the separation membrane due to the shutdown of the air conditioner.
 第1の態様は、庫内空間(5)の庫内空気の組成を調節する空気調節装置であって、
 被処理空気が供給されるガス分離膜(124)と、前記空気調節装置の所定期間の停止に伴う前記ガス分離膜(124)の性能の低下を抑制する第1動作を実行させる制御部(191)とを備えている空気調節装置である。
A first aspect is an air conditioning device that adjusts the composition of internal air in an internal space (5),
A gas separation membrane (124) to which the air to be treated is supplied, and a control unit (191) for executing a first operation for suppressing deterioration of the performance of the gas separation membrane (124) due to stoppage of the air conditioner for a predetermined period. ).
 なお、ここでいう「分離膜の性能の低下を抑制する」という意味は、分離膜の性能が低下してしたときに、この分離膜の性能を回復させることも含む。 It should be noted that the meaning of "suppressing the deterioration of the performance of the separation membrane" here also includes recovering the performance of the separation membrane when the performance of the separation membrane has deteriorated.
 第1の態様では、制御部(191)が第1動作を実行することで、空気調節装置の所定期間の停止に伴うガス分離膜(124)の性能の低下を抑制できる。 In the first aspect, the performance of the gas separation membrane (124) can be suppressed from deteriorating due to the stoppage of the air conditioner for a predetermined period of time by the control unit (191) executing the first operation.
 第2の態様は、第1の態様において、第1動作が、前記被処理空気を前記ガス分離膜(124)に供給する予備運転を含む。 A second aspect, in the first aspect, includes a preliminary operation in which the first operation supplies the air to be treated to the gas separation membrane (124).
 第2の態様では、第1動作として予備運転が実行され、被処理空気がガス分離膜(124)に供給される。被処理空気がガス分離膜(124)を流れることで、ガス分離膜(124)の細孔を拡大でき、ガス分離膜(124)の性能の低下を抑制できる。 In the second mode, preliminary operation is performed as the first operation, and the air to be treated is supplied to the gas separation membrane (124). The air to be treated flows through the gas separation membrane (124), thereby enlarging the pores of the gas separation membrane (124) and suppressing deterioration of the performance of the gas separation membrane (124).
 第3の態様は、第2の態様において、前記制御部(191)は、前記空気調節装置の停止から所定時間が経過すると、前記予備運転を開始させる。 A third aspect is the second aspect, wherein the control unit (191) starts the preliminary operation after a predetermined time has elapsed since the air conditioning device was stopped.
 第3の態様では、空気調節装置の停止から所定時間が経過すると、制御部(191)が予備運転を開始させる。これにより、被処理空気がガス分離膜(124)を長期に亘って流れないことを回避でき、ガス分離膜(124)の性能の低下を抑制できる。 In the third aspect, the control unit (191) starts the preliminary operation after a predetermined time has elapsed since the air conditioner stopped. This prevents the air to be treated from flowing through the gas separation membrane (124) for a long period of time, thereby suppressing deterioration in the performance of the gas separation membrane (124).
 第4の態様は、第2の態様において、前記制御部(191)は、前記空気調節装置の通常運転の開始時より所定時間前に前記予備運転を開始させる。 A fourth aspect is the second aspect, wherein the control unit (191) starts the preliminary operation a predetermined time before the start of the normal operation of the air conditioner.
 第4の態様では、空気調節装置の通常運転の開始時より所定時間前に予備運転が開始されるので、通常運転の前にガス分離膜(124)の性能の低下を抑制できる。これにより、通常運転において、ガス分離膜(124)の性能が十分得られないことを抑制できる。 In the fourth aspect, since the preliminary operation is started a predetermined time before the start of normal operation of the air conditioner, deterioration of the performance of the gas separation membrane (124) can be suppressed before normal operation. This can prevent the gas separation membrane (124) from achieving sufficient performance in normal operation.
 第5の態様は、第3または第4の態様において、前記予備運転において、前記ガス分離膜(124)で分離された第1空気および第2空気を庫外空間(6)に排出する排気流路(103)を備えている。 A fifth aspect is the third or fourth aspect, wherein in the preliminary operation, the first air and the second air separated by the gas separation membrane (124) are discharged to the outside space (6). with road (103).
 第5の態様では、予備運転において、ガス分離膜(124)を通過した第1空気および第2空気は、排気流路(103)を経由して庫外空間(6)に排出される。このため、予備運転を実行することに起因して、庫内空間(5)の空気の組成が変化してしまうことを抑制できる。 In the fifth aspect, in preliminary operation, the first air and the second air that have passed through the gas separation membrane (124) are discharged to the outside space (6) via the exhaust flow path (103). Therefore, it is possible to prevent the composition of the air in the internal space (5) from changing due to the execution of the preliminary operation.
 第6の態様は、第3~第5のいずれか1つの態様において、前記予備運転において、前記ガス分離膜(124)に供給される空気を加熱する加熱部(175)を備えている。 A sixth aspect, in any one of the third to fifth aspects, is provided with a heating section (175) for heating the air supplied to the gas separation membrane (124) in the preliminary operation.
 第6の態様では、予備運転において、加熱部(175)で加熱された空気がガス分離膜(124)に供給される。これにより、ガス分離膜(124)の性能の回復効果を向上できる。 In the sixth aspect, in the preliminary operation, the air heated by the heating section (175) is supplied to the gas separation membrane (124). This can improve the effect of recovering the performance of the gas separation membrane (124).
 第7の態様は、第3~第6のいずれか1つの態様において、前記予備運転において、前記ガス分離膜(124)に供給される空気を加圧する加圧部(110)を備えている。 A seventh aspect, in any one of the third to sixth aspects, includes a pressurizing section (110) that pressurizes the air supplied to the gas separation membrane (124) in the preliminary operation.
 第7の態様では、予備運転において、加圧部(110)で加圧された空気がガス分離膜(124)に供給される。これにより、ガス分離膜(124)の性能の回復効果を向上できる。 In the seventh aspect, in the preliminary operation, the air pressurized by the pressurizing section (110) is supplied to the gas separation membrane (124). This can improve the effect of recovering the performance of the gas separation membrane (124).
 第8の態様は、第3~第7のいずれか1つの態様において、前記予備運転において、前記ガス分離膜(124)に供給される空気中の水分を減らす減湿部(111,113,130)を備えている。 According to an eighth aspect, in any one of the third to seventh aspects, a dehumidification section (111, 113, 130) is provided to reduce moisture in the air supplied to the gas separation membrane (124) in the preliminary operation. there is
 第8の態様では、予備運転において、減湿部(111,113,130)で水分が減らされた空気がガス分離膜(124)に供給される。これにより、予備運転において、空気中の水分子の影響によりガス分離膜(124)の性能が低下することを抑制できる。 In the eighth aspect, in the preliminary operation, the air whose water content has been reduced in the dehumidification section (111, 113, 130) is supplied to the gas separation membrane (124). As a result, it is possible to suppress deterioration in the performance of the gas separation membrane (124) due to the influence of water molecules in the air during the preliminary operation.
 第9の態様は、第1~第8のいずれか1つの態様において、前記第1動作は、前記空気調節装置の運転を人に促すための動作を含む。 A ninth aspect is any one of the first to eighth aspects, wherein the first operation includes an operation for prompting the person to operate the air conditioner.
 第9の態様では、空気調節装置の運転を人に促す動作が行われることで、空気調節装置(100)が長期間に亘って停止状態となることを抑制できる。この結果、空気調節装置の所定期間の停止に伴って、ガス分離膜(124)の性能が低下してしまうことを抑制できる。 In the ninth aspect, the operation of prompting the person to operate the air conditioner is performed, thereby preventing the air conditioner (100) from being stopped for a long period of time. As a result, it is possible to prevent the performance of the gas separation membrane (124) from deteriorating due to the suspension of the air conditioner for a predetermined period.
 第10の態様は、前記制御部(191)は、前記ガス分離膜(124)の性能に関する情報を出力する。 In a tenth aspect, the control section (191) outputs information regarding the performance of the gas separation membrane (124).
 第10の態様では、ユーザなどの人がガス分離膜(124)の性能に関する情報を把握できる。 In the tenth aspect, a person such as a user can grasp information about the performance of the gas separation membrane (124).
 第11の態様は、第1~第10のいずれか1つの態様の空気調節装置(100)と、庫内空間(5)の内部の温度を調節する冷媒回路(30)とを備える冷凍装置である。 An eleventh aspect is a refrigeration system comprising the air conditioner (100) of any one of the first to tenth aspects and a refrigerant circuit (30) for adjusting the temperature inside the internal space (5). be.
 第12の態様は、第11の態様の冷凍装置(10)と、該冷凍装置(10)が設けられるコンテナ本体(2)とを備えた輸送用コンテナである。 A twelfth aspect is a shipping container comprising the refrigerating device (10) of the eleventh aspect and a container body (2) provided with the refrigerating device (10).
図1は、実施形態の輸送用コンテナを前側から視た斜視図である。FIG. 1 is a perspective view of the shipping container of the embodiment as viewed from the front side. 図2は、実施形態の輸送用コンテナの内部構造を示す概略の縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing the internal structure of the shipping container of the embodiment. 図3は、実施形態の輸送用冷凍装置の冷媒回路の配管系統図である。FIG. 3 is a piping system diagram of a refrigerant circuit of the transport refrigeration system of the embodiment. 図4は、実施形態の輸送用コンテナの概略の構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of the shipping container of the embodiment. 図5は、実施形態の空気調節装置の構成を示す配管系統図である。FIG. 5 is a piping system diagram showing the configuration of the air conditioner of the embodiment. 図6は、実施形態の空気調節装置に設けられたガス分離モジュールの概略断面図である。FIG. 6 is a schematic cross-sectional view of a gas separation module provided in the air conditioner of the embodiment. 図7は、実施形態の空気調節装置に設けられた水分離モジュールの概略断面図である。FIG. 7 is a schematic cross-sectional view of a water separation module provided in the air conditioner of the embodiment. 図8は、実施形態の空気調節装置の第1運転を示す図5に相当する図である。FIG. 8 is a diagram corresponding to FIG. 5 showing the first operation of the air conditioner of the embodiment. 図9は、実施形態の空気調節装置の第2運転を示す図5に相当する図である。FIG. 9 is a diagram corresponding to FIG. 5 showing the second operation of the air conditioner of the embodiment. 図10は、実施形態の空気調節装置の第3運転を示す図5に相当する図である。FIG. 10 is a diagram corresponding to FIG. 5 showing the third operation of the air conditioner of the embodiment. 図11は、実施形態の空気調節装置の第4運転を示す図5に相当する図である。FIG. 11 is a diagram corresponding to FIG. 5 showing the fourth operation of the air conditioner of the embodiment. 図12は、実施形態の空気調節装置の第5運転を示す図5に相当する図である。FIG. 12 is a diagram corresponding to FIG. 5 showing the fifth operation of the air conditioner of the embodiment. 図13は、実施形態の空気調節装置の予備運転の開始判定に係る制御のフローチャートである。FIG. 13 is a flowchart of control related to determination of start of preliminary operation of the air conditioner of the embodiment. 図14は、変形例1の空気調節装置の予備運転に関する制御のフローチャートである。FIG. 14 is a flowchart of control related to preliminary operation of the air conditioner of Modification 1. FIG. 図15は、変形例2の空気調節装置の図5に相当する図である。FIG. 15 is a diagram corresponding to FIG. 5 of the air conditioner of Modification 2. FIG. 図16は、変形例2の空気調節装置の予備運転を示す図5に相当する図である。FIG. 16 is a diagram corresponding to FIG. 5 showing preliminary operation of the air conditioner of Modification 2. In FIG. 図17は、変形例3の空気調節装置の図5に相当する図である。FIG. 17 is a diagram corresponding to FIG. 5 of the air conditioner of Modification 3. FIG. 図18は、変形例4の空気調節装置の第1動作に関する制御のフローチャートである。FIG. 18 is a flowchart of control regarding the first operation of the air conditioner of Modification 4. FIG. 図19は、変形例5の空気調節装置の第2動作に関する制御のフローチャートである。FIG. 19 is a flow chart of control for the second operation of the air conditioner of Modification 5. FIG. 図20は、変形例6の空気調節装置の図5に相当する図である。FIG. 20 is a diagram corresponding to FIG. 5 of the air conditioner of Modification 6. FIG.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical idea of the present disclosure. Each drawing is for the purpose of conceptually explaining the present disclosure, and therefore dimensions, ratios or numbers may be exaggerated or simplified as necessary for ease of understanding.
 (1)輸送用コンテナの概要
 本開示は、輸送用コンテナ(1)である。輸送用コンテナ(1)は、庫内の温度管理が可能なリーファーコンテナ(reefer container)である。輸送用コンテナ(1)は、果物、野菜、花卉などの生鮮物を輸送するために用いられる。生鮮物は、空気中の酸素(O)を取り込んで二酸化炭素(CO)を放出する。
(1) Outline of shipping container This disclosure is a shipping container (1). The shipping container (1) is a temperature-controlled reefer container. Shipping containers (1) are used to transport perishables such as fruits, vegetables and flowers. Perishables take in oxygen (O 2 ) from the air and release carbon dioxide (CO 2 ).
 図1に示すように、輸送用コンテナ(1)は、コンテナ本体(2)と、コンテナ本体(2)に設けられる輸送用冷凍装置(10)とを備える。輸送用コンテナ(1)は、海上輸送に用いられる。輸送用コンテナ(1)は、船舶などの海上輸送体によって搬送される。図5に示すように、輸送用コンテナ(1)は、空気調節装置(100)を備える。空気調節装置(100)は、コンテナ本体(2)の庫内の空気の組成を調節する。 As shown in FIG. 1, the shipping container (1) comprises a container body (2) and a shipping refrigeration equipment (10) provided in the container body (2). Shipping containers (1) are used for maritime transport. A shipping container (1) is transported by a marine vehicle such as a ship. As shown in Figure 5, the shipping container (1) is equipped with an air conditioner (100). The air conditioner (100) adjusts the composition of the air inside the container body (2).
 (2)コンテナ本体
 コンテナ本体(2)は、生鮮物を収容する収納庫である。
(2) Container Main Body The container main body (2) is a storage for storing perishables.
 コンテナ本体(2)は、中空の箱状に形成される。コンテナ本体(2)は、横長に形成される。コンテナ本体(2)の長手方向の一端には、開口が形成される。コンテナ本体(2)の開口は、輸送用冷凍装置(10)によって塞がれる。コンテナ本体(2)の庫内には、輸送対象物を収納するための庫内空間としての収納空間(5)が形成される。 The container body (2) is formed in a hollow box shape. The container body (2) is formed horizontally. An opening is formed at one longitudinal end of the container body (2). The opening of the container body (2) is closed by a transportation refrigeration system (10). Inside the container body (2), a storage space (5) is formed as an internal space for storing objects to be transported.
 (3)輸送用冷凍装置
 輸送用冷凍装置(10)は、コンテナ本体(2)の開口に取り付けられる。輸送用冷凍装置(10)は、ケーシング(11)と冷媒回路(30)とを備える。輸送用冷凍装置(10)は、収納空間(5)の空気(庫内空気)の温度を調節する。
(3) Refrigeration Equipment for Transportation The refrigeration equipment for transportation (10) is attached to the opening of the container body (2). A transportation refrigeration system (10) includes a casing (11) and a refrigerant circuit (30). The transportation refrigeration equipment (10) adjusts the temperature of the air (inside air) in the storage space (5).
 (3-1)ケーシング
 図2に示すように、ケーシング(11)は、隔壁(12)と仕切板(15)とを備える。
(3-1) Casing As shown in FIG. 2, the casing (11) has a partition wall (12) and a partition plate (15).
 隔壁(12)の内側には、庫内流路(20)が形成される。隔壁(12)の外側には、庫外空間(6)の一部である庫外室(25)が形成される。庫内流路(20)と庫外室(25)とは、隔壁(12)によって仕切られる。 An internal flow path (20) is formed inside the partition wall (12). An outside chamber (25), which is part of the outside space (6), is formed outside the partition wall (12). The internal flow path (20) and the external chamber (25) are separated by a partition wall (12).
 隔壁(12)は、庫外壁(13)と庫内壁(14)とを備える。庫外壁(13)は、コンテナ本体(2)の外側に位置する。庫内壁(14)は、コンテナ本体(2)の内側に位置する。 The partition wall (12) includes an outer wall (13) and an inner wall (14). The outer wall (13) of the warehouse is positioned outside the container body (2). The inner wall (14) is positioned inside the container body (2).
 庫外壁(13)は、コンテナ本体(2)の開口を塞いでいる。庫外壁(13)は、コンテナ本体(2)の開口の周縁部に取り付けられる。庫外壁(13)の下部は、コンテナ本体(2)の内側に向かって膨出する。庫外室(25)は、この膨出した庫外壁(13)の内側に形成される。 The outer wall of the warehouse (13) blocks the opening of the container body (2). The outer wall (13) is attached to the periphery of the opening of the container body (2). The lower part of the outer wall (13) protrudes toward the inside of the container body (2). The outer chamber (25) is formed inside the bulging outer wall (13).
 庫内壁(14)は、庫外壁(13)と対向する。庫内壁(14)は、庫外壁(13)に沿った形状を有する。庫内壁(14)と庫外壁(13)との間には、断熱材(16)が設けられる。 The inner wall (14) faces the outer wall (13). The inner wall (14) has a shape along the outer wall (13). A heat insulating material (16) is provided between the inner wall (14) and the outer wall (13).
 仕切板(15)は、庫内壁(14)よりもコンテナ本体(2)の内側に配置される。隔壁(12)と仕切板(15)との間には、庫内流路(20)が形成される。仕切板(15)の上端とコンテナ本体(2)の天板との間には、流入口(21)が形成される。仕切板(15)の下端と隔壁(12)の下端との間には、流出口(22)が形成される。庫内流路(20)は、流入口(21)から流出口(22)に亘って形成される。 The partition plate (15) is arranged inside the container body (2) rather than the inner wall (14). An internal flow path (20) is formed between the partition wall (12) and the partition plate (15). An inlet (21) is formed between the upper end of the partition plate (15) and the top plate of the container body (2). An outflow port (22) is formed between the lower end of the partition plate (15) and the lower end of the partition wall (12). The internal flow path (20) is formed from the inlet (21) to the outlet (22).
 (3-2)冷媒回路の要素部品
 冷媒回路(30)は、それに充填された冷媒を有する。冷媒回路(30)は、冷媒が循環することで蒸気圧縮式の冷凍サイクルを行う。冷媒回路(30)は、圧縮機(31)、庫外熱交換器(32)、膨張弁(33)、庫内熱交換器(51)、及びこれらを接続する冷媒配管を含む。
(3-2) Components of Refrigerant Circuit The refrigerant circuit (30) has a refrigerant filled therein. The refrigerant circuit (30) performs a vapor compression refrigeration cycle by circulating refrigerant. The refrigerant circuit (30) includes a compressor (31), an outside heat exchanger (32), an expansion valve (33), an inside heat exchanger (51), and refrigerant piping connecting these.
 圧縮機(31)は、庫外室(25)の下部に配置される。庫外熱交換器(32)は、庫外室(25)の上部に配置される。庫外熱交換器(32)は、冷媒を庫外空気と熱交換させるフィンアンドチューブ熱交換器である。庫外熱交換器(32)の形状は、概ね矩形の筒状である。庫内熱交換器(51)は、庫内流路(20)に配置される。庫内熱交換器(51)は、冷媒を庫内空気と熱交換させるフィンアンドチューブ熱交換器である。 The compressor (31) is arranged in the lower part of the outer chamber (25). The outside heat exchanger (32) is arranged above the outside chamber (25). The outside heat exchanger (32) is a fin-and-tube heat exchanger that exchanges heat between refrigerant and outside air. The shape of the outside heat exchanger (32) is generally rectangular tubular. The internal heat exchanger (51) is arranged in the internal flow path (20). The indoor heat exchanger (51) is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and the indoor air.
 (3-3)庫外ファンおよび庫内ファン
 輸送用冷凍装置(10)は、1つの庫外ファン(34)を備える。庫外ファン(34)は、プロペラファンである。庫外ファン(34)は、庫外室(25)に配置される。庫外ファン(34)は、筒状に形成された庫外熱交換器(32)の内側に配置される。庫外ファン(34)は、庫外熱交換器(32)へ庫外空気を送る。
(3-3) Outside Fan and Inside Fan The transportation refrigeration equipment (10) has one outside fan (34). The outside fan (34) is a propeller fan. The outdoor fan (34) is arranged in the outdoor chamber (25). The external fan (34) is arranged inside the cylindrical external heat exchanger (32). The outside fan (34) sends outside air to the outside heat exchanger (32).
 輸送用冷凍装置(10)は、2つの庫内ファン(35)を備える。庫内ファン(35)は、プロペラファンである。庫内ファン(35)は、庫内流路(20)に配置される。庫内ファン(35)は、庫内熱交換器(51)の上方に配置される。庫内ファン(35)は、庫内熱交換器(51)へ庫内空気を送る。 The transportation refrigeration equipment (10) is equipped with two internal fans (35). The internal fan (35) is a propeller fan. The internal fan (35) is arranged in the internal flow path (20). The internal fan (35) is arranged above the internal heat exchanger (51). The internal fan (35) sends internal air to the internal heat exchanger (51).
 (3-4)ヒータ
 輸送用冷凍装置(10)は、ヒータ(52)を備える。ヒータ(52)は、庫内熱交換器(51)の下方に配置される。ヒータ(52)は、庫内熱交換器(51)に付着した霜を融かすために用いられる。
(3-4) Heater The transportation refrigeration system (10) has a heater (52). The heater (52) is arranged below the internal heat exchanger (51). The heater (52) is used to melt frost adhering to the internal heat exchanger (51).
 (3-5)電装品箱
 図1に示すように、輸送用冷凍装置(10)は、電装品箱(36)を有する。電装品箱(36)は、庫外室(25)の上部に配置される。電装品箱(36)の内部には、インバータ基板及び制御基板等の電気部品が収容される。
(3-5) Electrical Component Box As shown in FIG. 1, the transport refrigeration system (10) has an electrical component box (36). The electrical component box (36) is arranged above the outer chamber (25). Electrical components such as an inverter board and a control board are housed inside the electrical component box (36).
 (3-6)冷媒回路の構成
 図3に示すように、冷媒回路(30)は、主要部品として、圧縮機(31)と、庫外熱交換器(32)と、膨張弁(33)と、庫内熱交換器(51)とを有する。膨張弁(33)は、その開度が調節可能な電子膨張弁である。
(3-6) Configuration of Refrigerant Circuit As shown in FIG. 3, the refrigerant circuit (30) includes, as main components, a compressor (31), an external heat exchanger (32), and an expansion valve (33). , and an internal heat exchanger (51). The expansion valve (33) is an electronic expansion valve whose degree of opening is adjustable.
 冷媒回路(30)は、吐出管(41)と吸入管(42)とを有する。吐出管(41)の一端は圧縮機(31)の吐出部に接続する。吐出管(41)の他端は、庫外熱交換器(32)のガス端に接続する。吸入管(42)の一端は、圧縮機(31)の吸入部に接続する。吸入管(42)の他端は、庫内熱交換器(51)のガス端に接続する。 The refrigerant circuit (30) has a discharge pipe (41) and a suction pipe (42). One end of the discharge pipe (41) is connected to the discharge portion of the compressor (31). The other end of the discharge pipe (41) is connected to the gas end of the outside heat exchanger (32). One end of the suction pipe (42) is connected to the suction portion of the compressor (31). The other end of the suction pipe (42) is connected to the gas end of the internal heat exchanger (51).
 冷媒回路(30)は、液管(43)、レシーバ(44)、冷却熱交換器(45)、第1開閉弁(46)、連通管(47)、第2開閉弁(48)、インジェクション管(49)、及びインジェクション弁(50)を有する。 The refrigerant circuit (30) includes a liquid pipe (43), a receiver (44), a cooling heat exchanger (45), a first on-off valve (46), a communication pipe (47), a second on-off valve (48), and an injection pipe. (49), and an injection valve (50).
 液管(43)の一端は、庫外熱交換器(32)の液端に接続する。液管(43)の他端は、庫内熱交換器(51)の液端に接続する。レシーバ(44)は、液管(43)に設けられる。レシーバ(44)は、冷媒を貯留する容器である。 One end of the liquid pipe (43) is connected to the liquid end of the outside heat exchanger (32). The other end of the liquid pipe (43) is connected to the liquid end of the internal heat exchanger (51). A receiver (44) is provided in the liquid pipe (43). The receiver (44) is a container that stores refrigerant.
 冷却熱交換器(45)は、第1流路(45a)と第2流路(45b)とを有する。冷却熱交換器(45)は、第1流路(45a)の冷媒と、第2流路(45b)の冷媒とを熱交換させる。冷却熱交換器(45)は、例えばプレート式の熱交換器である。第1流路(45a)は、液管(43)の一部である。第2流路(45b)は、インジェクション管(49)の一部である。冷却熱交換器(45)は、液管(43)を流れる冷媒を冷却する。 The cooling heat exchanger (45) has a first flow path (45a) and a second flow path (45b). The cooling heat exchanger (45) exchanges heat between the refrigerant in the first flow path (45a) and the refrigerant in the second flow path (45b). The cooling heat exchanger (45) is, for example, a plate heat exchanger. The first flow path (45a) is part of the liquid pipe (43). The second flow path (45b) is part of the injection pipe (49). The cooling heat exchanger (45) cools the refrigerant flowing through the liquid pipe (43).
 第1開閉弁(46)は、液管(43)におけるレシーバ(44)と第1流路(45a)との間の部分に設けられる。第1開閉弁(46)は、開閉可能な電磁弁である。 The first on-off valve (46) is provided in a portion of the liquid pipe (43) between the receiver (44) and the first flow path (45a). The first on-off valve (46) is an openable/closable electromagnetic valve.
 連通管(47)は、冷媒回路(30)の高圧ライン及び低圧ラインを連通させる。連通管(47)の一端は、吐出管(41)に接続する。連通管(47)の他端は、液管(43)における膨張弁(33)と庫内熱交換器(51)との間の部分に接続する。 The communication pipe (47) communicates the high pressure line and the low pressure line of the refrigerant circuit (30). One end of the communication pipe (47) is connected to the discharge pipe (41). The other end of the communication pipe (47) is connected to a portion of the liquid pipe (43) between the expansion valve (33) and the internal heat exchanger (51).
 第2開閉弁(48)は、連通管(47)に設けられる。第2開閉弁(48)は、開閉可能な電磁弁である。 The second on-off valve (48) is provided on the communicating pipe (47). The second on-off valve (48) is an electromagnetic valve that can be opened and closed.
 インジェクション管(49)は、圧縮機(31)の中圧部に冷媒を導入する。インジェクション管(49)の一端は、液管(43)におけるレシーバ(44)と第1流路(45a)との間の部分に接続する。インジェクション管(49)の他端は、圧縮機(31)の中圧部に接続する。中圧部の圧力である中間圧力は、圧縮機(31)の吸入圧力よりも高く、その吐出圧力よりも低い。 The injection pipe (49) introduces refrigerant into the intermediate pressure section of the compressor (31). One end of the injection pipe (49) is connected to a portion of the liquid pipe (43) between the receiver (44) and the first flow path (45a). The other end of the injection pipe (49) is connected to the intermediate pressure section of the compressor (31). The intermediate pressure, which is the pressure of the intermediate pressure section, is higher than the suction pressure of the compressor (31) and lower than its discharge pressure.
 インジェクション弁(50)は、インジェクション管(49)における第2流路(45b)の上流側の部分に設けられる。インジェクション弁(50)は、その開度が調節可能な電子膨張弁である。 The injection valve (50) is provided in a portion of the injection pipe (49) on the upstream side of the second flow path (45b). The injection valve (50) is an electronic expansion valve whose degree of opening is adjustable.
 (3-7)第1制御ユニット
 図4に示すように、輸送用冷凍装置(10)は、第1制御ユニット(90)を備える。第1制御ユニット(90)は、表示部(91)と、操作部(92)と、第1制御部(93)とを含む。
(3-7) First Control Unit As shown in FIG. 4, the transportation refrigeration system (10) comprises a first control unit (90). The first control unit (90) includes a display section (91), an operation section (92), and a first control section (93).
 表示部(91)は、例えば液晶パネルで構成される。表示部(91)は、輸送用冷凍装置(10)および空気調節装置(100)の運転に関する情報を表示する。 The display section (91) is composed of, for example, a liquid crystal panel. The display section (91) displays information regarding the operation of the transportation refrigeration system (10) and the air conditioner (100).
 操作部(92)は、操作ボタンで構成される。操作部(92)は、表示部(91)としての液晶パネルに兼用されるタッチパネルであってもよい。人は、操作部(92)により、輸送用冷凍装置(10)の運転を操作する。人は、操作部(92)により、輸送用冷凍装置(10)の運転条件を設定する。 The operation unit (92) is composed of operation buttons. The operation section (92) may be a touch panel that doubles as a liquid crystal panel as the display section (91). A person operates the transportation refrigeration system (10) using the operation unit (92). A person sets the operating conditions of the transport refrigeration system (10) using the operation unit (92).
 第1制御部(93)は、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。 The first control unit (93) includes an MCU (Micro Control Unit, microcontroller unit), electric circuits, and electronic circuits. The MCU includes a CPU (Central Processing Unit), memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
 第1制御部(93)は、庫外ファン(34)、庫内ファン(35)、ヒータ(52)、および冷媒回路(30)を制御する。具合的には、第1制御部(93)は、庫外ファン(34)、庫内ファン(35)、ヒータ(52)、および圧縮機(31)を制御する。第1制御部(93)は、庫外ファン(34)の回転数、庫内ファン(35)の回転数、および圧縮機(31)の回転数(運転周波数)を制御する。第1制御部(93)は、膨張弁(33)、第1開閉弁(46)、第2開閉弁(48)、およびインジェクション弁(50)の開度を制御する。 The first control section (93) controls the outside fan (34), the inside fan (35), the heater (52), and the refrigerant circuit (30). Specifically, the first control section (93) controls the outside fan (34), the inside fan (35), the heater (52), and the compressor (31). The first control section (93) controls the rotation speed of the outside fan (34), the rotation speed of the inside fan (35), and the rotation speed (operating frequency) of the compressor (31). The first control section (93) controls opening degrees of the expansion valve (33), the first on-off valve (46), the second on-off valve (48), and the injection valve (50).
 (3-8)輸送用冷凍装置の運転動作
 輸送用冷凍装置(10)の基本的な運転動作について説明する。輸送用冷凍装置(10)の運転時には、第1制御部(93)が、圧縮機(31)、庫外ファン(34)、および庫内ファン(35)を運転させる。第1制御部(93)が第1開閉弁(46)を開け、第2開閉弁(48)を閉じる。第1制御部(93)が、膨張弁(33)の開度を調節する。第1制御部(93)が、インジェクション弁(50)の開度を調節する。
(3-8) Operating Behavior of Refrigeration Equipment for Transportation The basic operation behavior of the refrigeration equipment for transportation (10) will be described. During operation of the transportation refrigeration apparatus (10), the first control section (93) operates the compressor (31), the outside fan (34), and the inside fan (35). The first control section (93) opens the first on-off valve (46) and closes the second on-off valve (48). The first control section (93) adjusts the degree of opening of the expansion valve (33). A first control section (93) adjusts the opening of the injection valve (50).
 圧縮機(31)で圧縮された冷媒は、庫外熱交換器(32)を流れる。庫外熱交換器(32)では、冷媒が庫外空気へ放熱し、凝縮する。凝縮した冷媒は、レシーバ(44)を通過する。レシーバ(44)を通過した冷媒の一部は、冷却熱交換器(45)の第1流路(45a)を流れる。レシーバ(44)を通過した冷媒の残部は、インジェクション管(49)を流れ、インジェクション弁(50)において中間圧力まで減圧される。減圧された冷媒は、圧縮機(31)の中圧部に導入される。 The refrigerant compressed by the compressor (31) flows through the outside heat exchanger (32). In the outside heat exchanger (32), the refrigerant radiates heat to the outside air and condenses. The condensed refrigerant passes through the receiver (44). Part of the refrigerant that has passed through the receiver (44) flows through the first flow path (45a) of the cooling heat exchanger (45). The remainder of the refrigerant that has passed through the receiver (44) flows through the injection pipe (49) and is reduced to intermediate pressure at the injection valve (50). The depressurized refrigerant is introduced into the intermediate pressure section of the compressor (31).
 冷却熱交換器(45)では、第2流路(45b)の冷媒が第1流路(45a)の冷媒から吸熱し、蒸発する。これにより、第1流路(45a)の冷媒が冷却される。言い換えると、第1流路(45a)を流れる冷媒の過冷却度が大きくなる。 In the cooling heat exchanger (45), the refrigerant in the second flow path (45b) absorbs heat from the refrigerant in the first flow path (45a) and evaporates. This cools the coolant in the first flow path (45a). In other words, the degree of supercooling of the refrigerant flowing through the first flow path (45a) increases.
 冷却熱交換器(45)で冷却された冷媒は、膨張弁(33)で低圧まで減圧される。減圧された冷媒は、庫内熱交換器(51)を流れる。庫内熱交換器(51)では、冷媒が庫内空気から吸熱し、蒸発する。この結果、庫内熱交換器(51)は、庫内空気を冷却する。蒸発した冷媒は、圧縮機(31)に吸入され、再び圧縮される。 The refrigerant cooled by the cooling heat exchanger (45) is decompressed to a low pressure by the expansion valve (33). The depressurized refrigerant flows through the internal heat exchanger (51). In the indoor heat exchanger (51), the refrigerant absorbs heat from the indoor air and evaporates. As a result, the indoor heat exchanger (51) cools the indoor air. The evaporated refrigerant is sucked into the compressor (31) and compressed again.
 コンテナ本体(2)の庫内空気は、収納空間(5)と庫内流路(20)とを循環する。庫内流路(20)では、庫内空気が庫内熱交換器(51)によって冷却される。これにより、収納空間(5)の庫内空気を冷却でき、庫内空気を所定温度に調節できる。 The air inside the container body (2) circulates through the storage space (5) and the inside channel (20). In the in-chamber flow path (20), the in-chamber air is cooled by the in-chamber heat exchanger (51). Thereby, the inside air of the storage space (5) can be cooled, and the inside air can be adjusted to a predetermined temperature.
 (4)空気調節装置
 本実施形態の輸送用冷凍装置(10)は、空気調節装置(100)を備える。
(4) Air conditioner The transport refrigeration system (10) of the present embodiment includes an air conditioner (100).
 空気調節装置(100)は、いわゆるCA(Controlled Atmosphere)輸送を行うために輸送用冷凍装置(10)に設けられる。空気調節装置(100)は、輸送用コンテナ(1)の収納空間(5)の空気の組成を、大気の組成と異なるように調節する。 The air conditioner (100) is provided in the transportation refrigeration equipment (10) for so-called CA (Controlled Atmosphere) transportation. The air conditioner (100) regulates the composition of the air in the storage space (5) of the shipping container (1) to be different from the composition of the atmosphere.
 図5に示すように、空気調節装置(100)は、被処理空気が導入される空気流路(A)を備えている。被処理空気は、庫外空気および庫内空気を含む。空気流路(A)は、硬質のパイプで構成されていてもよいし、柔軟なホースで構成されていてもよいし、パイプとホースを組み合わせることで構成されていてもよい。 As shown in FIG. 5, the air conditioner (100) has an air flow path (A) into which air to be treated is introduced. The air to be treated includes outside air and inside air. The air flow path (A) may be composed of a hard pipe, a flexible hose, or a combination of a pipe and a hose.
 空気流路(A)には、エアポンプ(110)とガス分離モジュール(120)とセンサユニット(140)とが設けられる。エアポンプ(110)は、空気流路(A)の空気を搬送する。ガス分離モジュール(120)は、空気の組成を調節する。ガス分離モジュール(120)は、被処理空気を第1空気と第2空気とに分離する。センサユニット(140)は、空気の組成を測定する。 An air pump (110), a gas separation module (120), and a sensor unit (140) are provided in the air flow path (A). The air pump (110) conveys air in the air flow path (A). A gas separation module (120) regulates the composition of the air. A gas separation module (120) separates the air to be treated into primary air and secondary air. A sensor unit (140) measures the composition of the air.
 (4-1)空気流路
 空気流路(A)は、流入流路(101)、給気流路(102)、排気流路(103)、庫内側排気路(104)、バイパス流路(105)、およびセンサ流路(106)を含む。
(4-1) Air flow path The air flow path (A) includes an inflow flow path (101), an air supply flow path (102), an exhaust flow path (103), an internal exhaust flow path (104), a bypass flow path (105 ), and a sensor channel (106).
 流入流路(101)は、被処理空気をガス分離モジュール(120)に送るための流路である。流入流路(101)は、第1流入路(101a)と、第2流入路(101b)と、流入幹路(101c)とを含む。 The inflow channel (101) is a channel for sending the air to be treated to the gas separation module (120). The inflow channel (101) includes a first inflow channel (101a), a second inflow channel (101b), and an inflow main channel (101c).
 第1流入路(101a)は、庫外空気を空気流路(A)に導入するための流路である。第1流入路(101a)の入口端は、庫外空間(6)に開口する。第1流入路(101a)には、第1エアフィルタ(F1)が設けられる。第1エアフィルタ(F1)は、庫外空気に含まれる塵埃や塩分などを捕捉する。第1エアフィルタ(F1)は、例えばメンブレンフィルタで構成される。 The first inflow path (101a) is a flow path for introducing outside air into the air flow path (A). The inlet end of the first inflow path (101a) opens to the outside space (6). A first air filter (F1) is provided in the first inflow path (101a). The first air filter (F1) captures dust, salt, and the like contained in outside air. The first air filter (F1) is composed of, for example, a membrane filter.
 第2流入路(101b)は、庫内空気を空気流路(A)に導入するための流路である。第2流入路(101b)の入口端は、収納空間(5)に開口する。第2流入路(101b)には、第2エアフィルタ(F2)が設けられる。第2エアフィルタ(F2)は、庫内空気に含まれる塵埃などを捕捉する。第2エアフィルタ(F2)は、例えばメンブレンフィルタで構成される。第2流入路(101b)には、第1水分離器(111)が設けられる。 The second inflow path (101b) is a flow path for introducing internal air into the air flow path (A). The inlet end of the second inflow path (101b) opens into the storage space (5). A second air filter (F2) is provided in the second inflow path (101b). The second air filter (F2) captures dust and the like contained in the air inside the refrigerator. The second air filter (F2) is composed of, for example, a membrane filter. A first water separator (111) is provided in the second inflow passage (101b).
 流入幹路(101c)の入口端には、第1流入路(101a)の出口端と、第2流入路(101b)の出口端とが接続される。流入幹路(101c)の出口端には、ガス分離モジュール(120)の第1入口ポート(I1)が接続される。流入幹路(101c)には、空気流れの上流側から下流側に向かって、エアポンプ(110)、凝縮回路(112)、第2水分離器(113)、および水分離モジュール(130)が設けられる。 The outlet end of the first inflow channel (101a) and the outlet end of the second inflow channel (101b) are connected to the inlet end of the inflow trunk (101c). The outlet end of the inlet conduit (101c) is connected to the first inlet port (I1) of the gas separation module (120). The inflow trunk (101c) is provided with an air pump (110), a condensation circuit (112), a second water separator (113), and a water separation module (130) from the upstream side to the downstream side of the air flow. be done.
 給気流路(102)は、ガス分離モジュール(120)で分離した空気を収納空間(5)へ送るための流路である。給気流路(102)は、第1給気路(102a)と、第2給気路(102b)と、給気幹路(102c)とを含む。 The air supply channel (102) is a channel for sending the air separated by the gas separation module (120) to the storage space (5). The air supply channel (102) includes a first air supply channel (102a), a second air supply channel (102b), and an air supply trunk (102c).
 第1給気路(102a)は、ガス分離モジュール(120)で分離した第1空気を収納空間(5)へ送るための流路である。第1給気路(102a)の入口端には、ガス分離モジュール(120)の第1出口ポート(O1)が接続される。 The first air supply path (102a) is a flow path for sending the first air separated by the gas separation module (120) to the storage space (5). The inlet end of the first air supply line (102a) is connected to the first outlet port (O1) of the gas separation module (120).
 第2給気路(102b)は、ガス分離モジュール(120)で分離した第2空気を収納空間(5)へ送るための流路である。第2給気路(102b)の入口端には、ガス分離モジュール(120)の第2出口ポート(O2)が接続される。 The second air supply path (102b) is a flow path for sending the second air separated by the gas separation module (120) to the storage space (5). The inlet end of the second air supply line (102b) is connected to the second outlet port (O2) of the gas separation module (120).
 給気幹路(102c)の入口端には、第1給気路(102a)の出口端と、第2給気路(102b)の出口端とが接続される。給気幹路(102c)の出口端は、収納空間(5)に開口する。厳密には、給気幹路(102c)の出口端は、輸送用冷凍装置(10)の庫内流路(20)における庫内ファン(35)の下流側の流路に開口する。 The outlet end of the first air supply passage (102a) and the outlet end of the second air supply passage (102b) are connected to the inlet end of the air supply trunk (102c). The outlet end of the air supply trunk (102c) opens into the storage space (5). Strictly speaking, the outlet end of the air supply trunk (102c) opens into the flow path downstream of the internal fan (35) in the internal flow path (20) of the transportation refrigeration equipment (10).
 排気流路(103)は、ガス分離モジュール(120)で分離した空気を庫外空間(6)へ排出するための流路である。この空気は、第1空気および第2空気の一方、または両方を含む。排気流路(103)は、第1排気路(103a)、第2排気路(103b)、および排気幹路(103c)を含む。 The exhaust channel (103) is a channel for discharging the air separated by the gas separation module (120) to the outside space (6). This air includes one or both of primary air and secondary air. The exhaust passageway (103) includes a first exhaust passageway (103a), a second exhaust passageway (103b), and an exhaust trunk passageway (103c).
 第1排気路(103a)は、第1空気を庫外空間(6)へ排出するための流路である。第1排気路(103a)の入口端は、第1給気路(102a)に接続する。第2排気路(103b)は、第2空気を庫外空間(6)へ排出するための流路である。第2排気路(103b)の入口端は、第2給気路(102b)に接続する。排気幹路(103c)の入口端には、第1排気路(103a)の出口端、および第2排気路(103b)の出口端が接続する。排気幹路(103c)の出口端は、庫外空間(6)に開口する。 The first exhaust path (103a) is a flow path for discharging the first air to the outside space (6). The inlet end of the first exhaust channel (103a) is connected to the first air supply channel (102a). The second exhaust path (103b) is a flow path for discharging the second air to the outside space (6). The inlet end of the second exhaust path (103b) connects to the second air supply path (102b). The outlet end of the first exhaust passage (103a) and the outlet end of the second exhaust passage (103b) are connected to the inlet end of the exhaust trunk (103c). The exit end of the exhaust trunk (103c) opens to the outside space (6).
 庫内側排気路(104)は、収納空間(5)の空気を庫外空間(6)へ排出するための流路である。庫内側排気路(104)の入口端は、第2流入路(101b)の中途部と接続する。厳密には、庫内側排気路(104)の入口端は、第1切換弁(151)と接続する。庫内側排気路(104)の出口端は、庫外空間(6)に開口する。 The inside exhaust path (104) is a flow path for discharging the air in the storage space (5) to the outside space (6). The inlet end of the inside exhaust channel (104) is connected to the middle part of the second inflow channel (101b). Strictly speaking, the inlet end of the inside exhaust passage (104) is connected to the first switching valve (151). The exit end of the inside exhaust passage (104) opens to the outside space (6).
 バイパス流路(105)は、空気がガス分離モジュール(120)をバイパスするように、流入幹路(101c)に接続される。バイパス流路(105)の入口端は、流入幹路(101c)に接続する。厳密には、バイパス流路(105)の入口端は、第2切換弁(152))に接続する。バイパス流路(105)の出口端は、第1給気路(102a)に接続する。 The bypass channel (105) is connected to the inlet trunk (101c) so that the air bypasses the gas separation module (120). The inlet end of the bypass channel (105) connects to the inflow trunk (101c). Strictly speaking, the inlet end of the bypass flow path (105) is connected to the second switching valve (152). The outlet end of the bypass channel (105) is connected to the first air supply channel (102a).
 センサ流路(106)は、空気をセンサユニット(140)に送るための流路である。センサ流路(106)は、第1センサ路(106a)と第2センサ路(106b)とを含む。第1センサ路(106a)の入口端は、第1給気路(102a)に接続する。第1センサ路(106a)の出口端は、センサユニット(140)に接続する。第2センサ路(106b)の入口端は、センサユニット(140)に接続する。第2センサ路(106b)の出口端は、収納空間(5)に開口する。厳密には、第2センサ路(106b)の出口端は、輸送用冷凍装置(10)の庫内流路(20)における庫内ファン(35)の上流側の流路に開口する。 The sensor channel (106) is a channel for sending air to the sensor unit (140). The sensor channel (106) includes a first sensor channel (106a) and a second sensor channel (106b). The inlet end of the first sensor channel (106a) connects to the first air supply channel (102a). The outlet end of the first sensor path (106a) connects to the sensor unit (140). The inlet end of the second sensor path (106b) connects to the sensor unit (140). The exit end of the second sensor channel (106b) opens into the storage space (5). Strictly speaking, the outlet end of the second sensor path (106b) opens into the flow path upstream of the internal fan (35) in the internal flow path (20) of the transportation refrigeration apparatus (10).
 (4-2)エアポンプ
 エアポンプ(110)は、空気搬送部の一例である。エアポンプ(110)は、吸込口と吐出口とを有する。エアポンプ(110)は、吸込口から吸い込んだ空気を加圧し、加圧した空気を吐出口から吐出する。エアポンプ(110)は、ガス分離膜(124)に供給される空気を加圧する加圧部の一例である。
(4-2) Air Pump The air pump (110) is an example of an air conveying section. The air pump (110) has a suction port and a discharge port. The air pump (110) pressurizes the air sucked through the suction port and discharges the pressurized air through the discharge port. The air pump (110) is an example of a pressurizing section that pressurizes the air supplied to the gas separation membrane (124).
 (4-3-1)ガス分離モジュールの構成
 ガス分離モジュール(120)は、被処理空気を互いに組成が異なる第1空気と第2空気とに分離する。図6に示すように、ガス分離モジュール(120)は、第1ケース(121)と、第1隔壁部(122)と、第2隔壁部(123)と、複数のガス分離膜(124)とを有する。第1隔壁部(122)および第2隔壁部(123)は、第1ケース(121)の内部に配置される。複数のガス分離膜(124)は、第1隔壁部(122)と第2隔壁部(123)との間に配置される。
(4-3-1) Configuration of Gas Separation Module The gas separation module (120) separates the air to be treated into first air and second air having different compositions. As shown in FIG. 6, the gas separation module (120) includes a first case (121), a first partition (122), a second partition (123), and a plurality of gas separation membranes (124). have The first partition (122) and the second partition (123) are arranged inside the first case (121). A plurality of gas separation membranes (124) are disposed between the first partition (122) and the second partition (123).
 第1ケース(121)は、両端が閉塞された円筒状の容器である。第1ケース(121)は、その軸方向に延びている。第1ケース(121)の軸方向の一端部には、第1入口ポート(I1)が接続される。第1ケース(121)の軸方向の他端部には、第1出口ポート(O1)が接続される。第1ケース(121)の周壁部には、第2出口ポート(O2)が接続される。 The first case (121) is a cylindrical container with both ends closed. The first case (121) extends in its axial direction. A first inlet port (I1) is connected to one axial end of the first case (121). A first outlet port (O1) is connected to the other axial end of the first case (121). A second outlet port (O2) is connected to the peripheral wall of the first case (121).
 第1隔壁部(122)は、第1ケース(121)の一端部寄りに配置される。第2隔壁部(123)は、第1ケース(121)の他端部寄りに配置される。第1隔壁部(122)および第2隔壁部(123)は、第1ケース(121)の内部空間を軸方向に仕切るための仕切部材である。第1隔壁部(122)および第2隔壁部(123)は、第1ケース(121)を横断するように設けられる。 The first partition (122) is arranged near one end of the first case (121). The second partition (123) is arranged near the other end of the first case (121). The first partition (122) and the second partition (123) are partition members for partitioning the inner space of the first case (121) in the axial direction. The first partition (122) and the second partition (123) are provided across the first case (121).
 第1ケース(121)の内部には、第1導入室(125)と、第1導出室(126)と、第2導出室(127)とが形成される。第1導入室(125)は、第1ケース(121)の一端部と第1隔壁部(122)との間に形成される。第1導出室(126)は、第1ケース(121)の他端部と第2隔壁部(123)との間に形成される。第2導出室(127)は、第1ケース(121)の周壁部と、第1隔壁部(122)と、第2隔壁部(123)との間の空間のうち、複数のガス分離膜(124)の外側に形成される。 A first lead-in chamber (125), a first lead-out chamber (126), and a second lead-out chamber (127) are formed inside the first case (121). The first introduction chamber (125) is formed between one end of the first case (121) and the first partition (122). The first lead-out chamber (126) is formed between the other end of the first case (121) and the second partition (123). The second lead-out chamber (127) includes a plurality of gas separation membranes ( 124).
 ガス分離膜(124)は、樹脂製の中空糸膜によって構成される。言い換えると、ガス分離膜(124)は、中空糸状、あるいは細長い管状に形成される。1つのガス分離膜(124)の外径は1mm以下である。ガス分離膜(124)は、それぞれの膜厚が実質的に同じである。 The gas separation membrane (124) is composed of a resin hollow fiber membrane. In other words, the gas separation membrane (124) is shaped like a hollow fiber or an elongated tube. The outer diameter of one gas separation membrane (124) is 1 mm or less. The gas separation membranes (124) have substantially the same thickness.
 各ガス分離膜(124)は、第1隔壁部(122)と第2隔壁部(123)とに亘るように、第1ケース(121)の軸方向に延びている。ガス分離膜(124)の一端(入口端)は、第1隔壁部(122)を貫通し、第1導入室(125)に開口する。ガス分離膜(124)の他端(出口端)は、第2隔壁部(123)を貫通し、第1導出室(126)に開口する。第1導入室(125)と第1導出室(126)とは、ガス分離膜(124)を介して互いに連通する。第2導出室(127)は、第1導入室(125)、第1導出室(126)、およびガス分離膜(124)の内部と実質的には連通しない。 Each gas separation membrane (124) extends in the axial direction of the first case (121) across the first partition (122) and the second partition (123). One end (inlet end) of the gas separation membrane (124) penetrates the first partition (122) and opens into the first introduction chamber (125). The other end (outlet end) of the gas separation membrane (124) penetrates the second partition (123) and opens into the first outlet chamber (126). The first introduction chamber (125) and the first discharge chamber (126) communicate with each other through the gas separation membrane (124). The second outlet chamber (127) does not substantially communicate with the interiors of the first inlet chamber (125), the first outlet chamber (126), and the gas separation membrane (124).
 ガス分離膜(124)は、高分子の非多孔膜である。ガス分離膜(124)は、ガス分離膜(124)を透過する分子の速度が物質毎に異なることを利用して、混合ガスに含まれる成分を分離する。 The gas separation membrane (124) is a polymeric non-porous membrane. The gas separation membrane (124) separates the components contained in the mixed gas by utilizing the fact that the speed of molecules permeating through the gas separation membrane (124) differs for each substance.
 ガス分離膜(124)は、窒素の透過速度が、酸素の透過速度と二酸化炭素の透過速度の両方よりも低い特性を有している。言い換えると、ガス分離膜(124)は、窒素の透過率が、酸素の透過率と二酸化炭素の透過率の両方よりも低い特性を有している。 The gas separation membrane (124) has a characteristic that the nitrogen permeation rate is lower than both the oxygen permeation rate and the carbon dioxide permeation rate. In other words, the gas separation membrane (124) has a characteristic that the nitrogen permeability is lower than both the oxygen permeability and the carbon dioxide permeability.
 (4-3-2)ガス分離モジュールの動作
 流入流路(101)の被処理空気は、第1入口ポート(I1)を介して第1導入室(125)へ流入する。第1導入室(125)の空気は、各ガス分離膜(124)の内部を第1導出室(126)へ向かって流れる。ガス分離膜(124)の内部の空気は、その一部がガス分離膜(124)を透過して第2導出室(127)へ移動し、その残部が第1導出室(126)へ流出する。
(4-3-2) Operation of Gas Separation Module The air to be treated in the inflow channel (101) flows into the first introduction chamber (125) through the first inlet port (I1). The air in the first introduction chamber (125) flows through each gas separation membrane (124) toward the first discharge chamber (126). Part of the air inside the gas separation membrane (124) permeates the gas separation membrane (124) and moves to the second lead-out chamber (127), and the remainder flows out to the first lead-out chamber (126). .
 ガス分離膜(124)は、窒素の透過率が酸素および二酸化炭素の透過率よりも低い。言い換えると、空気中の窒素は、酸素および二酸化炭素に比べてガス分離膜(124)を透過しにくい。このため、ガス分離膜(124)の内部を流れる空気は、第1導出室(126)に近付くにつれて、その窒素濃度が上昇し、同時にその酸素濃度および二酸化炭素濃度が低下する。ガス分離膜(124)を流れる空気に含まれる酸素と二酸化炭素は、ガス分離膜(124)を透過して第2導出室(127)へ移動する。 The gas separation membrane (124) has a nitrogen permeability lower than that of oxygen and carbon dioxide. In other words, nitrogen in the air is less permeable through the gas separation membrane (124) than oxygen and carbon dioxide. Therefore, as the air flowing inside the gas separation membrane (124) approaches the first outlet chamber (126), its nitrogen concentration increases, and simultaneously its oxygen concentration and carbon dioxide concentration decrease. Oxygen and carbon dioxide contained in the air flowing through the gas separation membrane (124) pass through the gas separation membrane (124) and move to the second outlet chamber (127).
 第1導出室(126)へ流出した空気中の窒素濃度は、第1導入室(125)の空気中の窒素濃度よりも高くなる。第1導出室(126)へ流出した空気中の酸素濃度および二酸化炭素濃度は、第1導入室(125)の空気中の酸素濃度および二酸化炭素濃度よりも低くなる。第1導出室(126)の空気は、第1空気である。第1空気は、第1出口ポート(O1)を介して第1給気路(102a)に流出する。 The concentration of nitrogen in the air flowing out to the first lead-out chamber (126) is higher than the concentration of nitrogen in the air in the first introduction chamber (125). The concentrations of oxygen and carbon dioxide in the air that flowed out to the first lead-out chamber (126) are lower than the concentrations of oxygen and carbon dioxide in the air in the first introduction chamber (125). The air in the first outlet chamber (126) is primary air. The first air flows out to the first air supply passage (102a) through the first outlet port (O1).
 第2導出室(127)へ流出した空気中の窒素濃度は、第1導入室(125)の空気中の窒素濃度よりも低くなる。第2導出室(127)へ流出した空気中の酸素濃度および二酸化炭素濃度は、第1導入室(125)の空気中の酸素濃度および二酸化炭素濃度よりも高くなる。第2導出室(127)の空気は、第2空気である。第2空気は、第2出口ポート(O2)を介して第2給気路(102b)に流出する。 The nitrogen concentration in the air flowing out to the second lead-out chamber (127) is lower than the nitrogen concentration in the air in the first introduction chamber (125). The concentrations of oxygen and carbon dioxide in the air that flowed out to the second lead-out chamber (127) are higher than the concentrations of oxygen and carbon dioxide in the air in the first lead-in chamber (125). The air in the second outlet chamber (127) is secondary air. The second air flows out to the second air supply passage (102b) through the second outlet port (O2).
 (4-4)第1水分離器、凝縮回路、および第2水分離器
 第1水分離器(111)は、第2流入路(101b)のうち第2エアフィルタ(F2)の下流側に設けられる。第1水分離器(111)は、空気中に含まれる液状態の水を除去する。厳密には、第1水分離器(111)は、空気中に含まれる液状態の水を遠心力によって除去する、サイクロン式の気液分離器である。第1水分離器(111)は、ガス分離膜(124)に供給される空気中の水分を減らす減湿部の一例である。
(4-4) First Water Separator, Condensing Circuit, and Second Water Separator The first water separator (111) is located downstream of the second air filter (F2) in the second inflow passage (101b). be provided. The first water separator (111) removes liquid water contained in the air. Strictly speaking, the first water separator (111) is a cyclone gas-liquid separator that removes liquid water contained in the air by centrifugal force. The first water separator (111) is an example of a dehumidification section that reduces moisture in the air supplied to the gas separation membrane (124).
 凝縮回路(112)は、流入幹路(101c)のうち、エアポンプ(110)と第2水分離器(113)との間に配置される。凝縮回路(112)は、庫内空間(5)に配置される伝熱管によって構成される。凝縮回路(112)を空気が流れると、この空気が庫内空気によって冷却される。この結果、凝縮回路(112)の空気中の水分が凝縮し、凝縮水が生成される。 The condensation circuit (112) is arranged in the inflow trunk (101c) between the air pump (110) and the second water separator (113). The condensation circuit (112) is composed of heat transfer tubes arranged in the internal space (5). When the air flows through the condensation circuit (112), the air is cooled by the inside air. As a result, moisture in the air in the condensation circuit (112) is condensed to produce condensed water.
 第2水分離器(113)は、流入幹路(101c)のうち、凝縮回路(112)と水分離モジュール(130)の間に配置される。第2水分離器(113)は、空気中に含まれる水分を除去する。厳密には、第2水分離器(113)は、空気中に含まれる液状態の水を遠心力によって除去する、サイクロン式の気液分離器である。第2水分離器(113)は、ガス分離膜(124)に供給される空気中の水分を減らす減湿部の一例である。 The second water separator (113) is arranged between the condensation circuit (112) and the water separation module (130) in the inflow trunk (101c). The second water separator (113) removes moisture contained in the air. Strictly speaking, the second water separator (113) is a cyclone gas-liquid separator that removes liquid water contained in the air by centrifugal force. The second water separator (113) is an example of a dehumidification section that reduces moisture in the air supplied to the gas separation membrane (124).
 (4-5-1)水分離モジュールの構成
 水分離モジュール(130)は、流入幹路(101c)におけるガス分離膜(124)の上流側に配置される。水分離モジュール(130)は、空気中に含まれる水分を除去する。厳密には、水分離モジュール(130)は、空気中に含まれる水分子を分離する。本例の水分離モジュール(130)は、サンセップ(登録商標)によって構成される、膜式のドライヤである。
(4-5-1) Configuration of Water Separation Module The water separation module (130) is arranged upstream of the gas separation membrane (124) in the inflow trunk (101c). The water separation module (130) removes water contained in the air. Strictly speaking, the water separation module (130) separates water molecules contained in the air. The water separation module (130) of this example is a membrane dryer made of Sunsep (registered trademark).
 図7に示すように、水分離モジュール(130)は、第2ケース(131)と、第3隔壁部(132)と、第4隔壁部(133)と、複数の水分離膜(134)とを有する。第3隔壁部(132)および第4隔壁部(133)は、第2ケース(131)の内部に配置される。複数の水分離膜(134)は、第3隔壁部(132)と第4隔壁部(133)との間に配置される。 As shown in FIG. 7, the water separation module (130) includes a second case (131), a third partition (132), a fourth partition (133), and a plurality of water separation membranes (134). have The third partition (132) and the fourth partition (133) are arranged inside the second case (131). A plurality of water separation membranes (134) are arranged between the third partition (132) and the fourth partition (133).
 第2ケース(131)は、両端が閉塞された円筒状の容器である。第2ケース(131)は、その軸方向に延びている。第2ケース(131)の軸方向の一端部には、第2入口ポート(I2)が接続される。第2ケース(131)の軸方向の他端部には、第3出口ポート(O3)が接続される。第2ケース(131)の周壁部には、第3入口ポート(I3)と第4出口ポート(O4)とが接続される。第3入口ポート(I3)は、第2ケース(131)の周壁部のうち、該第2ケース(131)の他端部寄りに位置する。第4出口ポート(O4)は、第2ケース(131)の周壁部のうち、該第2ケース(131)の一端部寄りに位置する。 The second case (131) is a cylindrical container with both ends closed. The second case (131) extends in its axial direction. A second inlet port (I2) is connected to one axial end of the second case (131). A third outlet port (O3) is connected to the other axial end of the second case (131). A third inlet port (I3) and a fourth outlet port (O4) are connected to the peripheral wall of the second case (131). The third inlet port (I3) is located near the other end of the second case (131) in the peripheral wall of the second case (131). The fourth outlet port (O4) is located near one end of the second case (131) in the peripheral wall of the second case (131).
 図5に示すように、第2入口ポート(I2)は、流入幹路(101c)のうち水分離モジュール(130)の上流側の流路に接続する。第3出口ポート(O3)は、流入幹路(101c)のうちガス分離モジュール(120)の上流側の流路に接続する。 As shown in FIG. 5, the second inlet port (I2) is connected to the upstream channel of the water separation module (130) in the inflow trunk (101c). The third outlet port (O3) is connected to the upstream channel of the gas separation module (120) in the inflow trunk (101c).
 空気流路(A)は、導入路(107)および水供給路(108)を有する。導入路(107)および水供給路(108)は、水分離モジュール(130)に接続する。 The air channel (A) has an introduction channel (107) and a water supply channel (108). The inlet (107) and water supply (108) connect to the water separation module (130).
 導入路(107)は、比較的湿度の低い空気を水分離モジュール(130)に供給するための流路である。導入路(107)の入口端は、給気幹路(102c)に接続する。導入路(107)の出口端は、水分離モジュール(130)の第3入口ポート(I3)に接続する。 The introduction channel (107) is a channel for supplying relatively low-humidity air to the water separation module (130). The inlet end of the introduction path (107) connects to the air supply trunk (102c). The outlet end of the inlet channel (107) connects to the third inlet port (I3) of the water separation module (130).
 水供給路(108)は、水分離モジュール(130)で分離された水を含む空気を収納空間(5)へ送るための流路である。水供給路(108)の入口端は、水分離モジュール(130)の第4出口ポート(O4)に接続する。水供給路(108)の出口端は、給気幹路(102c)における、導入路(107)の入口端よりも下流側に接続する。厳密には、水供給路(108)の出口端は、第5切換弁(155)よりも下流側に接続する。 The water supply channel (108) is a channel for sending air containing water separated by the water separation module (130) to the storage space (5). The inlet end of the water supply channel (108) connects to the fourth outlet port (O4) of the water separation module (130). The outlet end of the water supply channel (108) is connected downstream of the inlet end of the introduction channel (107) in the air supply trunk (102c). Strictly speaking, the outlet end of the water supply path (108) is connected downstream of the fifth switching valve (155).
 第2ケース(131)の内部には、第2導入室(135)と、第3導出室(136)と、第4導出室(137)とが形成される。第2導入室(135)は、第2ケース(131)の一端部と第3隔壁部(132)との間に形成される。第3導出室(136)は、第2ケース(131)の他端部と第4隔壁部(133)との間に形成される。第4導出室(137)は、第2ケース(131)の周壁部と、第3隔壁部(132)と、第4隔壁部(133)との間の空間のうち、複数の水分離膜(134)の外側に形成される。 A second introduction chamber (135), a third discharge chamber (136), and a fourth discharge chamber (137) are formed inside the second case (131). The second introduction chamber (135) is formed between one end of the second case (131) and the third partition (132). The third lead-out chamber (136) is formed between the other end of the second case (131) and the fourth partition (133). The fourth lead-out chamber (137) includes a plurality of water separation membranes ( 134).
 各水分離膜(134)は、第3隔壁部(132)と第4隔壁部(133)とに亘るように、第2ケース(131)の軸方向に延びている。水分離膜(134)の一端(入口端)は、第3隔壁部(132)を貫通し、第2導入室(135)に開口する。水分離膜(134)の他端(出口端)は、第4隔壁部(133)を貫通し、第3導出室(136)に開口する。第2導入室(135)と第3導出室(136)とは、水分離膜(134)を介して互いに連通する。第4導出室(137)は、第2導入室(135)、第3導出室(136)、および水分離膜(134)の内部と実質的には連通しない。 Each water separation membrane (134) extends in the axial direction of the second case (131) across the third partition (132) and the fourth partition (133). One end (inlet end) of the water separation membrane (134) penetrates the third partition (132) and opens into the second introduction chamber (135). The other end (outlet end) of the water separation membrane (134) penetrates the fourth partition (133) and opens into the third lead-out chamber (136). The second inlet chamber (135) and the third outlet chamber (136) communicate with each other via the water separation membrane (134). The fourth outlet chamber (137) does not substantially communicate with the second inlet chamber (135), the third outlet chamber (136), and the interior of the water separation membrane (134).
 水分離膜(134)は、樹脂製の中空糸膜によって構成される。言い換えると、水分離膜(134)は、中空糸状、あるいは細長い管状に形成される。水分離膜(134)は、フッ素系イオン交換樹脂によって構成される。水分離膜(134)は、空気中の水分子を透過させる特性を有する。 The water separation membrane (134) is composed of a resin hollow fiber membrane. In other words, the water separation membrane (134) is shaped like a hollow fiber or an elongated tube. The water separation membrane (134) is made of a fluorinated ion exchange resin. The water separation membrane (134) has a property of permeating water molecules in the air.
 水分離膜(134)を有する水分離モジュール(130)は、ガス分離膜(124)に供給される空気中の水分を減らす減湿部の一例である。 A water separation module (130) having a water separation membrane (134) is an example of a dehumidifying section that reduces moisture in the air supplied to the gas separation membrane (124).
 (4-5-2)水分離モジュールの動作
 流入流路(101)の被処理空気は、第2入口ポート(I2)を介して第2導入室(135)へ流入する。第2導入室(135)の空気は、各水分離膜(134)の内部を第3導出室(136)へ向かって流れる。給気幹路(102c)の空気は、第3入口ポート(I3)から第4導出室(137)へ流入する。
(4-5-2) Operation of Water Separation Module The air to be treated in the inflow channel (101) flows into the second introduction chamber (135) through the second inlet port (I2). The air in the second introduction chamber (135) flows through each water separation membrane (134) toward the third discharge chamber (136). Air in the air supply trunk (102c) flows into the fourth outlet chamber (137) from the third inlet port (I3).
 水分離膜(134)の内部の空気中の水分子は、水分離膜(134)を透過して第4導出室(137)へ移動する。これにより、水分離膜(134)を透過した水分子が第4導出室(137)を流れる空気に付与される。水分離膜(134)の内部の空気は水分子を失うことで除湿され、第3導出室(136)に流出する。第3導出室(136)の空気は、第3出口ポート(O3)を介して流入幹路(101c)に流出し、ガス分離モジュール(120)に供給される。 Water molecules in the air inside the water separation membrane (134) permeate the water separation membrane (134) and move to the fourth outlet chamber (137). As a result, the water molecules that permeate the water separation membrane (134) are added to the air flowing through the fourth outlet chamber (137). The air inside the water separation membrane (134) is dehumidified by losing water molecules and flows out to the third outlet chamber (136). Air in the third outlet chamber (136) exits through the third outlet port (O3) into the inlet conduit (101c) and is supplied to the gas separation module (120).
 第4導出室(137)で加湿された空気は、第4出口ポート(O4)を介して水供給路(108)に流出する。水供給路(108)の空気は、給気幹路(102c)に流出し、収納空間(5)に送られる。 The air humidified in the fourth outlet chamber (137) flows out to the water supply path (108) through the fourth outlet port (O4). The air in the water supply channel (108) flows out to the air supply trunk channel (102c) and is sent to the storage space (5).
 (4-6)センサユニット
 センサユニット(140)は、酸素センサ(141)と、二酸化炭素センサ(142)と、センサケース(143)とを備える。
(4-6) Sensor Unit The sensor unit (140) includes an oxygen sensor (141), a carbon dioxide sensor (142), and a sensor case (143).
 酸素センサ(141)は、空気等の混合気体の酸素濃度を計測するジルコニア電流方式のセンサである。二酸化炭素センサ(142)は、空気等の混合気体の二酸化炭素濃度を計測する非分散型赤外線吸収(NDIR:non dispersive infrared)方式のセンサである。酸素センサ(141)及び二酸化炭素センサ(142)は、センサケース(143)に収容される。 The oxygen sensor (141) is a zirconia current type sensor that measures the oxygen concentration of mixed gases such as air. The carbon dioxide sensor (142) is a non-dispersive infrared (NDIR) type sensor that measures the concentration of carbon dioxide in a mixed gas such as air. The oxygen sensor (141) and the carbon dioxide sensor (142) are housed in the sensor case (143).
 センサケース(143)は、箱状の部材である。センサケース(143)は、第3エアフィルタ(F3)を備える。第3エアフィルタ(F3)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。第3エアフィルタ(F3)は、センサケース(143)へ流入する庫内空気を濾過する。 The sensor case (143) is a box-shaped member. The sensor case (143) has a third air filter (F3). The third air filter (F3) is a membrane filter for capturing dust and the like contained in the inside air. The third air filter (F3) filters the indoor air flowing into the sensor case (143).
 (4-7)流路切換機構
 空気流路(A)には、空気流れを変更するための流路切換機構が設けられる。流路切換機構は、第1切換弁(151)、第2切換弁(152)、第3切換弁(153)、第4切換弁(154)、および第5切換弁(155)を含む。これらの切換弁(151,152,153,154,155)は、三方弁によって構成される。
(4-7) Channel Switching Mechanism The air channel (A) is provided with a channel switching mechanism for changing the air flow. The channel switching mechanism includes a first switching valve (151), a second switching valve (152), a third switching valve (153), a fourth switching valve (154) and a fifth switching valve (155). These switching valves (151, 152, 153, 154, 155) are composed of three-way valves.
 第1切換弁(151)は、第2流入路(101b)と庫内側排気路(104)との接続部に設けられる。第1切換弁(151)は、庫内空気がガス分離モジュール(120)に供給される第1状態と、庫内空気が庫外空間(6)に排出される第2状態とに切り換わる。具体的には、第1状態の第1切換弁(151)は、収納空間(5)と流入幹路(101c)とを連通させ、収納空間(5)と庫外空間(6)とを遮断する。第2状態の第2切換弁(152)は、収納空間(5)と流入幹路(101c)とを遮断し、収納空間(5)と庫外空間(6)とを連通させる。 The first switching valve (151) is provided at the connecting portion between the second inflow passage (101b) and the inside exhaust passage (104). The first switching valve (151) switches between a first state in which the internal air is supplied to the gas separation module (120) and a second state in which the internal air is discharged to the external space (6). Specifically, the first switching valve (151) in the first state allows communication between the storage space (5) and the inflow trunk (101c) and isolates the storage space (5) from the outside space (6). do. The second switching valve (152) in the second state cuts off the storage space (5) and the inflow trunk (101c) and allows communication between the storage space (5) and the outside space (6).
 第2切換弁(152)は、流入幹路(101c)とバイパス流路(105)との接続部に設けられる。言い換えると、第2切換弁(152)は、流入幹路(101c)におけるガス分離膜(124)の上流側に設けられる。第2切換弁(152)は、流入流路(101)の空気がガス分離モジュール(120)に供給される第1状態と、流入流路(101)の空気がガス分離モジュール(120)をバイパスする第2状態とに切り換わる。具体的には、第1状態の第2切換弁(152)は、流入幹路(101c)とガス分離膜(124)とを連通させ、流入幹路(101c)とバイパス流路(105)とを遮断する。第2状態の第2切換弁(152)は、流入幹路(101c)とガス分離膜(124)とを遮断させ、流入幹路(101c)とバイパス流路(105)とを連通させる。 The second switching valve (152) is provided at the connecting portion between the inflow trunk (101c) and the bypass channel (105). In other words, the second switching valve (152) is provided upstream of the gas separation membrane (124) in the inflow trunk (101c). The second switching valve (152) has a first state in which the air in the inflow channel (101) is supplied to the gas separation module (120) and a state in which the air in the inflow channel (101) bypasses the gas separation module (120). and the second state to Specifically, the second switching valve (152) in the first state allows communication between the inflow trunk (101c) and the gas separation membrane (124), and the inflow trunk (101c) and the bypass channel (105). block the The second switching valve (152) in the second state shuts off the inflow trunk (101c) and the gas separation membrane (124) and allows communication between the inflow trunk (101c) and the bypass channel (105).
 第3切換弁(153)は、第1給気路(102a)と第1排気路(103a)の接続部に設けられる。言い換えると、第3切換弁(153)は、第1給気路(102a)における、センサ流路(106)の接続部と第1給気路(102a)の出口端との間に設けられる。第3切換弁(153)は、第1給気路(102a)の空気が収納空間(5)に供給される第1状態と、第1給気路(102a)の空気が庫外空間(6)に排出される第2状態とに切り換わる。具体的には、第1状態の第3切換弁(153)は、第1給気路(102a)と収納空間(5)とを連通させ、第1給気路(102a)と第1排気路(103a)とを遮断する。第2状態の第3切換弁(153)は、第1給気路(102a)と収納空間(5)とを遮断し、第1給気路(102a)と第1排気路(103a)とを連通させる。 The third switching valve (153) is provided at the connecting portion between the first air supply path (102a) and the first exhaust path (103a). In other words, the third switching valve (153) is provided in the first air supply path (102a) between the connecting portion of the sensor flow path (106) and the outlet end of the first air supply path (102a). The third switching valve (153) has a first state in which the air in the first air supply passage (102a) is supplied to the storage space (5), and a state in which the air in the first air supply passage (102a) is supplied to the outside space (6). ). Specifically, the third switching valve (153) in the first state communicates the first air supply path (102a) with the storage space (5), and the first air supply path (102a) communicates with the first exhaust path. (103a) and cut off. The third switching valve (153) in the second state isolates the first air supply path (102a) from the storage space (5) and disconnects the first air supply path (102a) from the first exhaust path (103a). communicate.
 第4切換弁(154)は、第2給気路(102b)と第2排気路(103b)の接続部に設けられる。言い換えると、第4切換弁(154)は、第2給気路(102b)における、ガス分離モジュール(120)の第2出口ポート(O2)と第2給気路(102b)の出口端との間に設けられる。第4切換弁(154)は、第2給気路(102b)の空気が収納空間(5)に供給される第1状態と、第2給気路(102b)の空気が庫外空間(6)に排出される第2状態とに切り換わる。具体的には、第1状態の第4切換弁(154)は、第2給気路(102b)と収納空間(5)とを連通させ、第2給気路(102b)と第2排気路(103b)とを遮断する。第2状態の第4切換弁(154)は、第2給気路(102b)と収納空間(5)とを遮断し、第2給気路(102b)と第2排気路(103b)とを連通させる。 The fourth switching valve (154) is provided at the connecting portion between the second air supply path (102b) and the second exhaust path (103b). In other words, the fourth switching valve (154) is positioned in the second air supply line (102b) between the second outlet port (O2) of the gas separation module (120) and the outlet end of the second air supply line (102b). provided in between. The fourth switching valve (154) has a first state in which the air in the second air supply passage (102b) is supplied to the storage space (5), and a state in which the air in the second air supply passage (102b) is supplied to the outside space (6). ). Specifically, the fourth switching valve (154) in the first state communicates the second air supply path (102b) with the storage space (5), and the second air supply path (102b) communicates with the second exhaust path (102b). (103b) and cut off. The fourth switching valve (154) in the second state isolates the second air supply path (102b) from the storage space (5) and disconnects the second air supply path (102b) from the second exhaust path (103b). communicate.
 第5切換弁(155)は、給気幹路(102c)と導入路(107)との接続部に設けられる。言い換えると、第5切換弁(155)は、給気幹路(102c)における、水供給路(108)の上流側に設けられる。第5切換弁(155)は、給気流路(102)の空気が水分離モジュール(130)を経由せずに、収納空間(5)に供給される第1状態と、給気流路(102)の空気が水分離モジュール(130)を経由して、収納空間(5)に供給される第2状態とに切り換わる。具体的には、第1状態の第5切換弁(155)は、給気幹路(102c)と導入路(107)とを連通させ、給気幹路(102c)と収納空間(5)とを遮断する。第2状態の第5切換弁(155)は、給気幹路(102c)と導入路(107)とを遮断し、給気幹路(102c)と収納空間(5)とを連通させる。 The fifth switching valve (155) is provided at the connecting portion between the air supply trunk (102c) and the introduction passage (107). In other words, the fifth switching valve (155) is provided upstream of the water supply path (108) in the air supply trunk (102c). The fifth switching valve (155) is in a first state in which the air in the air supply channel (102) is supplied to the storage space (5) without passing through the water separation module (130), of air is supplied to the storage space (5) via the water separation module (130). Specifically, the fifth switching valve (155) in the first state allows the air supply trunk (102c) and the introduction passage (107) to communicate, and the air supply trunk (102c) and the storage space (5) to communicate with each other. block the The fifth switching valve (155) in the second state cuts off the air supply trunk (102c) and the introduction passage (107) and allows the air supply trunk (102c) to communicate with the storage space (5).
 流路切換機構は、空気流路(A)に設けられる空気開閉弁(156)を含む。空気開閉弁(156)は、第1センサ路(106a)に設けられる。空気開閉弁(156)は、例えば電磁弁で構成され、センサ流路(106)を開閉する。 The channel switching mechanism includes an air on-off valve (156) provided in the air channel (A). An air on/off valve (156) is provided in the first sensor path (106a). The air on/off valve (156) is composed of, for example, an electromagnetic valve, and opens and closes the sensor channel (106).
 (4-8)逆止弁
 空気流路(A)には、第1逆止弁(157)および第2逆止弁(158)が設けられる。
(4-8) Check Valves The air flow path (A) is provided with a first check valve (157) and a second check valve (158).
 第1逆止弁(157)は、第1給気路(102a)に設けられる。具体的には、第1逆止弁(157)は、第1給気路(102a)における、ガス分離モジュール(120)の第1出口ポート(O1)とバイパス流路(105)の接続部との間に設けられる。第1逆止弁(157)は、ガス分離モジュール(120)の第1出口ポート(O1)から第1給気路(102a)の出口端へ向かう空気の流れを許容し、それとは逆向きの空気の流れを禁止する。 The first check valve (157) is provided in the first air supply path (102a). Specifically, the first check valve (157) connects the first outlet port (O1) of the gas separation module (120) and the bypass channel (105) in the first air supply path (102a). provided between The first check valve (157) allows air flow from the first outlet port (O1) of the gas separation module (120) to the outlet end of the first air supply line (102a) and vice versa. Prohibit air flow.
 第2逆止弁(158)は、第2給気路(102b)に設けられる。具体的には、第2逆止弁(158)は、第2給気路(102b)における、ガス分離モジュール(120)の第2出口ポート(O2)と第2排気路(103b)の接続部との間に設けられる。第2逆止弁(158)は、ガス分離モジュール(120)の第2出口ポート(O2)から第2給気路(102b)の出口端へ向かう空気の流れを許容し、それとは逆向きの空気の流れを禁止する。 The second check valve (158) is provided in the second air supply path (102b). Specifically, the second check valve (158) connects the second outlet port (O2) of the gas separation module (120) and the second exhaust line (103b) in the second air supply line (102b). provided between The second check valve (158) allows air flow from the second outlet port (O2) of the gas separation module (120) to the outlet end of the second air supply line (102b) and vice versa. Prohibit air flow.
 (4-9)圧力センサ
 空気流路(A)には、第1圧力センサ(161)と、第2圧力センサ(162)と、第3圧力センサ(163)とが設けられる。これらの圧力センサ(161,162,163)は、空気の圧力を検出する。
(4-9) Pressure Sensor A first pressure sensor (161), a second pressure sensor (162), and a third pressure sensor (163) are provided in the air flow path (A). These pressure sensors (161, 162, 163) detect air pressure.
 第1圧力センサ(161)は、流入流路(101)における、水分離モジュール(130)の下流側に設けられる。具体的には、第1圧力センサ(161)は、流入幹路(101c)における、水分離モジュール(130)の第1出口ポート(O1)と第2切換弁(152)との間に設けられる。第1圧力センサ(161)は、水分離モジュール(130)の内部の圧力を検出する。具体的には、第1圧力センサ(161)は、第3導出室(136)、あるいは水分離膜(134)の内圧を検出する。 The first pressure sensor (161) is provided downstream of the water separation module (130) in the inflow channel (101). Specifically, the first pressure sensor (161) is provided between the first outlet port (O1) of the water separation module (130) and the second switching valve (152) in the inflow trunk (101c). . A first pressure sensor (161) detects the pressure inside the water separation module (130). Specifically, the first pressure sensor (161) detects the internal pressure of the third lead-out chamber (136) or the water separation membrane (134).
 第2圧力センサ(162)は、第1給気路(102a)における、ガス分離モジュール(120)の下流側に設けられる。具体的には、第2圧力センサ(162)は、第1給気路(102a)における、ガス分離モジュール(120)の第1出口ポート(O1)と第3切換弁(153)との間に設けられる。第2圧力センサ(162)は、ガス分離モジュール(120)の内部の圧力を検出する。具体的には、第2圧力センサ(162)は、第1導出室(126)の圧力、あるいはガス分離膜(124)の内圧を検出する。 The second pressure sensor (162) is provided downstream of the gas separation module (120) in the first air supply path (102a). Specifically, the second pressure sensor (162) is positioned between the first outlet port (O1) of the gas separation module (120) and the third switching valve (153) in the first air supply line (102a). be provided. A second pressure sensor (162) detects the pressure inside the gas separation module (120). Specifically, the second pressure sensor (162) detects the pressure in the first outlet chamber (126) or the internal pressure of the gas separation membrane (124).
 第3圧力センサ(163)は、第2給気路(102b)における、ガス分離モジュール(120)の下流側に設けられる。具体的には、第3圧力センサ(163)は、第2給気路(102b)における、ガス分離モジュール(120)の第2出口ポート(O2)と第4切換弁(154)との間に設けられる。第3圧力センサ(163)は、ガス分離モジュール(120)の第2導出室(127)の圧力を検出する。 The third pressure sensor (163) is provided downstream of the gas separation module (120) in the second air supply path (102b). Specifically, the third pressure sensor (163) is positioned between the second outlet port (O2) of the gas separation module (120) and the fourth switching valve (154) in the second air supply line (102b). be provided. A third pressure sensor (163) detects the pressure in the second outlet chamber (127) of the gas separation module (120).
 (4-10)圧力調節弁
 空気流路(A)には、第1圧力調節弁(171)と、第2圧力調節弁(172)とが設けられる。これらの圧力調節弁(171,172)は、空気の圧力を調節する圧力調節部の一例である。
(4-10) Pressure Control Valve The air flow path (A) is provided with a first pressure control valve (171) and a second pressure control valve (172). These pressure control valves (171, 172) are an example of a pressure control section that controls air pressure.
 第1圧力調節弁(171)は、流入流路(101)における、水分離モジュール(130)の下流側に設けられる。具体的には、第1圧力調節弁(171)は、流入幹路(101c)における、第1圧力センサ(161)と第2切換弁(152)との間に設けられる。第1圧力調節弁(171)は、水分離モジュール(130)の内部の圧力を調節する。 具体的には、第1圧力調節弁(171)は、水分離モジュール(130)の第3導出室(136)の圧力、あるいは水分離膜(134)の内圧を調節する。例えば、第1圧力調節弁(171)は、第1圧力センサ(161)の検出圧力に基づいて開度が調節されてもよい。第1圧力調節弁(171)が、水分離モジュール(130)内部の圧力を調節することで、水分離モジュール(130)における除湿を適切におこなうことができる。 The first pressure control valve (171) is provided downstream of the water separation module (130) in the inflow channel (101). Specifically, the first pressure control valve (171) is provided between the first pressure sensor (161) and the second switching valve (152) in the inflow trunk (101c). The first pressure control valve (171) regulates the pressure inside the water separation module (130).  Specifically, the first pressure control valve (171) regulates the pressure in the third outlet chamber (136) of the water separation module (130) or the internal pressure of the water separation membrane (134). For example, the opening of the first pressure control valve (171) may be adjusted based on the pressure detected by the first pressure sensor (161). By adjusting the pressure inside the water separation module (130) with the first pressure control valve (171), the water separation module (130) can be dehumidified appropriately.
 第2圧力調節弁(172)は、第1給気路(102a)における、ガス分離モジュール(120)の下流側に設けられる。具体的には、第2圧力調節弁(172)は、第1給気路(102a)における、第2圧力センサ(162)と第3切換弁(153)との間に設けられる。第2圧力調節弁(172)は、ガス分離モジュール(120)の内部の圧力を調節する。具体的には、第2圧力調節弁(172)は、ガス分離モジュール(120)のの第1導出室(125)の圧力、あるいはガス分離膜(124)の内圧を調節する。例えば、第2圧力調節弁(172)は、第2圧力センサ(162)の検出圧力に基づいて開度が調節されてもよい。第2圧力調節弁(172)が、ガス分離モジュール(120)の内部の圧力を調節することで、ガス分離モジュール(120)における分離を適切におこなうことができる。 The second pressure control valve (172) is provided downstream of the gas separation module (120) in the first air supply path (102a). Specifically, the second pressure control valve (172) is provided between the second pressure sensor (162) and the third switching valve (153) in the first air supply passage (102a). A second pressure control valve (172) regulates the pressure inside the gas separation module (120). Specifically, the second pressure control valve (172) regulates the pressure in the first outlet chamber (125) of the gas separation module (120) or the internal pressure of the gas separation membrane (124). For example, the opening of the second pressure control valve (172) may be adjusted based on the pressure detected by the second pressure sensor (162). The second pressure regulating valve (172) regulates the internal pressure of the gas separation module (120) so that separation in the gas separation module (120) can be properly performed.
 (4-11)第2制御ユニット
 図4および図5に示すように、空気調節装置(100)は、第2制御ユニット(190)を備える。第2制御ユニット(190)は、通信線(W)を介して第1制御ユニット(90)に接続される。通信線(W)は、第1制御ユニット(90)と第2制御ユニット(190)との間で、信号や情報の授受を相互に行う。通信線(W)は有線であるが、無線であってもよい。
(4-11) Second Control Unit As shown in FIGS. 4 and 5, the air conditioner (100) includes a second control unit (190). The second control unit (190) is connected to the first control unit (90) via a communication line (W). The communication line (W) exchanges signals and information between the first control unit (90) and the second control unit (190). The communication line (W) is wired, but may be wireless.
 第2制御ユニット(190)は、第2制御部(191)を含む。第2制御部(191)は、本開示の制御部の一例である。 The second control unit (190) includes a second control section (191). The second control section (191) is an example of the control section of the present disclosure.
 第2制御部(191)は、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。 The second control unit (191) includes an MCU (Micro Control Unit), electric circuits, and electronic circuits. The MCU includes a CPU (Central Processing Unit), memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
 第2制御部(191)は、第1圧力センサ(161)、第2圧力センサ(162)、および第3圧力センサ(163)で検出した信号を受信する。第2制御部(191)は、エアポンプ(110)、流路切換機構、および圧力調節弁(171,172)を制御する。具体的には、第2制御部(191)は、エアポンプ(110)の運転を制御する。第2制御部(191)は、各切換弁(151,152,153,154,155)を第1状態と第2状態とに切り換える。第2制御部(191)は、空気開閉弁(156)を開閉する。第2制御部(191)は、圧力調節弁(171,172)の開度を調節する。 The second control unit (191) receives signals detected by the first pressure sensor (161), the second pressure sensor (162), and the third pressure sensor (163). The second control section (191) controls the air pump (110), the channel switching mechanism, and the pressure control valves (171, 172). Specifically, the second control section (191) controls the operation of the air pump (110). A second control section (191) switches each switching valve (151, 152, 153, 154, 155) between a first state and a second state. The second control section (191) opens and closes the air on/off valve (156). The second control section (191) adjusts the opening degrees of the pressure control valves (171, 172).
 (4-12)空気調節装置の運転動作
 空気調節装置(100)の運転動作を説明する。空気調節装置(100)の運転は、以下に説明する第1~第5運転を含む。本例において、第1~第5運転では、第2制御部(191)が第5切換弁(155)を第1状態とする。このため、これらの運転では、水分離モジュール(130)が空気中の水分を除去する動作を行う。
(4-12) Operating Behavior of Air Conditioner The operating behavior of the air conditioner (100) will be described. The operation of the air conditioner (100) includes first to fifth operations described below. In this example, in the first to fifth operations, the second control section (191) sets the fifth switching valve (155) to the first state. Therefore, in these operations, the water separation module (130) operates to remove moisture from the air.
 (4-12-1)第1運転
 第1運転は、庫外空気と庫内空気の両方を被処理空気とし、第1空気を収納空間(5)へ供給して第2空気を庫外空間(6)へ排出する運転である。この第1運転は、収納空間(5)内の庫内空気の酸素濃度を引き下げるために行われる。
(4-12-1) First operation In the first operation, both the outside air and the inside air are treated air, the first air is supplied to the storage space (5), and the second air is the outside space. This is the operation to discharge to (6). This first operation is performed to lower the oxygen concentration of the air inside the storage space (5).
 図8に示すように、第1運転において、第2制御部(191)は、第1切換弁(151)を第1状態に、第2切換弁(152)を第1状態に、第3切換弁(153)を第1状態に、第4切換弁(154)を第2状態に、第5切換弁(155)を第1状態に、空気開閉弁(156)を閉状態に、それぞれ設定する。 As shown in FIG. 8, in the first operation, the second control section (191) switches the first switching valve (151) to the first state, the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state. The valve (153) is set to the first state, the fourth switching valve (154) is set to the second state, the fifth switching valve (155) is set to the first state, and the air on/off valve (156) is set to the closed state. .
 第1運転において、第2流入路(101b)を流れる庫内空気は、第1水分離器(111)を流れる。第1水分離器(111)は、庫内空気中の水(液体)を分離する。第1水分離器(111)を通過した空気と、第1流入路(101a)を流れる庫外空気とは、流入幹路(101c)へ流入して混合した後に、被処理空気としてエアポンプ(110)に吸い込まれる。エアポンプ(110)は、吸い込んだ空気を加圧して吐出する。エアポンプ(110)から吐出された空気は、凝縮回路(112)によって冷却された後、第2水分離器(113)を流れる。第2水分離器(113)は、被処理空気が凝縮回路(112)を通過する間に凝縮した水を、被処理空気から分離する。 In the first operation, the indoor air flowing through the second inflow path (101b) flows through the first water separator (111). The first water separator (111) separates water (liquid) from the inside air. The air that has passed through the first water separator (111) and the outside air that flows through the first inflow path (101a) flow into the inflow path (101c) and are mixed together, and then pumped through an air pump (110) as air to be treated. ). The air pump (110) pressurizes and discharges the sucked air. The air discharged from the air pump (110) flows through the second water separator (113) after being cooled by the condensation circuit (112). The second water separator (113) separates water condensed from the air to be treated while the air to be treated passes through the condensing circuit (112).
 第2水分離器(113)を通過した空気は、水分離モジュール(130)の水分離膜(134)を流れることで除湿される。水分離モジュール(130)で除湿された被処理空気は、ガス分離モジュール(120)へ流入する。ガス分離モジュール(120)では、被処理空気が第1空気と第2空気に分離される。 The air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130). The air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120). In the gas separation module (120), the air to be treated is separated into primary air and secondary air.
 被処理空気よりも酸素濃度が低い第1空気は、第1給気路(102a)および導入路(107)を順に流れ、水分離モジュール(130)の第3導出室(136)を流れる。第3導出室(136)では、水分離膜(134)を透過した水分子が第1空気に付与される。水分離モジュール(130)で加湿された第1空気は、水供給路(108)および給気幹路(102c)を順に流れ、庫内空間(5)に供給される。 The first air, which has a lower oxygen concentration than the air to be treated, flows through the first air supply path (102a) and the introduction path (107) in order, and flows through the third outlet chamber (136) of the water separation module (130). In the third outlet chamber (136), water molecules permeating the water separation membrane (134) are applied to the primary air. The primary air humidified by the water separation module (130) sequentially flows through the water supply channel (108) and the air supply main channel (102c), and is supplied to the internal space (5).
 被処理空気よりも酸素濃度が高い第2空気は、第2給気路(102b)、第2排気路(103b)、および排気幹路(103c)を順に流れ、庫外空間(6)へ排出される。 The second air, which has a higher oxygen concentration than the air to be treated, flows through the second air supply path (102b), the second exhaust path (103b), and the exhaust main path (103c) in order, and is discharged to the outside space (6). be done.
 第1運転において、第1エアフィルタ(F1)を通って第1流入路(101a)へ流入する庫外空気の流量は、庫外空間(6)へ排出される第2空気の流量よりも多い。その結果、収納空間(5)の気圧は、輸送用コンテナ(1)の外部の気圧(つまり、大気圧)よりも高くなる。これにより、収納空間(5)は、陽圧に保たれる。 In the first operation, the flow rate of the outside air flowing into the first inflow passage (101a) through the first air filter (F1) is higher than the flow rate of the second air discharged to the outside space (6). . As a result, the air pressure in the storage space (5) is higher than the air pressure outside the shipping container (1) (ie atmospheric pressure). The storage space (5) is thereby kept at a positive pressure.
 (4-12-2)第2運転
 第2運転は、庫外空気を被処理空気とし、第1空気を庫内空間(5)へ供給して第2空気を庫外空間(6)へ排出する運転である。この第2運転は、収納空間(5)内の庫内空気の酸素濃度を引き下げるために行われる。
(4-12-2) Second operation In the second operation, the outside air is treated air, the first air is supplied to the inside space (5), and the second air is discharged to the outside space (6). It is driving to do. This second operation is performed to reduce the oxygen concentration of the air inside the storage space (5).
 図9に示すように、第2運転において、第2制御部(191)は、第1切換弁(151)を第2状態に、第2切換弁(152)を第1状態に、第3切換弁(153)を第1状態に、第4切換弁(154)を第2状態に、第5切換弁(155)を第1状態に、空気開閉弁(156)を閉状態に、それぞれ設定する。 As shown in FIG. 9, in the second operation, the second control section (191) switches the first switching valve (151) to the second state, switches the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state. The valve (153) is set to the first state, the fourth switching valve (154) is set to the second state, the fifth switching valve (155) is set to the first state, and the air on/off valve (156) is set to the closed state. .
 第1流入路(101a)を流れる庫外空気は、エアポンプ(110)で加圧された後、凝縮回路(112)および第2水分離器(113)を通過する。第2水分離器(113)を通過した空気は、水分離モジュール(130)の水分離膜(134)を流れることで除湿される。水分離モジュール(130)で除湿された被処理空気は、ガス分離モジュール(120)へ流入する。ガス分離モジュール(120)では、被処理空気が第1空気と第2空気に分離される。被処理空気よりも酸素濃度が低い第1空気は、水分離モジュール(130)で加湿された後、水供給路(108)および給気幹路(102c)を順に流れ、庫内空間(5)に供給される。 Outside air flowing through the first inflow path (101a) is pressurized by the air pump (110) and then passes through the condensation circuit (112) and the second water separator (113). The air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130). The air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120). In the gas separation module (120), the air to be treated is separated into primary air and secondary air. The first air, which has a lower oxygen concentration than the air to be treated, is humidified by the water separation module (130), then flows through the water supply channel (108) and the air supply trunk channel (102c) in order, and flows into the internal space (5). supplied to
 被処理空気よりも酸素濃度が高い第2空気は、第2給気路(102b)、第2排気路(103b)、および排気幹路(103c)を順に流れ、庫外空間(6)へ排出される。 The second air, which has a higher oxygen concentration than the air to be treated, flows through the second air supply path (102b), the second exhaust path (103b), and the exhaust main path (103c) in order, and is discharged to the outside space (6). be done.
 第2運転において、収納空間(5)は、陽圧に保たれる。そのため、庫内空間(5)の空気は、第2流入路(101b)および庫内側排気路(104)を流れ庫外空間(6)に排出される。その結果、収納空間(5)の空気が第1空気に、次第に入れ替わる。 In the second operation, the storage space (5) is kept at positive pressure. Therefore, the air in the internal space (5) flows through the second inflow passage (101b) and the internal exhaust passage (104) and is discharged to the external space (6). As a result, the air in the storage space (5) is gradually replaced with the first air.
 (4-12-3)第3運転
 第3運転は、庫外空気と庫内空気の両方を被処理空気とし、第1空気を庫外へ排出して第2空気を庫内へ供給する運転である。この第3運転は、収納空間(5)内の庫内空気の酸素濃度を引き上げるために行われる。
(4-12-3) Third operation The third operation is an operation in which both the outside air and the inside air are treated as the air to be treated, the first air is discharged outside the refrigerator, and the second air is supplied to the inside of the refrigerator. is. This third operation is performed to raise the oxygen concentration of the air inside the storage space (5).
 図10に示すように、第3運転において、第2制御部(191)は、第1切換弁(151)を第1状態に、第2切換弁(152)を第1状態に、第3切換弁(153)を第2状態に、第4切換弁(154)を第1状態に、第5切換弁(155)を第1状態に、空気開閉弁(156)を閉状態に、それぞれ設定する。 As shown in FIG. 10, in the third operation, the second control section (191) switches the first switching valve (151) to the first state, switches the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state. The valve (153) is set to the second state, the fourth switching valve (154) is set to the first state, the fifth switching valve (155) is set to the first state, and the air on/off valve (156) is set to the closed state. .
 第3運転において、第1流入路(101a)を流れる庫外空気と、第2流入路(101b)を流れる庫内空気とが混合した空気(被処理空気)は、エアポンプ(110)で加圧された後、凝縮回路(112)および第2水分離器(113)を通過する。第2水分離器(113)を通過した空気は、水分離モジュール(130)の水分離膜(134)を流れることで除湿される。水分離モジュール(130)で除湿された被処理空気は、ガス分離モジュール(120)へ流入する。ガス分離モジュール(120)では、被処理空気が第1空気と第2空気に分離される。被処理空気よりも酸素濃度が低い第1空気は、第1給気路(102a)、第1排気路(103a)、および排気幹路(103c)を順に流れ、庫外空間(6)へ排出される。 In the third operation, the air (to-be-treated air) mixed with the outside air flowing through the first inflow passage (101a) and the inside air flowing through the second inflow passage (101b) is pressurized by the air pump (110). After being filtered, it passes through a condensation circuit (112) and a second water separator (113). The air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130). The air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120). In the gas separation module (120), the air to be treated is separated into primary air and secondary air. The first air, which has a lower oxygen concentration than the air to be treated, flows through the first air supply passage (102a), the first exhaust passage (103a), and the exhaust passage (103c) in order, and is discharged to the outside space (6). be done.
 被処理空気よりも酸素濃度が高い第2空気は、第2給気路(102b)および導入路(107)を順に流れ、水分離モジュール(130)の第3導出室(136)を流れる。第3導出室(136)では、水分離膜(134)を透過した水分子が第2空気に付与される。水分離モジュール(130)で加湿された第2空気は、水供給路(108)および給気幹路(102c)を順に流れ、庫内空間(5)に供給される。 The second air, which has a higher oxygen concentration than the air to be treated, flows through the second air supply path (102b) and the introduction path (107) in order, and flows through the third outlet chamber (136) of the water separation module (130). In the third outlet chamber (136), water molecules permeating the water separation membrane (134) are added to the secondary air. The secondary air humidified by the water separation module (130) flows through the water supply path (108) and the air supply trunk (102c) in order, and is supplied to the internal space (5).
 第3運転において、収納空間(5)は、陽圧に保たれる。 In the third run, the storage space (5) is kept at positive pressure.
 (4-12-4)第4運転
 第4運転は、庫外空気を被処理空気とし、第1空気を庫外へ排出して第2空気を庫内へ供給する運転である。この第4運転は、収納空間(5)内の庫内空気の酸素濃度を引き上げるために行われる。
(4-12-4) Fourth Operation The fourth operation is an operation in which the air outside the refrigerator is treated as the air to be treated, the first air is discharged outside the refrigerator, and the second air is supplied into the refrigerator. This fourth operation is performed to raise the oxygen concentration of the air inside the storage space (5).
 図11に示すように、第4運転において、第2制御部(191)は、第1切換弁(151)を第2状態に、第2切換弁(152)を第1状態に、第3切換弁(153)を第2状態に、第4切換弁(154)を第1状態に、第5切換弁(155)を第1状態に、空気開閉弁(156)を閉状態に、それぞれ設定する。 As shown in FIG. 11, in the fourth operation, the second control section (191) switches the first switching valve (151) to the second state, switches the second switching valve (152) to the first state, and switches the third switching valve (152) to the first state. The valve (153) is set to the second state, the fourth switching valve (154) is set to the first state, the fifth switching valve (155) is set to the first state, and the air on/off valve (156) is set to the closed state. .
 第1流入路(101a)を流れる庫外空気(被処理空気)は、エアポンプ(110)で加圧された後、凝縮回路(112)および第2水分離器(113)を通過する。第2水分離器(113)を通過した空気は、水分離モジュール(130)の水分離膜(134)を流れることで、除湿される。水分離モジュール(130)で除湿された被処理空気は、ガス分離モジュール(120)へ流入する。ガス分離モジュール(120)では、被処理空気が第1空気と第2空気に分離される。被処理空気よりも酸素濃度が高い第2空気は、水分離モジュール(130)で加湿された後、水供給路(108)および給気幹路(102c)を順に流れ、庫内空間(5)に供給される。 Outside air (air to be treated) flowing through the first inflow passage (101a) is pressurized by the air pump (110) and then passes through the condensation circuit (112) and the second water separator (113). The air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130). The air to be treated that has been dehumidified in the water separation module (130) flows into the gas separation module (120). In the gas separation module (120), the air to be treated is separated into primary air and secondary air. The second air, which has a higher oxygen concentration than the air to be treated, is humidified by the water separation module (130), then flows through the water supply channel (108) and the air supply main channel (102c) in order, and flows into the internal space (5). supplied to
 被処理空気よりも酸素濃度が低い第1空気は、第2給気路(102b)、第2排気路(103b)、および排気幹路(103c)を順に流れ、庫外空間(6)へ排出される。 The first air, which has an oxygen concentration lower than that of the air to be treated, sequentially flows through the second air supply path (102b), the second exhaust path (103b), and the exhaust main path (103c), and is discharged to the outside space (6). be done.
 第4運転において、収納空間(5)は、陽圧に保たれる。そのため、庫内空間(5)の空気は、第2流入路(101b)および庫内側排気路(104)を流れ庫外空間(6)に排出される。その結果、収納空間(5)の空気が第2空気に、次第に入れ替わる。 In the fourth run, the storage space (5) is kept at positive pressure. Therefore, the air in the internal space (5) flows through the second inflow passage (101b) and the internal exhaust passage (104) and is discharged to the external space (6). As a result, the air in the storage space (5) is gradually replaced with the second air.
 (4-12-5)第5運転
 第5運転は、庫外空気をそのまま庫内へ供給する運転である。この第5運転は、収納空間(5)内の庫内空気の酸素濃度を引き上げるために行われる。
(4-12-5) Fifth Operation The fifth operation is an operation in which outside air is supplied to the inside of the refrigerator as it is. This fifth operation is performed to raise the oxygen concentration of the air inside the storage space (5).
 図12に示すように、第5運転において、第2制御部(191)は、第1切換弁(151)を第2状態に、第2切換弁(152)を第2状態に、第3切換弁(153)を第1状態に、第4切換弁(154)を第2状態に、第5切換弁(155)を第1状態に、空気開閉弁(156)を閉状態に、それぞれ設定する。 As shown in FIG. 12, in the fifth operation, the second control section (191) switches the first switching valve (151) to the second state, switches the second switching valve (152) to the second state, and switches the third switching valve (152) to the second state. The valve (153) is set to the first state, the fourth switching valve (154) is set to the second state, the fifth switching valve (155) is set to the first state, and the air on/off valve (156) is set to the closed state. .
 第1流入路(101a)を流れる庫外空気は、エアポンプ(110)で加圧された後、凝縮回路(112)および第2水分離器(113)を通過する。第2水分離器(113)を通過した空気は、水分離モジュール(130)の水分離膜(134)を流れることで、除湿される。水分離モジュール(130)で除湿された空気は、ガス分離モジュール(120)をバイパスするように、バイパス流路(105)を流れる。バイパス流路(105)を流出した空気は、第1給気路(102a)および導入路(107)を順に流れ、水分離モジュール(130)の第3導出室(136)を流れる。第3導出室(136)では、水分離膜(134)を透過した水分子が空気に付与される。水分離モジュール(130)で加湿された空気は、水供給路(108)および給気幹路(102c)を順に流れ、庫内空間(5)に供給される。 Outside air flowing through the first inflow path (101a) is pressurized by the air pump (110) and then passes through the condensation circuit (112) and the second water separator (113). The air that has passed through the second water separator (113) is dehumidified by flowing through the water separation membrane (134) of the water separation module (130). Air dehumidified in the water separation module (130) flows through the bypass channel (105) to bypass the gas separation module (120). The air flowing out of the bypass channel (105) sequentially flows through the first air supply channel (102a) and the introduction channel (107), and then flows through the third outlet chamber (136) of the water separation module (130). In the third outlet chamber (136), water molecules that permeate the water separation membrane (134) are added to the air. The air humidified by the water separation module (130) sequentially flows through the water supply path (108) and the air supply trunk (102c) and is supplied to the internal space (5).
 第5運転において、収納空間(5)は、陽圧に保たれる。そのため、庫内空間(5)の空気は、第2流入路(101b)および庫内側排気路(104)を流れ庫外空間(6)に排出される。その結果、収納空間(5)の空気が庫外空気に、次第に入れ替わる。 In the fifth operation, the storage space (5) is kept at positive pressure. Therefore, the air in the internal space (5) flows through the second inflow passage (101b) and the internal exhaust passage (104) and is discharged to the external space (6). As a result, the air in the storage space (5) is gradually replaced with the outside air.
 (5-1)ガス分離膜の性能低下について
 空気調節装置(100)を長期間に亘って停止すると、ガス分離モジュール(120)のガス分離膜(124)の性能が低下してしまう。具体的には、ガス分離膜(124)は、ガスを分離するための多数の細孔を有する。空気調節装置(100)の低下に伴い長期間に亘ってガス分離モジュール(120)が使用されない場合、ガス分離膜(124)が収縮し、細孔のサイズが小さくなってしまう。この結果、ガス分離膜(124)による酸素や二酸化炭素の透過率が低下し、空気調節装置(100)によるガス分離の性能が低下してしまうという問題があった。
(5-1) Deterioration of Gas Separation Membrane Performance If the air conditioner (100) is stopped for a long period of time, the performance of the gas separation membrane (124) of the gas separation module (120) is degraded. Specifically, the gas separation membrane (124) has a large number of pores for separating gases. When the gas separation module (120) is not used for a long period of time as the air conditioner (100) deteriorates, the gas separation membrane (124) shrinks and the pore size becomes smaller. As a result, the permeability of the gas separation membrane (124) to oxygen and carbon dioxide is lowered, and the gas separation performance of the air conditioner (100) is lowered.
 (5-2)予備運転の開始判定
 本実施形態の空気調節装置(100)は、上記の課題を解決するために第1動作を実行する。具体的には、第2制御部(191)は、空気調節装置(100)の所定期間の停止に伴うガス分離膜(124)の性能の低下を抑制する第1動作を実行する。本実施形態の第1動作は、被処理空気をガス分離膜(124)に供給する予備運転を含む。第2制御部(191)は、空気調節装置(100)の停止から所定期間が経過すると、予備運転を開始させる。
(5-2) Preliminary Operation Start Determination The air conditioner (100) of the present embodiment performs the first operation to solve the above problem. Specifically, the second control section (191) performs a first operation of suppressing deterioration of the performance of the gas separation membrane (124) due to the suspension of the air conditioner (100) for a predetermined period of time. The first operation of this embodiment includes a preliminary operation of supplying the air to be treated to the gas separation membrane (124). The second control section (191) starts the preliminary operation after a predetermined period of time has passed since the air conditioner (100) stopped.
 本実施形態の予備運転に係る制御について図13を参照しながら詳細に説明する。 The control related to the preliminary operation of this embodiment will be described in detail with reference to FIG.
 ステップST1において、第2制御部(191)が通常運転の運転指令を受信すると、ステップST2において、第2制御部(191)は、通常運転を実行するように空気調節装置(100)を制御する。ここで、通常運転は、ガス分離モジュール(120)によって被処理空気を分離する運転であり、上述した第1運転、第2運転、第3運転、および第4運転を含む。通常運転は、収納空間(5)の空気の組成を調整することを目的としている。 In step ST1, when the second control section (191) receives an operation command for normal operation, in step ST2, the second control section (191) controls the air conditioner (100) to perform normal operation. . Here, the normal operation is an operation in which the air to be treated is separated by the gas separation module (120), and includes the first operation, second operation, third operation and fourth operation described above. Normal operation aims at adjusting the composition of the air in the containment space (5).
 ステップST3において、第2制御部(191)が通常運転の停止指令を受信すると、ステップST4において、第2制御部(191)は、空気調節装置(100)を停止させる。 In step ST3, when the second control section (191) receives a command to stop normal operation, in step ST4, the second control section (191) stops the air conditioner (100).
 ステップST5において、空気調節装置(100)の運転が停止してから所定時間T1が経過すると、ステップST6において、第2制御部(191)が予備運転を実行させる。ここでいう運転は、通常運転、および予備運転を含む。所定時間T1は、空気調節装置(100)の停止、あるいはガス分離膜(124)の未使用に伴うガス分離膜(124)の性能の低下を考慮して設定される。所定時間T1は例えば数日から数十日に設定される。 In step ST5, when the predetermined time T1 has passed since the operation of the air conditioner (100) stopped, in step ST6, the second control section (191) causes the preliminary operation to be performed. The operation here includes normal operation and preliminary operation. The predetermined time T1 is set in consideration of the deterioration of the performance of the gas separation membrane (124) due to stoppage of the air conditioner (100) or non-use of the gas separation membrane (124). The predetermined time T1 is set, for example, from several days to several tens of days.
 ステップST7において、予備運転の停止条件が成立すると、ステップST8において、第2制御部(191)は予備運転を停止させる。本例の予備運転の停止条件は、予備運転が開始してから所定時間T2が経過することである。 In step ST7, when the conditions for stopping the preliminary operation are satisfied, in step ST8, the second control unit (191) stops the preliminary operation. The condition for stopping the preliminary operation in this example is that a predetermined time T2 has passed since the preliminary operation started.
 (5-3)予備運転
 予備運転は、ガス分離膜(124)の被処理空気を供給する運転である。予備運転は、空気調節装置(100)の所定期間の停止に伴うガス分離膜(124)の性能の低下を抑制する目的でおこなわれる運転である。したがって、予備運転中の空気調節装置(100)は、上述した第1運転、第2運転、第3運転、および第4運転と同様の動作を行ってもよい。本実施形態の予備運転は、ユーザなどの人の操作に伴う運転指令により実行されない点で、上述した通常運転と異なる。
(5-3) Preliminary operation Preliminary operation is an operation to supply air to be treated to the gas separation membrane (124). The preliminary operation is an operation performed for the purpose of suppressing deterioration in the performance of the gas separation membrane (124) due to the suspension of the air conditioner (100) for a predetermined period. Therefore, the air conditioner (100) in preliminary operation may perform the same operations as in the first, second, third, and fourth operations described above. The preliminary operation of this embodiment differs from the above-described normal operation in that it is not executed by an operation command accompanying a human operation such as a user.
 予備運転において、例えば第1運転と同様の動作(図8を参照)が行われると、被処理空気がガス分離モジュール(120)を流れる。ガス分離モジュール(120)では、第1導入室(125)に流入した被処理空気が、各ガス分離膜(124)を流れる。被処理空気がガス分離膜(124)の内部を流れると、ガス分離膜(124)が拡張し、各細孔のサイズが拡大する。これにより、ガス分離膜(124)による酸素や二酸化炭素の分離性能が回復する。 In the preliminary operation, for example, when the same operation as the first operation (see FIG. 8) is performed, the air to be treated flows through the gas separation module (120). In the gas separation module (120), the air to be treated that has flowed into the first introduction chamber (125) flows through each gas separation membrane (124). As the air to be treated flows through the interior of the gas separation membrane (124), the gas separation membrane (124) expands, increasing the size of each pore. This recovers the oxygen and carbon dioxide separation performance of the gas separation membrane (124).
 エアポンプ(110)は、ガス分離膜(124)に供給される空気を加圧する加圧部を構成する。具体的には、エアポンプ(110)は、予備運転におけるガス分離膜(124)の内圧が、上述した通常運転におけるガス分離膜(124)の内圧P1以上となるように、被処理空気を加圧する。エアポンプ(110)は、ガス分離膜(124)の内圧が、その耐圧P2を越えないように被処理空気を加圧する。ガス分離膜(124)の内圧は、第2圧力調節弁(172)によって調整することができる。具体的には、第2制御部(191)は、第2圧力センサ(162)の検出圧力が、P1以上P2未満となるように、第2圧力調節弁(172)の開度を制御する。予備運転時のガス分離膜(124)の内圧は、例えば700[kPa]に維持される。 The air pump (110) constitutes a pressurizing section that pressurizes the air supplied to the gas separation membrane (124). Specifically, the air pump (110) pressurizes the air to be treated so that the internal pressure of the gas separation membrane (124) in preliminary operation is equal to or higher than the internal pressure P1 of the gas separation membrane (124) in normal operation. . The air pump (110) pressurizes the air to be treated so that the internal pressure of the gas separation membrane (124) does not exceed its withstand pressure P2. The internal pressure of the gas separation membrane (124) can be adjusted by the second pressure control valve (172). Specifically, the second control section (191) controls the degree of opening of the second pressure control valve (172) so that the pressure detected by the second pressure sensor (162) is greater than or equal to P1 and less than P2. The internal pressure of the gas separation membrane (124) during preliminary operation is maintained at, for example, 700 [kPa].
 以上のように、ガス分離膜(124)に供給される被処理空気を加圧することで、ガス分離膜(124)が拡張し易くなり、細孔のサイズが広がりやすくなる。この結果、ガス分離膜(124)の性能の回復効果が向上する。 As described above, by pressurizing the air to be treated that is supplied to the gas separation membrane (124), the gas separation membrane (124) is easily expanded, and the pore size is easily widened. As a result, the performance recovery effect of the gas separation membrane (124) is improved.
 空気調節装置(100)は、減湿部として、第1水分離膜(134)、第2水分離膜(134)、および水分離モジュール(130)を有する。これらの減湿部は、ガス分離膜(124)に供給される空気中の水分を減らす。ここで、ガス分離膜(124)に供給される空気中の水分がガス分離膜(124)に付着すると、この水分が細孔を塞いでしまい、ガス分離膜(124)の分離性能が低下してしまうことがある。これに対し、減湿部として、第1水分離膜(134)、第2水分離膜(134)、および水分離モジュール(130)が空気を除湿することで、水分がガス分離膜(124)に付着することに起因して、ガス分離膜(124)の性能が低下してしまうことを抑制できる。なお、減湿部は、第1水分離器(111)、第2水分離器(113)、および水分離モジュール(130)のいずれか1つ、または2つであってもよいし、他の方式の減湿部であってよい。 The air conditioner (100) has a first water separation membrane (134), a second water separation membrane (134), and a water separation module (130) as a dehumidifier. These dehumidifiers reduce the moisture in the air supplied to the gas separation membrane (124). Here, when moisture in the air supplied to the gas separation membrane (124) adheres to the gas separation membrane (124), this moisture clogs the pores, thereby degrading the separation performance of the gas separation membrane (124). Sometimes I end up On the other hand, the first water separation membrane (134), the second water separation membrane (134), and the water separation module (130) dehumidify the air as the dehumidifying section, so that the moisture is removed from the gas separation membrane (124). It is possible to suppress deterioration in the performance of the gas separation membrane (124) due to adhesion to the . The dehumidifying section may be one or two of the first water separator (111), the second water separator (113), and the water separation module (130), or other It may be a dehumidifying part of the system.
 上述したように、第2制御部(191)は、予備運転を所定時間T2の間継続させる。所定時間T2は、例えば24時間に設定される。このように、予備運転を所定時間T2だけ継続することで、ガス分離膜(124)の細孔のサイズを十分に広げることができる。 As described above, the second control section (191) continues the preliminary operation for the predetermined time T2. The predetermined time T2 is set to 24 hours, for example. Thus, by continuing the preliminary operation for the predetermined time T2, the pore size of the gas separation membrane (124) can be sufficiently widened.
 (6)実施形態の特徴
 (6-1)
 上述した実施形態の空気調節装置(100)は、空気調節装置(100)の所定期間の停止に伴うガス分離膜(124)の性能の低下を抑制する第1動作を実行させる第2制御部(191)を備える。このため、ガス分離膜(124)が収縮してその性能が低下した場合にも、第1動作により、ガス分離膜(124)の性能の低下を抑制できる。
(6) Features of the embodiment (6-1)
The air conditioner (100) of the above-described embodiment includes a second control unit ( 191). Therefore, even when the gas separation membrane (124) contracts and its performance deteriorates, the first operation can suppress the deterioration of the performance of the gas separation membrane (124).
 (6-2)
 第1動作は、被処理空気をガス分離膜(124)に供給する予備運転を含む。この予備運転において、被処理空気をガス分離膜(124)に供給すると、ガス分離膜(124)を拡張させることができ、その細孔のサイズを拡大できる。その結果、ガス分離膜(124)の性能を容易且つ速やかに回復できる。
(6-2)
A first operation includes a preliminary operation in which air to be treated is supplied to the gas separation membrane (124). In this preliminary operation, when the air to be treated is supplied to the gas separation membrane (124), the gas separation membrane (124) can be expanded and its pore size can be enlarged. As a result, the performance of the gas separation membrane (124) can be easily and quickly recovered.
 (6-3)
 第2制御部(191)は、空気調節装置(100)の停止から所定時間が経過すると、予備運転を開始させる。このため、空気調節装置(100)の停止に伴いガス分離膜(124)の性能が低下したタイミングに併せて、ガス分離膜(124)の性能を確実に回復させることができる。
(6-3)
The second control section (191) starts the preliminary operation when a predetermined time has elapsed since the air conditioner (100) stopped. Therefore, the performance of the gas separation membrane (124) can be reliably recovered at the timing when the performance of the gas separation membrane (124) is lowered due to the shutdown of the air conditioner (100).
 (6-4)
 空気調節装置(100)は、予備運転において、ガス分離膜(124)に供給される空気を加圧するエアポンプ(110)を備えている。これにより、ガス分離膜(124)を拡張させ易くなるので、ガス分離膜(124)の性能を速やか且つ確実に回復させることができる。
(6-4)
The air conditioner (100) has an air pump (110) that pressurizes the air supplied to the gas separation membrane (124) in preliminary operation. This makes it easier to expand the gas separation membrane (124), so that the performance of the gas separation membrane (124) can be quickly and reliably recovered.
 (6-5)
 空気調節装置(100)は、予備運転において、ガス分離膜(124)に供給される空気の水分を減らす減湿部(111,113,130)を備える。これにより、水分がガス分離膜(124)の細孔を塞ぐことを抑制できるので、ガス分離膜(124)の性能の低下を抑制できる。
(6-5)
The air conditioner (100) includes a dehumidifying section (111, 113, 130) that reduces moisture in the air supplied to the gas separation membrane (124) in preliminary operation. This can prevent moisture from clogging the pores of the gas separation membrane (124), thereby suppressing deterioration of the performance of the gas separation membrane (124).
 (7)実施形態の変形例
 上述した実施形態においては、以下のような変形例の構成としてもよい。なお、以下の説明では、原則として、実施形態と異なる点について説明する。
(7) Modifications of the Embodiments In the above-described embodiments, the following modifications may be made. In the following description, in principle, points different from the embodiment will be described.
 (7-1)変形例1
 変形例1の第2制御部(191)は、通常運転の開始時より所定時間前に予備運転を開始させる。この制御について、図14を参照しながら説明する。
(7-1) Modification 1
The second control section (191) of Modification 1 starts the preliminary operation a predetermined time before the start of the normal operation. This control will be described with reference to FIG.
 ステップST11において、第2制御部(191)は、通常運転の開始時刻を決定する。第2制御部(191)は、通常運転の開始時刻を推定してもよい。この場合、第2制御部(191)は、例えば輸送用コンテナ(1)の輸送ルートに基づき通常運転の開始時刻を推定する。例えば輸送用コンテナ(1)、あるいは輸送用コンテナ(1)を搬送する船舶などにGPS(Global Positioning System、全地球測位システム)を設けることで、第2制御部(191)は、輸送用コンテナ(1)の輸送用ルートを取得できる。第2制御部(191)は、例えば輸送用コンテナ(1)が港に到着したことをGPSに基づき特定し、このタイミングに併せて通常運転の開始時刻を推定する。輸送用コンテナ(1)が港に到着することで、コンテナ本体(2)に次の生鮮物が搬送され、収納空間(5)の空気の冷却、及びこの空気の組成の調整が必要になるためである。 At step ST11, the second control section (191) determines the start time of normal operation. The second control section (191) may estimate the start time of normal operation. In this case, the second control unit (191) estimates the start time of normal operation based on, for example, the transport route of the transport container (1). For example, by installing a GPS (Global Positioning System) in a shipping container (1) or a ship that transports the shipping container (1), the second control unit (191) can control the shipping container ( 1) You can get the transportation route. The second control unit (191) identifies, for example, the arrival of the shipping container (1) at the port based on GPS, and estimates the start time of normal operation in conjunction with this timing. When the shipping container (1) arrives at the port, the following perishables are transported to the container body (2), and it is necessary to cool the air in the storage space (5) and adjust the composition of this air. is.
 なお、通常運転の開始時刻は、ユーザによって予め決定される入力値であってもよい。この場合、ユーザは操作部(92)により通常運転の開始時刻を決定する。第2制御部(191)は、操作部(92)を介して入力された時刻を通常運転の開始時刻として決定する。 It should be noted that the normal operation start time may be an input value determined in advance by the user. In this case, the user determines the normal operation start time using the operation unit (92). The second control section (191) determines the time input via the operation section (92) as the normal operation start time.
 ステップST12において、第2制御部(191)は、予備運転の開始時刻を決定する。予備運転の開始時刻は、通常運転の開始時刻から、予備運転の実行時間(例えば上述したT2)を差し引いた時刻である。 At step ST12, the second control section (191) determines the start time of the preliminary operation. The start time of the preliminary operation is the time obtained by subtracting the execution time of the preliminary operation (for example, T2 described above) from the start time of the normal operation.
 ステップST13において、第2制御部(191)は、ステップST12において求めた開始時刻から、空気調節装置(100)の予備運転を実行させる。その結果、上述した実施形態と同様、被処理空気がガス分離膜(124)に供給される。このため、ガス分離膜(124)の性能を回復させることができる。 At step ST13, the second control section (191) causes the air conditioning device (100) to perform preliminary operation from the start time obtained at step ST12. As a result, the air to be treated is supplied to the gas separation membrane (124), similar to the embodiments described above. Therefore, the performance of the gas separation membrane (124) can be recovered.
 予備運転が終了すると、ステップST14において、第2制御部(191)は通常運転を実行させる。具体的には、通常運転では、例えば上述した第1運転、第2運転、第3運転、または第4運転が実行される。通常運転の直前には、予備運転が実行され、ガス分離膜(124)の性能が回復している。このため、通常運転では、ガス分離膜(124)によるガス分離の性能を十分に発揮させることができる。 When the preliminary operation ends, the second control section (191) executes normal operation in step ST14. Specifically, in normal operation, for example, the above-described first, second, third, or fourth operation is performed. Preliminary operation is performed immediately before normal operation to restore the performance of the gas separation membrane (124). Therefore, in normal operation, gas separation performance of the gas separation membrane (124) can be fully exhibited.
 なお、変形例1において、予備運転と通常運転とを連続的に実行してもよい。この場合、予備運転は、通常運転と同じ動作を行うのが好ましい。具体的には、通常運転において、第2制御部(191)は、空気調節装置(100)の第1運転を実行させるとする。この場合、第2制御部(191)は、予備運転においても、空気調節装置(100)の第1運転を実行させ、ガス分離膜(124)の性能を回復させる。厳密にいうと、第2制御部(191)は、予備運転としての第1運転の実行時間が経過した後、通常運転としての第1運転を連続的に実行させる。これにより、空気調節装置(100)を停止させることなく、通常運転の開始時刻からガス分離膜(124)の性能を十分に得ることができる。 Note that in Modification 1, preliminary operation and normal operation may be performed continuously. In this case, the preliminary operation preferably performs the same operation as the normal operation. Specifically, in normal operation, the second control section (191) causes the air conditioner (100) to perform the first operation. In this case, the second control section (191) causes the air conditioner (100) to perform the first operation even in the preliminary operation to restore the performance of the gas separation membrane (124). Strictly speaking, the second control section (191) continuously executes the first operation as the normal operation after the execution time of the first operation as the preliminary operation has elapsed. As a result, the performance of the gas separation membrane (124) can be sufficiently obtained from the start time of normal operation without stopping the air conditioner (100).
 (7-2)変形例2
 図15に示すように、変形例2に係る空気調節装置(100)は、実施形態に係る水分離モジュール(130)、導入路(107)、水供給路(108)、および第5切換弁(155)を有していない。変形例2の空気調節装置(100)は、実施形態と同様にして、第1運転、第2運転、第3運転、第4運転、および第5運転を行う。変形例2では、給気幹路(102c)の空気が導入路(107)および水供給路(108)を介さず、直接的に収納空間(5)に送られる点が、実施形態と異なる。
(7-2) Modification 2
As shown in FIG. 15, the air conditioner (100) according to Modification 2 includes a water separation module (130) according to the embodiment, an introduction passage (107), a water supply passage (108), and a fifth switching valve ( 155). The air conditioner (100) of Modification 2 performs the first operation, the second operation, the third operation, the fourth operation, and the fifth operation in the same manner as in the embodiment. The modification 2 differs from the embodiment in that the air in the air supply trunk (102c) is sent directly to the storage space (5) without passing through the introduction path (107) and the water supply path (108).
 変形例2の空気調節装置(100)の予備運転では、図16に示すように、ガス分離モジュール(120)で分離された第1空気および第2空気が庫外空間(6)に排出される。言い換えると、変形例2の排気流路(103)は、ガス分離膜(124)で分離された第1空気および第2空気を庫外空間(6)に排出する。 In the preliminary operation of the air conditioner (100) of Modification 2, as shown in FIG. 16, the first air and the second air separated by the gas separation module (120) are discharged to the outside space (6). . In other words, the exhaust channel (103) of Modification 2 discharges the first air and the second air separated by the gas separation membrane (124) to the outside space (6).
 具体的には、予備運転において、第2制御部(191)は、第3切換弁(153)を第2状態に、第4切換弁(154)を第2状態にそれぞれ設定する。第2制御部(191)は、例えば第2切換弁(152)を第1状態に、空気開閉弁(156)を閉状態にそれぞれ設定する。例えば第2制御部(191)は、第1切換弁(151)を第1状態に設定する。第2制御部(191)は、第1切換弁(151)を第2状態に設定してもよい。 Specifically, in the preliminary operation, the second control section (191) sets the third switching valve (153) to the second state and the fourth switching valve (154) to the second state. The second control section (191) sets, for example, the second switching valve (152) to the first state and the air on/off valve (156) to the closed state. For example, the second control section (191) sets the first switching valve (151) to the first state. The second control section (191) may set the first switching valve (151) to the second state.
 予備運転において、第1水分離器(111)で除湿された空気は、ガス分離モジュール(120)のガス分離膜(124)に供給される。これにより、ガス分離膜(124)の性能が回復する。ガス分離モジュール(120)で分離された第1空気は、第1給気路(102a)および第1排気路(103a)を順に流れ、排気幹路(103c)に流出する。ガス分離モジュール(120)で分離された第2空気は、第2給気路(102b)および第2排気路(103b)を順に流れ、排気幹路(103c)に流出する。排気幹路(103c)で合流した空気は、庫外空間(6)へ排出される。予備運転において、第2制御部(191)が第1切換弁(151)を第1状態に設定した場合、第2水分離器(113)で除湿された空気も、ガス分離モジュール(120)のガス分離膜(124)に供給される。これにより、ガス分離膜(124)の性能が回復する。 In preliminary operation, the air dehumidified in the first water separator (111) is supplied to the gas separation membrane (124) of the gas separation module (120). This restores the performance of the gas separation membrane (124). The first air separated by the gas separation module (120) sequentially flows through the first air supply line (102a) and the first exhaust line (103a), and then flows out to the exhaust trunk line (103c). The second air separated by the gas separation module (120) sequentially flows through the second air supply line (102b) and the second exhaust line (103b), and then flows out to the exhaust trunk line (103c). The air merged in the exhaust trunk (103c) is discharged to the outside space (6). In preliminary operation, when the second control section (191) sets the first switching valve (151) to the first state, the air dehumidified in the second water separator (113) is also dehumidified in the gas separation module (120). It is fed to the gas separation membrane (124). This restores the performance of the gas separation membrane (124).
 以上のように、変形例2では、予備運転において、ガス分離膜(124)で分離された第1空気と第2空気とが庫外空間(6)へ排出される。言い換えると、予備運転では、第1空気および第2空気が庫内空間である収納空間(5)へ供給されない。したがって、予備運転を実行することに伴い収納空間(5)の空気の組成が変化してしまうことを回避できる。 As described above, in Modification 2, the first air and the second air separated by the gas separation membrane (124) are discharged to the outside space (6) in the preliminary operation. In other words, in the preliminary operation, the first air and the second air are not supplied to the storage space (5), which is the internal space. Therefore, it is possible to avoid a change in the composition of the air in the storage space (5) due to the execution of the preliminary operation.
 変形例2の空気流路(A)において、第2流入路(101b)を省略し、収納空間(5)を流入流路(101)に接続せず、収納空間(5)を庫内側排気路(104)を介して庫外空間(6)に接続してもよい。この場合、庫内側排気路(104)には、開閉弁が設けられる。第2制御部(191)が開閉弁の開閉状態を設定することで、収納空間(5)の庫内空気を庫外空間(6)へ排出するかしないかを切り換えることができる。予備運転において、第2制御部(191)が開閉弁を閉状態に設定すると、庫内空気が庫内排気路(104)を介して庫外空間(6)へ排出されない。このため、庫内空間である収納空間(5)の空気の組成が変化してしまうことを抑制できる。加えて、収納空間(5)の圧力が変化してしまうことを抑制できる。 In the air flow path (A) of Modification 2, the second inflow path (101b) is omitted, the storage space (5) is not connected to the inflow path (101), and the storage space (5) is connected to the inside exhaust path. It may be connected to the outside space (6) via (104). In this case, an on-off valve is provided in the inside exhaust passage (104). By setting the opening/closing state of the on-off valve by the second control section (191), it is possible to switch whether or not to discharge the inside air of the storage space (5) to the outside space (6). In the preliminary operation, when the second control section (191) closes the on-off valve, the air inside the refrigerator is not discharged to the outside space (6) through the interior exhaust passage (104). Therefore, it is possible to suppress a change in the composition of the air in the storage space (5), which is the internal space. In addition, it is possible to prevent the pressure in the storage space (5) from changing.
 (7-3)変形例3
 図17に示すように、変形例3の空気調節装置(100)は、空気流路(A)に加熱部(175)が設けられる。加熱部(175)は、予備運転において、ガス分離膜(124)に供給される空気を加熱する。本例の加熱部(175)は、電気式のヒータによって構成される。加熱部(175)は、流入幹路(101c)に設けられる。具体的には、加熱部(175)は、水分離モジュール(130)とガス分離モジュール(120)の間に設けられる。
(7-3) Modification 3
As shown in FIG. 17, the air conditioner (100) of Modification 3 is provided with a heating section (175) in the air flow path (A). The heating section (175) heats the air supplied to the gas separation membrane (124) in preliminary operation. The heating part (175) of this example is configured by an electric heater. The heating section (175) is provided in the inflow trunk (101c). Specifically, the heating section (175) is provided between the water separation module (130) and the gas separation module (120).
 変形例3の予備運転では、加熱部(175)によって所定温度に加熱された被処理空気が、ガス分離膜(124)に供給される。被処理空気を加熱することで、空気中の成分がガス分離膜(124)の回復性能を向上できる。これは、空気の温度が高くなることで、ガス分離膜(124)にけるガスの拡散係数が増大すること、および空気の温度が高くなることで、空気中の相対湿度が下がることに起因すると推察できる。 In the preliminary operation of Modification 3, the air to be treated heated to a predetermined temperature by the heating unit (175) is supplied to the gas separation membrane (124). By heating the air to be treated, the components in the air can improve the recovery performance of the gas separation membrane (124). This is attributed to the increase in the diffusion coefficient of gas in the gas separation membrane (124) as the air temperature rises and the decrease in relative humidity in the air as the air temperature rises. I can guess.
 なお、加熱部(175)は、冷凍装置(10)に設けられるとともに、排熱によって空気を加熱する機器であってもよい。この機器としては、例えば圧縮機(31)がある。 Note that the heating unit (175) may be a device that is provided in the refrigeration system (10) and heats air by exhaust heat. This equipment includes, for example, a compressor (31).
 (7-4)変形例4
 変形例4の第2制御部(191)は、第1動作として、空気調節装置(100)の運転を人に促すための動作を実行する。この動作に関する制御について、図18を参照しながら詳細に説明する。
(7-4) Modification 4
The second control section (191) of Modified Example 4 performs, as the first action, an action for prompting the user to operate the air conditioner (100). Control regarding this operation will be described in detail with reference to FIG.
 ステップST21において、第2制御部(191)は、ガス分離膜(124)の性能が低下していることを示す第1条件が成立するか否かを判定する。ここで、第1条件は、空気調節装置(100)が停止してから所定時間が経過したこと、ガス分離膜(124)が使用されてない時間が所定時間以上続いたことが挙げられる。これらの条件が成立する場合、ガス分離膜(124)の細孔のサイズが小さくなってしまうためである。 In step ST21, the second control section (191) determines whether or not a first condition indicating that the performance of the gas separation membrane (124) is degraded is met. Here, the first condition is that a predetermined period of time has passed since the air conditioner (100) stopped and that the gas separation membrane (124) has not been used for a predetermined period of time or longer. This is because when these conditions are satisfied, the pore size of the gas separation membrane (124) becomes small.
 ステップST21において第1条件が成立すると、ステップS22において、第2制御部(191)は、空気調節装置(100)の運転を人に促すための第1信号を出力する。第2制御部(191)から出力された第1信号は、通信線(W)を経由して第1制御ユニット(90)の第1制御部(93)に入力される。 When the first condition is established in step ST21, in step S22 the second control section (191) outputs a first signal for prompting the person to operate the air conditioner (100). The first signal output from the second control section (191) is input to the first control section (93) of the first control unit (90) via the communication line (W).
 第1信号を受信した第1制御部(93)は、空気調節装置(100)の運転を人に促すように表示部(91)を制御する。厳密には、第1信号を受信した第1制御部(93)は、通常運転を人に促すように表示部(91)を制御する。表示部(91)は、空気調節装置(100)の運転を人に促すことを人に知らせる第1報知部の一例である。ステップS23において、表示部(91)は、文字、図形、記号、サインなどによって、空気調節装置(100)の通常運転を人に促す。表示部(91)を確認した人は、操作部(92)を操作することにより、空気調節装置(100)の通常運転を実行させる。 Upon receiving the first signal, the first control section (93) controls the display section (91) to prompt the user to operate the air conditioner (100). Strictly speaking, the first control section (93), which has received the first signal, controls the display section (91) so as to prompt the person to drive normally. The display section (91) is an example of a first notification section that informs the person that the operation of the air conditioner (100) is to be urged. In step S23, the display section (91) prompts the user to operate the air conditioner (100) normally using characters, graphics, symbols, signs, or the like. A person who has confirmed the display (91) causes the air conditioner (100) to operate normally by operating the operation section (92).
 変形例4の通常運転 においては、例えば第1運転、第2運転、第3運転、または第4運転が実行される。また、変形例4の通常運転において、第5運転が実行されてもよい。あるいは、変形例4の運転において、変形例2に記載の予備運転と同様の運転が実行されてもよい。あるいは、変形例4の運転において、変形例3に記載の予備運転と同様の運転が実行されてもよい。 In the normal operation of modification 4, for example, the first operation, second operation, third operation, or fourth operation is performed. Moreover, in the normal operation of Modification 4, the fifth operation may be performed. Alternatively, in the operation of modification 4, an operation similar to the preliminary operation described in modification 2 may be performed. Alternatively, in the operation of modification 4, an operation similar to the preliminary operation described in modification 3 may be performed.
 第1報知部は、光によって空気調節装置(100)の通常運転を促すLEDなどの発光部であってもよい。第1報知部は、声などの音によって空気調節装置(100)の通常運転を促す音発生部であってもよい。 The first reporting unit may be a light-emitting unit such as an LED that uses light to prompt normal operation of the air conditioner (100). The first notification section may be a sound generation section that prompts the normal operation of the air conditioner (100) with a sound such as voice.
 表示部(91)などの第1報知部は、第2制御ユニット(190)に設けられてもよい。この場合、ステップST21において第1条件が成立すると、空気調節装置(100)の表示部(91)が、空気調節装置(100)の通常運転を人に促す。 The first notification section such as the display section (91) may be provided in the second control unit (190). In this case, when the first condition is satisfied in step ST21, the display section (91) of the air conditioner (100) prompts the user to operate the air conditioner (100) normally.
 (7-5)変形例5
 変形例5の第2制御部(191)は、ガス分離膜(124)の性能に関する情報を出力する。この動作に関する制御について、図19を参照しながら詳細に説明する。図19に係る制御は、上述した実施形態の空気調節装置(100)に付加される。言い換えると、変形例5の空気調節装置(100)は、第1動作に加えて、ガス分離膜(124)の性能に関する情報を出力する動作(第2動作)を行う。
(7-5) Modification 5
The second control section (191) of Modification 5 outputs information about the performance of the gas separation membrane (124). Control regarding this operation will be described in detail with reference to FIG. The control according to FIG. 19 is added to the air conditioner (100) of the embodiment described above. In other words, the air conditioner (100) of Modification 5 performs an operation (second operation) of outputting information about the performance of the gas separation membrane (124) in addition to the first operation.
 ステップST31において、第2制御部(191)は、空気調節装置(100)の予備運転を実行させる。ステップST32において、第2制御部(191)は、ガス分離膜(124)の性能に関する情報を推定する。具体的には、第2制御部(191)は、ガス分離膜(124)の性能が回復するまでの時間を推定する。 At step ST31, the second control section (191) causes the air conditioner (100) to perform preliminary operation. In step ST32, the second control section (191) estimates information about the performance of the gas separation membrane (124). Specifically, the second control section (191) estimates the time until the performance of the gas separation membrane (124) recovers.
 第2制御部(191)は、ガス分離膜(124)の内圧の速度変化と、予備運転の経過時間との関係を示すデータを記憶している。予備運転の開始直後には、ガス分離膜(124)の細孔の径が小さいのに対し、予備運転を実行することに伴い細孔の径が徐々に大きくなる。予備運転が進むと、細孔が十分に大きくなり、その細孔の径の変化速度が小さくなる。このため、ガス分離膜(124)の内圧の減少変化量は、予備運転の開始直後は比較的大きくなり、その後、次第に小さくなる。つまり、予備運転の開始直後は、ガス分離膜(124)の内圧の減少速度が比較的大きく、その後、この減少速度が徐々に小さくなっていく。したがって、あるタイミングでのガス分離膜(124)の内圧の減少速度がわかれば、その後、どれくらいの時間が経過すればガス分離膜(124)の性能が回復するかを推定できる。 The second control unit (191) stores data indicating the relationship between the speed change of the internal pressure of the gas separation membrane (124) and the elapsed time of the preliminary operation. While the pore diameter of the gas separation membrane (124) is small immediately after the start of the preliminary operation, the pore diameter gradually increases as the preliminary operation is performed. As the preliminary operation progresses, the pores become sufficiently large, and the rate of change in the diameter of the pores becomes small. Therefore, the amount of decrease in the internal pressure of the gas separation membrane (124) is relatively large immediately after the start of the preliminary operation, and then gradually decreases. That is, immediately after the start of the preliminary operation, the rate of decrease of the internal pressure of the gas separation membrane (124) is relatively high, and then the rate of decrease gradually decreases. Therefore, if the rate of decrease of the internal pressure of the gas separation membrane (124) at a certain timing is known, it is possible to estimate how long it will take for the performance of the gas separation membrane (124) to recover.
 具体的には、ステップST32において、第2制御部(191)は、予備運転を開始した後の所定のタイミングにおいて、第2圧力センサ(162)の圧力検出値の減少速度を求める。第2制御部(191)は、この減少速度と、上記のデータとに基づいて、ガス分離膜(124)の性能が回復するまでの時間や時刻を推定する。なお、ステップST32において、ガス分離膜(124)の内圧の減少速度を求める際には、基本的には、第2制御部(191)は、第2圧力調節弁(172)の開度の調節は行わない。 Specifically, in step ST32, the second control section (191) obtains the decrease speed of the pressure detection value of the second pressure sensor (162) at a predetermined timing after starting the preliminary operation. The second control section (191) estimates the time or time until the performance of the gas separation membrane (124) recovers based on this rate of decrease and the above data. In step ST32, when obtaining the rate of decrease of the internal pressure of the gas separation membrane (124), basically, the second control section (191) adjusts the degree of opening of the second pressure control valve (172). not performed.
 ステップS33において、第2制御部(191)は、推定した時間や時刻に関する情報を、ガス分離膜(124)の性能に関する情報として出力する。第2制御部(191)は、この情報を第1制御ユニット(90)の第1制御部(93)に出力する。この情報を受信した第1制御部(93)は、この時間や時刻を人に知らせるように表示部(91)を制御する。表示部(91)は、ガス分離膜(124)の性能に関する情報を人に知らせる第2報知部の一例である。ステップS34において、表示部(91)は、文字、図形、記号、サインなどによって、ガス分離膜(124)の性能が回復するまでの時間や時刻を表示する。このようにして、人は、ガス分離膜(124)の性能が回復するまでの時間や時刻を、表示部(91)を介して知ることできる。したがって、空気調節装置(100)の信頼性を確保できる。 In step S33, the second control unit (191) outputs information about the estimated time and time as information about the performance of the gas separation membrane (124). The second control section (191) outputs this information to the first control section (93) of the first control unit (90). The first control section (93) having received this information controls the display section (91) so as to inform people of this time. The display section (91) is an example of a second notification section that informs a person of information regarding the performance of the gas separation membrane (124). In step S34, the display section (91) displays the time and time until the performance of the gas separation membrane (124) recovers, using characters, graphics, symbols, signs, and the like. In this way, a person can know the time and time until the performance of the gas separation membrane (124) recovers through the display section (91). Therefore, the reliability of the air conditioner (100) can be ensured.
 第2報知部は、光によってガス分離膜(124)の性能に関する情報を人に知らせる発光部であってもよい。第2報知部は、声などの音によってガス分離膜(124)の性能に関する情報を人に知らせる音発生部であってもよい。 The second reporting unit may be a light emitting unit that uses light to notify people of information about the performance of the gas separation membrane (124). The second notification part may be a sound generation part that notifies a person of information regarding the performance of the gas separation membrane (124) by means of sound such as voice.
 表示部(91)などの第2報知部は、第2制御ユニット(190)に設けられてもよい。この場合、ステップST27では、空気調節装置(100)の表示部(91)が、ガス分離膜(124)の性能に関する情報を人に知らせる。 A second notification section such as the display section (91) may be provided in the second control unit (190). In this case, in step ST27, the display section (91) of the air conditioner (100) informs the person of information regarding the performance of the gas separation membrane (124).
 本例では、ガス分離膜(124)の性能に関する情報が、ガス分離膜(124)の性能が回復するまでの時間や時刻であるが、この情報は、ガス分離膜(124)の性能そのものであってもよいし、ガス分離膜(124)の性能の低下の度合いであってもよい。 In this example, the information about the performance of the gas separation membrane (124) is the time and time until the performance of the gas separation membrane (124) recovers, but this information is the performance of the gas separation membrane (124) itself. It may be the degree of deterioration of the performance of the gas separation membrane (124).
 (7-6)変形例6
 図20に示す変形例6の空気調節装置(100)は、実施形態に係る第5切換弁(155)が省略されている。変形例6では、庫内へ供給される空気が、導入路(107)および水供給路(108)を必ず流れて、収納空間(5)へ送られる。言い換えると、変形例6では、導入路(107)及び水供給路(108)が、給気幹路(102c)の一部を構成している。
(7-6) Modification 6
The fifth switching valve (155) according to the embodiment is omitted from the air conditioner (100) of Modified Example 6 shown in FIG. In Modified Example 6, the air supplied into the storage always flows through the introduction channel (107) and the water supply channel (108) and is sent to the storage space (5). In other words, in Modification 6, the introduction passageway (107) and the water supply passageway (108) form part of the air supply trunk passageway (102c).
 (8)参考例
 参考例の空気調節装置(100)は、実施形態および変形例1~4に係る第1動作を行わない。言い換えると、参考例の空気調節装置(100)は、空気調節装置(100)の所定期間の停止に伴うガス分離膜(124)の性能の低下を抑制する動作を行わない。参考例の空気調節装置(100)は、変形例5に係る第2動作を行う。これにより、人は、ガス分離膜(124)の性能に関する情報を知ることができる。したがって、空気調節装置(100)の信頼性を確保できる。
(8) Reference Example The air conditioner (100) of Reference Example does not perform the first operation according to the embodiment and Modifications 1-4. In other words, the air conditioner (100) of the reference example does not perform an operation to suppress deterioration of the performance of the gas separation membrane (124) due to the suspension of the air conditioner (100) for a predetermined period. The air conditioner (100) of the reference example performs the second action according to the fifth modification. This allows a person to know information about the performance of the gas separation membrane (124). Therefore, the reliability of the air conditioner (100) can be ensured.
 (9)その他の実施形態
 加圧部は、エアポンプ(110)以外であってもよく、空気を圧縮する圧縮機や、空気を搬送するファンであってもよい。
(9) Other Embodiments The pressurizing section may be other than the air pump (110), and may be a compressor that compresses air or a fan that conveys air.
 実施形態の空気調節装置(100)において、第5切換弁(155)を省略してもよい。 In the air conditioner (100) of the embodiment, the fifth switching valve (155) may be omitted.
 空気調節装置(100)、輸送用冷凍装置(10)、または輸送用コンテナは、バッテリーなどの充電式の補助電源を有していてもよい。補助電源は、空気調節装置に電力を供給可能に構成される。空気調節装置(100)の電源がOFF状態であり、空気調節装置(100)が停止状態であるときにも、補助電源から空気調節装置(100)へ電力を供給できる。これにより、空気調節装置(100)が停止状態であるときであっても、空気調節装置(100)は予備運転を確実に実行できる。 The air conditioner (100), transport refrigeration system (10), or transport container may have a rechargeable auxiliary power source such as a battery. The auxiliary power supply is configured to be able to supply power to the air conditioner. Electric power can be supplied from the auxiliary power source to the air conditioner (100) even when the air conditioner (100) is powered off and the air conditioner (100) is stopped. As a result, even when the air conditioner (100) is in a stopped state, the air conditioner (100) can reliably perform the preliminary operation.
 輸送用コンテナ(1)は、陸上輸送に用いられてもよい。この場合、輸送用コンテナ(1)は、車両などの陸上輸送体によって搬送される。具体的には、輸送用コンテナ(1)は、トレーラに搭載される。 The shipping container (1) may be used for land transportation. In this case, the shipping container (1) is transported by land transport such as a vehicle. Specifically, the shipping container (1) is loaded onto a trailer.
 空気調節装置(100)は、定置式の倉庫において庫内の空気の組成を調節するために用いられてもよい。例えば、空気調節装置(100)は、果物、野菜、花卉などの生鮮物を保管するための倉庫に備えられてもよい。 この場合、倉庫の庫内に、保管対象物を収納するための庫内空間としての収納空間(5)が形成される。 The air conditioner (100) may be used in stationary warehouses to adjust the composition of the air inside the warehouse. For example, the air conditioner (100) may be provided in a warehouse for storing perishables such as fruits, vegetables, and flowers. In this case, a storage space (5) is formed as an internal space for storing objects to be stored in the warehouse.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態の要素を適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. Moreover, the elements of the above embodiments, modifications, and other embodiments may be appropriately combined or replaced.
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The descriptions of "first", "second", "third", etc. described above are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. not something to do.
 以上に説明したように、本開示は、空気調節装置、冷凍装置、および輸送用コンテナについて有用である。 As described above, the present disclosure is useful for air conditioners, refrigerators, and shipping containers.
      1   輸送用コンテナ
      2   コンテナ本体
      5   庫内空間
      6   庫外空間
     10   冷凍装置
     30   冷媒回路
    100   空気調節装置
    103   排気流路
    110   エアポンプ(加圧部)
    111   第1水分離器(減湿部)
    113   第2水分離器(減湿部)
    124   ガス分離膜
    130   水分離モジュール(減湿部)
    175   加熱部
    191   制御部
REFERENCE SIGNS LIST 1 shipping container 2 container body 5 internal space 6 external space 10 refrigerating device 30 refrigerant circuit 100 air conditioning device 103 exhaust flow path 110 air pump (pressurizing unit)
111 first water separator (dehumidifying section)
113 second water separator (dehumidifying section)
124 gas separation membrane 130 water separation module (dehumidifying section)
175 heating unit 191 control unit

Claims (12)

  1.  庫内空間(5)の庫内空気の組成を調節する空気調節装置であって、
     被処理空気が供給されるガス分離膜(124)と、
     空気調節装置の所定期間の停止に伴う前記ガス分離膜(124)の性能の低下を抑制する第1動作を実行させる制御部(191)とを備えている
     空気調節装置。
    An air conditioning device that adjusts the composition of the air inside the inside space (5),
    a gas separation membrane (124) supplied with air to be treated;
    A control unit (191) for executing a first operation for suppressing deterioration of the performance of the gas separation membrane (124) due to stoppage of the air conditioner for a predetermined period of time.
  2.  前記第1動作は、前記被処理空気を前記ガス分離膜(124)に供給する予備運転を含む
     請求項1に記載の空気調節装置。
    The air conditioner according to claim 1, wherein the first operation includes a preliminary operation of supplying the air to be treated to the gas separation membrane (124).
  3.  前記制御部(191)は、前記空気調節装置の停止から所定時間が経過すると、前記予備運転を開始させる
     請求項2に記載の空気調節装置。
    The air conditioner according to claim 2, wherein the control unit (191) starts the preliminary operation after a predetermined time has elapsed since the air conditioner was stopped.
  4.  前記制御部(191)は、前記空気調節装置の通常運転の開始時より所定時間前に前記予備運転を開始させる
     請求項2に記載の空気調節装置。
    The air conditioner according to claim 2, wherein the control unit (191) starts the preliminary operation a predetermined time before the start of normal operation of the air conditioner.
  5.  前記予備運転において、前記ガス分離膜(124)で分離された第1空気および第2空気を庫外空間(6)に排出する排気流路(103)を備えている
     請求項3または4に記載の空気調節装置。
    5. The method according to claim 3 or 4, further comprising an exhaust passage (103) for discharging the first air and the second air separated by the gas separation membrane (124) to the outside space (6) in the preliminary operation. air conditioner.
  6.  前記予備運転において、前記ガス分離膜(124)に供給される空気を加熱する加熱部(175)を備えている
     請求項3~5のいずれか1つに記載の空気調節装置。
    The air conditioner according to any one of claims 3 to 5, further comprising a heating section (175) for heating the air supplied to the gas separation membrane (124) in the preliminary operation.
  7.  前記予備運転において、前記ガス分離膜(124)に供給される空気を加圧する加圧部(110)を備えている
     請求項3~6のいずれか1つに記載の空気調節装置。
    The air conditioner according to any one of claims 3 to 6, further comprising a pressurizing section (110) that pressurizes the air supplied to the gas separation membrane (124) in the preliminary operation.
  8.  前記予備運転において、前記ガス分離膜(124)に供給される空気中の水分を減らす減湿部(111,113,130)を備えている
     請求項3~7のいずれか1つに記載の空気調節装置。
    The air conditioner according to any one of claims 3 to 7, further comprising a dehumidifying section (111, 113, 130) that reduces moisture in the air supplied to the gas separation membrane (124) in the preliminary operation.
  9.  前記第1動作は、前記空気調節装置の運転を人に促すための動作を含む
     請求項1~8のいずれか1つに記載の空気調節装置。
    The air conditioner according to any one of claims 1 to 8, wherein the first action includes an action for prompting a person to operate the air conditioner.
  10.  前記制御部(191)は、前記ガス分離膜(124)の性能に関する情報を出力する
     請求項1~9のいずれか1つに記載の空気調節装置。
    The air conditioner according to any one of claims 1 to 9, wherein the control section (191) outputs information regarding the performance of the gas separation membrane (124).
  11.  請求項1~10のいずれか1つの空気調節装置(100)と、
     前記庫内空間(5)の内部の温度を調節する冷媒回路(30)とを備える
     冷凍装置。
    An air conditioner (100) according to any one of claims 1 to 10;
    A refrigerating device comprising a refrigerant circuit (30) that adjusts the temperature inside the internal space (5).
  12.  請求項11に記載の冷凍装置(10)と、
     前記冷凍装置(10)が設けられるコンテナ本体(2)とを備えた
     輸送用コンテナ。
    a refrigeration system (10) according to claim 11;
    A container for transportation, comprising a container body (2) in which the refrigeration system (10) is provided.
PCT/JP2022/041900 2021-12-14 2022-11-10 Air-conditioner, refrigerator, and transport container WO2023112566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-202395 2021-12-14
JP2021202395A JP7348546B2 (en) 2021-12-14 2021-12-14 Air conditioning equipment, refrigeration equipment, and shipping containers

Publications (1)

Publication Number Publication Date
WO2023112566A1 true WO2023112566A1 (en) 2023-06-22

Family

ID=86774082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041900 WO2023112566A1 (en) 2021-12-14 2022-11-10 Air-conditioner, refrigerator, and transport container

Country Status (2)

Country Link
JP (1) JP7348546B2 (en)
WO (1) WO2023112566A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127609A (en) * 1989-10-05 1991-05-30 Andrew Corp Gas supply apparatus and gas dehumidification method
JPH1085545A (en) * 1996-09-18 1998-04-07 Tokico Ltd Dry air supply device
JP2002191927A (en) * 2000-12-26 2002-07-10 Ube Ind Ltd Gas separation membrane apparatus and operation stopping method
JP2005205275A (en) * 2004-01-21 2005-08-04 Matsushita Electric Ind Co Ltd Selective gas enrichment apparatus
US20140141139A1 (en) * 2012-11-19 2014-05-22 Membrane Technology And Research, Inc. Membrane Separation Process for Controlling Gas Concentrations Within Produce Shipping or Storage Containers
JP2019066169A (en) * 2017-09-29 2019-04-25 ダイキン工業株式会社 Indoor air adjustment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127609A (en) * 1989-10-05 1991-05-30 Andrew Corp Gas supply apparatus and gas dehumidification method
JPH1085545A (en) * 1996-09-18 1998-04-07 Tokico Ltd Dry air supply device
JP2002191927A (en) * 2000-12-26 2002-07-10 Ube Ind Ltd Gas separation membrane apparatus and operation stopping method
JP2005205275A (en) * 2004-01-21 2005-08-04 Matsushita Electric Ind Co Ltd Selective gas enrichment apparatus
US20140141139A1 (en) * 2012-11-19 2014-05-22 Membrane Technology And Research, Inc. Membrane Separation Process for Controlling Gas Concentrations Within Produce Shipping or Storage Containers
JP2019066169A (en) * 2017-09-29 2019-04-25 ダイキン工業株式会社 Indoor air adjustment device

Also Published As

Publication number Publication date
JP2023087868A (en) 2023-06-26
JP7348546B2 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US20160281999A1 (en) Water collecting system, humidification system, and air conditioning system
JP2019066169A (en) Indoor air adjustment device
US11668479B2 (en) Humidifier and air composition adjustment device
JP2019066170A (en) Indoor air adjustment device
WO2020100515A1 (en) Interior air conditioning device
WO2023112566A1 (en) Air-conditioner, refrigerator, and transport container
WO2019103045A1 (en) Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device
WO2000036346A1 (en) Air conditioner
JP6551592B2 (en) Gas supply device, internal air conditioning device, and container refrigeration device
WO2023112853A1 (en) Air-conditioning device, refrigeration device, and transport container
JP2019066168A (en) Indoor air adjustment device
JP2017219287A (en) Gas supply device and container freezing device including the same
JP7273351B2 (en) Indoor air conditioners, refrigeration equipment, and shipping containers
JP3573157B2 (en) Gas enrichment equipment
WO2022044511A1 (en) Air composition adjusting device, refrigeration device, container, and air composition adjusting method
JP3512037B1 (en) Gas enrichment device and blower
JP6676977B2 (en) Container refrigeration equipment
JP3551197B2 (en) Gas enrichment device and blower
JP2022165574A (en) Inside air adjusting device, refrigerator, and transporting container
JP2004209467A (en) Gas enrichment device and blowing apparatus
CN118043613A (en) In-house air conditioning device, refrigerating device, and shipping container
JP3534116B1 (en) Air conditioner
JP2022040583A (en) Air composition regulator, freezer, and transport container
JP2004170066A (en) Gas enriching device
JP2005201556A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907097

Country of ref document: EP

Kind code of ref document: A1